
Full Abstraction for PCF

Thijs Alkemade – 3285960

Master Thesis Mathematical Sciences

Supervised by: Jaap van Oosten
Second reader: Wouter Swierstra

August 18, 2015

Contents

1 Preliminaries 3
1.1 Untyped λ-calculus . 3

1.1.1 β-reduction . 4
1.1.2 η-equivalent . 5
1.1.3 The relation�β . 6
1.1.4 Computability . 7

1.2 Simply typed λ-calculus . 7
1.3 Category theory . 9
1.4 From λ-calculus theories to Cartesian closed categories 14
1.5 Domains . 16
1.6 Models of simply typed λ-calculus 27

2 PCF 34
2.1 Introduction . 34
2.2 Operational semantics for PCF 35
2.3 Denotational semantics for PCF 39
2.4 Scott-domain model . 40
2.5 The Full Abstraction Problem 42

2.5.1 Strengthening: parallel conditional 42
2.5.2 The stable function model 43

3 Dialogue Games 45
3.1 Example arenas . 46
3.2 O-view and P-view . 46
3.3 Product and function space arena 47
3.4 Innocent strategies . 50
3.5 The model . 55
3.6 FCF . 56

A Proof of the Church-Rosser theorem 62

B Proof of the weak normalization of the simply typed λ-calculus 66

Symbols 70

2

Chapter 1

Preliminaries

During the 1920s and 1930s a lot of interest in defining a mathematical model
of computability emerged. It is easy to show that something can be computed
by an algorithm by giving the algorithm, but proving that something can not be
computed requires a precise mathematical definition of what algorithms can do.
The operations that an algorithm is allowed to use had not been properly formalized
yet.

1.1 Untyped λ-calculus

One of the models that was introduced was the untyped lambda calculus. It was
developed by Alonzo Church in the 1930s. The syntax of λ-terms is given by the
following grammar, from [Barendregt, 1984]:

T F x (Variable)
| (λx.T) (λ-abstraction, where x is a variable)
| (T T) (Application of two λ-terms)

For example, these are λ-terms:

x

(λx.x)

((λx.y) y)

(λx.(x x) λx.(x x))

We shall use x, y, . . . to denote variables and M,N, . . . to denote λ-terms. When
parentheses are omitted, application is assumed to be left-associative, so M N O is
equal to ((M N) O). Parentheses around λ-abstractions will be omitted when the
result is unambiguous.

3

1.1.1 β-reduction

To define how the evaluation of these computations works, we must first define
what the free variables in a λ-term are.

Definition 1.1 The free variables of a λ-term are given by:

fv(x) = {x}

fv(λx.M) = fv(M) − {x}

fv(M N) = fv(M) ∪ fv(N)

Definition 1.2 We call a term M closed if it has no free variables, so fv(M) = ∅. A
variable in a term that is not free is bound by a λ-abstraction.

A variable is bound at most once. For example in:

λx.(λx.x)

the variable x is bound by the inner λ-abstraction.

Definition 1.3 Evaluation of λ-terms works by applying a rewrite step called β-
reduction:

(λx.M) N →β M[x B N]

By M[x B N] we mean syntactically replacing every occurrence of x bound by
the λ-abstraction by a literal copy of N. This can only be done if none of the free
variables of N would get bound at any occurrence of x, otherwise the meaning of
those variables would change. If this is not possible, those bindings have to be
α-renamed first.

Definition 1.4 The α-renaming rewrite step assigns a new name to all variables
bound by a λ-abstraction:

λx.M →α λy.M[x B y]

This is only allowed if at no location y gets bound by a different λ-abstraction.
For example, this is not allowed:

λx.(λy.x)→α λy.(λy.y)

Definition 1.5 Two λ-terms M and N are α-equivalent, noted M ≡α N, if it is
possible to rewrite M into N using α-renaming.

4

A β-reduction is not only allowed at the outer level, anywhere inside a term
where (λx.M) N (a redex) occurs, β-reduction is possible. We can formulate this
as the following recursive relation:

(λx.M) N →β M[x B N]

M →β M′

λx.M →β λx.M′

M →β M′

M N →β M′ N

N →β N′

M N →β M N′

The first, third and fourth rule may overlap: in an application M N it is possible
both M and N can be β-reduced, so the evaluation may have to “choose” between
different options and is therefore not deterministic.

Definition 1.6 Given a relation →, the transitive closure of →, denoted � is de-
fined as a � b = ∃xi.x1 → . . . → xn.x1 = a ∧ xn = b. Note that a � a, even for
non-reflexive relations→.

1.1.2 η-equivalent

We can also reduce terms in a different way: by η-reduction. This removes a
redundant λ-abstraction and application from a term. It is defined by:

λx.Mx→η M

if x < fv(M).

Definition 1.7 Two terms M and N are η-equivalent (denoted M ≡η N) if there is
an O such that M �η O and N �η O.

We say that a term is in normal form if it can not be reduced any further by
a reduction relation. Relations can be non-normalizing, weakly normalizing or
strongly normalizing. If a relation is non-normalizing, then there are terms that
will never reach a normal form, regardless of the order of reductions. A relation is
weakly normalizing if, for every term, there is a sequence of reductions that reaches
a normal form. A relation is strongly normalizing if every sequence of reductions
reaches a normal form.

It is easy to see that λ-terms are strongly normalizing under→η: when M →η

N, then N is strictly smaller (by considering the number of symbols) than M.

5

1.1.3 The relation�β

The relation�β is the transitive closure of→β.
From now on, we will use “normal form” for a normal form using the→β ∪ →η

relation. Not all λ-terms eventually reach a normal form, for example:

(λx.(x x) λx.(x x))→β (λx.(x x) λx.(x x))→β . . . (1.1)

This term has no normal form, as the only reduction possible yields the same
term.

Sometimes, terms may reach a normal form, depending which redex is chosen:

((λx.λy.y) (λx.(x x) λx.(x x)))

If we start evaluating the (λx.x x) (λx.x x) subterm first, it will never reach a
normal form, as seen in Equation (1.1). On the other hand, if we β-reduce the entire
expression, we will be left with only λy.y, which is a normal form.

So it is not guaranteed that a computation terminates regardless of evaluation
strategy. However, the Church-Rosser theorem ([Church and Rosser, 1936]) states
that evaluation is confluent:

M �β N and M �β O⇒ ∃PQ.N �β P and O�β Q and P ≡αη Q

In other words: if two evaluations of a single term result in two different terms,
then a third term exist such that both terms can be reduced to it, or a term αη-
equivalent to it.

In particular this implies that each term has at most one normal form (up to
αη-equivalence): If M �β N, M �β N′ and N and N′ are in normal form then
there must be a term N′′ such that N �β N′′ and N′ �β N′′. But N is in normal
form, so N ≡αη N′′ and similarly N′ ≡αη N′′, which means N ≡αη N′.

For a proof of the Church-Rosser theorem, taken from [Barendregt, 1984], see
Appendix A.

Definition 1.8 We define the relation ≡βηα as the transitive, reflexive and symmet-
ric closure of�β ∪�η ∪�α.

We state the following lemma from [Church and Rosser, 1936]:

Lemma 1.9 Let�βη be the union of the relations�β and�η. If M �βη N, then
M �β N′ �η N.

6

1.1.4 Computability

Church developed a method to encode numbers, booleans and tuples as λ-terms.
With those encodings, he showed it was possible to find an equivalent λ-function
for every partial recursive function. If f is a partial recursive function, n ∈ N and x
a λ-term that encodes n, then there is a λ-term M such that M x reaches a normal
form if and only if f (n) terminates and the normal form of M x encodes f (n).

A different model of computations is the Turing machine, developed by Alan
Turing also in the 1930s. It was later proved that both models are equally strong:
any computation that can be described by a λ-term can be evaluated by a Turing
machine, and vice versa. They both correspond to the set of partial recursive func-
tions.

The Church-Turing hypothesis states that partial recursive functions are exactly
the computable functions, meaning they correspond to the informal concept of
“algorithm” (which can never be proven, as the concept is informal).

1.2 Simply typed λ-calculus

Shortly after the untyped λ-calculus, the simply typed λ-calculus was developed. It
uses types for every λ-term, the syntax of the types is given by [Barendregt et al.,
2013]:

τ F σ (Where σ is from a set of ground types)
| (τ→ τ)

The→ is right associative, so we may omit parenthesis from types: α → β →

γ = (α→ (β→ γ)).
The syntax of the simply typed λ-calculus is given by [van Oosten, 2002]:

c : τ A constant of type τ.

x : τ A variable x with type τ.

N : τ1 → τ2 M : τ1

N M : τ2
An application.

M : τ1 x : τ2

λx.M : τ2 → τ1
A λ-abstraction, binding the variable x in M.

Definition 1.10 An equality judgment is given by:

Γ ` M = N : τ

where M and N are λ-terms with type τ and Γ is a finite set of variables, including
all the free variables in M and N.

7

Definition 1.11 A λ-calculus theory is a set of equality judgments T such that:

1. Γ ` M = N : τ ∈ T implies ∆ ` M = N : τ ∈ T for all Γ ⊆ ∆.

2. fv(M) ` M = M : τ ∈ T for every term M.

3. If Γ ` M = N : τ ∈ T and Γ ` N = O : τ ∈ T , then Γ ` M = O : τ ∈ T .

4. If M(x1, . . . , xn) : τ0 is a term with free variables x1 : τ1, . . . , xn : τn and
Γ ` N1 = M1 : τ1, . . . ,Γ ` Nn = Mn : τn ∈ T then:

Γ ` M[x1 B N1, . . . ,Nn B Nn] = M[x1 B M1, . . . , xn B Mn] : τ0 ∈ T

5. If N and M are λ-terms of type τ1 → τ2 and x : τ1 a variable that occurs in
neither N nor M and Γ ∪ {x} ` (M x) = (N x) : τ2 ∈ T , then Γ − {x} ` M =

N : τ1 → τ2 ∈ T .

6. If N : τ1 and M : τ2 are terms and x a variable of type τ2, then:

fv(N) − {x} ∪ fv(M) ` ((λx.N) M) = N[x B M] : τ1 ∈ T

For example, we can create a λ-calculus theory with natural numbers. We
introduce a single type, ι, and constants z : ι (for 0), s : ι → ι (the successor) and
i : ι → α → (α → α) → α for every type α (bounded recursion). Informally, the
interpretation of i is:

i n f x = f nx

We define the λ-calculus theory TN as the smallest set of judgments such that
the requirements of definition 1.11 hold and the following conditions are satisfied:

fv(f) ∪ fv(x) ` i 0 f x = x : α ∈ T

fv(f) ∪ fv(x) ` i (s n) f x = f (i n f x) : α ∈ T

For example, we can define addition, subtraction and multiplication with these
numbers as:

add a b = i a s b

mul a b = i a (add b) 0

pred n = (i n (λ f .λg. f (λa.λb.g (s a) a)) (λ f . f z z)) (λa.λb.b)

sub a b = i b pred a

8

(with the convention that pred 0 = 0 and sub a b = max(0, a − b)).
Recall that in the untyped λ-calculus terms are in general not normalizing:

not all terms eventually reach a normal form. In a simply typed λ-calculus theory
without constants, all terms are strongly normalizing: any sequence of β-reductions
will eventually reach a unique normal form.

This means it is impossible to write a program with an infinite loop in the
simply typed λ-calculus. As a Turing machine can be stuck in an infinite loop,
this means the simply typed λ-calculus can no longer compute everything a Turing
machine can.

See Appendix B for a proof that the simply typed λ-calculus is weakly norma-
lizing and [Barendregt et al., 2013] for a proof that it is strongly normalizing.

Adding a constant c : τ introduces the equality judgment ∅ ` c = c : τ, but it
can also introduce new non-trivial equality judgments, for example there could be
a constant that denotes the test for zero function z, such that ∅ ` z 0 = tt : o. These
extra equalities can make the language non-terminating, for example, by adding
the fix-point function:

fix : (ι→ ι)→ ι

with the equation:

∅ ` fix f = f (fix f) : ι

the requirements in definition 1.11 can still be satisfied, but the theory is not nor-
malizing.

1.3 Category theory

We will now introduce some definitions from category theory that will be needed.

Definition 1.12 A category C is an object consisting of:

• A class of objects ob(C).

• A class of morphisms (or: arrows) hom(C), where each morphism has a
source and a target object, denoted as f : X → Y (with X,Y ∈ ob(C)).

• A binary operation ◦ that composes two morphisms f : X → Y and g : Y →
Z, such that:

– f ◦ (g ◦ h) = (f ◦ g) ◦ h.

– For each object X there is an identity morphism idX such that for all
morphisms f : X → Y, idY ◦ f = f ◦ idX = f .

9

For example:

• 0 is the category with no objects or morphisms.

• 1 is the category with a single object 1 and its identity morphism.

• Set is the category where the objects are sets and morphisms functions be-
tween those sets, and ◦ is normal function composition.

• Grp is the category where the objects are groups and morphisms are group
homomorphisms.

Definition 1.13 Given two categories C and D a functor F consists of two func-
tions F0 : ob(C)→ ob(D) and F1 : hom(C)→ hom(D), such that:

F1(g ◦ f) = F1(g) ◦ F1(f)

∀X ∈ ob(C).F1(idX) = idF0(X)

• For example, there is the forgetful functor that maps Grp to Set:

F0((G, ·)) = G

F1(f) = f

It is forgetful as it omits the group operation.

• For every category C there is a unique functor C→ 1:

F0(X) = 1

F1(f) = id1

• For every category C there is a unique functor 0 → C (where F0 and F1 are
functions with empty domains).

• We can also compose functors and for every category an identity functor
exists, which means that we can make a category Cat where the objects are
categories and the morphisms are functors.

Definition 1.14 A product X × Y in a category C is a diagram with:

• Distinguished projection morphisms π1 : X × Y → X, π2 : X × Y → Y. See
Figure 1.1.

10

X × Y

YX
π1

π2

Figure 1.1: A product.

Z

X × Y YX

f
f1

f2

π1

π2

Figure 1.2: Commutativity of products.

• For every object Z with morphisms f1 : Z → X and f2 : Z → Y, there is
a unique morphism f : Z → X × Y, such that the diagram in Figure 1.2
commutes.

A diagram consists of nodes representing objects and directed edges repre-
senting morphisms between the nodes they connect. A diagram commutes if all
directed paths between two objects are equal when composed. Figure 1.2, for ex-
ample, commutes if f1 = π1 ◦ f and f2 = π2 ◦ f .

In the category of sets, the products are Cartesian products of sets and πi are
the projection functions.

Given products X × Y and A × B with morphisms f : X → A and g : Y → B,
we will denote by g × f the morphism X × Y → A × B, such that the diagram in
Figure 1.3 commutes.

Given two morphisms f : X → A and g : X → B, we define 〈 f , g〉 such that the
diagram in Figure 1.4 commutes.

X X × Y Y

A A × B B

π1

π2

π′1

π′2

f × gf g

Figure 1.3: The diagram of f × g

11

X

A × B AB
π1

π2

f
g 〈 f , g〉

Figure 1.4: The diagram of 〈 f , g〉

Z × X

YX × X Y

λg × idX

ev

g

Figure 1.5: Commutativity of ev and λg.

Definition 1.15 Let C be a category with products. For X,Y ∈ ob(C), an exponen-
tial YX consists of an object YX together with a morphism ev : YX × X → Y such
that for any morphism g : Z × X → Y there is a unique morphism λg : Z → YX

such that the diagram in Figure 1.5 commutes.

In the example of the category of sets, an exponential YX is the set of functions
from X to Y . The ev morphism is the function that sends the tuple (f , x) to f (x).

Definition 1.16 Given a function g : (Z × X) → Y, λg(z)(x) = g(z, x) is known as
the transpose of g.

Definition 1.17 An object T in a category C is terminal, if for every object X in C,
there exists exactly one morphism X → T.

In the category of sets, every singleton set is a terminal object, as there can
only be a single function mapping a given set to a given singleton set.

Definition 1.18 A natural numbers object in a category C with terminal object 1

is a triple (0,N, s) where N ∈ ob(C), 1
0
−→ N and N

s
−→ N, such that for every

diagram:

1 X X
x f

12

there is a unique map φ : N → X such that the following diagram commutes:

1 N N

X X

x

0 s

f

φ φ

In the category of sets, N is a natural numbers object, as we have morphisms
1 7→ 0 and x 7→ x + 1.

Definition 1.19 Suppose C is a category of pre-orders and order-preserving maps,
which has binary products. Then a C-enriched category is a category A such that:

• For every two objects x, y inA, the hom-setA(x, y) has the structure of object
of C.

• For every 3 objects x, y, z of A, the composition map:

A(x, y) × A(z, y)→ A(x, z)

is a morphism in C.

From [Amadio and Curien, 1998]:

Definition 1.20 A Cartesian closed category is a category C with:

• A terminal object 1.

• For any two objects X and Y there is a product X × Y in C.

• For any two objects X and Y there is an exponential YX in C.

In [Lambek, 1980] Lambek showed that λ-calculus theories are equivalent to
Cartesian closed categories. This is often called the Curry-Howard-Lambek corre-
spondence: Curry and Howard showed λ-calculus and intuitionistic propositional
logic are equivalent and Lambek added Cartesian closed categories.

Definition 1.21 A Cartesian closed category C has fixed-points if for each object
A there is a morphism YA : (A ⇒ A) → A such that the diagram in Figure 1.6
commutes.

13

(A⇒ A) × (A⇒ A)

(A⇒ A) × A

A⇒ A

A

1 × YA

ev

YA

∆

Figure 1.6: Commutativity fixed-points, ∆ is the morphism that maps an object to
a tuple of two copies of that object: A→ A × A.

1.4 From λ-calculus theories to Cartesian closed categories

Given a λ-calculus theory, it can be turned into a Cartesian closed category as
follows:
• The objects are tuples of types: (σ0, . . . , σk).

• For every two objects, the morphisms (σ0, . . . , σk)→ (τ0, . . . , τl) are equiv-
alence classes (using ≡βηα elementwise) of l-tuples of λ-terms where the i-th
term has type σ0 → · · · → σk → τi.

To verify that this is a category:

• Identity morphisms: for every tuple of types (σ0, . . . , σk), we have a tuple of
terms:

(λ(x0 : σ0) . . . λ(xk : σk).x0,

. . . ,

λ(x0 : σ0) . . . λ(xk : σk).xk)

which is an identity arrow.

• Arrow composition: given morphisms g : (τ0, . . . , τl) → (ρ0, . . . , ρm) and
f : (σ0, . . . , σk)→ (τ0, . . . , τl), we define g ◦ f as:

(λ(x0 : σ0).λ(x1 : σ1).g0 (f0 x0 . . . xk) . . . (fl x0 . . . xk),

. . . ,

λ(x0 : σ0).λ(x1 : σ1).gm (f0 x0 . . . xk) . . . (fl x0 . . . xk))

14

To verify that this is associative, given h : (ρ0, . . . , ρm) → (κ0, . . . , κn), g :
(τ0, . . . , τl)→ (ρ0, . . . , ρm) and f : (σ0, . . . , σk)→ (τ0, . . . , τl):

(We will use x to denote x0 x1 . . . xn, where n is clear from the context.)

h ◦ (g ◦ f) = h ◦ (λ(x : σ).g0 (f x), . . . , λ(x : σ).gm (f x))

= (λ(x : σ).h0 (g (f x)), . . . , λ(x : σ).hn (g (f x)))

(h ◦ g) ◦ f = (λ(x : σ).(h ◦ g)0 (f x), . . . , λ(x : σ).(h ◦ g)n (f x))

�β (λ(x : σ).h0 (g (f x)), . . . , λ(x : σ).hn (g (f x)))

So h ◦ (g ◦ f) ≡βηα (h ◦ g) ◦ f .

To verify that this category is Cartesian closed:

• The terminal object is the zero-tuple, ().

• The product (σ0, . . . , σk) × (τ0, . . . , τl) is (σ0, . . . , σk, τ0, . . . , τl). To verify
that this is a product:

– Given a product (σ0, . . . , σk, τ0, . . . , τl), we can construct π1 as a k-
tuple of functions that project out only the σ-values σ0 → . . . σk →

τ0 → · · · → τl → σi. π2 works the same way.
– Given an object (ρ0, . . . , ρm) with morphisms:

f1 : (ρ0, . . . , ρm)→ (σ0, . . . , σk)

f2 : (ρ0, . . . , ρm)→ (τ0, . . . , τl)

we can construct a morphism:

f : (ρ0, . . . , ρm)→ (σ0, . . . , σk, τ0, . . . , τl)

as the concatenation of the terms in f1 and f2. It is easy to see that this
makes the diagram in Figure 1.2 commute.

• The exponential YX of X = (τ0, . . . , τl) and Y = (σ0, . . . , σk) is (τ0 → · · · →

τl → σ0, . . . , τ0 → · · · → τl → σk).

To verify that this satisfies the requirements of exponentials, let Z = (ρ0, . . . ,

ρm) and let g be a morphism from (ρ0, . . . , ρm, τ0, . . . , τl) to (σ0, . . . , σk).
Then g is a k tuple of terms with type ρ0 → . . . ρm → τ0 → · · · → τl → σi.
Because of the associativity of →, we can also see this as a tuple of terms
with type ρ0 → . . . ρm → (τ0 → · · · → τl → σi), which is a morphism from
Z → YX .

We can define the ev : YX×X → Y morphism as the k-tuple λ f0 : τ0 → · · · →

τl → σ0. . . . λ fk : τ0 → · · · → τl → σk.λx0 : τ0. . . . λxl : τl. fi x0 . . . xl.

15

1.5 Domains

Definition 1.22 A partial order is a binary relation v that is:

• Reflexive: ∀a.a v a.

• Antisymmetric: If a v b and b v a, then a = b.

• Transitive: If a v b and b v c, then a v c.

Definition 1.23 A poset is a set together with a partial order.

For example, (R,≤) is a poset. For any set A, (P(A),⊆) is also a poset.

Definition 1.24 Let (P,v) be a poset and X ⊆ P, then the least upper bound (or:
supremum) of X (if it exists) is the smallest element s ∈ P such that for all x ∈ X,
x v s. It is denoted

⊔
X. If X = {a, b}, then we write a t b.

Definition 1.25 Let (P,v) be a poset and X ⊆ P, then the greatest lower bound
(or: infimum) of X (if it exists) is the greatest element s of P such that for all x ∈ X,
s v x. It is denoted

d
X. If X = {a, b}, then we write a u b.

The supremum and infimum do not necessarily exist, but if they exist, then they
are unique.

Definition 1.26 A subset X of a poset (P,v) is directed if it is non-empty and every
finite subset of that set has an upper bound in X: ∀a, b ∈ X∃c ∈ X.a v c ∧ b v c.

In (R,≤) every non-empty set is directed. In (P(N),⊆), the set {{1}, {2}} is not
directed, but {{1}, {2}, {1, 2, 3}} is.

Definition 1.27 A poset is directed complete if all directed subsets have a supre-
mum.

Definition 1.28 A poset is bounded complete if all subsets that have an upper
bound have a supremum.

Definition 1.29 We will use x ↑ y to denote that x and y are bounded.

Definition 1.30 If a poset has a unique smallest element, then it is called the bot-
tom element. It is denoted ⊥.

For any set A, the poset (P(A),⊆) has ⊥ = ∅.

Theorem 1.31 A non-empty bounded complete poset has a ⊥.

Proof Any x ∈ P is an upper bound for ∅, so, by the bounded completeness, it
must have a least upper bound, y. As y v x for all x ∈ P, it must be the ⊥ element
of P. �

16

Theorem 1.32 In a bounded complete poset (P,v), a u b exists for all a, b ∈ P.

Proof The supremum of a u b is given by:

a u b =
⊔
{c | c v a ∧ c v b}

This supremum exists, at the set is bounded (as a and b are both a bound) and
P is bounded complete.

Definition 1.33 An element c of a poset (P,v) is compact if for every directed
subset X, if

⊔
X exists and c v

⊔
X, then c v d for some element d ∈ X.

In (P(N),⊆), the compact elements are exactly the finite sets:

• Let C be a finite subset of N and X a directed subset of P(N) such that
C ⊆

⊔
X. By induction:

– If C = ∅, then C ⊆ D for any D ∈ X.

– If C = C′ ∪ {n} and by the induction hypothesis there is a D′ ∈ X
such that C′ ⊆ D′, then there must be a D′′ ∈ X such that n ∈ D′′ (as
C ⊆

⊔
X). As X is directed, there must be a D ∈ X such that D′ ⊆ D

and D′′ ⊆ D. So C ⊆ D.

• If C is an infinite subset of N, then let:

X = {{0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, . . . }

It is easy to see that C ⊆
⊔

X = N, however, there is no D ∈ X such that
C ⊆ D because all elements of X are finite sets. �

Definition 1.34 A poset (P,v) is algebraic if for every element x ∈ P:

x =
⊔
{d | d ∈ P, d v x, d compact}

For example, (P(N),⊆) is algebraic: recall that the compact elements are the
finite sets.

Definition 1.35 An element c of a poset (P,v) is prime if for every subset X, if
⊔

X
exists and c v

⊔
X, then c v d for some element d ∈ X.

A prime element is always compact, but the converse does not hold in general.

17

Definition 1.36 A poset (P,v) is prime algebraic if for every element x ∈ P:

x =
⊔
{d | d ∈ P, d v x, d prime}

The posets we will mainly use are Scott-domains:

Definition 1.37 A Scott-domain is a directed complete, bounded complete, alge-
braic poset.

With the following functions between Scott-domains, [Abramsky and Jung,
1994]:

Definition 1.38 A Scott-continuous function is a function between two posets that
is monotone and preserves the suprema of directed subsets.

In other words:

f
(⊔

X
)

=
⊔

f (X)

Definition 1.39 Pointwise function ordering: Two functions f : X → Y and g :
X → Y, where (Y,v) is a poset, are ordered f vp g by the pointwise ordering if
and only if ∀x. f (x) v g(x).

Lemma 1.40 Let A and B be Scott-domains. Then the set of Scott-continuous
functions from A to B, denoted [A → B], under the pointwise function ordering is
a Scott-domain.

Proof • Let C be a directed subset of [A→ B]. Then for all functions f , g ∈ C,
there must be a h ∈ C such that for all x ∈ A, f (x) vp h(x) and g(x) vp

h(x). So the set { f (x) | f ∈ C} is directed, this means this set must have a
supremum, as it is a directed subset of A, and A is a Scott-domain.

So we define h as h(x) =
⊔
{ f (x) | f ∈ C}. To show that h is Scott-continuous,

let X be a directed subset of A:

h
(⊔

X
)

=
⊔{

f
(⊔

X
)
| f ∈ C

}
=

⊔⊔
x∈X

f (x) | f ∈ C


=

⊔⊔
x∈X

{ f (x) | f ∈ C}

=
⊔
x∈X

⊔
{ f (x) | f ∈ C}

=
⊔
x∈X

h(x)

so h is indeed Scott-continuous.

18

• To prove that [A→ B] is bounded complete, we will look at it pointwise. Let
C be a subset of [A→ B]. If C has an upper bound, then the set { f (x) | f ∈ C}
has an upper bound for each x, which means that set has a supremum, as it
is a subset of A, and A is a Scott-domain. So we define the function h as
h(x) =

⊔
{ f (x) | f ∈ C}. h is Scott-continuous, by the same argument as the

previous case.

• First, we must find the compact Scott-continuous functions from [A→ B].

Define f c
a : A→ B as:

f c
a (x) =

c a v x
⊥ otherwise

for all c and compact a, f c
a is Scott-continuous: if a v

⊔
X, then f (

⊔
X) = c.

As a is compact, there must be an x ∈ X such that a v x, so
⊔

f (X) = c. If
f c
a (X) = ⊥, then a @

⊔
X, so ∀x ∈ X.a @ x, so f c

a (X) = {⊥}, so
⊔

f (X) = ⊥.

If c is compact, then f c
a is compact: suppose f c

a v
⊔

X for a directed set X.
Then f c

a (a) v
⊔
{g(a) | g ∈ X}, because the order is pointwise. This means

c v
⊔
{g(a) | g ∈ X}. So for some g ∈ X, c v g(a). This means f c

a v g (by
the monotonicity of Scott-continuous functions).

If f c
a is compact, then c is compact: if c v

⊔
i ci, then f c

a v
⊔

f ci
a , which

means there must be an f ci
a such that f c

a v f ci
a , which means c v ci.

If f : A→ B is Scott-continuous, then f c
a v f for all compact a and compact

c such that c v f (a).

So:

f =
⊔{

f c
a | a ∈ A compact, c ∈ B compact, c v f (a)

}
(1.2)

Let X =
{
f c
a | a ∈ A compact, c ∈ B compact, c v f (a)

}
, then:

f =
⊔

X′⊆X, X′ finite

⊔
X′

So if f is compact, then f is equal to a the supremum of a finite set of f cn
an -

functions.

Now we show that [A → B] is algebraic. Let f ∈ [A → B], then g is a
compact function below f if and only if g is a finite subset of:

19

{
f c
a | a ∈ A compact, c ∈ B compact, c v f (a)

}
As f c

a are all compact, f must be equal to the set of compact elements below
it.
�

Lemma 1.41 The Cartesian product A× B of two Scott-domains A and B is again
a Scott-domain.

Proof First note that X is a directed subset of A×B if and only if πA(X) is a directed
subset of A and πB(X) a directed subset of B: if X is non-empty, then πA(X) and
πB(X) are non-empty. If a finite subset Y ⊆ X has an upper bound in X, say z, then
πA(z) is an upper bound for πA(Y) and vice versa for B.

Now to show that A × B is a Scott-domain:

• A × B is directed complete: let X be a directed subset of A × B and let A′ =

πA(X) and B′ = π(X). Thus, A′ is a directed subset of A and B′ a directed
subset of B. As A and B are Scott-domains, they are directed complete,
therefore A′ has a supremum and B′ has a supremum. The supremum of X
is (

⊔
A′,

⊔
B′).

• A × B is bounded complete: suppose X has an upper bound, (a, b). Then a
is an upper bound of πA(X), so πA(X) has a supremum a′ (as A is bounded
complete) and b an upper bound for πB(X), so let b′ be the supremum of
πB(X). This means (a′, b′) is the supremum of X.

• A × B is algebraic: first note that the compact elements of A × B are:

{(a, b) | a ∈ A, a compact, b ∈ B, b compact}

As A and B are algebraic, for all elements (a, b) ∈ A × B, a =
⊔
{d | d ∈

A, d v a, d compact} and b =
⊔
{d | d ∈ A, d v b, d compact}, so (a, b) =⊔

{(d, e) | d ∈ A, d v a, d compact, e ∈ B, e v b, e compact}.

�

Theorem 1.42 The category of Scott-domains with Scott-continuous functions as
morphisms is a Cartesian closed category.

Proof First, we must show that this is indeed a category.

• For each object A, the identity function A → A is Scott-continuous, as it is
monotone and preserves the suprema of directed subsets.

20

• The composition of two Scott-continuous functions is again Scott-continu-
ous: the composition of two monotone functions is monotone, and:

f
(
g
(⊔

X
))

= f
(⊔

g (X)
)

=
⊔

f (g (X))

Now to show that this category is Cartesian closed:

• There is a terminal object: {⊥}. For every Scott-domain, there is a unique
function that maps every element to ⊥.

• Products are Cartesian products: A × B = {(a, b) | a ∈ A, b ∈ B}. The partial
order is given by (a, b) v (c, d) ⇔ a v c ∧ b v d. This is a Scott-domain by
lemma 1.41 and it is a valid (categorical) product, as projection morphisms
are Scott-continuous.

• Exponentials BA are the Scott-domain [A→ B] under the pointwise function
ordering. By lemma 1.41, if A and B are Scott-domains, then the set of all
Scott-continuous functions [A→ B] is itself a Scott-domain.

We can simply define the ev morphism as:

ev(f , x) = f (x)

which is Scott-continuous and satisfies the requirements for exponentials.

Definition 1.43 An element d of a poset (P,v) is very finite if the set {x ∈ P | x v d}
is finite.

The following comes from [Berry, 1978] and [van Oosten, 1997]:

Definition 1.44 A dI-domain is an directed complete, bounded complete, alge-
braic poset (P,v) such that:

Axiom d. For every x, y, z ∈ P, if y ↑ z, then x u (y t z) = (x t y) u (x t z).

Axiom I. Every compact element is very finite.

Definition 1.45 A function f : D→ E, where D and E are dI-domains, is stable if
it is Scott-continuous and satisfies:

∀x, y ∈ D.x ↑ y⇒ f (x u y) = f (x) u f (y)

Lemma 1.46 The composition of two stable functions is again stable.

21

Proof Let f : B→ C and g : A→ B be stable functions.

∀x, y.x ↑ y⇒ f (g(x u y)) = f (g(x) u g(y)) = f (g(x)) u f (g(y))

�

Definition 1.47 Two stable functions f , g : D → E, where D and E are dI-do-
mains, are ordered by the stable function ordering f vs g if:

• f vp g by the pointwise function ordering: ∀x ∈ D. f (x) vE g(x).

• ∀x, y ∈ D.x vD y⇒ f (x) = f (y) u g(x).

It is easy to see that for stable functions f , g with f vp g and for all x, y ∈ D
with x vD, f (x) is a lower bound for f (y) and g(x): by the monotonicity of f and
the pointwise function ordering respectively. f is stable if this lower bound is the
greatest lower bound.

The following lemma is from [Zhang, 1991]:

Lemma 1.48 Suppose f and g are stable functions with f ↑ g under the stable
function ordering and x ↑ y. Then:

f (x) u g(y) = f (x u y) u g(x u y) = f (y) u g(x)

Proof Because f ↑ g, there must be a stable function h such that f vs h and
g vs h. Because x u y v x and x u y v y, we can apply the definition of the stable
function ordering to get:

f (x u y) = f (x) u h(x u y)

g(x u y) = g(y) u h(x u y)

So, because f vp h and g vp h:

f (x u y) u g(x u y) = f (x) u g(y) u h(x u y)

= f (x) u g(y) u h(x) u h(y)

= f (x) u g(y)

�

Definition 1.49 Let f : A → B be a stable function between dI-domains A and B.
Let:

µ f =
{
(a, p) | a ∈ A, a compact, p ∈ B, p prime, f (a) w p ∧

(
∀a′ w a. f (a′) w p⇒ a = a′

)}
22

We will state the following lemmas and theorems from [Zhang, 1991] without
proof:

Lemma 1.50 Let f , g : A→ B be stable functions, then µ f ⊆ µg if f vs g.

Theorem 1.51 Suppose D is a Scott-domain satisfying axiom I, then D is prime
algebraic if and only if it is a dI-domain.

Lemma 1.52 Let f : A→ B be a stable function. Then for all x ∈ A:

f (x) =
⊔
{p | ∃a v x.(a, p) ∈ µ f }

Theorem 1.53 Let f , g ∈ [A→s B]. f vs g if and only if µ f ⊆ µg. Let {(ai, pi) | i ∈
I, ai ∈ A, a compact, pi ∈ B, pi prime}. Then {(ai, pi) | i ∈ I} = µ f if and only if:

• ∀J ⊂ I.J finite ∧ {ai | i ∈ J} directed⇒ {pi | i ∈ J} directed.

• (ai ↑ a j ∧ pi = p j)⇒ ai = a j.

• ∀p ∈ B.p prime⇒
(
pi v p⇒ ∃ j.p j = p ∧ ai w a j

)
.

Theorem 1.54 Given two dI-domains A and B, the poset of stable functions from
A to B using the stable function ordering, denoted [A→s B], is a dI-domain.

Proof This proof is based on the proof-sketch from [Zhang, 1991].

• Bounded complete: Let C be a bounded subset of [A →s B] and consider
F(x) =

⊔
f∈C f (x). First, we show that F itself is a stable function. Let

x0 v x1 v · · · v xn v . . . be a chain in A. Then:

⊔
f∈C

f

⊔
i∈ω

xi

 =
⊔
f∈C

⊔
i∈ω

f (xi)


=

⊔
i∈ω

⊔
f∈C

f (xi)


so F is Scott-continuous.

Let x, y ∈ A with x ↑ y. Then, using lemma 1.48 and axiom d of A:

23

⊔
f∈C

f (x u y) v

⊔
f∈C

f (x)

 u
⊔

g∈C

g(y)


=

⊔
f∈C

⊔
g∈C

(f (x) u g(y))

=
⊔
f∈C

⊔
g∈C

(f (x u y) u g(x u y))

v
⊔
f∈C

f (x u y)

which means
⊔

f∈C f (x u y) =
(⊔

f∈C f (x)
)
u

(⊔
g∈C g(y)

)
, so F is stable.

Let x, y ∈ A, x v y and g ∈ C. Then:

g(x) v g(y) u
⊔
f∈C

f (x)

=
⊔
f∈C

(g(y) u f (x))

=
⊔
f∈C

(g(x u y) u f (x u y))

v g(x)

so g(x) = g(y) u
⊔

f∈C f (x), which implies g vs F, which means [A →s B]
is bounded complete.

• Directed complete: Let C be a directed subset of [A →s B]. Then for all
functions f , g ∈ C, there must be a h ∈ C such that for all x ∈ A, f (x) vs h(x)
and g(x) vs h(x). So the set { f (x) | f ∈ C} is directed, this means this set
must have a supremum, as it is a directed subset of A, and A is a dI-domain.

So we define h as h(x) =
⊔
{ f (x) | f ∈ C}. h is Scott-continuous by the same

argument as in the proof of lemma 1.40. To show that h is stable:

24

h(x u y) =
⊔
{ f (x u y) | f ∈ C}

v

⊔
f∈C

f (x)

 u
⊔

g∈C

g(y)


=

⊔
f∈C

⊔
g∈C

(f (x) u g(y))

=
⊔
f∈C

⊔
g∈C

(f (x u y) u g(x u y))

v
⊔
f∈C

f (x u y)

so h is stable and it is the supremum of C.

• Prime algebraic: Instead of proving axiom d and algebraicity separately, we
prove that [A→s B] is prime algebraic and apply theorem 1.51.

First, we characterize the compact elements of [A →s B]. We do this simi-
larly to the proof of lemma 1.40. We again introduce the functions:

f c
a (x) =

c a v x
⊥ otherwise

where a, c ∈ A and a compact.

First, we show that f c
a is stable for all a and c, the proof of lemma 1.40

already showed it is Scott-continuous. Let x, y ∈ A with x ↑ y. We can
distinguish the following cases:

– If f c
a (x) = c and f c

a (y) = c.
Then a v x and a v y, which implies a v x u y, so f c

a (x u y) = c =

f c
a (x) u f c

a (y).

– If f c
a (x) = c and f c

a (y) = ⊥.
Then a @ y, so a @ x u y, so f c

a (x u y) = ⊥ = f c
a (x) u f c

a (y).
The case f c

a (x) = ⊥ and f c
a (y) = c is the same.

– If f c
a (x) = ⊥ and f c

a (y) = ⊥.
Then a @ x and a @ y, which implies a @ x u y, so f c

a (x u y) = ⊥ =

f c
a (x) u f c

a (y).

If f c
a is prime, then c is prime: if c v

⊔
i ci for a set {ci | i ∈ I}, then f c

a vs⊔
i f ci

a for all compact a, which means there must be an i such that f c
a vs f ci

a ,
which means c = f c

a (a) v f ci
a (a) = ci.

25

If f : A → B is stable, then f c
a vs f for all compact a and prime c such that

c v f (a). So:

f =
⊔{

f c
a | a ∈ A compact, c ∈ B prime, c v f (a)

}
Let X =

{
f c
a | a ∈ A compact, c ∈ B prime, c v f (a)

}
, then:

f =
⊔

X′⊆X, X′ finite

⊔
X′

So if f is prime, then f is equal to a finite set of f c
a -functions.

Now to show that [A→s B] is prime algebraic. Suppose f ∈ [A→s B], then
g is a compact function below f if and only if g is a finite subset of:

{
f c
a | a ∈ A compact, c ∈ B prime, c v f (a)

}
As all sets are equal to the union of all finite subsets, f must be equal to⊔{

g | g ∈ [A→s B] prime, g vs f
}
, so [A→s B] is prime algebraic.

• Axiom I: The compact elements of [A→s B] are suprema of finite sets of f c
a

with a and c compact. For a set X =
{
f c
a | a ∈ A compact, c ∈ B compact, c v f (a)

}
,

there are only finitely many subsets of X. As A and B are dI-domains, there
can only be finitely many f c′

a′ below a given f c
a . So [A→s B] satisfies axiom

I.

�

Theorem 1.55 The category of dI-domains with stable functions is Cartesian clo-
sed.

Proof To show that it is a valid category:

• For each dI-domain A, it is trivial to see that the identity function A → A is
stable: ∀x, y ∈ A.x ↑ y⇒ f (x u y) = x u y = f (x) u f (y).

• See lemma 1.46.

Now to show that this category is Cartesian closed:

• There is a terminal object, namely the dI-domain with a single object: {⊥}.
For every dI-domain, there is a unique function that maps every element to
⊥.

26

• If E and D are dI-domains, then E ×D is also a dI-domain. E ×D is directed
complete, bounded-complete and algebraic, as all dI-domains are Scott-do-
mains and Scott-domains are Cartesian closed. All that’s needed is to show
it also satisfies axioms d and I.

d. Note that (y, y′) ↑ (z, z′) if and only if y ↑ z and y′ ↑ z′. So for every
(x, x′), (y, y′) and (z, z′) ∈ E × D, if (y, y′) ↑ (z, z′) then x u (y t z) =

(x u y) t (x u z) and x′ u (y′ t z′) = (x′ u y′) t (x′ u z′), so:

(x, x′) u ((y, y′) t (z, z′)) = ((x, x′) u (y, y′)) t ((x, x′) u (z, z′))

I. Note that (a, b) is compact if and only if a is compact and b is compact.
So for a compact (a, b): {x ∈ E × D | x v (a, b)} = {(x, y) ∈ E × D | x v
a ∧ y v b} = {x ∈ E | x v a} × {y ∈ D | y v b}, which is finite because it
is the product of two finite sets.

• If E and D are dI-domains, then the exponential DE is the dI-domain of
stable functions from E to D. This is a dI-domain using theorem 1.54.

Definition 1.56 An ω-complete poset is a poset (P,v) where each countable chain
x1 v x2 v . . . has a supremum.

Every directed complete poset is an ω-complete poset, but not conversely.

1.6 Models of simply typed λ-calculus

A model of a simply typed λ-calculus theory interprets the types and terms in a
Cartesian closed category C. It uses a function J.K that interprets types and terms
as objects respectively morphisms of the category.

We must give an interpretation of each ground type of our theory: J.K : σ →
obj(C). Given interpretations of all base types, the interpretation of the other types
follows from the exponentials the chosen category: Jτ1 → τ2K = Jτ2K

Jτ1K.
We also need an interpretation of all constants. For a constant c : τ, we need to

distinguish a morphism 1
JcK
−−→ JτK.

For example, given a λ-calculus theory T with base types ι and o and constants
z : ι, s : ι → ι, tt : o and ff : o we can create a Cartesian closed category as
described in Section 1.4. We start with the objects {N,B} (B = {true, false}) and
define the interpretation as:

27

JιK = N

JoK = B

JzK = 1
0
−→ N

JsK = 1
s
−→ NN

JttK = 1
true
−−−→ B

JffK = 1
false
−−−→ B

As a theory this example is quite limited, as it has no recursion or conditionals.
The interpretation of sets of free variables is a product of their types: J{x1 :

τ1, x2 : τ2, . . . }K = Jτ1K × Jτ2K × Using that, we interpret (non-constant) terms
as morphisms between the interpretation of their free variables and their type. So

given t : τ, the interpretation JMK is a morphism Jfv(M)K
JMK
−−−→ JτK, given by:

• For a variable x : τ, the identity arrow for JτK:

Jfv(x)K = JτK
JxK
−−→ JτK

• For terms JMK : Jfv(M)K → Jτ2KJτ1K and JNK : Jτ1K, JM NK is given by the
composite:

Jfv(M N)K
〈JMK◦πM ,JNK◦πN〉
−−−−−−−−−−−−−−→ Jτ2KJτ1K × Jτ1K

ev
−−→ Jτ2K

where πM and πN are the projection morphisms such that πM : Jfv(M N)K→
Jfv(M)K and πN : Jfv(M N)K→ Jfv(N)K.

• For a term JMK : Jfv(M)K → τ2 and a variable x : τ1, we define Jλx.MK as
the transpose of (see definition 1.16):

– If x does not occur free in M:

Jfv(M)K × J{τ1}K
JMK◦πM
−−−−−−→ Jτ2K

where πM is the projection function such that:

πM : Jfv(M)K × J{τ1}K→ Jfv(M)K

28

– If x occurs free in M:

Jfv(M)K × J{τ1}K
JMK
−−−→ Jτ2K

The equality judgment Γ ` N = M : τ holds if and only if the diagram in
Figure 1.7 commutes.

JΓK

Jfv(M)K

Jfv(N)K

JτK

πM

πN

JMK

JNK

Figure 1.7: The equality judgment Γ ` M = N : τ. πM and πN are projection
functions.

To show that this model is a λ-calculus theory, we have to show that it satisfies
the requirements from definition 1.11.

1. If Γ ` M = N : τ, then the diagram in Figure 1.7 commutes. For ∆ such that
Γ ⊆ ∆, we can find a projection morphism J∆K

π∆
−−→ JΓK, so by composing π∆

with πM and πN we get that ∆ ` M = N : τ.

2. fv(M) ` M = M : τ holds for every term M by the definition of JMK.

3. If Γ ` M = N : τ and Γ ` N = O : τ then the diagram in Figure 1.9
commutes, so Γ ` M = O : τ.

4. Suppose M : τ has free variables fv(M) = {x1, . . . , xn} with x1 : τ1, . . . , xn :
τn. Let N1 : τ1, . . . ,Nn : τn.

• Suppose M = x1. Then τ = τ1, fv(M[x B N]) = fv(N) and JMK =

idJτK. So:

Jfv(M[x B N])K
JNK
−−−→ Jτ1K

JMK
−−−→ JτK

is equal to:

Jfv(M[x B N])K
JNK
−−−→ JτK

29

which is equal to:

Jfv(M[x B N])K
JM[xBN]K
−−−−−−−−→ JτK

• Suppose M = (O P) with O : τ′ → τ and P : τ′, and the induction
hypothesis:

Jfv(O[x1 B N1, . . . , xn B Nn])K
Ñ
−→ Jfv(O)K

JOK
−−−→ JτKJτ′K

is equal to:

Jfv(O[x1 B N1, . . . , xn B Nn])K
JO[x1BN1,...,xnBNn]K
−−−−−−−−−−−−−−−−→ JτKJτ′K

and

Jfv(P[x1 B N1, . . . , xn B Nn])K
N̂
−→ Jfv(P)K

JPK
−−−→ Jτ′K

is equal to:

Jfv(P[x1 B N1, . . . , xn B Nn])K
JP[x1BN1,...,xnBNn]K
−−−−−−−−−−−−−−−−→ Jτ′K

where Ñ = 〈N1 ◦ πN1 , . . . ,Nn ◦ πN1〉 contains only those Ni such that
xi occurs in O and N̂ is the same for P. We can apply 1. and take
the product of these morphisms to obtain the commutative diagram in
Figure 1.8.
By the definition of JM NK, we know that J(O P)[x1 B N1, . . .]K is
equal to:

ev ◦ 〈JO[x1 B N1, . . .]K ◦ πO, JP[x1 B N1, . . .]K ◦ πP〉

and JO PK is:

ev ◦ 〈JOK ◦ πO, JPK ◦ πP〉

So:

Jfv((O P)[x1 B N1, . . . , xn B Nn])K
〈Ñ,N̂〉
−−−−→ Jfv(O P)K

JO PK
−−−−→ JτK

is equal to:

Jfv((O P)[x1 B N1, . . . , xn B Nn])K
J(O P)[x1BN1,...]K
−−−−−−−−−−−−−−→ JτK

30

Jfv((O P)[x1 B N1, . . . , xn B Nn])K

JτKJτ′K × Jτ′K Jfv(O P)K

〈
N1 ◦ πN1 , . . . ,Nn ◦ πNn

〉

JτK

〈JO[x1 B N1, . . .]K ◦ πO, JP[x1 B N1, . . .]K ◦ πP〉

〈JOK ◦ πO, JPK ◦ πP〉

ev

Figure 1.8: Substition for JO PK.

• Suppose M = λx.O and has type τ′ → τ, and using the induction
hypothesis we know:

Jfv(O[x1 B N1, . . . , xn B Nn])K
〈N1◦πN1 ,...,Nn◦πNn〉
−−−−−−−−−−−−−−−→ Jfv(O)K

JOK
−−−→ JτK

(1.3)

is equal to:

Jfv(O[x1 B N1, . . . , xn B Nn])K
JO[x1BN1,...,xnBNn]K
−−−−−−−−−−−−−−−−→ JτK (1.4)

Note that Jfv(O)K = Jfv(M)K ∪ J{x}K and:

Jfv(O[x1 B N1, . . . , xn B Nn])K = Jfv(M[x1 B N1, . . . , xn B Nn])K ∪ J{x}K

So we can rewrite the morphism in Equation (1.3) as:

Jfv(M[x1 B N1, . . . , xn B Nn])K ∪ J{x}K
〈N1◦πN1 ,...,Nn◦πNn〉
−−−−−−−−−−−−−−−→ Jfv(M)K ∪ J{x}K

JOK
−−−→ JτK

By taking the transpose and by using that J{x}K = Jτ′K and that the
transpose of JOK is JMK (by the definition of Jλx.OK) we get:

31

Jfv(M[x1 B N1, . . . , xn B Nn])K
〈N1◦πN1 ,...,Nn◦πNn〉
−−−−−−−−−−−−−−−→ Jfv(M)K

JMK
−−−→ JτKJτ′K

We can do the same thing with the morphism in Equation (1.4) to ob-
tain:

Jfv(M[x1 B N1, . . . , xn B Nn])K
JM[x1BN1,...,xnBNn]K
−−−−−−−−−−−−−−−−−→ JτKJτ′K

5. Suppose M and N are terms of type τ1 → τ2 and x : τ1 a variable that
occurs in neither M nor N, and Γ ∪ {x} ` (M x) = (N x) : τ2. Because
Γ ∪ {x} = Γ − {x} ∪ {x}, the diagram in Figure 1.10 commutes. By taking the
transpose of all of the morphisms we see that Γ − {x} ` M = N : τ1 → τ2.

6. Suppose M : τ1 and N : τ2 are terms and x : τ2 a variable. By using 4., we
know that:

Jfv(M[x B N])K
JM[xBN]K
−−−−−−−−→ Jτ1K = Jfv(M[x B N])K

Ñ
−→ Jfv(s)K

M
−−→ Jτ1K

This is equal to:

Jfv(M[x B N])K
〈πM ,Ñ〉
−−−−−→Jfv(M) − {x}K × Jτ2K

Jλx.MK×idτ2
−−−−−−−−−→Jτ2 → τ1K × Jτ2K

ev
−−→ Jτ1K

which is:

Jfv((λx.M) N)K
J((λx.M) N)K
−−−−−−−−−−→ Jτ1K

So our model generates a valid λ-calculus theory. �

32

JΓK

Jfv(M)K

Jfv(N)K

Jfv(O)K

JτK

πM

πN

πO

JMK

JNK

JOK

Figure 1.9: Transitivity of equality judgments.

JΓ − {x} ∪ {x}K

Jfv(M)K × Jτ1K Jfv(N)K × Jτ1K

Jτ1 → τ2K × Jτ1K Jτ1 → τ2K × Jτ1K

Jτ2K

πM × idτ1

πN × idτ1

JMK × idτ1 JNK × idτ1

ev
ev

Figure 1.10: Γ ∪ {x} ` (M x) = (N x) : τ2

33

Chapter 2

PCF

2.1 Introduction

The programing language PCF (Programming Computable Functions) was intro-
duced by Dana Scott in 1967 and published in [Scott, 1993]. It is similar to a
simply typed λ-calculus theory.

The set of ground types of PCF is:

σ = {ι, o}

The type ι is the type of natural numbers, o the type of booleans.
The terms of PCF consist of the simply typed lambda calculus, using the fol-

lowing set of constants, C:

⊃o : o→ o→ o→ o (if-statement, result is a boolean)

⊃ι : o→ ι→ ι→ ι (if-statement, result is a number)

Z : ι→ o (test for zero)

(+1) : ι→ ι (increment)

(−1) : ι→ ι (decrement)

Yα : (α→ α)→ α (least fixed-point)

Ωα : α (undefined term)

tt : o (true)

ff : o (false)

{n : ι | n ∈ N} (number constant)

The α means that Yα and Ωα exist for any type α.

34

2.2 Operational semantics for PCF

The operational semantics for PCF, which define the effect of executing a PCF
program are similar to the β-reduction relation of the λ-calculus, except for the fol-
lowing: β-reduction may not (in general) be applied anywhere inside a PCF term.
Inside the body of a λ-expression, β-reduction is not allowed (the λ-expression
must be β-reduced first).

Formally, this is given by the following rewrite rules:

•
M �β M

•
M[x B N]�β O

(λx.M) N �β O

•
M �β M′ M′ N �β N′

M N �β N′

•
M �β tt

⊃o M N O�β N

•
M �β tt

⊃ι M N O�β N

•
M �β ff

⊃o M N O�β O

•
M �β ff

⊃ι M N O�β O

•
M (Yα M)�β N

Yα M �β N

•
Ωα �β Ωα

•
M �β 0

Z M �β tt

•
M �β n + 1

Z M �β ff

•
M �β n

(+1)M �β n + 1

•
M �β 0

(−1)M �β 0

35

•
M �β n + 1

(−1)M �β n

Definition 2.1 Programs in PCF are closed terms of ground type, so ι or o. From
now on we shall use N ⇓ c, with N a program and c a constant, to denote N �β c,
and N ⇓ to mean ∃c.N ⇓ c. N ⇑ means ¬N ⇓.

Definition 2.2 A program context C[X] is a program using X as a meta-variable
for a subterm. Contrary to normal λ-calculus application, filling in a program
context does not use α-renaming to avoid free variables in X from becoming bound.

The meaning of Ωα is that it is a non-terminating computation, it can be seen
as an infinite loop. This can be used for functions where no meaningful result is
possible, but a term needs to be supplied with a given type anyway.

The Yα constant (also known as the Y-combinator) can be used to encode re-
cursion. For example, in a language that allows recursive definitions, it is possible
to write a function which has a call to itself:

f B C[f]

To do this without recursive definitions, we can use Yα instead:

Yα (λ f .C[f])

All other constants should be self-explanatory.

Definition 2.3 Let M,N be terms of the same type α. Then M observationally
approximates N, written M @∼ N, if for every program context C[X], such that
C[M] and C[N] are well-typed, if C[M] ⇓ v, then C[N] ⇓ v.

If both M @∼ N and N @∼ M, then M and N are observationally equivalent,
denoted M � N: in any context where M can be used, using N instead would lead
to the same result.

Observational equivalence is an important concept during program optimiza-
tion: if M and N are observationally equivalent, then it is possible that evaluation
using M requires fewer reduction steps than evaluation of N. Substituting M for N
is allowed, because they are observationally equivalent, and it could improve the
speed of the evaluation of the entire program.

Definition 2.4 The active subprogram of a program M, if it exists, is defined by:

• If M has the form ((λx.M1) M2 M3 . . .), (Y M1), (+1) n̄, (−1) n̄, Z n̄,
⊃o c M1 M2 M3 then M is the active subprogram.

36

• If M has the form (+1) M1, (−1) M1, Z M1, ⊃ι M1 M2 M3 or ⊃o M1 M2 M3
(where M1 is not a constant), then the active subprogram in M is the active
subprogram in M1 (which may not exist).

• If M has the form n̄, tt or ff, then it has no active subprogram.

Lemma 2.5 If a program has an active subprogram and the program terminates,
then the active subprogram terminates.

Proof We prove this by case distinction on a term M.

• If M is the active subprogram of a program M, then this holds trivially.

• Suppose M is of the form (+1) M1, (−1) M1, Z M1 or ⊃σ M1 . . . , so
the active subprogram is M1. From the operational semantics rules at the
beginning Section 2.2, it can be seen that any of these cases will recursively
β-reduce M1 first. So if M terminates, then the β-reduction of M1 must have
terminated.

• If the program has no active subprogram, then the lemma holds trivially.

�

We state the following lemma from [Plotkin, 1977, Ong, 1995]:

Lemma 2.6 (Activity Lemma) Suppose:

C [M1, . . . ,Mm] ⇓ c

where M1, . . . ,Mm are closed subterms of C[M1, . . . ,Mm]. Then at least one of the
following two statements holds:

1. C
[
M′1, . . . ,M

′
m

]
⇓ c for all closed terms M′1, . . . ,M

′
m of appropriate types.

2. There is a context D[, . . . ,], an integer 1 ≤ i ≤ m and integers d1, . . . , dk

such that for all closed terms M′1, . . . ,M
′
m of the appropriate types:

C
[
M′1, . . . ,M

′
m

]
�β D

[
M′d1

, . . . ,M′dk

]
and the active subprogram in D

[
M′d1

, . . . ,M′dk

]
exists and either is the active

subprogram in a term of the form (M′i . . .), or has one of the forms ((±1) M′i),
(Z M′i) or (⊃σ M′i . . .).

Lemma 2.7 If C[Ωα] ⇓ v, then C[M] ⇓ v for all M : α. Hence ∀N.Ωα @∼ N.

37

Proof Using the Activity Lemma, one of the following two statements must be
true:

• C[M′1] ⇓ v for all terms M′1 of the appropriate type. In this case we are done.

• We are in the second case of the Activity Lemma. Note that M′1 can not be
the active subprogram in D

[
M′d1

]
using lemma 2.5, as Ωα does not terminate,

but C[Ωα] does. So this case is impossible.

�

We will use the followig corollary of lemma 2.6:

Corollary 2.8 If M N1 . . . Nn ⇓ c, then either M Ωα1 . . . Ωαn ⇓ c, or there is an
1 ≤ i ≤ n such that M N1 . . . Ωαi . . . Nn ⇑. In other words, each function that
uses its arguments, always reduces the same argument first.

Proof Let C[X1, . . . , Xn] be M X1 . . . Xn and apply lemma 2.6 to C [N1, . . . ,Nn] ⇓
c. Clearly, X1, . . . , Xn are closed subterms of C. Now one of the two following
statements is true:

• C
[
X′1, . . . , X

′
n

]
⇓ c for all closed terms X′i of the appropriate types. This

implies M Ωα1 . . . Ωαn ⇓ c.

• There is a context D[, . . . ,], an integer 1 ≤ i ≤ n and integers d1, . . . , dk such
that, for all X′ of the appropriate type:

C
[
X′1, . . . , X

′
n

]
�β D

[
X′d1

, . . . , X′dk

]
and the active subprogram of D is the active subprogram in X′i , or has one of
the following forms: ((±1)X′i), (Z X′i) or ⊃σ X′i This means that D ⇑
when X′i ⇑, which implies:

M X′1 . . . Ωαi . . . X′n ⇑

for all X′j of the appropriate types.

�

38

2.3 Denotational semantics for PCF

The operational semantics defines the effect of evaluating a program, but that is
often an inconvenient way of analyzing the behavior of programs. It is useful to
construct denotational semantics instead. The goal of denotational semantics is
to analyze the behavior of programs by giving an interpretation of the types and
terms.

We shall restrict ourself to denotational semantics that form a λ-calculus the-
ory from definition 1.11, by treating PCF as a λ-calculus with constants. We shall
use J.K to denote the function that translates PCF types and terms to their interpre-
tation in the denotational semantics. We assume there is a partial order v on the
interpretation of terms.

Ideally, the partial order on the denotational semantics and the partial order
generated by observational equivalence coincide: instead of evaluating programs
to test for equivalence, we can check whether their interpretation is equal in the de-
notational semantics. If the partial order of some denotational semantics coincide
with the observational equivalence, then it is said to be fully abstract:

JMK v JNK⇔ M @∼ N

If we only have the ⇒ implication, then the denotational semantics are ade-
quate:

JMK v JNK⇒ M @∼ N

Denotational semantics that are not adequate are not useful as a model: the
model could indicate that two PCF terms are equivalent while they are not.

Suppose the adequate denotational semantics J.K contains a bottom element, ⊥.
Let M be a PCF term such that JMK = ⊥. Then:

∀N.JMK v JNK

So, by the adequacy:

∀N.M @∼ N

Because ∀N.Ωα @∼ N, this means Ωα � M. This means:

JMK = ⊥ ⇔ M � Ωα

39

⊥

0 1 2 . . .

Figure 2.1: N⊥

2.4 Scott-domain model

The first denotational semantics for PCF we will consider is the Scott-domain
model. Informally, in this model types are Scott-domains and functions are Scott-
continuous functions between Scott-domains. This forms a Cartesian closed cat-
egory according to theorem 1.42, and so also a λ-calculus theory following Sec-
tion 1.4.

Definition 2.9 A flat domain is a domain with a ⊥ where all elements are incom-
parable, except ⊥ which is below all other elements.

For example, N⊥ is a flat domain where the elements are from N, as can be
seen in Figure 2.1. It is easy to see that this is a Scott-domain. First note that the
directed subsets of N⊥ are {⊥} ∪ {{⊥, n} | n ∈ N} ∪ {{n} | n ∈ N}.

• N⊥ is directed complete: suppose D is a directed subset of N⊥. Then either
there is a n ∈ D such that n ∈ N or D = {⊥}. In the first case n is the
supremum of D, otherwise, ⊥ is.

• It is bounded complete: if a subset D ⊆ N⊥ has an upper bound, then D
contains at most one n ∈ N. If D = {⊥}, then ⊥ is the supremum of D. If it
contains a n ∈ N, then n is the supremum.

• Every element ofN⊥ is compact, so every element can (trivially) be obtained
as the supremum of a directed set of compact elements of N⊥. So N⊥ is
algebraic.

Similarly, B⊥ = {true, false,⊥}, with ⊥ v true, ⊥ v false is also a flat Scott-do-
main.

The category of Scott-domains is Cartesian closed and therefore, by the Curry-
Howard-Lambek isomorphism, corresponds to a λ-calculus theory. The reduction
relation for PCF is not as powerful as normal β-reduction, however, every PCF
reduction is a valid β-reduction, so we can consider PCF as a λ-calculus theory,
therefore also forms a Cartesian closed category. However, these categories and
theories do not coincide. Instead, we will look for a subcategory of the category of
Scott-domains that does coincide with PCF.

We do this by translating all types and terms as follows:

40

• JιK = N⊥

• JoK = B⊥

• Jσ→ τK = the Scott-domain of Scott-continuous functions from JσK to JτK,
using the pointwise function ordering.

• J⊃oK(b, t, e) =


JbK = true JtK
JbK = false JeK
JbK = ⊥ ⊥

• J⊃ιK(b, t, e) =

JbK = false JeK
JbK = ⊥ ⊥

• JZK(x) =


JxK = 0 true
JxK = n + 1 false
JxK = ⊥ ⊥

• J(+1)K(x) =

JxK = n n + 1
JxK = ⊥ ⊥

• J(−1)K(x) =


JxK = 0 0
JxK = n + 1 n
JxK = ⊥ ⊥

• JYαK (f) =
⊔∞

i=0

{
J f Ki (⊥)

}
• JΩαK = ⊥

• JttK = true

• JffK = false

• JnK = n

This model is adequate, but not fully abstract. For example, we can define the
Scott-continuous function:

por(x, y) =


true if x = true
true if y = true
false otherwise

To show that this function is Scott-continuous, see Figure 2.2. By moving
up (following an arrow) from (a, b) to (a′, b′), the result increases: por(a, b) v
por(a′, b′), so por is monotone and preserves directed suprema.

41

por(⊥,⊥) = ⊥

por(⊥, t) = t por(⊥, f) = ⊥por(t,⊥) = tpor(f,⊥) =⊥

por(f, f) = fpor(t, t) = tpor(f, t) = t por(t, f) = t

Figure 2.2: Scott-continuity of por.

However, we can not find a PCF-function that corresponds with por: using
corollary 2.8:

• Either there is a v such that por x y ⇓ v for all x, y, which is not true as
por tt tt ⇓ tt but por ff ff ⇓ ff.

• Or por Ωo tt ⇑ or por tt Ωo ⇑.

2.5 The Full Abstraction Problem

The problem of finding a programming language, similar to PCF, with fully ab-
stract denotational semantics has had two approaches:

• “Strengthening” the language by adding more constructs such that the Scott-
domain model becomes fully abstract for that new language.

• Finding “weaker” denotational semantics, the approach we will take in Chap-
ter Chapter 3.

2.5.1 Strengthening: parallel conditional

In [Plotkin, 1977] the strengthening approach was taken, by introducing the parallel
conditional, :⊃σ: o→ σ→ σ→ σ. Its reduction satisfies:

:⊃σ b t e→β


t if b = tt
e if b = ff

t if b ⇑ and t = e
Ωσ otherwise

42

Clearly, :⊃σ is non-deterministic. However, the outcome can not depend on the
choice made. If ⊃σ b t e ⇓ c, then :⊃σ b t e ⇓ c for any sequence of choices.

We can define por as:

por(x, y) = :⊃o x tt y

[Plotkin, 1977] showed that PCF+:⊃σ is fully abstract for the Scott-domain
model.

2.5.2 The stable function model

In [Berry, 1978], another approach was introduced, which uses a category with
dI-domains as objects and stable functions are morphisms instead of Scott-do-
mains. However, recall that the exponentials of dI-domains were ordered by a
different order, the stable function order, which does not coincide with the point-
wise function order.

The por function is not stable, therefore does not exist in the stable function
model. Consider (ff,⊥) and (⊥,ff), which are bounded:

por((ff,⊥) u (⊥,ff)) = por(ff,ff) = ff

por(ff,⊥) u por(⊥,ff) = ⊥ u ⊥ = ⊥

However, there are other functions which are stable, but not PCF-definable.
Consider the function, known as Gustave’s function, attributed to [Berry, 1978]
in [Huet, 1986], defined by:

f (x, y, z) =



tt if y = tt and z = ff

tt if z = tt and x = ff

tt if x = tt and y = ff

ff if x = ff, y = ff and z = ff

⊥ otherwise

Using corollary 2.8, it is easy to see that f is not PCF-definable: suppose F is
a PCF term that encodes f , then there is no v such that F x y z ⇓ v for all x, y, z, so
one of the following must be true:
• F Ωo y z ⇑, but F Ωo tt ff ⇓ tt.

• F x Ωo z ⇑, but F tt Ωo ff ⇓ tt.

• F x y Ωo ⇑, but F tt ff Ωo ⇓ tt.

43

This is not possible, so F can not exist. However, f is Scott-continuous: if
f (x, y, z) = tt, then f (x′, y′, z′) = tt for all x v x′, y v y′ and z v z′. If f (x, y, z) = ff,
then (x, y, z) = (tt, tt, tt) or (x, y, z) = (ff,ff,ff).

By checking at all possible values for x and y (which we will omit here), it can
be shown that:

x ↑ y⇒ f (x u y) = f (x) u f (y)

so f is stable.
So the stable function model is neither fully abstract, nor order-extensional

(ordered by the pointwise order).

44

Chapter 3

Dialogue Games

The weaker model for PCF we will describe will represent types as dialogue games
and PCF-terms as strategies for those games. The approach in this chapter is from
[Hyland and Ong, 2000].

A dialogue game is a game played by two players, Player (P) and Opponent
(O) who can either ask a question or answer a question each turn. The game starts
with a question from Opponent and after that the turns alternate. In a turn, the
player may either answer an unanswered question from the other player, or ask the
other player a new question, if that question is allowed at that point in the game.
Once the initial question has been answered, the game is over.

We can formalize this as:

Definition 3.1 A dialogue game A consists of a forest of questions Qn(A), a set of
possible answers Ans(A) and a function qnA : Ans(A)→ Qn(A) that maps answers
to the question they are appropriate for.

The roots of the forest are the initial questions. Every answer and every ques-
tion that is not an initial question has a justifying question: for questions, the jus-
tifying question is the parent in the tree of questions, for answers a, qn(a) is the
justifying question. A question or answer may only be given if its justifying ques-
tion is still unanswered.

We shall use “(” to denote questions asked by P, “)” for answers by O, “[”
for questions by O and “]” for answers by P. This syntax is chosen because well-
formed sequences of a full game will be well-formed sequences of parentheses.

We also need to store the information about which question justifies each ques-
tion or answer. We shall do this by a sequence of justification pointers. The initial
question has a justification pointer of 0, all other questions have a justification
pointer that is equal to the index of their justifying question. A move r is indirectly
justified by a question s if s occurs by following the chain of justification pointers
from r. If we modify a sequence in any way, we must make sure the justification
pointers are updated accordingly.

For example:

45

[· (·) · (· [·] ·) ·] 0 · 1 · 2 · 1 · 4 · 5 · 4 · 1

Definition 3.2 A sequence of moves is well-formed if:

• Alternating play: The moves alternate between players.

• Explicit justification: Except the initial question, each move has a valid jus-
tification pointer (the justification pointer points to an instance of the jus-
tifying question). An answer or question may only be given or asked if its
justifying question has been asked, but not yet answered.

• Last asked, first answered: A question may only be answered if its justifying
question is the last question which is still unanswered in the sequence of
moves.

Definition 3.3 A well-formed sequence is maximal if the initial question is an-
swered. By the “Last asked, first answered” condition, this must mean every ques-
tion has been answered.

3.1 Example arenas

As an example, the boolean computational arena B is given by:

• A single question, which is the initial question [.

• Two answers,]t and]f.

The natural numbers computational arena N is defined as:

• The only question is the initial question [.

• The answers are {]i | i ∈ N}.

3.2 O-view and P-view

Before we can define the strategies that the players apply to the game, we must
define the O-view and the P-view of a sequence of moves.

Informally, the P-view (respectively O-view) leaves out the questions from O
(resp. P) that have already been answered. In other words, to answer a question
asked by O, P may only use the answers given by O to the questions P asks, justified
by O’s question. P may not use the counter-questions (or any question indirectly
justified by those) that O asked.

46

Definition 3.4 The P-view p.q of a sequence of moves is defined by recursion on
the last move:

p[q = [If “[” is the initial question.

pq · (· r · [q = pqq · (· [If “(” is the justifying question of “[”.

pq ·)q = pqq ·)

pq · [· r ·]q = pqq If “]” answers “[”.

pq · (q = pqq · (

Notice that the P-view removes two things: sequences [. . .], where] is justified
by [and r in (· r · [if (justifies [. This means [is justified by (. This implies the
P-view is idempotent: pppqq = ppq.

Similarly, the O-view x.y is defined as:

xq · [· r(y = xqy · [· (If “[” justifies “(”.

xq ·]y = xqy ·]

xq · (· r ·)y = xqy If “)” answers “(”.

xq · [y = xqy · [

The P-view or the O-view of a well-formed sequence is not always a well-
formed sequence. We shall therefore also define sequences that are legal.

Definition 3.5 A sequence r is legal if it satisfies the visibility condition: for every
initial subsequence s · (the O-question “[” justifying “(” occurs in the P-view of
s and for every initial subsequence s · [the P-question “(” justifying “[” occurs in
the O-view of s.

3.3 Product and function space arena

We can take the product of two computational arenas as:

Qn(A × B) B Qn(A) + Qn(B)

Ans(A × B) B Ans(A) + Ans(B)

qn(A × B) B qn(A) + qn(B)

In other words, Opponent can choose from the initial questions of A and B.
After choosing a question the game continues only in that question’s arena (as the
only questions justified by an initial question of A are in A).

47

[

(]0]1 . . .

)0)1 . . .

Figure 3.1: The function space arena ι⇒ ι.

We define the function space arena A⇒ B as follows:

Qn(A⇒ B) B (Qn(A) × MB) + Qn(B)

Ans(A⇒ B) B (Ans(A) × MB) + Ans(B)

qn(A⇒ B) B (qn(A) × IdM) + qn(B)

where MB are the initial questions of B.
A function space arena A⇒ B consists of the forest of questions of B, with un-

derneath each initial question in B a copy of the forest of questions of A. Note that
this means that the Opponent and Player are reversed in the copies of A: the initial
questions of A have become P-questions. For example, see Figure 3.1. Possible
plays in this arena include [·]0, [· (·)5 ·]8 and [· (·)4 · (·)6 ·]10.

We will use s � B to denote the projection of all the B-moves of a function
space arena and s � (A, a) to denote the projection of the A-subgame justified by
the move a. We shall use s � (A, a)+ to denote m · s � (A, a), where m is the initial
B-move of s.

Lemma 3.6 Let b0 · s be a legal position of the arena A ⇒ B such that all moves
in s belong to the component (A, a). Then:

• pb0 · sqA⇒B = b0 · xsyA.

• xb0 · syA⇒B = b0 · psqA.

Proof This follows from the definition of p.q and x.y and the definition of the
A⇒ B arena.

Theorem 3.7 (Switching convention) In a function space arena, Player, not Op-
ponent is allowed to switch components, either between a B-component and an
(A, a)-component or between different (A, a)-components.

Proof To prove this, we use the following three lemmas:
Let s be a legal position of the arena A ⇒ B beginning with an initial move b

and ending with a P-move m.

48

Lemma 3.8 For every two successive moves m ·m′ in s, if m and m′ are in different
components, then m is an O-move and m′ a P-move.

Lemma 3.9 If m is in B, then xsyA⇒B � B = xs � By = xsyA⇒B.

Lemma 3.10 If m is in an (A, a)-component, then xsyA⇒B � (A, a)+ = b·ps � (A, a)qA =

xsyA⇒B.

We will prove lemmas 3.8 to 3.10 together using recursion on the length of s.
Theorem 3.7 follows directly from lemma 3.8.

Suppose s = b · m. Lemma 3.8 is trivially true. Suppose m is in B, then
xsyA⇒B � B = xs � By = xsyA⇒B = b · m, so lemma 3.9 is true. Suppose m is in
(A, a), then xsyA⇒B � (A, a)+ = b · ps � (A, a)qA = xsyA⇒B = b · m.

Now for the inductive case. Suppose m is a B-move, let m− be the move ex-
plicitly justifying m. Let s<m− be s up to m−. Because s<m− is strictly smaller than
s, the induction hypothesis of lemma 3.8 implies that s<m− ends with a B-move.

xsy � B = xs<m−y � B · m− · m (Using the induction hypothesis of lemma 3.9.)

= xs<m− � By · m− · m

= x{s<m− · m− · m} � By

= xs � By

Suppose m is a initial move in a new (A, a)-component. Then xsy = b · m, so
xsyA⇒B � (A, a)+ = b · m = b · psq � (A, a).

Suppose m is a move in an existing (A, a)-component. Let m− be the O-move
explicitly justifying m, which must also be in the same (A, a)-component. Then
xsy = xs<m−y · m− · m, so we can apply the induction hypothesis of lemma 3.10:

xsyA⇒B � (A, a)+ = b · ps<m− � (A, a)qA · m− · m

= b · ps � (A, a)qA

and:

xsyA⇒B � (A, a)+ = xsyA⇒B

Now to prove lemma 3.8, suppose s is a legal position where the last move m is
an O-move and let m− be the P-move preceding m. Suppose m− is in (A, a), then by
the induction hypothesis of lemma 3.10, xs≤m−y = b · p, where p is a sequence of
moves entirely in (A, a). There must be a move that explicitly justifies m in the O-
view, so either that move is b, or some move in p. Because m is an O-move, it can
not be justified by b. So m is explicitly justified by a move in the (A, a)-component,
so must be in the (A, a)-component.

49

Now suppose m− is in B, then by the induction hypothesis of lemma 3.9,
xs≤m−yA⇒B = xs≤m−yA⇒B � B. Then m must be explicitly justified by one of
the moves in xs≤m−yA⇒B � B, therefore must be in B. �

We will state without proof the following lemma from [Hyland and Ong, 2000].

Lemma 3.11 Let s be a legal position of an arena A⇒ B ending with the move m.

• If m is in B, then psqA⇒B � B is a subsequence of ps � BqB.

• If m is in the component (A, a), then psqA⇒B � (A, a)+ is a subsequence of
b · ps � (A, a)qA.

Theorem 3.12 (Projection convention) For any legal position s in A ⇒ B, s � B
is a legal position in B. s � (A, a) is a legal position in A.

Proof We will show that s � B satisfies definitions 3.2 and 3.5. By the definition
of A ⇒ B it must start with an initial B-question, so s � B starts with an initial
question too. By using theorem 3.7, it is easy to see that the moves in s � B must
be alternating: if P switched to a different component, then it must also be P who
switches back to B.

Every move “(” (resp. “[”) in s must have a justification pointer pointing to a
move “[” (resp. “(”) in B. Though the pointer may have changed, that move is still
in s � B, so it has a justification pointer.

To prove the visibility condition, let “(” be a P-question in s � B. Then there
must be a corresponding question “(” in s with a justifying question “[” in ps<(q.
As “[” must be a B move, it will also occur in ps<(q � B, so by lemma 3.11 it occurs
in ps<(� Bq.

Now for s � (A, a). This is by definition the sequence of moves justified by an
instance of a initial A-move, so it starts with an initial move. Theorem 3.7 implies
again that the sequence of moves s � (A, a) is alternating: only P may switch to a
different component and only P may switch back to (A, a). Every non-initial move
in (A, a) must be explicitly justified by another move in (A, a), so every move in
s � (A, a) also has a valid justification pointer. Now to show the visibility condition,
let s be a legal position in A⇒ B and b its initial B-move. Let m be a P-question in
s � (A, a), regarded as an A-arena. By regarding it as an O-question in the A⇒ B-
arena there must be a P-question m in xs<myA⇒B that explicitly justifies it. m is in
xs<my � (A, a)+, which is xb · {s<m} � (A, a)y. Because every move in s<m � (A, a)
is in (A, a), we can apply lemma 3.6 to see that m is in ps<m � (A, a)q. �

3.4 Innocent strategies

Definition 3.13 A P-strategyσ determines at every position where P needs to move
what P-move to play.

50

We shall represent P-strategies as a subtree of the game tree, such that:

• Determinacy: For every position s ∈ σ where P needs to move, the strategy
selects at most one move: if s · a ∈ σ and s · b ∈ σ then a = b.

• Contingent completeness: For any s ∈ σ where O needs to move, s · a is in
σ for every O-move a such that s · a is a legal position.

For example, a strategy in the natural number computational arena that always
returns 0 is represented as:

{[, [·]0}

The identity-strategy in the computational arena N⇒ N is represented as:

{[· (} ∪ {[· (·)n ·]n | n ∈ N}

And the strategy in the arena N⇒ B that returns true if the input is 0, and false
otherwise:

{[· (, [· (·)0 ·]t} ∪ {[· (·)n ·]f | n > 0}

Definition 3.14 Letσ be a strategy in the computational arena A⇒ B, τ a strategy
in B ⇒ C and s a legal position of the arena A ⇒ C. We define the uncovering
of s in accord with σ and τ, denoted u(s, σ, τ), as the unique maximal sequence u
satisfying:

u � (A,C) ≤ s

u � (B,C) ∈ τ

u � (A, B)b ∈ σ

where ≤ in the first condition is the prefix ordering between legal positions and b
in the third condition ranges over all instances of initial moves in B occurring in u.

In the second and third condition the projected part of u could be infinite. In
that case, the condition requires all finite prefixes of u � (B,C) and u � (A, B)b to
be in τ and σ, respectively.

The sequence u consists of moves from the arenas A, B and C. Informally, the
uncovering sequence represents the following:

1. O opens with an initial question m from C.

51

2. P starts a temporary game in the arena B ⇒ C on a “scratch-pad”, where
P is playing against themselves. P copies the opening move m and uses the
strategy τ to find a response:

(a) If τ gives an C-answer, then P uses the same move in the A⇒ C arena,
which means the game finishes.

(b) If τ asks an initial B-question m′ in a B-component, then P starts a new
temporary game, now in A ⇒ B, using the strategy σ and initial move
m′:

i. If σ gives a B-answer, then P uses that answer in the B⇒ C arena.
ii. If σ asks an initial A-question, then P copies that question to a new

A-component of the “real” A ⇒ C arena to get an answer from
O for that question. P copies that answer back to the temporary
A⇒ B arena.

P continues following strategy σ until 2.b.i is reached.

P continues following strategy τ until 2.a is reached, creating new A ⇒ B
“scratch-pads” for each initial B-move from τ in B⇒ C.

The sequence u, by itself, is not a legal position, as the B-moves don’t belong
to a player. However, by projecting out just the moves from B and C we get a legal
position in B ⇒ C. By projecting just the moves from A and B we get a number
of legal positions in A ⇒ B (each with a different instance of an initial B-move)
and by projecting out just the moves from A and C we get a legal position that is a
prefix of s.

Definition 3.15 The composition of strategies σ in the arena A ⇒ B and τ in
B⇒ C is given by:

{u(s, σ, τ) � (A,C) | s is a legal position of A⇒ C}

It is denoted σ; τ.

Definition 3.16 A strategy is innocent if there is a partial function f , such that
for any legal position s ∈ σ at which P is to move, and for any P-move a with
justification pointer ρ, s · a is in σ if and only if f (psq) = 〈a, ρ′〉 and ρ coincides
with the transposed pointer of ρ′.

In other words, the strategy may only use the P-view of the history to determine
P’s next move, not the entire history. The transposition of the justification pointer is
necessary because the P-view psq has different pointers than the normal sequence
s.

Definition 3.17 For any innocent strategy σ, there is a least partial function fσ
that corresponds to σ, called the representing innocent function.

52

Theorem 3.18 The innocent strategies in an arena A form a dI-domain, denoted
A, ordered by inclusion.

Proof First, we show that A is bounded complete. Let S be a set of innocent
functions with an upper bound τ. Then for all σ ∈ S , fσ ⊆ fτ, so F =

⋃
σ∈S fσ is a

representing function for an innocent strategy and σF =
⊔

S .
Now we show that A is directed complete. It is easy to see that the inclusion

ordering on innocent strategies is equal to the pointwise ordering on the respective
representing functions. As every poset of functions ordered pointwise is directed
complete, A must also be directed complete.

Now we show that A is algebraic, and even prime algebraic. Let σ[s] denote
the least innocent strategy containing a position s. Then for any innocent strategy
σ:

⊔
(p,a)∈ fσ

σ[p · a] = σ (3.1)

If σ is prime, then σ v σ[p · a] for some (p, a) ∈ fσ, but as σ[p · a] is the least
strategy containing p · a, this means σ = σ[p · a]. So every prime strategy is equal
to σ[p · a] for some P-view p and P-move a. Using Equation (3.1) it is easy to see
that A is prime algebraic.

From lemma 3.19 it follows easily that A satisfies axiom I from definition 1.44,
as a finite graph can only have finitely many subgraphs.

We already showed that A is prime algebraic, so it satisfies axiom d by theo-
rem 1.51.

So A is a dI-domain. �

Lemma 3.19 An innocent strategy σ ∈ A is a compact element if and only if its
representing function fσ is a finite graph.

Theorem 3.20 The category of computational arenas using innocent strategies as
morphisms is Cartesian closed.

Proof • The identity functions are the following strategy in A → A: when O
starts with an initial move m, P responds by creating a new A-component
using a copy of m. P copies O’s moves from the new A-component to the
main A-component and vice versa. This strategy is innocent, as the initial
O-move in the main A-component and the O-questions in the secondary A-
component are in the P-view.

• The composition of strategies is given in definition 3.15. The composition
of two innocent strategies is innocent.

• We define the terminal object 1 as the computational arena with a single
question “[” (the initial question) with a single answer “]”. For every arena
A there is an innocent strategy in A⇒ 1, namely the strategy given by {[, [·]}.

53

• The categorical product A × B is given by the product of the computational
arenas A and B. The projection function πA : A × B → A is given by the
following (informal) strategy:

– O opens with an initial question in A.

– P copies that question to the A-component of a new A × B-component.

– P copies every O-question and O-answer in the A-component of A × B
to the main A component.

πB is defined similarly.

To prove that this is a product, suppose there is an object X such that σ is a
strategy in the arena X → A and τ a strategy in X → B, then we can form a
strategy in the arena X → A × B as follows:

– O must make an initial move in either A or B.

– P copies the initial move to a “scratch-pad”-arena in either X → A or
X → B, depending on the component chosen by O using strategy σ

and τ respectively.

– P copies X-questions posed by σ or τ to the normal X arena, and O-
answers in that arena to the scratch-pad.

– Once σ or τ answers the initial question, the game is finished.

• The exponential BA is given by the function space arena A⇒ B.

To show that this is an exponential, for every strategy in an arena A× B→ C
there must be a corresponding strategy in the arena A → B ⇒ C and vice
versa. However, by using the definitions of the product and function space
arena, it turns out A × B⇒ C and A⇒ B⇒ C are identical:

54

Qn(A × B⇒ C) = Qn(A × B) × MC + Qn(C)

= (Qn(A) + Qn(B)) × MC + Qn(C)

= Qn(A) × MC + Qn(B) × MC + Qn(C)

Qn(A⇒ (B⇒ C)) = Qn(A) × MB⇒C + Qn(B⇒ C)

= Qn(A) × MC + Qn(B) × MC + Qn(C) (Using MB⇒C = MC .)

Ans(A × B⇒ C) = (Ans(A × B) × MC) + Ans(C)

= ((Ans(A) + Ans(B)) × MC) + Ans(C)

= Ans(A) × MC + Ans(B) × MC + Ans(C)

Ans(A⇒ (B⇒ C)) = (Ans(A) × MB⇒C) + Ans(B⇒ C)

= Ans(A) × MC + Ans(B) × MC + Ans(C)

qn(A × B⇒ C) = (qn(A × B) × IdM) + qn(C)

= (qn(A) + qn(B)) × IdM + qn(C)

= qn(A) × IdM + qn(B) × IdM + qn(C)

qn(A⇒ (B⇒ C)) = (qn(A) × IdM) + qn(B⇒ C)

= qn(A) × IdM + qn(B) × IdM + qn(C)

So the transpose of a strategy is identical to the strategy itself.

Corollary 3.21 The category of computational arenas using innocent strategies as
morphisms is a Cartesian closed category enriched over dI-domains.

3.5 The model

We now establish a PCF model which models types as arenas and terms as
innocent strategies:

JoK = B

JιK = N

JA⇒ BK = JAK⇒ JBK

where B and N are the computational arenas defined in Section 3.1.
Translation of λ-abstraction and application follow directly from theorem 3.20.

As an example of the translation for the other terms, consider ⊃o:

55

J⊃o: o1 → o2 → o3 → o4K =



[o4 7→ (o1

[o4 · (o1 ·)o1
tt 7→ (o2

[o4 · (o1 ·)o1
tt · (

o2 ·)o2
b 7→]o4

b

[o4 · (o1 ·)o1
ff

7→ (o3

[o4 · (o1 ·)o1
ff
· (o3 ·)o3

b 7→]o4
b

The constants ⊃ι, Z, (+1), (−1), tt, ff and n have similar straightforward defini-
tions. Ωα is modeled by the everywhere undefined partial function.

JYαK is harder to define. To denote the different components, we will consider
it a function with type (α1 ⇒ α2)→ α3. The strategy works as follows:

1. After the initial O-move in α3, P opens a new α2-component (the dual of the
α3-component) using the same initial move.

2. If O opens a new α1-component with initial move m, then P opens a new
α2-component as dual to the α1-component with initial move m.

3. If O makes a move in a an existing component, then P copies that move to
its dual component.

We must show that this is an innocent strategy that satisfies definition 1.21.
After an O move, the possibilities are:

1. The game is [. Because p[q = [, the reply from P will always be innocent.

2. The game is p · (· r · [, where “(” explicitly justifies “[”. Here, the P-view is
ppq ·(·[where “(” and “[” are in the same component. Because P only makes
moves that are copies of O-moves in the dual component, ppqmust end with
a move “[1” of which “(” is a copy. O responded to that move with “[”, so P
copies that move. As it occurs in the P-view, this strategy is innocent.

3. The game is p · (· r ·), where “(” explicitly justifies “)”, so the P-view is
ppq · (·). Here, “(” must also be a copy of a O-move “[”, which must be the
last move in ppq. P copies the answer “)” to “]”, which is innocent because
“[” occurs in the P-view.

So the strategy is innocent.

3.6 FCF

To prove that the dialogue games model is fully abstract, we will follow the
approach from [Hyland and Ong, 2000], by providing a new language extended
from PCF, and show that it is fully abstract and equivalent to PCF.

We create the language P by adding a case-construct:

56

t0 : β . . . tk : β s : ι

caseβk s[0⇒ t0 | 1⇒ t1 | . . . | k ⇒ tk] : β

The operational semantics for case-constructs is given by:

s ⇓ j t j ⇓ v

case s[0⇒ t0 | 1⇒ t1 | . . . | k ⇒ tk] ⇓ v
0 ≤ j ≤ k

In other words, a case-construct evaluates a number and it returns the corre-
sponding value from a (finite) list of cases. If no case is specified for the number,
then the computation does not terminate.

We introduce the shorthands:

case s[a1 ⇒ t0 | . . . | ak ⇒ tk] = caseβk s
[
0⇒ t′0 | . . . | k

′ ⇒ t′k′
]

where t′i =

t j if i = a j for some j
Ω otherwise

case s[t0 | . . . | tk] = caseβk s[0⇒ t0 | . . . | k ⇒ tk]

We can give an interpretation of a case-construct in the arena ι ⇒ · · · ⇒ ι as
an innocent strategy as follows:


[7→ (1

[· (1 ·)i 7→ (i+1

[· (1 ·)i · (i+1 ·)m 7→]m

Definition 3.22 We define the Ω-match ordering for terms of P as:

s ≡ C[Ω, . . . ,Ω] ≤Ω t

if t ≡ C[u1, . . . , un] for some P-terms u1, . . . , un, where C is a P-context.

We will now define a subset of P-terms called finite canonical forms. Infor-
mally, finite canonical forms can be Ω, a number constant, or a case-construct
where the examined value is a finite canonical form, applied to a number of λ-
abstractions of finite canonical forms, and all case-alternatives are finite canonical
forms. We will assume that ι is the only program type.

Definition 3.23 For PCF-types A1, . . . , An we define the set of finite canonical
forms with free variables from f1, . . . , fn, FCF

[
f1 : A1, . . . , fn : An

]
, as:

57

• Ω and n ≥ 0 are in FCF
[
−→
f :
−→
A
]
.

• For any
−→
f :
−→
A ≡ f1 : A1, . . . , fn : An, and:

Ai ≡ C1 ⇒ · · · ⇒ Cm ⇒ ι for each 1 ≤ i ≤ n

C j ≡ D j1 ⇒ · · · ⇒ D jp j ⇒ ι for each 1 ≤ j ≤ m

rc ∈ FCF
[
−→
f :
−→
A
]

for each 0 ≤ c ≤ k

t j ∈ FCF
[
−→
f :
−→
A ,−→y j :

−→
D j

]
for each 1 ≤ j ≤ m

case fi
(
λy1
−→:
−→
D1.t1

)
. . .

(
λym
−→:
−−→
Dm.tm

)
[r0 | . . . | rk] ∈ FCF

[
−→
f :
−→
A
]

We define a function θ that maps finite canonical forms to compact inno-
cent strategies in the corresponding arena. Let A = A1 ⇒ . . . An ⇒ ι and
s ∈ FCF

[
f1 : A1, . . . , fn : AN

]
, then:

θ
[
λ
−→
f :
−→
A .s

]
: {P-views of A} → {P-moves of A}

Given by:

• If s = Ω, then θ
[
λ
−→
f .Ω

]
is undefined everywhere.

• If s = n, then θ
[
λ
−→
f .n

]
is the function that maps “[A” to “]n”.

• If s is a case-construct case f1
(
λ−→y1.t1

)
. . .

(
λ−→ym.tm

)
[r0 | . . . | rk] where 1 ≤

i ≤ n and:

Ai ≡ C1 ⇒ · · · ⇒ Cm ⇒ ι

C j ≡ D j1 ⇒ · · · ⇒ D jp j ⇒ ι

with rc ∈ FCF
[
−→
f :
−→
A
]

for each 0 ≤ c ≤ k and t j ∈ FCF
[
−→
f :
−→
A ,−→y j :

−→
D j

]
for

each 1 ≤ j ≤ m, then θ
[
λ
−→
f .s

]
is given by:

– θ
[
λ
−→
f .s

]
maps “[A” to the initial question “(Ai” of Ai in A.

58

– For each 1 ≤ j ≤ m, if θ
[
λ
−→
f −→y j.t j

]
maps [B j · p to m, then θ

[
λ
−→
f .s

]
maps

[A · (Ai · [C j · p to m.

– For each 0 ≤ c ≤ k, if θ
[
λ
−→
f .rc

]
maps [A · p to m, then θ

[
λ
−→
f .s

]
maps

[A · (Ai ·)Ai
c · p to m.

Theorem 3.24 For any s, s′ ∈ FCF
[
f1 : A1, . . . , fn : An

]
:

• θ
[
λ
−→
f .s

]
is a compact innocent function of the arena A1 ⇒ · · · ⇒ An ⇒ ι.

• s ≤Ω s′ if and only if θ
[
λ
−→
f .s

]
⊆ θ

[
λ
−→
f .s′

]
.

We now define the reverse map: from finite innocent strategies to finite canon-
ical forms.

Let σ be a compact innocent strategy and A = A1 ⇒ · · · ⇒ An ⇒ ι a PCF-type.
sσ ∈ FCF

[
f1 : A1, . . . , fn : An

]
is given by:

• If σ does not make a move, then sσ = λ
−→
f .Ω.

• If σ immediately returns a number n, then sσ = λ
−→
f .n.

• Or σ makes a move in one of the Ai components: [ι · (Ai . Suppose Ai ≡ C1 ⇒

. . .Cn ⇒ ι. Either O immediately gives an answer in Ai, or it opens a new
C j-component with an initial question [C j .

Suppose the latter. The P-view is now [ι · (Ai · [C j , suppose:

C j ≡ D j1 ⇒ . . .D jp j

Until the answer to [C j is given, P can only ask questions from:

(A1 , . . . , (An , (D j1 , . . . , (D jp j

so we can derive from σ a strategy σ j in the arena:

D j1 ⇒ · · · ⇒ D jp j ⇒ A1 ⇒ · · · ⇒ An ⇒ ι

This strategy will be strictly smaller than σ, so we can apply induction to
find a term:

59

λy j1 : D j1.λy jp j : D jp j .λ f1 : A1. . . . λ fn : An.t j

(
−→y j,
−→
f
)

that corresponds to σ j. Until (Ai is answered, σ j determines every move.
There can be only finitely many natural numbers that are possible answers for
the question (Ai (as the strategy is compact), say c1, . . . , ck. After the move
“)”, the P-view becomes [ι · (Ai ·). For each value c1, . . . , ck, we get a new,
smaller strategy ρ1, . . . , ρk, to which we can apply the induction hypothesis
to find terms:

λ f1 : A1.λ fn : An.u1

(
−→
f
)

...

λ f1 : A1.λ fn : An.uk

(
−→
f
)

that represent ρ1, . . . , ρk. Now we can define the interpretation of σ as:

λ
−→
f :
−→
A . case f1 (λ−→y1.t1) . . . (λ−→ym.tm)

[
c1 ⇒ u1

(
−→
f
)
| . . . | ck ⇒ uk

(
−→
f
)]

Theorem 3.25 (Strong definability) There maps in both directions for every PCF-
type A = A1 ⇒ . . .⇒ An ⇒ ι:

FCF
[
f1 : A1, . . . , fn : An

]
� { compact innocent strategies of A }

f1 : A1, . . . , fn : An ` s 7→ θ
[
λ ~f .s

]
f1 : A1, . . . , fn : An ` sσ ← [σ

This forms an isomorphism between finite canonical forms and innocent strate-
gies.

Theorem 3.26 (Strong adequacy) For any P-program s and for any value v, s ⇓ v
if and only if JsK ⇓ v (in the category CA).

Theorem 3.27 For any PCF terms s : A and t : A, s @∼ t in PCF if and only if s @∼ t
in P.

60

Proof The⇒ implication is immediate, as any PCF-term is also a P-term.
To prove the other direction, define a translation of terms from P to PCF as

follows:

s t = s t

λx : A.s = λx : A.s

Y(s) = Y(s)

case s [t0 | . . . | tk] = ⊃ι (eq s 0) t0 (⊃ι (eq s 1) t1 . . . (⊃ι (eq s k) tk Ω) . . .)

where eq is a term that satisfies eq u v ⇓ tt if and only if u ⇓ n and v ⇓ n for some
n, and eq u v ⇓ tt if and only if u ⇓ n and v ⇓ m with n , m. The interpretation for
all other terms is straightforward.

Now suppose C[X] is a context of P such that both C
[
λ ~f .s

]
and C[t] are pro-

grams. Suppose C[λ ~f .s] ⇓ v, then C
[
λ ~f .s

]
is C

[
λ ~f .s

]
. This means C

[
λ ~f .s

]
⇓ v in

PCF. As s @∼ t, C[t] ⇓ v, so C[t] ⇓ v in P. �

We can use the following theorem, in [Hyland and Ong, 2000] attributed to
Plotkin and Milner, to show that the model is fully abstract:

Theorem 3.28 (Plotkin and Milner) Any continuous, order-extensional model of
PCF which follows the standard interpretation is a system of Scott-domains. Fur-
ther, such a model is fully abstract if and only if all compact elements of the model
are PCF-definable.

The standard interpretation means ground types are interpreted as the Scott-do-
mains N⊥ and B⊥.

From theorem 3.25 it follows that all compact innocent strategies are P-definable.
From theorem 3.27 it follows that P-definable implies PCF-definable. So this
model is fully abstract.

61

Appendix A

Proof of the Church-Rosser
theorem

We want to show that�β has the diamond property: a relation R has the diamond
property if for all a, b and c such that aRb and aRc there is a d such that bRd and
cRd. See also Figure A.1. To do this, we first define a new relation�1, prove that
it has the diamond property and show that the�β is the transitive closure of�1.

But first:

Lemma A.1 For any relation R with the diamond property, its transitive closure R̄
will also have the diamond property.

Proof We are given x, y and z such that xR̄y and xR̄z. As R̄ is the transitive closure
of R, there must be a chain of elements such that xRy1R . . .RynRy and a chain such
that xRz1R . . .RzmRz. By the diamond property of R, there must be an element
s1 such that y1Rs1 and z1Rs1. In the same way, there must be an element t1 such
that s1Rt1 and y2Rt1 and an element t2 such that s1Rt2 and z2Rt2. We can continue
this process until we have added every element in the chains xRy1R . . .RynRy and
xRz1R . . .RzmRz, see Figure A.2. So r must exist and yRr and zRr. �

M

N N′

N′′

a b

c d

Figure A.1: The Diamond Property for binary relations: if the relation holds at a
and b, then the object N′′ must exist such that the relation holds at c and d.

62

x

y

y1

y2

. . .

z

z1

z2

. . .

s1

t1 t2

u2

r

Figure A.2: Extending the diamond property.

We will define�1 as:

M �1 M
(A.1)

M �1 M′

λx.M �1 λx.M′
(A.2)

M �1 M′ N �1 N′

MN �1 M′N′
(A.3)

M �1 M′ N �1 N′

(λx.M)N �1 M′[x F N′]
(A.4)

Note that Equation (A.4) overlaps with Equation (A.3) and Equation (A.1)
overlaps with all other cases.

Informally,→β can choose a single redex to reduce in a single step, but�1 can
reduce any number of redexes in every step. After a step, new redexes may have
been introduced, so the result of�1 is not necessarily in normal form.

Lemma A.2 M �1 M′ ⇒ M �β M′.

63

Proof We prove this by induction on the definitions of�1.
Equation (A.1): Trivial.
Equation (A.2): Suppose λx.M �1 λx.M′, which was introduced by M �1

M′. Using the induction hypothesis M �β M′, which implies λx.M �β M′.
Equation (A.3): Suppose MN �1 M′N′ was introduced by M �1 M′ and

N �1 N′. Using the induction hypothesis, M �β M′ and N �β N′. Then also
MN �β M′N′.

Equation (A.4): Suppose (λx.M)N �1 M′[x B N′] was introduced by M �1
M′ and N �1 N′. The induction hypothesis states M �β M′ and N �β N′.
This implies (λx.M)N �β (λx.M′)N′, using the definition of→β: (λx.M′)N′ →β

M′[x B N′], so (λx.M)N �β M′[x B N′]. �

Lemma A.3 M →β M′ ⇒ M →1 M′.

Proof This follows from the fact that →1 can choose any number of redexes to
reduce, while→β can only reduce one.

Lemma A.4 �1 has the diamond property.

Proof We prove by induction on M �1 M1 that for all M �1 M2 there is an M3
such that M1 �1 M3 and M2 �1 M3.

Equation (A.1) This implies M = M1, so take M3 = M2.

Equation (A.2) This means M = λx.P and M1 = λx.P′ and M �1 M1 was deduced from
P�1 P′. This means that M2 = λx.P′′ (as the outer λ-abstraction could not
have disappeared), by using the induction hypothesis we can find a P′′′ such
that P′ �1 P′′′ and P′′ �1 P′′′, so we take M3 = λx.P′′′.

Equation (A.3) This means M = PQ and M1 = P′Q′ and M �1 M1 was deduced from
P�1 P′ and Q�1 Q′. Here we must consider two different cases:

– M2 = P′′Q′′. Using the induction hypothesis we can find P′′′ and Q′′′

such that P′ �1 P′′′, P′′ �1, Q′ �1 Q′′′ and Q′′ �1 Q′′′. This means
we can take M3 = P′′′Q′′′.

– If P = λx.P1 for some P1 then it is also possible that M2 = P′′1 [x B Q′′]
with P1 �1 P′′1 and Q �1 Q′′. It is easy to check that this must
mean P′ = λx.P′1 for some P′1. This means we can find P′′′1 such
that P′1 �1 P′′′1 and P′′1 �1 P′′′1 and Q′′′ such that Q′ �1 Q′′′ and
Q′′ �1 Q′′′ and we take M3 = P′′′1 [x B Q′′′].

Equation (A.4) This means M = (λx.P)Q and M1 = P′[x B Q′]. We gain have to consider
two possibilities for M2:

– M2 = P′′[x B Q′′]. Using the induction hypothesis we can find P′′′

such that P′ �1 P′′′ and P′′ �1 P′′′, and Q′′′ such that Q′ �1 Q′′′

and Q′′ �1 Q′′′ and let M3 = P′′′[x B Q′′′].

64

– M2 = (λx.P′′)Q′′. By the induction hypothesis we can find P′′′ such
that P′ �1 P′′′ and P′′ �1 P′′′, and Q′′′ such that Q′ �1 Q′′′ and
Q′′ �1 Q′′′. Now let M3 = P′′′[x B Q′′′].

�

Corollary A.5 The transitive closure of�1 ∪ ≡α ∪ ≡η is�β.

Proof This follows from combining lemmas A.2 and A.3.

Corollary A.6 �β has the diamond property.

Proof Using lemmas A.1 and A.4 and corollary A.5.

Theorem A.7 (The Church-Rosser Theorem) For any λ-terms M, N and N′ such
that N and N′ are in normal form, if M �β N and M �β N′, then N ≡α N′.

Proof If M �β N and M �β N′, then using corollary A.6 there must be a N′′

such that N �β N′′ and N′ �β N′′. But N and N′ are in normal form, so N′′ ≡α
N′ ≡α N. �

65

Appendix B

Proof of the weak normalization
of the simply typed λ-calculus

The simply typed λ-calculus is strongly normalizing: any sequence of β-reductions
will eventually reach a normal form. Here we will proof a slightly weaker result,
namely that simply typed λ-calculus is weakly normalizing: for any λ-term, there
is a series of β-reductions that will reach a normal form. This proof is taken from
[Barendregt et al., 2013].

Definition B.1 We define the depth of a type as the number arrows in the type:

dpt(α→ β) = 1 + dpt(α) + dpt(β)

dpt(σ) = 0, where σ is a ground type

The depth of a λ-abstraction is the depth of its type and the depth of a redex is
the depth of the λ-abstraction.

When a redex is reduced, then the result may contain some new redexes:

1. (λ(x : α→ β).x P) (λ(y : α).Q)→β (λ(y : α).Q) P

By the definition of depth, dpt(α) < dpt(β), so the new redex has a strictly
lower depth.

2. (λ(x : α).(λ(y : β).P)) Q R→β (λ(y : β).P[x B Q]) R

The type of (λ(x : α).(λ(y : β).P)) must be of the form α → β → γ, which
means (λ(y : β).P[x B Q]) has type β→ γ, which has a strictly lower depth.

3. (λ(x : α→ β).x) (λ(y : α).P) Q→β (λ(y : α).P) Q

The type of (λ(x : α → β).x) is (α → β) → α → β and the type of (λ(y :
α).P) is α→ β, so the depth of the new redex is strictly lower.

66

These are the only ways new redexes can be created. It is also possible that
the redexes in the argument are duplicated, when the abstracted variable occurs
multiple times.

Let d be the highest depth of all redexes in a λ-term. Our reduction strategy
will reduce the rightmost redex with depth d (by looking at the term as a string of
characters). Its argument is to the right of it, so it can only contain redexes of depth
< d, so all duplicated redexes are of lower depth. As argued before, the newly
created redexes after this reduction must also be of lower depth. This means that
the number of redexes with depth d must have gone down by one, while introducing
some new redexes of strictly lower depth. This process will terminate, as in every
step the number of redexes of maximal depth will go down. A redex of maximal
depth can never be created. When no redexes remain, then the term has reached a
normal form. �

67

Bibliography

[Abramsky and Jung, 1994] Abramsky, S. and Jung, A. (1994). Domain theory.
In Handbook of Logic in Computer Science, pages 1–168. Clarendon Press. 18

[Amadio and Curien, 1998] Amadio, R. and Curien, P. (1998). Domains and
Lambda-Calculi. Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press. 13

[Barendregt, 1984] Barendregt, H. P. (1984). The Lambda Calculus Its Syntax and
Semantics, volume 103. North Holland, revised edition. 3, 6

[Barendregt et al., 2013] Barendregt, H. P., Dekkers, W., and Statman, R. (2013).
Lambda Calculus with Types. Cambridge University Press, New York, NY,
USA. 7, 9, 66

[Berry, 1978] Berry, G. (1978). Stable models of typed lambda-calculi. In Pro-
ceedings of the Fifth Colloquium on Automata, Languages and Programming,
pages 72–89, London, UK, UK. Springer-Verlag. 21, 43

[Church and Rosser, 1936] Church, A. and Rosser, J. B. (1936). Some properties
of conversion. Transactions of the American Mathematical Society, 39:472–
482. 6

[Huet, 1986] Huet, G. (1986). Formal structures for computation and deduction.
43

[Hyland and Ong, 2000] Hyland, J. and Ong, C.-H. (2000). On Full Abstraction
for PCF: I, II, and III. Information and Computation, 163(2):285 – 408. 45, 50,
56, 61

[Lambek, 1980] Lambek, J. (1980). From Lambda Calculus to Cartesian Closed
Categories. In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 375–402. Academic Press. 13

[Ong, 1995] Ong, C. H. L. (1995). Correspondence between operational and de-
notational semantics. In Abramsky, S., Gabbay, D., and Maibaum, T. S. E.,
editors, Handbook of Logic in Computer Science, Vol 4, pages 269–356. Oxford
University Press. 37

68

[Plotkin, 1977] Plotkin, G. (1977). LCF considered as a programming language.
Theoretical Computer Science, 5(3):223 – 255. 37, 42, 43

[Scott, 1993] Scott, D. S. (1993). A Type-theoretical Alternative to ISWIM,
CUCH, OWHY. Theor. Comput. Sci., 121(1-2):411–440. 34

[van Oosten, 1997] van Oosten, J. (1997). A combinatory algebra for sequential
functionals of finite type. Technical report, University of Utrecht. 21

[van Oosten, 2002] van Oosten, J. (2002). Basic Category Theory. 7

[Zhang, 1991] Zhang, G.-Q. (1991). Logic of Domains. Birkhäuser Boston Inc.,
Cambridge, MA, USA. 22, 23

69

Symbols

(A P-question. 43

() Zero tuple 15

) An O-answer. 43

; Composition of two strategies 50

@
∼ Observationally approximates 35

v A partial order 16

� Observationally equivalent 35

≡α The α-equivalence relation 4

≡βηα The βηα-equivalence relation 6

� The transitive closure of a relation 5

�1 The�1-reduction relation 60

→η The η-reduction relation 5

⊃ι Conditional, returning a number 33

⊃o Conditional, returning a boolean 33

[An O-question. 43

J.K Interpretation function 27

⇑ Does not terminate 35

] A P-answer. 43

↑ Two elements are bounded 16, 21–23, 25, 26

� Projection of moves 46, 48

` An equality judgment 7

70

⊥ The bottom element from a poset 16

ff False term 33

d
Greatest lower bound 16

ι The type of natural numbers 33

λ The transpose of a function 12⊔
Least upper bound 16

Ω Undefined term 33

◦ Morphism composition 9, 33

p.q The P-view 45

θ Function mapping FCFs to compact innocent strategies 55

tt True term 33

⇓ Terminates (to value) 35

Y Fixed point-combinator 33

Z Test for zero 33

71

	Preliminaries
	Untyped λ-calculus
	β-reduction
	η-equivalent
	The relation ->>β
	Computability

	Simply typed λ-calculus
	Category theory
	From λ-calculus theories to Cartesian closed categories
	Domains
	Models of simply typed λ-calculus

	PCF
	Introduction
	Operational semantics for PCF
	Denotational semantics for PCF
	scottdomain model
	The Full Abstraction Problem
	Strengthening: parallel conditional
	The stable function model

	Dialogue Games
	Example arenas
	O-view and P-view
	Product and function space arena
	Innocent strategies
	The model
	FCF

	Proof of the Church-Rosser theorem
	Proof of the weak normalization of the simply typed λ-calculus
	Symbols (glossaries)

