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Abstract

In this thesis we prove two theorems about symplectic fiber bundles (E, π,M, (F, σ)). The
first theorem states that there exists a symplectic form on total space E that restricts
to induced symplectic forms on the fibers π−1(p), if there exists a symplectic form on
the base M and there exists a de Rham cohomology class on E that restricts to the
de Rham cohomology class of induced symplectic forms on fibers π−1(p). The second
theorem states that there exists a de Rham cohomology class on E that restricts to the de
Rham cohomology class of induced symplectic forms on fibers π−1(p), if the first Chern
class c1(TF ) of the tangent bundle of the fiber F is a nonzero multiple of the de Rham
cohomology class of the symplectic form σ on F .
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1 Introduction

1.1 Symplectic fiber bundles and Chern classes

The concept of symplectic geometry emerged in the early nineteenth century in the study
of classical mechanical systems, such as planetary orbits. Over time it evolved to be
an important and independent part of mathematics. Central is the the definition of a
symplectic manifold. A symplectic manifold is smooth manifold M and 2-form ω which is
closed and nondegenerate. The precise definition will be given in subsection 2.1 (Definition
2.14).

In this thesis we will mainly discuss symplectic fiber bundles. We will give a quick
definition of this object. A fiber bundle is a quadruple (E, π,M, F ) that consists of smooth
manifolds E,M and F and a smooth surjective map π : E → M with the following
property. For all p ∈ M there exists a neighborhood U of p and a diffeomorphism,
called a local trivialization, ΦU : π−1(U) → U × F such that prU ◦ΦU = π|π−1(U), where
prU : U ×F → U is the projection map. This is the same as saying the following diagram
is commutative.

π−1(U) U × F

U

ΦU

π
prU

We see that a fiber bundle ”locally” looks like a product space U × F . The local trivial-
izations ΦU also induce diffeomorphisms:

Φp
U := prF ◦Φ|π−1(p) : π−1(p)→ F,

where prF : U × F → F is the projection map. Therefore is natural to call the sets
Ep := π−1(p) fibers (over p). In Figure 1 we can see this local representation of a fiber
bundle, where three individual fibers are shown. An open cover of M of these opens U ,
with the corresponding diffeomorphisms ΦU , is called a trivialization of the bundle.
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Figure 1: Three fibers over an open space U ⊂M

A symplectic fiber bundle (E, π,M, (F, σ)) is a fiber bundle with symplectic fiber
(F, σ), such that there exists a trivialization of the bundle that induces well-defined sym-
plectic forms σp := Φp

U
∗σ on the fibers Ep. The precise meaning of this will be explained

in subsection 2.2 (Definition 2.29). Now let (E, π,M, (F, σ)) be a symplectic fiber bundle.
In this thesis we are concerned with the following question.

Question 1.1. Under what conditions does there exists a symplectic form ω on the total
space E of a symplectic fiber bundle such that it restricts to the symplectic forms σp on
the fibers Ep induced by σ?

We might wonder whether there exists a symplectic form on the total space of every
symplectic fiber bundle that restricts properly to the fibers. It turns out this is not true.
Example 2.32 shows that there are symplectic fiber bundles for which there do not even
exist any symplectic forms on the total space E.

Before stating the two theorems that together give an answer to Question 1.1, we first
explain another important notion: de Rham cohomology groups. A differential k-form
ω ∈ Ωk(M) is called a closed if dω = 0. A differential k-form is called exact if there exists
a (k − 1)-form ξ ∈ Ωk−1(M) such that dξ = ω. Since d2ξ = 0 for all differential forms
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ξ we have that every exact form is closed too. Hence we can define the kth de Rham
cohomology group of M , Hk

dR(M), as the quotient vector space of closed k-forms on M
modulo exact k-forms on M . We now state a theorem that was first proven by William
Thurston (1946-2012).

Theorem 1.2 (Thurston). Let (E, π,M, (F, σ)) be symplectic fiber bundle with com-
pact symplectic fiber (F, σ) and compact connected symplectic base (M, ξ). Let {σp ∈
Ω2(Ep)}p∈M be symplectic forms on fibers Ep induced by σ. Suppose there exists a de
Rham cohomology class a ∈ H2

dR(E) such that ιp
∗a = [σp] for all p ∈ M . Then for every

sufficiently large real number R > 0, there exists a symplectic form ωR ∈ Ω2(E) such that
ιp
∗ωR = σp for all p ∈M and [ωR] = a+R[π∗ξ].

In this theorem the map ιp : Ep → E is the inclusion map. Note that if we have a
symplectic form ω on E that restricts to the induced symplectic forms σp on the fibers Ep
(ιp
∗ω = σp), then the de Rham cohomology class containing ω restricts to the de Rham

cohomology classes containing σp on the fibers Ep (ιp
∗[ω] = [σp]). This follows directly

from the definition of the pullback map of de Rham cohomology classes (see Definition
3.3). In a way this is the converse statement to Thurston’s Theorem. Thurston’s Theorem,
however, requires a lot more work to prove. The proof will be based on the proof given
in [MS17, p. 254-255].We now state a second theorem that gives sufficient conditions for
a de Rham cohomology class a, as in Theorem 1.2, to exist.

Theorem 1.3. Let (E, π,M, F ) be a symplectic fiber bundle with compact symplectic fiber
(F, σ) of dimension 2. Let {σp ∈ Ω2(Ep)}p∈M be symplectic forms on fibers Ep induced
by σ. Assume that the first Chern class c1(TF ) ∈ H2

dR(F ) is a nonzero multiple of the de
Rham cohomology class [σ]. Then there exists a de Rham cohomology class a ∈ H2

dR(E)
such that ιp

∗a = [σp] for all p ∈M .

The first Chern class of a symplectic vector bundle is defined as the Euler class of
its underlying oriented vector bundle (see subsection 3.3). In short the Euler class of
an oriented vector bundle (E, π,M) is a representation of how ”twisted” or nontrivial a
vector bundle is. We note that in Theorem 1.3 we restrict the dimension to 2. It turns
out that the theorem is also true for all even dimensions 2n. In this thesis we only prove
the 2-dimensional case, since we only define Euler classes of vector bundles of rank 2. A
generalized definition can be found in [BT82, Chapter IV.20].

1.2 Organization of this thesis

In section 2 we will be laying down some groundworks on symplectic geometry. In section
3 we will define the first Chern class of symplectic vector bundles of rank 2. In section
4 we will prove Theorem 1.2 and Theorem 1.3. In appendix A we discuss some basic
notions on positive linear maps.
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2 Background on symplectic geometry

In this section we explain some basic notions about symplectic geometry. This section is
largely based on [dS06] and [MS17]. In subsection 2.1 we define symplectic vector spaces
and symplectic manifolds, and state several lemmas concerning them. In subsection 2.2
we will define define (symplectic) fiber bundles and discuss the related notions of structure
groups and transition functions of a fiber bundle.

2.1 Symplectic vector spaces and manifolds

We start by defining (pre)symplectic vector spaces. Every vector space in this thesis is
assumed to be real and finite-dimensional.

Definition 2.1 ((pre)symplectic vector space). Let V be a vector space and ω : V ×V →
R be a bilinear map. We will call the pair (V, ω) a presymplectic vector space if:

(i) (antisymmetry) ω(v, w) = −ω(w, v) for all v, w ∈ V

We will call the pair (V, ω) a symplectic vector space if in addition to (i):

(ii) (nondegeneracy) ω(v, w) = 0 for all w ∈ V ⇒ v = 0

We will refer to ω as a (pre)symplectic form on vector space V . If (V, ω) is a presymplectic
vector space and W ⊂ V is a linear subspace such that (W,ω|W×W ) is a symplectic vector
space, we will call W a symplectic subspace of (V, ω).

Example 2.2 (standard symplectic vector space). The most basic example of a symplectic
vector space is that of (R2n, ω0), where n ∈ N and ω0 is defined by:

ω0(v, w) =
n∑
i=1

(v2i−1w2i − w2i−1v2i) .

Here vi = pri(v) ∈ R, where pri is the projection map determined by pri(ej) = δij
1.We

will call this symplectic vector space the standard symplectic vector space and will call
the bilinear form ω0 the standard symplectic form.

The standard symplectic vector space is indeed a symplectic space. Antisymmetry is
clear. Nondegeneracy follows from the fact that we have ω0(e2i−1, e2i) = −ω0(e2i, e2i−1) =
1 for all 1 ≤ i ≤ n. We also note that ω0(ei, ej) = 0 in all other cases. This is no
coincidence and generalizes to all symplectic vector spaces in the following way.

Lemma 2.3. Let (V, ω) be a symplectic vector space. Then there exists an ordered basis
{v1, w1 . . . , vn, wn} of V such that:

ω(vi, vj) = 0, ω(wi, wj) = 0 and ω(vi, wj) = δij for all 1 ≤ i, j ≤ n. (2.1)

In particular V is even-dimensional.

1δij is the Knonecker delta function, which is equal to 0 if i 6= j and equal to 1 if i = j.
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We call an ordered basis of V with property (2.1) a symplectic basis. To prove lemma
2.3 we first need to define the symplectic complement and prove some related lemmas.

Definition 2.4 (symplectic complement). Let (V, ω) be a presymplectic vector space and
W ⊂ V be a linear subspace. Then the ω-complement or symplectic complement of W is
the subspace W ω defined as:

W ω := {v ∈ V | ω(v, w) = 0 for all w ∈ W}

Note that W ω is indeed a linear subspace, since ω is linear in its first component.
Some useful properties, following directly from the definition of the ω-complement, are:

(W ω)ω = W

W ω ⊂ (W ′)ω if W ′ ⊂ W

V ω = {0} ⇐⇒ (V, ω) nondegenerate.

The following lemma will be needed in order to prove Lemma 2.3.

Lemma 2.5. Let (V, ω) be a presymplectic vector space and let W ⊂ V be a linear
subspace. Then the following formula holds:

dimW + dimW ω = dimV + dim(W ∩ V ω)

Proving this lemma requires some preparations. We first define for any bilinear map
ω : V × V → R the linear map:

[ω : V → V ∗, [ω(v) := ω(v, ·), (2.2)

where V ∗ is the set of all R-linear maps ϕ : V → R. We call this map the flat map of ω.

Remark 2.6. This map is related to the nondegeneracy of ω in the following way. ω is
nondegenerate if and only if [ω is an linear isomorphism. This follows from ker [ω = {v ∈
V | ω(v, w) = 0 for all w ∈ V } = V ω, the rank-nullity theorem and dimV = dimV ∗.

We also need to define the following. If V is any vector space, and W ⊂ V a linear
subspace we define the set W0 by:

W 0 := {ϕ ∈ V ∗ | ϕ(v) = 0 for all v ∈ W} (2.3)

This is a linear subspace of V ∗. We call this set the the annihilator of W . A property of
the annihilator is the following.

Lemma 2.7. Let V be a vector space and W ⊂ V a linear subspace. Then we have the
following equality: dimW + dimW 0 = dimV .
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Proof. Let {w1, ..., wk} be an ordered basis for W and B = {w1, ..., wk, vk+1, ..., vn} be an
ordered basis for V . Let {w∗1, ..., w∗k, v∗k+1, ..., v

∗
n} be the dual basis of V ∗ corresponding

to B2. Since w∗i (wi) = 1 for all 1 ≤ i ≤ k we have that W 0 ∩ span{w∗1, ..., w∗k} =
{0}. Furthermore, for all k + 1 ≤ j ≤ n and w ∈ W we have v∗j (w) = 0, hence
span{v∗k+1, ..., v

∗
n} ⊂ W 0. Combining this, we have that span{v∗k+1, ..., v

∗
n} = W 0 and

thus we obtain dimW + dimW 0 = dimV . This proves Lemma 2.7.

Another property of the annihilator is the following.

Lemma 2.8. Let V , V ′ be vector spaces and T : V → V ′ be a linear map. Then we have:

kerT ∗ = (imT )0,

where T ∗ : (V ′)∗ → V ∗ is the transpose map defined by: T ∗ϕ = ϕ ◦ T .

Proof. We have:

kerT ∗ = {ϕ ∈ V ′∗ | T ∗ϕ = 0}
= {ϕ ∈ V ′∗ | (ψ ◦ T )(v) = 0 for all v ∈ V }
= {ϕ ∈ V ′∗ | ϕ(v′) = 0 for all v′ ∈ imT}
= (imT )0.

This proves Lemma 2.8.

Now we prove lemma 2.5.

Proof of Lemma 2.5. Let ı : V → (V ∗)∗ be the canonical map given by: ı(v)(ϕ) = ϕ(v).
This map is an linear isomorphism, since it is linear, injective and dimV = dimV ∗ =
dim(V ∗)∗. Furthermore for all v, w ∈ V we have:

([ω
∗(ı(v)))w = ı(v) ([ω(w)) = [ω(w)(v) = ω(w, v) = −ω(v, w) = −[ω(v)(w),

It follows that [ω = −[ω∗ı and thus ιW
∗[ω = −ιW ∗[ω∗ı = −[ω|W ∗ı, where ιW : W → V is

the inclusion map. Since ker(ιW
∗[ω) = {v ∈ V | [ω(v)(w) = 0 for all w ∈ W} = W ω and

ı is a linear isomorphism it follows that:

dimW ω = dim (ker(ιW
∗[ω)) = dim (ker(−[ω|W ∗ψ)) = dim (ker([ω|W ∗)) = dim

(
(im [ω|W )0

)
.

For the last step we used Lemma 2.8. We also have, using rank-nullity theorem:

dimW = dim(ker [ω|W ) + dim(im [ω|W ).

Combining these two equalities we get:

dimW + dimW ω = dim (ker [ω|W ) + dim (im [ω|W ) + dim
(
(im [ω|W )0

)
= dimV ∗ + dim (W ∩ V ω) = dimV + dim (W ∩ V ω) ,

where we used that W ∩ V ω = ker [ω|W . This proves Lemma 2.5.

2A dual basis {v∗1 , . . . , v∗n} of V ∗ corresponding to basis {v1, . . . , vn} of V is determined by v∗i (vj) := δij
for all 1 ≤ i, j ≤ n.
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We state an useful corollary that summarizes some of the obtained results.

Corollary 2.9. Let (V, ω) be a presymplectic vector space and W ⊂ V be a linear subspace.
Then the following statements are equivalent:

(i) W is a symplectic subspace, i.e. (W,ω|W×W ) is a symplectic vector space

(ii) W ⊕W ω = V

(iii) W ω is a symplectic subspace

Proof. If (i) is true, then we have by definition the ω-complement W ∩ W ω = {0}.
Furthermore Lemma 2.5 and W ∩ V ω ⊂ W ∩W ω = {0} imply that W +W ω = V , hence
W ⊕W ω = V . If (ii) is true, then in particular W ∩W ω = {0}, hence W is a symplectic
subspace. The equivalence of (i) and (iii) directly follows from the equality W = (W ω)ω.
This proves Corollary 2.9.

Now we prove Lemma 2.3.

Proof of Lemma 2.3. Let B = {u1, . . . , um} be any ordered basis of V . We will obtain a
symplectic basis from B using a procedure that is similar to the Gram-Schmidt procedure
to obtain an orthogonal basis. Since V is symplectic, there exists a u′ ∈ B such that
ω(u1, u

′) 6= 0. We define:

v1 := u1

w1 =
u′

ω(u1, u′)

Note that ω(v1, w1) = 1. The linear subspaceW1 := span{v1, w1} is a symplectic subspace.
To see this we note that for any nonzero av1 + bw1 ∈ W1 we have:

ω(av1 + bw1, w1) = aω(v1, w1) = a and ω(av1 + bw1, v1) = bω(w1, v1) = −b. (2.4)

It follows from Corollary 2.9, that W ω
1 is a symplectic subspace and V = W1 ⊕W ω

1 . If
W1 = V then we are done, and {v1, w1} is a symplectic base for V . If this is not the case,
then we define map f1 : B\{u1, u

′} → W ω
1 by:

f1(u) := u+ ω(u, v1)w1 − ω(u,w1)v1,

for all u ∈ B\{u1, u
′}. For any u ∈ B\{u1, u

′} we have:

ω(f1(u), v1) = ω(u+ ω(u, v1)w1 − ω(u,w1)v1, v1)

= ω(u, v1) + ω(u, v1)ω(w1, v1)− ω(u,w1)ω(v1, v1)

= ω(u, v1)− ω(u, v1) = 0,
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A similar calculation shows ω(p1(u), v2) = 0. Hence we indeed have f1(u) ∈ W ω
1 . Fur-

thermore the set:
B2 := {f1(u) | u ∈ B\{u1, ui}}

is linearly independent, since B is also linearly independent. Hence B2 is an ordered basis
for W ω

1 . We can thus repeat the same procedure on symplectic subspace (W ω
1 , ω2) :=

(W ω
1 , ω|Wω

1 ×Wω
1

) and ordered basis B2. If we repeat this process we obtain inductively
W

ωk−1

k−1 = Wk ⊕W ωk
k = span{vk, wk} ⊕W ωk

k and thus:

V = W1 ⊕W ω
1 = W1 ⊕ (W2 ⊕W ω2

2 ) = · · · = W1 ⊕ (W2 ⊕ (· · · ⊕ (Wk ⊕W ωk
k ) · · · )).

Since V is finite-dimensional this process ends at some n ∈ N, so that we have:

V = W1⊕W ω
1 = W1⊕ (W2⊕W ω2

2 ) = · · · = W1⊕ (W2⊕ (· · · ⊕ (Wn−1⊕Wn) · · · )). (2.5)

This process yields vectors {v1, w1, . . . , vn, wn}. We show that this is indeed a symplectic
basis of V . That it is a basis, follows directly from identity (2.5) and the fact that {vi, wi}
is a basis for Wi = span{vi, wi} for all 1 ≤ i ≤ n. We also have ω(vi, wi) = ωi(vi, wi) = 1
directly from the definition of vi and wi. Furthermore if i < j, then we have vj, wj ∈ Wj ⊂
W ωi
i , hence ω(vi, vj) = ω(vi, wj) = ω(wi, vj) = ω(wi, wj) = 0. Hence {v1, w1, . . . , vn, wn}

is indeed a symplectic basis. This proves Lemma 2.3.

We now move on to define symplectic homomorphisms.

Definition 2.10 (symplectic homomorphism). Let (V, ω) and (V ′, ω′) be symplectic vec-
tor space. A linear map T : V → V ′ is called a symplectic homomorphism if we have:

T ∗ω′ = ω.

A bijective symplectic map is called a symplectic isomorphism. A symplectic isomorphism
is called a symplectic automorphism if (V, ω) = (V ′, ω′). Two symplectic spaces are called
isomorphic symplectic vector spaces if there exists an symplectic isomorphism between
them.

Note that if T : (V, ω) → (V ′, ω′) and S : (V ′, ω′) → (V ′′, ω′′) are both symplectic
homomorphisms, then S ◦ T is so too, since:

(S ◦ T )∗ω′′ = T ∗S∗ω′′ = T ∗ω′ = ω.

Also if T is a symplectic isomorphism, then T−1 is also symplectic isomorphism, since:

(T−1)∗ω = (T ∗)−1T ∗ω′ = ω′.

Since idV : V → V is too a symplectic automorphism, it follows that the set of symplectic
automorphisms is a group. A corollary of Lemma 2.3, related to symplectic isomorphisms,
is the following.
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Corollary 2.11. Let (V, ω), (V ′, ω′) be symplectic vector spaces with identical dimension
2n. Then (V, ω) and (V ′, ω′) are isomorphic symplectic vector spaces.

Proof. Let {v1, w1, . . . , vn, wn} and {v′1, w′1, . . . , v′n, w′n} be symplectic bases for respec-
tively V and V ′. We define linear isomorphism T : V → V ′ by:

T (vi) := v′i and T (wi) := w′i,

for all 1 ≤ i ≤ n. Then we have T ∗ω′ = ω. Hence T is a symplectic isomorphism. This
proves Corollary 2.11.

Corollary 2.11 shows that may properties of a specific symplectic vector space, gen-
eralize to all symplectic vector spaces of the same dimension. In particular properties of
the standard symplectic vector space generalize to general symplectic vector spaces. The
following Lemma gives such a property of the standard symplectic vector space. Let V
be any vector space. We denote by Aut(V ) the group of linear automorphism of V and
by Aut+(V ) the group of linear automorphisms of V with positive determinant3.

Lemma 2.12. If T is a symplectic automorphism of (R2n, ω0), then T ∈ Aut+(R2n).

Proof. We define the 2n-linear map Ω0 on R2n by:

Ω0 =
1

n!
ω0
∧n =

1

n!

n times︷ ︸︸ ︷
ω0 ∧ · · · ∧ ω0 .

Here S2n denotes the group of permutations of the integers {1, . . . , 2n}. We claim the
following.

Claim 1. Ω0 = det, where in this case we view det as 2n-linear map defined by:

det(v1, . . . , v2n) =
∑
σ∈S2n

(−1)sign(σ)

2n∏
i=1

vσ(i).

Proof of Claim 1: We have:

Ω0(e1, . . . , e2n) =
1

n!
ω∧n0 (e1, . . . , e2n)

=
1

n!2n

∑
σ∈S2n

sign(σ)ω⊗n0 (eσ(1), . . . , eσ(2n))

=
1

n!2n

∑
σ∈S2n

sign(σ)
n∏
i=1

ω0(eσ(2i−1), eσ(2i))

3See (A.1) for a precise definition of the determinant of a general linear map T : V → V .
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Now if for some σ ∈ S2n, the n pairs of integers {(σ(1), σ(2)), . . . , (σ(2n− 1), σ(2n))} are
not n pairs of integers (2i−1, 2i) or (2i, 2i−1) (where 1 ≤ i ≤ n), then

∏n
i=1 ω0(eσ(2i−1), eσ(2i)) =

0. On the other hand if this is not the case, then we have:

n∏
i=1

ω0(eσ(2i−1), eσ(2i)) = sign(σ). (2.6)

To see this note that a permutation σ that only interchanges pairs (2i−1, 2i) has sign(σ) =
1. Furthermore if k pairs (2i − 1, 2i) are ”flipped” to (2i, 2i − 1) by σ, then we have
sign(σ) = (−1)k. Hence identity (2.6) follows. It now follows, using the fact that there
are n!2n permutations σ such that {(σ(1), σ(2)), . . . , (σ(2n − 1), σ(2n))} are n pairs of
integers (2i− 1, 2i) or (2i, 2i− 1), that:

Ω0(e1, . . . , e2n) = 1.

Since we also have det(e1, . . . , e2n) = 1 and the space of antisymmetric k-linear maps on
a k-dimensional vector space is 1-dimensional, we have Ω0 = det. This proves Claim 1.
Now it follows that if T is an symplectic automorphism of (R2n, ω0), then we have:

T ∗Ω0 = T ∗
(

1

n!
ω0
∧n
)

=
1

n!
(T ∗ω0)∧n =

1

n!
ω0
∧n = Ω0.

It follows that:

1 = Ω0(e1, . . . , e2n) = Ω0(T (e1), . . . , T (e2n)) = det(T (e1), . . . , T (e2n)) = detT.

We conclude that T ∈ Aut+(R2n). This proves Lemma 2.12.

We denote Bilin(V,R) to be the space of all bilinear maps b : V × V → R.

Lemma 2.13. Let V be a vector space. Then the space of all nondegenerate bilinear maps
is open in Bilin(V,R).

Proof. Let B := {v1, ..., vn} be any ordered basis for vector space V and let B∗ :=
{v∗1, ..., v∗n} be the dual basis of V ∗ corresponding toB. We define the map ρB : Bilin(V,R)→
Rn×n by:

(ρB(ω))ij := ω(vi, vj).

This map is smooth, since it is linear. Furthermore, if we denote [[b]B ∈ Rn×n to be the
n×n-matrix of linear map [b with respect to bases B and B∗, then we have ρB(b) = [[b]B.
Recalling remark 2.6, we have that for all b ∈ Bilin(V,R), b is nondegenerate if and only
if ρB(b) is invertible. It then follows, using the continuity of ρB, that ρ−1

B (GL(n,R)) =
{b ∈ Bilin(V,R) | b nondegenerate} is open. This proves Lemma 2.13.

We now give the definition of a symplectic manifold.
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Definition 2.14 (symplectic manifold). Let M be a smooth manifold and let ω ∈ Ω2(M)
be a 2-form on M . We will call the 2-form ω a symplectic form if it is closed, i.e. dω = 0,
and nondegenerate, i.e. ωp : TpM × TpM is nondegenerate for all p ∈M . In this case we
will call the pair (M,ω) a symplectic manifold.

Note that ωp is antisymmetric by definition of a differential form, hence nondegener-
acy of ω means that (TpM,ωp) is a symplectic vector space for all p ∈M . We now give a
few examples of symplectic manifolds.

Example 2.15. The most basic example of a symplectic manifold is (R2n, ω0), where:

ω0 :=
n∑
i=1

dx2i−1 ∧ dx2i.

This form is closed, since d2 = 0. The symplectic manifold (R2n, ω0) is closely related
to example 2.2, in the way that the maps ω0|p : TpR2n × TpR2n → R are essentially the
standard form of Example 2.2 if we use the canonical identification TpR2n ∼= R2n. Because
of this it follows that ω0 is also nondegenerate, hence (R2n, ω0) is indeed a symplectic
manifold. We call this example the standard symplectic manifold.

Example 2.16. Let Σ ⊂ R3 be an oriented surface and let ν : Σ → R3 be a smooth
normal vector field. Define 2-form ω by:

ωp(v, w) = ν(p) · (dιp(v)× dιp(w))

where · is the standard inner product, × is the standard cross product and ι : Σ → R3

is the inclusion map. Here we identify TpR3 with R3 canonically. It follows from the
antisymmetry of the cross product that ωp is antisymmetric. That ωp is nondegenerate
follows from the fact that for any nonzero v, w the nonzero vector dιp(v) × dιp(w) is
orthogonal to the tangent space dιp(TpΣ), hence dιp(v)×dιp(w) = aν(p) for some nonzero
a ∈ R. It is also closed, since any dω is a 3-form on a 2-dimensional manifold. This shows
that (Σ, ω) is indeed a symplectic manifold.

2.2 Fiber bundles and transition maps

We now give a definition of a smooth fiber bundle.

Definition 2.17 (fiber bundle). Let π : E → M be a smooth map between smooth
manifolds and let F be another smooth manifold. We will call the quadruple (E, π,M, F )
a smooth fiber bundle (with fiber F ) if there exists an open cover U of M and a collection of
diffeomorphisms {ΦU : π−1(U)→ U ×F}U∈U such that π|π−1(U) = prU ◦ΦU for all U ∈ U ,
where prU : U × F → U is the projection map. This is the same as the commutativity of
the following diagram.
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π−1(U) U × F

U

ΦU

π
prU

In this case we will call E the total space, M the base and F the fiber of the fiber bundle.
We will call {ΦU}U∈U a trivialization of the fiber bundle and a map ΦU a local trivialization
over U . The open cover U of M here will be referred to as an open cover trivializing the
fiber bundle. The set π−1(p) will be called the fiber (over p) and will be denoted by Ep.
We will also denote EU := π−1(U) for any U ∈ U .

From now on we assume that all fiber bundles we mention are smooth. Figure 1
shows how locally a fiber bundle looks like a bundle of fibers. The map π of a fiber bundle
is a submersion, as we will now see.

Lemma 2.18. Let (E, π,M, F ) be a fiber bundle. Then π : E →M is a submersion, i.e.
dπx : TxE → Tπ(x)M is surjective for every x ∈ E.

Proof. From the definition of a fiber bundle we have for all x ∈ E there exists a neigh-
borhood U ⊂ M around π(x) and a diffeomorphism ΦU : π−1(U) → U × F such that
π|EU

= prU ◦Φ. It follows that dπx = d(pr ◦Φ)x = d prΦ(x) ◦dΦx. Now dΦx is surjective,
since Φ is a diffeomorphism and d prΦ(x) is surjective, since prU is a projection map. It
follows that dπx is surjective and therefore π is a submersion. This proves Lemma 2.18

We now begin defining transition maps. First we note that any local trivialization
gives rise to a diffeomorphism between fibers in the following way. Let ΦU be any local
trivialization of a fiber bundle (E, π,M, F ). We define for any p ∈ U , Φp

U : Ep → F to be
the map given by:

Φp
U := prF ◦ΦU |Ep : Ep → F (2.7)

where prF : U×F → F is the projection map onto F . That this is indeed a diffeomorphism
follows from the fact that im

(
ΦU |Ep

)
= {p} × F . With these diffeomorphisms we can

define the transition functions of a trivialization.

Definition 2.19 (transition function). Let (M,π,B, F ) be a fiber bundle and {ΦU}U∈U be
a trivialization of the fiber bundle. We denote by Diff(F ) the group of all diffeomorphisms
ϕ : F → F . Let U, V ∈ U , such that U ∩ V 6= ∅. Then we define the map gUV : U ∩ V →
Diff(F ) by:

gUV (p) := Φp
U ◦ (Φp

V )−1

for all p ∈ U ∩ V . We call this map a transition function of trivialization {ΦU}U∈U over
U ∩ V .

12



Remark. Note that for some fiber bundles there may exists a trivialization such that all
transition functions of that trivialization are contained in a subgroup G of Diff(F ). If
this is the case we will say that the fiber bundle has a structure group G. If {ΦU}U∈U is
a trivialization for which all transition functions map into structure group G, we will say
that this trivialization has G as structure group. In particular every fibre bundle, and
also every trivialization, has Diff(F ) as a structure group.

We will now give a well-known example of a fiber bundle that has a structure group
G that is a strictly smaller subgroup of Diff(F ).

Example 2.20. Let (E, π,M) be a smooth real vector bundle of rank n ∈ N. Recall that
this means that π : E → M is a smooth, surjective map between smooth manifolds with
the following properties:

(i) for all p ∈M , Ep := π−1(p) has an R-vector space structure

(ii) there exists an open cover U of M and a set of diffeomorphisms {ΦU : π−1(U) →
U × Rn}U∈U such that for all U ∈ U :

(a) π|EU
= prU ◦ΦU

(b) for all p ∈ U , ΦU restricts to an linear isomorphism between Ep and {p} ×Rn.

We note that property (iia) means that the vector bundle is a fiber bundle with fiber Rn.
However a vector space carries additional structure in properties (i) and (iib). These two
properties imply that as a fiber bundle it has Aut(Rn) as a structure group, since Φp

U are
linear isomorphisms by (iib).

We stay on the topic of vector bundles for now, to define subbundles of vector bundles.
From now on we assume that all vector bundles in this thesis to be smooth real vector
bundles.

Definition 2.21 (subbundle). Let (E, π,M) be a vector bundle of rank n. Let E ′ ⊂ E
be a submanifold of E. We call the triple (E ′, π′ := π|E′ ,M) a subbundle of (E, π,M) if
it is vector bundle of rank m ≤ n and each fiber E ′p := π′−1(p) is a vector subspace of
fiber Ep := π−1(p). In this case we also refer to just E ′ as the subbundle.

An important example of a subbundle is given by the vertical subbundle and hori-
zontal subbundles of a fiber bundle.

Example 2.22. Let (E, π,M, F ) be a fiber bundle. The vertical bundle of (E, π,M, F )
is the subbundle ker dπ ⊂ TE of vector bundle (TE, dπ, TM). Note that the fibers of this
subbundle are given by (ker dπ)x = ker dπx = dιπ(x)

(
TxEπ(x)

)
, where ιp : Ep → E is the

inclusion map. A horizontal bundle of (E, π,M, F ) is any subbundle H ⊂ E such that
for all p ∈M we have: Ep = (ker dπ)p ⊕Hp. In this case we also write ker dπ⊕H = TE.

13



Figure 2 shows the vertical bundle ker dπx and a horizontal bundle Hx at a specific
point x ∈ E. In this figure the identity ker dπx = dιπ(x)

(
TxEπ(x)

)
is also apparent.

Figure 2: A representation of the vertical subbundle and a horizontal subbundle at a point
x ∈ E

We continue with discussing trivializations and structure groups of general fiber bun-
dles in relation to smooth bundle maps.

Definition 2.23 (bundle map). Let (E, π,M, F ) and (E ′, π′,M ′, F ) be fiber bundles. We
call a smooth map ϕ : E ′ → E a smooth bundle map covering f if there is a smooth map
f : M ′ →M , such that π ◦ ϕ = f ◦ π′, i.e. the following diagram commutes.

E ′ E

M ′ M

ϕ

π′ π

f

If M = M ′ we say that ϕ is a bundle map with identical base. If in this case if we do not
specify the map f , we take f to be the identity map idM .

Remark 2.24. Note that the identity π ◦ϕ = f ◦π′ implies that fibers E ′p are mapped into
Ef(p) by ϕ. Also note that if ϕ is an diffeomorphic bundle map covering diffeomorphism
f , then its inverse ϕ−1 is also a smooth bundle map covering f−1. In this case we also
have ϕ(E ′p) = Ef(p) and ϕ−1(Ep) = E ′f−1(p).

We now give an idea on how trivialization of a fiber bundle can be ”pulled back”
under a bundle map.
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Definition 2.25 (pullback trivialization). Let (E, π,M, F ), (E ′, π′,M ′, F ) be fiber bun-
dles with identical fiber and let ϕ : E ′ → E be a smooth bundle map covering the smooth
map f : M ′ →M . Let {ΦU}U∈U be a trivialization of (E, π,M, F ). Then the bundle map
ϕ induces a trivialization {Φ′U ′}U ′∈U ′ on the bundle E ′ in the following way. We define
the pullback open cover by:

U ′ := {f−1(U) | U ∈ U , f−1(U) 6= ∅}. (2.8)

This is an open cover of M ′ and f(U ′) ∈ U for all U ′ ∈ U ′. We also define for all U ′ ∈ U ′,
diffeomorphisms ΨU ′ : π′−1(U ′)→ U ′ × F by:

Φ′U ′(x) :=
(
π′(x),Φ

f(π′(x))
f(U ′) (ϕ(x))

)
. (2.9)

We have:
prU ′ ◦Φ′U ′(x) = π′(x),

hence {Φ′U ′}U ′∈U ′ is indeed an trivialization of the bundle (E ′, π′,M ′, F ). We call this
trivialization the pullback trivialization of {ΦU}U∈U by ϕ.

Pullback trivialization are related to the pullback bundle.

Example 2.26 (Pullback Bundle). Let (E, π,M, F ) be a fiber bundle, M ′ be a smooth
manifold and f : M ′ →M be a smooth map between manifolds. We define:

f ∗E := {(p, v) ∈M ′ × E | f(p) = π(v)}.

We call the quadruple (f ∗E, prM ′ ,M
′, F ), where prM ′ : f ∗E → M ′ is the projection

map, the pullback bundle of fiber bundle (E, π,M, F ) by map f . Note that we have
(f ∗E)p := pr−1

M ′(p) = {p} × Ef(p), following directly from the definition of f ∗E and prM ′ .
The pullback bundle (f ∗E, prM ′ ,M

′, F ) is indeed a fiber bundle. To see this, let {ΦU}U∈U
be a trivialization of (E, π,M, F ). Then U ′ := {f−1(U) | U ∈ U , f−1(U) 6= ∅} is an open
cover of M ′. Furthermore for U ′ ∈ U ′ we define Φ′U ′ : pr−1

E (U ′)→ U ′ × F by:

Φ′U ′(p, v) :=
(
p,Φ

f(p)
f(U ′)(v)

)
.

{Φ′U ′)}U ′∈U ′ is indeed a trivialization of (f ∗E, prE, N, F ). In fact it is the pullback trivial-
ization of {ΦU}U∈U by the projection map prE : f ∗E → E. This projection map is indeed
a smooth bundle map, since π(prE(p, v)) = π(v) = f(p) = f(prN(p, v)), i.e. the following
diagram commutes.

f ∗E E

N M

prE

prN π

f
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The existence of pullback trivializations also shows transition functions can be pulled
back in the following way.

Lemma 2.27. Let (E, π,M, F ) and (E ′, π′,M ′, F ) be fiber bundles with identical fiber F
and let ϕ : E ′ → E be a smooth bundle map covering the smooth map f : M ′ → M .
If {ΦU}U∈U is a trivialization of E with transition functions {gUV }, then the pullback
trivialization {Φ′U ′}U ′∈U ′ of {ΦU}U∈U induced by ϕ and has transition functions given by
{g′U ′V ′} = {f ∗gf(U ′)f(V ′)}. In particular if G is a structure group of (E, π,M, F ), then G
is also a structure group of (E ′, π′,M ′, F ).

Proof. Let {Φ′U ′}U ′∈U ′ be the pullback trivialization. Then for U ′, V ′ ∈ U ′, with nonempty
intersection, we have transition function g′U ′V ′ given by:

g′U ′V ′(p) = Φ′pU ′ ◦ (Φ′pV ′)
−1

=
(

Φ
f(p)
f(U ′) ◦ ϕ

)
◦
(

Φ
f(p)
f(V ′) ◦ ϕ

)−1

= Φ
f(p)
f(U ′) ◦ ϕ ◦ ϕ

−1 ◦ (Φ
f(p)
f(V ′))

−1

= Φ
f(p)
f(U ′) ◦ (Φ

f(p)
f(V ′))

−1

= gf(V )f(V ′) (f(p))

This proves Lemma 2.27

We now give a definition of a symplectic fiber bundle. First we need to define sym-
plectomorphisms between symplectic manifolds.

Definition 2.28 (symplectomorphism). Let (M,ω), (M ′, ω′) be a symplectic manifolds.
We call a diffeomorphism ϕ : M →M ′ a symplectomorphism if it preserves the symplectic
form under its pullback map, i.e. ϕ∗ω′ = ω. We denote Symp(M,ω) to be the set of a
symplectomorphisms ϕ : (M,ω)→ (M,ω).

Note that if ϕ : (M,ω) → (M ′, ω′) and ψ : (M ′, ω′) → (M ′′, ω′′) are symplectomor-
phism then ψ ◦ ϕ is also a symplectomorphism. Furthermore if (M,ω) = (M ′, ω′) then
ϕ−1 is also a symplectomorphism. Since idM : (M,ω) → (M,ω) is also a symplectomor-
phism, we have that Symp(M,ω) is a subgroup of Diff(M). This allows us to define the
symplectic fiber bundle.

Definition 2.29 (symplectic fiber bundle). A quadruple (E, π,M, (F, σ)) is called a sym-
plectic fiber bundle if (E, π,M, F ) is a smooth fiber bundle, (F, σ) is a symplectic manifold
and the fiber bundle has Symp(F, σ) as a structure group. In this case we call any trivi-
alization {ΦU}U∈U a symplectic trivialization it has Symp(F, σ) as a structure group.

Remark 2.30. If (E, π,M, (F, σ)) is a symplectic fibre bundle and {ΦU}U∈U a symplectic
trivialization, then we can define on each fiber Ep a symplectic form σp ∈ Ω2(Fp) by:

σp := Φp
U
∗σ
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where U ∈ U such that p ∈ U . This definition is well-defined, since if V ∈ U such that
p ∈ V we have:

Φp
V
∗σ = Φp

V
∗(gUV (p))∗σ = Φp

V
∗ (Φp

U ◦ (Φp
V )−1

)∗
σ = Φp

V
∗ ((Φp

V )−1
)∗

Φp
U
∗σ = Φp

U
∗σ

We say that this symplectic form σp is induced by form σ (and symplectic trivialization
{ΦU}U∈U). Note that this form might not be unique, as it depends on the symplectic
trivialization. If the set {σp}p∈M is induced by a single symplectic trivialization we say
that {σp}p∈M is induced by form σ.

The next lemma gives an idea on how to find some examples of symplectic fiber
bundles.

Lemma 2.31. Let (E, π,M, F ) be a fiber bundle with 2-dimensional compact orientable
fiber F . Then there exists a 2-form σ ∈ Ω2(F ), such that (E, π,M, (F, σ)) is a symplectic
fiber bundle.

We will not prove this lemma, but refer to the proof of Theorem 6.2.2 in [MS17, p.
257-258], where an idea on how to prove this lemma is given. The next example shows
that it is not guaranteed that there exists a symplectic structure on the total space of a
symplectic fibre bundle.

Example 2.32. In this example we view S3 as subset of C2, i.e. S3 := {(z0, z1) ∈ C2 |
|z0|2 + |z1|2 = 1} and S1 as subset of C, i.e. S1 := {z ∈ C | |z| = 1}. We define
π : S3 × S1 → CP 1 by:

π((z0, z1), z) := [z0 : z1].

This is a surjective map, since for all [z0 : z1] ∈ CP 1 we have that (z0, z1) 6= (0, 0), hence:∣∣∣∣∣ z0√
|z0|2 + |z1|2

∣∣∣∣∣
2

+

∣∣∣∣∣ z1√
|z0|2 + |z1|2

∣∣∣∣∣
2

= 1,

and [
z0√

|z0|2 + |z1|2
:

z1√
|z0|2 + |z1|2

]
= [z0 : z1].

We note that for all (z0, z1), (z′0, z
′
1) ∈ S3:

[z0 : z1] = [z′0 : z′1] ⇐⇒ (z0, z1) = (wz0, wz1) for some w ∈ S1. (2.10)

The implication ⇐ is obvious from the definition of CP 1. To see implication ⇒ assume
that we have (z0, z1), (z′0, z

′
1) ∈ S3 such that [z0 : z1] = [z′0 : z′1]. Then there exists a w ∈ C

such that (wz′0, wz
′
1) = (z0, z1). It follows that:

1 = |z0|2 + |z1|2 = |wz′0|2 + |wz′1|2 = |w|2
(
|z′0|2 + |z′1|2

)
= |w|2,
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hence w ∈ S1. From equivalence (2.10) it follows that fiber π−1(p) is diffeomorphic to
S1×S1. In fact (S3×S1, π,CP 1, S1×S1) is a fiber bundle. We now show this. We define
open cover {U0, U1} of CP 1 by:

Ui := {[z0 : z1] ∈ CP 1 | zi 6= 0},

for i ∈ {0, 1}. We note that π−1(Ui) = {((z0, z1), z) ∈ S3 × S1 | zi 6= 0}. We also define
smooth maps Φi : π−1(Ui)→ Ui × S1 × S1 by:

Φi((z0, z1), z) :=

(
[z0 : z1],

zi
|zi|

, z

)
,

for i ∈ {0, 1}. It is clear that prUi
◦Φi = π|π−1(Ui). Furthermore Φi is bijective. To see this

we define smooth maps Φ−1
i : Ui × S1 × S1 → π−1(Ui) by:

Φ−1
0 ([z0 : z1], w, z) :=

((
w√

1 + |z−1
0 z1|2

,
z−1

0 wz1√
1 + |z−1

0 z1|2

)
, z

)
,

and:

Φ−1
1 ([z0 : z1], w, z) :=

((
z−1

1 wz0√
|z−1

1 z0|2 + 1
,

w√
|z−1

1 z0|2 + 1

)
, z

)
.

These maps are well-defined. To see this note that for [z0 : z1] ∈ U0 we have:∣∣∣∣∣ w√
1 + |z−1

0 z1|2

∣∣∣∣∣
2

+

∣∣∣∣∣ z−1
0 wz1√

1 + |z−1
0 z1|2

∣∣∣∣∣
2

= 1.

Furthermore if [z0 : z1] = [z′0, z
′
1] ∈ U0, then we have (z0, z1) = (uz′0, uz

′
1) for some nonzero

u ∈ C. Hence:(
w√

1 + |z′−1
0 z′1|2

,
z′−1

0 wz′1√
1 + |z′−1

0 z′1|2

)
=

(
w√

1 + |u−1z−1
0 uz1|2

,
u−1z−1

0 wuz1√
1 + |u−1z−1

0 uz1|2

)

=

(
w√

1 + |z−1
0 z1|2

,
z−1

0 wz1√
1 + |z−1

0 z1|2

)

It follows that Φ−1
0 is well-defined. A similar argument shows that Φ−1

1 is well-defined.
We now show that Φ−1

0 is indeed the inverse of Φ0. First for all ((z0, z1), z) ∈ π−1(U0) we
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have: (
Φ−1

0 ◦ Φ0

)
((z0, z1), z) = Φ−1

0

(
[z0 : z1],

z0

|z0|
, z

)
=

((
z0
|z0|√

1 + |z−1
0 z1|2

,
z−1

0
z0
|z0|z1√

1 + |z−1
0 z1|2

)
, z

)

=

((
z0

|z0|
√

1 + |z−1
0 z1|2

,
z1

|z0|
√

1 + |z−1
0 z1|2

)
, z

)

=

((
z0√

|z0|2 + |z1|2
,

z1√
|z0|2 + |z1|2

)
, z

)
= ((z0, z1), z).

Furthermore for all ([z0 : z1], w, z) ∈ U0 × S1 × S1 we have:

(
Φ0 ◦ Φ−1

0

)
([z0 : z1], w, z) = Φ0

((
w√

1 + |z−1
0 z1|2

,
z−1

0 wz1√
1 + |z−1

0 z1|2

)
, z

)

=

([
w√

1 + |z−1
0 z1|2

:
z−1

0 wz1√
1 + |z−1

0 z1|2

]
, w, z

)
=
([
w : z−1

0 wz1

]
, w, z

)
= ([z0 : z1], w, z) .

A similar argument shows that Φ−1
1 is indeed the inverse of Φ1. Hence the maps Φi are

diffeomorphisms. It follows that {Φ0,Φ1} is a trivialization of the fiber bundle (S3 ×
S1, π,CP 1, S1 × S1). Hence from Lemma 2.31 it follows that there exists a 2-form σ on
S1 × S1, such that (S3 × S1, π,CP 1, (S1 × S1, σ)) is a symplectic fiber bundle.

In the previous example the 1-sphere S1 in the product S3×S1 is ignored. This was
needed in order to get a 2-dimensional fiber and thus obtain a symplectic fiber bundle.
The map π′ : S3 → CP 1, where the 1-sphere is not included, is the Hopf fibration, which
has many interested properties. We will not discuss them here, but refer to [Lyo03].
Example 2.32 is interesting for another reason, namely there exists no symplectic form
on the total space S3× S1. We will not prove this in this thesis.4 Therefore this example
shows that it is not self-evident that there even exists a symplectic form the total space
E of a symplectic fiber bundle. Thurston’s Theorem 1.2 and Theorem 1.3 are therefore
important, in that they give a sufficient condition for such symplectic structure to exist
on a total space, that even restricts to induced symplectic forms on the fibers Ep.

4The proof of this follows from the Künneth formula for de Rham cohomology groups (see [BT82,
p. 47-50]), the fact that if a manifold M has trivial de Rham cohomology group (see subsection 3.1),
then there exists no symplectic structure on this manifold M , and the de Rham cohomology groups of
n-spheres (see for example [Lee13, Theorem 17.21]).
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3 de Rham cohomology and Chern classes

In this section we examine oriented vector bundles and eventually define the first Chern
class for symplectic vector bundles. In subsection 3.1 we will define the de Rham coho-
mology group of a smooth manifold. In subsection 3.2 we will define orientations of vector
bundles and define symplectic vector bundles. In subsection 3.3 we will define the first
Chern class of a symplectic vector bundle using Euler classes on oriented vector bundles.

3.1 de Rham cohomology groups

Recall that a differential k-form ω ∈ Ωk(M) is called closed if dω = 0, and ω is called
exact if there exists a (k − 1)-form ξ ∈ Ω(k−1)(M) such that dξ = ω. Since d2ω = 0 for
all forms ω, it is clear that every exact k-form is also closed. The reverse is not generally
true, as we can see from the following example.

Example 3.1. Let ω ∈ Ω1(S1) be the 1-form given by:

ω = xdy − ydx.

This form is a closed form. Now we assume this form is also exact and show that this
leads to a contradiction. Let ξ ∈ Ω0(S1) = C∞(S1) be the 0-form such that dξ = ω. From
Stokes’s Theorem we then have:∫

S1

ω =

∫
S1

dξ =

∫
∂S1

ξ = 0.

However we also have:∫
S1

ω =

∫
S1

(xdy − ydx) =

∫ 2π

0

(
cos2(t) + sin2(t)

)
dt = 2π,

which is a contradiction. Hence ω is not exact.

We denote Zk(M) to be the set of closed k-forms on M , and denote Bk(M) to be
the set of exact k-forms on M . In other words we have:

Zk(M) := {ω ∈ Ωk(M) | dω = 0} = ker
(
d : Ωk(M)→ Ωk+1(M)

)
Bk(M) := {dξ | ξ ∈ Ωk−1(M)} = im

(
d : Ωk−1(M)→ Ωk(M)

)
.

Since the exterior derivative is a R-linear map, Zk(M) and Bk(M) are both linear sub-
spaces of Ωk(M), with Bk(M) ⊂ Zk(M). We now define the de Rham cohomology group.

Definition 3.2. Let M be a smooth manifold. We define the kth de Rham cohomology
group in of M to be the quotient vector space given by:

Hk
dR(M) := Zk(M)/Bk(M).
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From the definition of the de Rham cohomology group it is immediate that Hk
dR(M) =

{0} if and only if every closed k-form ω ∈ Ωk(M) is also exact. Every smooth map
f : M → N between smooth manifolds induces a pullback map between the de Rham
cohomology groups.

Definition 3.3. Let M,N be smooth manifolds and f : M → N be a smooth map
between smooth manifolds. We define map f ∗ : Hk

dR(N)→ Hk
dR(M) by:

f ∗a = f ∗[ω] := [f ∗ω],

where [ω] is the equivalence class containing ω. We call this map the pullback map of de
Rham cohomology groups.

Remark 3.4. It is not immediate that this map is defined properly. To show this we
have to check that f ∗ω is indeed closed (hence [f ∗ω] makes sense) and that the map is
well-defined. Since the exterior derivative commutes with the pullback map we have:

d(f ∗ω) = f ∗(dω) = f ∗0 = 0,

hence f ∗ω is closed. Now if ω, ω′ ∈ Ωk(N) are k-forms such that [ω] = [ω′] we have that
ω′ = ω + η, where η = dξ ∈ Ωk(N) is an exact k-form. It follows that:

f ∗[ω′] = [f ∗ω′] = [f ∗(ω + dξ)] = [f ∗ω + f ∗(dξ)] = [f ∗ω + d(f ∗ξ)] = [f ∗ω] = f ∗[ω].

Therefore the map f ∗ : Hk
dR(N)→ Hk

dR(M) is well-defined.

Since the pullback map is linear we have that the pullback cohomology map is also
linear. Furthermore if f : M → N , g : N → P are smooth maps between smooth
manifolds, then we have:

f ∗ ◦ g∗ = (g ◦ f)∗.

This follows from the same identity in case of the pullback map of differential forms. In
particular we have that if f : M → N is a diffeomorphism, then f ∗ : Hk

dR(N)→ Hk
dR(M) is

an isomorphism with inverse f−1∗. But not only diffeomorphisms give isomorphic de Rham
cohomology groups, since de Rham cohomology groups are homotopy invariants. We will
not prove this fact, but will explain what this means. A continuous map f : X → Y
between topological spaces is called a homotopy equivalence if there exists a continuous
map g : Y → X and homotopies connecting g ◦ f to idX and f ◦ g to idY , i.e. continuous
maps F : X × [0, 1]→ X, G : Y × [0, 1]→ Y such that:

F (x, 0) = (g ◦ f)(x), F (x, 1) = x, G(y, 0) = (f ◦ g)(y) and G(y, 1) = y,

for all x ∈ X and y ∈ Y . In this case g is called a homotopy inverse of f . Two topological
spaces are called homotopy equivalent if there exists a homotopy equivalence f : X → Y
between them.5 The homotopy invariance of the de Rham cohomology groups now means
the following.

5For more information on this subject we refer to [Hat01, Chapter 0]
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Theorem 3.5. Let M,N be homotopy equivalent manifolds. Then for all k ∈ N0, Hk
dR(M)

and Hk
dR(N) are isomorphic. Furthermore if f : M → N is a homotopy equivalence and

g : N →M is a homotopy inverse, then f ∗ : H2
dR(N)→ H2

dR(M) is an isomorphism with
inverse g∗ : H2

dR(M)→ H2
dR(N).

The proof can be found in [Lee13, Theorem 17.11]. It has some useful corollaries.
We say that a topological space X is contractible if it is homotopy equivalent to a point-
space. This is equivalent to saying that there is a homotopy connecting idX : X → X and
cx : X → X, where cx is the constant map given by cx(y) = x for all y ∈ X. We have the
following corollary.

Corollary 3.6. If M is an contractible manifold, then Hk
dR(M) = {0} for all k ∈ N. In

particular every closed k-form on M is also exact.

Proof. Since Hk
dR({p}) = {0} for all k ∈ N, the result follows directly from Theorem

3.5.

3.2 Oriented and symplectic vector bundles

We start by defining orientable vector bundles.

Definition 3.7 (orientable vector bundle). Let (E, π,M) be a real vector bundle. We
will call a trivialization {ΦU}U∈U an oriented trivialization if it has Aut+(Rn) as structure
group. We will call a vector bundle an orientable vector bundle if it has Aut+(Rn) as a
structure group.

Just as in the case of orientable manifolds we can also give an orientation to an
orientable vector bundle. Let (E, π,M) be an orientable vector bundles (E, π,M). We will
say that two oriented trivializations {ΦU}U∈U and {ΨV }V ∈V of (E, π,M) are equivalent
if for all U ∈ U , V ∈ V and p ∈ U ∩ V we have that Φp

U ◦ (Ψp
V )−1 ∈ Aut+(Rn). This is an

equivalence relation on all oriented trivializations. Reflexivity follows from the definition
of an oriented trivialization. Symmetry follows from Ψp

V ◦ (Φp
U)−1 = (Φp

U ◦ (Ψp
V )−1)

−1
.

Transitivity follows from Φp
U ◦ (Λp

W )−1 = Φp
U ◦ (Ψp

V )−1 ◦ Ψp
V ◦ (Λp

W )−1. This leads to the
following definition.

Definition 3.8 (oriented vector bundle). Let (E, π,M) be an orientable vector bundle.
We call an equivalence class O of oriented trivializations an orientation of orientable
vector bundle (E, π,M). An orientable vector bundle with a chosen orientation O is
called an oriented vector bundle and denoted by (E, π,M,O). Any oriented trivialization
contained in the orientation of an oriented vector bundle is called a positively oriented
trivialization of the oriented vector bundle.

We denote by O(V, 〈·, ·〉) or just O(V ) the space of all orthogonal maps T : V → V and
denote by SO(V, 〈·, ·〉) or just SO(V ) the space of all positive orthogonal maps T : V → V 6.

6We refer to Definition A.1 for a precise definition of (positive) orthogonal maps of general linear maps
between inner product spaces.
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The following lemma shows that all vector bundles have O(Rn) as structure groups (and
SO(Rn) if they are orientable).

Lemma 3.9. Any vector bundle of rank n has O(Rn) as a structure group. Furthermore
an orientable vector bundle has SO(Rn) as a structure group.

To prove this lemma we first need to define a Riemannian structure on a vector
bundle, which is an smooth inner product on each of the fibers Ep := π−1(p) of the vector
bundle.

Definition 3.10. Let (E, π,M) be a vector bundle. A Riemannian structure on (E, π,M)
is smooth section g of E∗ ⊗ E∗ such that for all p ∈ M , gp : Ep × Ep → R is a inner
product on Ep.

Before proving lemma 3.9 we first need to show that a Riemannian structure exists
on every vector bundle.

Lemma 3.11. Let (E, π,M) be a vector bundle. Then there exists a Riemannian structure
g on (E, π,M).

Proof. Let (E, π,M) be a vector bundle, and let {ΦU}U∈U be any trivialization. For all
U ∈ U we define section gU of E∗U ⊗ E∗U by:

gU |p(·, ·) := (Φp
U)∗〈·, ·〉 = 〈Φp

U(·),Φp
U(·)〉, (3.1)

where 〈·, ·〉 is the standard inner product on Rn. This is a Riemannian structure on the
vector bundle (EU , π|EU

, U), since Φp
U is a linear isomorphism for all p. We now patch these

Riemannian structures together using a smooth partition of unity {ρU}U∈U , subordinate
to U . We define section g of E∗ ⊗ E∗, by:

gp(·, ·) :=
∑
U ∈ U
p ∈ U

ρU(p)gU |p(·, ·). (3.2)

This is indeed a well-defined Riemannian structure on (E, π,M), since pointwise this is a
finite linear combination of inner products. This proves Lemma 3.11.

We can now prove lemma 3.9.

Proof of lemma 3.9. Let (E, π,M) be a vector bundle of rank n and g be a Riemannian
structure on the vector bundle. Let {ΦU}U∈U be any trivialization of the vector bundle.
We can define smooth local frames {s′1, . . . , s′n}U over U7 by:

s′i(p) := (Φp
U)−1(ei),

7A smooth local frame {s1, . . . , sn}U over U is a set of smooth sections si : U → EU such that
{s1(p), . . . , sn(p)} is an ordered basis for Ep for all p ∈ U .
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for all 1 ≤ i ≤ n. Using the Riemannian structure and the Gram-Schmidt procedure on
this local frame8, we obtain smooth orthonormal local frames {s1, . . . , sn}U over U for all
U ∈ U , i.e. for all p ∈ U , {s1(p), . . . , sn(p)} is an orthonormal basis (with respect to inner
product gp) of Ep. We define a new trivialization {ΨU}U∈U by:

ΨU(si(p)) := (p, ei), (3.3)

for all p ∈ U ∈ U and 1 ≤ i ≤ n. Its transition functions {gUV } are orthogonal maps,
since Ψp

U : (Ep, gp) → (Rn, 〈·, ·〉) is an orthogonal map for all p ∈ U ∈ U . Hence vector
bundle (E, π,M) has O(Rn) as a structure group.

Now let (E, π,M) be an orientable vector bundle and {ΦU}U∈U be any oriented
trivialization. We define trivialization {ΨU}U∈U in the same way as above. Then this
trivialization is also oriented, belonging to the same orientation as {ΦU}U∈U , since the
Gram-Schmidt procedure preserves orientation.9 It follows that in this case the bundle
has SO(Rn) as a structure group. This proves Lemma 3.9.

Remark 3.12. In the proof of lemma 3.9 we first defined a Riemannian structure to define
a trivialization by (3.3) with O(Rn) or SO(Rn) as structure group. This trivialization has
as property that it maps smooth orthonormal local frames to the standard basis of Rn.
We can also do this the other way round. If {ΦU}U∈U is any trivialization of the bundle
with O(Rn) (or SO(Rn)) as structure group we can define the Riemannian structure as in
(3.2) using (3.1). In this case we have that smooth local frame {s1, . . . , sn}U , defined by
si(p) := (Φp

U)−1(p) for all 1 ≤ i ≤ n, is a smooth orthonormal local frame that is mapped
to the standard basis by the trivialization. Hence the trivialization maps orthogonal local
frames to the standard basis of Rn.

We now define the symplectic vector bundle.

Definition 3.13. Let (E, π,M) be a vector bundle of rank 2n and ω be a smooth section
of E∗ ∧ E∗ with the property that ωp is also nondegenerate (hence symplectic) for all
p ∈M . We will call the quadruple (E, π,M, ω) a symplectic vector bundle (of rank 2n).

Example 3.14. Let (M,ω) be a symplectic manifold. Then (TM, π,M, ω), where (TM, π,M)
is the tangent bundle, is a symplectic vector bundle.

If we have a vector bundle (E, π,M) and a smooth section ω ∈ E∗ ∧ E∗ that is
nondegenerate at some point p ∈M , then locally we have a symplectic vector bundle.

Lemma 3.15. Let (E, π,M) be a vector bundle and let ω be a smooth section of E∗∧E∗. If
ωp is nondegenerate then there exists a neighborhood U of p such that ωq is nondegenerate
for all q ∈ U .

8This procedure can be seen in more detail in [Lee13, Lemma 8.13].
9This follows from Lemma A.3.
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Proof. Let p ∈ M such that ωp is nondegenerate and let {s1, . . . , sn}V be a smooth local
frame over a neighborhood V of p. We define the map ρ : V → Rn×n by:

ρ(q)ij := ωp(si(q), sj(q))

Since the map q 7→ ωq is smooth and the local frame is smooth, we have that ρ is a
smooth map. From Remark 2.6 we have that ωq is nondegenerate if and only if ρ(q) is
invertible. It follows that U := ρ−1(GL(n,R)) is an open neighborhood of p, such that ωq
is nondegenerate for all q ∈ U . This proves Lemma 3.15.

Symplectic vector bundles are orientable vector bundles, as we will now show.

Lemma 3.16. If (E, π,M, ω) is a symplectic vector bundle, then its underlying vector
bundle (E, π,M) is an orientable vector bundle.

Proof. We first claim the following:

Claim 1. For all p ∈ M , there exists a smooth symplectic local frame over a neigh-
borhood U of p, i.e. a smooth local frame {t1, s1, . . . , tn, sn}U such that for all q ∈ U ,
{t1(q), s1(q), . . . , tn(q), sn(q)} is a symplectic basis for Eq.

Proof of Claim 1: Let p ∈M and BV := {u1, . . . , u2n}V be a smooth local frame over
neighborhood V of p. We will follow a procedure similar as in the proof of Lemma 2.3,
only using local sections and frames instead of vectors and bases by defining:

s1 := u1

t1 =
u′

ω (u1, u′)
,

where u′ ∈ B such that ωp(u1(p), u′(p)) 6= 0. Note that t1 might not be well-defined over
the entire neighborhood V , since ω(u1, u

′) might be zero outside of p. However, since map
q 7→ ωq(u1(q), u′(q)) is smooth and ωp(u1(p), u′(p)) 6= 0 we have that ωq(u1(q), u′(q)) 6= 0
for all q ∈ U1 ⊂ V , where U1 is a neighborhood of p. If span{s1(p), t1(p)} = Ep then we
are done, and {s1, t1}U1 is a smooth symplectic local over U1. If this is not the case, then
we define for any u ∈ B\{u1, u

′}:

f1(u) := u+ ω (u, t1) s1 − ω (u,w1) v1.

We can repeat the same process on smooth local subframeB1 := {f1(u) | u ∈ B\{u1, u
′}}U1

over U1 and ω restricted to the local subbundle spanned by this subframe. This process
stops at some point, as in the proof of Lemma 2.3, until we obtain an smooth symplectic
local frame {t1, s1, . . . , tn, sn}U=Un . This proves Claim 1.

Let U be the open cover such that for each open set U ∈ U there exists a smooth
symplectic local frame over U . For every U ∈ U we define local trivialization ΦU : EU →
U × R2n by:

ΦU(si(p)) := (p, e2i−1) and ΦU(ti(p)) = (p, e2i) (3.4)
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for all 1 ≤ i ≤ n. Note that the linear isomorphisms Φp
U are symplectic isomorphisms

between (Ep, ωp) and (R2n, ω0). In particular we have that the transition maps gUV
map into symplectic automorphisms of (R2n, ω0). From Lemma 2.12 it follows that the
transition functions map into Aut+(R2n) and thus that the underlying vector bundle is
orientable. This proves Lemma 3.16.

Remark 3.17. Note that any trivialization that restricts to symplectic isomorphisms be-
tween (Ep, ωp) and (R2n, ω0) belongs to the same orientation. To see this let {ΨV }V ∈V
be another trivialization with this property, i.e. the linear isomorphisms Φp

V are sym-
plectic isomorphisms. This means that for all U ∈ U and V ∈ V with p ∈ U ∩ V we
have that Φp

U ◦ (Ψp
U)−1 is a symplectic isomorphism. Hence, from Lemma 2.12, we have

Φp
U ◦ (Ψp

V )−1 ∈ Aut+(Rn). This means that both oriented trivializations are equivalent.
Hence a symplectic vector bundle induces a canonical orientation on its underlying vector
bundle. We denote (E, π,M,Oω) to be this oriented vector bundle induced by (E, π,M, ω).

Recall the definition of a vector bundle homomorphism and isomorphism.

Definition 3.18. Let (E, π,M), (E ′, π′,M ′) be vector bundles. We call a smooth bundle
map ϕ : E ′ → E covering smooth map f : M ′ → M a vector bundle homomorphism
covering f if it restricts to linear maps between fibers, i.e.

ϕ|E′p : E ′p → Ef(p)

is linear for all p ∈ M ′. We call ϕ a bundle isomorphism if ϕ is an diffeomorphic vector
bundle homomorphism and its inverse is also a vector bundle homomorphism.

Note that any bijective vector bundle homomorphism restricts to isomorphisms be-
tween fibers, following from Remark 2.24. Furthermore the inverse of a vector bundle
isomorphism covering f is a vector bundle isomorphism covering f−1, which implies that
f is a diffeomorphism. Vector bundle isomorphisms may also preserve orientations of
oriented vector bundles in the following sense.

Definition 3.19. Let ϕ : E ′ → E be a vector bundle isomorphism between oriented vector
bundles (E ′, π′,M ′,O′) and (E, π,M,O) covering smooth map f : M ′ →M . We say that
ϕ is orientation-preserving if for all positively oriented trivializations {ΦU}U∈U ∈ O and
{ΨU ′}U ′∈U ′ ∈ O′ we have:

Φ
f(p)
U ◦ ϕ ◦ (Ψp

U ′)
−1 ∈ Aut+(Rn) for all U ∈ U and U ′ ∈ U ′ with p ∈ U ′ and f(p) ∈ U.

(3.5)

The next lemma shows that if a vector bundle isomorphism preserves just one pair
of positively oriented trivializations, then it is orientation-preserving.

Lemma 3.20. Let ϕ : E ′ → E be a vector bundle isomorphism between oriented vector
bundles (E ′, π′,M ′,O′) and (E, π,M,O) covering smooth map f : M ′ → M . If there
exists positively oriented trivializations {ΦU}U∈U ∈ O and {ΨU ′}U ′∈U ′ ∈ O′ with property
(3.5), then ϕ is orientation-preserving.
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Proof. Let {Λ}V ∈V ∈ O and {Γ}V ′∈V ′ ∈ O′ be positively oriented trivialization of respec-
tively vector bundles E and E ′. Then we have:

Λ
f(p)
V ◦ ϕ ◦ (ΓpV ′)

−1 = Λ
f(p)
V ◦ (Φ

f(p)
U )−1

∈Aut+(Rn)

◦Φ
f(p)
U ◦ ϕ ◦ (Ψp

U ′)
−1

∈Aut+(Rn)

◦Ψp
U ′ ◦ (ΓpV ′)

−1

∈Aut+(Rn)

∈ Aut+(Rn),

for any U ∈ U , U ′ ∈ U ′, V ∈ V and V ′ ∈ V ′ with p ∈ U ′ ∩ V ′ and f(p) ∈ U ∩ V . Hence ϕ
is orientation-preserving. This proves Lemma 3.20.

Any vector bundle isomorphism can be turned into an orientation-preserving vector
bundle isomorphism if one of the vector bundles is oriented. The following lemma shows
this.

Lemma 3.21. Let (E, π,M) and (E ′, π′,M ′) be vector bundles and let ϕ : E ′ → E be
a vector bundle isomorphism covering diffeomorphism f : M ′ → M . Then (E, π,M) is
orientable if and only if (E ′, π′,M ′) is orientable. Furthermore if O′ is an orientation on
(E ′, π′,M ′), then there is an orientation O on (E, π,M) such that ϕ is an orientation-
preserving vector bundle isomorphism between (E ′, π′,M ′,O′) and (E, π,M,O). In the
same way if O is an orientation on (E, π,M), then there is an orientation O′ on (E ′, π′,M ′)
such that ϕ is orientation-preserving.

Proof. Let (E, π,M) be orientable and let O be an orientation of E and let {ΦU}U∈U ∈
O. Let {Φ′U ′}U ′∈U ′ be the pullback trivialization defined by (2.8) and (2.9). Then this
trivialization is oriented, following from Lemma 2.27. Furthermore for any U ′ ∈ U ′ and
U ∈ U with p ∈ U ′ and f(p) ∈ U we have:

Φ
f(p)
U ◦ ϕ ◦ (Φ′pU ′)

−1 = Φ
f(p)
U ◦ ϕ ◦ (Φ

f(p)
f(U ′) ◦ ϕ)−1 = Φ

f(p)
U ◦ (Φ

f(p)
f(U ′))

−1 ∈ Aut+(Rn) (3.6)

Hence if O′ is the orientation class containing {Φ′U ′}U ′∈U ′ , then we have that ϕ is an
orientation-preserving vector bundle isomorphism between (E ′, π′,M ′,O′) and (E, π,M,O).
The converse is proven similarly using the inverse vector bundle isomorphism ϕ−1. This
proves Lemma 3.21.

Note that we used the pullback trivialization to prove Lemma 3.21. This leads to the
following Corollary.

Corollary 3.22. Let ϕ : E ′ → E be an orientation-preserving vector bundle isomorphism
between oriented vector bundles (E ′, π′,M ′,O′) and (E, π,M,O) covering smooth map
f : M ′ → M . If {ΦU}U∈U ∈ O is a positively oriented trivialization, then its pullback
trivialization {Φ′U ′}U ′∈U ′ induced by ϕ is also positively oriented, i.e. contained in O′.

We now give the definition of a symplectic vector bundle isomorphism.

Definition 3.23. Let (E, π,M, ω) and (E ′, π′,M, ω′) be symplectic vector bundles. A
vector bundle isomorphism ϕ : E ′ → E is called a symplectic vector bundle isomorphism
if for all p ∈M we have:

ϕ∗ωp = ω′ϕ−1(p).

In other words ϕ restricts to symplectic isomorphisms between the fibers.

27



Symplectic vector bundle isomorphism are orientation-preserving, as we will now
show.

Lemma 3.24. Let (E, π,M, ω) and (E ′, π′,M ′, ω′) be symplectic vector bundles, and
ϕ : E ′ → E be a symplectic vector bundle isomorphism. Then ϕ is an orientation-
preserving vector bundle isomorphism between oriented vector bundles (E ′, π′,M ′,Oω′)
and (E, π,M,Oω)

Proof. Using Remark 3.17 we have that there are positively oriented trivializations {ΦU}U∈U ∈
Oω, {ΨU ′}U ′∈U ′ ∈ Oω

′
such that Φp

U : (Ep, ωp)→ (R2n, ω0) and Ψp′

U ′ : (E ′p, ω
′
p′)→ (R2n, ω0)

are symplectic isomorphisms for all U ∈ U and U ′ ∈ U ′ with q ∈ U and p ∈ U ′. Since ϕ
restricts to symplectic isomorphisms between fibers, we have that Φ

f(p)
U ◦ ϕ ◦ (Ψp

U ′)
−1 is a

symplectic automorphism. Hence, using Lemma 2.12, we get:

Φ
f(p′)
U ◦ ϕ ◦ (Ψp′

U ′)
−1 ∈ Aut+(R2n).

It follows from Lemma 3.20 that ϕ is orientation-preserving. This proves Lemma 3.24.

3.3 The Euler class and the first Chern class

in this subsection we will define the Euler class using angular forms. The procedure
is based on [BT82, p. 71-74] We first define the angle of rotation of general positive
orthogonal maps on 2-dimensional inner product spaces.

Definition 3.25. Let (V, 〈·, ·〉) be a 2-dimensional inner product space and let T : V → V
be a positive orthogonal map. Let θT ∈ [0, 2π) be the unique number such that:

[T ]BB =

(
cos θ − sin θ
sin θ cos θ

)
,

for any ordered basis B of V . We call θT the (counterclockwise) angle of rotation of T

From Lemma A.2 we have that this angle of rotation exists. Let (E, π,M,O) be an
oriented vector bundle of rank 2. Let {ΦU}U∈U be a positively oriented trivialization of
the bundle with SO(R2) as structure group. From remark 3.12 we have that there exists a
Riemannian structure g and orthonormal local frames {s1, s2}U such that Φp

U(si(p)) = ei.
It then follows that the map that maps {t1, t2}V to {s1, s2}U on U ∩ V is essentially the
same as the transition function gUV , in the sense that at each point the corresponding
matrices of the positive orthogonal maps are identical. We define smooth map γUV :
U ∩ V → R/2πZ by:

γUV (p) := [θgUV (p)], (3.7)

where θgUV (p) is the counterclockwise angle of rotation of gUV (p) as defined in Definition
3.25, which is also the angle of rotation of the positive orthogonal transformation that
maps {t1(p), t2(p)} to {s1(p), s2(p)}. We call this map the (counterclockwise) rotation map
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from V to U . Figure 3 shows the relation between the rotation maps and the transitions
function.

Figure 3: The rotation of the orthogonal frames in a point p by transition function gUV

We have the following properties of this rotation map. Let U, V,W ∈ U with
nonempty intersection U ∩ V ∩W . Then:

γUU = [0]

γUV = −γV U
γUV + γVW = γUW .

These properties directly follow from similar properties of transition functions. We use
these rotation maps to define the Euler class of an oriented vector bundle of rank 2.

Definition 3.26 (Euler class). Let (E, π,M,O) be an oriented vector bundle of rank 2
and let {ΦU}U∈U be a positively oriented trivialization with SO(Rn) as structure group.
Let for all U, V ∈ U , γUV : U ∩V → R/2πZ be the counterclockwise rotation map defined
as in (3.7). Let for all U ∈ U , ξU be 1-form defined by:

ξU :=
∑
W∈U

ρWdγUW , (3.8)
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where {ρW}W∈U is a smooth partition of unity subordinate to U . Let ω ∈ Ω2(M) be the
2-form that is locally defined by:

ω|U := dξU ,

for U ∈ U . We call the de Rham cohomology class [ω] ∈ H2
dR(M) the Euler class of

oriented vector bundle (E, π,M,O). We will denote this class by e(E) = [ω].

At the moment it is unclear whether the 2-form defined by (3.26) is well-defined. We
will now show that this definition is well-defined. Let U, V ∈ U with U ∩V 6= ∅. We then
see that:

ξU − ξV =
∑
W∈U

ρW (dγUW − dγVW )

=
∑
W∈U

ρWd(γUW − γVW )

=
∑
W∈U

ρWd(γUW + γWV )

=
∑
W∈U

ρWdγUV

= dγUV .

It follows that dξU − dξV = d2γUV = 0. Hence on U ∩ V we have ωU = dξU = dξV = ωV .
We conclude that ω is well-defined. Furthermore this 2-form is closed, since it is locally
equal to an exterior derivative of a 1-form. Hence [ω] is well-defined. It remains to show
that e(E) does not depend on the trivialization {ΦU}U∈U ∈ O. We will not prove this
fact, but refer to [BT82, p. 118-119], where this fact is proven even in higher dimensional
cases

Example 3.27. Let M be any smooth manifold, and (M ×R2, prM ,M,O) be the trivial
oriented vector bundle, with orientation O determined by the identity trivialization id :
M ×R2 →M ×R2. Then we have that ξM , as defined as in (3.8), is equal to zero (since
γMM = 0). Hence e(M × R2) = 0.

An important property of the Euler class is that it can be pulled back by any
orientation-preserving vector bundle isomorphism in the following way.

Lemma 3.28. Let (E, π,M,O) and (E ′, π′,M ′,O′) be oriented vector bundles of rank 2
and let f : M ′ → M be a smooth map. If ϕ : E ′ → E is an orientation-preserving vector
bundle isomorphism covering f , then

e(E ′) = f ∗(e(E)).

Proof. Note that if {ΦU}U∈U is a positively oriented trivialization of (E, π,M), then we
have that the pullback trivialization {ΦU ′}U ′∈U ′ , as defined in Definition 2.25, is also
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positively oriented by Corollary 3.22. In other words we have {ΦU ′}U ′∈U ′ ∈ O′. We now
use this pullback trivialization to determine the Euler class of (E ′, π′,M ′,O′). Recall that
we defined the pullback open cover U ′ by:

U ′ := {f−1(U) | U ∈ U , f−1(U) 6= ∅}.

Since f is a diffeomorphism, we have a 1-to-1 correspondence between open covers U ′ and
U , given by U ′ = f−1(U) 7→ U = f(U ′). Let {ρU}U∈U be a smooth partition of unity
subordinate to U . Then we can define a smooth partition of unity {ρ′U ′}U ′∈U ′ subordinate
to U ′ by:

ρ′U ′ := f ∗ρf(U ′),

for all U ′ ∈ U ′. This is indeed a smooth partition of unity subordinate to U ′. To see
this note that since f is smooth we have that f ∗ρf(U ′) is also smooth for all U ′ ∈ U ′.
Furthermore for all p ∈M ′ we have:∑

U ′∈U ′
ρ′U ′(p) =

∑
U ′∈U ′

ρf(U ′)(f(p)) =
∑
U∈U

ρU(f(p)) = 1.

Moreover for all p ∈M , there exists a neighborhood V of f(p) such that {U ∈ U | U∩V 6=
∅} is a finite set. Hence {U ′ ∈ U ′ | U ′∩f−1(V ) 6= ∅} = {f(U) | U ∈ U , f−1(U)∩f−1(V ) =
f−1(U ∩ V ) 6= ∅} is also a finite set. Now we define 2-form ω′ ∈ Ω(M ′) as in Definition
3.26; as the 2-form that is locally equal to the local exterior derivative of ξU ′ , where ξU ′
is as defined in 3.8 using partition of unity {ρ′U ′}U ′∈U ′ . We then have on U ′:

ω′|U ′ = dξ′U

= d

( ∑
W ′∈U ′

ρ′W ′dγ
′
U ′W ′

)

= d

( ∑
W ′∈U ′

f ∗ρf(W ′)df
∗γf(U ′)f(W ′)

)

= d

( ∑
W ′∈U ′

f ∗
(
ρf(W ′)dγf(U ′)f(W ′)

))

= d

(∑
W∈U

f ∗
(
ρWdγf(U ′)W

))

= f ∗d

(∑
W∈U

ρWdγf(U ′)W

)
= f ∗dξf(U ′)

= f ∗ω|f(U ′).
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Here we used that γ′U ′V ′ = f ∗γf(U ′)f(V ′), which follows from g′U ′V ′ = f ∗gf(U ′)f(V ′) (Lemma
2.27) and the definition of γ′U ′V ′ . Hence f ∗ω = ω′. It follows that e(E ′) = [ω′] = [f ∗ω] =
f ∗[ω] = f ∗(e(E)). This proves Lemma 3.28.

We conclude this section with the definition of the first Chern class of a symplectic
vector bundle.

Definition 3.29. Let (E, π,M, ω) be a symplectic vector bundle of rank 2. We define
the first Chern class of (E, π,M, ω) to be the Euler class of its underlying oriented vector
bundle (E, π,M,Oω). We will denote the first Chern class of (E, π,M, ω) by c1(E).
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4 Main proofs

In this section we will be proving the main theorems. In subsection 4.1 we will prove
Thurston’s Theorem 1.2. In subsection 4.2 we will prove Theorem 1.3.

4.1 Proof of Thurston’s Theorem 1.2

Recall Thurston’s theorem 1.2:

Theorem 1.2 (Thurston). Let (E, π,M, (F, σ)) be symplectic fiber bundle with com-
pact symplectic fiber (F, σ) and compact connected symplectic base (M, ξ). Let {σp ∈
Ω2(Ep)}p∈M be symplectic forms on fibers Ep induced by σ. Suppose there exists a de
Rham cohomology class a ∈ H2

dR(E) such that ιp
∗a = [σp] for all p ∈ M . Then for every

sufficiently large real number R > 0, there exists a symplectic form ωR ∈ Ω2(E) such that
ιp
∗ωR = σp for all p ∈M and [ωR] = a+R[π∗ξ].

We now give a proof of this theorem.

Proof of Theorem 1.2. Let τ0 ∈ Ω2(E) be an arbitrary closed 2-form, representing the
de Rham cohomology class a. Let {ΦU}U∈U be the trivialization that induces the forms
σp ∈ Ω2(Ep). Since M is a compact manifold, we can assume that each U ∈ U is
contractible and that U is a finite open cover. We define for all U ∈ U :

σU := prF
∗σ ∈ Ω2(U × F ),

Where prF : U × F → F is the projection map onto F . We claim the following:

Claim 1. The form ΦU
∗σU − ιU ∗τ0 ∈ Ω2(EU) is exact.

Proof of Claim 1: Since the external derivative is R-linear, commutes with the pullback,
and τo and σ are both closed we have:

d (ΦU
∗σU − ιU ∗τ0) = d (ΦU

∗σU)− d (ιU
∗τ0) = ΦU

∗prF
∗dσ + ιU

∗dτ0 = 0

Since U is contractible we have that there exists a homotopy equivalence r : U × F →
{p} × F , such that r|{p}×F = id{p}×F , with homotopy inverse ι{p}×F . To see this, let
F : U×[0, 1]→ U be a homotopy connecting idU and cp for some p ∈ U , where cp : U → U
is the constant map to p. In other words F (q, 0) = q and F (q, 1) = p for all q ∈ U . We
define G : (U × F )× [0, 1]→ U × F by:

G(q, x, t) := (F (q, t), x).

If we define r : U×F → {p}×F by r(q, x) := G(q, x, 1), then G is a homotopy connecting
idU×F to ι{p}×F ◦ r. Furthermore r ◦ ι{p}×F (p, x) = G(p, x, 1) = (F (p, 1), x) = (p, x),
hence r ◦ ι{p}×F = id{p}×F . Hence r is a homotopy equivalence with homotopy inverse
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ι{p}×F . Using Theorem 3.5 and the properties of the induced cohomology map we have
isomorphisms:

H2
dR(EU)

Φ−1
U

∗

−−−→ H2
dR(U × F )

ι{p}×U
∗

−−−−→ H2
dR({p} × F )

ΦU |Ep
∗

−−−−→ H2
dR(Ep)

Note that the composition of these isomorphisms is precisely ιp
∗ : H2

dR(EU) → H2
dR(Ep),

since:

ΦU |Ep

∗ι{p}×U
∗Φ−1

U

∗
=
(
Φ−1
U ◦ ι{p}×U ◦ ΦU |Ep

)∗
=
(
Φ−1
U ◦ ΦU ◦ ιp

)∗
= ιp

∗.

It follows that:

ιp
∗[ΦU

∗σU − ιU ∗τ0] = [ιp
∗ΦU

∗prF
∗σ − ιp∗ιU ∗τ0]

= [(prF ◦ΦU ◦ ιp)∗σ − (ιU ◦ ιp)∗τ0]

= [Φp
U
∗σ − ιp∗τ0]

= [σp]− ιp∗[τ0]

= [σp]− ιp∗a
= [σp]− [σp]

= 0.

Since ιp
∗ is a isomorphism we have that [ΦU

∗σU − ιU ∗τ0] = 0, hence ΦU
∗σU − ιU ∗τ0 is also

exact. This proves Claim 1. For all U ∈ U we choose 1-forms ηU ∈ Ω1(EU) such that:

dηU = ΦU
∗σU − ιU ∗τ0.

Now we choose a partition of unity {ρU}U∈U , subordinate to open cover U and define:

τ := τ0 +
∑
U∈U

d((ρU ◦ π)ηU) ∈ Ω2(E).10

We claim the following:

Claim 2. The form τ is closed, represents de Rham cohomology class a and restricts to
σp on all fibres Ep, i.e. ιp

∗τ = σp.

Proof of Claim 2: We have:

dτ = dτ0 + d

(∑
U∈U

d((ρU ◦ π)ηU)

)
=
∑
U∈U

d2((ρU ◦ π)ηU) = 0,

10Note that (ρU ◦π)ηU can be interpreted as form in Ω2(E) if one takes ηU to be zero EU . This retains
pointwise bilineairity and antisymmetry, while the fact that supp(ρU ◦ π) ⊂ U ensures that (ρU ◦ π)ηU
depends smoothly on x ∈ E.
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and:

[τ ] = [τ0] +

[∑
U∈U

d((ρU ◦ π)ηU)

]
= a+

∑
U∈U

[d((ρU ◦ π)ηU)] = a,

proving that τ is closed and represents class a. Also note that ιp
∗d(ρU ◦ π) = 0 for all

U ∈ U , since ker dπx = dιπ(x)

(
TxEπ(x)

)
. It follows that:

ιp
∗τ = ιp

∗

(
τ0 +

∑
U∈U

d((ρU ◦ π)ηU)

)

= ιp
∗τ0 +

∑
U∈U

ιp
∗d((ρU ◦ π)ηU)

= ιp
∗τ0 +

∑
U∈U

ιp
∗(d(ρU ◦ π) ∧ ηU + (ρU ◦ π)dηU)

= ιp
∗τ0 +

∑
U∈U

ιp
∗(ρU ◦ π)dηU

=
∑
U∈U

(ρU ◦ π)ιp
∗(τ0 + dηU)

=
∑
U∈U

(ρU ◦ π)(ιp
∗τ0 + ιp

∗ΦU
∗σU − ιp∗ιU ∗τ0)

=
∑
U∈U

(ρU ◦ π)ιp
∗ΦU

∗σU

=
∑
U∈U

(ρU ◦ π)ιp
∗ΦU

∗prF
∗σ

=
∑
U∈U

(ρU ◦ π)Φp
U
∗σ

=
∑
U∈U

(ρU ◦ π)σp

= σp.

Hence τ restricts to σp. This proves claim 2. Claim 2 and the fact that σp is nondegenerate
imply that (ker dπx, τx) is a symplectic vector space. We define Hx := (ker dπx)

τx and
H := ∪x∈EHp. It follows from Corollary 2.9 that ker dπx ⊕ Hx = TxM . Hence H is a
horizontal subbundle of (TE, dπ, TM). Now let R > 0 be a real number. We define the
2-form ωR := τ +Rπ∗ξ ∈ Ω2(E). We claim the following:

Claim 3. For R large enough the form ωR is nondegenerate on subbundle H.

Proof of Claim 3: From lemma 2.18 we have that, dπ : TE → TM is surjective, hence
its restriction to horizontal subbundle H is a vector bundle isomorphism. It follows, using
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that ξ ∈ Ω2(M) is nondegenerate, that π∗ξ is nondegenerate on H. Now for all x ∈ E
the restricted bilinear map:(ωR

R

)
x

=
( τ
R

+ π∗
)
x

: Hx ×Hx → R

converges to (π∗ξ)x as R → ∞. This means, using Lemma 2.13, that for all x ∈ E,
there exists an Rx > 0 such that

(
ωR

R

)
x
, and therefore also (ωR)x, is nondegenerate for

all R ≥ Rx. Using Lemma 3.15 we have that there exist a neighborhood Ux of such that
(ωR)y nondegenerate for all y ∈ Ux and R ≥ Rx. We now have an open cover {Ux}x∈E
such that for all y ∈ Ux and R ≥ Rx, (ωR)y is nondegenerate. Since M is compact, and
therefore also E is compact, we obtain a finite subcover {U1, ..., Uk} and R1, ..., Rk > 0
such that for all 1 ≤ i ≤ k, x ∈ Ui and R ≥ Ri we have that (ωR)x is nondegenerate.
Now we take R′ := max{R1, ..., Rk}. It follows that ωR is nondegenerate on H for all
R > R′. This proves claim 3. Now we claim that this is the form with the properties we
were looking for.

Claim 4. For any R > 0, ωR is symplectic, ιp
∗ωR = σp for all p ∈M and [ωR] = a+R[π∗ξ].

Proof of Claim 4: Let R > R′. For all u, v ∈ ker dπp and w ∈ Hx we have:

(ωR)x(u, v) = τx(u, v) +R(π∗ξ)x(u, v) = τx(u, v) +Rξπ(x)(0, 0) = τx(u, v)

(ωR)x(v, w) = τx(v, w) +R(π∗ξ)x(v, w) = Rξπ(x)(0, dπx(w)) = 0.

Now let v ∈ TxE, v = v1 + v2, where v1 ∈ ker dπx and v2 ∈ Hx. Then if:

(ωR)x(v1 + v2, w1) = (ωR)x(v1, w1) + (ωR)x(v2, w1) = τx(v1, w1) = 0 and

(ωR)x(v1 + v2, w2) = (ωR)x(v1, w2) + (ωR)x(v2, w2) = (ωR)x(v2, w2) = 0

for all w1 ∈ ker dπx and w2 ∈ Hx, we have v = v1 + v2 = 0 + 0 = 0, since τ and ωR
respectively nondegenerate on ker dπ and H. This shows that ωR is nondegenerate. Using
that τ and ξ are closed, we also have:

dωR = dτ + d(Rπ∗ξ) = Rπ∗(dξ) = 0,

hence ωR is closed and therefore symplectic. The form ωR also restricts to σp on the fibers
Ep, since for all p ∈M we have:

ιp
∗ωR = ιp

∗τ + ιp
∗π∗ξ = ιp

∗τ = σp.

Furthermore this form also represents the proper de Rham cohomology class, since:

[ωR] = [τ +Rπ∗ξ] = [τ ] +R[π∗ξ] = a+R[π∗ξ].

This proves Claim 4. This proves Theorem 1.2.
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4.2 Proof of Theorem 1.3

Recall Theorem 1.3.

Theorem 1.3. Let (E, π,M, F ) be a symplectic fiber bundle with compact symplectic fiber
(F, σ) of dimension 2. Let {σp ∈ Ω2(Ep)}p∈M be symplectic forms on fibers Ep induced
by σ. Assume that the first Chern class c1(TF ) ∈ H2

dR(F ) is a nonzero multiple of the de
Rham cohomology class [σ]. Then there exists a de Rham cohomology class a ∈ H2

dR(E)
such that ιp

∗a = [σp] for all p ∈M .

We now prove this theorem.

Proof of Theorem 1.3. Let λ ∈ R\{0} be such that c1(TF ) = λ[σ] and let {ΦU}U∈U be a
trivialization that induces forms σp for all p ∈M . For all p ∈ U ∈ U we have that differ-
ential dΦp

U : TEp → TF is an vector bundle isomorphism covering Φp
U . It is also a sym-

plectic vector bundle isomorphism between symplectic vector bundles (TEp, πEp , Ep, σp)
and (TF, πF , F, σ), since:

(dΦp
U)∗σx = (Φp

U
∗σ)(Φp

U )−1(x) = (σp)(Φp
U )−1(x)

Hence from Lemma 3.24 we have that dΦp
U is an orientation-preserving vector bundle

isomorphism between oriented vector bundles (TEp, πEp , Ep,Oσp) and (TF, πF , F,Oσ). It
follows from Lemma 3.28 that:

c1(TEp) = Φp
U
∗c1(TF ) = Φp

U
∗λ[σ] = λ[Φp

U
∗σ] = λ[σp].

Note that, since ker dπx = dιπ(x)(TxEπ(x)), we have that for all p ∈ M , dιp : TEp →
TE restricts to a vector bundle isomorphism between vector bundles (TEp, πEp , Ep) and
subbundle ker dπ, covering ιp.

TF TEp ker dπ

F Ep E

dΦp
U

πF πEp

Φp
U

dιp

πE|ker dπ

ιp

From Lemma 3.21 we have that ker dπ is an oriented bundle and there exists an orientation
O on this subbundle such that dιp is an orientation-preserving vector bundle isomorphism
between oriented vector bundles (TEp, πEp , Ep,Oσp) and (ker dπ, πE|ker dπ , E,O). It fol-
lows, again from Lemma 3.28, that:

c1(TEp) = ιp
∗c1(ker dπ).

Now if we define a := λ−1c1(ker dπ) then we have:

ιp
∗a = ιp

∗λ−1c1(ker dπ) = λ−1ιp
∗c1(ker dπ) = λ−1c1(TEp) = λ−1λ[σp] = [σp].

This proves Theorem 1.3.
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A Positive linear maps

Let T : V → V be any linear map with identical domain and codomain. We define the
determinant of the linear map by:

det(T ) := det
(
[T ]BB

)
. (A.1)

Here [T ]BB denotes the matrix of the linear map T with respect to an ordered basis B of V .
This definition is independent of which ordered basis B we choose. To see this, let B1, B2

be two ordered bases for V , and MBi
Bj

be the matrix of the linear map that maps Bi to

Bj with respect to basis Bi. Then we have MB1
B2

= (MB2
B1

)−1, and [T ]B1
B1

= MB2
B1

[T ]B2
B2
MB1

B2

hence:
det([T ]B1

B1
) = det(MB2

B1
[T ]B2

B2
MB1

B2
) = det([T ]B2

B2
).

Hence the determinant of a linear map T : V → V defined by (A.1) is well-defined.

Definition A.1. For any inner product spaces (V, 〈·, ·〉), (V ′, 〈·, ·〉′) a linear map T : V →
W is called orthogonal if:

T ∗〈·, ·〉′ = 〈·, ·〉.

In other words the linear map T preserves the inner product. If (V, 〈·, ·〉) = (V ′, 〈·, ·〉′) we
call the linear map T positive orthogonal if it is orthogonal and its determinant (defined
by (A.1)) T is positive.

Lemma A.2. Let (V, 〈, ·, ·〉V ) be an 2-dimensional inner product space and let T : V → V
be a positive orthogonal map. Then there exists a unique θ ∈ [0, 2π), such that:

[T ]BB =

(
cos θ − sin θ
sin θ cos θ

)
,

for any ordered basis B of V .

Proof. Let (V, 〈, ·, ·〉V ) be any 2-dimensional inner product space and B be an arbitrary
ordered basis of V . We define p : R2 → V to be the linear map determined by:

p(ei) = vi.

Then we have:
[p ◦ T ◦ p−1]EE = [T ]BB,

where E is the standard basis for R2. Hence the general case directly follows from the case
where V = R2 and B is the standard basis. Note that from 〈T (e1), T (e1)〉 = 〈e1, e1〉 = 1
it follows that T (e1) = (cos θ, sin θ) for a unique θ ∈ [0, 2π). From 〈T (e1), T (e2)〉 = 0 it
then follows that T (e2) = ±(sin θ,− cos θ). The only possibility that leads to a positive
determinant of [T ]EE, hence also of T , is (− sin θ, cos θ). This proves Lemma A.2.
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Lemma A.3. Let (V, 〈, ·, ·〉) be a inner product space, and let B = {v1, . . . , vn} be any
ordered basis of V . Let T : V → V be the Gram Schmidt map, that transforms basis B
into an orthonormal basis B′ := {T (v1), . . . , T (vn)} determined inductively by:

T (vk) :=
vk −

∑k−1
i=1 〈vk, T (vi)〉T (vi)∣∣∣vk −∑k−1
i=1 〈vk, T (vi)〉T (vi)

∣∣∣ ,
for all 1 ≤ k ≤ n. Then T is a positive map.

Proof. We prove this using induction over the dimension of V . If dimV = 1 then we
have T (v1) = v1

|v1| . Hence detT = 1
|v1| > 0. Now assume that the statement is true

for all dimensions ≤ k. Let V be (k + 1)-dimensional. Then, since span{v1, . . . , vi} =
span{T (v1), . . . , T (vi)} for all i ≤ k + 1, we have:

[T ]BB =


α1

[Tk]
Bk
Bk

...
αk

0 · · · 0 α

 ,

where Bk := {v1, . . . , vk} and Tk is the restricted linear map:

Tk := T |spanBk
: spanBk → spanBk.

Furthermore T (vk+1) = α1v1 + · · · + αkvk + αvk+1, where α = 1

|vk−∑k−1
i=1 〈vk,T (vi)〉T (vi)| . It

follows immediately that:
detT = α detTk > 0,

since α > 0 and detTk > 0. This shows that T is a positive map. This proves Lemma
A.3.
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