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Abstract 

 

 

This study investigates the lexical organisation in the bilingual brain by the hand of an 

information theoretical approach. Reaction times of English-Dutch bilingual participants in 

response to high and low entropy verb paradigms were measured and compared to the 

performance of monolingual speakers of English. By selecting verbs that have different 

entropy values across the bilinguals' languages, it was possible to measure if both language 

were activated during lexical decision making. The results seem to indicate that, in the 

bilingual brain, the inflected forms of English verbs and their Dutch counterparts are stored 

in a single paradigm that becomes fully active during lexical decision making. 
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1. Introduction 

One of the largest uncharted territories within linguistics is perhaps the mental lexicon. Even 

though we are still very far from understanding how exactly this lexicon is organised, studies 

have begun to lift the very tip of the veil. The present study proposes an experiment that will 

contribute to the hand of linguistics in exposing the countenance of that elusive bride, 

focussing specifically on bilingual lexical organisation. 

 One aspect studies on bilingual lexical processing seem to agree on is that in many 

instances, the lexicons of both languages are activated simultaneously in production or 

comprehension tasks (Bijeljac-Babic, Biardeau & Grainger, 1997; Jared & Kroll, 2001; van 

Heuven, Dijkstra, & Grainger, 1998). However, most available literature focusses exclusively 

on the dual lexical activation of concrete nouns. To add to this, the current study will shift the 

focus to investigating the dual lexical activation of verbs. In Germanic languages, such as 

will be the subject of this study, noun systems are relatively simple as compared to verb 

systems. A verb only exists as an inflected member of a verb paradigm, which is assumed to 

be co-activated in its entirety (van Ewijk & Avrutin, 2016). The level of activation required 

to activate an entire verb paradigm of one language and co-activate the verb paradigm of 

another language is thus assumed to be more taxing than the dual activation of nouns; as 

such, the results might differ from previous findings for dual lexical activation of nouns. 

However, as will become apparent from a review of the existing literature, studying the 

processing of verbs is a challenging task given the current experimental methods, hence, a 

different approach is required. This approach will be an information theoretical one, 

considering its usefulness in studying verbs has previously been attested (cf. van Ewijk & 

Avrutin, 2016).  

 As studies on bilingualism have not (widely) employed information theory yet, the 

goal of the current study will be two-fold. It aims to answer the following questions: Can 
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information theory be used as a predictive tool for bilingual studies? And can it be used to 

find a difference in the mental lexical organisation of monolinguals and bilinguals (i.e., will 

bilinguals show signs of dual lexical activation? And if yes, what does this imply for their 

mental lexical organisation?).  

The subsequent section will review the literature relevant for this study, followed by the 

method that will be employed. Finally, the results will be presented after which the paper 

concludes with a general discussion and the conclusions.  
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2. Theoretical framework 

2.1. Information theory 

Information theory was originally proposed by Shannon (1948) as a means of quantifying the 

complexity of information. Though originally designed for the purposes of studying 

communication operations and signal processing, Shannon’s theory has now found its way 

into many more fields, amongst which quantum computing, thermal physics and linguistics.  

 They key value of information theory is the ability to convert probability into 

information in bits (I) and, based on the distribution of the information load of each member 

in a system, calculate the entropy of the system (H), which serves as a measure of 

uncertainty. Higher entropy indicates that the distribution of the members in a system is 

relatively even, hence, there is more uncertainty. Lower entropy means that the members in a 

system are distributed more unevenly, hence there is less uncertainty.  

To put it in simple terms; imagine you have two boxes, both containing an amount of 

apples and oranges. Box 1 contains 5 grapefruits and 5 oranges, box 2 contains 9 grapefruits 

and 1 orange. When taking a random fruit from the first box, you are maximally uncertain 

whether you will end up holding an grapefruit or an orange because the distribution of 

grapefruits and oranges is perfectly equal. This box thus has high entropy (in fact, as will be 

explained later, the entropy value of this box is actually the maximum).  

When picking a random citrus from the second box, you will feel rather confident you 

come out holding a grapefruit as the distribution is very unequal, hence less uncertainty 

exists. This is an example of a low entropy system.  

   

2.1.1. More on information theory 

The above illustrates very shortly the essence of information theory. However, for the present 

study it is important to go into further detail about the precise calculations.  
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2.1.1.1. Information load 

 To calculate entropy, the first thing we require is the information load of each 

member of the set. The information load (I), expressed in bits, is a measure of how much 

information an individual item carries. The lower the probability of an item, the higher I in 

bits, i.e. the more information it is assumed to carry. It is calculated by taking the positive 

log2 of the probability of an item, as shown in (1), where p is probability and x represents the 

item. 

 

(1) Ix = −log2 p(x) 

 

By taking the minus log2 of the probability, the information is represented in bits. A classic 

method of illustrating the workings of information load and entropy is by taking the example 

of a coin flip. Assuming the coin has a 50/50 chance of coming up heads or tails, the 

probability of either option is .5. The information in bits is –log2(.5) = 1. Reversing this 

calculation would look like this: 2-1. So essentially –log2 calculates the power to which 2 

must be raised to obtain the given number.  

The importance of the log2 transformation is that the probability of our coin toss is 

now represented in binary bits of information. These bits are the same as the bits that pertain 

to computers. In (2) below a representation of an 8-bit code unit is given. 

 

(2) a. 0 0 0 0 0 0 0 0 

b. 128 64 32 16 8 4 2 1 
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8 bits of information thus represent 8 units of binary information (1 or 0). If a 0 is set to one, 

this means that the number it represents (here indicated directly below in (2b)) is present in 

the information the combination of these bits represents. 8 bits of information can thus 

maximally represent 256 combinations (ranging from 0 (0.0.0.0.0.0.0.0) to 255 

(1.1.1.1.1.1.1.1). The coin toss can end in either of two ways: heads (1) or not heads (0), 

hence it contains 1 bit of information. 

 The split with the binary notion in computers occur quickly when we introduce more 

complicated data. Any side of a fair die when rolled, for example, has a chance of 1/6 of 

coming up. This translates to roughly 2.585 bits of information. The floating point is 

introduced because information load represents precisely how many bits of information are 

conveyed. 2 binary bits can maximally represent 4 options (0 (0.0) to 3 (1.1)), whereas 4 bits 

can maximally represent 8 options (0 (0.0.0) to 7 (1.1.1)). Logically, as 6 options is 

somewhere between 4 and 8 options, its counterpart in bits is somewhere between 2 and 3. 

 

2.1.1.2. Entropy 

The above explained how to calculate the information in bits of a single item in a set. 

However, for the purpose of the current study the combined information in bits of each 

member of a set is of vital importance. This measure is called entropy.  

 Continuing on the example of the die, the entropy of the set of possible outcomes can 

be calculated using the formula below in (3): 

 

(3) Η = − Σε p(xε) log2 p(xε)  

 

Example (3) states, ‘H is the sum of the probabilities multiplied the log2 of the probabilities’. 

For the die example that translates to (1/6) x log2(1/6) for each side of the die. In plain terms, 
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the calculation concerns the sum of each item’s information load times the fraction of the set 

that item accounts for. It is, then, no surprise that in this particular example the entropy in bits 

is the same as the information load of any given side of the die, as the calculation is the sum 

of six times one sixth of the information load. This, however, illuminates a fundamental 

principle of information theory: the maximum entropy of a set is achieved when all members 

are distributed evenly. This principle is very logical considering entropy is a measure of 

uncertainty: the most uncertainty is experienced when all possible events in a set are equally 

likely.  

 For entropy to decrease then, the distribution of its members needs to become more 

unequal. Imagine if our die were loaded on both the top (1) and the bottom (6); the possibility 

of either of these coming up increases, and the entropy decreases. Estimating 1 and 6 are 

twice as likely to come up in a roll, their probability would shift to .25, whereas the 

probability of 2 through 5 is now .125. The I of 1 and 6 is now -log2(.25)= 2, and -log2(.125)= 

3 for 2 through 5. (4) illustrates how the entropy (H) is calculated from here. 

 

(4) a. H = .25 x 2 + .25 x 2 + .125 x 3 + .125 x 3 + .125 x 3 + .125 x 3 

b.  H = 2.5 

 

As mentioned in the previous section, the information load of a given item in the evenly 

distributed set, which in that case equals the entropy, was 2.585. By making the distribution 

more uneven in (4) the entropy lowered to 2.5.  

Another important principle is highlighted here when looking at the individual 

probabilities and their respective information load: the lower the probability, the higher the 

information load, i.e., the more unlikely an event is, the more informative it is. When framed 

in an example, this is a logical assumption. Imagine Johnny threw a football on the roof 1000 
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times. 999 times, Mark caught the ball at the other end. In one particular instance, the ball 

had decided to cease abiding by the laws of physics and floated off. This singular instance 

certainly appears more informative than the other 999.  

One final important characteristic is illustrated in (4): as the probability of an item or 

event decreases, the information load increases, but the result of multiplying the probability 

by the log2 probability (information load) decreases. This is what causes the entropy to lower 

as the distribution of a set becomes more uneven.  

 

2.1.2. Information theory in linguistics 

In recent years, the application of information theoretical approaches in psycholinguistic 

studies has seen an increase. One of the earliest examples of this is a study by Kostiç (1995). 

Kostiç calculated the information load of Serbian inflected nouns using a slightly altered 

equation than the one given in (1). His method, illustrated in (5), calculated the probability 

not only based on the frequency of a specific inflection, but rather based on the frequency of 

the infection relative to the morphological paradigm (i.e., every possible inflection of that 

noun). Furthermore, the frequency was divided by the number of functions that specific 

inflection carries. For example, phonologically, the inflection –s after a noun can have two 

functions. It can indicate plural (the dogs) or possession (the dog’s). In this case the 

frequency would thus be divided by two. 

 

(5)  

 

In (5), F denotes frequency and R denotes the number of functions. In the current study, R 

will denote the number of functions of each inflected member of a verb paradigm, as 

illustrated below in table 1. 
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Table 1. Number of functions for each inflected member of the verb walk 

Inflected form Functions Number of functions 

(to) walk 1st/2nd sg. pres., 1st/2nd/3rd pl. 

pres., infinitive 

6 

walks 3rd person singular present 1 

walking present continuous1 1 

walked 1st/2nd/3rd sg. past., 1st/2nd/3rd 

pl. past., past participle. 

7 

 

Calculating the information load of an inflectional ending is achieved by dividing the 

frequency count by the number of functions, dividing the outcome by the sum of every item’s 

frequency divided by number of functions and taking the –log2 of the outcome.  

 Kostiç (1995) used the inflected nouns in the paradigm in a visual lexical decision 

task. In this experimental design, participants are tasked with deciding, as quickly as possible, 

whether a word presented on the screen is an existing or a non-existing word. The reaction 

times of the participants are measured. It is assumed that when a certain stimulus requires 

more mental processing, the reaction time will be higher. In his experiment, Kostiç found a 

clear correlation between reaction times and information load; the higher the information 

load, the slower the reaction times. A higher information load thus requires more processing 

time.  

 In a similar experiment, Baayen, Feldman and Schreuder (2006) applied different 

measures to response data of an earlier visual lexical decision task (cf. Balota, Cortese, 

Sergent-Marshall, Spieler & Yap, 2004). One of these measures was inflection entropy, 

which is obtained by calculating the information load of each member in the paradigm (by 

the use of the formula in (1)) and subjecting the outcomes to Shannon’s (1948) entropy 

                                                 
1 Note that some functions, for example the gerund (I like walking) are not included. As section 3 will explain, 

the frequencies are obtained through a corpus by searching for the number of occurrences of verb forms, which 

does not include verb forms used as, for example, nouns.  
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formula in (3). The resulting entropy value is taken to be representative of the complexity of 

lexical access to the members in a given paradigm.  

Baayen et al. found that higher inflectional entropy lead to faster reaction times in 

comprehension tasks. The explanation given by the authors was that higher entropy 

represents a more informationally rich inflectional paradigm; one that has more connections 

to other items in the mental lexicon, which facilitates reaction times. 

  The studies above are just a few of many that have used information load and 

inflectional entropy to study lexical retrieval concerning nouns (cf. De Jong, Feldman, 

Schreuder, Patizzo & Baayen, 2002; Kuperman, Bertram & Baayen, 2008; Milin Filipovic 

Durdevic & del Prado Martín, 2009). Far fewer studies have focussed on verbs in their lexical 

decision experiments. In a series of papers, Tabak et al. (2006; 2010) studied verbs in both a 

lexical comprehension and production task. Interestingly, they found that, though form 

frequency and inflectional entropy both facilitated reaction times, the measures were not 

correlated, meaning they function independently and that inflectional entropy does not 

merely predict what frequency already does. Another interesting finding was that, though 

high entropy had a facilitatory effect on reaction times in lexical decision tasks, it had an 

inhibitory effect in production tasks.  

 In her study, Van Ewijk (2013) ran similar experiments. An important difference in 

her study was that the calculation of the inflectional entropy included the measure proposed 

by Kostiç (see (5)). Van Ewijk reasoned that the distribution of the information load of the 

inflected members of a verb paradigm are representative of the memory trace for that item 

(see the next section for a more elaborate discussion on lexical access). A higher information 

load means the presence of a stronger memory trace, which requires less activation to reach 

the threshold of being activated. According to her, the memory trace is affected by the 

number of contexts in which a given inflected verb form is used, so the frequency of the form 
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alone is not sufficient to account for the information load of an item. The formula used by 

Van Ewijk to calculate inflectional entropy is presented below in (6) and will be adopted in 

this paper as well. 

 

(6)  

 

 The study found similar results to that of Tabak et al.: higher entropy had a 

facilitatory effect during comprehension tasks but an inhibitory effect during production 

tasks. The explanation Van Ewijk (2013) provides for this elegantly stipulates the most 

crucial difference in the type of lexical retrieval performed in each task. She defines lexical 

retrieval in production as a conceptually driven task: one starts out with a concept, finds the 

appropriate overarching verb (lemma), and has to select the correct inflected member for the 

context. In the case of a high entropy verb paradigm, the distributions of probabilities are all 

very similar, hence it requires more processing time to select the correct form from amongst 

its competitors. Lexical retrieval in a comprehension task, on the other hand, Van Ewijk 

defines as a perceptually driven task. The correct form is heard and consequently activated in 

the long-term memory, after which activation spreads to the entire paradigm of the verb. In a 

high entropy environment, the connections between the verb forms are short and strong, so 
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the activation of the entire paradigm happens more quickly. Figure 1 below illustrates what a 

high entropy paradigm and a low entropy paradigm may look like. 

 

 

Fig. 1: Example of a high and low entropy verb paradigm 

 

 

The high entropy paradigm clearly has short distances between each verb form, whereas the 

low entropy paradigm features much larger distances. As Van Ewijk (2013) puts it,  

 

 … closeness in probability distribution means more equality among base levels of 

 activation. In high entropy families activation of the family members boosts the 

 activation level of the target, which means it is faster in reaching the threshold for 

 retrieval, leading to shorter response latencies. (p. 53) 

 

2.2. Lexical activation 

This section will discuss the current theories on how lexical items are retrieved from the 

memory and how and why this might differ between certain groups.  
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2.2.1. Lexical retrieval 

Though the organisation of the mental lexicon and the process of lexical retrieval are still 

largely a mystery, most models distinguish two steps in the process of lexical retrieval: the 

retrieval of the lemma (the ‘base’ of the word whose semantic information conveys the 

concept one is trying to express), followed by the selection of the lexeme (the appropriate 

form for the context in which it will appear (e.g. nominative, genitive) and for the speaker’s 

intended meaning (e.g. person, tense, number, etc.). The speed of this process is dependent on 

the strength of the memory trace. Alexandrov, Boricheva, Pulvermüller and Shtyrov (2011) 

explain that “memory traces for words are frequently conceptualized neurobiologically as 

networks of neurons interconnected via reciprocal links developed through associative 

learning in the process of language acquisition” (p. 1). Thus, the more strongly connected the 

network for a certain lexical item, the faster it can be retrieved. The assumption in an 

information theoretical framework is that the strength of these connections is determined by 

the distribution of the information load of the lexemes within the paradigm of the lemma, 

which is derived from the frequency of these lexemes.  

The remaining question, however, is how neurological network is organised in the 

presence of two languages. Though the existing body of work does not seem to have found a 

hint to this answer yet, previous studies have already uncovered a lot on how two languages 

in the bilingual brain seem to interact. The following section will discuss a number of these 

studies.  

 

2.2.2. Bilingual lexical organisation 

Within bilingual studies, the general consensus is that “semantic representations are shared 

across languages and […] these are connected to separate word-level representations in each 
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language.” (Gollan, Montoya, Fennema-Notestine, & Morris, 2005). Some phenomena 

common in bilinguals are indicative of this theory. For example, bilinguals experience a 

dysfluency in lexical retrieval more frequently than monolinguals. This dysfluency is 

commonly known as a tip-of-the-tongue state, where subjects feel they are nearly successful 

in retrieving a certain word and can sometimes provide characteristics of the word (such as 

the initial sound) but, for an extended period, fail to recall the full form (Gollan et al., 2005). 

This finding has been documented for bilinguals of many different language pairs, such as 

Hebrew-English, Spanish-English and Tagalog-English (Gollan & Silverberg, 2001; Gollan 

& Acenas, 2004).  

Numerous studies have also argued that bilinguals do not only have a shared semantic 

space, but that both languages are in fact activated simultaneously when processing language 

(dual lexical activation). A study by Hermans, Bongaerts, de Bot and Schreuder (1998) aimed 

to answer the question of whether bilingual subjects are able to supress activation in their first 

language when tasked with naming pictures in their second language2. To test this, they 

devised an experiment where Dutch-English bilingual participants were shown a picture of, 

for example, a mountain which they had to name in their second, less dominant, language 

(English). However, upon being shown the picture, they were also presented with an auditory 

stimulus which served as an interference stimulus. Several varying interference stimuli (ISs) 

were used in order to test different aspects, but the most striking one was the phono-Dutch 

ISs. These stimuli were English words that were phonologically similar to the target word in 

the non-target language, e.g., in the case of the target word mountain, the IS was bench, 

which is similar to the Dutch word for mountain: berg. Hermans et al. found that in the face 

                                                 
2 Note that first and second language here are used to refer to both of a bilingual’s native languages separately. 

This is different from the traditional use in which a first language refers to a person’s native language and 

second refers to the person’s non-native language. 
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of these ISs, naming times for bilinguals were slowed, which they concluded was strongly 

suggestive of both the target and non-target language being activated simultaneously. 

Another picture naming experiment by Gollan, Montoya, Fennema-Notestine and 

Morris (2005) found that bilinguals who reported one of their languages to be notably more 

dominant than the other are still slower in picture naming tasks than monolinguals, which is 

in line with what dual lexical activation would predict. Interestingly, when tasked with 

classifying the pictures (e.g., deciding between whether the object shown is ‘natural’ or 

‘human-made’) bilinguals had response times equally fast to monolinguals. The difference 

thus seems to lie solely in the lexical domain. Apart from these picture naming tasks, many 

studies have also investigated dual lexical activation using word naming tasks. These studies 

also uniformly found that bilinguals have difficulty supressing activation of the non-target 

language (Bijeljac-Babic, Biardeau, & Grainger, 1997; Jared & Kroll, 2001; van Heuven, 

Dijkstra, & Grainger, 1998).  

Lastly, Marian and Spivey (2003) examined dual lexical activation in Russian-English 

bilinguals using an eye-tracking experiment. The participants were presented with an English 

word and four objects. The target object was described with the English stimulus, two other 

objects were fillers and the forth was an object the Russian name for which was 

phonologically related to the English target (the “between-language competitor”). Marian and 

Spivey found that the bilingual participants spent a good portion of the time observing the 

between-language competitor, leading them to conclude that there was parallel activation of 

both the bilinguals’ languages.  

 

2.3. Discussion 

The previous section has shown that there is no scarcity of evidence for dual lexical 

activation. The findings of Gollan et al. (2005) and Hermans et al. (1998) suggest that the 
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phonological characteristics of a word are capable of activating a competitor in the other 

language. Many of the other studies seem to indicate that phonological similarity is not even 

a necessity for activating other-language competitors. However, how dual lexical activation 

generally affects a bilingual’s performance and how the two languages are precisely 

organised in the mental lexicon of a bilingual largely remains a mystery. 

The first section of this theoretical framework provided us with the means to measure 

the complexity of verb paradigms. Importantly, it should be noted that the entropy of a verb 

paradigm in language A is not necessarily equivalent to language B; as the frequency of the 

verb forms in a paradigm and their number of functions change, so will the inflectional 

entropy. This is key to the experimental design of this study. 

By measuring bilinguals’ reaction times of verbs that have different inflectional 

entropy in their two languages, it should be possible to gain insight into how the two 

languages are organised and interact with each other. The stimuli chosen for the experiment 

are verb forms that either belong to a high entropy paradigm in the target language and a high 

entropy paradigm in the non-target language, or a low entropy paradigm in the target 

language and a high entropy paradigm in the non-target language. The following section will 

justify this choice. By measuring the reaction times of bilinguals and comparing this to the 

reaction times of monolinguals, to whom only the first in the sets of paradigms applies, we 

will be able to compare whether and how the second paradigm has influenced the bilinguals’ 

performance. At this point, we will formulate three hypotheses about the possible outcomes: 

 

Increased workload hypothesis 

Assuming that activating additional members in the verb paradigm slows reaction 

time by virtue of demanding more processing, thus resulting in higher reaction times, 

the bilinguals, overall, will be slower than the monolinguals. There will be a notable 
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difference between the different conditions, both within the bilingual group and as 

compared to the monolingual group. 

 The high entropy English and high entropy Dutch (H-H) verb pairs will see 

the fastest reaction times from bilinguals, though still slower than monolinguals, as 

the addition of a parallel verb paradigm will slow the processing.  

The reaction times of bilinguals for the L-H condition are expected to be 

higher (i.e., slower reactions) compared to the monolinguals. The monolinguals will 

be slower in this condition than the H-H condition, but faster still than the bilinguals, 

as the latter group has and additional verb paradigm to process.  

To summarise, the increased workload hypothesis simply states that more to 

process means more processing time and expects the bilinguals to be slower in both 

conditions. 

 

Additional support hypothesis 

The second hypothesis assumes that the additional activated language will not by 

default slow processing, but instead provide either a facilitatory or inhibitory effect, 

depending on whether the additional language has a high or low inflectional paradigm 

for the specific verb. 

 With this hypothesis in mind, we can thus assume that in the H-H condition, 

bilinguals will receive additional support from the indirectly activated language, 

resulting in lower reaction times than the monolinguals in this condition.  

 In the L-H condition, the task of identifying the verb will be facilitated by the 

activation of an additional high inflectional entropy verb paradigm for the bilinguals. 

The bilinguals are thus expected, by this hypothesis, to show lower reaction times 

than the monolinguals.  
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Unified paradigm hypothesis 

The last hypothesis simply assumes the Dutch and English verb paradigms for any 

given verb to be collapsed as a single paradigm in the mental lexicon of a bilingual 

participant. The predictions the hypothesis makes stem from calculating the 

inflectional entropy as such. The data suggests that this generally results in higher 

inflectional entropy3. As Van Ewijk (2013) states, “intuitively, a greater number of 

members in a paradigm will lead to a greater entropy of the paradigm” (p. 33). If this 

hypothesis were to be borne out it would certainly provide researchers with a very 

useful predictive measure for the behaviour of bilinguals. This hypothesis also 

predicts that bilinguals would be universally slower in production, which seems to be 

the case Gollan et al. (2005) study.  

 Neurobiologically speaking, this hypothesis implies that the networks 

pertaining to the two languages are strongly and closely interconnected, to the point 

where lemmas contain the lexemes of both languages. This might seem problematic, 

as it would essentially mean the language ‘overlap’ in the brain. However, as a system 

it would seem most efficient to group lexemes together and encode a marker in each 

lexeme (in addition to the information about tense, person, etc.) to indicate to which 

language it belongs. The alternative would be to have a fork in the road, mapping 

each concept to two separate semantic representations. Furthermore, children at a very 

young age already seem to be experts in telling apart their native language(s). 7-

month-old bilingual infants have been found to be able to tell apart their native 

languages based on prosodic cues (Gervain & Werker, 2013), and monolingual 

                                                 
3     Do:   HD = 2.228, HE = 2.199, HU = 2.804 

Wash:  HD = 1.606, HE = 1.566, HU = 2.334 
Think:  HD = 1.475, HE = 1.796, HU = 2.063 

Walk:  HD = 2.338, HE = 1.620, HU = 2.666 

D = Dutch, E = English U = unified  
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children of merely a few hours old were able to distinguish vowels that did or did not 

belong to their native language based on prenatal learning (Moon, Lagercrantz & 

Kuhl, 2013). In short, it appears that languages in general are very wealthy in cues 

that can be used to tell them apart. Assuming that the lexicons of two languages are 

unified in the brain the hypothesis might, as such, not be dramatically far-fetched or 

problematic.  

 

 Table 2 below provides an overview of the expected outcomes per condition. For the 

first hypothesis, the expected outcome for the bilinguals is also provided for the sake of 

completion despite that they are expected to be slower. For every hypothesis, the expected 

outcomes for the monolinguals remains the same as they are only faced with a single verb 

paradigm. 

 

Table 2. Expected outcomes per hypothesis. Per condition the group expected to 

display faster reaction times is along with a plus or minus to indicate differences 

in speed within the hypothesis 

Hypothesis H–H L–H 

Increase workload Monolingual + 

(Bilingual -) 

Monolingual - 

(Bilingual  --) 

Additional support Bilingual + Bilingual - 

Unified paradigm Bilingual  + Bilingual + 

 

 

2.4. A final note on entropy and frequency 

Though the previously discussed study by Tabak et al. (2006;2010) already showed that, 

though both frequency and entropy affected reaction times, they have separate effects, I still 

deem it necessary to justify the choice of entropy over frequency for this study.  
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 First of all, form frequency (i.e., the frequency for a singular inflected form that is 

part of a larger paradigm) would not be as indicative as entropy as it looks only at a small 

part of the whole. This would result in wildly different expectations of the results depending 

on which part of the paradigm we choose to study. 

 Lemma frequency (i.e., the overall frequency of all forms of a paradigm put together) 

would then be a better choice. We would expect that items with high lemma frequency 

indicate stronger connections in the brain and hence would result in faster reaction times. 

However, this still has a distinct short coming. For example, suppose the existence of the 

following two paradigms: Paradigm A (frequency item 1: 100; frequency item 2; 100) and 

Paradigm B (frequency item 1: 350; frequency item 2: 50). A frequency based approach 

would predict faster reaction times for Paradigm B by virtue of the frequency for all items 

together is twice as high as that of Paradigm A. An entropy based approach, on the other 

hand, would predict faster reaction times for Paradigm A, by virtue of the distribution being 

perfectly equal, whereas this is very unequal for B. This then leads to a fork in the road rather 

than a conclusion; both measures predict different things. Based on previous work entropy 

seems to be more representative for neural networks than frequency, but we will justify the 

choice further still. 

 As section 3 will explain, the frequency data needed to calculate entropy are obtained 

from corpora. As this study will look at the processing of two languages, two corpora needed 

to be consulted. This is where using lemma frequency becomes troublesome: as the size of 

corpora differs greatly, and based on the source material might over or underrepresent certain 

verbs, it would be difficult to obtain a relative value representative for verbs in Dutch and 

English. Especially for the unified paradigm hypothesis, which involves the merger of two 

paradigms, this would present a problem. If the corpus for Dutch is twenty times as large as 

the corpus for English, adding the frequency of the English verbs to that of the Dutch verbs 
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will make for only a minor difference. If then, our hypothesis would be that higher lemma 

frequency would correspond to faster reaction times, the frequency data would predict a 

minimal difference, whereas this difference might in fact be much larger. Entropy has the 

advantage of being a relative value that is calculated based on the encapsulated differences 

between verb forms within the paradigm of the verb itself. In other words, absolute 

differences in frequency between verb paradigms will not have an impact on the entropy 

values.  

 We take the above to be sufficient in justifying the choice of employing entropy for 

the current study.   
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 3. Methodology 

3.1. Design 

The design of the experiment was already briefly mentioned at the end of section 2.3 and will 

be repeated here for the sake of clarity and completeness.  

 For the experiment, verbs were gathered that belong either, a) a high entropy verb 

paradigm in English and a high entropy verb paradigm in Dutch, or b) a low entropy verb 

paradigm in English and a high entropy verb paradigm in Dutch. In an auditory lexical 

decision task, English monolinguals and English-Dutch bilinguals were told to tell apart 

existing and non-existing English verbs as quickly as possible. In the presence of dual lexical 

activation, bilinguals were expected to perform differently than the monolinguals by virtue of 

the added verb paradigm. As this additional verb paradigm was not present for the 

monolinguals, this group was simply expected to respond faster for high entropy verbs and 

slower for low entropy verbs. Due to the low availability of English-Dutch participants, 

English native speakers who were proficient in Dutch were also included in the bilingual 

group. Before the experiment, all participants were asked to report the languages they speak 

along with a self-evaluated score of their proficiency.  

 

3.2. Participants 

In total, 10 participants were tested. As many English-Dutch bilinguals as possible were 

recruited, after which an equal number of English monolinguals were recruited to counter-

balance the experiment. As very few English-Dutch bilinguals were available, English 

speakers with varying proficiency levels in Dutch were also included in the bilingual group. 

Note that, though this group then consists of bilinguals and native speakers of English with 

Dutch as a second language, the group will be referred to as the ‘bilingual group’ throughout 

the rest of the paper. 
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During the evaluation of their language proficiencies, 2 participants revealed to speak 

more languages in addition to English and/or Dutch. These participants were excluded from 

the bilingual group during the analysis of the results. Hence, 8 participants remained; 4 in 

each group.  The information on age, language proficiency and occupation can be found 

below in table 3. 

 

Table 3. Overview participants (age, bilingual, and other language proficiencies). 

Participant 

number 

Bilingual Age Dutch 

proficiency 

Other 

language & 

proficiency 

Other 

language & 

proficiency 

Occupation 

pp01 Yes 24 5 n/a n/a Student 

pp09 Yes 26 3 n/a n/a Student 

pp10 Yes 20 10 n/a n/a Student 

pp04 Yes 30 2 n/a n/a Student 

pp02 No 23 n/a n/a n/a Student 

pp03 No 30 n/a n/a n/a Student 

pp07 No 25 n/a n/a n/a Student 

pp08 No 23 n/a n/a n/a Student 

pp05 Other 24 4 Spanish; 7 Italian; 4 Student 

pp06 Other 25 4 German; 8 French; 8 Student 

 

The mean age of the bilingual group is 25. The mean age of the monolingual group is 25.3. 

The excluded multilingual participants had a mean age of 24.5.  

 

3.3. Material 

As previously mentioned, two types of verbs were identified and used as stimuli: those 

belong to a high entropy English verb paradigm and a high entropy Dutch verb paradigm (H-

H) and those belong to a low entropy English verb paradigm and a high entropy Dutch 

paradigm (L-H). Adding the other two possible combinations (i.e., H-L and L-L) would have 
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broadened the range of conclusions that we could draw from the data. However, it appeared 

that generally Dutch verb paradigms tend to be higher in entropy than English verb 

paradigms. This made it impossible to gather sufficient stimuli that fit the other 

configurations.  

 As the experiment is an auditory lexical decision task, rather than a visual one, the 

stimuli were gathered from spoken corpora. The Dutch stimuli were adopted from Van Ewijk 

(2013). The English stimuli were gathered from the spoken part of the British National 

Corpus (BNC) (2007).  

 From the data from Van Ewijk, the Dutch stimuli that featured the fewest synonyms 

and translation equivalents (i.e. unambiguous verbs that have direct translation equivalents) 

were selected and matched with the English verbs. The mean entropy of the Dutch verbs 

were taken as the deciding middle point of what constitutes high or low entropy. After the 

entropy was calculated for the matched English verbs, the 40 verbs with the highest lemma 

frequency were selected for each condition. As the spoken part of the BNC is relatively 

small, as far as corpora go, the lemma frequencies for some stimuli were very low. The ones 

with the highest lemma frequencies were thus considered to be more reliably representative.  

 The English verbs served as the target stimuli for the experiment. From the verb 

paradigm, the simple past form was chosen. The motivation behind this is that the simple past 

form is most easily recognisable as a verb, as (7) below illustrates. 

 

(7) a.  is/I like  walking/thinking/sleeping/talking 

b.  I need (a) walk/think/sleep/talk 

c. the  walks/thinks*/sleeps*/talks 

d.  the  walked*/thought/slept*/talked*  
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The continuous form (7a) would have been a very poor choice as this can always be used as a 

noun in the gerund form. For the same reason, the singular present (7b) would also be a poor 

choice; though (7) is far from exhaustive, it shows that many of these forms occur also as 

nouns. Lastly, (7c) and (7d) illustrate that the possibility of 3rd person singular verbs and past 

tense verbs occurring as nouns are about equal. However, in the current list of material (see 

Appendix A), the verbs of form (7c) that can be used as nouns are roughly 50% more 

frequent than those of form (7d).  

In total there were 80 stimuli, 40 in each condition (a list of the English stimuli, their 

Dutch translation equivalent and their English and Dutch entropy values can be found in 

appendix A). To serve as controls, 80 non-verbs were invented. The non-verbs were all 

phonologically legal pseudo-words that featured common English regular and irregular 

simple past inflections. All verbs were recorded by an adult, male native speaker of English. 

The auditory stimuli were edited so that they did not feature a pause before or after the word. 

In total, all participants were presented 160 stimuli.  

 

3.3.1. Gathering the English stimuli: the EC4000 

One of the largest challenges in applying an information theoretical approach in language 

research is that inflectional entropy cannot be guessed; despite it having a measurable, 

subconscious effect on lexical retrieval, one cannot sense what the approximate inflection 

entropy of a verb paradigm will be. This makes gathering stimuli a rather lengthy process. 

Seeing especially how in the current study the entropy values had to conform to certain 

requirements to fit the predetermined conditions (H-H and L-H), over 200 verbs needed to be 

checked before finding 40 appropriate ones for each condition. Performing this process 

manually would imply obtaining frequency data from the BNC, performing the calculations 
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on an online entropy calculator and documenting the results. This process could easily take 

up to 10 minutes per verb, making the entire process of gathering stimuli last over 33 hours.  

 Instead, I chose to develop a programme that searched through the BNC 

automatically, extracted the frequency data and calculated the entropy. The Entropy 

Calculator 4000 (EC4000) was based on an earlier version (the EC3000) that required manual 

gathering of the frequency data. The newer version extracts the Dutch verb from a pre-

existing .xlsx document and prompts the user to enter the lemma of the translation equivalent. 

It then searches through a downloaded version of the BNC (which was, by the use of another 

script, trimmed down to contain only verbs in order to increase the processing speed) and 

extracts the frequency data for each verb form. As the corpus does not contain information on 

the number of functions of a verb form, the user is alerted by an audio fragment4 upon the 

completion of collecting the frequency data and presented with the verb forms and 

frequencies the programme gathered. Here, the user has the option to exclude certain verb 

forms from the calculations (e.g. ungrammatical single instances such as ‘thinked’) before 

entering the number of functions for each verb. Next, the entropy is calculated using the 

module from the old EC3000 which employed the calculations in (1) and (6). The entropy 

value is saved in an new .xlsx document which includes the Dutch lemma and the entropy of 

the respective verb paradigm, the English lemma and the entropy of the respective verb 

paradigm and the lemma frequency. The process is then repeated for the next verb on the list. 

 To ensure that the calculations were correct, frequency data for each verb form of a 

Dutch verb, obtained from Van Ewijk (2013), were fed into the EC4000. It reproduced the 

entropy value reported in the original paper exactly. Furthermore, the lemma frequencies the 

EC4000 reported for a few randomly selected verbs were compared to those obtained from 

                                                 
4 From the modern classic cinematic master piece The Room (2003).  
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the web-based version of the BNC. No difference was found. The full code of the EC4000 

can be found in Appendix B.  

 

3.4. Procedure 

The participants were tested in a soundproof booth in the UiL OTS lab. The booth contained 

two speakers, set to a comfortable but clear volume, a chair and a monitor and button box 

placed on a desk at a comfortable distance from the seated participant.  

After filling out the language proficiency form, the informed consent form and 

reading the information letter, they were provided with instructions from the experimenter. 

All participants received instructions in English to prevent priming effects. The participants 

were told that their task is to decide, as quickly as possible, whether the verb they heard does 

or does not exist in the English language, and that they should do so using the button box in 

front of them. The buttons on the box were labelled NO and YES. The participants were 

explicitly informed that the verbs all featured simple past tense.  

Before the actual experiment, the participants had to complete a trial phase featuring 2 

words that were not included in the test phase. During this trial phase, the experimenter was 

present to oversee if all went well and to be available for any further questions after the 

completion of the trial phase. During the test phase, the experimenter left the booth. After 

completion of the experiment, participants were compensated 5 euros. The total duration of 

the experiment (including the signing of forms) was around 10 minutes. 

 The experiment itself was made using ZEP (Veenker, T.J.G., 2016). It was based on 

the pre-existing template for auditory lexical decision experiments. The script first shows a 

fixation dot on the monitor to assure participants’ attention before playing an auditory 

stimulus. The stimuli were automatically randomised per participant to prevent any effect the 

order of the stimuli might have. After the stimulus was played, participants had 2000 ms to 
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judge the stimulus using the button box. After 2000 ms, the fixation dot was displayed again 

and the experiment moved on to the next stimulus.  

 The experimental script automatically recorded the reaction time of the participants 

for each item, along with their choice and the target answer. If a participant answered 

correctly within 2000 ms, their reaction time was recorded as well as a ‘1’ in the column 

‘correct’ to indicate the quality of their answer. If participants answered incorrectly the 

reaction time was still reported as well as a ‘0’ was in the ‘correct’ column. In the case a 

participant did not respond on time, the reaction time was recorded as -9999 and their answer 

showed in the column ‘correct’ as -1.  

 

3.5. Coding of results 

The results were exported to SPSS (SPSS Inc., Chicago IL) where the participant information 

(bilingual/monolingual/other and Dutch proficiency) were added, as well as the stimulus 

information (Dutch inflection entropy, English inflection entropy and condition). 

Furthermore the reaction times for the control items (i.e. the non-verbs) were discarded. The 

new dataset was saved and further analysed in R studio (RStudio Team, 2015). 

 In R, the participants who were proficient in more languages beyond Dutch and 

English were excluded from the bilingual group and the overall comparative analyses 

between the two groups.  

 Furthermore, the data for incorrect responses and lack of responses were excluded. 

For the remaining data, the log of the reaction times were taken in order to ensure a normal 

distribution. With Bates, Maechler and Bolker’s lme4 package (2013), the data was analysed 

using linear mixed effects models. Participants and items were added as random factors.  
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4. Results 

Table 4 reports the mean score for correctness and reaction times (RT) of the monolinguals, 

the bilinguals and the bilinguals who spoke more languages in addition to English and Dutch. 

 

Table 4. Mean error rates and mean RT in ms of correct items per group per condition 

Group & Condition % correct Mean RT of correct items 

Monolingual;  H-H 95% 969 

Monolingual; L-H 97.5% 996 

Bilingual;  H-H 95.6% 826 

Bilingual;  L-H 99.3% 831 

Multilingual;  H-H 96.3% 829 

Multilingual;  L-H 97.5% 845 

 

 

 The rate of correctness did not differ significantly between conditions for the 

monolinguals (β= 0.03, SE = 0.03, t = .08, p = .423) or the bilinguals ((β= 0.04, SE = 0.03, t = 

1.37, p = .175). Furthermore, no significant difference was found in error rate between the 

bilinguals and monolinguals (β= 0.01, SE = 0.01, t = .79, p = .456).  

Figure 2 illustrates a boxplot of the reaction times per group per condition for the 

correctly judged items.  
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Fig. 2: Box plot of RTs per group per condition 

 

The difference between conditions was not significant for either group (monolingual: β = .02, 

SE = 0.03, t = .76, p = .449; bilingual: β > .01, SE = 0.03, t = .16, p = .878). The difference in 

RT between groups was significant for the bilinguals compared to monolinguals: (β = -.16, 

SE = 0.06, t = -2.86, p = .024). 

 So far, two things have become apparent: the bilingual groups is generally faster than 

the monolingual group, and condition does not seem to affect either group. The box plot in 

figure 2 does, however, seem to show a difference between conditions within the 

monolingual group. We will assume that what we have taken to constitute high and low 

entropy does not capture the data, and, instead, include the entropy of the English verbs as a 

main effect. Furthermore, the increased workload hypothesis and additional support 
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hypothesis would predict that the data of the bilingual group would be captured by using the 

interaction of the English entropy vales and the Dutch entropy values.  

 The entropy value of the English verb paradigms had a significant effect for the 

monolingual group (β = -.11, SE = 0.05, t = -2.28, p = .003), but not for the bilingual group (β 

= -.06, SE = 0.04, t = -1.43, p = .158). The inclusion of the interaction between the English 

and Dutch entropy values was not significant either for the bilingual group (β = .29, SE = 

0.21, t = 1.42, p = .159).  

 Lastly, the interaction of the self-indicated Dutch proficiency scores were added to the 

previous interaction. This, too, had no effect on the bilingual group (β = .04, SE = 0.05, t = 

.81, p = .419). 
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5. Discussion & Conclusion 

It is important to start this section with a great note of caution: the amount of participants 

used in the current experiment were, by far, insufficient to draw firm conclusion from the 

findings. In order for the current study to have enough statistical power, we would have 

required ten times the current number of participants. However, the following paragraphs will 

draw conclusions from the current data and discuss the implications of the findings that 

would apply should the results presented in the previous section be representative of a much 

larger sample of participants. In short, the conclusions and implications in the paragraphs 

below should not be taken as empirical truths, but at most as hints at what a larger scale study 

might find and what the implications of these findings would be.  

 First of all, it appeared that the dividing line between high and low inflection entropy 

defined in this study were not entirely accurate as such as no difference between the 

condition was found for the monolingual group. However, replacing this measure by the 

gradual effect of the English entropy values instead of the binary high/low factor proved to be 

effective in capturing the data of the English monolingual group. The estimate showed a 

negative correlation between entropy and reaction time, meaning that as entropy increases, 

reaction time decreases. From this, it can be concluded that the calculated entropy values 

were reliable to use as an independent variable. The English entropy values did, however, 

have no effect on the bilingual group, nor did the Dutch entropy values or the interaction 

between the two entropy values. At this point, it is safe to discard both the increased 

workload hypothesis and the additional support hypothesis.  

 The increased workload hypothesis predicted that the addition of an extra verb 

paradigm would, by definition, require more processing power and, consequently, slow 

reaction times regardless of condition. However, based on the fact alone that the bilinguals 

responded significantly faster than the monolinguals, regardless of condition, this hypothesis 
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does not seem to hold. Furthermore, the hypothesis predicted a difference between conditions 

within the bilingual group. This difference was not present in the results. 

 The additional support hypothesis predicted that the activation of an additional verb 

paradigm would either slow the reaction time or speed it up, depending on whether the 

additional paradigm was of low or high entropy respectively. With the current material, we 

would thus expect to find a) the bilinguals to show faster reaction times than the 

monolinguals and, b) a within-group difference between conditions for the bilinguals. The 

first prediction was definitely present: the bilinguals were found to be significantly faster than 

the monolinguals. However, there was no difference found between conditions within the 

bilingual group. One could argue that, as in both conditions the reaction time was facilitated 

by the presence of an additional, high entropy verb paradigm, the difference between the two 

conditions simply became ‘blurred’; i.e. the differences were sufficiently minuscule to 

become immeasurable. However, this does not correlate with what this hypothesis predicts. 

 The hypothesis that seems to best account for the data is the unified paradigm 

hypothesis. This hypothesis predicted that verb paradigms in the bilingual mental lexicon 

encompass all inflected verb forms of both languages. To predict the performance then of 

bilingual participants, the entropy value should be calculated on the basis of the information 

loads of both the English and the Dutch verb forms. As presented in section 2.3, entropy 

values universally seem to increase as more is added to the paradigm. The hypothesis thus 

predicts that the bilinguals will be notably faster than the monolinguals. Furthermore, the 

entropy values of a system A and a system B cannot be taken to be indicative of the entropy 

value of a system C in which the individual probabilities of systems A and systems B are 

combined. This was reflected in the results by the fact that neither the Dutch entropy values, 

the English entropy values or the interaction between the values were able to capture the 

performance of the bilinguals.  
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 In terms of the mental lexicon, the hypothesis implies that lexemes that carry the same 

semantic information in both languages are stored as single collection in the same place. 

Baayen et al. (2006) argued that paradigm that is more complex and inflectionally rich 

contains more connections to other items in the mental lexicon. According to them, this 

would result in faster reaction times. This argument pertained to the language internal 

differences between high and low entropy paradigms, however, it would stand to reason that 

if the lexemes of two languages are mapped to the same paradigm, it would vastly increase 

the number of connections to the rest of the mental lexicon. This explanation also accounts 

for the seemingly universal tendency of English verb paradigms to increase in entropy when 

the lexemes of the Dutch verb paradigm are added to it.  

 So far, an important fact about the bilingual participants in this study has been 

footnoted: namely that the set of participants only included one true English-Dutch 

bilinguals. The other participants in this group were English native speakers who learned 

Dutch as a second language with varying degrees of proficiency. If the same results were 

found on a larger scale experiment, it would imply that even when learning a second 

language, the L2 words that share a translation equivalent in one’s native language are 

mapped onto the same space at a rather early stage in the acquisition of the language.  

 Lastly, the account provided here and the relevant entropy measures also seem to 

account for previous findings. In section 2.2.2, a study by Gollan, Montoya, Fennema-

Notestine and Morris (2005) was mentioned that found that bilinguals who had one language 

that was clearly more dominant than the other were still slower in picture naming tasks than 

monolinguals. According to the unified paradigm hypothesis, these bilinguals would 

generally have word paradigms of greater inflection entropy. As was explained in section 

2.1.2, this would lead to faster reaction times in comprehension tasks, such as auditory lexical 

decision tasks, but slower reaction times in production tasks such as the one used by Gollan 
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et al. The unified paradigm hypothesis thus seems to be capable of accounting for the data 

found in the Gollan et al. study.   

 In conclusion, the present study set out to discover whether a difference could be 

found between the mental lexical organisation of bilinguals and monolinguals. The reasoning 

behind this was that in bilinguals, both languages might be activated at once even when they 

are performing tasks in only one of their languages. The study lacked sufficient power to 

make firm, empirical conclusion about this, but the results hint that this is indeed the case. 

Furthermore, the study applied information theoretical measures to test the hypotheses. A 

secondary goal was to find out whether these measures could serve as a useful, reliable tool 

in bilingual studies. Once again, no firm conclusions can be drawn from the current data, but 

at the very least this study hints at that information theoretical measures can prove to be a 

powerful approach in bilingual studies and even provided a measure that might be more 

applicable to bilinguals than calculating the entropy of their verb paradigm separately for 

each language. Future studies could investigate further if it is indeed more appropriate to treat 

bilingual verb paradigms as unified by testing whether the combined entropy makes accurate 

predictions about their reaction time in lexical decision tasks.  
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Appendix A: List of stimuli with entropy values 

 

 Verbs Entropy English Entropy Dutch  Non-verbs 

L1 crept 1,531 2,41 1 Treft 

L2 sounded 0,644 1,94 2 Ploarsed  

L3 kissed 1,593 2,26 3 Dravelled 

L4 scratched 1,31 2,37 4 Oarsed 

L5 pinched 1,657 2,15 5 Wrelled 

L6 demanded 1,343 2,25 6 Walshed 

L7 stole 1,547 1,547 7 Stelt 

L8 slept 1,578 2,18 8 Flut 

L9 threatened 1,474 2,15 9 Betraved 

L10 understood 1,296 2,03 10 Restood 

L11 shone 1,461 2,01 11 Blung 

L12 cared 1,597 2,16 12 Trowled 

L13 hung 1,443 2,26 13 Trung 

L14 pushed 1,564 2,24 14 Dwarked 

L15 wished 1,572 2,35 15 Brinted  

L16 floated 1,086 2,27 16 Earsted 

L17 climbed 1,355 2,45 17 Reaved 

L18 drove 1,619 2,18 18 Snove 

L19 hit 1,534 2,27 19 Jit 

L20 meant 1,143 2,39 20 Trunt 

L21 cut 1,386 1,89 21 Krit 

L22 lied 1,582 2,28 22 Plented 

L23 walked 1,438 2,43 23 Sindered 

L24 heard 1,635 2,38 24 Dankt 

L25 sat 1,42 2,2 25 Strit 

L26 let 1,499 2,04 26 Swit 

L27 sought 1,433 2,44 27 Jought 

L28 ran 1,425 2,19 28 Yint  

L29 sang 1,492 2,35 29 Asht 

L30 appeared 1,524 1,91 30 Dempled  
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L31 read 1,248 1,96 31 Vung 

L32 thought 1,454 2,37 32 Genought 

L33 talked 0,742 1,92 33 Drempled 

L34 stood 1,562 2,12 34 Goot 

L35 played 1,442 2,25 35 Spranded 

L36 looked 1,653 2,21 36 Floofed 

L37 moved 1,534 2,21 37 Exered  

L38 saw 1,625 2,35 38 Trum 

L39 put 1,385 1,87 39 Brust 

L40 split 1,534 1,85 40 Clarpt 

H1 added 1,755 2,32 41 Dreared 

H2 died 1,925 1,98 42 Beroaved 

H3 served 1,857 2,12 43 Dilaped 

H4 sent 1,854 2,08 44 Benst 

H5 pulled 1,756 2,39 45 Frankered 

H6 won 1,966 1,74 46 Ston 

H7 bought 1,761 2,14 47 Endought 

H8 wore 1,882 2,34 48 Frore 

H9 wrote 1,869 2,04 49 Geft 

H10 ate 1,942 1,76 50 Jint 

H11 pointed 1,821 2,48 51 Foared 

H12 spoke 1,895 2,21 52 Frood 

H13 woke 2,277 1,93 53 Doke 

H14 found 1,674 2,43 54 Stound 

H15 chose 2,006 1,74 55 Fose 

H16 asked 1,673 2,22 56 Bittled 

H17 threw 1,994 2,24 57 Prew 

H18 rang 2,213 2,24 58 Shrang 

H19 stopped 1,841 2,37 59 Nellowed 

H20 learned 1,674 2,13 60 Curted 

H21 helped 1,767 2,18 61 Frittled 

H22 followed 1,691 2,21 62 Janked 

H23 broke 2,096 1,89 63 Plent 
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H24 turned 1,934 2,2 64 Tummed 

H25 created 1,853 1,91 65 Gangled  

H26 showed 2,121 2,2 66 Pinkled 

H27 became 1,817 2,2 67 Bood 

H28 lead 1,793 2,07 68 Bestrood  

H29 stayed 1,739 2,4 69 Klunged 

H30 felt 1,848 2,28 70 Sprought 

H31 fell 2,153 2,1 71 Zunt 

H32 brought 1,931 2,06 72 Jimpt 

H33 held 1,783 2,26 73 Frenst 

H34 gave 2,078 2,24 74 Hought 

H35 took 2,17 2,51 75 Lought 

H36 made 1,912 2,16 76 Sut 

H37 went 1,768 1,98 77 Splought 

H38 came 1,769 2,45 78 Mought 

H39 said 1,934 2,09 79 Klought 

H40 did 2,227 2,31 80 Fid 
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Appendix B: Code of EC4000 

 
import xml.dom.minidom 
from xml.dom.minidom import parse, parseString 
import os 
import collections 
import time 
import math 
import re 
import os 
import sys 
import pygame 
from openpyxl import load_workbook 
from openpyxl import Workbook 
pygame.mixer.init() 
 
 
def load_wbw(): 
    global wbw 
    global wsw 
    try: 
        wbw = load_workbook(filename = 'entropy.xlsx') 
        wsw = wbw['Sheet'] 
        print('ADDING TO EXISTING WORKBOOK') 
    except FileNotFoundError: 
        wbw = Workbook() 
        wsw = wbw['Sheet'] 
        print('CREATING NEW WORKBOOK...') 
load_wbw()    
wb = load_workbook(filename = 'verbs.xlsx') 
sheetnames = wb.sheetnames 
ws = wb[sheetnames[0]] 
wsw['D1'] = 'verb-english' 
wsw['E1'] = 'H' 
wsw['F1'] = 'Lemfreq' 
wsw['G1'] = 'Comparison' 
 
def ohhi(): 
    pygame.mixer.music.load("OhHiMark.wav") 
    pygame.mixer.music.play() 
    pygame.mixer.music.stop 
def lisa(): 
    pygame.mixer.music.load("Lisa.wav") 
    pygame.mixer.music.play() 
    pygame.mixer.music.stop 
def what(): 
    pygame.mixer.music.load("What.wav") 
    pygame.mixer.music.play() 
    pygame.mixer.music.stop 
def yeah(): 
    pygame.mixer.music.load("Yeah.wav") 
    pygame.mixer.music.play() 
    pygame.mixer.music.stop 
def okay(): 
    pygame.mixer.music.load("Okay.wav") 
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    pygame.mixer.music.play() 
    pygame.mixer.music.stop 
 
def collect_verb(word_english): 
    verb = word_english 
    thing = [] 
    total_list = [] 
    FR = [] 
    sum_log_FR = [] 
    P = [] 
    Plog = [] 
    Psum = [] 
    count = 0 
    t0 = time.time() 
 
 
    file_dir = './verb_files' 
    for subdirs, dirs, filenames in os.walk(file_dir): 
 
        for file in filenames: 
            print(file,'\n') 
            count+=1 
            print("percentage done \n %s" % ((count/len(filenames))*100),'% \n\n') 
            if file.endswith('.xml'): 
                datasource = open(os.path.join(subdirs, file), 'r', encoding='UTF-8') 
                dom = parse(datasource) 
                w=dom.getElementsByTagName('w') 
                for node in w: 
                   if node.getAttribute('pos') == 'VERB' and node.getAttribute('hw') == verb: 
                        thing.append(str.strip(str.lower(node.lastChild.nodeValue))) 
 
    t1= time.time() 
    print('finished in: %s seconds' % (t1-t0),0) 
    dict_temp = collections.Counter(thing) 
    print(dict_temp) 
    ohhi() 
     
    def delete(): 
        yn = input(str("Would you like to delete anything? ")) 
        if yn == 'y': 

what1 = input(str("What would you like to delete? " ).lower()) 
            if what1 in dict_temp: 
                del dict_temp[what1] 

print(dict_temp) 
                delete() 
            else: 
                print("Doesn't exist, boi") 
                delete() 
        elif yn == 'n': 

print("Moving on...")  
        else: 

delete() 
    delete() 
 
    for x, value in dict_temp.items(): 
        key = str((x, value)) 
        def options(): 
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            usr_input = input("Add number of functions for %s : " % (key)) 
            try: 
                a = int(usr_input) 
                dict_temp[x] = [dict_temp[x], a] 
            except ValueError: 
                print("YOU ARE TEARING ME APART LISA!!!") 
                lisa() 
                options() 
        options() 
         
    dict_verb = dict(dict_temp) 
    print(dict_verb) 
 
    #Entropy calculating sub-module 
     
    for item, values in dict_verb.items(): 
        total_list = [] 
        total_list.append(values[0]) 
    global total 
    total = sum(total_list) 
    print(total) 
 
    for item, values in dict_verb.items(): 
          print('The frequency counts are: ',values[0]) 
          print('The number of functions are: ',values[1]) 
          FR.append((values[0]/total)/values[1]) 
          sum_log_FR.append(((values[0]/total)/values[1])*math.log2((values[0]/total)/values[1])) 
 
    sum_FR = math.fsum(FR) 
    print(FR) 
 
    n = 0 
    while n < len(FR): 
          P.append(FR[n]/sum_FR) 
          Plog.append(math.log2(FR[n]/sum_FR)) 
          Psum.append(P[n]*Plog[n]) 
          n+=1 
 
    global H 
    H = (-1*round(sum(Psum),3)) 
    print("H =",-1*round(sum(Psum),3)) 
     
 
def copy_data(): 
     
    #function lists 
    col = ['A','B','C'] 
 
    #function 
    for letter in col: 
        verb_d=ws[letter] 
        for cel in verb_d: 
            x = 0 
            y = 1 
            while x < len(verb_d): 
                wsw['%s%s' % (letter,y)] = verb_d[x].value 
                x+=1 
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                y+=1 
 
 
def go_through_list(): 
    copy_data() 
    #function variables 
    try: 
        with open("saved_state.txt") as f: 
            saved = f.read().splitlines() 
            f.close() 
        if os.stat("saved_state.txt").st_size == 0: 
            x = 1 
            print(str.upper('Starting fresh')) 
        else: 
            inp=input("CONTINUE FROM SAVED STATE (Y/N)? ") 
            if inp.lower() == 'y': 
                x = int(saved[0]) 
                print(str.upper('Resuming from saved state')) 
            else: 
                x = 1 
                print("Starting fresh") 
    except FileNotFoundError: 
        x=1 
 
    y = x+1 
    verb_form = wsw['A'] 
    verb_form_En = ws['D'] 
    Hd = wsw['B'] 
    He = wsw['E'] 
    empty_string = "" 
 
    for cel in verb_form: 
        ##controlled runtime 
        #while x < 4: 
        ##whole thing 
        while x < len(verb_form): 
            word_dutch = verb_form[x] 
            print(verb_form[x].value) 
            print(verb_form_En[x].value) 
            #skip regular verbs 
            if verb_form_En[x].value == None or verb_form_En[x].value == empty_string: 
                x+=1 
                y+=1 
                print("regular") 
            elif He[x].value != None or He[x].value != empty_string: 
                x+=1 
                y+=1 
                print("entropy known") 
            else: 
                if 1 == 1: 
               # if verb_form_En[x].value != None or verb_form_En[x].value != empty_string: 
                    word_english = verb_form_En[x].value 
                    print(word_english) 
                    wsw['D%s' % (y)] = word_english 
 
                    print(wsw['D%s' % (y)]) 
                    print(wsw['D%s' % (y)].value) 
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                    wsw['D%s' % (y)] = word_english 
                    collect_verb(word_english) 
                    wsw['E%s' % (y)] = H 
                    wsw['F%s' % (y)] = total 
                    try: 
                        a = float(Hd[x].value) 
                        if a > 1.987 and H > 1.987: 
                            wsw['G%s' % (y)] = "H - H" 
                        elif a > 1.987 and H < 1.987: 
                            wsw['G%s' % (y)] = "H - L" 
                        elif a < 1.987 and H < 1.987: 
                            wsw['G%s' % (y)] = "L - L" 
                        elif a < 1.987 and H > 1.987: 
                            wsw['G%s' % (y)] = "L - H" 
                    except ValueError: 
                        print("YOU ARE TEARING ME APART LISA!!! \n\n (something went wrong in comparing H-
values)") 
                        lisa() 
                    wbw.save('entropy.xlsx') 
                    x+=1 
                    y+=1 
                else: 
                    #word_english = str(input('INFO: type \'QUIT\' to quit and \'SKIP\' to skip word \n\n Enter 
translation for verb %s: ' % (word_dutch.value))) 
                    word_english = "SKIP" 
                    print(word_english) 
                    if word_english == "SKIP": 
                        x+=1 
                        y+=1 
                    elif word_english == "QUIT": 
                        wbw.save('entropy.xlsx') 
                        saved=open('saved_state.txt','w') 
                        saved.write(str(x)) 
                        saved.close() 
                        quit() 
                    else: 
         
                        print(wsw['D%s' % (y)]) 
                        print(wsw['D%s' % (y)].value) 
                        wsw['D%s' % (y)] = word_english 
                        collect_verb(word_english) 
                        wsw['E%s' % (y)] = H 
                        wsw['F%s' % (y)] = total 
                        try: 
                            a = float(Hd[x].value) 
                            if a > 1.987 and H > 1.987: 
                                wsw['G%s' % (y)] = "H - H" 
                            elif a > 1.987 and H < 1.987: 
                                wsw['G%s' % (y)] = "H - L" 
                            elif a < 1.987 and H < 1.987: 
                                wsw['G%s' % (y)] = "L - L" 
                            elif a < 1.987 and H > 1.987: 
                                wsw['G%s' % (y)] = "L - H" 
                        except ValueError: 
                            print("YOU ARE TEARING ME APART LISA!!! \n\n (something went wrong in comparing H-
values)") 
                            lisa() 
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                        wbw.save('entropy_2.xlsx') 
                        x+=1 
                        y+=1 
 
        wbw.save('entropy.xlsx') 
go_through_list() 
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