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Abstract

In this thesis we discuss the Markov model for insurance. We start by intro-
ducing the reader to Markov chains and deriving some results which we need
for the remainder of the thesis. After that we shift our focus to insurance.
First we introduce a mathematical way to write down quantities determined in
some basic insurance contracts. Next we derive some results about the expected
prospective reserves. Then we will implement the Markov chain model in the
mathematical language of insurance. Lastly we will take a small detour into
the world of statistics, to see how we would obtain estimates for intensities of
transition, introduced in the Markov model.
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Chapter 1

Introduction

When thinking about life insurance, usually one or two things come to mind
with most people. The first thing that comes to mind is a salesperson trying to
sell you a life insurance that you did not know you wanted, but the salesman
insists you should buy.

Either that, or they think of some exciting book or TV-series in which a
person dies under suspicious circumstances. After an investigation the police
find out that the husband or wife of the deceased gets a large sum of money
because of a life insurance contract, making things even more suspicious...
However let us not delve too deep into that.

So most people know life insurance has something to do with getting
money conditional on survival to some period, which is indeed true. Even the
ancient Romans had forms of life insurance. Roman soldiers would have a part
of their salaries set aside to cover funeral expenses from a mutual fund [3].
While Greece is known for some great mathematicians, the Roman Empire did
not produce any mathematicians of note [1]. We may assume that there was
no interesting mathematical model underlying the Romans life insurance. The
field of statistics was not practiced until hundreds of years later anyway.

One of the first to do a proper study concerning life insurance was Ed-
mund Halley. He produced a paper in 1693, in which he wrote mortality tables,
as well as ways to calculate the price of annuities based on the expected life
length [2]. In the years between then and now, of course a lot has been said
and written on the topic. In this thesis we will mostly rely on a collection of
papers from Ragnar Norberg called Basic Life Insurance Mathematics [5].

We will write about life insurance from the perspective of a Markov chain
model. The first chapter will strictly concern theory on Markov chains. After
that, the second chapter starts with some basic things about life insurance,
like how to write payment streams, and the definition of basic contract in a
mathematical sense. When we know enough about the basics of life insurance,
we proceed by implementing the Markov model into the equations we found
in the equations for the reserves. Lastly we consider some statistics to be able
estimate all needed quantities that arise from assuming the Markov model.
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Chapter 2

Markov Chains

In preparation to the next sections, where we make generous use of the properties
of Markov chains, we will first describe them in a little more detail. We start
with a basic example to make the concept clear, after which we discuss some
of the properties and variations of Markov chain models. If you are already
familiar with Markov chains, you may skip ahead to Section 2.2.

2.1 An Introductory Example

Consider a student writing an important paper. Suppose we divide the amount
of time per day spent on studying in three categories: Studying hard, studying a
little and not even bothering. Since students can be short of memory we assume
that the amount of studying the student does the next day only depends on the
the amount he does today. Figure 2.1 below displays the three states and the
arrows indicate the chance of being in that state the next day.

Figure 2.1: An example of a Markov process
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Note that in this example we can go from every state to every other state,
but this does not have to be the case. We could for example also have added a
state ‘Dropped out of school, never to return,’ in which the probability of going
to any state other than itself is 0.

From the graph we can deduce that, for example, if the student is studying
a little today, he will study hard with probability 0.5 tomorrow.

The Markov property is just that. The conditional probability of a future
state only depends on the present state and not on any other state in the past.
Before we make this notion a little more precise we have to distinguish between
discrete and continuous time Markov chains.

2.2 The Markov Property

Discrete time Markov chains, such as the one on the previous page, can jump
between states only on certain moments of time t ∈ N. Since the definition of
the Markov property for discrete and continuous time are almost analogous we
will consider the continuous case directly. For the rest of this chapter we follow
the approach of Chapter 7.2 of [5].

We define a stochastic process to be a collection of random variables that
describes an evolution over time. For example we write {Z(t)|t ∈ T} for the
stochastic process Z and set of possible times T . The process is called a Markov
process, if the process possesses the Markov property.

Definition 2.2.1 Consider a finite state space Z = {0, 1, ..., r} with jk ∈ Z,
and a stochastic process Z(tk) on some probability space (Ω,H, P ) with values
in Z. Further let tk ∈ T ⊂ R for all k, with T some ordered index set. We
define the Markov property as follows

P [Z(tk) = jk | Z(tk−1) = jk−1] = P [Z(tk) = jk | Z(th) = jh, h = 0, 1, ..., k − 1],
(2.1)

where Z(t0) = j0 by definition and 0 = t0 < t1 < · · · < tk.

The Markov property is also often referred to as ‘memorylessness’, as the future
and past are independent when the present is known.

As we will see, it is convenient to introduce some notation for writing the
conditional probabilities. From now on, we shall write

pjk(t, u) = P [Z(u) = k | Z(t) = j]. (2.2)

Which we call the transitional probability of transferring from state j at time
t to state k at time u. This allows us for example to easily write down (and
calculate)

P [Z(th) = jh, h = 1, ..., p|Z(t0) = j0] =

p∏
h=1

pjh−1jh(th−1, th), (2.3)

with jk and tk as defined above and Z(t) having the Markov property. Further-
more we introduce a compact way to write the probability of going from some
state j to a subset of the state space K ⊂ Z,
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pjK(t, u) = P [Z(u) ∈ K | Z(t) = j] =
∑
k∈K

pjk(t, u). (2.4)

Before we move on to the next section, we would like to take the time
to review the Chapman-Kolmogorov equation. The equation states that the
probability of going from state i at time s to state k at time u ≥ s is equal to
summing over all possible states the process can go to in the time between. To
show this, we first note that the probability of being in any state j ∈ Z at a
fixed time t ≥ 0 is 1, or in other words

∑
j∈Z P [Z(t) = j] = 1 and that these

events {Z(t) = j} are disjoint. In that case we may write

P [Z(u) = k | Z(s) = i] = P [Z(u) = k,
⋃
j∈Z

Z(t) = j | Z(s) = i]

=
∑
j∈Z

P [Z(u) = k, Z(t) = j | Z(s) = i]

=
∑
j∈Z

P [Z(t) = j | Z(s) = i]P [Z(u) = k | Z(s) = i, Z(t) = j].

The second line follows from the disjointness of the events {Z(t) = j}, so that
they may be summed. The third line can be easily checked by writing out the
conditional probabilities.

Next suppose Z is Markov and that 0 ≤ s ≤ t ≤ u, then the above equation
can be rewritten using the transition probability notation as

pik(s, u) =
∑
j∈Z

pij(s, t)pjk(t, u). (2.5)

This equation is known as the Chapman-Kolmogorov equation.

2.3 From Transition Probability to Intensity of
Transition

Determining the transition probabilities for a discrete time Markov model is
pretty straightforward. For a discrete time Markov chain Z with t ∈ T =
{tk|k = 0, 1, ..., q} such that 0 = t0 < t1 < · · · < tq it boils down to letting
pjk(th−1, th) ≥ 0 in such a way that

∑
k∈Z pjk(th−1, th) = 1, h ∈ T − {t0}.

However, this does not translate well to the continuous model. In the continuous
model we work with infinitely small time intervals, so we need to modify our
approach when specifying the model.

Norberg gives two equivalent definitions of the so called intensities of tran-
sitions, allowing smoothness assumptions, that solve this problem [5].

Definition 2.3.1 Consider a Markov process with state space Z and states
j, k ∈ Z. Then we define the intensities of transition as

µjk(t) = lim
h↓0

pjk(t, t+ h)

h
⇐⇒

pjk(t, t+ dt) = µjk(t)dt+ o(dt),
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where o(dt)
dt → 0 as dt→ 0. We suppose that these functions µjk(t) are piecewise

continuous.

It is important to note that these intensities in general do not represent the
transition probabilities. Only in the case where the intensities are approximately
constant and << 1 for all k 6= j on an interval dt, then µjk(t)dt ≈ pjk(t, t+ dt).
So this is only true when the intensities do not necessarily depend on t, which is
an assumption we cannot often make in applications, as we will see in the next
section.

To calculate the probability of staying in the same state we first show a few
steps in between. We start by looking at the intensity of transition from state
j to K ⊂ Z, with j /∈ K. We define this as follows

µjK(t) = lim
u↓t

pjK(t, u)

u− t
=
∑
k∈K

µjk(t). (2.6)

If we let K = Z − j in the above definition, we write

µj·(t) =
∑
k;k 6=j

µjk(t), (2.7)

to get the intensity of transition out of state j. It is obvious that pjZ(t, u) =∑
k∈Z pjk(t, u) = 1, for you have to be in some state of the state space. The

complement of staying in state j, is going to any other state k 6= j. Combining
this with the above definition gives

pjj(t, t+ dt) = 1− µj·(t)dt+ o(dt) (2.8)

for the transistion probability of staying in the same state.

2.4 The Kolmogorov Differential Equations

Now that we have the intensities of transition, we can use them to write down
how the transition probabilities behave over time. To do this, we could just
use the Chapman-Kolmogorov equation and insert our definition of the tran-
sition probability there. However, we will also give a different, more intuitive
argument. The structure of this argument will be used later on as well.

For the transition probability pjk(t, u) we are going to divide the interval
(t, u) up into two; (t, t + dt) and [t + dt, u). In the first interval there are two
possibilities. With probability pjj(t, t+ dt) = 1− µj·(t)dt+ o(dt) the process Z
may remain in state j after which it goes to state k with probability pjk(t+dt, u).
Secondly Z can switch to any other state g with probability µjg(t)dt + o(dt),
after which the probability of ending up in state k is given by pgk(t + dt, u).
Combining the above we get

pjk(t, u) = (1−µj·(t)dt)pjk(t+dt, u)+
∑
g;g 6=j

µjg(t)dtpgk(t+dt, u)+o(dt). (2.9)

Now let dtpjk(t, u) = pjk(t+ dt, u)− pjk(t, u) then we get

6



dtpjk(t, u) = µj·(t)dtpjk(t+ dt, u)−
∑
g;g 6=j

µjg(t)dtpgk(t+ dt, u) + o(dt). (2.10)

These equations are called the Kolmogorov backward differential equations and
along with the conditions pjk(u, u) = δjk, the Kronecker delta, uniquely deter-
mine the functions of the transition probabilities.

Remember that we defined the intensities as piecewise continuous functions,
so that we may divide the above equation by dt and take the limit for dt → 0
to obtain

∂

∂t
pjk(t, u) = µj·(t)pjk(t, u)−

∑
g;g 6=j

µjg(t)pgk(t, u). (2.11)

The equation is called backwards because we start by looking back at the
very beginning t and some very small time t + dt later. As the name sug-
gests, there is a forward equation as well and with argumentation similar to the
backwards equation it is given by

dtpij(s, t) =
∑
g;g 6=j

pig(s, t)µgj(t)dt− pij(s, t)µj·(t)dt. (2.12)

Now that we have a suitable method of finding the transitional probabilities,
we want to make a (maybe obvious) distinction between pjj(t, u), and staying
in state j the entire time. The former allows the process to go to any other
state during time (t, u). It just needs to start and end up in state j. For the
latter we define

pjj(t, u) = P [Z(τ) = j, τ ∈ (t, u] | Z(t) = j]. (2.13)

Using the same reasoning as in the above, we condition on what happens in
the small interval (t, t + dt). Now the only possibility is staying in state j
with probability 1 − µj·(t)dt + o(dt). Next, multiply by pjj(t + dt, u), as this
corresponds to staying in state j for the rest of the time (t+ dt, u) as well. We
then get

pjj(t, u) = (1− µj·(t)dt)pjj(t+ dt, u) + o(dt), (2.14)

and given that pjj(u, u) = 1 we conclude that

pjj(t, u) = e−
∫ u
t
µj·(s)ds. (2.15)

In conclusion of this theoretical part about Markov chains, we are going
to give one more different way of writing the transitional probabilities. Our
starting point is the backward differential equation which we derived on the
previous page. From this we will deduce the backwards integral equations. We
start with multiplying by integrating factor e

∫ u
t
µj·(s)ds to get

e
∫ u
t
µj·(s)ds

∂

∂t
pjk(t, u) = e

∫ u
t
µj·(s)dsµj·(t)pjk(t, u)−e

∫ u
t
µj·(s)ds

∑
g;g 6=j

µjg(t)pgk(t, u).

(2.16)
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We know that ∂
∂te

∫ u
t
µj·(s)ds = ∂

∂te
−

∫ t
u
µj·(s)ds = −e

∫ u
t
µj·(s)dsµj·(t), so that the

above equation reduces to:

∂

∂t
(e

∫ u
t
µj·(s)dspjk(t, u)) = −e

∫ u
t
µj·(s)ds

∑
g;g 6=j

µjg(t)pgk(t, u). (2.17)

Next we integrate over (t, u] to obtain the following expression on the left side:

∫ u

t

∂

∂t
e
∫ u
τ
µj·(s)dspjk(τ, u)dτ =

∂

∂t

(
−
∫ t

u

e−
∫ τ
u
µj·(s)dspjk(τ, u)dτ

)
=− e

∫ u
t
µj·(s)dspjk(t, u) + δjk

The Kronecker-delta follows from the fact that
∫ u
u
e
∫ τ
u
µj·(s)dspjk(τ, u)dτ =

e0pjk(u, u) = δjk. Also note that we used the Leibniz integral rule for changing
the order of integration/derivation for continuous functions.

For the final step we subtract the Kronecker-delta from both sides and then
multiply by −e−

∫ u
t
µj·(s)ds = −pjj(t, u), which gives us the expression we want:

pjk(t, u) =

∫ u

t

pjj(t, τ)
∑
g;g 6=j

µjg(τ)pgk(τ, u)dτ + δjkpjj(t, u). (2.18)

As it is with the differential equations, there is also a forward equivalent of the
integral equation, derived in the same way, which reads

pij(s, t) = δijpii(s, t) +
∑
g;g 6=j

∫ t

s

pig(s, τ)µgj(τ)pjj(τ, t)dτ. (2.19)

We note that intuitively these equations make a lot of sense.
Let us look at the backwards equation for pjk(t, u). The final term represents

the event that the process stays uninterruptedly in state j, while the first term
represents the event that the process stays in state j right up until time τ after
which it goes to some other state g for the first time at time τ . We sum over
all possible states and integrate τ over (t, u] to allow switching states at all
moments in time between t and u.

Now that we have a firm theoretical basis on Markov chains, we will do a
short introduction on life insurance and then continue with the application of
Markov chains in insurance.
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Chapter 3

Life Insurance

In this chapter we will first cover how to write the payment streams occurring as
a result of insurance contracts in a mathematical sense. After that we discuss
some basic insurance contracts and their expected value and variance. Then
we introduce the Markov model for insurance and see what the consequences
are in terms of the expected reserves. Lastly we deduce a result for the higher
order moments of the reserves and add some more detail to the model, using a
Markov chain for the interest rate as well. To do this, we make use of Chapters
2, 4 and 7 of [5].

3.1 Benefits, Premiums and Interest

A contract in insurance consists of some arrangement of the policy holder paying
a sum of money to the insurer and receiving benefits at certain events, to be
paid out by the insurer. It will be useful for the rest of this chapter to make
this more precise.

From now on we assume that a contract will be valid for a certain period of
time starting at 0 and ending at n. Furthermore, we let {At}t≥0 be the payment
function. We define this function to be the incomes minus the outgoes from the
insurer’s perspective. We assume this function is right-continuous, piecewise
differentiable and of finite variation. The function At defined as in the equation
below can be interpreted as the total amount paid by either the insurer or the
policy holder in the interval [0, t]. This amount may be positive or negative.

At = A0 +

∫ t

0

dAτ . (3.1)

This elegant notation, introduced in [5], is short for
∫ t
0
dAτ =

∫ t
0
aτdτ +∑

0<τ≤t ∆Aτ , where aτ denotes the continuous stream of payments and the
summation represents the lump sum payments. The term ∆Aτ is defined as
∆Aτ = Aτ −Aτ− = Aτ − lims↑τ As.

The money in possession of the insurer may be invested in such a way that
the insurer earns interest. Let the function S(s, t) denote the value of one unit
at time t that is invested at time s ≤ t and let us write St as a shorthand for
S(0, t).
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If we wish to disallow for a situation where one withdraws the amount S(s, t)
at time t and directly reinvests the same amount in the same fund to make
profits, we must make the following assumption:

S(s, u) = S(s, t)S(t, u). (3.2)

This is the principle of no-arbitrage. It easily follows from the above that

S(s, t) =
St
Ss
, (3.3)

and if we choose s to be 0, we get S0 = 1 which complies with our definition.
Given these constraints we will assume that the general accumulation function
for t ≤ u is of the form

S(t, u) = e
∫ u
t
rτdτ . (3.4)

Whereas if t ≤ s we write the general discount function as

S(s, t) = S−1(t, s) = e−
∫ t
s
rτdτ . (3.5)

This allows us to calculate the value at time t of a payment dAτ made in
the (infinitesimal) small time interval around τ . Let us write e

∫ t
s
rτdτ = e

∫ t
s
r to

avoid cumbersome notation. Then the value of dAτ at time t can be written
using the discount functions given above

S(τ, t)dAτ = e
∫ t
τ
rdAτ = e

∫ t
0
re−

∫ τ
0
rdAτ . (3.6)

Now we look for an expression for the value at time t of the entire contract,
but before we do that, we introduce some more notation. Suppose we wanted
to write equation (3.1) as only an integral, we would somehow need to include
A0, the payments made at time 0, in the integral. We can do this by taking the
left limit of the integral, so then

At = A0 +

∫ t

0

dAτ = lim
s↑0

∫ t

s

dAτ , (3.7)

which we will write for short as∫ t

0−
dAτ := lim

s↑0

∫ t

s

dAτ . (3.8)

From (3.6) we know the value at time t of a payment dAτ . If we want to
know the value at time t of all payments made during the contract, we just sum
over all time intervals in [0, n]. Then if we use the above notation, the value at
time t of all payments during the contract becomes:

e
∫ t
0
r

∫ n

0−
e−

∫ τ
0
rdAτ = Ut − Vt, (3.9)

where the right hand side is a decomposition in Ut =
∫ t
0− e

∫ t
τ
rdAτ , also called

the cash balance, and Vt = −
∫ n
t
e−

∫ τ
t
rdAτ the future liability, or prospective

reserve.
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3.2 Forms of Insurance

In life insurance every policy holder may get a contract tailored entirely to
his or her needs and preferences. However, there are three general forms of
insurance which we will consider in this chapter. These contracts are the (pure)
endowment insurance, the life assurance and the life annuity. We can describe
them in a little more detail now that we introduced some notation for payment
streams and interest rates.

Pure Endowment Insurance
An insurance that pays out a sum of money if the policy holder survives a
prespecified number of years n, is called a n-year pure life endowment insurance.
We assume for the sake of simplicity that the interest rate is fixed at r, and
that the amount of money paid out is 1 unit. Now let Tx be a random variable
for the amount of years a person aged x has yet to live. Also let It be the
indicator function that returns 1 if the policy holder aged x survives until time
t, or [Tx > t]. Then we can write the present value of the contract at time 0 as:

PV e;n = e−rnIn, (3.10)

where the left hand side topscript e;n signifies that this present value concerns
an n-year endowment insurance.

We let tpx denote the probability of a person aged x surviving until time t
(see Appendix A). Then npx is the probability of surviving until the end of the
contract. We then define nEx := E[PV e;n], and we write the expected value as

nEx = E[e−rnIn] = e−rnE[In] = e−rnP [Tx > n] = e−rnnpx. (3.11)

To get a measure of risk involved in these types of insurances it is useful to not
only calculate the expected value, but the variance as well. To get the variance,
we need the second moment of PV e;n. We calculate the q-th non-central moment
using Iqn = In, then

E[(PV e;n)q] = E[(e−rnIn)q] = e−qrnE[In] = e−qrnnpx = nE
(qr)
x , (3.12)

where the topscript in nE
(qr)
x denotes the force of interest. Using this knowledge,

we can write the variance as:

V [PV e;n] = E[(PV e;n)2]− nE
2
x = nE

(2r)
x − nE

2
x. (3.13)

Life Assurance
For the life assurance we discern two forms: The n-year term insurance, and
the n-year endowment insurance. For an n-year term insurance a lump sum
payment is made in the event of death within n years. The present value at
time 0 of such an insurance is:

PV ti;n = e−rTx(1− In). (3.14)

So it is equal to 0 if the policy holder survives past the duration of the contract,
and e−rTx if he does not survive. To get the expected value we need to know
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the density of Tx, because we want to use the rule E[g(X)] =
∫
g(x)f(x)dx,

where g is a function, X a random variable and f(x) the density function of X.
The density of Tx is given by f(t|x) = tpxµx+t, for more details see Appendix
B. The expected value is then given by:

E[PV ti;n] = Ā1
x:n =

∫ n

0

e−rτf(τ |x)dτ =

∫ n

0

e−rτ τpxµx+τdτ, (3.15)

where Ā1
x:n is actuarial notation for a term insurance for a x aged person with

n year contract length and µx+τ denotes the force of mortality, also called the
hazard rate, at age x + τ . From now on we will write some actuarial notation
without mentioning it explicitly. We expect the reader to turn to the Appendix
for explanations of unknown symbols.

Moving on to the variance, we find

E[(PV ti;n)q] = Ā(qr)1
x:n and so V [PV ti;n] = Ā(2r)1

x:n − (Ā1
x:n )2 (3.16)

similar to the case of a pure life endowment insurance.
An n-year endowment insurance is different from the n-year term insurance

in the fact that the insurance also pays out if the policy holder survives until
the end of the contract. The quantities of interest are derived in the same way
as the previous two examples and are:

PV ei;n = e−r(Tx∧n) (3.17)

E[PV ei;n] = Āx:n =

∫ n

0

e−rτ τpxµx+τdτ + e−rnnpx = Ā1
x:n + nEx (3.18)

E[(PV ei;n)q] = Ā
(qr)
x:n (3.19)

V [PV ei;n] = Ā
(2r)
x:n − Ā

2
x:n (3.20)

Life Annuity
A life annuity is a form of insurance that pays out 1 unit at fixed intervals,
e.g. per year or per month. There are several different types of life annuity
contracts possible. The version we consider is the continuous version of the
n-year temporary life annuity. This contract pays out n years, given that the
policy holder is alive. The associated present value at time 0 is

PV a;n = āTx∧n =

∫ Tx∧n

0

e−rτdτ =
1− e−r(Tx∧n)

r
. (3.21)

The formula for the expected value is again derived with the rule E[g(X)] =∫
g(x)f(x)dx and f(t|x) = tpxµx+t as density function for Tx.

E[PV a;n] = āxn =

∫ n

0

1− e−rτ

r
f(τ |x)dτ +

1− e−rn

r
npx

=

∫ n

0

āτ τpxµx+τdτ + ān npx. (3.22)

Let us translate that to words. The last term covers the case where Tx ≥ n.
The first term under the integral sign āτ is the value of a person surviving up to
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time τ . The terms τpxµx+τ denote the conditional probability density function
of mortality. By integrating τ over the interval (0, n) we sum the probability
of surviving over all infinitesimally small intervals (τ, τ + dτ) and multiply by
the corresponding present value. This precisely gives us our expected value.
Norberg argues that this expected value may be written much more elegantly
as

āxn =

∫ n

0

e−rτ τpxdτ. (3.23)

This can be proven by integrating ān npx by parts, or by arguing that the
expected present value at time 0 equals e−rτdτ τpx for payments in the small
interval of (τ, τ + dτ). Then the integral is realized by summing over all small
intervals.

Note that this reasoning can also be applied to give the the expected values
for life assurances ‘directly’.

The variance and expected value of the q-th moment are given below. When
the equation for the moments is known, it is easy to find the variance. However,
finding the equation for the moments takes a bit more time.

E[(PV a;n)q] =
q

rq−1

q∑
p=1

(−1)p−1
(
q − 1

p− 1

)
ā
(pr)
xn (3.24)

V [PV a;n] =
2

r
(āxn − ā(2r)xn )− ā2xn (3.25)

We start by noting that PV a;n = 1−PV ei;n
r so that we can write

E[(PV a;n)q] = E[(
1− PV ei;n

r
)q] =

1

rq
E[(1− PV ei;n)q]. (3.26)

We can expand the term inside the expectation to get

1

rq
E[(1− PV ei;n)q] =

1

rq
E
[ q∑
p=0

(
q

p

)
(1)q−p(−PV ei;n)p

]
=

1

rq
E
[ q∑
p=0

(
q

p

)
(−1)p(PV ei;n)p

]
(3.27)

As the expectation only depends on what happens in the terms (−PV ei;n)p, we
may get it into the summation.

1

rq
E
[ q∑
p=0

(
q

p

)
(−1)p(PV ei;n)p

]
=

1

rq

( q∑
p=0

(
q

p

)
(−1)pE[PV ei;n)p]

)
(3.28)

We already know from the previous page that E[PV ei;n)p] = Ā
(pr)
x:n and it is

easy to check that Ā
(pr)
x:n = 1− (pr)ā

(pr)
xn . Inserting this in the equation gives:

1

rq

( q∑
p=0

(
q

p

)
(−1)p[1− (pr)ā

(pr)
xn ]

)
(3.29)
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Now we are getting close. We need to make two more steps to complete the
calculation. The first step is note that (−1 + 1)q =

∑q
p=0(−1)p(1)q−p = 0q = 0.

Secondly we need
(
q
p

)(
p
r

)
=
(
q
r

)(
q−r
p−r
)
, where in our case r = 1, so that

(
q
r

)
reduces

to just q. So now we can write

1

rq

( q∑
p=0

(
q

p

)
(−1)p −

q∑
p=0

(
q

p

)
(−1)p(pr)ā

(pr)
xn

)
(3.30)

=
1

rq−1

(
0−

q∑
p=0

(
q

p

)(
p

1

)
(−1)pā

(pr)
xn

)
(3.31)

=
q

rq−1

q∑
p=1

(−1)p−1
(
q − 1

p− 1

)
ā
(pr)
xn , (3.32)

which is exactly the expression we were looking for. The summation starts at
p = 1, since for p = 0 we have

(
q−1
−1
)

= 0.
We have given expressions for the moments of these basic insurances. Below

is a table of the first three moments, taken from [5], which can be calculated
using the above. The variation can be interpreted as a measure of riskiness
of the insurance. Values in this table were calculated using x = 30, n = 30,
r = ln(1.045) and µ according to the G82M mortality law in [5].

Pure
Endowment

Term
Insurance

Endowment
Insurance

Life
Annuity

Expected
Value

0.2257 0.06834 0.2940 16.04

Variation 0.4280 2.536 0.3140 0.1308
Skewness -1.908 2.664 4.451 -4.451

Table 3.1: Moments of the forms of insurance discussed before

3.3 Reserves and Thiele’s Differential Equation

Just as a bank needs to have enough reserves to ensure they can accommodate
the withdrawals from accounts of their customers, insurance companies need to
have certain reserves as well to pay their policy holders benefits. The previous
section displays that the variation among different types of insurance introduces
some form of risk. While insurance companies try to combat this risk by diver-
sification among the policy holders, they simply cannot have an infinite amount
of customers to let the risk tend to zero. For that reason an insurance company
always must have reserves.

We discern two types of reserves. First there is the retrospective reserve,
which equals the past incomes. The second reserve is called the prospective
reserve, based on expected expenses. For both reserves we can ask ourselves the
question of how large they should be.

An obvious answer to this question is that the expected present value of
the incomes should be at least as large as the expected expenses. This is also
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known in actuarial science as the equivalence principle. We will consider a
contract that is a combination of the insurance forms discussed in the previous
section. For this generalized contract we will write down some formulas for
the reserve. Then we will take a look at Thiele’s differential equation. At that
point we are ready to start implementing the Markov chain model in insurance
in the next section.

The setup for this generalized contract is as follows. We assume the pol-
icy holder to be aged x upon initiating the n-year contract. Since we assume
a general setup, the benefits of the contract comprises a term insurance of bt
to be payed in the event of death during the contract and a pure endowment
insurance of bn payable if the policy holder survives the duration of the contract.
For the premium payments, the contract specifies a lump sum payment of π0
and an annuity that is to be payed continuously at πt per time unit, conditional
on survival at time t ∈ (0, n).

Suppose that we wanted to calculate an appropriate premium function π,
then by the equivalence principle, we would have to solve

π0 +

∫ n

0

e−
∫ τ
0
r
τpxπτdτ =

∫ n

0

e−
∫ τ
0
r
τpxµx+τ bτdτ + bne

∫ n
0
r
npx, (3.33)

as this equation denotes the present expected value of incomes to equal the
expected present values of the benefits.

During the contract more information naturally becomes available, most
importantly concerning the survival of the policy holder. As time progresses we
can continuously asses the renewed conditional expectations. In fact insurance
laws require the equivalence principle to be applicable not only at time 0, but
at any time t ∈ (0, n). This gives rise to an equation for the prospective reserve
Vt, given by

Vt =

∫ n

t

e−
∫ τ
t
r
τ−tpx+t(µx+τ bτ − πτ )dτ + bne

−
∫ n
t
r
n−tpx+t. (3.34)

Using this equation we will derive Thiele’s differential equation. First we have
to do some rewriting. If we let τ−tpx+t = e−

∫ τ
t
µx+sds, then we can reformulate

this as

Vt =

∫ n

t

e−
∫ τ
t
rs+µx+sds(µx+τ bτ − πτ )dτ + e−

∫ n
t
rs+µx+sdsbn. (3.35)

It is convenient to rewrite the integral part using:∫ n

t

e−
∫ τ
t
qsdsdτ =

∫ n

t

e−
∫ τ
0
qsds+

∫ t
0
qsdsdτ = e

∫ t
0
qsds

∫ n

t

e−
∫ τ
0
qsdsdτ, (3.36)

where qs = rs+µx+s. Now let us take the derivative of Vt with respect to t and
use the above equation to get

d

dt
Vt =

d

dt

∫ n

t

e−
∫ τ
t
qsds(µx+τ bτ − πτ )dτ +

d

dt
e−

∫ n
t
qsdsbn (3.37)

=
d

dt

[
e
∫ t
0
qsds

∫ n

t

e−
∫ τ
0
qsds(µx+τ bτ − πτ )dτ

]
+ qte

−
∫ n
t
qsdsbn. (3.38)
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We apply the chain rule to write out the derivative

qte
∫ t
0
qsds

∫ n

t

e−
∫ τ
0
qsds(µx+τ bτ − πτ )dτ + qte

−
∫ n
t
qsdsbn − (µx+tbt − πt).

(3.39)

The terms with qt = rt + µx+t in front of it add precisely up to Vt so that we
finally get Thiele’s differential equation:

d

dt
Vt = (rt + µx+t)Vt + πt − btµx+t. (3.40)

While we already had a means of calculating the reserve directly, without using
Thiele’s equation, it is a useful tool to monitor the development of the reserve
over time and we will revisit it a few times in the part to come.

3.4 Introducing Markov Chains

The material covered up to now introduced the notion of Markov chains and
stated some notation and formulas often used in life insurance. This was done
with the unification of both subjects in mind. We start with a very easy model
with only two states and will gradually build to some more interesting cases.

Two state model
We consider the model where the policy holder can be either alive or dead.
This represented in the graph below by an ‘alive’ state 0 and a ‘dead’ state
1, which is absorbing: You can not get out of the state. His life length is
given by T , a positive random variable with cumulative distribution function
F (t) = P [T ≤ t] and survival function F̄ (t) := 1 − F (t). More details on this
survival function can be found in Appendix B.

Figure 3.1: A two state Markov Chain

We can easily define the state process Z. For an n-year contract it is given
by the indicator function

Z(t) = 1[T ≤ t], t ∈ [0, n], (3.41)

that tells us which state the process is in, at any time t ∈ [0, n]. The
process clearly has the Markov property, as the transition probability only
depends on the current state. The transition probabilities are determined by
p00(s, t) = F̄ (t)/F̄ (s) = e−

∫ t
s
µ, or the probability of surviving up to time t,

given being alive at s. Applying the Chapman-Kolmogorov equation to this
model gives p00(s, u) = p00(s, t)p00(t, u), which is also trivial.
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Multiple causes of death

The previous example was rather sim-
ple, but it was a good way to get used
to how we will analyze these kinds
of models. The next model we con-
sider is one with various absorbing
states, signifying death from r dif-
ferent causes (disease, accident, etc.).
Since all intensities have their origin
in state 0 we let µ0j = µj in this ex-
ample.

To get the transition probability
of staying alive we remember from
Section 2.3 that we may sum all the
intensities of leaving state 0 to get the total mortality intensity.

µ(t) =

r∑
j=1

µj(t) (3.42)

This implies that the transitional probability reduces to the same p00(s, t) =

e−
∫ t
s
µ as in the previous example. This model however allows us to study the

causes of death in more detail, to get a better mortality law in the aggregate,
as argued by Norberg. The rest of the transition probabilities also easily follow
from the integral equations given in Section 2.4 and are

p0j(t, u) =

∫ u

t

e−
∫ t
s
µµj(τ)dτ. (3.43)

Norberg comments that the mortality intensities µj are a basic but very
powerful tool for this model. Since overall mortality is the sum of the different
mortality intensities, an increase in one of the intensities means a decrease
for all transitional probabilities of other causes of death. Comparing this
to the real world, medical advances have decreased the chances of dying
from all sort of diseases. So the fact that people nowadays increasingly
die from cancer and heart diseases can be explained by the diminishing
intensities of the other causes of death. He concludes that the transition prob-
abilities are just the result of the interactions between the more basic intensities.

Multiple alive states

Now consider a model where the pay-
ment scheme depends on the state
when alive. In the figure we take
an unemployment insurance as exam-
ple, but the model is applicable to
many other insurances. A person can
be employed (state 0), unemployed
(state 1) and dead (state 2). Move-
ment between the states 0 and 1 is
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possible, but state 2 is absorbing. This results in the image on the right. For a
person who is employed at time s we consider the Kolmogorov forward differ-
ential equations. As the transition probabilities sum up to one, we only have to
calculate two of the three, to get the third one

∂

∂t
p00(s, t) = p01(s, t)ρ(t)− p00(s, t)

[
µ(t) + σ(t)

]
(3.44)

∂

∂t
p01(s, t) = p00(s, t)σ(t)− p01(s, t)

[
ν(t) + ρ(t)

]
. (3.45)

They can be solved by setting p00(s, s) = 1 and p01(s, s) = 0.
Now that we have reviewed some basic models and have seen how to calculate

transition probabilities we are going to expand a bit to a more general multi-
state contract.

3.5 A More General Model

In this section we revisit Thiele’s differential equation, as well as the valuation
of the reserve in the Markov chain model. The setup is the same as before,
however we now introduce an indicator process Ij and a counting process Njk.
The notation Z(τ−) := limt↑τ Z(t) is used to define the moment of the changing
of states, reminiscent of the notation introduced right after equation (3.1). The
processes are then defined by

Ij(t) = 1[Z(t) = j] (3.46)

Njk(t) = |
{
τ ;Z(τ−) = j, Z(τ) = k, τ ∈ (0, t]

}
|. (3.47)

So Ij(t) indicates whether the process Z is in state j at time t. Njk(t) then
counts the number of jumps from state j to state k, (k 6= j), during the time
interval (0, t].

In terms of insurance a change in state often means a change in the payments
to be made. We want to accommodate that when the state changes, a lump sum
is payed, or that during a certain time in state k an annuity is payed. We use
B(t) to denote the benefits minus the premiums, note that this is −A(t) specified
in equation (3.1). In that equation we (implicitly) used dAt = atdt+ ∆At. We
want to write and use dB(t) in the same way, while altering it to the Markov
model. We define the contractual agreements on payments to be made while in
state k as

dBk(t) = bk(t)dt+Bk(t)−Bk(t−), (3.48)

where bk(t) represents the continuous stream of payments in state k, while
Bk(t)−Bk(t−) captures endowment payments to be paid at time t.

The payment function is not complete yet. We also need to include payments
made when switching states. We denote bkl as the amount that is payed when
jumping from state k to state l. We can use the counting process Nkl(t) for
counting the number of jumps up to time t. Moreover if a jump takes place in the
time interval (t, t+dt) from state k to l we get dNkl(t) = Nkl(t+dt)−Nkl(t) = 1,
so that we can use this as an indicator for a jump taking place.

Since we want B(t) to represent the payment function of a multi-state con-
tract, we should include the possibility to be in different states in dB(t). We
achieve this by multiplying by the indicator function and then summing over all
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possible states k, to get
∑
k Ik(t)dBk(t). For the payments bkl we need to sum

over all states k 6= l for both indices. Combining the above, we arrive at

dB(t) =
∑
k

Ik(t)dBk(t) +
∑
k 6=l

bkl(t)dNkl(t), (3.49)

where we assume the functions bk and bkl to be piecewise continuous.
Not only the payment streams can be rewritten for the Markov model, but

the reserves as well. When we first mentioned the prospective reserve, we gave
the formula V (t) =

∫ n
t
e−

∫ τ
t
rdB(τ). In the Markov chain model the expected

present value of the reserve at time t is obviously conditional on the state j the
contract is in. If we take the expectation in dB(t) above and insert it in the
equation for Vt we get the expected prospective reserves conditional on j. To
get there we note that

E[Ik(τ)|Z(t) = j] = pjk(t, τ) (3.50)

E[dNkl(τ)|Z(t) = j] = pjk(t, τ)µkl(τ)dτ. (3.51)

Then if we denote the prospective reserves conditional on j as Vj(t), we get

Vj(t) =E
[ ∫ n

t

e−
∫ τ
t
rdB(τ)

∣∣∣Z(t) = j
]

=

∫ n

t

e−
∫ τ
t
rE
[
dB(τ)

∣∣∣Z(t) = j
]

=

∫ n

t

e−
∫ τ
t
rE
[∑

k

Ik(t)dBk(t) +
∑
k 6=l

bkl(t)dNkl(t)
∣∣∣Z(t) = j

]
=

∫ n

t

e−
∫ τ
t
r
∑
k

E
[
Ik(t)

∣∣∣Z(t) = j
]
dBk(t) +

∑
k 6=l

bkl(t)E
[
dNkl(t)

∣∣∣Z(t) = j
]
.

(3.52)

And then filling in what we know from equations (3.50) and (3.51), we find

Vj(t) =

∫ n

t

e−
∫ τ
t
r
∑
k

pjk(t, τ)dBk(τ) +
∑
l;l 6=k

bkl(τ)pjk(t, τ)µkl(τ)dτ

=

∫ n

t

e−
∫ τ
t
r
∑
k

pjk(t, τ)

(
dBk(τ) +

∑
l;l 6=k

bkl(τ)µkl(τ)dτ

)
. (3.53)

This can also be seen by using the same argumentation as with the intuitive
derivation of the Kolmogorov differential equation, where we look at what can
happen in every small interval of length dτ and then sum over the entire interval
(t, n] to get the integral in question.

Now using the Chapman-Kolmogorov equation we can divide the equation
into a part concerning payments in (t, u] and a part in (u, n], with t < u < n.
The equation then becomes

Vj(t) =

∫ u

t

e−
∫ τ
t
r
∑
k

pjk(t, τ)

(
dBk(τ) +

∑
l;l 6=k

bkl(τ)µkl(τ)dτ

)
+e−

∫ u
t
r
∑
k

pjk(t, u)Vk(u). (3.54)
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Just like before we can obtain Thiele’s differential equation just by taking the
derivative with respect to t. We can also get the differential equation by con-
ditioning on what happens in the small interval (t, t+ dt), again similar to the
derivation of the Kolmogorov differential.

Vj(t) = bj(t)dt+
∑
k;k 6=j

µjk(t)dtbjk(t)

+(1− µj·(t)dt)e−r(t)dtVj(t+ dt) +
∑
k;k 6=j

µjk(t)dte−r(t)dtVk(t+ dt). (3.55)

Now we subtract Vj(t + dt) on both sides, divide by dt and let dt → 0. We
arrive at Thiele’s backward differential equation for the statewise prospective
reserves:

d

dt
Vj(t) =

[
r(t) + µj·(t)

]
Vj(t)−

∑
k;k 6=j

µjk(t)Vk(t)− bj(t)−
∑
k;k 6=j

µjk(t)bjk(t).

(3.56)

We must make a note about continuity now. We assumed the functions bj , bjk,
µjk and r to be piecewise continuous, so there is no problem at points where
all functions are continuous. However in practice there are only finitely many
possible points of discontinuity, so Norberg argues that they are not a problem
in numerical procedures solving the equation. The conditions for solving the
equations are:

Vj(td−) =
[
Bj(td)−Bj(td−)

]
+ Vj(td), (3.57)

where j ∈ Z and td ∈ D, the set discontinuity points of Bj .
From this we can conclude that Thiele’s differential is a generalized version

of Kolmogorov’s differential equation, where the transition probability pjk(t, u)
is the prospective reserve for a contract in state j at time t with a lump sum of
1 payment if the contract is in state k at time u.

Using the above differential equation we can decompose the premium
payments in two parts. We will do the decomposition first and then we will
interpret the results. First we isolate −bj(t)dt on the left hand side,

−bj(t)dt =dVj(t)−
[
r(t) + µj·(t)

]
Vj(t)dt+∑

k;k 6=j

µjk(t)Vk(t)dt+
∑
k;k 6=j

µjk(t)bjk(t)dt. (3.58)

Once we remember that µj·(t) =
∑
k;k 6=j µjk(t) we can put all the summations

under one summation sign, so then

−bj(t)dt = dVj(t)− r(t)dtVj(t)dt+
∑
k;k 6=j

Rjk(t)µjk(t)dt. (3.59)

Here Rjk(t) = bjk(t) + Vk(t) − Vj(t) denotes the so called sum at risk. This
consists of the amount to be payed when transitioning from state j to k at
time t and the difference between the prospective reserve given the transition to
state k. So now the last term of the equation signifies the part of the premium
payment that goes to covering off the risk of going to another state, whereas
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the first two terms can be seen as the payment needed to have the appropriate
reserve for the current state.

To conclude this section we will take the time to motivate why we have
gone through the trouble of constructing differential equations from the explicit
expressions for the reserve. In the examples covered so far we never allowed the
payment functions to be dependent on the reserves, however in practice such
situations may apply. Think about a clause in the contract allowing repayment
of part of the reserve upon prematurely ending the contract. In such cases we
cannot use the direct equation and need the differential equations to solve the
problem.

3.6 Higher Order Moments of the Reserves

Now that we have a better understanding of the reserves, we will look at a
theorem on the moments of the present values.

The setup we use is that of a Markov model with the generalized contract
introduced in Section 3.5. Let D again be the set of discontinuity points. We
are now interested in the higher order moments of the reserve V (t). Since we
have assumed the model to be Markov, the state-wise conditional moments fully
determine the moments of V(t). So we need to calculate

V
(q)
j (t) = E[V (t)q|Z(t) = j]. (3.60)

These functions V
(q)
j are determined by the following differential equations

d

dt
V

(q)
j (t) =(qr(t) + µj·(t))V

(q)
j (t)− qbj(t)V (q−1)

j (t)

−
∑
k;k 6=j

µjk(t)

q∑
p=0

(
q

p

)
(bjk(t))pV q−pk (t), (3.61)

on (0, n)\D with the conditions

V
(q)
j (t−) =

q∑
p=0

(
q

p

)
(Bj(t)−Bj(t−))pV q−pj (t), (3.62)

with t ∈ D.

The proof for this is in the same vain as before. We condition on what
happens in a small time interval and continue from there.

Before we start we introduce the notation V (t, u) which corresponds to the
present value at time t of the payment stream during (t, u). Also let V (t) =
V (t, n). Then if t < u < n we get

V (t) = V (t, u) + e−
∫ u
t
rV (u), (3.63)

as we have to discount V (u) to time t. Using this notation and binomial expan-
sion we can now write

V (t)q =

q∑
p=0

(
q

p

)
V (t, u)p

(
e−

∫ u
t
rV (u)

)q−p
. (3.64)
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The conditions already follow from this equation if we insert t − dt and t as
values for t and u and letting dt tend to zero.

For the differential equation, we are looking for the state-wise conditional
moments. So let us take the expectation conditional on being in state j. We
also put u = t+ dt, so that we get

V
(q)
j (t) =

q∑
p=0

(
q

p

)
E
[
V (t, t+ dt)p

(
e−r(t)dtV (t+ dt)

)q−p∣∣∣Z(t) = j
]
. (3.65)

Now if we condition on either staying in state j or transitioning to some other
state k, then we get

V
(q)
j (t) =

q∑
p=0

(
q

p

)
(1− µj·(t)dt)(bj(t)dt)pe−(q−p)r(t)dtV (q−p)

j (t+ dt)+(
q

p

) ∑
k;k 6=j

µjk(t)dt(bj(t)dt+ bjk(t))pe−(q−p)r(t)dtV
(q−p)
k (t+ dt). (3.66)

To get the differential later on, we will divide by dt and let it tend to zero. This
means that we can ignore terms that are multiplied by dtk with k > 1. Looking
at the first line the term (bj(t)dt)

p means that all terms reduce to zero for p ≤ 2.
For p = 0, 1 we are left with

(1− µj·(t)dt)e−qr(t)dtV (q)
j (t+ dt)+

q(1− µj·(t)dt)(bj(t)dt)e−(q−1)r(t)dtV (q−1)
j (t+ dt) −→

(1− µj·(t)dt)e−qr(t)dtV (q)
j (t+ dt) + qbj(t)dte

−(q−1)r(t)dtV
(q−1)
j (t+ dt), (3.67)

keeping only the terms not containing higher orders of dt.
The second line can be reduced using binomial expansion on dt(bj(t)dt +

bjk(t))p. It is immediately clear that we lose all terms with bj(t)dt, so that the
second line becomes:(

q

p

) ∑
k;k 6=j

µjk(t)dt(bjk(t)pe−(q−p)r(t)dtV
(q−p)
k (t+ dt). (3.68)

Now denote V
(q)
j (t)∗ as the terms of V

(q)
j (t) with maximum order dt of one.

Then combining the above we get

V
(q)
j (t)∗ =(1− µj·(t)dt)e−qr(t)dtV (q)

j (t+ dt) + qbj(t)dte
−(q−1)r(t)dtV

(q−1)
j (t+ dt)

+

q∑
p=0

(
q

p

) ∑
k;k 6=j

µjk(t)dt(bjk(t))pe−(q−p)r(t)dtV
(q−p)
k (t+ dt). (3.69)

Now we subtract V
(q)
j (t+ dt) from both sides. The first term on the right then

can be written as

−µj·(t)dte−qr(t)dtV (q)
j (t+ dt) + (e−qr(t)dt − 1)V

(q)
j (t+ dt) (3.70)

When we divide by dt and let it go to zero, we get

−µj·(t)V (q)
j (t)− qr(t)V (q)

j (t). (3.71)
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To see why, we just write out the e-power

(e−qr(t)dt − 1)

dt
=

1

dt

(
1− qr(t)dt+

(qr(t)dt)2

2!
− (qr(t)dt)3

3!
· · · − 1

)
. (3.72)

So it is clear that this equals −qr(t), when letting dt tend to zero.

The rest of V
(q)
j (t)∗ becomes a little more readable as well when apply these

steps to the other terms in the equation. We end up with

− d

dt
V

(q)
j (t) =− (µj·(t) + qr(t))V

(q)
j (t) + qbj(t)V

(q−1)
j (t)

+

q∑
p=0

(
q

p

) ∑
k;k 6=j

µjk(t)(bjk(t))pV
(q−p)
k (t). (3.73)

Now multiply by −1 and change the order of the summation to get the desired
result.

3.7 Modeling the Interest Rate

In the former part of this thesis we considered the interest rate r(t) to be
constant, or ‘some’ function of time t. In conclusion of this chapter we want
to show that expanding the model by using a Markov chain for the interest
rate as well is fairly straightforward, to show the flexibility of the model. We
will assume that the interest rate can be modeled by a continuous time Markov
chain Y on a finite state space J Y , with intensities λef , where e, f ∈ J Y . Then
we can write the interest rate as

r(t) =
∑
e

IYe (t)re, (3.74)

where re denotes the force of interest in state e, and IYe (t) = 1[Y (t) = e] an
indicator.

Suppose Y and Z are independent processes, then (Y,Z) is a Markov chain
on J Y × J Z , where J Z is the state space of the process Z.

In equation (3.52) we first introduced the statewise reserves Vj(t), condi-
tional on the state the contract is in. Now we want to do the same, but condi-
tional on the state of (Y,Z), so we take the interest rate into account as well.
We denote Vej(t) as the statewise reserves conditional on [Y (t) = e, Z(t) = j].

Remember V (t) =
∫ n
t
e−

∫ τ
t
r(s)dsdB(τ), so that

Vej(t) = E
[ ∫ n

t

e−
∫ τ
t
r(s)dsdB(τ)

∣∣∣Y (t) = e, Z(t) = j
]

(3.75)

Similar to equation (3.50) we have:

E[IYf (t)
∣∣Y (t) = e, Z(t) = j] = E[IYf (t)

∣∣Y (t) = e] = λef , (3.76)

by the independence of Y and Z. Using this and the equation for the interest
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rate, we can write the conditional reserves as

Vej(t) = E
[ ∫ n

t

e−
∫ τ
t
r(s)dsdB(τ)

∣∣∣Y (t) = e, Z(t) = j
]

= E
[ ∫ n

t

e−
∫ τ
t

∑
f I

Y
f (s)rfdsdB(τ)

∣∣∣Y (t) = e, Z(t) = j
]

=

∫ n

t

e−
∫ τ
t

∑
f λef (s)rfdsE

[
dB(τ)

∣∣∣Y (t) = e, Z(t) = j
]
. (3.77)

By the independence of Y and Z we have E[dB(τ)|Y (t) = e, Z(t) = j] =
E[dB(τ)|Z(t) = j] , so now we can proceed in exactly the same way as in
Section 3.5, to find

d

dt
Vej(t) =

[
re + µj·(t) + λe·

]
Vej(t)−

∑
k;k 6=j

µjk(t)Vek(t)

− bj(t)−
∑
k;k 6=j

µjk(t)bjk(t)−
∑
f ;f 6=e

λef (t)Vfj(t). (3.78)

And following the same steps as in Section 3.6 we would also find the differential
equations for higher moments of the reserves to be determined by

d

dt
V

(q)
ej (t) =

[
qre + µj·(t) + λe·

]
V

(q)
ej (t)− qbj(t)V (q−1)

ej (t)

−
∑
k;k 6=j

µjk(t)

q∑
p=0

(
q

p

)
(bjk(t))pV q−pek (t)−

∑
f ;f 6=e

λef (t)V
(q)
fj (t), (3.79)

on (0, n)\D with the conditions

V
(q)
ej (t−) =

q∑
p=0

(
q

p

)
(Bj(t)−Bj(t−))pV q−pej (t), (3.80)

with t ∈ D.

It is clear that allowing the interest rate to be determined by a Markov
chain does not complicate the calculations much. It does however make the
calculations more realistic. That is what we did in this chapter as well. We
started with some basic forms of insurance, defining the payment stream
and introducing Markov chains. Gradually we allowed the model to become
more general. Now that we have a nice model, a natural question to ask
would be how to determine the parameters needed to do the actual numerical
calculations. This question we try to answer in the next chapter.
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Chapter 4

Parameter Estimation

In this chapter we try to find estimates for the intesities of transition. We start
with a quick refresher on Maximum Likelihood. In the sections after that we
make use of Chapter 11 of [5], to show some results for the distribution of the
estimates of µ.

4.1 Refresher on Maximum Likelihood

The method of maximum likelihood is assumed to be known among the readers,
so we will not discuss the method in great detail. Instead we present a short
summary on the theory and the results we use, making use of [6].

Let X1, ..., Xn be continuous random variables with joint density function
f(x1, ..., xn|θ). The likelihood function is then defined as a function of θ, given
some observed values Xi = xi

lik(θ) = f(x1, ..., xn|θ). (4.1)

If we assume the Xi’s to be i.i.d. (independent and identically distributed),
then we may write the joint density as the product of the marginal densities.
So the likelihood function becomes

lik(θ) =

n∏
i=1

f(Xi|θ). (4.2)

In practice it is usually easier to maximize the natural logarithm of the likelihood
function. As the logarithm is a monotonic function, this transformation gives
the same maximum. Taking the log of the likelihood function, we get

ln
[
lik(θ)

]
= ln

[ n∏
i=1

f(Xi|θ)
]

=

n∑
i=1

ln[f(Xi|θ)]. (4.3)

Often we use l(θ) instead of writing ln
[
lik(θ)

]
. While the latter notation shows

exactly what happens, the shorter version is often more convenient.
With the method of maximum likelihood our objective is to maximize the

likelihood function. Put differently, we search for a value of θ that makes the
observations the most likely or probable. To find this maximum, we calculate

d

dθ
l(θ)

∣∣∣
θ̂

= 0. (4.4)
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To see if the value is a maximum, we need to check if the second derivative is
negative as well. If this is the case, we denote the value we find by θ̂ML. The
hat displays that this concerns an estimate for the true (unobserved) value θ.

Properties of the ML-estimator
In [8], Verbeek gives a useful list of properties of the estimator θ̂ML. Firstly
he notes that the maximum likelihood estimator is consistent, since it can be
shown that the estimator converges in probability to the true value θ, so

plim θ̂ = θ. (4.5)

The next property of θ̂ML is that it’s asymptotically efficient, e.g. it has the
smallest variance of all consistent estimators θ̂ of θ, so

V ar(θ̂ML) ≤ V ar(θ̂). (4.6)

The estimator θ̂ML is also asymptotically normally distributed, such that

√
n(θ̂ML − θ)→ N (0, V ), (4.7)

where V is the asymptotic covariance matrix. This matrix V is defined by its
inverse, the Fisher Information matrix

V −1 = −E
[ ∂2

∂θ∂θT
l(θ)

]
. (4.8)

Asymptotic theorems
In our analysis we will need two well known theorems concerning asymptotic
results. The first is the Law of Large Numbers as stated in [6]. Let Xi,
i = 1, 2, ... be independently distributed random variables., with E[Xi] = r.
Furthermore we write the sample average as X̄n = 1

n

∑n
i=iXi. The Weak Law

of Large Numbers then states that for any ε > 0 we have

lim
n→∞

P (|X̄n − r|) > ε→ 0. (4.9)

Based on the same assumptions, but harder to prove, is the Strong Law of Large
Numbers, which states:

P ( lim
n→∞

X̄n = r) = 1. (4.10)

We say that Xn almost surely converges to r.
Lastly we state the Central Limit Theorem, as given in [6]. We now consider

a sequence of random variables Yi, with E[Yi] = 0 and V ar[Yi] = σ2. We
assume that the random variables Yi have a common distribution F and that
the moment generating function is defined in a neighborhood of zero. Now let
Sn =

∑n
i=1 Yi. then the CLT implies

lim
n→∞

P (
Sn
σ
√
n
≤ x) = Φ(x). (4.11)

Loosely put this theorem says that if we take the sum of independently
distributed, zero mean random variables, their sum tends toward the normal
distribution.

26



4.2 The Density and Distribution with Censor-
ing

In the ideal situation we fully observe the length of a life, however this is not
always the case. We will consider some different cases of censoring, but before
we do that, we look at what happens to the denisty and distribution functions
when using censored data.

The setup is the same as before, with a non-negative random variable T
denoting the life length of an individual. the cumulative distribution function
is given by

F (t) = 1− e−
∫ t
0
µ(s)ds, (4.12)

with µ(t) (piecewise) continuous, so that we may write the probability density
function as

f(t) = µ(t)(1− F (t)). (4.13)

During the life of an individual we do not know what his or her life length will
be. If we observe he is alive at time t, while born at time 0, we only know his life
length is at least t. These kinds of observations are called right-censored. Denote
this truncated life length by J and let the observations be made continually at
z years from birth. The distribution of J is

P [J ≤ t] =

{
F (t), 0 < t < z,

1, t ≤ z.
(4.14)

The probability density function for 0 < t < z is just f(t). However when
t = z, the density function is different from the case without censoring. All
probability that was in the part t ≥ z now falls into the single point t = z. We
have ∫ z

0

f(t)dt =

∫ z

0

µ(t)e−
∫ t
0
µ(s)ds = 1− e−

∫ z
0
µ(s)ds = F (z). (4.15)

So for the density function g(t) we now conclude that the case t = z should
have probability 1− F (z). So for g(t) we write

g(t) =

{
µ(t)(1− F (t)), 0 < t < z,

1− F (z), t = z.
(4.16)

If we want to write this in a single line, we take

d(t) = 1(0,z)(t) =

{
1, 0 < t < z,

0, t ≥ z,
(4.17)

so that the density function g(t) now may be written as

g(t) = µ(t)d(t)(1− F (t)), 0 < t ≤ z. (4.18)

Suppose now that µ(t) = µ is constant. In that case the distribution function
reduces to

F (t) = 1− e−µt. (4.19)
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Remembering that E[X] =
∫

[1−FX(x)]dx, we can easily calculate the expected
value of an exponentially distributed life length U

E[U ] =

∫ ∞
0

e−µtdt =
e−µt

µ

∣∣∣∞
t=0

=
1

µ
. (4.20)

Now let Ui, i = 1, 2, ... be independent and identically distributed according to
(4.19). We wish to estimate µ using censored life lengths Ti = Ui ∧ zi. Let Ni
be the indicator function of dying before time zi, then

Ni = 1[Ti < zi] (4.21)

And let N =
∑
iNi be the total number of deaths occurred in the sample.

Furthermore we introduce W =
∑
i Ti, the total time spent alive in the sample,

up to the observations zi. We will write the likelihood function as the product
of censored densities g(t) introduced in the previous section. Then we get

lik(µ) =
∏
i

µNie−µTi = µNe−µW . (4.22)

Taking the log of likelihood function then results in

l(µ) = ln
[
µNe−µW

]
= N lnµ− µW. (4.23)

We need to take the first derivative of l(µ) and set it equal to 0 to obtain

∂l(µ)

∂µ
=
N

µ
−W = 0 =⇒ µ̂ML =

N

W
. (4.24)

To verify that this is indeed a maximum, we take the second derivative

∂2l(µ)

∂µ2
= −N

µ2
, (4.25)

which is clearly non-positive. We conclude that the maximum likelihood esti-
mator is equal to the so-called occurrence-exposure rate (OE-rate). Norberg
states that this estimator does not depend on the censoring scheme. The dis-
tribution of µ̂ML however does. That is why we will consider some different
cases of censoring, ranging from no censoring, to uniform censoring and lastly
random censoring.

4.3 The Distribution of µ̂ML Under Different
Censoring Schemes

No Censoring
We observe n lives completely, so translated to the situation in the previous
section this boils down to zi = ∞. Then Ti = Ui, i = 1, ..., n and N =∑n
i=1Ni = n. The likelihood function looks pretty similar

lik(µ) = µne−µW . (4.26)
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Equivalent to the previous section we get

µ̂ML =
n

W
. (4.27)

Now W is the sum of n i.i.d. exponential random variables. We shall demon-
strate that W is Gamma distributed with shape parameter n and scale param-
eter µ. Then W would have density

fW (w) =
µnwn−1e−µw

Γ(n)
. (4.28)

Let X and Y be i.i.d. exponentially distributed with parameter λ and let
X + Y = Z. Then the density function of Z, fZ(z) is given by calculating the
convolution of the densities of X and Y , so

fZ(z) =

∫ z

0

λe−λtλe−λ(z−t)dt = λ2
∫ z

0

e−λz = λ2ze−λz. (4.29)

Then Z is Gamma(2, λ) distributed, noting that Γ(n) = (n− 1)!, so Γ(2) = 1.
Looking at the density function of W it is easy to see that the exponential

distribution is just a special case of the Gamma distribution, with scale param-
eter n = 1. Taking this into account, we can now show by induction that if
X ∼ Gamma(n, λ) and Y ∼ Gamma(1, λ) then X+Y = Z ∼ Gamma(n+1, λ).
We proceed in the same way, calculating the convolution

fZ(z) =

∫ z

0

λntn−1e−λt

Γ(n)
λe−λ(z−t)dt = λn+1

∫ z

0

tn−1e−λt

Γ(n)
e−λ(z−t)dt

=
λn+1

Γ(n)
e−λz

∫ z

0

tn−1dt =
λn+1

Γ(n)
e−λz

tn

n

∣∣∣t=z
t=0

=
λn+1tne−λz

Γ(n+ 1)
. (4.30)

Proving that Z ∼ Gamma(n + 1, λ). Now given that W is the sum of n i.i.d.
exponential(µ) random variables, we may conclude that W ∼ Gamma(n, µ).

Having established the distribution of W , we can now move on the calcu-
lating the mean and variance of µ̂ML. First we calculate the expected value of
W k, k > −n, so k may also be negative

E[W k] =

∫ ∞
0

wkfW (w)dw =

∫ ∞
0

µnwn+k−1e−µw

Γ(n)
dw. (4.31)

This could be solved by applying partial integration, however there is a quicker
way. We need to realize that

∫
fX(x)dx = 1 for any density function of a random

variable X. So we try to get a probability density function under the integral
sign ∫ ∞

0

µnwn+k−1e−µw

Γ(n)
dw =

1

µk

∫ ∞
0

µn+kwn+k−1e−µw

Γ(n)
dw

Γ(n+ k)

Γ(n)µk

∫ ∞
0

µn+kwn+k−1e−µw

Γ(n+ k)
dw =

Γ(n+ k)

Γ(n)µk
. (4.32)
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Using this, we find the expected value of µ̂ML. Taking k = −1 in E[W k] we get

E[µ̂ML] = nE[W−1] =
nµ

n− 1
, (4.33)

We conclude the estimator is biased.
The bias of the estimator is given by E[µ̂ML − µ], so in our case the bias is

E[µ̂ML − µ] =
nµ

n− 1
− µ =

−µ
n− 1

, (4.34)

which goes to zero, as n grows to infinity. So indeed our estimator is consistent.
The variance of the estimator is given by

V ar[µ̂ML] = E[µ̂2
ML]− E[µ̂ML]2 = n2E[W−2]−

( nµ

n− 1

)2
, (4.35)

which by equation(4.32) can be written as

n2E[W−2]−
( nµ

n− 1

)2
= n2

µ2

(n− 1)(n− 2)
−
( nµ

n− 1

)2
. (4.36)

A bit of manipulation then gives

V ar[µ̂ML] =
n2µ2

(n− 1)2(n− 2)
. (4.37)

We have been able to obtain these results without using any asymptotic
results. This makes the above results very strong if the assumptions hold.
Sadly, the special case of no censoring is not very realistic. Let us find out
what happens when we use uniform censoring.

Uniform Censoring
In this scenario we let the moment of observation be equal for all observations
in the sample, so zi = z.

Since the censoring only has an impact on the distribution of µ̂ML, but not
on the value of µ̂ML, we can still write

µ̂ML =
N

W
=

∑n
i=1Ni∑n
i=1 Ti

. (4.38)

We want to check if the estimator is consistent. To do so, we need to know
E[Ni] and E[Ti]. Using equation (4.14) we have

E[Ti] =

∫ ∞
0

1− P [Ti ≤ t]dt =

∫ z

0

1− F (t)dt =

∫ z

0

e−µtdt =
1− e−µz

µ
.

(4.39)

The calculation for E[Ni] is even more basic

E[Ni] = E[1[Ti < z]] = F (z) = 1− e−µz. (4.40)

We did this exercise to verify that E[Ni] = µE[Ti].
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Now let us write

µ̂ML =
1
n

∑n
i=1Ni

1
n

∑n
i=1 Ti

. (4.41)

Then by the Strong Law of Large Numbers, µ̂ML almost surely converges to µ

µ̂ML →
µE[Ti]

E[Ti]
= µ , as n→∞. (4.42)

Using the CLT we would also like to say something about the asymptotic
distribution of µ̂ML. To do so, we look at the random variable Yi = Ni − µTi.
Then E[Yi] = 0 and V ar[Yi] = E[Y 2

i ] = 1 − e−µz. To see why, we have to
calculate a few intermediate steps. We start by writing out E[Y 2

i ]

E[Y 2
i ] = E

[
(Ni − µTi)2

]
= E[N2

i ]− 2µE[TiNi] + µ2E[T 2
i ]. (4.43)

The first term is an indicator function, so E[Np
i ] = E[Ni] for any p ≥ 1. Thus

E[N2
i ] = F (z).

The last term can be found using the rules for taking expectation of a func-
tion of a random variable

E[T 2
i ] = 2

∫ z

0

t(1− F (t))dt = 2

∫ z

0

te−µtdt. (4.44)

We find the integral using integration by parts

2

∫ z

0

te−µtdt = 2
te−µt

µ

∣∣∣z
t=0

+ 2

∫ z

0

e−µt

µ
dt =

2− 2µze−µz − 2e−µz

µ2
. (4.45)

So then the third term of the equation for the variance becomes

µ2E[T 2
i ] = 2− 2µze−µz − 2e−µz = 2F (z)− 2µze−µz. (4.46)

Now we only need to find an expression for 2µE[TiNi]. Let I(t) = 1[Ti > t]
denote the indicator function of survival up to time t, then we may write Ni =
1− I(z) and Ti =

∫ z
0
I(t)dt. So then we obtain the expression

TiNi =

∫ z

0

I(t)dt−
∫ z

0

I(t)I(z)dt = Ti −
∫ z

0

I(t)I(z)dt. (4.47)

Now we note that I(t)I(z) = 1 if and only if Ti > t and Ti > z, and 0 otherwise.
This realization allows us to write

TiNi = Ti − zI(z). (4.48)

Now we take the expectation and multiply by 2µ to find

2µE[TiNi] = 2µE[Ti]− 2µz(1− F (z)) = 2F (z)− 2µze−µz. (4.49)

Plugging this in the equation for the variance of Yi we finally arrive at

E[Y 2
i ] = F (z) = 1− e−µz. (4.50)
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Now to apply the Central Limit Theorem, we need to rewrite equation (4.41).
We subtract µ and multiply by

√
n

√
n(µ̂ML − µ) =

√
n
( 1
n

∑n
i=1Ni

1
n

∑n
i=1 Ti

− µ
)

=

∑n
i=1

[
Ni − µTi

]
√
n 1
n

∑n
i=1 Ti

. (4.51)

So we are now in the right form to use the Central Limit Theorem for equation
(4.11), because the 1

n

∑n
i=1 Ti in the denominator converges to E[Ti], the vari-

ance of Yi = Ni − µTi. Given that asymptotically
√
n(µ̂ML − µ) ∼ N (0, 1), it

is easy to see that asymptotically

µ̂ML ∼ N (µ,
µ2

n(1− e−µz)
. (4.52)

Random Censoring
Until now, we have assumed that all observations were made at the same time z.
In the context of insurance, this is a rare situation. It would be more appropriate
to consider the case of random sampling, where the times of the observation are
given by i.i.d. random variables. In [5] Norberg proves some results for the
case of general censoring, where the time of observation zi is different among all
individuals (but not random). He proves that

∑n
i=1E[Ti] → ∞ is a sufficient

condition for µ̂ML to be consistent and asymptotically normal distributed. This
condition can be explained as that the censoring must not be too severe, as the
expected number of deaths needs to go to infinity as well.

Now let us assume the above condition, and that the censoring times are
given by independent observations Zi of some distribution function H, with
density h independent of µ. Then instead of working with i.i.d. pairs of ob-
servations (Ni, Ti), we now have the i.i.d. triplet (Ni, Ti, Zi), making the setup
almost the same as before. The likelihood function in this case is given by

lik(µ) =
∏
i

µNie−µTih(Zi). (4.53)

Note that we are allowed to just multiply by h(Zi), because of the assumed
independence. Because h(Zi) is independent of µ we also have that the esti-
mate in equation (4.24) is still valid. The difference is found in analyzing the
distribution of µ̂ML.

In the previous part of this section we made use of the expression E[Ni] =
1− e−µz for a few calculations. This is the only change we need to make in our
analysis. So we need to write

E[Ni] = 1− E[e−µZi ] (4.54)

E[Ti] =
1− E[e−µZi ]

µ
. (4.55)

Since the triplets (Ni, Ti, Zi) are i.i.d., we can still use the CLT and LLN to
obtain the asymptotic distribution of µ̂ML. Then in a similar way as before, we
get

µ̂ML ∼ N (µ,
µ2

n(1− E[e−µZi ])
. (4.56)

So clearly only the distribution of the ML-estimate depends on the censoring
scheme. If we assume

∑n
i=1E[Ti]→∞, the estimator is always consistent.
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4.4 Estimating Intensities in the Markov Model

Of course it would not only be interesting to estimate a mortality law, equivalent
to the two state Markov model introduced in section3.4. We want to estimate a
more general model as well. To do so, we recall the setup of Section 3.5, where
we introduced a more general Markov model for insurance policies. Consider a
Markov process Z, with state space Z = 0, 1, ..., J . Furthermore remember Ig(t)
and Ngh(t), an indicator function and counting process, defined as in Section
3.5.

We observe the state of the insurance policy constantly during some time
interval [t0, tend]. Let gi, i = 0, 1, ..., n − 1 denote the subsequent states the
process visits. Then we can write a realization of the process as:

X(τ) =



g0, t0 ≤ τ < t1,

g1, t1 + dt1 ≤ τ < t2,
...

...

gn−2, tn−2 + dtn−2 ≤ τ < tn−1,

gn−1, tn−1 + dtn−1 ≤ τ ≤ tend.

(4.57)

We will try to get the estimates for µgh using Maximum Likelihood, so we need to
find some expression for the probability of X(τ). Remember that the transition
probability of going from state j to state j is equal to pjj(t, u) = e−

∫ u
t
µj· .

Furthermore, recall the definition for the intensities of transition given in Section
2.3, where we wrote pjk(t, t + dt) = µjk(t)dt + o(dt). Then we can write to
probability of X(τ) happening as

e−
∫ t1
t0
µg0·µg0g1(t1)dt1e

−
∫ t2
t1
µg1·µg1g2(t2)dt2 · · ·

· · · e−
∫ tn−1
tn−2

µgn−2·µgn−2gn−1
(tn−1)dtn−1e

−
∫ tn−1
tn−2

µgn−1· , (4.58)

where we ignored the o(dti) terms, for we will be dividing by the product of
dti’s and let them tend to zero. However, first we do some more rewriting

n−1∏
k=1

µgk−1gk(tk)dtk exp
(
−

n∑
1

∫ tk

tk−1

µgk−1·

)
= exp

(n−1∑
k=1

ln
[
µgk−1gk(tk)

]
−

n∑
1

∫ tk

tk−1

µgk−1·

)
dt1 · · · dtn−1. (4.59)

Now divide by
∏
i dti and let the dti’s go to zero. Then from this we can

construct a general expression for the likelihood of a observation. We need to
sum over all possible states, instead of over some given sequence g0, g1, ..., gn−1.
Integrating with respect to a counting function is the same as just summing the
values according to [7], so

n−1∑
k=1

lnµgk−1gk(tk) =

∫ tend

t0

lnµgk−1gk(τ)dNgk−1gk(τ). (4.60)

The second part can be rewritten using an indicator function

n∑
k=1

∫ tk

tk−1

µgk−1· =

n∑
k=1

∫ tend

t0

µgk−1·(τ)Igk−1
(τ)dτ. (4.61)
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Using the above two equations and summing over all possible states g, we get
the following likelihood function

lik = exp
(∑
g 6=h

∫ tend

t0

ln
[
µgh(τ)dNgh(τ)

]
−
∑
g

∫ tend

t0

µg·(τ)Ig(τ)dτ
)
. (4.62)

The integrals and summations can be written as one and recall µg· =
∑
g 6=h µgh,

to get

lik = exp
(∑
g 6=h

∫ tend

t0

lnµgh(τ)dNgh(τ)− µgh(τ)Ig(τ)dτ
)
. (4.63)

Notice that we have not written an argument for the likelihood function yet.
To do so, we will assume that the intensities are of a parametric form and twice
differentiable, and can be written as µgh(t, θ), with θ = (θ1, ..., θs)

T , with s ≥ 1
an integer. Suppose we have n observations of the same insurance policy, or in
other words, replicates of the process Z, which we assume to be independent.
We will not assume equal censoring, so let X(m) denote the policy of the m-th

insurance taker. Furthermore assume I
(m)
g (t) and dN

(m)
gh (t) are 0, for t outside

of [t
(m)
0 , t

(m)
end ]. The log-likelihood function is then given by

l(θ) =
∑
g 6=h

∫
lnµgh(τ, θ)dNgh(τ)− µgh(τ, θ)Ig(τ)dτ, (4.64)

where Ngh =
∑n
m=1N

(m)
gh and Ig =

∑n
m=1 I

(m)
g .

Then taking the derivative with respect to θ we get

∂

∂θ
l(θ) =

∑
g 6=h

∫
∂

∂θ

[
lnµgh(τ, θ)dNgh(τ)− µgh(τ, θ)Ig(τ)dτ

]
. (4.65)

Setting this equal to zero yields the equations from which to solve the estimate

θ̂ML. A more practical way to write this is by introducing transition times T
(i)
gh .

This is the time of the i-th transition, i = 0, 1, ..., Ngh from state g to h. Then
we can write the ML-equations as

∑
g 6=h

Ngh∑
j=1

∂
∂θi
µgh(T

(j)
gh , θ̂ML)

µgh(T
(j)
gh , θ̂ML)

=
∑
g 6=h

∫
∂

∂θi
µgh(τ, θ̂ML)Ig(τ)dτ, (4.66)

for i = 1, ..., s
The variance is given by the inverse of the Fisher Information matrix. We

need the matrix of second order derivatives of the likelihood function

∂2

∂θ∂θT
l(θ) =

∑
g 6=h

∫
∂2

∂θ∂θT

[
lnµgh(τ, θ)dNgh(τ)− µgh(τ)Ig(τ)dτ

]
. (4.67)

When taking the expectation, it will be convenient to rewrite this using

∂2

∂θ∂θT
lnµgh(τ, θ) =

∂2

∂θ∂θT
µgh(τ, θ)

µgh(τ, θ)
−

∂2

∂θ∂θT
µgh(τ, θ)

(µgh(τ, θ))2
. (4.68)

34



Next we note that

∂

∂θ
lnµgh(τ, θ)

∂

∂θT
µgh(τ, θ)Ig(τ) =

∂
∂θµgh(τ, θ)

µgh(τ, θ)

∂

∂θT
µgh(τ, θ)Ig(τ). (4.69)

Then the matrix of derivatives is alternatively given by

∂2

∂θ∂θT
l(θ) =

∑
g 6=h

∫
∂2

∂θ∂θT
lnµgh(τ, θ)

[
dNgh(τ)− µgh(τ)Ig(τ)dτ

]
− ∂

∂θ
lnµgh(τ, θ)

∂

∂θT
µgh(τ, θ)Ig(τ). (4.70)

Recalling equations (3.50) and (3.51), it is clear that

E[dNgh(τ)− µgh(τ)Ig(τ)dτ ] = 0. (4.71)

Let the probability of staying in state g at time t for the censored process Z(m)

be p
(m)
g (t), so that

E[Ig(t)] =

n∑
m=1

p(m)
g (t). (4.72)

Then the Fisher Information matrix, V −1 is given by

V −1 = −E
[ ∂2

∂θ∂θT
l(θ)

]
=
∑
g 6=h

∫
1

µgh(τ, θ)

[ ∂2

∂θ∂θT
µgh(τ, θ)

] n∑
m=1

p(m)
g (t)

(4.73)

Given the above, we can calculate estimates for the coefficients in µgh(t, θ) for
a general Markov model and we also know the distribution of these estimates.
They are given by

θ̂ ∼ N (θ, V ). (4.74)

4.5 Concluding Example

In conclusion of our analysis we would like to show an example of theory de-
scribed above.

Consider a sample of n individuals. For each m ∈ {0, 1, ..., n} we have xm,
the age on entering the study, and ym, the age when leaving the study. We
also have Nm, indicating whether the individual has died (1) or was still living
during the study (0). Norberg proceeds assuming the mortality law is the first
Gompertz-Makeham mortality law, so that the intensity at age t is given by:

µ(t, θ) = α+ βeγt, (4.75)

with θ = (α, β, γ)T . However, we will look at the second Gompertz-Makeham
mortality law as stated in [4]

µ(t, θ) = α+ βt+ eγt+δ, (4.76)
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with θ = (α, β, γ, δ)T .
We need the vector of first derivatives ∂

∂θµ(t, θ).

∂

∂θ
µ(t, θ) = (1, t, teγt+δ, eγt+δ)T (4.77)

and also their integral over (x, y)∫ y

x

∂

∂θ
µ(t, θ)dt =(

y − x, y
2 − x2

2
,
yeγy+δ − xeγx+δ

γ
− eγy+δ − eγx+δ

γ2
, eγy+δ − eγx+δ

)T
. (4.78)

So then according to equation (4.66), the equations to find the ML-estimates
are∑
m;Nm=1

1

α̂+ β̂ym + eγ̂ym+δ̂
=
∑
m

ym − xm (4.79)

∑
m;Nm=1

t

α̂+ β̂ym + eγ̂ym+δ̂
=
∑
m

y2m − x2m
2

(4.80)

∑
m;Nm=1

teγt+δ

α̂+ β̂ym + eγ̂ym+δ̂
=
∑
m

(ymγ − 1)eγym+δ − (xmγ − 1)eγxm+δ

γ2
(4.81)

∑
m;Nm=1

eγt+δ

α̂+ β̂ym + eγ̂ym+δ̂
=
∑
m

eγym+δ − eγxm+δ (4.82)

From these equations we find the estimates θ̂ML.
The variance of the estimator is again given by the inverse information ma-

trix. To find it, we construct a matrix from the vector of derivatives.

∂

∂θ
µ(t, θ)

∂

∂θT
µ(t, θ) =


1 t teγt+δ eγt+δ

t t2 t2eγt+δ teγt+δ

teγt+δ t2eγt+δ t2e2γt+2δ te2γt+2δ

eγt+δ te2γt+2δ te2γt+2δ e2γt+2δ

 (4.83)

The probabilities p
(m)
0 (τ, θ) are given by

p
(m)
0 (τ, θ) = e−

∫ τ
xm

(α+βs+eγs+δ)ds. (4.84)

With that in hand, all necessary terms are now known to calculate the Fisher
Information matrix as defined in equation (4.73).
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Chapter 5

Discussion

In the first chapter of this thesis we introduced Markov chains and showed
some results for them. The Kolmogorov differential equations are of particular
interest, as we can use them to compute the transition probabilities. The
transition probabilities and intensities are then used in the second chapter
to derive equations for the expected prospective reserves. However, to fully
calculate the quantities in this model, we need more. The intensities of
transition are needed in the Kolmogorov differential equations to calculate the
transition probabilities. The intensities also appear in the equations for the
reserves. That is why we dedicated the last chapter to the estimation of the
intensities of transition.

Using this thesis one has all tools in hand to calculate all necessary numbers
for basic insurance contracts. That is, if we assume the model to be Markov.
One might argue however, that this model is too simplistic. For example if
we consider a case in health insurance, where an insured individual has been
gravely ill many times. It could be argued that given a current healthy state
the probability of falling ill again is higher after having been gravely ill before.
Thus that the Markov property does not hold.

This example can then be countered by realizing that we could add
many more states to the state space. For example we could have a state
‘healthy’, ‘healthy, with light medical history’ and ‘healthy, with severe medical
history’. However this does make the model less intuitive to use and makes the
dimensions of the matrices with the transition coefficients larger as a result.

For further research it would be interesting to see how well the theory
discussed in this thesis holds in practice and what changes need to be made to
the model to make it (even) better applicable.
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Appendix A

Actuarial Notation

Some of the notation used in this text find their origin in a standard defined
by the International Actuarial Association. Below you find the part of this
standard that is used throughout this work.

tpx = F̄ (t) (A.1)

µx+t = µ(x+ t) (A.2)

nEx = e−rnnpx (A.3)

Concerning the expected value of insurances, given a policy holder aged
x, we use the following:

Ā1
x:n - The expected value of an n-year term insurance.

Āx:n - The expected value of an n-year endowment insurance.

āxn - The expected value of an n-year temporary life annuity.

ān - The present value of an n-year temporary life annuity.
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Appendix B

Mortality

Throughout the thesis we make use of a non-negative random variable T , the
amount of years remaining in a life, with a cumulative distribution function
F (t) = P [T ≤ t]. We also define the survival function as F̄ (t) = P [T > t] =
1 − F (t). We assume that F is continuous, such that f(t) = d

dtF (t). Norberg
argues that it is convenient to work with the derivative of − ln F̄ , which we call
the force of mortality µ(t)

µ(t) =
d

dt

[
− ln F̄ (t)

]
=
f(t)

F̄ (t)
. (B.1)

Here we need F̄ (t) > 0 for the function to be well defined. Now to get an
expression for F̄ (t) from this we first integrate over the interval (0,t)∫ t

0

µ(τ)dτ =

∫ t

0

d

dτ

[
− ln F̄ (τ)

]
= − ln F̄ (t) + ln F̄ (0). (B.2)

Now since T is non-negative we have F̄ (0) = 1−F (0) = 1. Using this we rewrite
the above equation as

F̄ (t) = e−
∫ t
0
µ(τ)dτ . (B.3)

Next we take a look at the distribution of the remaining life length of a
person aged x. We denote this random variable by Tx. It is closely related T ,
as Tx is distributed as T − x conditional on T > x. The distribution is then
given by

F (t|x) = P [T ≤ x+ t|T > x] =
F (x+ t)− F (x)

1− F (x)
. (B.4)

The surivival function can be found by taking F̄ (t|x) = 1−F (t|x), or by realizing

F̄ (t|x) = P [T > x+ t|T > x] =
F̄ (x+ t)

F̄ (x)
. (B.5)

Now by equation B.3 we easily find

F̄ (t|x) =
e−

∫ x+t
0

µ(y)dy

e−
∫ x
0
µ(y)dy

= e−
∫ x+t
x

µ(y)dy = e−
∫ t
0
µ(x+τ)dτ . (B.6)
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If we want the density of Tx, we take the derivative of F̄ (t|x) with respect to t,
to get

f(t|x) =
d

dt
F̄ (t|x) = µ(x+ t)e−

∫ t
0
µ(x+τ)dτ . (B.7)

Using the notation introduced above, this becomes

f(t|x) = tpxµx+t. (B.8)
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