
The Evolutionary Hawk-Dove Model on Graphs

Tara Pesman

3971937

Animal conflict





July 2, 2015

Abstract

In evolutionary game theory, the Prisoner’s Dilemma is a well-studied

model for a diverse range of real-life situations. The Hawk-Dove game

is closely related to the Prisoner’s Dilemma, but has received much less

attention. In this thesis the Hawk-Dove game on graphs is explored, as

based on a study by Hauert & Doebeli (2004). The experimental part of

this thesis consists of a program written in c++ for modeling the Hawk-

Dove game on graphs, reproducing Hauert & Doebeli’s results, as well

as extending the scope of research to different graphs, update rules, and

payoffs. This part is preceded by the necessary theoretical background in

game theory, evolutionary game theory, graph theory and the Prisoner’s

Dilemma and Hawk-Dove game.
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1 Introduction

The aim of this thesis is two-fold. First, to give an exploration of the theoretical background

necessary to be able to formally understand evolutionary game-theoretical models. Second,

to actually provide a working model of an evolutionary game, in this case the Hawk-Dove

game on graphs. The research question for this experimental part is: what factors influence

the proportion of Doves in the population?

There are two parts to this thesis, corresponding to the two aims: The first part consists of a

theoretical treatment of game theory, evolutionary game theory, and graph theory, as well as

an in-depth discussion of the Hawk-Dove game. The second part consists of a step-by-step

discussion of the program written to model the Hawk-Dove game on graphs, as well as a

discussion of the obtained results. The code for the program is provided in the appendix.
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Part I

History and Theory

In the first part of this thesis, the history1 and theory of game theory, evolutionary game

theory, graph theory and the Hawk-Dove game are discussed. Though this part is self-

contained and gives a good overview of the discussed topics, the scope is to some degree

specialized so as to provide the necessary theoretical basis for the second part: experimenting

with the Hawk-Dove game on graphs.

2 Game Theory

This section is based on Leyton-Brown & Shoham (2008).

Game theory studies the interaction of self-interested agents. Self-interested does not

necessarily mean that agents want others to be worse of. It simply means that each agent

has her own idea of what states of the world she would like to be in. In her interaction

with other agents she will try to bring about these states of the world.

The way these preferences of an agent are formalized is by using utility theory, which

quantifies an agent’s degree of preference across her available alternatives, as well as

describes how the agent will change her preferences in the face of uncertainty regarding

which alternative she will actually receive. Utility theory thus provides a way in which

states of the world can be mapped to the real numbers: this mapping is called a utility

function. The unit name of these numbers is util and they are interpretated as

representing the level of happiness of an agent. The added value of defining an agent’s

preferences using a utility function can be seen clearly in the case of uncertain

circumstances. If an agent does not know in which state of the world she is in, the utility

function still ascribes a utility value to the different actions she can perform, namely, the

expected value of the utility function with respect to the relevant probability distribution

over the alternative states of the world.

Hence, given sufficient knowledge of the different possible outcomes of actions, as well as

the probabilities of the different states of the world, describing the optimal actions for one
1Any history discussed is presented in the form of milestones, emphasizing key authors and works in the

field; this is by no means exhaustive.
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player is straightforward. However, when describing a world containing two or more

agents, analysis is made more complicated by the influence the agents have on each other’s

utilities. These kind of interactions can be modelled using non-cooperative game theory2.

Just like the term ‘self-interested’, ‘non-cooperative’ is defined somewhat differently here

than in its colloquial use: agents do not need to have conflicting preferences, they only

need to make their decisions independently from each other.

2.1 Milestones in the History of Game Theory

This section is based on Hykšová (2004).

The history of the field of game theory goes back about three hunderd sixty years3. In the

year 1654, the correspondence between the two brilliant French mathematicians Pierre de

Fermat (1607-1665) and Blaise Pascal (1623-1662) led to the advent of probability

calculus. The thereby provided concept of probability is one of the necessary pillars of the

field of game theory, as can be seen from the introduction above.

In the over two hunderd fifty years to follow, the field of game theory was quite distached

and constituted many isolated examples. Only in the beginning of the twentieth century,

in the period 1921-1928, was the field of game theory properly defined mathematically.

The French mathematician Émile Borel (1871-1956) defined the notion of method of play,

which is our modern day pure strategy (see section 2.2.2), as well as looked for solutions to

mixed strategy games (see section 2.2.2), using what is now called the minimax priniciple

(see section 2.2.3)4. Borel’s definitions were on the right track, however, they did not yet

provide a full-blown mathematical framework for the theory of games. This was provided

by the Hungarian polymath John von Neumann (1903-1957), who published the paper

"Zur Theorie der Gesellschaftsspiele" (1928) a few years after Borel. In contrast, his paper

did provide a comprehensive and exact formalization of the important notions in game

theory, as well as a formal proof of the minimax principle. In part because of this paper

and the influence it has had on further developments in the field of game theory, Von

Neumann is often attributed the title of ‘founder of game theory’.

Sixteen years later, Von Neumann collaborated with German economist Oskar

Morgenstern (1902-1976) to write a book that would prove to be another milestone in the
2The other branch of game theory is coalitional game theory and uses the group of agents as its unit of

analysis, rather than the individual agents making up that group as is done in non-cooperative game theory.
3Before this time game-theoretic insights have been documented since ancient times. For an overview of

historical examples, see Ross (2014).
4He did this in a series of notes, see Hykšová (2004) sources

[
4
]
-
[
6
]
.
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history of game theory. In The Theory of Games and Economic Behavior (1944) they

showed the broad applications of game theory in economics as well as other disciplines.

Furthermore, they laid out a full-fledged axiomatic utility theory, which up till then had

not been clearly defined. The field of game theory became, with the publishing of this

book, a proper mathematical discipline.

The next milestone came only five years after Von Neumann and Morgenstern’s paper in

the form of the work of American mathematician John Forbes Nash Jr. (1928-2015), who

died only recently in a car accident (23rd of May). Nash contributed to the field of game

theory in a number of ways, his most well-known contributions being published in his

Ph.D. thesis "Non-Cooperative Games" (1949)5: he defined normal-form games (see

section 2.2.2), developed the notion of the Nash equilibrium (see section 2.2.3.3) and

proved that each game6 contains at least one Nash equilibrium.

Following the papers by Von Neumann and Morgenstern and Nash a lot of subsequent

research was conducted, really sparking the extension of the scope of research into areas

beyond game theory’s original field of application, economics. One of these disciplines is

Political Science, of which game theory is an inseparable part. The first paper published in

this discipline appeared in 1954 and used game theoretical notions to determine the power

of the members of the United Nations Security Council (Shapley & Shubik). Today game

theory is used in modeling "various situations related to elections, legislature, politics of

interest groups, lobbies, bargaining, etc." (Hykšová (2004)).

The application of game theory is not limited to human affairs, but is used extensively to

study conflict and cooperation in the biological world as well. Even though some papers

concerning this area of interest were published in the 1960s, it were two later papers which

proved to be the milestones in applying game theory to this field. In 1973 the British

evolutionary biologist John Maynard Smith (1920-2004) and American geneticist George

R. Price (1922-1975) published their paper "The Logic of Animal Conflict". The work

inspired a host of new research and applications, which Maynard Smith summarized nearly

a decade later in his book Evolution and the Theory of Games (1982). More on this

interesting subfield of game theory will be discussed later (see section 3).

Close to the publication of Evolution and the Theory of Games, a book was published by

the American political scientist Robert Axelrod (1943-) as well. His book The Evolution of
5He wrote his thesis in 1949, after which the most important results were published in a brief paper

(1950) and a more detailed paper (1951).
6That is, each game with a finite number of players and action profiles (see sections 2.2.2 and 2.2.3.3).
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Cooperation (1984) does what its title announces and discusses how game theory may be

used to model the emergence of cooperation. On the one hand this was a powerful finding

in support of the theory of biological evolution, which up till then had not been able to

explain cooperation convincingly. The reason cooperation seemed inexplicable for so long

is its apparent clash with natural selection, which seems to favor those who only act with

their own self-interest at heart. Axelrod used a game theoretical computer model, for

which he asked collegues to submit strategies in a tournament, to show that cooperation

can in fact emerge, even with players who are only interested in their own good. On the

other hand, Axelrod’s book, by shedding light on an important and before inexplicable

phenomenon, showed the might and relevance of game theoritical analysis.

Finally, in 1994, John Nash was awarded the Nobel Prize in economics for his

contributions to non-cooperative game theory, together with Hungarian-American

economist John Harsanyi and German economist Reinhard Selten, who extended his work.

Nowadays game theory is regularly used in a number of different disciplines, ranging from

economics to biology (see section 3.5).

2.2 Games in Normal-Form

This section is based on Leyton-Brown & Shoham (2008).

In game theory there are two different ways of representing a game: in extensive form and

in normal-form. The former presents games in the form of game trees and has particular

merrits, such as a good representation of incomplete information, however, each extensive

form game can be made into a normal-form game. The latter is therefore seen as the standard

form and will be the focus of this thesis.

2.2.1 Prisoner’s Dilemma

Game theory is concerned with modeling interactions, called games, between agents, often

called players. In order to get some intuition regarding the type of interactions game theory

is used for, let us start with giving a mostly qualitative account of the well-known Prisoner’s

Dilemma (PD). The situation is as follows. Imagine you and your accomplish have robbed a

bank together, however, the police have caught onto you and taken both of you into custody.

They are questioning you and your partner separately, hoping to squeeze out a confession.

You are presented with the following alternative scenarios: you confess and your partner
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keeps quiet, in which case you walk free (temptation payoff ); you confess but you partner

does as well, in which case you get the punitive sentence of ten years in prison (punishment

payoff ); you do not confess but your partner does, in which case you get the increased

sentence of twenty-five years in prison (sucker payoff ); you do not confess and neither does

your partner, in which case you get the reduced sentence of five years in prison (reward

payoff ). The game is symmetrical, i.e. your partner is offered the exact same combinations

of actions and consequences. The payoffs for each of the four scenarios can be put in order

of preference:

T > R > P > S

where T is the temptation payoff of 0 years in prison, R the reward of 5 years, P the

punishment of 10 yeas, and S the sucker of 25 years. The value that each of these prison

sentences represents to you can be expressed in utils. Let us say that a prison sentence of

twenty-five years is worth minus three utils to you, as it takes away from your happiness; ten

years is worth minus two utils; five years is worth minus one util; and no sentence is worth

zero utils. Then the game may be represented by the following two-dimensional vector:

keep quiet confess

keep quiet −1 −3
confess 0 −2

Table 1: PD: payoff matrix for the row player

The rows in Table 1 represent the alternative actions, called strategies, available to you;

likewise the columns represent the alternative actions available to your partner. The entry[
keep quiet, confess

]
in the vector represents the utility, or payoff, you receive if you use the

strategy keep quiet and your partner uses the strategy confess. In symmetrical games, one

of these matrices is enough to provide the information necessary for all players, however,

there are many asymmetrical games as well. In order to accommodate this better, Table 1

may be expanded to include the payoffs for the opposing player as well:

C D

C −1,−1 −3, 0
D 0,−3 −2,−2

Table 2: PD: payoff matrix for both the row and the column player

In Table 2 each entry contains two utilities, the first representing the payoff of the row player

(you in this case), the second representing the payoff of the column player (your partner

in crime). Here C and D are short for cooperate and defect respectively, which are the
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conventional names for the two strategies in the PD and refer to the interaction between

the players: to cooperate is to not rat each other out and keep quiet, whereas to defect is

to sell out the other and confess.

Using payoff matrices, game theory can be used to determine what a player’s optimal strategy

is, thereby predicting which strategy she will actually adopt, given she is perfectly rational7.

There are different ways in which game theory may determine which strategy may be called

‘the best’, which will be discussed next (see section 2.2.3). However, first a formal definition

of a normal-form game needs to be given.

2.2.2 Definition of Games and Strategies

Now that we have a better grasp of what a ‘game’ in game theory constitutes, the time

has come to give a formal definition of a normal-form game. As mentioned, John Nash, in

his 1949 work, was the first to formally define normal-form games. In order to formalize a

normal-form game it is necessary to define the players, strategies, and utilities of the game:

Normal-form game

A finite, n-person normal-form game is a tuple (N,A, u), where

• N is a finite set of n players indexed by i;

• A = A1× ...×An, where Ai is the finite set of actions available to player i. Each

vector a = (a1, ..., an) ∈ A is called an action profile;

• u = (ui, ..., un), where ui : A 7→ R is a real-valued utility function for player i.

Let us continue by further formalizing the players’ strategies. A pure strategy is one in which

the player selects one action and always chooses that action as her strategy. In contrast, a

mixed strategy is one in which a player has several possible actions and chooses which one

to play each time:

Mixed strategy Let Ai = {a1, ..., am} be the set of actions available to player i. Then a

mixed strategy for player i is a vector (p1, ..., pm) such that pi > 0 and p1+...+pm = 1.

Player i will use action aj with probability pj.

The expected payoff for playing a mixed strategy simply follows from the linearity of the

utility function. Furthermore, pure strategies are of the form (0, 0, ..., 0, 1, 0, ..., 0), so that

player i will use action aj with probability 1.
7This assumption may not be as straightforward as it seems (see section 3.1).
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2.2.3 Analyzing Games

Having defined games in normal-form and the strategies players in these games have available

to them, it is time to see how game theory reasons about these games. For games involving

one player, game theory uses the concept of an optimal strategy to predict which course of

action is deemed ‘best’. The optimal strategy is that strategy that maximizes the player’s

payoffs in the given environment, which is a source of uncertainty, due both to probabilistic

events and partial information. In games involving mulitple players, however, analysis is not

quite so unambiguous, since each player’s optimal strategy depends on the strategies the

other players are using, thus making the solution to the game a dynamic concept, rather

than a stable one. To deal with multi-agent games, game theorists has developed several

ways of reasoning about the best course of action, called solution concepts, each interesting

in its own way. Here four of the most fundamental ones will be discussed: minimax and

maximin, pareto optimal, dominance, and Nash equilibrium.

2.2.3.1 Zero-sum Games, Minimax and Maximin

Historically, the first type of games to be analyzed were so-called zero-sum games. The

concept of a zero-sum game applies to two-player games in which the payoff of one player

is equal to that of the second player, but differing in sign. A more appropriate name is

constant-sum games, since the two payoffs do not need to cancel to zero, but do always add

to some constant value8:

Zero-sum game A two-player normal-form game is zero-sum if there exists some c such

that for all a ∈ A1 ×A2 it is the case that u1(a) + u2(a) = c.

In other words, for all action profiles (a: set of chosen actions by each player, in this case

two) within the range of pairs of possible actions of the players (A1×A2), there exists some

constant c such that the players’ utilities add up to this constant.

To determine what action is best for a player in a constant-sum game, two related solution

concepts were defined. The concept of minimax tells a player to minimize her opponent’s

maximal payoffs, whereas the concept ofmaximin tells a player to maximize her own minimal

payoffs. In zero-sum games the minimax and maximin solutions are identical, which is a

theorem by John von Neumann. However, for non-zero-sum games, they are generally not

equivalent.
8This is the case because utility functions are linear, allowing the application of linear transformations,

such as mulitiplication or addition, to the payoff vector without changing the game.
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Taking the example of the PD (see Table 2), a non-zero-sum game, the minimax strategy

would be to defect, since your opponent would maximally receive −2, rather than 0 in case

you would have cooperated. In the case of the PD the maximin strategy is the same as the

minimax strategy, namely to defect, since your minimal payoff would be −2, rather than −3
in case you would have cooperated.

2.2.3.2 Dominance

The strongest and most straightforward solution concept is that of dominance. Let us start

by defining a strategy profile:

Strategy profile The set of strategies used by the players, called the strategy profile, is

given by s = (s1, ..., sn).

Additionally, let us refer to all players except for player i, by −i and define their strategy

profile to be s−i = (s1, ..., si−1, si+1, ..., sn). Then the strategy profile for all players can

be written as s = (si, s−i). Now, a strategy is dominant when it yields the highest payoff

regardless of what strategies the other players’ are using, or more formally:

Dominant strategy A strategy si ∈ Si of player i is dominant if ui(si, s−i) > ui(s
′
i, s−i)

for all alternative strategies s′i ∈ Si for player i, and for all alternative strategies

s−i ∈ S−i.

An even stronger version is provided by strictly dominant strategies, for which the inequality

above holds strictly for all si 6= s′i and for all s−i ∈ S−i. The major advantage of the

dominance solution concept is that a player using it does not need to make any predictions

about the actions of her opponents. The major disadvantage is that more often than not

there is no (strictly) dominant strategy.

In the PD it is easy to see that to defect is the (strictly) dominant strategy (see Table 2):

if your opponent cooperates, you either get a payoff of −1 (in case you cooperate) or of 0

(in case you defect); if your opponent defects, you either get a payoff of −3 (in case you

cooperate) or of −2 (in case you defect). Since −1 < 0 and −3 < −2 it is always the better

to defect, regardless of the strategy your opponent uses. Because the PD is a symmetrical

game, as noted before, there is a pair of strategies that is dominant, hence, it is expected

every game always ends with the players having chosen (D,D). Interestingly, this is not so;
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in certain situations the outcome of the game deviates from this prediction9.

2.2.3.3 Nash Equilibrium

The most influential solution concept in game theory is the Nash equilibrium. As mentioned,

this concept was developed by John Nash in his Ph.D. "Non-Cooperative Games" (1949).

He proved that each game with a finite number of players and action profiles, has at least

one Nash equilibrium. In order to formally define a Nash equilibrium, it is necessary to first

introduce the concept of a best response.

Start by observing that if a player i were to know what strategy her opponents are going to

play, picking which strategy is best for her is a simple case of single-agent utility-maximizing.

Let us refer to the other players, i.e. all except for player i, by −i and write the strategy

profile for all players as s = (si, s−i). If the other players were to use s−i, player i would be

in a simple single-agent utility-maximizing situation. Now, a player’s best response is that

strategy that will maximize the agent’s payoff in the light of the knowledge or guess of the

strategies the other players will use.

Best response Player i’s best response to the set of strategies played by the other players

is a mixed strategy s∗i such that ui(s∗i , s−i) > ui(si, s−i) for all si ∈ Si.

The best response can be unique, in the exceptional case that the best response is a pure

strategy. Generally, however, the best response is a mixed strategy, making that there are

always an infinite number of best responses definable10.

A Nash equilibrium can now be defined using the concept of best response. Informally,

what it means for a set of strategies (one strategy for each player), to constitute a Nash

equilibrium is that no player has an incentive to change her strategy: for any given player

there is no strategy available that, if she were to switch unilaterally, she would maintain the

same or receive a better payoff. This can be formalized as follows:

Nash equilibrium The set containing the strategies of all players, s = (s1, ..., sn), called

the strategy profile, is a Nash equilibrium if si is the best response to s−i for all

players i.
9For an overview of the five mechanisms that promote cooperation in the PD, see ?

10This is because, if a player were to have two (or more) actions available to her with non-zero probability,
then she must be indifferent between them. If not, she could reduce the probability at least one of them to
zero. Any mixture, not just the one in s∗i , of those two (or more) actions therefore is a best response.
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The Nash equilibrium can be envisioned as a ‘stable’ state: no player would want to change

her strategy if she knew what strategies the other players were using. Two versions can be

distinguished, depending on the inequality sign used in the best response definition: weak

Nash, using > as in the definition above, and strict Nash, using > instead. Mixed strategy

Nash equilibria are necessarily weak, whereas pure strategy Nash equilibria may be weak or

strict. Weak Nash equilibria are less stable than strict Nash equilibria, since in the former

there is at least one player who has a best response to the other players’ strategies that is

not her equilibrium strategy.

The following is based on Peters (2008).

Finding all Nash equilibria of a game, including both mixed and pure strategies, can be a

demanding task. Here it will be shown how to find the pure strategy Nash equilibria only,

to give an idea of the process. As an example, consider again the PD in Table 2. For the

column player, mark with an asterix his best responses to the strategies the row player can

choose, yielding:

C D

C −1,−1 −3, 0∗

D 0,−3 −2,−2∗

Table 3: PD: highlighted best responses for the column player

Next, mark with an asterix the best responses of the row player to the strategies the column

player can choose, yielding:

C D

C −1,−1 −3, 0
D 0∗,−3 −2∗,−2

Table 4: PD: highlighted best responses for the row player

Putting these together yields Table 5.

C D

C −1,−1 −3, 0∗

D 0∗,−3 −2∗,−2∗

Table 5: PD: highlighted best responses for both the row and column player

The pure Nash equilibria of the game are given by those pairs of strategies that are mutual

best responses, in this case
[
D,D

]
= −2,−2. Hence, once the players settle on these
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strategies, neither of them will want to switch change strategies unilaterally.

3 Evolutionary Game Theory

The application of game theory is not limited to human affairs, but is used extensively to

study conflict and cooperation is the biological world as well. In the zoological domain

game theory is used for "the analysis, modeling and understanding the fight, cooperation

and communication of animals, coexistence of alternative traits, mating systems, conflict

between the sexes, offspring sex ratio, distribution of individuals in their habitats, etc."

The list is equally extensive in the botanical domain, where game theory is used to address

"questions of seed dispersal, seed germination, root competition, nectar production, flower

size, sex allocation, etc." (Hykšová (2004))

3.1 Historical Context of Evolutionary Game Theory

This section is based on Sugden (2001).

Classical game theory is, as discussed above, concerned with games, which are defined in

terms of players, strategies, and utilities. The main goal is to find a solution to a game,

which is a combination of strategies, one for each player. The "Holy Grail" therefore is

to find a solution concept that, in every game, picks out precisely one set of strategies for

the players that is the solution. Until the 1980s classical game theory stayed the standard,

however, some difficulties started to appear, the main three of which will be discussed here

(Alexander (2009)).

Equilibrium Selection

To start there is the equilibrium selection problem, which consists of two complications

regarding Nash equilibria. Every non-cooperative game in which players are allowed to

use mixed strategies has at least one Nash equilibrium (by John Nash’s famous theorem,

as discussed in section 2.1), however, this is not the case for games in which only pure

strategies are allowed. For some games, therefore, the solution(s) game theory seeks cannot

be found. A more critical complication is presented by the multiplicity of Nash equilibria

in some games. Since all Nash equilibria are equally rational to choose, how does a rational

agent select one of the available alternatives? In response to this problem, game theorists
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have suggested refinements of the concept of a Nash equilibrium. These have grown so

numerous that nearly every choice of a Nash equilibrium can be justified by one or more

of the proposed refinements, making that the object of the question has shifted from which

equilibrium to pick to which refinement to use.

Hyperrationality

A second difficulty encountered in classical game theory regards the assumption of perfect

rationality, which has its origin in the utility theory that forms the basis of game theory.

In order to assign cardinal utility functions to agents, it is necessary that those agents have

well-defined and consistent preferences for the possible outcomes of the game. Because

there are infinite possible outcomes of the game, each player needs to have a well-defined,

consistent set of infinitely many preferences regarding these outcomes. This is provided by

the assumption of perfect rationality. The problem here is that an abundance of studies in

experimental economics, as well as other fields, have shown that the behavior of real human

being does not agree with the assumption of hyperrationality. Preferring A to B, B to C,

and C to A, is an example of how people can have preferences that are not well-defined and

consistent, as is assumed in classical game theory.

Lack of Dynamical Theory

The third difficulty discussed here concerns the dynamical nature of games. The most

important aspect of a game is the interaction that takes place between the players,

resulting in some outcome. An agent observes her opponent’s behavior, learns from this,

and responds taking into account what she has learned. Classical game theory, however,

does not address this process of rational deliberation, but instead presumes, as discussed

earlier, static preferences.

Development of Evolutionary Game Theory

This section is based on Alexander (2009).

The first to develop evolutionary game theory was the English evolutionary biologist R.A.

Fischer (1890-1962). In his book The Genetical Theory of Natural Selection (1930) he

investigated the approximate equality in sex ratio in mammals. How can it be that the sex

ratio is approximately equal in species where the majority of males never mate? Those males
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seem to be nothing more than a burden to the rest of the population. The insight Fischer

had was that individual fitness, when measured as the expected number of grandchildren,

depends on the distribution of males and females in the population. If the population

has more females, then males have a higher individual fitness, and vice versa. Hence,

evolutionary dynamics leads to equal numbers of males and females.

Even though Fischer’s theory can be put in game theoretical terms, since individual fitness

depends on the sex ratio in the population, thereby adding a strategic element in evolutions,

he did not phrase it as such. The first to explicitly apply game theory to evolutionary biology

was the American evolutionary biologist R.C. Lewontin (1929-), who published a paper called

"Evolution and the Theory of Games" (not to be confused with Maynard Smith’s book by

the same name) in 1961, which already discussed species ‘playing against Nature’. The

first work of impact was “Game Theory and the Evolution of Fighting” (1972)11, which

was published a good ten years later by Maynard Smith and introduced the important

notion of an evolutionarily stable strategy (see section 3.4). The work that actually sparked

a revolution in game theory was published one year later, also by Maynard Smith, this

time accompanied by Price, called “The Logic of Animal Conflict” (1973). Two other works

that fuelled the expansion of evolutionary game theory into a full-fledged discipline were

Evolution and the Theory of Games (1982) by Maynard Smith, giving an overview of the

developments of the ten years previous, and The Evolution of Cooperation (1984) by Axelrod,

which showed the application of evolutionary game theory to the social sciences (as discussed

in section 2.1).

Evolutionary game theory provides progress in solving the three problems plaguing classical

game theory (see section 3.1). The first difficulty presented was equilibrium selection: here,

some (see Samuelson (1998)) hope that future developments in evolutionary game theory can

assist with this issue. There is evidence that the second difficulty of assumed hyperrationality

is (close to) not present in evolutionary game theory. Evolutionary game theory is able to

successfully predict and explain the behaviors seen in plants and animals, which do not

satisfy the assumption of perfect rationality. This suggests that evolutionary game theory

is less dependent on rationality and may therefore be better suited to predict and explain

human behavior than classical game theory. Finally, regarding the third difficulty of the lack

of dynamical theory, since no assumptions of perfect rationality are made, evolutionary game

theory does not presume static preferences. Moreover, evolutionary game theory naturally

integrates the dynamical aspect to game playing.
11See section 1 of Alexander (2009).
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3.2 Some Definitions

This section is based on Hauert (2008).

Before looking at evolutionary game theory in more detail, it is necessary to give descriptions

of some concepts that are central to the theory of evolution. The three elements that

constitute the process of evolution are selection, variation, and random drift.

Selection

Individuals in a population that have an above-average fitness have a greater chance of

reproducing and thus of passing on their genetic or cultural traits to future generations,

thereby increasing the frequency of these traits in the population. Likewise, individuals

with traits that produce a below-average fitness have a smaller chance of reproducing,

thus over time reducing the abundance of those traits in the population. This process

is called selection.

Variation

Due to differences between individuals there is differentiated fitness within a

population, and thus differentiated reproductive success. This variation between

individuals is caused by a number of processes, including mutations, genetic

recombination, spontaneous alterations and flawed imitations of behavioral patterns.

Selection acts on these differences and amplifies them in time.

Random drift

The process of passing on traits through reproduction is stochastic. This means that

even the fittest member of a population may, albeit with a small chance, not get to

reproduce, and, likewise, the least fit member of the population may, with a small

chance, do get to reproduce. This process of random drift counteracts the process

of evolution. Its power increases along with decreasing population size or decreasing

differences in fitness between individuals in a population.

Evolution, then, is the process by which different traits (variations) within a population

are probabilistically (because of random drift) selected. It is important to note from the

description of selection that, whereas Darwinian selection acts on genes, cells and individuals,

this is not so in evolutionary dynamics, which instead focuses on populations as the subject

of selection and evolution.

19



3.3 Differences from Classical Game Theory

Within the field of game theory, two approaches may be distinguished: classical game theory

(CGT), which in this thesis is often referred to as just game theory, and evolutionary game

theory (EGT). Maynard Smith discussed the two main differences between these two in his

1986 paper entitled "Evolutionary Game Theory".

The first difference is the replacement of utility by fitness. The concept of utility takes

qualitatively distinct outcomes, quantifies them and orders them on a linear one-dimensional

scale; a rather artificial process. In contrast, fitness is naturally quantified by number of

offspring and the ordering is thus unambiguous. The second difference is the replacement

of rationality by natural selection. In CGT, a ‘solution’ requires all players to act rational,

which presents two problems: first, there is no unambiguous definition of ‘being rational’,

and second, people do not behave rationally. In contrast, a ‘solution’ in the evolutionary

game-theoretical sense refers to a stable fixed point of dynamics.

Kooistra has identifies some further necessary assumptions in EGT that differ from CGT:

• Players do not rationally choose which strategy to use, but instead they only use one

strategy over and over, which may be interpreted as the expression of a gene or instinct.

• Strategies are passed on, unchanged, from parent to offspring asexually in a process

called replication (more on this in section 3.4.3).

• Replication is not always perfect, resulting in mutants who play different strategies

than their parents.

• Birth and death rate are constant and generally equal.

3.4 Two Approaches

This section is based on Alexander (2009) and Peters (2008).

Two approaches can be identified in the field of evolutionary game theory, based on the two

central concepts in the theory of evolution: mutation and selection respectively. The first

approach takes the concept of evolutionary stable strategies as the main tool of analysis.

Since this approach does not actually consider the underlying process by which behaviors

change in a population, it can be seen as providing a static explanation of what evolutionary

stability is. The second approach constructs an explicit model of the change in frequency of
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strategies present in the population and studies properties of evolutionary dynamics within

that model. In contrast with the first approach, this approach, once it has created a model,

does not need any of the stability concepts standardly used in analyzing games, such as

discussed in section 2.2.3.

3.4.1 Hawk-Dove Game

This section is based on Peters (2008).

The example that will be used to illustrate the theory in this section is the famous

evolutionary game of Hawk-Dove (HD). The relation of this game to the PD, as well as its

relevance to this thesis will be discussed in section 5. The HD game models the following

situation. Individuals in a large population meet each other at random and interact in

pairs. They can either behave aggressively (Hawk) or passively (Dove) in the fight over, for

example, nest sites or food. Since this behavior is genetically determined, the individuals

do not really have a choice regarding which strategy to use. The payoffs in the game reflect

(Darwinian) fitness, i.e. the number of offspring, and are given in Table 6.

D H

D 2, 2 1, 3

H 3, 1 0, 0

Table 6: Hawk-Dove payoff matrix

3.4.2 Evolutionary Stable Strategies

This section is based on Kooistra (2012) and Leyton-Brown & Shoham (2008).

In classical game theory the most important solution concept is the Nash equilibrium; in

evolutionary game theory this is the evolutionary stable strategy (ESS). An ESS is a strategy

that will be maintained in a homogeneous population, meaning one in which all players play

one strategy s, and cannot be invaded by mutants playing a different strategy t. The concept

of an ESS is formalized as follows:

Evolutionary stable stategy Given a symmetric, two-player game G = (
[
1, 2
]
, A, u), a

mixed strategy s is an ESS if for all s′ 6= s,

u
(
s, (1− ε)s+ εs′

)
> u

(
s′, (1− ε)s+ εs′

)
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Explained in other words, this means the following. Imagine a population of natives who

all play strategy s. Say a part of this population, some small proportion 0 < ε < 1, starts

playing a mutant strategy s′. Then strategy s cannot be invaded, i.e. is evolutionary stable,

if, for any s′, it does better against the population at large (consisting of natives and a few

mutants: (1− ε)s+ εs′) than a mutant strategy s′ does. Since this need only be the case for

small ε, this is equivalent to requiring:

Evolutionary stable stategy A strategy is an ESS if for all s′ 6= s,

• Either u(s, s) > u(s′, s)

• Or else u(s, s) = u(s′, s) and u(s, s′) > u(s′, s′)

The concept of an ESS is closely related to that of the Nash equilibrium, as can be seen

from the following two theorems:

Theorem 1 Given a symmetric, two-player game G = ({1, 2}, A, u) and a mixed strategy

s, if (s, s) is a strict (symmetric) Nash equilibrium of G, then s is a ESS.

This too is easy to show, since it follows from the definition of a Nash equilibrium that s

satisfies u(s, s) > u(s′, s), which satisfies the first condition for an ESS.

Theorem 2 Given a symmetric, two-player game G = ({1, 2}, A, u) and a mixed strategy

s, if s is an ESS, then (s, s) is a Nash equilibrium of G.

From the definition of an ESS it follows that u(s, s) > u(s′, s), i.e. it is a best response to

itself and thus a Nash equilibrium. Not every Nash equilibrium is an ESS however; this is

only necessarily the case for strict Nash equilibria.

Hence, a strategy is evolutionary stable if it satisfies the two above-mentioned conditions.

First, it needs to be a Nash equilibrium, i.e. the utility of playing strategy s against s

is better or equal to the utility of playing s′ against strategy s
(
u(s, s) > u(s′, s)

)
. This

ensures that no one player would have an incentive to switch strategies unilaterally when

given the chance. Second, if the utility of playing s against s is equal to the utility of playing

s′ against strategy s
(
u(s, s) = u(s′, s)

)
, then it must be the case that the utility of playing

s against s′ is better than the utility of playing s′ against s′
(
u(s, s′) > u(s′, s′)

)
. This

condition ensures that if a native (playing s) encounters a mutant (playing s′), the native

will prove superior, thereby preventing the mutant from infiltrating the population.
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Finally, note that the definition for evolutionary stability has, similarly to the dominance

concept, two versions: weak, which is described above, using >, and strong, replacing this

by >. In the weaker version the players using the mutant strategy will not increase in

abundance, however, their number will also not decrease. In contrast, in the stronger version

the mutant will decrease and eventually die out.

3.4.3 Replicator Dynamics

This section is based on Peters (2008).

The concept of an ESS is based on mutation, however, if the concept of selection is to be

incorporated, a more dynamical focus is necessary. The second approach to evolutionary

game theory does just that and describes the process of change within a population due

to selection using so-called replicator dynamics. A detailed treatment of the mathematics

behind this is not the focus of this work, however, the general idea will be illustrated using

the HD game.

Consider an infinitely large population in which two kinds of strategies are used, Hawk and

Dove. Define a vector of population shares:

x = (x, 1− x)

where x ∈
[
0, 1
]
is the proportion of, say, Hawk, and (1 − x) is the proportion of Dove in

the population. Using Table 6, it can be seen that an individual playing H against the rest

of the population x yields an expected payoff of:

0 · x+ 3 · (1− x) = 3(1− x)

since she will receive a payoff of 0 for any fellow Hawk she meets (proportion x) and a payoff

of 3 for any Dove she meets (proportion (1− x)). Similarly, an individual playing Dove will

receive an expected payoff of:

1 · x+ 2 · (1− x) = 2− x

Hence, it can be concluded that the average fitness of the population is:

x · 3(1− x) + (1− x) · (2− x) = 2− 2x2

Now, assume the population shares change over time, thus that x(t), and that this change
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is proportional to the difference in average fitness between the two strategies. Then this

change is given by

ẋ(t) =
dx(t)

dt
= x(t)

[
3(1− x(t))− (2− 2x(t)2)

]
(1)

which is the replicator dynamics for the HD game. Equation 1 says that the proportion of

Hawks in the population changes continuously (dx(t)/dt) and that this change is proportional

to the difference in fitness between Hawk at time t (which is given by 3(1 − x(t))) and the

average fitness of the population (which is given by 2− 2x(t)2). Simplifying equation 1 and

writing x in the place of x(t) yields:

ẋ = x(x− 1)(2x− 1)

This may be used to construct a diagram of dx/dt as a function of x, which is called a phase

diagram: see Figure 2. It can be seen that the replicator dynamics for this version of the

Hawk Dove games has three rest points, or points where the population shares do not change

anymore (dx/dt = 0), namely x = 0, x = 1
2 , and x = 1. In the rest point x = 0, all members

of the population play Dove, hence, each member’s fitness is equal to the average fitness and

the system is at rest. However, as soon as a Hawk comes along, perhaps through mutation,

the members playing Dove are at a distadvantage (dx/dt, describing the share of Hawks,

increases) and the number of members playing Hawk will grow. A similar story applies to

the other side of the balance, this time Doves infiltrating and decreasing the Hawks’ fitness

below the average. The point in the center of the balance is the only stable rest point,

where a small disturbance will shift back towards the center, where the ratio Hawks/Doves

is 50/50.

Figure 2: Phase diagram of dx/dt as a function of x (Peters (2008))

3.5 Uses in Disciplines

This section is based on Alexander (2009).
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Evolutionary game theory started as a mathematical theory applied in biological contexts,

but since then it has been in various other fields as well, such as psychology sociology,

economics, philosophy, and linguistics. Some topics that have been analysed from a game-

theoretical perspective thus far include12: altruism, behavior in the public goods game,

empathy, human culture, moral behavior, private property, signaling systems and other

proto-linguistic behavior, social learning, and social norms.

3.6 Prisoner’s Dilemma Revisited

Let us expand on the before-mentioned example of the PD. In this section the history of

this game, a more in-depth treatment of the formalization of the game, as well as research

findings will be discussed.

3.6.1 Historical Context

This section is based on Poundstone (2011).

In 1950 two researchers at RAND cooperation, a back then military-subsidized think tank

based in the United States, made one of the most important ‘discoveries’ in the field of game

theory. American mathematicians Merrill Flood (1908-1991) and Melvin Dreshner (1911-

1992) developed the theoretical basis for a simple, but highly informative game. Later, a

consultant at RAND, Canadian mathematician Albert W. Tucker (1905-1995), constructed

the famous narrative around this game, giving it the name ‘Prisoner’s Dilemma’. At first

the game traveled through the scientific community by word of mouth, only to be published

several years after its conception. Before long the game was recognized as an important

analytical tool for understanding conflict situations; some even deemed it to be "one of the

greatest ideas of the twentieth century" because of its simplicity and fundamental importance

(Poundstone (2011)).

Interestingly, in the 1950s when the PD was ‘discovered’, the Western world was in a conflict-

ridden time, having to deal with nuclear proliferation and arms races; the Cold War (1947-

1991) is a classical illustration of a PD. The Western bloc and the Eastern bloc were in a

nuclear standoff, neither willing to lay off the threat nor to actually undertake an attack. In

PD terms, this can be ordered as follows. If you lay off your weapons, then either the other

bloc does so as well, in which case you are both better off without the threats (R), or the

other bloc procedes with the threat and attacks, since there is no deterrence from doing so
12See Alexander (2009) for references regarding these topics.
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anymore (S). If you continue your threat, then either the other bloc does so as well and you

will reach stalemate (P ), or the other bloc does lay down its weapons, in which case you are

free to procede and attack them (T ).

The nuclear era is often ascribed to "technical progress outstripping ethical progress."

Currently, technology is progessing faster than ever, again presenting a possible threat

to moral considerations, making the PD arguably "one of the premier philosophical and

scientific issues of our time." (Poundstone (2011))

Finally, there are quite some real-life situations may be modeled using the PD, that is, have

a payoff matrix that can be written in the form of Table 7. The following two examples give

an idea of how the PD can be relevant to (current) societal issues: global climate change

(Rehmeyer (2012)), where each country would be better off with reduced CO2-emissions,

however, no country would like to start the restrain its own emissions; and addiction (Ainslie

(2001)), where the psychological game between the current and future self may be seen as

a PD, with presently relapsing being parallel to defecting and currently maintaining self-

control being parallel to cooperating with the future self.

3.6.2 Formalization

This section is based on Doebeli & Hauert (2005).

The game as described in section 2.2.1 and presented in Table 2 is not the only PD: any game

which payoffs can be described by the following payoff matrix and accompanying ordering

of payoffs falls under this category:

C D

C b− c −c
D b 0

Table 7: PD: general payoff matrix for the row player

The payoffs are sums of the benefits and costs of the strategy: cooperating results in a benefit

b to the opponent, but incurs a cost c to the cooperator (where b > c > 0); defection does

not result in either benefit or cost. The payoffs in Table 7 show the characteristic PD’s

ordering:

b > b− c > 0 > −c

which may also be written as PDC > PCC > PDD > PCD where PS1S2
is a player’s payoff

for using strategy S1 when her opponent uses strategy S2.
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The evolutionary PD has D as its only evolutionary stable strategy (Smith (1986)), which

is confirmed by the result of replicator dynamics: only pure D (i.e. x = 1, see section 3.4.1)

is a stable equilibrium (Taylor & Jonker (1978), and Hofbauer & Sigmund (1998)).

3.6.3 Extensions and Findings

This section is based on Doebeli & Hauert (2005).

The PD has been extensively studied, focusing in particular on extensions of the game, since

the dynamics of the one-shot two-player game are easily understood. In general, the research

in this field aims to determine what (kinds of) strategies are most successful, but there is

special attention to the question of how cooperation may be facilitated. The extensions

discussed here concern extra features of interest that may be added onto the simple PD

game, often doing so for two or more of these at the same time. Four categories of these

extensions will be briefly discussed, after which the extension that is the focus of this thesis

will be discussed in some more depth.

Iterated interactions

The iterated PD (IPD) consists of several rounds of the simple PD, which gives players

the chance to react to past experience. The idea is that players may choose to cooperate

(more often) in the light of the threat of reduced future payoffs due to retaliation

against current defection. Whereas in the regular PD players can only choose between

the strategies pure C and pure D, in this line of research the focus is on the influence

of strategies that may take into account past experience. As an example, the winning

strategy in Axelrod’s computer tournament (see section 2.1), Tit For Tat (TFT), takes

its opponent’s previous move into account: it starts by cooperating and after that it

mimics the moves its opponent makes (Axelrod (1984)). To date, the strategy that

has proved most consistently successful is Pavlov, which takes its previous payoffs into

account instead and follows the rule win-stay, lose-shift13 (Kraines & Kraines (2000)).

Spatial structure

In the simple PD the population of players is well-mixed, meaning that the chance

of a player i meeting another player j is the same for all j ∈ G, where j 6= i.

However, this does not agree with many real-life situations14, where there is a varying

distance between players, which influences the possibility to interact together. Spatial
13In other words, if the previous payoff was high (T or R, see section 2.2.1) do the same move again, if

the previous payoff was low (P or S) switch moves.
14Unless the population is sufficiently small.
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games model this, placing players on a spatial network, where the players are the

nodes and the connections between the nodes the possible interactions between the

players. The spatial PD has been studied extensively and the results are clear: adding

spatial structure to the game promotes cooperation. The mechanism behind this is

the formation of cooperative clusters. Cooperators at the boundaries of these clusters

are exploited by defectors, however, within the cluster they can get the high payoffs

receivable for mutual cooperation, keeping them safe from extinction.

Continuous PD

In the regular PD players can only choose between the strategies pure C and pure D,

however, in many situations that can be modeled by the PD it is not hard to imagine

there might be a continuum of strategies between pure C and pure D available to

the players. This is formalized by taking a player’s investment x to lie on an the

interval [0, xmax], where 0 is the minimal possible investment (pure D) and xmax is

the maximal possible investment (pure C). The focus in this line of research, then, is

on the evolutionary dynamics of the ‘trait’ x. The general results echo those of the

IPD.

N-player interactions

In all versions of the PD considered so far, the interactions were between two players

at one time, even though they were members of a larger population. It is possible,

however, to consider interactions involving more than two players at one time. These

N -player games are called Public Goods games and have an extensive history in the field

of economics (Kagel & Roth (1995)). As an example, consider a group of people, each

having 10 dollars, who can all put some money into a public pot. Their investment

will be tripled and divided equally over the group, resulting in 30 dollars for each

player if they all invest. However, rationally no player will invest, since each invested

dollar only yields a return of 50 cents to the investor. In this line of research the

dynamics of Public Goods game are studied to see what may facilitate high investment

(cooperation). Results indicate that smaller groups, as well as voluntary participation

in the group facilitate cooperation. (Doebeli & Hauert (2005))

Reputation and Tags

In the regular PD players do not have a means of distinguishing between opponents,

however, in the real world players often do have the chance to condition their strategy

on their which opponent they face. One line of research in this field focuses on

reputation. Reputation is based on the idea of indirect reciprocity, or ‘I help you,

someone else helps me’15 (Alexander (1987)). A player’s past defection affects her
15In contrast with ‘I help you, you help me’, which is the guideline in direct reciprocity.
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image, or reputation, and influences whether current opponents are willing to cooperate

with her. Another, related line of research focuses on tag-based games, where players

cooperate only with players who are similar to them with respect to some neutral

characteristic, such as color (Riolo et al. (2001), Hochberg et al. (2003), Axelrod et al.

(2004)). The results of this extension cannot be briefly summarized here, due to the

amount of explanation necessary.

The focus of this thesis in on spatial extension, or spatial games. These are formalized by

placing players on graphs: the nodes in the graph are the players, and the connections

between the nodes represent (possible) interactions. The next section introduces the

concepts necessary to consider games on graphs in more detail.

4 Graphs

This section is based on Newman (2010), supplemented by Wang & Chen (2003).

Before games on graphs can be considered in more detail, it is necessary to give a brief

introduction to the relevant graph-theoretical background.

4.1 Introduction to Graph Theory

Graph theory is the branch of mathematics that deals with graphs, also called networks.

A graph is a collection of vertices, or nodes in computer science jargon, that are joined by

edges, or links, see Figure 3. The number of vertices is called the order and is commenly

denoted by n; the number of edges is called the size of the graph and is denoted bym. In this

thesis the vertices represent players and the edges represent the connections, i.e. potential

interactions, between them. The graphs of concern are so-called simple graphs: networks

that do not have any multiedges (more than one edge between any two vertices) or self-loops

(edges connecting vertices to themselves). Another property that will be assumed for the

graphs in this thesis is undirectedness: an edge connects two vertices in both directions,

meaning that if vertex a is connected to vertex b it is necessarily the case that vertex b is

connected to vertex a as well. Finally, the graphs considered here are unweighted : edges are

either present (1) or not present (0), there are no intermediate strengths of connection (a

number between 0 and 1).

There are several ways in which graphs can be represented mathematically, the relevant one
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Figure 3: Example of a graph with nodes and edges

here being the adjacency matrix. Let us consider a graph with n vertices, labeled 1, ..., n 16

and let an edge between any two vertices i and j be labeled
[
i, j
]
. Then an adjacency matrix

A may be constructed such that each entry for row i and column j, Aij or
[
i, j
]
, contains

either a 1, indicating a connection between players i and j, or a 0, indicating no connection.

In the light of the properties assumed for the networks in this thesis, three things may be

noted about the adjacency matrices: they will all be symmetric17 due to the undirectedness

of the edges; they will all have zeros in their main diagonal due to the lack of self-loops; and

they will only contain zeros and ones, due to unweighted edges. An example is given by in

Table 8, which is the adjacency matrix for Figure 3.

j=0 j=1 j=2 j=3 j=4 j=5

i=0 0 0 0 1 1 1

i=1 0 0 0 1 1 1

i=2 0 0 0 1 0 1

i=3 1 1 1 0 1 1

i=4 1 1 0 1 0 1

i=5 1 1 1 1 1 0

Table 8: Adjacency matrix for the graph in Figure 3

16The labeling can be arbitrary, as long as it is unique, so each label refers to one vertex only.
17Unspecified symmetry in a matrix is with respect to the main diagonal.
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4.2 Some Measures

Various types of information about a graph can be given, some concern the graph as a

whole, others concern only a part, or even individual elements, of the graph. In this section

two concepts will be discussed concerning individual vertices, which averages also provides

information regarding the graph as a whole.

4.2.1 Degree Distribution

One of the most-studied concepts in the measurement of graphs is centrality, which addresses

the question which vertices are the most important, or central, in a network. Many different

measures of importance have been put forward, perhaps the simplest of which is degree

centrality. The degree, as degree centrality is often called, is perhaps the most important

characteristic of a single vertex and given by the number of edges connected to it. Consider

an undirected graph with n vertices, then the degree ki of vertex i is given by the sum of

player i’s connections (Aij):

ki =

n∑
j=1

Aij

Knowing the degree for every vertex makes it possible to calculate the mean value of the

degree for the entire graph by taking the sum of degrees of all vertices, divided by the

number of vertices considered:

c =
1

n

n∑
i=1

ki

Knowing the average degree of a graph will give information on the connectedness of the

vertices: the higher the degree, the more connections per vertex, thus the more connected

the vertices in the graph are. A nice way of representing this information is in a degree

distribution diagram: a histogram showing the number of vertices as a function of the

number of connections. An example can be seen in Figure 4.

4.2.2 Clustering Coefficient

The notion of a clustering coefficient is very relevant to the analysis done in this thesis’s

experimental part. Before it can be defined however, the notions of path length and closed

triads need to be introduced. A path in a graph is any route between two vertices (which may

intersect itself) that runs along the edges of the network. The path length is the number of

edges traversed along the path. If vertex a is connected to vertex b, and vertex b is connected
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Figure 4: The degree distribution of the internet (Newman (2010))

to vertex c, the three vertices and their edges form a path of length two. If vertex a is also

connected to vertex c, the then created path is said to be closed : it forms a loop of path

length three, or a triangle. The vertices a, b, and c form what is called a closed triad.

Having defined what it means for a path to be closed, the clustering coefficient can be

calculated as follows. In a graph, take all paths of length two, count them and check which

ones are part of closed triads. Take the latter number and divide it by the former to get the

clustering coefficient:

C =
(number of closed paths of length two)

(number of paths of length two)

The range for C is between 0, meaning there are no closed triads, an example of which is a

square lattice, and 1, meaning all vertices are part of closed triads, an example of which is

a triangular lattice.

The way the clustering coefficient is described above focuses on it as a measure of the graph

as a whole, of the general clustering of the vertices. This is not the only way in which it can

be used however. Imagine there are two types of edges, say black and white. The coefficient

can also be used to measure the clustering of just the black or just the white vertices.

Similarly, it may be used to investigate any other property exhibited by the vertices.
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4.3 Types of Graphs

There are roughly two categories of graph that may be distinguished: regular graphs and

random graphs.

4.3.1 Regular Graphs

Graphs in which each vertex has the same number of edges are called regular graphs. There

are full graphs, in which every vertex is connected with every other vertex; there are graphs

in which the vertices are connected in some sort of pattern which matches the requirement of

an equal number of edges for each vertex; and there are nearest-neighbor connected graphs,

which are more generally known as lattices. In general, regular graphs are clustered, but do

not exhibit the small-world effect (see section 4.3.3).

4.3.2 Random Graphs

The opposite of a regular graph is a random graph, which is created by connecting vertices

with a certain probability, the connection probability p. The goal in the study of random

graphs is to find out what influence one property of a graph has on the wider behavior of the

network. In order to study this, graphs are created that exhibit one certain property, but are

otherwise completely random, which are then compaired to full random graphs. An example

is the study of connection probability: there is a threshold p for which connectedness (all

vertices are, at least indirectly, connected to each other) in a random graph is as good as

guaranteed. In general, random graphs do not exhibit clustering, but do show the small-

world effect (see section 4.3.3).

4.3.3 Small-World Effect

A regular graph can be made into a random graph by rewiring some of its connections ‘at

random’; the more rewiring the more random. In the beginning of this process, when a small

part of the connections has been rewired, the graph gains a new feature called the smallworld

effect. This phenomenon is one of the most remarkable network phenomena and refers to the

finding that many real-world networks have a small average path length between vertices,

i.e. that getting from one vertex to another is remarkably easy. Thus, an advantage of the

small-world property is the effective distribution of information over the vertices, increasing

the likelyhood of achieving synchronization within the network, e.g. passing a piece of
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information to all members in a social network. Interestingly, even though a smallworld

network is made by increasing the randomness of a regular graph, by approximation it itself

may be seen as a regular network as well, since, on average, each vertex has the same number

of edges.

The small-world effect has been demonstrated in many empirical studies, one of which is

the famous letter-passing study18 conducted by the American social psychologist Stanley

Milgram (1933-1984) in the 1960s. People were asked to help get a letter from an initial

receiver to a distant target person. Out of the letter that made it to their target person,

many did so in a remarkably small number of steps, with an average of six passes.

4.4 Games on Graphs

Graphs per se are interesting to study for the information they provide regarding the

structural properties of networks, however, they are also widely used as a substrate for

modeling dynamical processes on graphs, such as games. Comprehensive treatments and

literature reviews for spatial approaches to evolutionary game dynamics, as well as

evolutionary graph theory are given in Nowak & Sigmund (2000), Nowak et al. (2010), and

Allen & Nowak (2014), the last of which provided the list of update rules described in this

section.

4.4.1 Brief Introduction

This section is based on Doebeli & Hauert (2005).

The first to mention spatial structure as potentially interesting for the study of games

was Robert Axelrod (1984), however, research only took off after the influencial paper by

Austrian biomathematician Martin A. Nowak (1965-) and Australian scientist Robert M.

May (1992). The idea of spatial games is to place the members of a population on a grid, or

more generally, on some network (formalized by a graph). Each round all members interact

(play) with all their neighbors19, after which some update rule will be applied. The update

rule used describes how the current state of the population (which members use which

strategies) will update, or evolve, to the next round of the game. The creation of a ‘new’

generation of members of, or rather, played strategies in the population may be interpreted

in one of two ways. Either it may be seen as reproduction, one player with a successful
18See Schnettler (2009).
19The scope of neighbors varies depending on the definition of ‘neighbor’.
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strategy reproducing and her offspring taking over some other player’s node in the network;

or as imitation or learning, a player adapting her strategy to that of a more successful

neighbor. There are quite a number of different ways in which this strategy update may be

implemented, some of which will be discussed in the next section.

4.4.2 Update Rules

One of the most important things to consider in evolutionary game theory is the type of

update rule that will be used. An update rule refers to the way evolution is executed in an

evolutionary game theoretical model. Many different versions can and have been thought

of and the choice of which one to use generally influences the obtained results. A list of

important update rules in presented below. Here G is the set of players in the population, i.e.

the collection of vertices in the graph; Fi is a function that depends on the received payoffs

of player i20, which affects the selection strength21; eij is the strength of the connection

between the players, i.e. the edge weight in a weighted graph.

Birth-Death (BD) A player i ∈ G is chosen at random with probability proportional to

Fi to reproduce. This player’s offspring will replace a neighboring player j ∈ G, who
will be chosen with probability proportional to eij .

Death-Birth (DB) A player j ∈ G is chosen at random with uniform probability to be

replaced. This player will be replaced by the offspring of a neighboring player i ∈ G,
who will be chosen to reproduce with probability proportional to Fieij .

Imitation (IM) A player j ∈ G is chosen at random with uniform probability to be

replaced. This player will be replaced by the offspring of a neighboring player i ∈
G, which may be player j itself, who will be chosen to reproduce with probability

proportional to Fi. Note that this update rule is only meaningful for an unweighted

graph.

Pairwise Comparison (PC) A player j ∈ G is chosen at random with uniform probability

to potentially be replaced. This player will potentially be replaced by the offspring of

a neighboring player i ∈ G, who will be chosen with probability proportional to eij .

Player i reproduces with probability proportional to θ(Fi − Fj), i.e. the difference in

fitness between players i and j weighted with some function θ 22, which determines
20This function must be positive, increasing, and differentiable, with F (0) = F ′(0) = 1.
21Or how much the selection of a player depends on her received payoffs.
22This function must be bounded between 0 and 1 and θ(x)− θ(−x) must be differentiable at x = 0.
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the influence of this difference in fitness. If player i does not reproduce, player j is not

replaced.

Birth-death with payoffs affecting death (BD-D) A player i ∈ G is chosen with

uniform probability proportional to Fi to reproduce. This player’s offspring will

replace a neighboring player j ∈ G, who will be chosen with probability proportional

to
eij
Fj

.

Death-birth with payoffs affecting death (DB-D) A player j ∈ G is chosen at

random with probability inversely proportional to Fj to be replaced. This player will

be replaced by the offspring of a neighboring player i ∈ G, who will be chosen with

probability proportional to eij .

The first three of these rules will be used in the experimental part of this thesis (see section

6.6).

5 Hawk-Dove Revisited

Let us expand on the before-mentioned example of the HD game, which is the focus of the

experimental part of this thesis. This game is closely related to the PD, differing only slightly

in ordering of payoffs23. However, even though the games are very similar, the PD has been

studied more extensively than the HD game, the former being used to model situations in

a whole range of disciplines, while the latter has thus far been used mainly in the context

of competition and escalation in animal conflict (Doebeli & Hauert (2005)). This is due to

the belief that many real-life situations can be modeled as PDs, however, using empirical

studies to confirm this is difficult, as determining the payoffs and thus payoff ordering in a

real-life situation is challenging. The HD game is another model that may be applied and

is a "viable and biologically interesting alternative" to the PD (Hauert & Doebeli (2004)).

There are two other games which are identical to the HD game24, namely Chicken and

the Snowdrift game25. The narrative for the Chicken game is as follows: two drivers are

on collision course and in order to avoid the hit at least one of them has to diverge from

the course he’s on. Here moving aside is to similar to playing Dove (D), while to stay on

course is similar to playing Hawk (H). The narrative for the Snowdrift game uses the PD
23Thus is discussed in depth in the first subsection of this section (5.1).
24The HD game is characterized by its payoff ordering, as will be discussed inthe first subsection of this

section (5.1), not by the story accompanying it.
25This is due to parallel development in different research areas (Osborne & Rubinstein (1994)).
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nomenclature of cooperate and defect. Again, consider two drivers, this time they have been

caught in a snow storm and are stuck in a snowdrift. Digging the cars out is to cooperate

(C), whereas abstaining from digging is to defect (D). The payoffs for both these games

have the characteristic Hawk-Dove ordering, respectively:

PHD > PDD > PDH > PHH = PDC > PCC > PCD > PDD

In the rest of this section a more in-depth treatment of the formalization of the game is

provided, as well as relevant research findings.

5.1 Formalization

This section is based on Newman (2010), supplemented by Doebeli & Hauert (2005).

In order to compare the HD game’s payoffs and characteristic payoff ordering to that of the

PD, it is convenient to use the same nomenclature for the strategies. This means that, in

this section, the nomenclature of the Snowdrift game will be used: playing Dove is equal to

cooperating and playing Hawk is equal to defecting. Similarly to the PD, the payoffs for the

HD game in Table 6 can be described more generally as:

C or Dove D or Hawk

C or Dove b− c
2 b− c

D or Hawk b 0

Table 9: HD: payoff matrix for the row player

Again, the payoffs are sums of the benefits and costs of the strategy, however with a small

difference: cooperating results in a benefit b to both the cooperator and the opponent, but

incurs a cost c to the cooperator; defecting does not result in either benefit or cost (where b >

c > 0). The ordering of the payoffs is therefore slightly different, creating the characteristic

HD-ordering

b > b− c

2
> b− c > 0

which may also be written as

PDC > PCC > PCD > PDD

In other words, cooperating against a defector is more beneficial than defecting against a

defector. This means that cooperators have an advantage when rare, leading the replicator
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dynamics of the HD game to converge to a mixed stable equilibrium, containing both

cooperators and defectors26.

Note that the HD game converts to the PD when the costs are high: 2b > c > b. Hence, the

HD game may be seen as a relaxed version of the PD, in which the procured benefits

are shared between both interacting players, and the incured costs are shared between

cooperators.

5.2 Analysis

This section is based on Hauert (2008).

In games with two players the stable Nash equilibrium for the HD game can be determined

using the method of evolutionary stable strategies. Given the set of actions available to either

player i is Ai = {H,D} (see section 2.2.2), the mixed strategy vector (p1, p2) = (.5, .5) is

the only ESS in the game.

For games involving more than two players, replicator dynamics provide a calculation of

what strategy state the population as a whole may be expected to evolve into. Using the

procedure that is laid out in section 3.4.3 for the HD game in Table 9 yields the replicator

dynamics

ẋ = x(1− x)
[
b− c(1− x

2
)− xb

]
In contrast to the PD replicator dynamics, which have x = 1 as the stable rest point (see

section 3.6.2), these replicator dynamics have as a stable rest point

x =
c

2b− c
(2)

Hence, the stable proportion of Hawks, and consequently Doves, depends on the relation

between the values for the costs c and benefits b.

Finally, note that these results pertain to well-mixed populations; if this assumption does

not hold the results will be different, as will be seen in part II.

5.3 Extensions and Findings

This section is based on Doebeli & Hauert (2005).

26The precise proportion of C and D, however, depends on the payoffs, which will become clear in section
6.3.
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Similarly to the PD, extensions27 to the Hawk-Dove model have been studied as well, though

significantly less so.

Additional strategies

Several new strategies, additional to pure D and pure H have been put forward. An

example is Retaliator, which bases its action on the action of the other player: it starts

by playing Dove, but if the other player plays Hawk, it switches to Hawk as well. The

dynamics in games with additional strategies lead to different rest points and may tell

us about real-world animal conflicts, since mixed and/or conditional strategies model

reality better.

Iterated interactions

Iteration in the HD game promotes cooperation, as is the case in the PD (Dubois &

Giraldeau (2003) and McElreath (2003)).

Spatial structure

In the PD adding spatial structure promotes cooperation, however, interestingly this

is not the case for the HD game. The study that the experimental part of this

thesis is based on, Hauert & Doebeli (2004), found that spatial structure inhibits

the propagation of cooperators, or Doves. More on this in section 7.1.

N-player interactions

Public Goods games for the HD game are different from those in the PD. Whereas

in the latter, each additional cooperator increases the benefits to the group with the

same amount as the first, in the former, the benefits each additional Dove provides to

the group is less than the previous Dove (Hauert et al. (2006)). Not much research

has been done in this field yet.

Continuous PD

Whereas the dynamics of the trait x are quite sensible in the PD, they are much less

so in the HD game and they can display some suprising features. There are three

types of evolutionary dynamics that can occur: trait x may monotonically increase or

decrease, leading to a pure D or pure H state; trait x may evolve to some intermediate

x∗ leading to an ESS; or trait x may evolve to some intermediate x∗ leading to an

‘evolutionary branching point’, which makes the population develop into two diverging

groups, each with its own distinct strategy.

In this thesis the focus lies on extending the HD game spatially, therefore extra attention

is paid to the discussion of the spatial extension here. Giving a game a spatial structure
27See section 3.6.3 for explanations of the different extensions.
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means that players do not randomly interact, but only with those sufficiently close to them

in space. Adding this feature to the game makes the model more realistic, since interactions

in the real world are bound by space as well.
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Part II

The Experiment

Part two of this thesis is devoted to describing the experimental program written for the HD

game on graphs. First the program written will be explained step-by-step, walking through

the line of thought of the code. After this, the input from the user and the output created

by the program are discussed. Finally, the results of the program are analyzed and some

concluding words are provided.

The research question that will be addressed is this: in the analysis in section 5.2, the results

described are for well-mixed populations, however, how will the results be different if the

population is spatially ordered instead? The aim is to reproduce the results obtained by

Hauert & Doebeli (2004) and study some additional factors which may influence the stable

rest point for populations on graphs.

6 The Program Step-by-Step

The idea of the program is to create a model containing players on a graph. Each player has

a strategy and interacts with other players in the vicinity (section 6.2), obtaining payoffs

(section 6.3) depending on her own strategy and the strategy her neighbor has (section 6.4).

One evolution (section 6.5) consists of all players playing their neighbors and getting payoffs,

after which the graph is updated according to an update rule (section 6.6). In order to run

the program some input is asked from the user, after which the program generates its output

(section 6.7).

Note that the description of the program as provided in this section is general, leaving

out intricasies such as precise selection procedures and special cases that need explicit

mentioning. These, however, can be found in the code itself (see appendix A), complete

with comments in human language to explain the process.

6.1 Process of Writing the Program

The program written for this thesis is provided in appendix A and contains the c++ code,

as well as comments for most steps in the code, explaining them in human language. At the
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start of this thesis I did not have any programming experience, other than a small 2.5 ECTS

course in c-language. I taught myself on the way, using online resources. This learning

process is visible in the code, which is, at times, longer and less logical than possible.

Finally, note there was no special reason for chosing to program in c++ for this particular

project, other than that I had the wish to learn a versatile and powerful low-level

programming language.

6.2 Types of Graphs

The first array to be created is the connection array, which contains the adjacency

matrix (see section 4.1) for the graph on which the players will be vertices and their

connections will be edges. In the program three different graphs can be chosen by the user:

a regular graph, a random graph, or a smallworld graph (see section 4.3). Regardless of the

choice between graphs, the program will start by generating an n×n-array and initialize its

entries to zero.

Regular

The code for the regular graph, a square lattice, was written later on in the process

of building the code. By that time I had started using functions more, rather than

defining processes in a more mechanistic manner.

The idea is to loop through each player (i is 0 till n-1) and for each of them fill four

entries in the connection array with a 1: for each of the four neighbors of player

i. In order to know which players neighbor player i at the right, left, bottom, and

top, four functions are defined, which output the numbers of the players connected to

player i.

Random

A for-loop loops through each row i, and within this loop a second for-loop loops

through each column j within the considered row i, effectively considering every entry

in the array. For each entry a 0 or 1 is generated at with probability conprob, which

is calculated using n such that every player has, on average, four connections.

Smallworld

To start, a regular ring graph28 is created by filling the entries for row i with a 1 if the

column player is a neighbor or next-to-neighbor, i.e. j=i-1 and j=i+1 or j=i-2 and
28Intuitively this may be pictured as a circle of people holding hands, each connected to her two neighbors

only.
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j=i+2, and a 0 if this is not so. Special cases are the first, and second row players,

i=0 and i=1, which are connected to the last column player (j=n-1), and to the

second-to-last and last (j=n-1 and j=n-2) column players, respectively. A similar

case applies to the last and second-to-last row players, i=n-1 and i=n-2.

Next, the connections, i.e. 1’s in the connection array, in the regular ring graph

are rewired with some inputted probability beta. ‘Rewiring’ means that connection

of player i with some player j will be broken and replaced with a connection with

some player k 29.

Each of these procedures is only done for the entries to the right of the 0-diagonal, after

which the entries to the left are filled by copying their mirror images on the right.

6.3 Payoffs

The 2×2 - payoff array is filled with payoffs consistent with the HD game. There are

two payoff matrices that the user may choose: hd123 as given in Table 10, or hd91011 as

given in Table 11.

0= Dove 1= Hawk

0= Dove 2 0

1= Hawk 3 1

Table 10: Hawk-Dove payoff matrix hd123

0= Dove 1= Hawk

0= Dove 10 0

1= Hawk 11 9

Table 11: Hawk-Dove payoff matrix hd91011

Using replicator dynamics (equation 2), we expect to find the following for a well-mixed

population: the proportion of Doves for hd123:

1− x = 1− c

2b− c
= 1− 2

2 · 3− 2
= 0.5

and for hd91011:

1− x = 1− c

2b− c
= 1− 2

2 · 9− 2
= 0.9

29There are two requirements for k: player k is equal to player i, and k and i were not yet connected to
each other.
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Thus, since Hauert & Doebeli found that adding spatial structure to the HD game decreases

the proportion of Doves, the expectation is that the average proportion of Dove for hd123

will be less than 0.5, and for hd91011 less than 0.9.

6.4 Strategies

The strategy array defined may be seen as a n-dimensional vector where each entry i

contains the strategy of player i. It is first defined and initialized with zeros, and then filled

with either a 0, meaning Dove, or a 1, meaning Hawk, at random.

6.5 Evolutions

One round, evolution, or iteration, of the game consists of all players on the graph

playing their neighbors, after which their strategies will be updated. At the end of each

iteration some players will mutate according to some probability inputted by the user.

Score array

Define the score array, a n-dimensional vector where each entry i contains the

accumulative score of player i during the current iteration. Fill it by looping through

the connection array and, using the payoff array, assigning scores for each

connection to the two players involved.

Normalized reproductive rate

The scores in the score array are used to calculate the reproductive rate,

which is a function depending on a player’s score. The amount in which this function

depends on the player’s score may be varied using the selection strength parameter

delta (a greater delta means a bigger dependence on the received payoff).

Normalizing this rate gives the normalized reproductive rate, which is the

chance a player within a population has to reproduce, e.g. a normalized reproductive

rate of 0.06 means a 6% chance of reproducing.

Update-loop

This is where the update-loop starts, which depends on the update-rule inputted by

the user. The next section (6.6) is dedicated to discussing this in more detail.

Mutation

After the players’ strategy array has been updated, some players will mutate. The
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user inputs two probabilities: the rate of overall mutation as a percentage of n, which

gives the number of players in the population that will possibly mutate; and the rate of

individual mutation as a proportion of the selected players, which gives the probability

a selected player will actually mutate. These are then used to select players and have

them ‘switch’ strategies, i.e. go from 0 to 1, or vice versa.

Count cooperators

The number of cooperators in the strategy array are counted30 . This number

is then converted to a proportion of n and printed, together with the number of the

iteration, to the trackc array.

This whole process is put in a loop, which continues for the number of iterations inputted

by the user. Note, that since the strategy array is defined outside this loop it persists

after each iteration. This is a record of history of the population, thus making continuous

evolution possible.

6.6 Update rules

Three of the six update rules described in section 4.4.2 have been used in the code written

for this thesis31: Birth-Death (BD), Death-Birth (DB), and Imitation (IM).

Birth-Death

The birthdeath code consists of the following steps:

• Selection player i

First, some player i is selected from all players n to reproduce, however, players

have a probability to be chosen proportional to their normalized

reproductive rate (Fi). The selection is done by creating and filling a

cumulative distribution array; a n-dimensional vector. In a loop i=0

to i=n-1, three processes take places for each player i. First, entry i in the

cumulative distribution array is filled with the sum of the

normalized reproductive rates of players 0 till i. Second, a random

number between 0 and 1 is generated. Finally, this number is checked against

the entry in the cumulative distribution array: if the random number

is smaller than the number stored in the array, the loop stops and the

considered player i is selected reproduce.
30This does not happen for all iterations, just for a subset of them: more on this in section 6.7 in the

description of datapoints.
31Note that the edge weight, eij , is 1 in this thesis, since the graphs are unweighted.
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• Selection player j

The selection of player j is partly similar to that of player i. First, player

i’s neighbors are determined by counting her connections in the connection

array. Then, a loop similar to the one used in the selection of player i is

started, which goes through the same process, except for one difference: the

chance of being selected is uniformly distributed over the neighbors of i.

• Replacement of player j

Finally, after both players have been selected, player j’s strategy is replaced by

that of player i in the strategy array.

As may be seen from the descriptions given in section 4.4.2, the update rules BD, DB and IM

are very similar. The code used for BD, therefore, can be rearranged and slightly tweaked

in order to produce these latter two rules. For Death-Birth, it suffices to switch the two

selection procedures around32. For Imitation, it suffices to take the code for DB and tweak

it such that player j can also be chosen in the selection for player i, i.e. the player chosen

to be replaced may ‘replace’ herself.

6.7 The Input and Output

As may be taken from the above descriptions, there are a number of parameters that are

inputted by the user. The input will later-on be used in labeling the graphs that display the

results of the program (see section 7.3.2). In order to read these easily and correctly, below

is an overview of the different parameters and the input they take:

parameter Command(s) that may be put in

n ∈ N is the number of members in the population

iterations ∈ N is the number of rounds all members of the population play their

neighbors

game The payoff matrix used33:

• hd123: uses PHD > PDD > PDH > PHH = 3 > 2 > 1 > 0

• hd91011: uses PHD > PDD > PDH > PHH = 11 > 10 > 9 > 0

32There are some adjustments that need to be made, because of the following difference between BD and
DB. In BD choosing i is from all n and proportional to Fi, and choosing j is from only i’s neighbors
and uniform. In DB, choosing j is from all n and uniform, and choosing i is from only j’s neighbors and
proportional to Fi.

33More on the influence of this in section 6.3.
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graph The type of graph used:

• regular: square lattice, every member has exactly four neighbors; one

to the right, left, top and bottom

• random: connections between members are created with probability

conprob ∈
[
0, 1
]
, which is calculated by the program such that each

member has, on average, four connections

• smallworld: connections in a regular ring graph are rewired with

probability beta ∈
[
0, 1
]
; each member starts by being connected to its

two neighbors and the neighbors of those neighbors

updaterule The kind of update rule used:

• birthdeath: update rule BD

• deathbirth: update rule DB

• imitation: update rule IM

birthrate ∈
[
0, 100

]
is the percentage of n that will reproduce

delta ∈
[
0, 1
]
describes the amount of dependence of the reproductive rate

function Fi on the relative received payoff of a member within the population:

a greater delta means a member’s score has a greater influence on her chance

to reproduce

mutation Whether or not mutation occurs after each round:

• yes:

overallmutrate ∈
[
0, 100

]
is the percentage of n that will

possibly mutate

indmutrate ∈
[
0, 1
]
is the chance each of the possibly mutating

members have to actually mutate

• no

datapoints ∈ N is the number of times the number of cooperators in the population is

counted, e.g. iterations = 10000, if datapoints = 20, then after every
10000
20 = 5000 iterations the number of cooperators in the current strategy array

will be counted

The program will ask the user the following:
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Number of players; Which game; Type of graph; Connection

probability; Rewiring probability; Number of iterations; Update

rule; Rate of birth; Selection strength delta; Mutation; Rate of

overall mutation; Rate of individual mutation; Number of

datapoints =

In response, the user may input something of the form:

9 hd123 regular 0.1 10000 imitation 20 0.5 no 20 0.5 100

which runs the program with n = 9, game = "hd123", etc.

An example of what comes out of the program is:

Connection array for regular graph:

011100100

101010010

110001001

100011100

010101010

001110001

100100011

010010101

001001110

Payoff array:

21

30

Generated strategy array:

1

1

1

1

0

1

0

0

0
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Final strategy array (including updates and mutations):

1

1

1

1

1

1

1

1

1

Average proportion of cooperators = 0.00440044

7 Analysis

Research on the PD and the HD game (in Snowdrift nomenclature) focuses on the proportion

of cooperators in the population and how this is influenced by different factors, such as

iteration, spatial structure, payoffs, etc. (see section 3.6.3). In this section the aims of the

analysis, the procedure necessary to work towards those aims, as well as the obtained results

are discussed.

7.1 Aims

The two aims of analysis for the program are the following. First, to reproduce the findings

from Hauert & Doebeli (2004), and second, to study some additional factors that may

influence the proportion of cooperators in the population.

First aim

A study conducted by Christoph Hauert and Michael Doebeli from the University

of British Columbia analyzed the Snowdrift game34 on graphs (2004). As seen in

section 3.6.3, spatial structure in the PD promotes cooperation, however, Hauert

and Doebeli found that spatial structure in the HD (using Snowdrift nomenclature)

inhibits cooperation. At the time of publication, Hauert and Doebeli’s finding was
34Which is equivalent to the HD game, see section 5.1.
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quite groundbreaking, since spatial structure was seen as "necessarily beneficial for

cooperative behavior", which turns out is not the case.

Hauert and Doebeli used a 100x100 square lattice, where each player had four

connections35. The update rule used is similar to Pairwise Comparison (see section

4.4.2), except there is no selection of players j that will possibly be replaced.

Instead, every site undergoes potential replacement.

Second aim

After running the program with a square lattice and the imitation36 update rule in

order to reproduce Hauert & Doebeli’s results, the second aim is to expand the scope

of investigation and look at other factors: different types of graphs, different update

rules, and different payoffs.

7.2 Procedure for Obtaining Data

In order to reach the two just-described aims, two methods of data collecting were used: 1)

tracking the proportion of cooperators and calculating the meta-average, as well as plotting

the obtained data , and 3) creating a visual representation of the spatial distribution of

Hawks and Doves for the cases involving a regular graph, i.e. square lattice, in order to

investigate clustering of strategies.

7.2.1 Proportion of Cooperators

At the end of the iteration-loop, for a subset of the iterations, the number of cooperators is

counted, converted to a proportion of the population and printed to the trackc array (see

section 6.5). From the values in the trackc array an average proportion of cooperators

per iteration is calculated: averagepropc. For the analysis, an additional for-loop is put

around the entire program, running it ten times in a row. After this loop, all ten values

for averagepropc, which are printed to a new array metatrackc, are averaged again,

leading to one meta-average: metaaveragepropc. These meta-averages of the proportion

of cooperators are generated for different versions of the game, identified by the input, or

‘fingerprint’, described at the end of section 6.7, allowing their comparison.

In addition to meta-averages, the fluctuations within one run of the program, over the 10000

iterations, can be plotted using the data stored in that run’s trackc array. At the end of
35They used variations as well, lattices where each player had six connections, for instance.
36Out of the update rules written for this program, imitation is most similar to pairwise comparison as

used by Hauert & Doebeli.
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the program some code is written which converts the filled trackc array into a form such

that Mathematica is able to plot the data in it (see section 7.3.2). The plots thus created

are labeled using the fingerprint described in section 6.7.

7.2.2 Clustering of Cooperators

There is an interesting difference between clustering as seen in the PD and clustering as

seen in the HD game, as noticed by Doebeli & Hauert (2005). Because in the PD the

cooperators at the edges get exploited, the clusters tend to have small (disadvantageous)

boundaries compared to their volume. In contrast, in the HD game it is advantageous to

have a strategy different from your neighbor, leading to filament-like clusters, i.e. with large

(advantageous) boundaries compared compared to their volume. In order to investigate this

in the program for this thesis as well, for a couple of versions of the game on a regular graph

a visual representation of the lattice will be created, showing the strategies of the occupants

of the lattice.

7.3 Results and Discussion

In this section the results obtained with the just-described procedure will be presented, as

well as discussed.

7.3.1 Variations

A number of factors have been varied in order to assess its influence on the average proportion

of Doves. An overview of what will and what will not be analyzed in this section is provided

here.

Negligible to no influence

A shallow analysis of the following factor have shown it to have little to no influence on the

obtained results:

• The number of iterations

For versions of the game that settle in a state with no Doves, there is a threshold of

iterations, a minimum number that needs to have been run, in order for this end state

to certainly be reached. Other than the, the results do not change either qualitatively

or quantitatively when changing the number of iterations.
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Possible influence

A shallow analysis of the following factors indicates a possible influence on the obtained

results. As investigations of these factors lie outside the scope of this thesis, further research

is necessary.

• The number of players

Some results have indicated that the higher the number of players, the lower the

average proportion of Doves. This is not readily explicable from the theory of the

game, hence, further analysis must show whether this is actually the case, and if so,

what is the mechanism behind it.

• The degree of the graph

The degree for all three graphs is set to exactly or on average four. Changing this

influences the connectedness of the graph and is thus logically expected to influence

the dynamics on the graph.

• Mutation

The program contains an extensive part dedicated to applying mutation at the end

of each iteration, however, analyzing this unfortunately turned out to be beyond the

scope of time available. What may be noted, is that mutation is a kind of disturbance of

the patterns obtained without mutation, hence, effects such as a change in the amount

of fluctation of the proportion Doves, or Doves coming back into the population after

extinction are expected and seem indeed to be present.

• Parameters used

The parameters inputted by the user, beta, birthrate, delta, overallmutrate,

and indmutrate, are expected to have significant influences on the stable rest point

of the HD game, hence their presence as a parameter. Their influence has not been

tested.

Studied influence

The analysis in this thesis focuses on exploratory research into the influence of the following

three factors:

• Type of update rule

Three versions: imitation, deathbirth, and birthdeath.

• Type of graph

Three versions: regular, random, and smallworld.
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• Payoffs

Two versions: hd123, and hd91011.

For a more in-depth discussion of these factors, see section 6.7.

7.3.2 Data: Proportion of Cooperators

The analysis focused on investigating the influence of three factors: the type of update rule

(imitation, deathbirth, birthdeath), which payoffs (hd123, hd91011), and the

type graph (regular, random, smallworld).

The following data were obtained:

hd123 hd91011

regular 0.307861 0.568673

random 0.320574 0.552238

smallworld 0.330356 0.533753

Table 12: Meta-averages of proportion of cooperators for imitation

hd123 hd91011

regular 0.337376 0.548901

random 0.356020 0.537782

smallworld 0.331921 0.528881

Table 13: Meta-averages of proportion of cooperators for deathbirth

hd123 hd91011

regular 0.00908911 0.532327

random 0.0557426 0.521554

smallworld 0.277941 0.55398

Table 14: Meta-averages of proportion of cooperators for birthdeath

Concerning the first aim:

Of the three update rules written into the program, imitation is most similar to Pairwise

Comparison, as used by Hauert and Doebeli. Consider Table 12, which, in the middle column

displays the meta-averages for hd123 and for the second row gives these for a regular

graph. For these payoffs replicator dynamics predict (see section 6.3) the simulation to reach

a stable rest point for a proportion of Dove = 0.5, if the population were to be well-mixed.
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Based on the results for Hauert and Doebeli, we expected this proportion to be less, which

is indeed what we see: 0.307861. The same goes for the meta-average of hd91011 on a

regular graph and with the imitation update rule: 0.568673, which is smaller than the

expected 0.9. Hence, these results succesully reproduce Hauert and Doebeli’s results.

Concerning the second aim:

Based on Tables 12, 13, and 14, the following observations may be made regarding the three

factors considered:

updaterule

The update rules imitation and deathbirth produce similar results (compare

Tables 12 and 13), however, update rule birthdeath produces results that deviate

from the other update rules, though only for hd123 and not for hd91011.

game

The type of payoff used makes a big difference, as expected (see section 6.3), with

hd123 yielding a much lower stable proportion of Doves than hd91011.

graph

For the update rules imitation and deathbirth, the type of graph does not

seem to make a difference in the obtained results (compare rows in Table 12 and

in Table 13), however, for the update rule birthdeath and payoff hd123 there are

noticable differences between the three types of graphs (see the middle column Table

14). Interestingly, the type of graph used does not influence the results for the update

rule birthdeath and payoff hd91011.

The work done here is mainly exploratory and (thus) descriptive. Finding an explanation

for these differences requires additional, in-depth, mathematical analysis, which the scope

of this thesis, unfortunately, does not allow space nor time for.

Visualization of the proportion of Doves:

To illustrate, the following four plots show the fluctuations of the proportion of Dove within

one run of the program, i.e. over 10000 iterations.

Figure 5a shows the data for a run of the program with hd123, regular, and imitation,

however, this plot is characteristic for hd123, for all three types of graphs for both update

rules imitation and birthdeath (see Tables 12 and 13). Figure 5b shows the data for

a run of the program with hd91011, regular, and imitation, however, this plot is

characteristic for hd91011, for all three types of graphs for both update rules imitation
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and birthdeath (see Tables 12 and 13). Figures 5c, 5d, and 5e show the data for a

run of the program with hd123, birthdate and, respectively, regular, random, and

smallworld (see Table 14). Figure 5f shows the data for a run of the program with

hd91011, regular, and birthdeath, (see Table 14).

7.3.3 Data: Clustering of Cooperators

Cooperating in the PD is promoted by spatial structure through the formation of cooperative

clusters (see section 3.6.3). It is therefore interesting to take a look at cluster formation in

the HD game. Figure 6 shows the spatial structure for a regular graph of 10 x 10 players for

three different versions of the HD game. It can be seen from Figures 6, in particular from

Figure 6a, showing the regular graph for hd123 and imitation, that the Doves present

(the red nodes) are clustered together. The observed difference in clustering notices by

Doebeli & Hauert (2005) seems to be present: the clustering in Figure 6 does have a large

boundary surface compared to its volume.

8 Conclusion

In conclusion, in order to be able to write a program and study an evolutionary game

on graphs, background knowledge from a wide array of fields is required. This has been

a major learning experience, providing insights into a number of different fields, ranging

from mathematics and computer science, to biology and psychology, to philosophy. As a

result, the analysis of the results obtained from the program written is more descriptive and

exploratory, which is logical in the light of my main goal for this thesis: to learn to set up

my own experiment, program in c++, and write a report on the findings.
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Figure 5: Plots of the average proportion of Doves as a function of the number of iterations
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(a) Strategy distribution for
hd123 and imitation

(b) Strategy distribution for
hd123 and deathbirth

(c) Strategy distribution for
hd91011 and imitation

Figure 6: Clustering of strategies: grey nodes represent Hawks, red nodes represent Doves
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Appendices

A Code

//

// main . cpp

// l a t e x f i l e c p p

//

// Created by Tara Pesman on 7/2/15.

// Copyright ( c ) 2015 Tara Pesman . A l l r i g h t s re served .

//

#include <iostream>

#include <s t d l i b . h> // fo r rand ()

#include <math . h> // fo r exp ()

#include <random> // fo r uni form_rea l_dis t r i bu t ion

using namespace std ;

//////////// FUNCTIONS FOR REGULAR GRAPH ////////////

// Define func t i ons f o r COORDINATES

// take s the po s i t i on p o f the p layer ( i . e . her number ) and re turns her x−
coord inate in the l a t t i c e

int funct ionpx ( int p , int s ) {

return p % s ;

}

// take s the po s i t i on p o f p l ayer ( i . e . her number ) and re turns her y−
coord inate in the l a t t i c e

int funct ionpy ( int p , int s ) {

return (p−(p%s ) ) /( s ) ;

}

// take s the coord ina te s o f a p layer in the l a t t i c e and re turns her po s i t i on p

int funct ionback ( int x , int y , int s ) {

return ( x+(y∗ s ) ) ;
}

// Define func t i ons f o r NEIGHBORS

// func t i ons re turn the number ( po s i t i on ) o f the neighbor next to the

cons idered p layer ( po s i t i on p)

// neighbor r i g h t ( i+1)

int f unc t i onnr ( int p , int s ) {

int x=funct ionpx (p , s ) ;
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int y=funct ionpy (p , s ) ;

return funct ionback ( ( x+1) % s , y , s ) ;

}

// neighbor l e f t ( i −1)

int f un c t i onn l ( int p , int s ) {

int x=funct ionpx (p , s ) ;

int y=funct ionpy (p , s ) ;

return funct ionback ( ( x+s−1) % s , y , s ) ;

}

// neighbor bottom ( i+n)

int funct ionnb ( int p , int s ) {

int x=funct ionpx (p , s ) ;

int y=funct ionpy (p , s ) ;

return funct ionback (x , ( y+1) % s , s ) ;

}

// neighbor top ( i−n)

int f unc t i onnt ( int p , int s ) {

int x=funct ionpx (p , s ) ;

int y=funct ionpy (p , s ) ;

return funct ionback (x , ( y+s−1) % s , s ) ;

}

//////////// FUNCTIONS FOR UPDATE RULES ////////////

// Define func t i on fo r REPRODUCTIVE RATE (Fi )

f loat f unc t i onF i ( int f i , f loat de l t a ) {

f loat Fi = 1 + de l t a ∗ f i ;

return Fi ;

}

// Define func t i on fo r NORMALIZED REPRODUCTIVE RATE (nFi )

f loat funct ionnFi ( f loat Fi , f loat sumFi ) {

f loat nFi = ( Fi / sumFi ) ;

return nFi ;

}

//////////// MAIN ////////////

int main ( ) {

/// ASK USER FOR INFORMATION − SHORTCUT

// quick en te r ing o f v a r i a b l e s , example input : 100 hd123 random 0.1 10000

imi ta t i on 20 0.5 no 20 0.5 100

cout << "Number␣ o f ␣ p l aye r s ; ␣Which␣game ; ␣Type␣ o f ␣graph ; ␣Rewiring ␣

p r obab i l i t y ; ␣Number␣ o f ␣ i t e r a t i o n s ; ␣Update␣ ru l e ; ␣Rate␣ o f ␣ b i r th ; ␣

S e l e c t i o n ␣ s t r ength ␣ de l t a ; ␣Mutation ; ␣Rate␣ o f ␣ o v e r a l l ␣mutation ; ␣Rate␣ o f ␣

i nd i v i dua l ␣mutation ; ␣Number␣ o f ␣ datapo int s ␣=␣\n" ;

int n ;
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s t r i n g game ;

s t r i n g graph ;

f loat beta ;

int i t e r a t i o n s ;

s t r i n g updateru le ;

int b i r t h r a t e ;

f loat de l t a ;

s t r i n g mutation ;

int ove ra l lmut ra t e ;

f loat indmutrate ;

int datapo int s ;

c in >> n >> game >> graph >> beta >> i t e r a t i o n s >> updateru le >> b i r t h r a t e

>> de l t a >> mutation >> overa l lmut ra t e >> indmutrate >> datapo int s ;

//////////// BEGIN ////////////

//////////// META ////////////

//////////// LOOP ////////////

// de f ine v a r i a b l e necessary f o r c a l c u l a t i n g a meta−average o f the

averages o f the propor t ion o f coopera tors

f loat averagepropc ;

f loat metatrackc [ 1 0 ] [ 1 ] ;

// i n i t i a l i z e metatrack array to zero

for ( int i =0; i <10; ++i ) {

metatrackc [ i ] [ 0 ] = 0 ;

}

for ( int t=0; t <10; ++t ) {

//////////// GRAPHS ////////////

/// DEFINE connect ion array

// de f ine square n x n connect ion array

int con [ n ] [ n ] ;

// i n i t i a l i z e connect ion array to zero

for ( int i =0; i<n ; ++i ) {

for ( int j =0; j<n ; ++j ) {

con [ i ] [ j ] = 0 ;

// pr in t column i in row i to screen

cout << con [ i ] [ j ] ;

}

// pr in t an enter a f t e r each pr in t ed row

cout << "\n" ;

}
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/// GENERATE adjacency matrix f o r REGULAR GRAPH

// square l a t t i c e with s q r t (n) dimensions

// part o f t h i s code t ha t i s wr i t t en us ing func t i ons

i f ( graph == " r egu l a r " ) {

// conver t the number o f p l a y e r s in to the dimension o f the l a t t i c e

they w i l l p lay on by tak ing the square root o f n

int s=sq r t (n) ;

// loop through the p l aye r s and fo r each p layer i f i l l four

en t r i e s ( i ’ s neighbors , g iven by funct ionnr , −nl , −nb , −nt ) in

the connect ion array with a 1

for ( int i =0; i<n ; ++i ) {

con [ i ] [ f unc t i onnr ( i , s ) ]=1;

con [ i ] [ f un c t i onn l ( i , s ) ]=1;

con [ i ] [ funct ionnb ( i , s ) ]=1;

con [ i ] [ f unc t i onnt ( i , s ) ]=1;

}

}

/// GENERATE adjacency matrix f o r RANDOM GRAPH with average 90 connect ions

per p layer

i f ( graph == "random" ) {

f loat conprob = ( f loat ) 90/( f loat ) (n−1) ;

// s e t seed f o r rand () to zero ( the numbers t ha t are transformed

in order to ge t pseudo−random numbers ) and f i x number l eng t h (

see notes )

srand ( static_cast<unsigned int>(time (NULL) ) ) ;

// loop through the connect ion array : f i r s t row ( i=0) l e f t to r i g h t

( j=0 to j=n−1) , then next row ( i=1 e t c . )

// cout << "\nRandom graph connect ion array :\n" ;

for ( int i =0; i<n ; ++i ) {

for ( int j =0; j<n ; ++j ) {

// f i l l e n t r i e s to the r i g h t o f the 0−d iagona l wi th a 1

with p r o b a b i l i t y conprob

i f ( j>i ) {

// generate random number between 0 and 1 ( e . g .

randconprob=0.03) to l e t the cons idered coup le i j

be connected with the p r e f e r r ed p r o b a b i l i t y

conprob ( say 0.05 , so 5% of connect ions to the

r i g h t o f the 0−d iagona l w i l l be connected )

std : : random_device rdconprob ;

std : : mt19937 genconprob ( rdconprob ( ) ) ;

s td : : un i form_rea l_dis t r ibut ion<> disconprob (0 , 1) ;

f loat randconprob = disconprob ( genconprob ) ;
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// only i f i has l e s s than 4 connect ions g i v e i t the

chance to ge t connect ions

i f ( randconprob<conprob ) {

con [ i ] [ j ] = 1 ;

}

}

i f ( i==j ) {

// f i l l d iagona l e n t r i e s with zeros

con [ i ] [ j ]=0;

}

i f ( j<i ) {

// f i l l e n t r i e s to the l e f t o f the 0−d iagona l wi th the

va lue ass i gned to t h e i r mirror−entry to the r i g h t

o f the 0−d iagona l

con [ i ] [ j ]=con [ j ] [ i ] ;

}

}

}

}

/// GENERATE adjacency matrix f o r SMALL−WORLD GRAPH

i f ( graph == " smal lwor ld " ) {

// GENERATE REGULAR RING GRAPH: 4 connect ions

// f i l l connect ion array ( i , j ) wi th 1 i f j==i−1 or j==i+1 ( i . e . j

i s i ’ s ne ighbor ) and 0 o therwi se

cout << "\nSmall−world␣ connect ion ␣ array ␣ be f o r e ␣ r ew i r i ng : \ n" ;

for ( int i =0; i<n ; ++i ) {

for ( int j =0; j<n ; ++j ) {

// connect each p layer i to the ne ighbors and next−to−
ne ighbors on e i t h e r s i d e

i f ( j==i−1 | | j==i−1 | | j==i+1 | | j==i +2){

// f i l l entry with 1 ( connect ion ) i f j i s i ’ s ( next−to )

ne ighbor

con [ i ] [ j ] = 1 ;

}

// s p e c i a l case : i f i i s the f i r s t p layer , then i needs to

be connected to the l a s t and second−to− l a s t column

p l aye r s

i f ( i==0) {

con [ i ] [ n−1] = 1 ;

con [ i ] [ n−2] = 1 ;

}

// s p e c i a l case : i f i i s the second player , then i needs

to be connected to the l a s t and second−to− l a s t column
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p l aye r s

i f ( i==1) {

con [ i ] [ n−1] = 1 ;

}

// s p e c i a l case : i f i i s the l a s t p layer , then i needs to

be connected to the f i r s t and second column p l aye r s

i f ( i==n−1) {

con [ i ] [ 0 ] = 1 ;

con [ i ] [ 1 ] = 1 ;

}

// s p e c i a l case : i f i i s the second−to− l a s t p layer , then i

needs to be connected to the f i r s t column p layer

i f ( i==n−2) {

con [ i ] [ 0 ] = 1 ;

}

// pr in t column i in row i to screen

cout << con [ i ] [ j ] ;

}

// pr in t an enter a f t e r each pr in t ed row

cout << "\n" ;

}

// REWIRE CONNECTIONS in regu l a r r ing graph

// s e t seed f o r rand () to zero ( the numbers t ha t are transformed

in order to ge t pseudo−random numbers ) and f i x number l eng t h (

see notes )

srand ( static_cast<unsigned int>(time (NULL) ) ) ;

// loop through the smal l−world connect ion array and

p r o b a b i l i s t i c a l l y rewire some of the connect ions

for ( int i =0; i<n ; ++i ) {

for ( int j =0; j<n ; ++j ) {

// en t r i e s to the r i g h t o f the 0−d iagona l ge t a chance to

be rewired ( go from 1 to 0)

i f ( j>i ) {

// generate random number between 0 and 1 ( e . g .

randbeta =0.03) to l e t the cons idered connect ion be

rewired with the p r e f e r r ed p r o b a b i l i t y be ta ( say

0.05 , so 5% of connect ions to the r i g h t o f the 0−
d iagona l w i l l be rewired )

std : : random_device rdbeta ;

std : : mt19937 genbeta ( rdbeta ( ) ) ;

s td : : un i form_rea l_dis t r ibut ion<> di sbe ta (0 , 1) ;

f loat randbeta = d i sbe ta ( genbeta ) ;

// i f the randomly generated f l o a t i s sma l l e r than

be ta ( e . g . 0.03 <0.05) then the cons idered
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connect ion w i l l a c t u a l l y be rewired

i f ( randbeta<=beta ) {

// cout << "\nYes , randbeta<=beta ! " ;

// randomly generate some column p layer k , which

w i l l be connected to i in s t ead o f p l ayer j .

again :

int k ;

k = rand ( )%n ;

// i f k i s i i t s e l f , then generate a new k

i f ( k==i ) {

goto again ;

}

// i f k a l ready has a connect ion with i , then

generate a new k

i f ( con [ i ] [ k]==1) {

goto again ;

}

// i f t he re are no problems with k , rewire

else {

// sever the connect ion between i and j

con [ i ] [ j ] = 0 ;

// make a new connect ion between i and k

con [ i ] [ k ] = 1 ;

}

}

}

}

}

// ad ju s t the en t r i e s to the l e f t o f the 0−d iagona l to the rewired

connect ion ( so the graph s t ay s und irec ted )

cout << "\n\nSmall−world␣ connect ion ␣ array ␣ a f t e r ␣ r ew i r i ng : \ n" ;

for ( int i =0; i<n ; ++i ) {

for ( int j =0; j<n ; ++j ) {

// en t r i e s to the l e f t o f the 0−d iagona l w i l l be ad jus t ed

according to the new va lue ass i gned to t h e i r mirror−
entry to the r i g h t o f the 0−d iagona l

i f ( j<i ) {

con [ i ] [ j ]=con [ j ] [ i ] ;

}

// pr in t column i in row i to screen

cout << con [ i ] [ j ] ;

}

// pr in t an enter a f t e r each pr in t ed row

cout << "\n" ;

}
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}

/// PRINT connect ion array as a check

cout << "\nConnection␣ array ␣ f o r ␣" << graph << "␣graph\n" ;

for ( int i =0; i<n ; ++i ) {

for ( int j =0; j<n ; ++j ) {

// pr in t column j in row i to screen

cout << con [ i ] [ j ] ;

}

// pr in t an enter a f t e r each pr in t ed row

cout << "\n" ;

}

//////////// PAYOFFS ////////////

/// DEFINE PAYOFF ARRAY

// de f ine the 2 by 2 pay−o f f matrix f o r the Hawk Dove game and f i l l

e n t r i e s with co r r ec t payo f f s : {{R, S} ,{T,P}}

int pay [ 2 ] [ 2 ] ; //= {{2 ,1} ,{3 ,0}};

i f (game == "hd123" ) {

pay [ 0 ] [ 0 ] = 2 ;

pay [ 0 ] [ 1 ] = 1 ;

pay [ 1 ] [ 0 ] = 3 ;

pay [ 1 ] [ 1 ] = 0 ;

}

i f (game == "hd91011" ) {

pay [ 0 ] [ 0 ] = 10 ;

pay [ 0 ] [ 1 ] = 9 ;

pay [ 1 ] [ 0 ] = 11 ;

pay [ 1 ] [ 1 ] = 0 ;

}

// pr in t the pay−o f f array to the screen as a check

cout << "\n\nPayoff ␣ array : \ n" ;

for ( int i =0; i <2; ++i ) {

for ( int j =0; j <2; ++j ) {

cout << pay [ i ] [ j ] ;

}

cout << "\n" ;

}

//////////// STRATEGY ARRAY ////////////

/// GENERATE STRATEGY ARRAY

// one−dimensional array to generate a random d i s t r i b u t i o n o f the

a v a i l a b l e s t r a t e g i e s : n p l aye r s ( rows ) with one s t r a t e g y ( column )

each . cu r r en t l y have only two s t r a t e g i e s : cooperate=C=0 and d e f e c t
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=D=1.

int s t r a t e gy [ n ] [ 1 ] ;

// pr in t s t r a t e g y array to screen as check

cout << "\nGenerated␣ s t r a t e gy ␣ array : \ n" ;

srand ( static_cast<unsigned int>(time (NULL) ) ) ;

// f i l l array us ing a for−l oop through the columns ( p l aye r s )

for ( int i =0; i<n ; ++i ) {

// generate 0 or 1 at random

s t r a t e gy [ i ] [ 0 ]= rand ( )%2;

// pr in t s t r a t e g y array ( as one−dimensional column vec tor ) row by

row ( i =0, i =1 , . . . ) to screen

cout << s t r a t egy [ i ] [ 0 ] << "\n" ;

}

//////////// ITERATION LOOP ////////////

/// ANALYSIS: necessary d e f i n i t i o n s f o r counter i n s i d e the loop

int count c f o r z e r o = 0 ;

int moduloanalys i s = i t e r a t i o n s / datapo int s ;

int a = 0 ;

int c oun t c f o r i = 0 ;

// array to keep t rack o f the coopera tors : 6 rows , f o r each

measurement moment , 2 columns , f o r t r a ck ing i and the propor t ion

o f coopera tors

f loat t rackc [ datapo int s +1 ] [ 2 ] ;

// i n i t i a l i z e to zero

for ( int i =0; i<datapo int s +1; ++i ) {

for ( int j =0; j <2; ++j ) {

t rackc [ i ] [ j ] = 0 ;

}

}

// loop through s t ra t e gy−array and count the coopera tors ( zeros )

be f o r e the i t e r a t i on−l oop

for ( int i =0; i<n ; ++i ) {

i f ( s t r a t e gy [ i ] [ 0 ] == 0) {

count c f o r z e r o += 1 ;

}

}

// f i l l the f i r s t row of the trackc−array manually
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t rackc [ 0 ] [ 0 ]= 0 ;

t rackc [ 0 ] [ 1 ]= ( f loat ) c oun t c f o r z e r o /( f loat )n ;

/// FOR−LOOP FOR NUMBER OF PREFERRED ITERATIONS/EVOLUTIONS/GAMES

for ( int k=0; k<i t e r a t i o n s ; ++k) {

// DEFINE AND FILL SCORE ARRAY

// array to keep the score (1 column ) fo r the p l aye r s (n rows ) .

int s c o r e [ n ] [ 1 ] ; //= {{0}};

// i n i t i a l i z e score array to a l l z e ros

for ( int i = 0 ; i < n ; ++i ) {

s co r e [ i ] [ 0 ] = 0 ;

}

// pr in t score array to screen as check

// cout << "\nConnection check :\n" ;

// de f ine array to keep a count o f the number o f opponents t ha t

each p layer i s connected to

int countcon [ n ] [ 1 ] ;

for ( int i = 0 ; i < n ; ++i ) {

countcon [ i ] [ 0 ] = 0 ;

}

// for−l oop through the rows ( p l aye r s ) in the connect ion array .

for ( int i =0; i<n ; ++i ) {

// for−l oop through the columns ( p o s s i b l e opponents o f

cons idered p layer ) o f connect ion array : see whether 0 (don

’ t p lay each other ) or 1 ( p lay each other )

for ( int j =0; j<n ; ++j ) {

// i f en tree conta ins a 1 , then add pay−o f f f o r p l ayer i

to h i s /her entree in the score array entree

i f ( con [ i ] [ j ]==1){

// s e t score f o r p l ayer j equa l to prev ious va lue +

the va lue in the pay−o f f s t r a t e g y f o r the

cons idered encounter o f p l ayer j wi th opponent j .

s c o r e [ i ] [ 0 ] += pay [ s t r a t e gy [ i ] [ 0 ] ] [ s t r a t e gy [ j ] [ 0 ] ] ;

// count the number o f encounters f o r each p layer

countcon [ i ] [ 0 ] += 1 ;

}

}

}

// CALCULATE NORMALIZED REPRODUCTIVE RATE
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// de f ine reproduc t i ve−ra t e array and i n i t i a l i z e to a l l z e ros

f loat r ep ra t e [ n ] [ 1 ] ;

for ( int i = 0 ; i < n ; ++i ) {

r ep ra t e [ i ] [ 0 ] = 0 ;

}

f loat sumFi = 0 ;

// for−l oop through the score array : c a l l f unc t ionFi to c a l c u l a t e

the reproduc t i v e ra t e ( Fi ) f o r each p layer ( i . e . each row i )

and pr in t t h i s to reproduc t i ve−ra t e array :

for ( int i =0; i<n ; ++i ) {

int f i = s co r e [ i ] [ 0 ] ;

r ep ra t e [ i ] [ 0 ] = func t i onF i ( f i , d e l t a ) ;

// at the end o f each loop through a p layer h i s c a l c u l a t e d

reproduc t i v e ra t e ( Fi ) i s added to the v a r i a b l e sumFi ,

which sums a l l va lue s o f Fi ( w i l l be used to normal ize Fi

−−> Pi )

sumFi += repra t e [ i ] [ 0 ] ;

}

// de f ine normalized reproduc t i ve−ra t e array and i n i t i a l i z e to a l l

z e ros

f loat nor r epra te [ n ] [ 1 ] ;

for ( int i = 0 ; i < n ; ++i ) {

nor r epra te [ i ] [ 0 ] = 0 ;

}

// for−l oop through the reproduct ion−ra t e array : c a l l funct ionnFi

to normal ize the reproduc t i v e ra t e ( Fi ) f o r each p layer ( i . e .

each row i ) and pr in t t h i s to normalized reproduc t i ve−ra t e

array :

for ( int i =0; i<n ; ++i ) {

f loat Fi = repra t e [ i ] [ 0 ] ;

no r r epra te [ i ] [ 0 ] = funct ionnFi ( Fi , sumFi ) ;

}

//////////// FOR−LOOP FOR UPDATING THE PREFERRED NUMBER OF TIMES ////////////

// wi th in one i t e r a t i o n ( s t i l l in i t e r a t i on−l oop )

// BIRTHDEATH UPDATE RULE

i f ( updateru le == " bi r thdeath " ) {

// c a l c u l a t e the number o f p l a y e r s t ha t w i l l reproduce

int r eproducto r s = n ∗ ( ( f loat ) b i r t h r a t e /( f loat ) 100) ;

for ( int i =0; i<reproducto r s ; ++i ) {
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// SELECT PLAYER I tha t w i l l reproduce

// generate random number ( randi ) f o r s e l e c t i n g p layer i (

rand () i s l e s s appropr ia t e f o r [ 0 , 1 ] , see notes )

std : : random_device rd i ;

s td : : mt19937 gen i ( r d i ( ) ) ;

s td : : un i form_rea l_dis t r ibut ion<> d i s i (0 , 1) ;

f loat randi = d i s i ( gen i ) ;

// de f ine cumulat ive d i s t r i b u t i o n array f o r i and

i n i t i a l i z e to a l l z e ros

f loat cumdis i [ n ] [ 1 ] ;

for ( int i = 0 ; i < n ; ++i ) {

cumdis i [ i ] [ 0 ] = 0 ;

}

// for−l oop to s imu l taneous l y generate the cumulat ive

d i s t r i b u t i o n fo r i ( cumdisi ) and check i t s va lue s

aga ins t randi

int s i = 0 ;

// cout << "\nCumulative d i s t r i b u t i o n array f o r i :\n" ;

for ( int i =0; i<n ; ++i ) {

// f i l l cumdis array

i f ( i==0) {

cumdis i [ i ] [ 0 ] += nor repra te [ i ] [ 0 ] ;

} else {

cumdis i [ i ] [ 0 ] = cumdis i [ i −1 ] [ 0 ] + nor r epra te [ i

] [ 0 ] ;

}

// check j u s t f i l l e d entry aga ins t random number f o r i

( randi ) : i f equa l to or sma l l e r than randi , take

t ha t va lue o f i ( t h i s i s the p layer t ha t w i l l

reproduce ) and break out o f the loop

i f ( cumdis i [ i ] [0] >= randi ) {

s i = i ;

// break out o f current code and s t a r t execu t ing

from " s e l e c t i on i d one "

goto bds e l e c t i on i done ;

}

}

bd s e l e c t i on i done :

// SELECT PLAYER J tha t w i l l be rep laced by p layer i ’ s

o f f s p r i n g

// generate random number ( randj ) f o r s e l e c t i n g p layer j ,

s ince rand () i s l e s s appropr ia t e f o r (0 ,1) : see notes .

std : : random_device rd j ;

s td : : mt19937 genj ( rd j ( ) ) ;
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std : : un i form_rea l_dis t r ibut ion<> d i s j (0 , 1) ;

f loat randj = d i s j ( genj ) ;

// de f ine cumulat ive d i s t r i b u t i o n array f o r i ( vec to r with

# of dimensions equa l to # of connect ions f o r p l ayer

s i ) and i n i t i a l i z e to a l l z e ros

f loat cumdisj [ countcon [ s i ] [ 0 ] ] [ 1 ] ;

for ( int i = 0 ; i < countcon [ s i ] [ 0 ] ; ++i ) {

cumdisj [ i ] [ 0 ] = 0 ;

}

// for−l oop to s imu l taneous l y generate the cumulat ive

d i s t r i b u t i o n fo r j ( cumdisj ) and check i t s va lue s

aga ins t randj

int ab s s j = 0 ;

for ( int i =0; i<countcon [ s i ] [ 0 ] ; ++i ) {

// f i l l cumdisj array , e . g . four connect ions , then

f i l l wi th 1/4=0.25 ; 2/4=0.50 ; 3/4=0.75 ;

4/4=1.00 r e s p e c t i v e l y .

f loat r e l chance = ( f loat ) ( i +1)/( f loat ) countcon [ s i ] [ 0 ] ;

cumdisj [ i ] [ 0 ] += re l chance ;

// check j u s t f i l l e d entry aga ins t random number f o r j

( randj ) : i f equa l to or sma l l e r than randj , take

t ha t va lue o f j ( t h i s i s the p layer t ha t w i l l

reproduce ) and break out o f the loop

i f ( cumdisj [ i ] [0] >= randj ) {

// NOTE: here a b s s j i s the a b so l u t e number ( e . g .

the second of four ) o f the connection , ra ther

than the number o f the column of the p layer

t ha t needs to be rep laced

ab s s j = i +1;

// break out o f current code and s t a r t execu t ing

from " s e l e c t i on j d one "

goto bdse l e c t i onabs jdone ;

}

}

bds e l e c t i onabs jdone :

// for−l oop h o r i z o n t a l l y through row s i in the connect ion

array to f i nd out which column−p layer i s the abss j−th

connect ion and w i l l thus be rep laced

int s j = 0 ;

int counter = 0 ;

for ( int i =0; i<n ; ++i ) {
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i f ( con [ s i ] [ i ] == 1) {

counter += 1 ;

i f ( counter == abs s j ) {

s j = i ;

goto bds e l e c t i on jdone ;

}

}

}

bd s e l e c t i on jdone :

// REPLACE p layer s j ’ s s t r a t e g y by p layer s i ’ s s t r a t e g y in the

s t r a t e g y array

s t r a t e gy [ s j ] [ 0 ] = s t r a t e gy [ s i ] [ 0 ] ;

}

}

// DEATHBIRTH and IMITATION UPDATE RULES

i f ( updateru le == " deathb i r th " | | updateru le == " im i t a t i on " ) {

// c a l c u l a t e the number o f p l a y e r s t ha t w i l l reproduce

int r eproducto r s = n ∗ ( ( f loat ) b i r t h r a t e /( f loat ) 100) ;

// dec l a r e v a r i a b l e s j here so i t may be used in any part o f

t h i s i f−l oop

int s j =0;

// SELECT PLAYER J tha t w i l l be rep laced

for ( int i =0; i<reproducto r s ; ++i ) {

// generate random number ( randj ) f o r s e l e c t i n g p layer j (

rand () i s l e s s appropr ia t e f o r [ 0 , 1 ] )

std : : random_device rd j ;

s td : : mt19937 genj ( rd j ( ) ) ;

s td : : un i form_rea l_dis t r ibut ion<> d i s j (0 , 1) ;

f loat randj = d i s j ( genj ) ;

// cout << "\n\nRandom number generated to s e l e c t j i s " <<

randj ;

// de f ine cumulat ive d i s t r i b u t i o n array f o r the s e l e c t i o n

o f j out o f n p l aye r s and i n i t i a l i z e to a l l z e ros

f loat cumdisj [ n ] [ 1 ] ;

for ( int i = 0 ; i < n ; i++){

cumdisj [ i ] [ 0 ] = 0 ;

}

// for−l oop through a l l p l a y e r s to s imu l taneous l y generate

the cumulat ive d i s t r i b u t i o n fo r j ( cumdisj ) and check
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i t s va lue s aga ins t randj

for ( int j =0; j<n ; ++j ) {

// f i l l cumdisj array , e . g . four p layers , then f i l l

wi th 1/4=0.25 ; 2/4=0.50 ; 3/4=0.75 ; 4/4=1.00

r e s p e c t i v e l y .

f loat r e l chance = ( f loat ) ( j +1)/( f loat ) (n) ;

// f i l l cumdis array

cumdisj [ j ] [ 0 ] += re l chance ;

// check j u s t f i l l e d entry aga ins t random number f o r j

( randj ) : i f equa l to or sma l l e r than randj , take

t ha t va lue o f j ( t h i s i s the p layer t ha t w i l l

reproduce ) and break out o f the loop

i f ( cumdisj [ j ] [0] >= randj ) {

s j = j ;

// break out o f current code and s t a r t execu t ing

from " db s e l e c t i on j done "

goto dbs e l e c t i on jdone ;

}

}

}

db s e l e c t i on jdone :

// SELECT PLAYER I tha t w i l l reproduce and rep l ace p layer j

// generate random number ( randi ) f o r s e l e c t i n g p layer i ,

s ince rand () i s l e s s appropr ia t e f o r (0 ,1) : see notes .

std : : random_device rd i ;

s td : : mt19937 gen i ( r d i ( ) ) ;

s td : : un i form_rea l_dis t r ibut ion<> d i s i (0 , 1) ;

f loat randi = d i s i ( gen i ) ;

// de f ine cumulat ive d i s t r i b u t i o n v a r i a b l e f o r the s e l e c t i o n

o f i

f loat cumdis i=0;

// de f ine " sumneighbornorreprate " : the sum of the norrepra tes

o f the ne ighbors o f s j

f loat sumneighbornorreprate=0;

// loop through a l l p l a y e r s in the connect ion array , but . . .

for ( int i =0; i<n ; ++i ) {

// . . . cons ider only s j ’ s ne ighbors (1 in the connect ion

array ) and s j i t s e l f ( i==s j )

i f ( updateru le == " deathb i r th " ) {

i f ( con [ s j ] [ i ]==1){

sumneighbornorreprate += nor repra te [ i ] [ 0 ] ;

}

}
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i f ( updateru le == " im i t a t i on " ) {

i f ( con [ s j ] [ i ]==1 | | i==s j ) {

sumneighbornorreprate += nor repra te [ i ] [ 0 ] ;

}

}

}

// for−l oop to s imu l taneous l y f i l l the cumulat ive d i s t r i b u t i o n

fo r i ( cumdisi ) and check i t s va lue s aga ins t randi

int s i = 0 ;

for ( int i =0; i<n ; ++i ) {

// cons ider only s j ’ s ne ighbors (1 in the connect ion array

) and s j i t s e l f ( i==s j )

i f ( updateru le == " deathb i r th " ) {

i f ( con [ s j ] [ i ]==1){

// de f ine ne ighbornorrepra te : the r e l a t i v e chance

( e . g . 0.25=25%) of each neighbor o f j to

reproduce and rep l ace j

f loat ne ighbornor r epra te = ( f loat ) nor r epra t e [ i

] [ 0 ] / ( f loat ) sumneighbornorreprate ;

// f i l l cumdisi

cumdis i += ne ighbornor r epra te ;

// check j u s t f i l l e d entry aga ins t random number

f o r i ( randi ) : i f equa l to or sma l l e r than

randi , take t ha t va lue o f i ( t h i s i s the

p layer t ha t w i l l reproduce ) and break out o f

the loop

i f ( cumdisi>=randi ) {

// NOTE: here a b s s j i s the a b so l u t e number ( e .

g . the second of four ) o f the connection ,

ra ther than the number o f the column of

the p layer t ha t needs to be rep laced

s i = i ;

// break out o f current code and s t a r t

execu t ing from " s e l e c t i onab s i d one "

goto db s e l e c t i on s i d on e ;

}

}

}

i f ( updateru le == " im i t a t i on " ) {

i f ( con [ s j ] [ i ]==1 | | i==s j ) {

// de f ine ne ighbornorrepra te : the r e l a t i v e chance

( e . g . 0.25=25%) of each neighbor o f j to
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reproduce and rep l ace j

f loat ne ighbornor r epra te = ( f loat ) nor r epra t e [ i

] [ 0 ] / ( f loat ) sumneighbornorreprate ;

// f i l l cumdisi

cumdis i += ne ighbornor r epra te ;

// check j u s t f i l l e d entry aga ins t random number

f o r i ( randi ) : i f equa l to or sma l l e r than

randi , take t ha t va lue o f i ( t h i s i s the

p layer t ha t w i l l reproduce ) and break out o f

the loop

i f ( cumdisi>=randi ) {

// NOTE: here a b s s j i s the a b so l u t e number ( e .

g . the second of four ) o f the connection ,

ra ther than the number o f the column of

the p layer t ha t needs to be rep laced

s i = i ;

// break out o f current code and s t a r t

execu t ing from " s e l e c t i onab s i d one "

goto db s e l e c t i on s i d on e ;

}

}

}

}

db s e l e c t i on s i d on e :

// REPLACE p layer s j ’ s s t r a t e g y by p layer s i ’ s s t r a t e g y in the

s t r a t e g y array

s t r a t e gy [ s j ] [ 0 ] = s t r a t e gy [ s i ] [ 0 ] ;

}

/// MUTATIONS ( s t i l l in the i t e r a t i o n s for−l oop )

// a f t e r the p r e f e r r ed number o f updates per i t e r a t i on , each

i t e r a t i o n ends with a p r o b a b i l i s t i c number o f mutations

// s e t seed f o r rand () to zero ( the numbers t ha t are transformed

in order to ge t pseudo−random numbers ) and f i x number l eng t h (

see notes )

srand ( static_cast<unsigned int>(time (NULL) ) ) ;

// de f ine a v a r i a b l e which g i v e s the number o f p l a y e r s t ha t w i l l

p o s s i b l y mutate (= p layer m’ s ) , say 100∗(20/100)=20.

int numpossmut = ( int ) n ∗ ( f loat ) ove ra l lmut ra t e /( f loat ) 100 ;

// for−l oop t ha t i t e r a t e s as many times as there are p layer m’ s (

say 20 times ) , genera t ing random numbers between 0 and n ( e . g .
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23) : the number s e l e c t e d i s a p layer m ( p layer 23) .

for ( int i =0; i<numpossmut ; ++i ) {

// generate random number f o r o v e r a l l mutation between 0 and n

( e . g . random=23) to s e l e c t p l ayer m ( possmut=23)

int random = rand ( )%n ;

int possmut = random ;

// generate random number f o r i n d i v i d u a l mutation between 0

and 1 ( e . g . randim=0.03) to l e t the s e l e c t e d p layer mutate

with the p r e f e r r ed indmutrate ( say 0.05 , so 5% of p layer

m’ s a c t u a l l y mutates )

std : : random_device rdim ;

std : : mt19937 genim ( rdim ( ) ) ;

s td : : un i form_rea l_dis t r ibut ion<> dis im (0 , 1) ;

f loat randim = dis im ( genim ) ;

// i f the randomly generated f l o a t i s sma l l e r than indmuterate

( e . g . 0.03 <0.05) then the g iven p layer m w i l l a c t u a l l y

mutate ( t ha t i s , f l i p s t r a t e g i e s )

i f ( randim<indmutrate ) {

i f ( s t r a t e gy [ possmut ] [ 0 ] == 1) {

s t r a t e gy [ possmut ] [ 0 ]= 0 ;

}

i f ( s t r a t e gy [ possmut ] [ 0 ] == 0) {

s t r a t e gy [ possmut ] [ 0 ]= 1 ;

}

}

}

// COUNT coopera tors in the s t r a t e g y array fo r every i t ha t i s one

f i f t h o f the t o t a l number o f i t e r a t i o n s ( e . g . i t e r a t i o n s =100, then

fo r k = 19 [ which i s the 20 th i t e r a t i o n ] , 39 e t c . )

i f ( ( k+1) % moduloanalys i s == 0) {

// counter a

a += 1 ;

// for−l oop through the s t r a t e g y array .

c oun t c f o r i =0;

for ( int i =0; i<n ; ++i ) {

i f ( s t r a t e gy [ i ] [0 ]==0) {

c oun t c f o r i += 1 ;

}

}

// f i l l the trackc−array

t rackc [ a ] [ 0 ]= k+1;

t rackc [ a ] [ 1 ]= ( f loat ) c oun t c f o r i /( f loat )n ;

}

// end i t e r a t i on−l oop
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}

// PRINT f i n a l STRATEGY array to screen as check

cout << "\n\nFinal ␣ s t r a t e gy ␣ array ␣ ( i n c l ud ing ␣updates ␣and␣mutations ) : \ n

" ;

for ( int i =0; i<n ; ++i ) {

// pr in t s t r a t e g y array ( as one−dimensional column vec tor ) row by

row ( i =0, i =1 , . . . ) to screen

cout << s t r a t egy [ i ] [ 0 ] << "\n" ;

}

// PRINT f i n a l TRACKC array to screen as check

cout << "\n\nTrackc␣ array : \ n" ;

for ( int i =0; i<datapo int s +1; ++i ) {

for ( int j =0; j <2; ++j ) {

cout << trackc [ i ] [ j ] << "␣␣" ;

}

cout << "\n" ;

}

// CALCULATE average propor t ion o f coopera tors from the data in the t rackc

array

f loat sumpropc=0;

averagepropc=0;

for ( int i =0; i<datapo int s +1; ++i ) {

sumpropc += trackc [ i ] [ 1 ] ;

}

averagepropc = ( f loat ) sumpropc / ( f loat ) ( datapo int s+1) ;

// pr in t average propor t ion o f coopera tors f o r t h i s t−th run of the

program to the metatrackc array

metatrackc [ t ] [ 0 ]= averagepropc ;

}

//////////// END ////////////

//////////// META ////////////

//////////// LOOP ////////////

// CALCULATE meta−average and PRINT metatrackc array to screen

f loat metasumpropc=0;

f loat metaaveragepropc=0;

cout << "\n\nMetatrackc␣ array : \ n" ;

for ( int i =0; i <10; ++i ) {

metasumpropc += metatrackc [ i ] [ 0 ] ;

cout << metatrackc [ i ] [ 0 ] << "␣␣" ;

cout << "\n" ;
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}

metaaveragepropc = ( f loat )metasumpropc / ( f loat ) (10) ;

// pr in t meta−average propor t ion o f coopera tors f o r a l l 10 runs o f the

program to the screen

cout << "\n\nMeta−average ␣=␣" << metaaveragepropc << "\n\n" ;

return 0 ;

}
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