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Abstract

The dynamics of HIV infected cells are of the utmost important in understanding the
disease, and mathematical modeling can help us quantify and understand the processes
at work. One parameter that is heavily debated is the contribution of CD8+ T cells in
the killing of HIV infected cells; some attribute a negligible role to CD8+ T cells in this
respects, others an indispensable role. Moreover, CD8+ T cell mediated killing can take
place at different stages in the cycle of HIV infected cells. Here, we used a two-stage
mathematical model, distinguishing between non-productively and productively infected
cells. The killing rates were estimated in two ways. First, the viral replication rate
was calculated based on six different studies using CD8+ depletion studies. From this
replication rate, we then calculated the killing rates for the early, late, and equal killing
scenarios. An interesting, novel finding on the side is that the viral replication rate of elite
controller rhesus monkeys is higher than that of progressor monkeys, corresponding to a
higher killing rate in the former group. Secondly, we fitted our mathematical model to a
dataset of an experiment using adoptive transfer of CD8+ T cells using a script written in
R. These fits were done with fully free, partially fixed, and mostly fixed parameters. Both
estimation methods suggest that the role of CD8+ T cells in the killing of HIV infected
cells is crucial and not negligible.
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1 Introduction

The Human Immunodeficiency Virus (HIV) is one of the most studied viruses in the world,
partly due to its recalcitrance to vaccination. Since HIV is a retrovirus, its viral RNA
is reverse-transcribed into viral DNA, which is incorporated into the host genome. HIV
infects CD4+ T helper cells and enters these cells via their CD4 receptor. Progressive HIV
infection causes the immune system to fail and is known as acquired immunodeficiency
syndrome (AIDS). Hence, the cause of death in HIV infected individuals often consists of
opportunistic infections.

Cytotoxic T lymphocytes (CTLs) or CD8+ T cells are an essential part of the adaptive
immune system by specifically targeting and killing cells infected by viruses or bacteria
and even tumor cells. The role of CTLs in the killing of HIV-infected cells is a topic
of debate in the current literature. Some researchers conclude that the lytic killing of
HIV-infected cells by these CTLs is negligibly small and that CTLs influences these HIV-
infected populations non-lytically [1–5]. Other researchers do argue that cytotoxic killing
is indispensable in the destruction of HIV-infected cells [6, 7].

Due to the complex mechanisms by which the virus and the immune system influence
each other, it is hard to measure the effects of CTLs directly on the killing of infected
cells. A much performed experiment is the depletion of CD8+ cells in SIV infected rhesus
macaques and the subsequent observation of the behaviour of the number of viral particles
in the blood [4, 5, 8–10]. The increase in the viral load can be parametrised by its slope,
here called the upslope. Since there is a steep increase in viral load after CD8+ depletion,
this argues for an important role of CD8+ T cells. Alternatively, one can also observe the
behaviour of the viral load after assigned therapy, such as antiretroviral therapy (ART),
in both the presence and absence of CD8+ cells [4, 5]. This slope is here called the
downslope, and is remarkably equal in the case with and without CTLs. This suggests
an almost negligible rate of killing attributable to CTLs. How can we account for this
discrepancy?

Next to experimental techniques, mathematical modelling provides us with tools to
make sense of the data observed, to predict the behaviour of infected cells, and to estimate
parameters that cannot be directly estimated via experiments. Sometimes conclusions
make hidden assumptions that are not automatically valid, and mathematical models
can pinpoint these assumptions. One of these is that the difference in downslopes would
automatically reflect the CTL-mediated killing. From the mathematical model, it will be
shown that this is not the only possible scenario.

First, different mathematical models of HIV dynamics will be considered, and one of
them will serve as the basis for the rest of this thesis. Previous estimates of the upslopes,
downslopes, and other parameters will be discussed, after which possible estimations of
the CTL-mediated killing rate will be reviewed. The experimental part of the thesis
consists of estimating the upslope from a variety of different datasets. A novel finding in
this thesis is the different value of the upslope in elite controller monkeys and progressors
monkeys. Next to that, a mathematical model of HIV dynamics will be fitted to data of
an experiment with injected HIV-specific CTLs [11].
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Part I

Literature Review

2 The Mathematical Models

There are various different models for the description of the dynamics of HIV infected
cells. Here, a general, one-stage model of HIV dynamics will be discussed, as well as a
two-stage model [7,12]. A crucial difference between the general model and the two-stage
model is the incorporation of the eclipse phase, the delay between the HIV virus infecting
the helper T cell and the cell producing new viral particles. The general model does not
distinguish between the infected stage and the producing stage and is therefore a one-
stage model. In this section, each of these models will be discussed and their differences
will be highlighted. In addition, a possible three-stage model will be briefly considered
and reflected upon.

2.1 The One-stage Model

The general model contains a population of target cells (T ) and a population of infected
cells (I), who readily produce new viral particles. In addition, equations are also given
for the number of viral particles (V ) and the number of effector T cells against the virus
in question (Ei). The following system of differential equations represents the one-stage
model.

dT

dt
=F (T )− bTV dI

dt
= bTV − (dI +

n∑
i

kiEi)I

dV

dt
=pI − cV, dEi

dt
= G(Ei, V )− dEEi, for i = 1, 2, . . . , n,

(1)

Here F (T ) is an (unknown) function for the production of target cells, b the infection

rate, dI the death rate of the infected cells and
n∑
i

kiEi the killing rate by CTLs. p is the

coefficient of the production of viral particles by I and c is the fraction of viral particles
perishing (not infecting). G(Ei, V ) is a function describing the production of HIV-specific
CTLs and dE is the death rate of these immune cells.

Assuming a quasi steady state of the viral load (dV/dt = 0) and replacing the target
cell population and killing by the constants T̄ and K, respectively, allows us to inspect the
behaviour of the model in chronic infection. The latter assumption can be made since the
process of generation of target cells and immune cells is much slower than the dynamics
of the infected cells [6]. This reduces equation (1) to:

dI

dt
= (βT̄ − dI −K)I (2)

With β = bc/p. The solution to this ordinary differential equation is given by

I(t) = I0e
(βT̄−dI−K)t = I0e

λt (3)
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The population of infected cells stays constant if the exponent of equation (3), λ equals
zero. We can define the term fβT̄ − dI as the effective replication rate of the virus, ρ.
The exponent does indeed equal zero if replication equals killing, i.e. ρ = K.

2.2 The Two-stage Model

The previously described general model is a crude approximation to the actual viral
dynamics. Various important aspects are left out of the model, such as the notion of
the eclipse phase. This phase denotes the time between the infection of a CD4+ T
lymphocyte by HIV and the production of new viral particles by the infected cell. In a
model incorporating this eclipse phase, we need to distinguish between the population
of infected cells which carry the viral DNA but are not yet actively translating this, I,
and productively infected cells, P . Again, T denotes the population of target cells, V
the number of viral particles, and E the number of (cytotoxic) immune effector cells,
for which the index i denotes the specific clone, up until n clones. Such a model of HIV
viral dynamics has already been explored by Klenerman et al. approximately two decades
ago [12]. Mathematically, the model looks as follows and is equal to the model presented
in [6].

dT

dt
=F (T )− bTV, dI

dt
= fbTV − (dI + γ +

n∑
i

kIiEi)I

dP

dt
=γI − dPP − P

n∑
i

kPi
Ei,

dV

dt
= pP − cV

dEi
dt

=G(Ei, V )− dEEi, for i = 1, 2, . . . , n

(4)

In this model, γ is the eclipse phase parameter for the transition from I to P . 1/γ
yields the time period of the eclipse phase. Note that immune effector cells can both kill
cells in I and P .

It is conventionally assumed that dV/dt = 0, which further simplifies the model [6].
This quasi steady state assumption allows us to isolate V as V = (c/p)P and eliminate
it from (4). This yields the following system of differential equations.

dT

dt
=F (T )− βTP, dEi

dt
= G(Ei, V )− dEEi

dI

dt
=fβTP − (dI + γ +

n∑
i

kIiEi)I,
dP

dt
= γI − dPP − P

n∑
i

kPi
Ei

(5)

Where again, β = bp/c. In addition, it is convenient to assume that the target cell
population only varies relatively slowly compared to the entire model, so that it can be

assumed to be constant, i.e. T becomes the constant T̄ . Similarly, the terms
n∑
i

kIiEi

and
n∑
i

kPi
Ei can be replaced by the constants KI and KP , respectively, as we also did

in the case of the general model. In this way, we arrive at a very neat version of the
mathematical model, which can be denoted as a compact linear system.
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(
dI/dt
dP/dt

)
=

(
−dI − γ −KI fβT̄

γ −dp −KP

)(
I
P

)
(6)

If the entire system is in a steady state, i.e. the values for the entire system do not
change (which would be the case in a chronic infection), the determinant of the above
matrix is required to be equal to zero. This is because the eigenvalue of the matrix needs
to be zero in order to ensure that dI/dt = 0 and dP/dt = 0.

(dI + γ +KI)(dP +KP )− fβT̄γ = 0 (7)

Alternatively, this can be written as

dp +KP =
fβT̄γ

γ + dI +KI

=
bp

c
T̄ · f · γ

γ + dI +KI

(8)

From above equation, it becomes apparent that there is indeed a steady state, in the
sense that all the newly formed productively infected cells are balanced out by being
killed ‘naturally’ (dp) or by CTLs (KP ). The newly formed cells of P are given by the
right-hand side, since it is the fraction of cells progressing from I to P (γ/(γ + dI +KI))
of the fraction of cells that progressed from T to I (f) of the total newly infected cells
(bpT̄ /c).

In general, we can find a solution to equation 6 by finding its eigenvalues. These are
as follows:1

λ1,2 =
1

2

(
−(dI + γ + dp +KP +KI)±

√
∆2 + 4fβT̄γ

)
(9)

Where ∆ = dI + γ +KI − dP −KP . Both λ1 and λ2 are fully real eigenvalues, where
λ1 is the overall positive eigenvalue and λ2 the negative one. The positive eigenvalue
dominates over the negative one and the eigenvector associated with λ1 is

v1 =

(
−∆ +

√
∆2 + 4fβT̄γ

2γ
, 1

)
(10)

The above eigenvalues and eigenvector will be utilised further when looking into ex-
perimentally verified parameters with respect to these models of HIV dynamics.

2.3 Models incorporating more stages

In reality, there are most likely more cellular stages involved in the dynamics of HIV than
discussed so far. For example, the mathematical model used by Wick et al. featured
a population Q of quiescent target cells [13]. Recently, Althaus et al. identified and
described eleven distinct sub-populations of CD4+ cells, which all have a role in the
dynamics of HIV [14]. An eleven-stage model would most likely be too cumbersome
to adequately work with and would probably produce unclear results. However, as the
introduction of the eclipse phase forms a major break between the one- and two-stage
model, it might be worthwhile to consider the implications of adding additional stages to
our model of HIV dynamics.

1Eigenvalues and eigenvectors were obtained using Wolfram Mathematica.
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The next step from a two-stage model is of course a three-stage model. We propose to
also consider the very early phase after infection. In this phase, many of the newly infected
cells die because of pyroptosis or another mechanism [15]. Viral molecules can rapidly
induce CD8+ T cell-mediated killing even before the viral DNA is being translated [16].
Hence, for the three-stage model, we introduce a population I0, consisting of cells infected
with HIV but not yet transcribing the viral genes. Cells in I0 either transition to I at a
rate γ0, die at a rate d0 or are killed by the immune system at a rate of K0.2 This changes
the model from equation (5) into:

dT

dt
=F (T )− βTP, dEi

dt
= G(Ei, V )− dEEi

dI0

dt
=βTP − (d0 + γ0 +

n∑
i

k0iEi)I0

dI

dt
=γ0I0 − (dI + γ +

n∑
i

kIiEi)I,
dP

dt
= γI − dPP − P

n∑
i

kPi
Ei

(11)

A first assumption about this model can be inferred from the observation that a
large fraction of the newly infected cells are killed. Because of this, we may assume
that d0 + K0 >> γ0. From this we can define the fraction of cells progressing to I as
f = γ0/(γ0 + d0 + K0). Furthermore, this early stage is known to be relatively short
compared to I and P , which makes it justifiable to assume a steady state of this phase,
dI0/dt = 0.

These assumptions effectively reduce the three-stage model into the two-stage model
of equation (5), where f is now clearly defined in terms of the parameters of the I0

population. If there were no CTL-mediated killing of I0 at all, the two-stage model would
continue to be equal to this three-stage model.

2K0 is the constant version of
n∑
i

k0iEi.
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3 Previous parameter estimations

3.1 The Downslope, δ

In chronic infection with HIV or SIV, the number of viral particles in blood plasma will
decay when antiretroviral therapy (ART) is administered. The rate at which the number
of viral particles decreases, is referred to as the downslope, generally denoted as δ. ART
experiments were first done in 1995, by Ho et al. [17]; from these data it was found that
δ ≈ 0.45/day [18]. Subsequent research by the same group has shown that a better
estimate is δ ≈ 1/day [19], which is now the consensus among researchers in this field.

3.2 The Upslope, ρ

As beautifully invariant as δ is, estimates of the upslope parameter, ρ, also known as the
effective viral replication rate, are much more varied. In general, one can distinguish a
viral replication rate in the acute phase of HIV infection or the chronic phase. In this
thesis, we will only consider chronic infections. Various estimates of the upslope in chronic
infections after CD8+ T cell depletion include ρ = 0.25 d−1 [20], ρ = 0.4 d−1 [5], and
ρ = 0.8 d−1 [8]. The variety in these estimates could be due to biological differences in
the used monkeys, noise in measurement, or even to the use of different approximation
methods. Therefore, to increase the consistency of estimation, ρ will be estimated from
different datasets in section 5 of this thesis.

3.3 Miscellaneous parameters

As is evident from equation (4), the two-stage mathematical model has many different
parameters. The fitting in the second part of this thesis would be improved if some of
these parameters would be locked to a known value. Furthermore, since the fitting will
be done on data from three different patients, locking parameter values grants a way
of making the claims more biologically sound; we can expect certain parameters to be
independent of the patient, and merely dependent on the (strain of) virus itself.

Table 1 provides an overview of values of parameters either estimated or used by other
studies. These are merely a guideline to see whether the parameter values found in the
fittings are realistic and consistent with previous findings.

Parameter Value Reference
γ 1.0 [21,22]
dT 0.33 [23]
dP 1 - 2 [6]
dI 0.1 - 1 [6]
β 6.3 - 9.1 [6, 24]

Table 1: Previous estimates of parameter values relevant for the two-stage model.
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4 Estimating the CTL Mediated Killing Rate

4.1 Killing rates from ART data: Downslopes

In the previous section, we found that the conventional estimate of the downslope is
δ ≈ 1. But what does δ actually reflect in light of the previously discussed mathematical
models of HIV dynamics? ART prevents HIV from infecting new cells, which turns the
differential equation modelling the virus count and the productively infected cells from
(1) into:

dV

dt
= pP − cV dI

dt
= −(dI +K)I (12)

Assuming that dV/dt = 0, the load of viral particles becomes proportional to the
amount of virus producing cells. Hence, in the general model, this δ reflects any process
that can lead to the death of the virus producing cells. This can be non-specific lysis,
clearance, but also death due to HIV-specific CTLs. In short, δ = dI +K.

In the case of the two-stage models, it becomes less evident what δ exactly reflects.
However, it has been shown that in the case of infected populations with multiple stages,
the slowest transition rate within the model defines the δ parameter [12]. This is quite
clear when looking at the eigenvalues from (9) under ART conditions. If we assume perfect
ART and set β = 0, we arrive at the following eigenvalues.

λ1 = −(dP +Kp), λ2 = −(dI + γ +KI) (13)

In the case that |λ1| >> |λ2|, 3 δ will reflect the slowest rate, i.e. dI + γ +KI . In the
case that |λ1| << |λ2|, δ will take the value of dP +KP .

4.1.1 ART after CD8+ cell depletion

Recently, the same ART experiments were done after CD8+ cell depletion in model or-
ganisms by Klatt et al. [4] and Wong et al. [5]. In terms of our mathematical models,
this CD8+ cell depletion sets the value of K (or KI and KP ) equal to zero. The viral
decay rate was studied in both control rhesus macaques and CD8+ cell depleted rhesus
macaques, both groups chronically infected with SIV. Interestingly, both studies found
that δ was not significantly different between the control and the CD8+ cell depleted
macaques. If we attempt to come to terms with this finding through the general model
of HIV dynamics, we can only arrive at the conclusions that δ ≈ dI and K ≈ 0, since
removing the CTL-mediated killing does not influence the value of the downslope.

However, when the eclipse phase is introduced in the mathematics and the model
consists of two stages, there is more to δ than meets the eye. What is more, there exists
the option that δ does not reveal much at all about the CTL-mediated killing rate. What
δ exactly signifies in the different models can be found in Table 2.

What can we infer about the killing rates with the observation that δ is invariant
upon depletion of CD8+ cells? As mentioned before, δ reflects the minimum value of
the transition rates, which is - in case of the two-stage model - either dI + γ + KI and
dP +KP . Because of the invariance of δ, it has to be true that either dI +γ+KI = dI +γ
(so KI = 0) or dP + KP = dP (so KP = 0). This is also known as a late-killing scenario
(when KI = 0) or an early-killing scenario (when KP = 0).

3Since we defined δ as a positive quantity, the absolute values of the eigenvalues are used.
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Predicted viral decay rate, δ
Model Control After CD8 depletion
General δ = dI +K δ = dI
Two Stage δ = min(γ + dI +KI , dP +KP ) δ = min(γ + dI , dP )

Table 2: Summary of the meaning of δ, the viral decay rate, in the general one-stage
model of HIV dynamics, and the two-stage model with early or late killing. Note that
min(x,y) denotes the minimum value of x and y.

4.2 Killing rates from CTL depletion studies: Upslopes

Another way to probe into the effects of CTLs on viral load count is to simply fully or
partially deplete the CTLs in SIV infected model organisms, such as rhesus macaques.
This depletion is normally done by administering anti-CD8 antibodies. Because of this
depletion, the viral count increases. The rate at which the viral count grows is referred
to as the upslope, denoted as ρ. There have been a variety of studies researching the
effect of CD8+ depletion directly on the viral load, in acute [25,26] and chronic SIV/HIV
infection [4, 5, 8–10]. We can define this ρ as the eigenvalue of the system (see equation
(9)) when the killing rates equal zero.

ρ ≡ λ1

∣∣
K=0

=
1

2

(
−(dI + γ + dp) +

√
(dI + γ − dP )2 − 4fβT̄γ

)
(14)

We can further simplify this equation using elementary algebra (along the lines of [6]).

2ρ+ dI + γ + dp =
√

(dI + γ − dP )2 + 4fβT̄γ (15)

(2ρ+ dI + γ + dp)
2 = (dI + γ − dP )2 + 4fβT̄γ (16)

4ρ2 + 4ρ(dI + γ + dp) + 2γdP + 2dIdP = −2γdP − 2dIdP + 4fβT̄γ (17)

ρ2 + ρ(dI + γ + dp) + γdP + dIdP = fβT̄γ (18)

fβT̄γ = (ρ+ dP )(ρ+ dI + γ) (19)

Why bother rewriting the expression for ρ into this compact equation above? We can
combine equation (19) with equation (7) to yield an expression for the killing rates in
terms of the viral upslope, namely:

KI =
ρ(dI + γ + dP + ρ)− (dI + γ)KP

dP +KP

and KP =
ρ(dI + γ + dP + ρ)− dPKI

dI + γ +KI

(20)

Based on the estimates of ρ from the previous section, this would put the killing rates
at considerably higher than the estimates based on the general model and the downslope
δ. In the early killing scenario, KI would be in between 0.8 d−1 and 4 d−1, and in the
case of late killing, KP would be between 0.75 d−1 and 3.7 d−1 [6]. Both estimates are for
0.25 < ρ ≤ 1 d−1.
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Part II

Data Analysis and Fitting

5 Estimating the Upslope

In this section, the viral growth rate will be estimated from various datasets of measure-
ments of the plasma viral load in chronically SIV infected rhesus macaques. The value of
ρ is estimated by calculating the slope between two points of measurement after CD8+ T
cell depletion, as well as calculate the slope of linear regressions when more than two data
points are involved. Before such calculations are allowed, it must be ensured the values
of the viral load used are the natural logarithms of the actual values. In this way, the
exponential growth of the viral load in the linear scale is converted into a linear growth in
a logarithmic scale. This directly allows us to estimate ρ as the slope of the linear growth
and use linear regressions as an approximation method.

A possible complication in estimating ρ is that in all these experiments depletion
treatments were given over multiple days. However, as there is no perfect binary switch
between turning the CTL-mediated killing on or off, these multiple depletion treatments
are the best possible approximation. The first day of depletion is taken as the most
significant depletion event. For the sake of clarity, the day corresponding to the first
CD8+ cell depletion treatment is consistently referred to as day 0.

Nichole Klatt, Ankita Chowdhury and Guido Silvestri kindly shared the data from
their papers with us [4, 27]. The other data points have been incorporated from the
figures in the respective papers using the computer program PlotDigitizer.

5.1 From Klatt et al. Data

The first dataset that will be studied in this thesis comes from a research conducted by
Klatt and colleagues [4]. In this study, there were two groups of SIVmac239 infected rhesus
macaques, denoted as group A (RRf6, RAj7, RLi6, RPp6, RZl5) and group B (RSq8,
RUe7, RWf7, XHB) for convenience. Group A underwent a first CD8+ cell depletion on
day 0. Note that there were no measurements of the viral load available on day 0, hence
we shifted the value of the viral load on day -2 artificially to day 0. Subsequent data was
available on day 1 and day 4. Group B was subject to similar conditions, receiving the
first depletion treatment on day 0 as well. The data of day -6 were shifted to day 0, and
data of day 1 and day 5 were available.

The estimates for the upslopes for the individual macaques and their mean can be
found in Table 3. The mean of the slopes obtained via linear regressions seems the most
reliable estimate for ρ in this study, which amounts to ρ = 0.45/day.

5.2 From Wong et al. Data

Wong et al. performed similar experiments on a total of eight rhesus macaques infected
with SIVmac251 [5]. Three of these (MMU32906, MMU27562, and MMU33580) received
a full depletion of their CD8+ cells prior to ART, while two others received only a partially
depleting treatment (data not shown nor used). It was observed that depletion caused the
transition from one steady state of viral load levels to another within 5 days. The natural
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Upslopes of group A Day 0-1 Day 1-4 Linear regression
RRf6 1.59 0.73 0.85
RAj7 0.63 0.108 0.18
RLi6 2.05 0.31 0.56
RPp6 -0.14 0.16 0.12
RZl5 2.27 -0.13 0.21
Mean group A 1.28 0.23 0.39
Upslopes of group B Day 0-1 Day 1-5 Linear regression
RSq8 2.55 0.11 0.46
RUe7 1.58 0.57 0.72
RWf7 1.97 -0.27 0.047
XHB 2.03 0.76 0.95
Mean group B 2.04 0.29 0.54
Mean both groups 1.62 0.26 0.45

Table 3: Estimates of the viral growth rates, ρ for the Klatt data [4]. Note that for group
A, the datapoints were artificially shifted from day -2 to day 0, and for group B from day
-6 to day 0.

logarithms of these values are shown in Table 4. The steady state at day 0 and at day 5
represent the viral count before and after CD8+ depletion, respectively. I then proceeded
to calculate the slopes from these data, simply by dividing the difference in value over the
time step. Calculations of the slopes between the two steady states for each monkey can
be found in Table 4. The mean value of these slopes gives a very similar estimate of the
viral replication rate, ρ = 0.54/day.

V(0) V(5) Slope
MMU32906 15.20 17.04 0.37
MMU27562 13.01 14.92 0.38
MMU33580 8.80 13.13 0.87
Mean 0.54

Table 4: Values of the viral load count in three rhesus macaques infected with SIVmac251.
The steady states at day 0 reflect the viral load before CD8+ cell depletion, the one at
day 5 after the depletion. The slope between these two points was calculated, as well as
the average of these slopes.

5.3 From Schmitz et al. Data

Already in 1999, Schmitz et al. performed CD8+ depletion experiments on rhesus macaques
chronically infected with SIVmac [9]. There were three rhesus macaques (named A, B,
and C). See Table 5 for the estimates of the slope and the linear regression. The estimated
value of the viral replication rate was in accordance with previous estimates, ρ = 0.57/day.
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Day 0-3 Day 3-6 Linear Regression
A 0.31 1.49 0.90
B 0.74 0.18 0.46
C 0.67 0.02 0.35
Mean 0.57 0.56 0.57

Table 5: The calculated slopes of the viral load after CD8+ cell depletion in three SIV-
infected rhesus macaques. Data from Schmitz et al. [9].

5.4 From Jin et al. Data

In 1999 as well, Jin et al. [8] conducted experiments on rhesus macaques with CD8+
depletion via antibody treatment on three consecutive days (days 0, 1, and 2). These
experiments were performed on five rhesus macaques infected with SIVmac251 (AT-02,
AR-68, AR-71, AR-93) or SIVmac239 (AT-22). Data of the viral load in these monkeys
were collected on day 0, 1, and 2. The calculated slopes are presented in Table 6. As can
be read from the table, the mean value of the slopes of the linear regressions amounted
to ρ = 0.58/day.

Day 0-1 Day 1-2 Linear Regression
AT-22 0.29 0.51 0.40
AR-68 0.48 1.12 0.80
AR-71 0.010 0.57 0.33
AR-93 0.037 0.40 0.39
AT-02 1.51 0.41 0.96
Mean 0.55 0.60 0.58

Table 6: The calculated slopes between values of viral RNA levels in five rhesus macaques,
from the Jin data [8]. The slope of a linear regression of these three datapoints was also
calculated.

5.5 From Fukuzawa et al. Data

As part of a larger study on B cell follicle sanctuaries, Fukuzawa et al. performed mea-
surements of the SIV RNA count in the blood plasma of seven elite controller rhesus
macaques after treatment with anti-CD8 antibodies [10]. These rhesus monkeys had been
chronically infected with SIVmac239 or SIVmac251. Remarkably, the depletion treatment
was not followed by ART, but the monkeys were able to regenerate their SIV-specific CTL
population and keep the virus in check. This is likely due to the fact these monkeys are
elite controllers of SIV. Note that this is a vital difference with the four previous datasets,
where the rhesus macaques under investigation were no elite controllers.

The dataset obtained from the study and used in the estimate of ρ consists of data
taken on days 0, 3, 7, and 10 after depletion treatments. The viral loads went down after
day 10. The obtained datapoints are average values of all participating monkeys. See
Table 7 for the estimates. As the last interval (day 7 - 10) showed less increase than the
previous two intervals, linear regressions were performed both with and without this last
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interval. The linear regression slope between day 0 and 10 yielded ρ = 0.85/day, and
between day 0 and 7 ρ = 0.96/day.

Day 0-3 Day 3-7 Day 7-10 Lin. reg. 0 -10 Lin. reg. 0-7
Estimated upslope 0.99 0.94 0.56 0.85 0.96

Table 7: Estimate of ρ based on the Fukuzawa data [10]. The data points used were at
day 0, 3, 7, and 10. Only aggregate data was available, not data per rhesus macaque.
Linear regressions were performed both from day 0 to day 10 and from day 0 to day 7.

5.6 Upslopes in elite controllers versus progressors

Very recently, Chowdhury et al. published their research on the differential behaviour of
progressors and controllers with respect to the dynamics of HIV [27]. They observed a
significantly higher increase in plasma viral load after CD8+ depletion in controllers than
in progressors. This makes intuitive sense, but can also be inferred from the mathematical
definition of ρ. As the term indicates, elite controllers are far better at controlling the
virus than progressors are. In other words, the killing rate of CTLs is higher in controllers
than in progressors. If this control is then taken away by depletion of these CTLs, the
viral load will increase more in controllers than in progressors, simply because these CTLs
did not play a role as significant as in controllers.

On the other hand, mathematically we have found that in order for the system to
reach a steady state, ρ must balance out the killing rates. If the killing is higher, then
the ρ must have been higher as well, which results in a steeper slope for controllers than
for progressors.

This intuition is consistent with our estimations of the upslope parameter from the
Chowdhury et al. data, which we very kindly received from the authors (see Table 8 and
9). The means of the slopes for all intervals and linear regression are higher in controllers
than in progressor rhesus macaques. Note that both the slopes of the linear regression
for day 0-2 and day 0-3 are shown. This is because the mean value of the slope between
day 2 and day 3 is visibly much less than for the other two intervals. Since it is possible
this lower value corrupts the estimate of ρ, both scenarios are shown.

Controllers Day 0 - 1 Day 1 - 2 Day 2 -3 Lin. Regr. (0-3) Lin. Regr. (0-2)
RAk9 2.60 1.85 -1.11 1.18 2.22
RJm7 0.78 -0.80 1.16 0.26 -0.08
RLf8 4.39 0.97 -0.31 1.61 2.68
RSk8 2.84 2.62 1.50 2.35 2.73
RZc9 1.43 1.47 1.02 1.32 1.45
Mean 2.41 1.22 0.45 1.35 1.82

Table 8: Calculated values of ρ for the controller monkeys of the Chowdhury et al. study
[27]. The slopes of the linear regressions have been calculated for both the day 0 -2 interval
and the day 0-3 interval.

To investigate whether this difference in upslopes between progressor and controller
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Progressors Day 0 - 1 Day 1 - 2 Day 2 -3 Lin. Regr. (0-3) Lin. Regr. (0-2)
RWm8 -0.14 N/A 0.01 -0.07 N/A
RKv7 1.34 1.52 -0.35 0.91 1.43
RNw10 0.92 0.46 -0.07 0.44 0.69
RAy8 1.80 0.29 1.46 1.09 1.04
RLw10 1.32 0.37 -3.47 -0.49 0.85
RFn7 0.67 0.72 -0.39 0.37 0.70
RHd10 -0.07 0.33 0.11 0.14 0.13
RIc9 1.76 0.91 0.61 1.08 1.34
RDa10 1.92 1.43 0.19 1.21 1.68
RBc9 1.83 0.57 0.24 0.85 1.20
Mean 1.13 0.73 -0.18 0.55 1.00

Table 9: Calculated values of ρ for the progressor monkeys of the Chowdhury et al.
study [27]. The slopes of the linear regressions have been calculated for both the day 0
-2 interval and the day 0-3 interval.

monkeys is significant, the non-parametric Mann-Whitney U test was used.4 On the linear
regressions on interval day 0-2, the test proved to be non-significant (p = 0.10). However,
monkey RJm7 seemed to corrupt the data, since his viral load hardly increased at all
upon CD8+ depletion. If taken out, the results of the test indicated a very significant
difference (p = 0.005). The same test was done for the slopes of the linear regression on
interval day 0-3 and both with and without monkey RJm7, the test indicated a significant
difference (p = 0.044 with RJm7 and p = 0.004 without RJm7).

5.7 Discussion of Estimates: Consistency and Implications

Now that the upslope has been estimated from data of six different studies, we can look
back at the values and determine whether they are consistent and what these values imply
for the CTL-mediated killing rates. See Table 10 for an overview of the estimated values
of ρ.

Out of the first five values, four seem to be very constistent, with values between
0.45/day and 0.6/day. The ρ from the Fukuzawa data lies outside of this interval. A
noticeable difference in the setup of the experiments is that Fukuzawa et al. exclusively
used elite controller rhesus monkeys, while the other studies did not. However, since the
Fukuzawa data only contain aggregate data and not on individual monkeys, it is hard to
make such claims valid. 5

Fortunately, the Chowdhury data makes a distinction between progressor and elite
controller monkeys. Indeed, when reviewing the results from the Chowdhury data, the
elite controller monkeys do generate a higher estimate of ρ than their progressor counter-
parts. The value of 0.55/day for the progressor monkeys and 1.00/day for the controllers
are very consistent with the previous five estimates. Taking all these estimates together,
this would mean that in controllers ρ ≈ 1/day and in progressors ρ ≈ 0.55/day.

From these upslopes, we can estimate the killing rates KI and KP using equation

4A non-parametric test was used, since we could not assume the slopes of the linear regressions were
normally distributed.

5Via e-mail correspondence, we tried to obtain the full dataset, but unfortunately failed.
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Study Estimate of ρ
Klatt et al. [4] 0.45
Wong et al. [5] 0.54
Jin et al. [8] 0.58
Schmitz et al. [9] 0.57
Fukuzawa et al. [10] 0.85 or 0.96
Chowdhury et al. [27]
Progressors 0.55 or 1.00
Elite Controllers 1.35 or 1.82

Table 10: Summary of the estimates of ρ from the previously described studies. The two
values per category of the Chowdhury data reflect the choice to either perform a linear
regression on four or three datapoints, respectively.

(20). Using γ = 1.0/day, dI = 0.05/day, and dP = 1.5/day (see Table 1). For the
progressor monkeys, we then find KI ≈ 1.14/day (when KP = 0/day, so for the early
killing scenario), KP ≈ 1.62/day for the early killing scenario, and KI = KP = ρ =
0.55/day for the equal killing scenario. The killing rates in controllers are higher, as
expected, with KI ≈ 2.32/day for early killing, KP ≈ 3.32/day for late killing, and
KI = KP = ρ = 1/day for equal killing. This is consistent with the estimates mentioned
after (20).

As a side note, more rigorous statistical analysis might be appropriate in the future
to arrive at even more precise estimate for ρ. Some later intervals in the datasets might
already contain a viral slope that is leveling off and corrupting the total picture. However,
a practical limitation to these estimates is of course the difference in experimental setups
and parameters between all these studies.

Overall, these estimates of the killing rates derived from the aforementioned datasets
suggest an important role for killing by CD8+ T cells in the dynamics of HIV infected
cells. In the next section, these killing rates will be estimated in a different way, by fitting
our previously discussed mathematical to experimental data.
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6 Model fitting

To estimate the killing rate in another way, we fitted the model of equation (5) to a
dataset provided by Brodie et al. [11]. This concerns measurements of the population of
productively infected cells, as well as injected CTLs specific for HIV from patients with
chronic HIV infection. These CTLs expressed neomycin phosphotransferase (neo+) and
were hence distinguishable from endogenous CTLs. These patients were injected with two
doses of these neo+ CTLs.

A fitting to this data has already been performed by Wick et al. [13]. However, this
study used a different mathematical model for the dynamics of HIV, incorporating a
population of quiescent target cells. This seems to complicate the model unnecessarily
and hence here we try to fit the data to our model without this quiescent population. The
mathematical model used for the fitting here is as follows

dT

dt
=s− dTT − βTP,

dI

dt
= fβTP − (δI + γ + k1C)I

dP

dt
=γI − (δP + k2C)P,

dC

dt
= −dCC

(21)

Where C is the population of injected neo+ T cells. Furthermore, there are two
injection events at time t = 0.5 and t = 7.5 with dose amount C0.6 For the generation of
target cells, the function F (T ) = s − dTT , was used, where s is the constant generation
of target cells (thymopoiesis rate) and dT the death rate of these cells. Since the model
with only free parameters would not be able to distinguish dI and KI mathematically,
we use δI = dI + KI here. The same holds for dP , KP , and δP . Injected, neo+ CTLs
will decay with a rate of dC , and kill cells of the I and P population at rate k1 and
k2, respectively. All other parameters are as described in the standard two stage model
provided by equation (5).

The y-axis of the graphs represent the amount of P or C. The exact units are copied
from Brodie et al.’s original data [11]. The numbers on the y-axis for P are the percentage
of productively infected cells in the total CD4+ cell population. The total CD4+ T cell
count was stable for all three patients, at around 259, 224, and 261 cells per µl for patient
1, 2, and 3, respectively [11,13]. This makes it straightforward to convert the percentage
of P to an actual number of productively infected cells per µl: simply multiply by a factor
of 2.59 for patient 1, 2.24 for patient 2, and 2.62 for patient 3.

The y-axis for the graph of the neo+ CD8+ T cell are also a percentage of the total
CD8+ cell count, but unfortunately neither Brodie et al. nor Wick et al. report what was
used as a total CD8+ count. However, when looking at a typical ratio of CD4+/CD8+
cells in HIV infected individuals, we can approximate the CD8+ T cell counts. If we use
a CD4+/CD8+ ratio of 0.75 [28], the CD8+ T cell counts of our patients becomes 345,
299, and 348, so we can convert the percentage of C to a cell count by multiplying it with
a factor of 3.45 for patient 1, 2.99 for patient 2, and 3.48 for patient 3. These numbers
become important when we want to convert the units of our estimated killing rates to
conventional units so that we can compare it with previous findings.

Unlike Wick et al. [13], here, the sum of the different CD4+ T cell populations (T , I,
and P ) is not forced to add up to the total population of CD4+ T cells. This is because

6Note that C0 is called ‘inj’ in the R script.
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there may compartments of these cells that are not taken into account by the mathematical
model (such as quiescent target cells, which Wick et al. do take into account).

6.1 The Fitting Script

The fitting procedure was performed using a script in the programming language R (see
appendix A). This script uses the deSolve package (for numerically solving the system
of ordinary differential equations) [29] and the FME package (for the fitting itself) [30]
as key components. The script is based on an example of parameter fitting provided by
Soetaert and Petzoldt [31]. See the script itself for smaller comments regarding specific
settings and commands. The primary data were imported as an excel-file, after being
obtained via the computer program PlotDigitizer.

The first rough fit was produced by invoking the Port method (analogous to the
nlminb command in R), after which the Marq method was used for a more precise local-
ization of the minimum of the cost function. This Marq method utilizes the Levenberg-
Marquardt algorithm, equivalent to the nls.lm command from the Minpack package [32].
To ensure the positivity of the parameters, and to make the solver and fitter able to deal
with the sizes of parameters, the natural logarithm of the parameters was used for the
fitting, after which they were transformed back by means of the exponential function.

6.2 Free parameters

The first fit was done without any constraints on the parameters. See Figure 2 for the
result of the fitting procedure, and Table 11 for the parameter estimates per patient. Most
parameters are in fair accordance with the previous estimates from Table 1.

Parameter Patient 1 Patient 2 Patient 3
dT 0.31 0.12 0.32
δP 1.38 1.18 1.29
β 5.36 2.62 8.82
k1 0.51 1.03 0.47
k2 0.66 0.27 0.80
s 3.08 1.36 2.89
C0 3.30 1.90 4.68
δI 0.01 0.98 0.02
dC 0.57 0.54 0.39
γ 1.00 0.62 1.03
f 0.96 0.97 0.96

Table 11: Parameters from the fitting of our two-stage model to the Brodie et al. data

However, to ensure that the fit is reliable and the parameter values are trustworthy,
we must look at the collinearity between the various parameters. The collinearity is a
measure for the linear dependence between parameters. When too large, the collinearity
tells us that the parameters cannot be estimated uniquely based on the data [31]. In
other words, (many) different combinations of parameter values can reproduce the data.
In R, this value can be calculated by the collin command. A value of 10 to 15 for the
collinearity is the borderline [31].
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Figure 2: Fitting of model to data by Brodie et al. with no constraints on the parameters
for patient 1, 2, and 3, respectively.
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For example, the collinearity of all 11 parameters was well beyond the limit, approxi-
mately 300. This makes intuitive sense as well, of course; there are many different sets of
parameters that could account for the observed behaviour. And a slight increase in target
cell death could be overcome by a small increase in target cell generation, to a certain
extent. This is the main reason to fix some parameters and perform the fit over others,
which will be the subject of the next subsection.

k1 k2 d_P d_I Beta d_T s d_C inj gamma f N collinearity

1 1 1 1 1 1 1 1 1 1 1 1 11 303

6.3 Constrained parameters

In reality, some parameters will be characteristic of the virus and independent of the
specific patients. Hence, it would be realistic to lock the values of most of the parameters,
also because otherwise the collinearity of the fit would be too large. This in turn would
render the fitting unreliable. Therefore, some parameters will be fixed in subsequent
fits. In one fit, five of the eleven parameters will be made constant. We can expect the
constants that parametrize the progression of the virus through its stages to be invariant
among the patients (infection β, eclipse phase progression f and γ). Furthermore, to
focus on the fitting of the model to the productively infected cells, dC and C0 are now
fixed. C0 is patient-specific and its value is based on earlier fits. For the exact values of
these parameters, see the left-hand column of Table 12.

Next, we additionally set the death rates for each of the cell populations constant
for the different patients (dT , δI , and δP ). Also, the generation of CD8+ T cells will be
fixed, s, but will also be patient-specific. Please see the right-hand column Table 12 for
an overview of these parameters. The values were based on Table 1 and Table 11.

Parameter Value Parameter Value
γ 1.0 dT 0.30
f 0.96 δI 0.10
β 8.0 δP 1.20
C0, pat. 1 3.30 s, pat. 1 3.08
C0, pat. 2 1.90 s, pat. 2 1.36
C0, pat. 3 4.68 s, pat. 3 2.89
dC 0.54

Table 12: Fixed values for the parameters used in subsequent fitting. C0 and s are patient-
specific. Only the left column of fixed parameters was used for the partially fixed fitting.
The right column of fixed parameters was introduced when only the killing rates were
being fitted.

6.3.1 Fit with five constrained parameters

With the parameters f , γ, β, s, and C0 fixed, we have improved the reliability of the fit.
The collinearity of the remaining parameters is logically less than the collinearity of all
parameters, but its value is 93 and hence not yet below the limit of 15. Nevertheless,
it is fruitful to provide an intermediate step between fully free and almost fully fixed
parameters to see whether the quality of the fit changes visibly.
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> collin(Sfun, parset=c("k1","k2","d_T","d_I","d_P","s"))

k2 d_T s k1 d_P d_I Beta d_C inj gamma f N collinearity

1 1 1 1 1 1 1 0 0 0 0 0 6 93

The fits can be found in Figure 3 and the found values for the remaining parameters
can be found in Table 13.

Parameter Patient 1 Patient 2 Patient 3
k1 0.72 0.88 0.37
k2 0.52 1.23 0.32
dT 0.32 0.90 0.05
δI 0.15 0.10 0.12
δP 1.29 1.59 1.85
s 3.38 1.17 3.88

Table 13: Values of fitted parameters in the case of five fixed parameters (f , γ, β, s, and
C0) for all three patients.

6.3.2 Fit with nine or ten constrained parameters

The goal of this fitting procedure is to estimate the values of the CD8+ T cell mediated
killing rates. In this last fitting, all parameters are fixed with the exception of the killing
rates k1 and k2. The collinearity of this parameter combination is 1.7, well below the
limit.

> collin(Sfun, parset=c("k1","k2"))

k1 k2 d_P d_I Beta d_T s d_C inj gamma f N collinearity

1 1 1 0 0 0 0 0 0 0 0 0 2 1.7

Subsequently, the model fitting was performed with three different killing scenarios:
early killing (setting k2 = 0), late killing (setting k1 = 0), or combined killing. The fits of
all three scenarios were combined and are displayed in Figure 4 and the fitted values of
the killing rates can be found in Table 14.

k1 k2

Patient 1 Early 2.08 0
Late 0 1.29
Comb. 0.66 0.79

Patient 2 Early 4.32 0
Late 0 3.83
Comb. 1.49 1.71

Patient 3 Early 1.34 0
Late 0 1.08
Comb. 0.63 0.87

Table 14: Outcome of the fit values for the killing rates in the early, late, and combined
killing scenarios.
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Figure 3: Fitting of model to data by Brodie et al. with five fixed parameters (β, γ, f ,
C0, and dC) for patient 1, 2, and 3, respectively.
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Figure 4: Fitting of model to data by Brodie et al. with constrained parameters and for
different killing scenarios for patient 1, 2, and 3, respectively.
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6.4 Discussion of Fits

The mathematical model has now been fitted against the data with three parameter situ-
ations: fully free, partially fixed, and almost fully fixed. Up to some small differences, the
fits for every patient under the different parameter conditions are very similar. Freezing
the values of some parameters will influence the value of the individual fitted parameters,
but the overall shape of the curve stays more or less the same.

A peculiarity of these fits that was also present in the fits of Wick et al. is the
relatively high value of the death rate of the target cells, dT , both when the parameter
is fitted and fixed. Remember that the reciprocal of this value yields the life time of
the target cells. In the case of dT = 0.30/day, this would mean CD4+ T cells would
only live for approximately three days. Wick et al. justify this by introducing their
population of quiescent target cells, Q, which has a much lower death rate in their fitting
(dQ = 0.00014 [33], yielding a life time of approximately 20 years). It is a possibility that
HIV only infects the CD4+ T cells with a rapid turnover and a high death rate, which
backs up the notion of a quiescent target cell population.7

Before discussing the estimated killing rates, it is important to convert their now
slightly strange units to more conventional units. As of now, the killing rate represents
the death of I or P due to C when 1% of C ‘meets’ 1% of P or I. To convert this to more
logical units, i.e. the killing rate when one C cell meets one P or I cell, we simply need
to multiply by the total CD4+ T cell count and divide by the total CD8+ T cell count.
In other words, we need to multiply the killing rates with the used CD4+/CD8+ ratio of
0.75 [28]. In Table 15, the converted killing rates are shown.

An important difference with the mathematical model and fits of Wick et al. are the
killng rates. First of all, Wick et al. only use a late killing model and assume the CD8+
T cells do not target population I [13]. Moreover, these fits produce values of k2 that are
equal to 0.14 for patient 1, 0.17 for patient 2, and 0.076 for patient 3. These estimates are
consistently, though not much lower than all reported estimates here, for any parameter
scenario. As a comparison, the lowest values of k2 reported here are 0.38 for patient
1 (partially fixed fitting), 0.20 for patient 2 (fully free fitting), and 0.24 for patient 3
(partially fixed fitting). However, all of these k2 values are estimated in presence of a k1

that is of the same order of magnitude. This means that the killing of HIV infected cells
is higher in these fits than in Wick et al.’s.

Patient 1 Patient 2 Patient 3
Free Fitting k1 0.38 0.77 0.35

k2 0.50 0.20 0.60
Partially fixed k1 0.54 0.66 0.28

k2 0.38 0.92 0.24
Almost Fully fixed k1 0.50 1.12 0.47

k2 0.59 1.28 0.65

Table 15: Overview of the found killing rates in the fits with fully free parameters, partially
fixed, and almost fully fixed parameters. Only the killing rates in case of combined killing
are shown here. Units were converted from percentages to single cells (see text).

7However, notice that the introduction of a differential equation for quiescent target cells was not of
vital importance for this model, as the produced fits are similar in shape to the fits of Wick et al. [13].
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In Table 15, an overview of the estimated killing rate from the various fits can be found.
While there is some heterogeneity in the reported rates, the overall values seems consistent
enough to suggest that CD8+ mediated killing plays an important role in the death of
both infected and productively infected cells. Since there is no steady state population of
C, these rate constants cannot simply be converted into the killing constants estimated
from the upslope data. However, both methods of estimation suggest an important role
for CD8+ T cells in the battle against HIV infected cells.

To test the robustness and the consistency of outcomes of these fittings, a future
effort could be directed towards fitting this model with associated parameters to other
datasets. Especially data derived from ART with CD8+ depletion studies could provide
an interesting case, since the invariance of the downslope suggests either an early or late
killing scenario. A fitting of the mathematical model to these data could potentially
identify the likelihood of either early or late killing. These datasets could be taken from
the Klatt et al. [4] and Wong et al. [5] studies.
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7 Conclusion

Estimates of the CTL-mediated killing rate of HIV infected cells are quite heterogeneous,
with some suggesting a negligible role for CTL-mediated killing in HIV dynamics and oth-
ers claiming this killing is of the utmost importance. As heterogeneous as these estimates
are, experiments on the down- or upslope of the viral load after ART and CD8+ depletion
are strikingly consistent. Here, we tried to estimate the killing of HIV infected cells by
CD8+ T cells in two distinct ways: estimating it from the upslope from various datasets
and estimating it from model fits to data from adoptive transfer studies of trained CD8+
T cells.

The estimates of the upslope from the six different datasets were rather consistent with
one another, especially when the difference between progressor and elite controller mon-
keys was incorporated. This difference in upslopes between controller and non-controller
monkeys is quite novel and a nice additional finding of this thesis. Furthermore, these
estimates of ρ suggest an important role for CD8+ cells in the killing of HIV infected
cells, since estimates of KI and KP are roughly between 0.5 and 3.

Afterwards, our mathematical model of HIV dynamics was fitted to data from an
adoptive transfer study of injected neo+ CD8+ T cells trained to kill HIV. The fitting
was performed under various parameter conditions and -when only the killing rates were
allowed to vary -for the early, late and combined killing scenario. Again, the estimates
of the killing rates from this fitting suggest an indispensable role for CD8+ cells in HIV
dynamics. In addition, the fit was equally well for early, late and combined killing, and
its quality did not change much for the different parameter fixations. The killing rates k1

and k2 vary from approximately 0.20 to 1.30 in the different patients. However, these can
not directly be linked to KI and KP as no steady state concentration of neo+ CD8+ T
cells was reached (other than zero).

Taken together, all this information emphasises the importance of killing of HIV in-
fected cells by CD8+ T cells during chronic HIV infection. Though the results from these
estimates is striking, further modelling and fitting is needed to verify the conclusions
from this thesis. Especially of interest would be the fitting of our mathematical model
to ART with and without CD8+ depletion studies. This could in the end lead to a con-
sensus on the role of CD8+ T cells in the dynamics of HIV infected cells. Whatever the
outcome, mathematical modelling and theoretical analysis of biological experiments and
results remains a vital field, and shows much promise in understanding and grasping the
full picture of HIV.
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Appendices

A Code in R

1 #---------------------------------------------------

2 # Fitting a Mathematical Model of HIV to Data

3 # Tim Coorens

4 #---------------------------------------------------

5

6 #Set working directory

7 setwd("/Users/timcoorens/Documents/R Projects/Thesis")

8

9 #---------------------------------------------------

10 # Load Libraries

11 #---------------------------------------------------

12 library(gdata) #Import data from Excel -files

13 library(deSolve) # Solving differential equation

14 library(minpack.lm) # Least squares fit using Levenberg -Marquart

algorithm , used in modFit

15 library(FME) # Fitting model to data using modFit -command

16

17 #---------------------------------------------------

18 # Load Data and Plot

19 #---------------------------------------------------

20

21 wick=read.xls("wick2.xlsx")

22 names(wick)=c("time","C", "sd")

23

24 wickPIT=read.xls("wickPIT2.xlsx")

25 names(wickPIT)=c("time", "P", "sd")

26 wickPIT=wickPIT[wickPIT$time %in% wick$time ,]

27

28 #---------------------------------------------------

29 # The Model

30 #---------------------------------------------------

31 HIV <- function (parameters) {

32 derivs <- function (time , state , parameters) {

33 with(as.list(c(parameters , state)), {

34 dQ <- s - d_T * Q - Beta * Q * P

35 dI <- -(d_I + gamma + k1 * C) * I + f * Beta * Q * P

36 dP <- gamma * I - (d_P + k2 * C ) * P

37 dC <- -d_C * C

38

39 return(list(c(dQ, dI, dP , dC)))

40 })

41 } #Note: Q is used instead of T to avoid errors

42

43 # injection events of CD8+ T cells

44 injectevents <-data.frame(var = "C",
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45 time = c(0.5 , 7.5),

46 value = with(as.list(parameters), inj

),

47 method = "add")

48

49 # Initial conditions , measured for P and C, dependent on

parameters for I and T

50 P_0 <- 0.35

51 C_0 <- 0

52 I_0 <- with(as.list(parameters), (d_P/gamma)*P_0)

53 Q_0 <- with(as.list(parameters), s/(d_T + Beta * P_0))

54 state <- c(Q=Q_0, I=I_0, P=P_0, C=C_0)

55

56 times <- c(seq(0, 46, 1), wick$time)

57

58 out <-ode(func = derivs , times = times ,

59 y = state , parms = parameters , method = "impAdams",

60 events=list(data =injectevents))

61

62 as.data.frame(out)

63 }

64

65 #---------------------------------------------------

66 # Model parameters

67 #---------------------------------------------------

68 parameters <- c(k1 = 0.76, #rate of killing of I by C

69 k2 = 0.9, #rate of killing of P by C

70 d_P = 1.30, #death rate of P

71 d_I = 0.13, #death rate of I

72 d_T = 0.21, # death rate of T

73 s = 1.38, # generation of T

74 Beta = 8.0, #beta=b*p/c, infection rate

75 d_C = 0.54, #death rate of C

76 inj = 1.90, #injection of neo CD8+ cells

77 gamma = 1, #eclipse phase parameter

78 f = 0.96) #fraction of infected T to I = gamma_0/

(d_I0+gamma_0)

79

80 #---------------------------------------------------

81 # Model Cost Function

82 #---------------------------------------------------

83

84 HIVcost <- function (parameters) {

85 out <- HIV(parameters)

86 cost <- modCost(model=out , obs = wickPIT , err="sd")

87 return(modCost(model=out , obs=wick , err="sd", cost=cost))

88 }

89

90 HIVcost(parameters)$model

91
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92 #---------------------------------------------------

93 # Sensitivity analysis

94 #---------------------------------------------------

95

96 Sfun <- sensFun(HIVcost , parameters , varscale =1)

97 summary(Sfun)

98

99 #---------------------------------------------------

100 # Fitting the Model to the Data

101 #---------------------------------------------------

102

103 HIVcost2 <- function(lpars) HIVcost(c(exp(lpars),

104 Beta = 8.0,

105 d_C = 0.54,

106 inj = 1.90,

107 gamma = 1,

108 f = 0.96)) #parameters

included here will not be

fitted over

109

110 Pars <- parameters [1:6] #select parameters to be fitted over

111 Fit <- modFit(f = HIVcost2 , p = log(Pars), method = "Marq")

112 exp(coef(Fit))

113

114 # method = "Marq" used Levenberg -Marquardt algorithm , "Port" uses

nlminb command

115

116 #---------------------------------------------------

117 # Plot Initial Guess vs. Fitted Result

118 #---------------------------------------------------

119

120 ini <- HIV(parameters=c(Pars ,

121 Beta = 8.0,

122 d_C = 0.54,

123 inj = 1.90,

124 gamma = 1,

125 f = 0.96))

126 final <- HIV(parameters=c(exp(coef(Fit)),

127 Beta = 8.0,

128 d_C = 0.54,

129 inj = 1.90,

130 gamma = 1,

131 f = 0.96))

132

133 par(mfrow =c(1,2))

134 plot(wickPIT$time , wickPIT$P, xlab = "time", ylab="P", ylim = c

(0,1))

135 lines(ini$time , ini$P, lty=2)

136 lines(final$time , final$P, lty=1)

137 plot(wick$time , wick$C, xlab="time", ylab ="C")
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138 lines(ini$time , ini$C, lty=2)

139 lines(final$time , final$C)

140 legend("topright", c("data", "fitted"),

141 lty = c(NA , 1, 1), pch = c(1, NA , NA))

142 par(mfrow = c(1,1))

model.R
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