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Abstract

The ’t Hooft criterion states that smallness of a physical parameter can be considered
technically natural if setting it to zero would enhance the symmetry of the system. In
this work we propose to extend this criterion to include space-time isometries and curva-
ture. Within this framework, the observed smallness of the curvature of the universe can
be understood as technically natural (and protected from quantum fluctuations) if setting
curvature to zero increases the number of isometries of space-time.

In General Relativity, setting the curvature of an expanding space-time to zero does not
lead to additional isometries. However, such a symmetry enhancement does happen if we
consider Conformal Gravity, where we modify gravity to be conformally symmetric.

Studying the behaviour of conformal isometries leads us to formulate the Geometric
Isolation conjecture. This asserts that a manifold that decomposes nontrivially into two
or more isolated factors admits only a limited number of conformal symmetries. In such
a setting, the conformal Killing equation can be greatly simplified and will yield fewer
independent solutions than allowed by the dimension of the manifold.

We apply these principles to cosmological space-times that factor as R × Σ, where R
indicates the time-like direction and Σ an expanding, space-like 3-manifold. We will deviate
from the usual FLRW space-times where Σ is chosen to be one of S3, R3 or H3 and instead
allow Σ to be one of the eight geometries from Thurston’s Geometrization Conjecture. While
the Conformal Gravity setting introduces extra isometries for any choice of Σ, we will show
that only the flat geometry Σ ' R3 restores the full conformal group in four dimensions.

As a result, flat space-time represents a point of exceedingly enhanced symmetry, thus
satisfying the requirement for our extension of ’t Hooft technical naturalness.
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Notations & Conventions

Throughout this work we will adopt the following conventions.

• Units are such that ~ = c = 1

• We use the ‘mostly minus’ signature, where time-like directions have a negative entry in
the metric gµν . In four dimensions gµν =diag(−1, 1, 1, 1).

• We adopt the Einstein summation convention where repeated indices are summed over.
We will mention explicitly whenever we break this convention or denote indices not
summed over with a hat.

• Partial derivatives are denoted by ∂, while covariant derivatives are denoted ∇.

• Tensors are denoted with boldface T, while tensor components carry indices T
µ1...µp
ν1...νq .

• We will refer to both gµν and ds2 = gµνx
µxν as the metric as these can be used inter-

changeably.
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1. INTRODUCTION & MOTIVATION 4

1 Introduction & Motivation

1.1 The Flatness Problem

As the title of this documents suggests, the universe we live in is (approximately) flat. Indeed,
recent integrated results from the Planck satellite [21] put the curvature density of the universe,
in units of the critical density, at zero to one part in two-hundred: ΩK = 0.000± 0.005. This is
a surprising fact made even more remarkable by the realization that, due to the expansion of
the universe, it must have been even smaller (by a factor of 1060) in the early universe. This
was first pointed out by Robert Dicke in 1969 [6] and is known as the flatness problem. While
inflation solves this problem, along with the monopole problem and the horizon problem, we
would like to pursue an alternative approach in this document.

Instead, we ask the question ‘Is it natural to expect curvature to be close to zero in our uni-
verse?’. We suggest to extend ’t Hooft’s definition of technical naturalness, [16] which states that

“A physical parameter is allowed to be small only if set-
ting it to 0 would increase the symmetry of the system.”

to include curvature and space-time isometries.

A more modern reading of this statement is to say that quantum corrections will generate
only small modifications to a physical parameter if setting it to zero increases the symmetry of
the system. Since primordial curvature fluctuations emerge from quantum fluctuations during
inflation, we argue that a small value for the curvature is protected if the zero curvature limit
admits more isometries.

From the observational fact that space is approximately homogeneous and isotropic on large
scales, we split the metric of space-time g = g+δg into a background part g that is homogeneous
and isotropic and a perturbative part δg. The Einstein-Hilbert action then splits similarly as

SEH[g] = Sbg[g] + Spert[g, δg]. (1.1)

The isometries of the background metric g will be symmetries of the background action Sbg. In
general, g will contain a curvature parameter k, which we now interpret as a physical parameter
in Sbg. We can ask the question if setting it to zero enhances the symmetries of the background
action? If so, then we expect the perturbations δg to remain small compared to g and by ’t
Hooft technical naturalness this should preserve smallness of k.

In ordinary Einstein gravity, a cursory investigation shows that no extra symmetry arises
at zero curvature. Recall that dynamics of our universe is well-described against a Friedmann-
Lemâıre-Robertson-Walker background. In this picture, space-time decomposes as R×Σ, where
R is the direction of time while Σ is one of three maximally-symmetric, three-dimensional
manifolds, R3, H3 or S3, that describe the spatial sections. We can describe all three FLRW
space-times simultaneously using the metric

ds2 = −dt2 + a2(t)
[ dr2

1− kr2
+ r2dΩ2

2

]
, dΩ2

2 = dθ2 + θ2 sin2(φ). (1.2)

In this metric the parameter k represents the curvature, which yields Σ = S3 for k > 0, Σ = R3

for k = 0 and Σ = H3 for k < 0. The observational results mentioned impose severe constraints
on this parameter k, but are still consistent with a tiny, but nonzero value. As such, data allow
for any of the three FLRW geometries to occur, as long as the curvature radius 1/

√
|k| is large

compared to the size of the observable universe. Writing out Sbg using the metric from (1.2)
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5 1. INTRODUCTION & MOTIVATION

gives us

Sbg[g] =
M2
p

2

∫
d4x

[
6r2a(t)

√
sin2(θ)

1− kr2
(
k + ȧ2(t) + a(t)ä(t)

)]
. (1.3)

We now interpret k as a physical parameter in this action. Now note that the presence of the
scale factor a manifestly breaks four out of ten symmetries of the Poincaré group, namely time
translations Pt and Lorentz boosts Lti. This is no different whether Σ = R3, H3 or S3 and
accordingly the number of symmetries of (1.3) does not change if we set k to zero. Hence there
is no requirement from symmetry for k to remain small by ’t Hooft naturalness. Consequently
we are forced to conclude that a universe with (close to) zero curvature is unnatural in Einstein
gravity.

In the rest of this work we will show that the situation changes drastically in a conformal
setting. Indeed, in a theory of conformal gravity, [19] the flat FLRW space-time will represent
a unique point of exceedingly enhanced global symmetry. In what follows, all reference to ‘the
manifold of space-time’ will refer to the background metric.

1.2 Conformal Symmetry and Scale-Invariance

As mentioned, we will be working in a conformal extension of gravity, where the symmetry of
the theory is enlarged. We will extend the Poincaré group of space-time isometries to include
conformal isometries. These are space-time transformations of the type

x→ x′ gµν(x)→ Ω2(x)gµν(x), (1.4)

with Ω2(x) a non-vanishing smooth function. In establishing this additional symmetry, we will
pick up extra gauge symmetry under Weyl transformations. Such a transformation rescales the
metric tensor without touching the space-time coordinates, i.e.

gµν(x)→ Λ2(x)gµν(x), (1.5)

with again Λ2(x) a non-vanishing smooth function.

Such transformations represent local rescalings that preserve angles and ratios of distances.
However, distances are locally scaled by a factor of Ω or Λ depending on the type of trans-
formation. Therefore, any field theory that is conformally invariant should not contain any
intrinsic length scales, as these would transform under (1.4) and (1.5). Hence any constants or
parameters in the theory should be dimensionless.

1.3 The Case for Scale-Invariance

There is a historic precedent for studying scale-invariant theories. Already in 1909 Bateman
[1] noted that Maxwell’s equations are conformally invariant in 4 dimensions. In 1984, Belavin,
Polyakov, and Zamolodchikov [2] showed that a massless scalar field in 2 dimensions has this
symmetry as well, which paved the way for the CFT description of String theory that is still
used today. Groundbreaking work was done in by Maldacena [20] halfway through the 90s,
when he published the most cited work in High Energy Physics by proposing the ADS/CFT
correspondence. This insight finds many uses throughout physics to this day.

Perhaps the most compelling example comes from the 1964 symmetry breaking papers, [7],
[14] and [15], that showed how masses can be generated dynamically as a result of spontaneous
symmetry breaking. Through this mechanism, most particles in the Standard Model acquire
mass through their interaction with the Higgs boson. As a result, the Standard Model is almost
conformally invariant, containing only dimensionless coupling constants (in natural units), save
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1. INTRODUCTION & MOTIVATION 6

for the Higgs mass term.

We argue that it is not unreasonable to think that General Relativity may enjoy similar
symmetry at higher energies. There are several considerations from cosmology that support
this.

Firstly, the phenomenal success of linear, free-field perturbation theory tells us that much
of the dynamics of the universe is already captured by a low-energy description. This indicates
that we have some freedom to experiment at higher energies without invalidating the theory.

Secondly, Planck observations tell us that the primordial power spectrum is approximately
scale-invariant (ns − 1 ≈ −0.035) [21]. Since these primordial perturbations come from the
high-energy conditions of the early universe, a scale-invariant UV-completion of gravity may
help elucidate this rather peculiar property.

Lastly, some modern approaches to inflation formulate it in terms of spontaneous breaking of
time translations. [4] Since conformal symmetry is manifestly broken today, it is quite possible
that we may describe the start of the inflationary epoch by breaking not just time translations
but also the additional conformal symmetries.

1.4 Conformal Gravity

There are, however, two major obstacles to formulating a conformally invariant theory of grav-
ity. Both of these issues are addressed in [19], which forms the basis of this thesis, in which the
authors construct a classically conformal theory of gravity. We will not reproduce the results
of this paper in full here, as we will only need the existence of conformal symmetry in most of
our own calculations, but mention briefly the steps the authors take.

The first and most important of these is that the geodesic equation, along with many
geometric tensors, fails to be conformally invariant even at the classical level. There is no way
to resolve this in Einstein gravity, where the Levi-Civita connection is fully specified in terms
of the metric tensor. However, the authors argue, this is not the most general metric-affine
connection as the requirement that Γα

µν is symmetric in its two lower indices sets torsion to
zero. Consequently, the natural language for a conformal extension of GR is Cartan gravity,
where the connection is allowed to include torsion,

Γλ
µν = Γ̊λµν + T λµν + T λ

µν + T λ
νµ . (1.6)

In this equation Γ indicates the full connection, which is taken to include the Levi-Civita connec-
tion Γ̊ and torsion terms T . The extra torsion components can be taken to transform precisely
in the correct manner to cancel the offending terms in the geodesic equation. This construc-
tion will make the theory classically conformally symmetric in the absence of matter fields. It
is worth noting that the presence of torsion does not affect the symmetries of the system, a
remarkable fact we will observe in section 3.2

A second complication arises directly from the Einstein Field Equations,

Rµν −
1

2
Rgµν =

Tµν
M2
p

. (1.7)

In the presence of matter fields, or in the quantum regime, the theory will contain a dimen-
sionful quantity in the form of the Planck mass Mp, which is defined via Newton’s constant as√
~c/8πG ≈ 2.435× 1018kg. This will introduce an intrinsic length scale to the theory, namely

the Planck length `p =
√

~G/c3 ≈ 1.61 × 10−35m, which violates conformal invariance of the
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7 1. INTRODUCTION & MOTIVATION

theory. The authors resolve this problem by introducing a dilaton field, Φ, whose expectation
value generates the Planck mass locally,

〈Φ〉 = Mp, (1.8)

in analogue to the BEH mechanism in the Standard Model. This scalar field can be given
an appropriate conformal weight so that its action remains conformally invariant. A similar
procedure makes the action for matter fields conformally symmetric.

We will adopt this construction implicitly, although we will not use its minutiae for the
calculations in this work. In what follows, we will simply presuppose conformal invariance and
go from there.

7



2. SYMMETRIES 8

2 Symmetries

Both in physics and in mathematics, there is much to gain from studying the symmetries of an
object or theory. These give rise to conserved quantities, allow us to pick a favourable descrip-
tion of the system under consideration and give us insight into the nature of the object itself.
We can distinguish between two categories of symmetries, Dynamical symmetries and Gauge
symmetries.

Dynamical symmetries, sometimes also called True or Global symmetries, are fundamental
to the theory itself. States related by a dynamical symmetry transformations represent distinct
points in the phase-space of the system that are nonetheless considered equivalent by the theory.
Roughly speaking, such symmetries will map a solution to the equations of motion onto a
different, physically distinct, but nonetheless valid solution. Dynamical symmetries give rise to
conserved quantities through Noether’s theorem and give us additional insight about the nature
of the theory.

A textbook example of this type of symmetry in classical mechanics is the invariance of
the action of a massive, point-like particle under translations. We can take any solution to the
equation of motion F = mẍ and shift it by a constant vector to obtain a different legitimate
solution. This leads directly to the conservation of (linear) momentum in the absence of exter-
nal forces, which is the statement of Newton’s First Law of Motion.

Gauge symmetries, on the other hand, are an artefact of our description. The configuration
space of parameters and variables in the theory is larger than the space of physically distinct
states. Gauge symmetries are exactly those transformations of configuration space that stabi-
lize physical phase space. That is to say, the orbits of gauge transformations relate different
configurations that represent the same physical state. We may dispose of these spurious degrees
of freedom by shrinking the configuration space, i.e. gauge-fixing our theory, as many problems
become much easier upon employing the right choice of gauge.

One of the first symmetries of this type that most physicists will encounter comes from
classical electrodynamics. We may shift the vector potential Aµ(x) by the derivative of a scalar
∂mχ(x) and obtain two different points in configuration space that correspond to the same
electromagnetic fields. There are a number of different gauges we can employ to fix this, such
as the Coulomb gauge ∇ ·A = 0.

2.1 The Automorpishm Group

To formalize the notion of symmetry, we say that two objects A and B are ’the same’ if there
exists an isomorphism that relates them. An isomorphism is a bijective map φ : A→ B that
is structure-preserving with respect to a structure of interest on A and B. For instance, if A and
B are finite-dimensional vector spaces, then an isomorphism φ between the two must respect
the vector-space structure of addition and scalar multiplication. Ergo, φ must be an invertible,
linear transformation, which exists if and only if A and B have the same dimension.

Most relevant to our discussion are isomorphisms between an object A and itself, also called
automorphisms. Since these preserve A’s internal structure, we should think of the set of
automorphisms, Aut(A), as the set of symmetry transformations on A. The key property
of Aut(A) is that it forms a group under composition of maps. Indeed, composing any two
automorphisms yields a third automorphism, φ2 ◦ φ1 = φ3 ∈ Aut(M); the identity map 1A
acts as the group identity, φ ◦ 1A = 1A ◦ φ = φ for any φ; and all automorphisms are, by
definition, invertible. This property helps us classify the symmetries, as we will demonstrate in
later sections.

8



9 2. SYMMETRIES

2.2 Diffeomorphisms

Recall that General Relativity is formulated in terms of a space-time manifold M , equipped with
a (dynamical) metric g and whatever matter fields T we choose to include.1 For this reason,
any legitimate symmetry of this theory should at least preserve the differentiable structure of
the manifold M . The largest symmetry group we find using this condition is therefore Aut(M),
which consists of diffeomorphisms from M to itself: smooth, invertible maps whose inverse
is likewise smooth. Tensor fields, in particular, are part of the differentiable structure of M via
tensor products of the (co)tangent spaces TM and T ∗M . Therefore any globally defined, true
tensor must also be preserved by any diffeomorphism φ ∈ Aut(M),

T′ = φ∗T = T. (2.1)

Now suppose we have chosen a chart (U, χ : U → Rn) around some point p ∈ U ⊂ M so that
we may describe the neighbourhood U of p in local coordinates and let φ be a diffeomorphism
from M to itself. Then we can find a coordinate chart (V, ψ : V → Rn) around φ(p) by writing
V = φ(U) and ψ = χ◦φ−1. In other words, we may view diffeomorphisms as general coordinate
transformations x→ x′ on our space-time manifold M .

This equivalence tells us that we may expand a tensor T over a coordinate basis in any
coordinate frame of our choice and obtain an equivalent description,

T IJ (x)
( ∂

∂xI
⊗ dxJ

)
= T = T′ = T ′IJ (x′)

( ∂

∂x′I
⊗ dx′J

)
. (2.2)

Here we have employed multi-indices I = µ1, . . . , µp and J = ν1, . . . , νq for brevity. This
equation tells us that the tensor coordinate functions T IJ (x) must transform opposite to its
basis vectors, ∂

∂x and dx. From the way ∂
∂x transforms as a derivative, while dx transforms as

an integral measure, we then derive the transformation law for the tensor coordinate functions
T IJ (x),

T I
′

J ′ (x′) = T IJ (x)

(
∂x′I

′

∂xI
· ∂x

J

∂x′J ′

)
. (2.3)

Formally we say that the tensor T is invariant under diffeomorphisms, i.e. it does not change,
while its coordinate functions T IJ (x) are covariant, i.e. they change opposite to the coordi-
nates. In physics we tend to conflate the tensor with its coordinate functions and, in doing so,
lose this distinction. Since we will be working primarily in local coordinates we will adopt this
convention and state that Tensors are covariant under general coordinate transformations.

If we can formulate the equations of motion of a theory in terms of true tensors, the so-
lutions must exist at the level of the manifold. Any particular choice for local coordinates in
which to express these solutions is simply one of many ways of expressing it. In our language
above, the equations of motion and their solutions will be under coordinate transformations.
Hence any physical statement we make in some coordinate frame O will map onto an identi-
cal statement in some different coordinate frame Õ, simply expressed differently according to
the transformation law (2.3). This puts general coordinate transformations (or, equivalently,
diffeomorphisms) solidly in the category of gauge transformations. In particular, they are the
gauge transformations of General Relativity.2

1In our case, we will also specify a nonstandard connection Γ via (1.6), but this will not change the discussion
in this section.

2Of course, there may be extra gauge transformations coming from the matter fields. These will not take the
form of space-time transformations and so are not immediately relevant to our discussion.
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2. SYMMETRIES 10

2.3 Isometries

A stronger symmetry requirement is to ask that any given coordinate transformation leaves a
tensor T IJ (x) invariant rather than covariant. Such transformations are called the symmetries
of the tensor T IJ (x). Of particular interest to us are the symmetries of the space-time metric,
also called its Isometries, defined by

(φ∗g)µν = gµν . (2.4)

We can think of isometries as coordinate transformations x→ x′ that don’t necessitate a change
in the local coordinate expression of the metric, i.e.

gµν(x)→ gµν(x′) ↔ gµν(x)dxµdxν = gµν(x′)dx′µdx′ν . (2.5)

Note that the right-hand side contains gµν(x′) rather than g′µν(x′), which would be the case for
a general diffeomorphism.

Notions of distances and angles are preserved under isometries so that any valid geometric
statement in the frame O gets mapped onto distinct, but valid statement in Õ. Hence solutions
to the geodesic equation or the Einstein equations get mapped onto different, but equally
legitimate solutions. Hence isometries are part of the dynamical symmetries of the theory and
we may construct conserved quantities out of them. Typically only spatial translations and
rotations belong to the isometry group of expanding space-times. The associated conserved
quantities will include linear momentum and angular momentum, but will not include energy,
which is linked to time translations.

These transformations form the Lie group Isom(M, g) < Aut(M), which means they form
a mostly continuous group with a handful of discrete transformations relating different compo-
nents. This will prove to be very useful in finding the generators of the isometry group, of which
there are at most n(n+1)

2 for a manifold of dimension n. Unfortunately, a general space-time
there will have zero isometries as any small deviation from perfect isotropy and homogeneity
will break almost every symmetry.

2.4 Conformal Isometries

We now introduce the notion of a conformal structure on our manifold. This is a slight
modification of the Riemannian structure where, rather than endowing our manifold with a
single metric g, we equip it with a class of metrics [g]. Two metrics g1 and g2 belong to the
same conformal class [g] if we may write g1 = Ω2g2 for some non-vanishing, smooth function
Ω, called the conformal factor.

This leads us directly to an enhancement of gauge symmetry. After all, if two choices of
metric within the same conformal class are considered equivalent, we should be free to change
between representatives of this class. Hence we may freely rescale the distances locally by a
nonvanishing smooth function Λ as

gµν → Λ2gµν ' gµν (2.6)

to obtain an equivalent description; this is called a Weyl Transformations. Note that this
transformation does not touch the coordinates on the manifold, it is a modification of the metric
tensor itself.

As in the Riemannian case, we may consider diffeomorphisms φ with the requirement that

(φ∗g)µν = Ω2gµν , (2.7)

10



11 2. SYMMETRIES

with Ω 6= 0. Note that Ω = 1 reduces this equation to (2.4) and so diffeomorphisms satisfying
(2.7) are conformal generalization of isometries. Appropriately we will call them Conformal
Isometries. As befor, we can think of conformal isometries as coordinate transformations
x → x′ whose effect of the metric is changing the argument and multiplying by a factor of
Ω(x′)2:

gµν(x)→ Ω2(x′)gµν(x′) ↔ gµν(x)dxµdxν = Ω2(x′)gµν(x′)dx′µdx′ν . (2.8)

Again, we write gµν(x′) rather than g′µν(x′) on the right-hand side. Note that Λ in (2.6) and Ω
in (2.7) have similar effects on the metric gµν and are both referred to as the conformal factor.
However they arise in a very different fashion, respectively from a simple choice of representative
and from a change of coordinates. It is important to keep this distinction in mind. To avoid
confusion with other sources, whenever we refer to a conformal transformation or conformal
isometry we mean transformations of the type (2.7) and we will refer to transformations of the
type (2.6) only as Weyl transformations.

As mentioned, the conformal isometries form a more general class of metric symmetries that
preserve angles and ratios of distances, but not distances themselves. With the modifications to
General Relativity described in section 1.4 the conformal isometries too will map solutions to
the geodesic or Einstein equations onto other valid solutions, meaning that conformal symmetry
represents an enlargement of the dynamical symmetry group of gravity.

The conformal isometries form the Lie group Conf(M, g) that indeed fits in between the
isomorphisms and automorphisms, Isom(M, g) < Conf(M, g) < Aut(M). We can see this
immediately by noting that solutions to (2.4) will also solve (2.7) for Ω = 1. For a manifold of

n ≥ 3 dimensions the conformal group will be at most (n+2)(n+1)
2 -dimensional, [18] exemplifying

the enlargement of symmetry.

11



3. THE (CONFORMAL) KILLING EQUATION 12

3 The (Conformal) Killing Equation

3.1 A Bit of Lie theory

Deriving conformal isometries directly from the equation (2.7) is difficult to do for a general
space. We may be able to infer some of the transformations from the manifest symmetries of
the metric, but getting all by guesswork (or proving that there are less than the maximum
number) is a tall order. Fortunately both isometries and conformal isometries form not just
a group under composition, they form the Lie groups Isom(M) and Conf(M). This means
we may characterize the smooth symmetry transformations φ as belonging to a one-parameter
subgroup. That is to say, there is a set of smoothly varying transformations φs, indexed by
s ∈ R, so that φ0 = 1M , φ1 = φ and φs ◦φt = φs+t for all s, t ∈ R. We can study the behaviour
of this one-subgroup close to the identity at s = 0 by considering the generator associated to
this transformation, ξφ, which is just the first derivative at zero:

ξφ =
∂

∂s
φs

∣∣∣
s=0

. (3.1)

ξφ can be thought of as representing the infinitesimal transformation xµ → xµ + ξµ and we can
derive it by solving a linearized version of (2.7),

Lξφgµν = 2ωgµν . (3.2)

Here L is the so-called Lie derivative and we have written Ω2 = e2ω. The ξ’s that solve this
equation form a vector space so that any linear combination of them solves (3.2). What’s more,
we can equip this vector space canonically with a commutator bracket [ , ] to turn it into the
Lie algebra isom(M) (for ω = 0) or conf(M) (for ω free). We can take a linearly independent
set of solutions ξ(i) and reobtain the group-level transformations by solving (3.1) to get3

φ(i)s = exp(sξ(i)). (3.3)

In practice, however, we will simply recognize the Lie algebra by its commutation relations and
immediately state the overlying group.

3.2 Local Conformal Invariance

Since we will work in local coordinates throughout this text it is useful to express (3.2) in local
coordinates,

−δξgµν(x) = 2ω(x)gµν(x), (3.4)

where the subscript ξ indicates the infinitesimal coordinate transformation xµ → x′µ(x) =
xµ + ξµ(x). This will change the metric according to the tensor transformation rule (2.3) we
derived earlier,

g′µν(x′) = gαβ(x)
∂xα

∂x′µ
∂xβ

∂x′ν
→ g′µν(x) = gαβ(x− ξ)∂(x− ξ(x))α

∂xµ
∂(x− ξ(x))β

∂xν
. (3.5)

We expand the right-hand side to first order in ξ, omitting explicit dependence on x for brevity,

g′µν = gµν − ξα∂αgµν − gαν∂µξα − gµβ∂νξβ +O(ξ2) (3.6)

3Technically we are only able to construct Isome(M) and Confe(M) in this manner, the connected component
of the Lie group containing the identity. For example, in 4-dimensional Minkowski space-time we would recover
Isome(R

1,3) = SO+(1, 3)oR4, which contains only the proper (parity-preserving), orthochronous (preserving the
direction of time) Lorentz transformations. This is not a problem for us, however, as the quotient G/Ge contains
only discrete transformations.

12



13 3. THE (CONFORMAL) KILLING EQUATION

Now we define the variation of gµν with respect to ξ as

δξgµν := g′µν − gµν +��
�

O(ξ2) (3.7)

= − ξα∂αgµν − gαν∂µξα − gµβ∂νξβ (3.8)

= −∇µξν −∇νξµ, (3.9)

where the step from the second to the last line follows from the definition of the Levi-Civita
connection tensor:

∇µξν +∇νξµ =∂µξν + ∂νξµ − 2Γβ
µνξβ (3.10)

=∂µ(gανξ
α) + ∂ν(gµαξ

α)− ξαgβα
(
∂µgβν + ∂νgµα − ∂αgµν

)
(3.11)

=���
��∂µ(gαν)ξα + gνα∂µ(ξα) +

XXXXX∂ν(gµα)ξα + gµα∂ν(ξα) (3.12)

−ξα
(
���∂µgαν +XXX∂νgµα

)
+ ξα∂αgµν (3.13)

=gνα∂µξ
α + gµα∂νξ

α + ξα∂αgµν . (3.14)

Hence we may restate local conformal invariance of the metric, equation (3.4), as

∇µξν(x) +∇νξµ(x) = 2ω(x)gµν(x). (3.15)

Note that the covariant derivatives ∇ in this equation arise directly from the symmetric part of
the connection. Introducing torsion to make the theory conformally invariant will not change
(3.15) in the slightest. As alluded to in 1.4 this means the symmetries of the theory are
unaffected by the presence of torsion.

3.3 The Killing Equation

If we take ω(x) = 0 (Ω(x) = eω(x) = 1) in equation (3.15), we recover a well-known equation
called the Killing equation:

∇µξν +∇νξµ = 0. (3.16)

This equation allows us to find the vector fields ξ that generate isometry transformations,
also known as Killing vectors. Given some energy-momentum tensor Tµν that is covariantly
conserved (∇µTµν = 0) we can construct a conserved current

Jξµ = ξνTµν → ∇ · J = 0. (3.17)

In general, the Killing equation and its solutions are not preserved by either conformal or Weyl
transformations. This is to be expected as the Killing vectors are particular to one representative
of a conformal class, not to the class itself. However, Killing vectors will be mapped onto their
conformal equivalent, which we will discuss next.

3.4 The Conformal Killing Equation

If we allow ω(x) to be generic, we may eliminate it by taking the trace of (3.15), yielding

∇ · ξ = nω(x), (3.18)

where n is the dimension of space-time. We may then rewrite (3.15) as

∇µξν +∇νξµ −
2gµν
n
∇ · ξ = 0. (3.19)

13



3. THE (CONFORMAL) KILLING EQUATION 14

This is the conformal generalization of the Killing equation (3.16) and therefore called the
conformal Killing equation. Since it generalizes the Killing equation, any Killing vector
automatically solves it. However, as mentioned earlier, it admits a (potentially) greater set of
solutions we will call conformal Killing vectors. Any conformal Killing vector that is not
also a Killing vector we will refer to as proper. The conformal Killing vectors are particular to
the conformal class [gµν ] of the metric and are thus preserved under both conformal and Weyl
transformations. We will show the latter property explicitly here.

Under a Weyl transformation, the geometric objects that appear in (3.19) transform as

gµν → g̃µν = Λ2gµν , ξµ → ξ̃µ = ξµ, ξµ → ξ̃µ = Λ2ξµ, (3.20)

Γαµν → Γ̃αµν = Γαµν + Λ−1(∂µΛδαν + ∂νΛδαµ − gµν∂αΛ).

We expand the Covariant Derivatives ∇ in (3.19) to obtain

∂(µξ̃ν) − Γ̃αµν ξ̃α −
1

n
g̃µν

(
∂aξ̃

α + Γ̃ααβ ξ̃
β
)

= 0 (3.21)

and consider the transformation of each term under (3.20) separately. We will find that all
derivatives acting on Λ cancel exactly,

∂(µξ̃ν) = Λ2∂(µξν) +���
���2Λξ(ν∂µ)Λ , (3.22)

−Γ̃αµνξα = −Λ2Γαµνξα −���
���2Λξ(ν∂µ)Λ +

XXXXXXΛgµνξα∂αΛ , (3.23)

− 1

n
g̃µν∂aξ̃

α = −Λ2

n
gµν∂αξ

α, (3.24)

1

n
g̃µνΓ̃ααβ ξ̃

β =
Λ2

n
gµνΓααβξ

β +
XXXXXXΛgµνξα∂

αΛ , (3.25)

and taking the sum on either side of equations (3.22) through (3.25) tells us that

∇̃µξ̃ν + ∇̃ν ξ̃µ −
2

n
g̃µν∇̃ · ξ̃ = Λ2

(
∇µξν +∇νξµ −

2

n
gµν∇ · ξ

)
. (3.26)

Indeed, as long as Λ is non-vanishing on M , two representatives gµν and g̃µν = Λ2gµν of the
same conformal class will admit the same number of conformal Killing vectors. This powerful
result will make studying FLRW space-times in section 6 much more manageable, as it means
we can eliminate the scale factor a(t) from our calculations entirely.

As dynamical symmetries, we may construct (conformally) conserved currents from confor-
mal Killing vectors. Here we have to be a bit careful as the full covariant derivative ∇ picks
up additional contributions from the torsion tensor. As a result, if Tµν is torsion-covariantly

conserved (∇µTµν = 0), we can construct a current Jξµ = ξνTµν , for which

∇ · Jξ = Tµν ∇µ ξν = Tµν ∇(µ ξν) = Tµν ∇(µ ξν) = Tµνgµν
∇ · ξ
n

= Tαα
∇ · ξ
n

. (3.27)

Here we have used that Γα
(µν) = Γ̊αµν so that ∇ reduces to the ordinary covariant derivative

∇ when symmetrized. Hence J is conserved only if the energy-momentum tensor is traceless,
Tαα = 0.4 So we may only construct conserved quantities from proper conformal Killing vectors
(∇ · ξ 6= 0) if Tµν is traceless, i.e. if matter is conformal.

4This is a familiar requirement for those who have studied conformal field theories, for instance in the context
of string theory. Here the vanishing of the trace of the stress-energy tensor is one of the defining (and necessary)
features of the classical conformal theory.
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15 4. THE CONFORMAL KILLING ALGEBRA OF FLAT SPACE-TIME

4 The Conformal Killing Algebra of Flat Space-Time

To develop some understanding of the conformal Killing equation and its solutions, let us
consider the simplest case of a flat space-time Rp,q. Take the metric to be

ηµν = diag(−1, . . . ,−1︸ ︷︷ ︸
p times

,+1, . . . ,+1︸ ︷︷ ︸
q times

) (4.1)

so that the conformal Killing equation becomes, depending on how we write it,

∂µξν + ∂νξµ − 2ω ηµν = 0, (4.2)

∂µξν + ∂νξµ −
2

n
ηµν∂ · ξ = 0. (4.3)

This case will be straightforward enough to solve by hand. We will follow a line of reasoning
similar to chapter 5 of [11] in what follows.

4.1 Solving the Conformal Killing Equation

We can contract (4.2) with ∂µ∂ρ to get

∂2∂ρξν + ∂ρ∂ν∂ · ξ − 2∂ρ∂νω = 0, (4.4)

∂2∂ρξν + (n− 2)∂ρ∂νω = 0, (4.5)

where we have used (3.18) to go from the first line to the second. Now symmetrize this equation
to obtain

∂2(∂ρξν + ∂νξρ) + 2(n− 2)∂ρ∂νω = 0. (4.6)

Now take the trace and apply again (3.18) to obtain

4(n− 1)∂2ω = 0. (4.7)

Hence, for n 6= 1, ∂2ω = 0. Rewrite (4.6) using (4.2) as

��
�

2∂2ω + 2(n− 2)∂ρ∂νω = 0, (4.8)

so that for n 6= 2, ∂µ∂νω = 0 for any µ and ν.5 It follows directly that from (4.2) that

∂µ∂ν∂(ρξσ) = 0 (4.9)

and so ∂µ∂ν∂ρξσ must be antisymmetric in its last two indices. However, partial derivatives
commute and so by symmetry in the first three indices we may write

∂µ∂ν∂ρξσ = ∂µ∂ρ∂νξσ = −∂µ∂ρ∂σξν (4.10)

= −∂µ∂σ∂ρξν = ∂µ∂σ∂νξρ (4.11)

= ∂µ∂ν∂σξρ. (4.12)

Hence ∂µ∂ν∂ρξσ is also symmetric in its last two indices and it must vanish. We can then make
the ansatz

ξµ(x) = Aµ +Bµ
αx

α +
1

2
Cµαβx

αxβ. (4.13)

Note from this equation that Cµαβ = Cµβα. Here A, B and C are constant tensors that we may
derive conditions on by plugging (4.13) back into the conformal Killing equation.

5For n = 2 we will get the Virasoro algebra, which is infinite-dimensional.

15



4. THE CONFORMAL KILLING ALGEBRA OF FLAT SPACE-TIME 16

The conformal Killing equation contains only derivatives of ξ and so A is a completely free
parameter that we will write as

Aµ = aµ. (4.14)

To obtain constraints on B we plug the ansatz into (4.3) and equate all constant terms:

Bµν +Bνµ −
2

n
ηµνB

α
α = 0. (4.15)

Hence the antisymmetric part, B[µν], is free and we shall denote it by λµν , while the symmetric
part is constrained by

B(µν) =
1

n
ηµνB

α
α =: dηµν . (4.16)

We will write B simply as

Bµ
α = δµαd+ λµα. (4.17)

Conditions on C are found in a similar fashion, but this time equating all terms linear in x

(
Cµνα + Cνµα −

2

n
ηµνC

β
βα

)
xα = 0. (4.18)

Now shuffle indices around to write

∂µ“(νρ)” + ∂n“(µρ)”− ∂ρ“(µν)”

= ��
�Cνρµ + Cρνµ +HHHCµρν + Cρµν −���Cµνρ −HHHCνµρ (4.19)

− 2

n
ηνρCββµ −

2

n
ηµρCββρ +

2

n
ηµνCββρ = 0.

We rewrite this to find the expression

Cρµν = ηµρ
Cββν
n

+ ηνρ
Cββµ
n
− ηµν

Cββρ
n
. (4.20)

From this we deduce that the behaviour of C is fully determined by its trace Cββµ. We may

define the free parameters bµ := Cββµ/n and write C as

Cµαβ = δµαbβ + δµβbα − ηµνb
µ. (4.21)

4.2 The Conformal Group

Putting this all together nets us the final form of the infinitesimal transformation.

x′µ = xµ + aµ︸︷︷︸
Translations

+ λµαx
α︸ ︷︷ ︸

Lorentz Transformations

+ xµd︸︷︷︸
Dilations

+ 2(b · x)xµ − x2bµ.︸ ︷︷ ︸
Special Conformal Transformations

(4.22)

The first two terms should be familiar as they form the Poincaré transformations. The third
term simply represents a constant rescaling of all the coordinates while the last term is truly
novel. We can understand this term slightly better by considering the global transformations:

Translations x′µ = xµ +Aµ

Lorentz x′µ = Λµνx
ν

Dilations x′µ = D xµ

SCTs x′µ =
xµ −Bµx2

1− 2B · x+B2x2

(4.23a)

(4.23b)

(4.23c)

(4.23d)

16



17 4. THE CONFORMAL KILLING ALGEBRA OF FLAT SPACE-TIME

Note that a special conformal transformation for a given B is singular at exactly one point,
xµ = Bµ/B2. This is because the true conformal group acts on the compactification of Rp,q,
which is Sp,q, so that the singular point is mapped to the point added by this procedure.

It is a short calculation to show that a special conformal transformation is equivalent to the
following chain of maps, xµ → xµ/x2, xµ → xµ + Bµ, xµ → xµ/x2, i.e. a translation by B
sandwiched in between two inversions.

4.3 Generators and Commutators

We can construct the Lie algebra conf(Rp,q) from the infinitesimal transformations as follows.
Let f(x) represent any tensor coordinate field with suppressed indices. Now we may write for
the translations, for instance, that

f(x′) = f(x+ aµ) = f(x) + αµ∂µf(x) +O(ξ2). (4.24)

We say that the operator Pµ = ∂µ is the generator corresponding to the killing vector ξµ = aµ.
If we do this for all transformations in (4.22) we get the set of generators below.

Translations Pµ = ∂µ

Lorentz Lµν = xν∂µ − xµ∂ν
Dilation D = xµ∂µ

SCTs Kµ = 2xµx
ν∂ν − x2∂µ

(4.25a)

(4.25b)

(4.25c)

(4.25d)

These generators satisfy the commutation relations

[Pµ, D] = Pµ [Kµ, D] = −Kµ (4.26a)

[Pµ,Kν ] = 2(ηµν − Lµν) (4.26b)

[Pµ, Lαβ] = ηµβPα − ηµαPβ (4.26c)

[Kµ, Lαβ] = ηµβKα − ηµαKβ (4.26d)

[Lµν , Lαβ] = ηµαLνβ + ηνβLµα − ηµβLνα − ηναLµβ. (4.26e)

From these we see that the algebra closes and, thus, is well-defined. Let n = p + q be the
dimension of Rp,q, then notice that there are n generators coming from translations and n(n−
1)/2 from the Lorentz transformations, a single one from dilations and n extra from special
conformal transformations. They form the (n+2)(n+1)/2 generators of the algebra conf(Rp,q),
which contains isom(Rp,q) with n(n+ 1)/2 isometry generators as a subalgebra. Unsurprisingly
perhaps, Rp,q is not only maximally symmetric in the isometric sense, but also in the conformal
sense.

4.4 Identifying the Conformal Algebra

Unfortunately the commutation relations given in equation (4.26) are not particularly enlight-
ening when written in this form. Fortunately, on the other hand, the generators form a vector
space and we are free to choose a different basis in which to express the algebra. To this end,
introduce a new set of antisymmetric generators Jab acting on Rp+1,q+1. We label the extra
spatial directions + and the extra temporal direction − so that for a, b ∈ µ,+,− we define Jab
in the following manner:

J+µ =
Pµ +Kµ

2
, J−µ =

Pµ −Kµ

2
, (4.27)

Jµν = Lµν , J−+ = D.

17



4. THE CONFORMAL KILLING ALGEBRA OF FLAT SPACE-TIME 18

Now it is straightforward to check that these generators will satisfy the so(p+ 1, q+ 1) commu-
tation relations

[Jab, Jcd] = ηacJbd + ηbdJac − ηadJbc − ηbcJad. (4.28)

Here ηab =diag(−1, ηµν ,+1) is the obvious extension of the metric on Rp,q to Rp+1,q+1. This
shows quite immediately that conf(Rp,q) ' so(p+ 1, q + 1). So, up to discrete transformations
such as parity transformations, we derive that Conf(Rp,q) ' SO(p+ 1, q + 1).

18



19 5. GENERAL SPACE-TIMES

5 General Space-Times

For more general space-times the presence of curvature will make life difficult. Brute-force
power series solutions can be attempted, but this will only yield valid solutions if the connection
tensors Γα

µν consist of functions that admit finite Laurent series. In particular, this will fail for
spaces with positive curvature, whose connection tensors contain trigonometric functions. This
approach will work better for hyperbolic spaces, but little insight is gained. Instead, we wish
to develop an analytic approach.

5.1 Embedding

Our first approach is to embed M isometrically into a higher-dimensional space M ′ whose
symmetries we know. A natural choice here would be to pick M ′ = Rp,q as we have just derived
the conformal group for this space. As it turns out, we can indeed do this, as proven in 1970
by Greene [13] and independently by Clarke [5] in the same year. Their result can be stated as
follows.

Theorem 5.1 (Pseudo-Riemannian Embedding). An n-dimensional
pseudo-Riemannian manifold M with a metric of rank r and signature s
can be isometrically embedded into a pseudo-Euclidean space Rp,q for p and
q given by

p = n− 1

2
(r + s) + 1 (5.1)

q =

{
1
2n(3n+ 11), if M compact.
1
6n(2n2 + 37) + 5

2n
2 + 1, otherwise.

(5.2)

In our case, the manifold M will have n = 4, its metric will be nondegenerate so that
r = n = 4 and we will have only one time-like direction so that s = n − 2 = 2. Hence any
manifold we consider can be embedded into R2,q for various values of q. The idea is that, since
the embedding is isometric, all symmetries of M must be expressible in terms of symmetries of
Rp,q that preserve the embedding equation. For example, we may embed the n-sphere Sn into
Rn+1 by the equation

~X2 = L2, (5.3)

where L is the radius of the sphere. The only isometries of Rn+1 that preserve this equation
are rotations around the origin, which form the group SO(n + 1) that we indeed associate as
the isometries of the n-sphere.

In the case of conformal isometries, we should relax the requirement by asking that symme-
tries of Rn+1 preserve the embedding equation up to a conformal factor. Hence the conformal
requirement is that

~X ′
2

= Ω2(X) ~X2 = Ω2(X)L2. (5.4)

We see immediately that dilations x → D x in Rp,q, with conformal factor Ω2(X) = D2 sat-
isfy this condition. However, there is no guarantee that there exists a transformation in the
coordinates of Sn with this effect. To this end, consider the explicit embedding

X1 = L sin(θ1) sin(θ2) . . . sin(θn−1) sin(φ) (5.5a)

X2 = L sin(θ1) sin(θ2) . . . sin(θn−2) cos(φ) (5.5b)

X3 = L sin(θ1) sin(θ2) . . . cos(θn−2) (5.5c)

... (5.5d)

Xn+1 = L cos(θ1), (5.5e)
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5. GENERAL SPACE-TIMES 20

where θi ∈ [0, π) and φ ∈ [0, 2π). Note that there is no transformation of the angles θi and
φ that has the effect of multiplying Xµ by an overall factor of D. Instead, the effect of the
Rn+1-dilation on Sn can only be realised by a Weyl transformation, which is not part of the
dynamical symmetries of Sn.

Hence, when using embeddings to find (conformal) isometries, one must be careful. Con-
formal isometries of Rp,q that preserve the embedding transformation may not correspond to
dynamical transformations of the embedded space M . Figuring out whether or not this happens
can be a tricky problem to tackle and for that reason we will prefer to use the conformal Killing
equation in explicit calculations most of the time.

5.2 Product Manifolds

A second approach is as follows. Suppose M is a product manifold that decomposes into two
nontrivial pieces N1 and N2 so that we may write

M = N1 ×N2, gM = gN1 ⊕ gN2 , (5.6)

where gN1 depends only on the coordinates of N1 and gN2 depends only the coordinates of N2.
Suppose that we know about the symmetries of the factors N1 and N2. What can we learn
about symmetries of M?

Observe that the metric decomposes into block diagonal form, where each block is the metric
on the appropriate factor. For isometries it is clear that the following holds

Isom(M) ⊇ Isom(N1)× Isom(N2), (5.7)

as an isometry from either factor N , when acting on M will preserve both block diagonals in
(5.6). Equality holds if N1 and N2 are compact, [8] but for more general manifolds the full
isometry group may be bigger (as is the case when both N1 and N2 are flat).

A similar analysis, unfortunately, does not yield much for the conformal group. A conformal
isometry φi of Ni acting on M will multiply only the gNi block diagonal in (5.6) by a conformal
factor Ω2 rather than the entire metric. It cannot, therefore, be an element of Conf(M) unless
Ω = 1, in which case it is a regular isometry.

The only way to find proper elements of Conf(M) in this way is by looking for φ1 ∈ Conf(N1)
and φ2 ∈ Conf(N2) with identical conformal factors and having them act simultaneously on M .
Locally, this amounts to finding ξ1 ∈ conf(N1) and ξ2 ∈ conf(N2) so that ∇ · ξ1 = ∇ · ξ2 ∝ ω
and then taking ξM = (ξ1, ξ2). Note that ξ1 can only depend on coordinates of N1 and so ω is
independent of coordinates of N2. But the same argument works the other way around and we
are forced to conclude that ω is independent of all coordinates, i.e. it is a constant.

Looking back at (4.22) we see that dilations (ξµd = d xµ) satisfy this property, with ωd ∝ d.
However, special conformal transformations (ξµb = 2(b · x)xµ − x2bµ) do not, with ωb ∝ b · x.

5.3 Geometric Isolation

We now wish to argue that for a manifold M with a nontrivial decomposition, special conformal
transformations do not induce (nontrivial) conformal isometries on M “most” of the time. The
argument, while imprecise, goes like this.

First define the notion of geometric isolation.
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21 5. GENERAL SPACE-TIMES

Definition 5.2 (Geometric Isolation). Let xµ̂ and xν̂ be two coordinate
directions of a manifold M . Then we say that these two directions are
Geometrically Isolated if the following three conditions are satisfied.

• gµ̂ν̂ = 0.

• gµ̂α does not depend on the coordinate xν̂ for any α.

• gν̂α does not depend on the coordinate xµ̂ for any α.

Furthermore, suppose that N1 and N2 are factors in a product decomposition
of M . Then we say that N1 is geometrically isolated from N2 if all coordinate
directions of N1 are isolated from those of N2 in the above sense.

Suppose that M admits a decomposition as presented in (5.6) into two factors N1 and N2. By
assumption, the metric gN1 does not depend on the coordinates of N2 and vice-versa, and the
block diagonal decomposition of gN means there are no components gµν where xµ is a coordinate
of N1 and xν is a coordinate of N2. That is to say, N1 and N2 are factors that are geometrically
isolated.

This means that we may embed each of them into a flat manifold Rpi,qi (i = 1, 2) so that M
gets embedded into Rp,q for p = p1 + p2 and q = q1 + q2. As a result, the embedding equation
ϑ : M ↪→ Rp,q factors as (ϑ1, ϑ2) : N1×N2 ↪→ Rp1,q1 ×Rp2,q2 in such a way that the embedding
equation of N1 is independent of the coordinates of N2 and vice versa. Any conformal symmetry
on Rp,q that induces a symmetry on M should respect this factorization conformally.

For a local special conformal transformation, xµ → xµ+2(b ·x)xµ−x2bµ, a given coordinate
xν̂ picks up contributions from all other coordinates. This is not a problem as long as we can
rewrite these contributions as a global conformal factor. However, contributions from special
conformal transformations are additive, not multiplicative. So unless the embedding equations
ϑ1 and ϑ2 are exactly such that this still happens, we will violate the factorization of ϑ. Hence
for “most” embeddings, special conformal transformations do not induce conformal isometries
on M .

A notable exception to the above is when N1 and N2 are both flat, in which case M can be
trivially embedded into Rp,q by Xµ = xµ. While a full investigation is beyond the scope of this
work, we feel justified in formulating the Geometric Isolation Conjecture as follows.

Conjecture 5.3 (Geometric Isolation). Let M be any pseudo-Riemannian
manifold that admits the following decomposition

M = N1 ×N2, gM = gN1 ⊕ gN2 , (5.8)

subject to the following extra conditions.

1. N1 and N2 are both indecomposable and not isomorphic to a flat
pseudo-Riemannian manifold; or, only one satisfies this property and
the other is isomorphic to Ra,b for some a and b.

2. N1 and N2 are nontrivial, i.e. of at least dimension one.

3. N1 and N2 are geometrically isolated as defined in definition 5.2.

Then no (nontrivial) conformal isometry of M is inherited from special con-
formal transformations upon embedding M isometrically into Rp,q.
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5. GENERAL SPACE-TIMES 22

It is clear that this conjecture can be generalized to an arbitrary product in an obvious
manner. Without further proof we will assume that the conjecture holds true for the manifolds
we will study in this work. In the following section, we will show that this conjecture simplifies
our life immensely when it comes to product manifolds.

5.4 Transverse-Longitudinal Decomposition

The covariant divergence ∇ · ξ in equation (3.19) motivates us to formally decompose ξ as

ξµ = ξµL + ξµT ≡ ∇
µθ + χµ, (5.9)

where θ is a scalar and χ is transverse to ∇ in the sense that ∇ · χ = 0. Using (3.18) we see
that all contributions to the conformal factor comes from the longitudinal part of ξ,

∇2θ = ∇ · ξ = nω(x). (5.10)

This shows us that there are essentially three types of solutions to the conformal Killing equation.

1. First we have Killing vector solutions satisfying ∇ · ξ = 0.

2. Secondly we have longitudinal, proper, conformal Killing vectors, which we describe as
ξµ = ∇µθ, satisfying ω = ∇2θ

n 6= 0.

3. Lastly we have proper, conformal Killing vectors with both a longitudinal component ∇µθ
and a transverse component χµ that do not solve equation (3.19) separately, but whose

sum does. These, too, satisfy ω = ∇2θ
n 6= 0.

Referring back to our results in section 4 we see that translations and Lorentz transformations,
being isometries, fall into the first category. Dilations (ξµ = d xµ) can be written as ξµ = d ∂µx2

2
and fall into the second category. Special conformal transformations (ξµ = 2(b · x)xµ − x2bµ)
fall into the third category as ∂[νξµ] = 2(bνxµ − xνbµ) 6= 0 and so ξµ cannot be written in the
form ξµ = ∂µθ for any θ.

5.5 Product Manifolds and Geometric Isolation

Now suppose that we are in the situation outlined in the Geometric Isolation conjecture, where
M decomposes into two (or more) geometrically isolated factors Ni. Then, upon embedding
M into Rp,q, translations, Lorenz transformations and dilations of Rp,q will induce conformal
isometries on M , but not special conformal transformations. As a result, we will only need to
look for conformal Killing vectors of the first two types: Killing vectors and proper, longitudinal,
conformal Killing vectors. Moreover, as ω ∝ d is constant for dilations, we only need to consider
CKV with a constant conformal factor. Since covariant derivatives commute when acting on a
scalar, we may reduce the conformal Killing equation (3.19) to

∇µ∇νθ − gµνω = 0, ∇2θ = nω, (5.11)

where ω is just a constant.

We can push the analysis a bit further. We can see what happens if we choose µ̂ and ν̂ such
that xµ̂ is a coordinate in Ni and xν̂ is a coordinate in Nj for i 6= j. Given that all factors in
the decomposition of M are geometrically isolated, it follows that gµ̂ν̂ = 0 and, for all β, gµ̂β
is independent of xν̂ while gν̂β is independent of xµ̂. Now write out the Γα

µ̂ν̂ components of the
Levi-Civita connections,

Γα
µ̂ν̂ =

1

2
gαβ
(
∂µ̂gν̂β + ∂ν̂gµ̂β − ∂βgµ̂ν̂

)
, (5.12)
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23 5. GENERAL SPACE-TIMES

and see that these terms vanish for every α. Hence this component of the connection vanishes.
We expand the covariant derivatives in the µ̂ν̂-component of (5.11),

0 = ∇µ̂∇ν̂θ −���gµ̂ν̂ω = ∇µ̂∂ν̂θ = ∂µ̂∂ν̂θ −����Γα
µ̂ν̂∂αθ = ∂µ̂∂ν̂θ. (5.13)

What remains admits the very easy solution θ = θ1(x
µ̂) + θ2(x

ν̂). We can repeat this analysis
for every such pair to conclude that θ must be of the form

θ = θ1(xN1) + θ2(xN2) + . . .+ θk(xNk) (5.14)

where the Ni subscript on x indicates that the function θi depends only on coordinates of Ni.

Combining this with (5.11) represents a monumental simplification over the general case.
We no longer have to solve a large set of coupled partial differential equations where each
component of ξ couples directly to every other via ∇ · ξ. Instead, different factors of M couple
only through the auxiliary Poisson equation ∇2θ = nω, which is simplified by the fact that ω
is constant. The ansatz (5.14) means that we can solve the equation

∇µi∇νiθi − gµiνiω = 0, (5.15)

where no summation is implied, separately for θi in each factor Ni, with coordinates xµi . Once
solved, we simply impose that ∇2θ = nω, so that the total number of equations we have to
solve is drastically reduced.

This simplification procedure, along with the steps that lead up to it, can be considered the
central result of this thesis. In what follows we will apply it to space-times of interest.
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6 Cosmological Space-Times

While R1,3 with its standard pseudo-Euclidean metric is easy to describe, it is also static. This is
contrary to observation, which holds that space is more or less homogeneous and isotropic, while
space-time as a whole is not. An accurate model for the background manifold of space-time
should reflect this, as well as the fact that space appears to be expanding.

A very natural choice for the above is to decompose space-time as M = R × Σ, where R
represents the direction of time and Σ is a 3-manifold that represents the space-like slices of the
universe. We equip this manifold with the following metric,

ds2 = −dt2 + a2(t)dσ2. (6.1)

The dynamics of the expanding universe are captured in the evolution of the scale factor a
through the Friedmann equations. Note that if we were to choose Σ maximally symmetric,
i.e. Σ = R3, S3 or H3, we are in the Friedmann-Lemâıtre-Robertson-Walker case mentioned in
section 1.1 and can rewrite (6.1) as the FLRW metric given in (1.2). Most of modern cosmology
uses the flat FLRW case as a background space-time from which small perturbations can deviate.

While these three FLRW geometries are certainly well-known, we argue that there are other
valid choices for Σ that are on equal footing. Any 3-manifold characterized by a spatial curvature
radius ∼ 1/

√
|k| that is large compared to the observable universe is a potential candidate for

the background of the universe; as long as its is homogeneous and isotropic enough to fit
current observations. For this reason we broaden our scope to the class of space-time manifolds
that decompose as R × Σ, with a metric given by (6.1), but relaxing the strict requirement
of homogeneity and isotropy since local observers can never establish these properties globally.
This allows for a much larger zoo of 3-manifolds Σ.

6.1 The Eight Thurston Geometries

While there is no complete classification of all possible 3-manifolds, there is a full classification
of closed, oriented 3-manifolds by the mathematician William Thurston. He first proposed this
famous Geometrization Conjecture in 1982 after many years of work on the topic. Grigori
Perelman provided a partial proof of the conjecture in 2003, which has been expanded upon
in subsequent years so that the conjecture is considered true. Even though it should therefore
be called the Thurston-Perelman Geometrization Theorem, it has retained the ‘conjecture’
moniker in literature. Many different formulations of the conjecture exist, but we will present
the following.

Conjecture 6.1 (Thurston Geometrization). Every closed, oriented three-
dimensional Riemannian manifold Σ can be decomposed into pieces which
have geometric structures.

Central to this statement is the notion of a geometric structure. We will expand upon this
briefly, paraphrasing parts of Thruston’s original work [22] combined with a very easily readable
overview of the conjecture by Grady [12]. We refer the interested reader to either source for a
more detailed overview.

A Geometry is a pair (X, Isom(X)) consisting of a simply-connected, complete and homo-
geneous Riemannian manifold X with its isometry group.

A complete Riemannian manifold Σ has a Geometric Structure based on X if it is iso-
metric to the quotient X/Γ. Γ is taken to be a discrete subgroup of Isom(X) without any fixed
points.
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25 6. COSMOLOGICAL SPACE-TIMES

With these definitions in mind, we may expand upon the conjecture by Thurston’s classifi-
cation of the eight maximal geometries in three dimensions.

Any maximal, simply connected, three-dimensional geometry X that admits
a compact quotient is equivalent to one of the eight geometries below.

• R3

• ˜SL(2,R)

• H3

• H2 ×R

• S3

• S2 ×R

• Nil

• Solv

If we understand the symmetries of these eight geometries we can describe a much larger
class of FLRW-type spacetimes. Not only can we consider all possible closed 3-manifolds this
way, each of the eight geometries above can be made a valid candidate for the spatial slices
of our universe. Moreover, since these eight geometries are maximal, there is a wide range of
other open manifolds we can construct from these. For example, the manifold H2 × S1 can be
constructed as H2 ×R/1H2 ×Z.

There are, however, also several limitations to the conjecture that prevent it from being a
full classification of 3-manifolds.

While Thurston’s conjecture classifies all possible simply-connected geometries in three di-
mensions, it says very little about spaces that do not admit a compact quotient. There may
be other noncompact 3-manifolds that do not fit in the above classification, so we shouldn’t
take the conjecture as a full classifications of the possible spatial slices. In particular, any
noncompact, multiply-connected 3-manifold is not covered in this classification.

The orientability condition on Σ precludes us from considering Möbius type geometries.
This somewhat limits the scope of our investigation, at least from the point of view of the
global geometry.

Completeness of the metric should be interpreted as geodesic completeness. That is to say,
we require that every geodesic can be extended indefinitely so that Σ may not contain any
punctures or holes. Black Hole solutions to the Einstein Field Equations contain exactly such
singularities. Therefore they are not covered under Thurston’s Geometrization Conjecture and
should be studied separately.

Lastly, recall again that aggregates of cosmological observations put the curvature energy
density ΩK at a value of 0.000 ± 0.005, [21]. So any curved choice for Σ is constrained to
have a very large curvature radius 1/

√
|k|. Similar constraints will hold for spaces with global

anisotropies or inhomogeneities.

Thurston’s classification of closed 3-manifolds can be thought of as a generalization of the
two-dimensional classification of Riemann Surfaces. This lower-dimensional variant holds that
any such surface is conformally equivalent to S2/Γ, R2/Γ or H2/Γ, where Γ is again a discrete
subgroup without fixed points. The three-dimensional case differs primarily in that Σ does not
necessarily consist of a single piece, but may decompose into multiple pieces, each of which is
based on a single maximal geometry.

It should also be noted that this work is not the first to study FLRW space-times using
Thurston’s conjecture. Seminal work was done by Fagundes in 1985 [9] and improved upon in
1992 [10] by the same author. In these works, Fagundes establishes a partial correspondence
between the eight Thurston geometries and the classification of spatially homogeneous metrics
into Bianchi-type and Kantowski-Sachs types. Our study of Thurston geometries in a conformal
setting appears to be novel, however.
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6. COSMOLOGICAL SPACE-TIMES 26

6.2 Symmetry Restoration

Since we are indeed in a conformal setting, we have an extra gauge transformation at our
disposal. We may use this to restore some of the symmetry lost in foliating space-time into
space and time but eliminating the scale factor a from the metric entirely. Recall that we equip
cosmological space-times with the metric

ds2 = −dt2 + a2(t)dσ2. (6.2)

First transform this metric to conformal time by integrating dt = a(t)dη to write

ds2 = a2(t)
(
− dη2 + dσ2

)
. (6.3)

Recall that we showed in section 3.4, starting from equation (3.20), that the conformal
Killing equations and its solutions are invariant under Weyl transformations. Explicitly, if ξ
is a conformal Killing vector for a metric g, then it is also a conformal Killing vector for the
metric g̃ = Λ2g.

Now note that (6.3) can be rewritten as ds2 = a2(t)d̃s2, where d̃s2 = −dη2+dσ2. This means
that these two metrics belong to the same conformal class and are related by a Weyl transform
gµν → g̃µν = Λ2gµν with Λ = a−1. From the results of section 3.4 we then conclude that gµν
and g̃µν must admit the same conformal Killing vectors. Hence, without loss of generality, we
can use the metric

ds2 = −dη2 + dσ2 (6.4)

to solve for the conformal Killing vectors of (6.3), which are related to the conformal Killing
vectors of (6.2) by a simple coordinate transformation.

From the form of the metric (6.4) we see immediately that (conformal) time translations
η → η′ = η + a0 are restored as conformal isometries. Depending on the form of Σ, there may
be more, which we will have to find by solving the conformal Killing equation explicitly.

There is one caveat, however, namely that a Weyl transformation with Λ = a−1 is not well-
defined at a = 0. If the history of the universe is such that a = 0 for some finite t in the past,
then any generator involving time will not exponentiate to a global one-parameter subgroup.
For instance, in the case of the generator of time translations Pt, the global transformation
φt = exp(sPt) is not well-defined for negative s.6 Hence we are restricted to positive s only,
which means we find a one-parameter semigroup. Nonetheless the local symmetries are worth
studying.

6It is not well defined for negative s because this would attempt to evolve us to a time ‘before’ the singularity
at a = 0. We cannot do this as geodesics are not extendible to a time before this point.
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7 The Conformal Algebra of the Thurston Geometries

In this section we will (attempt to) calculate the conformal algebra of Cosmological space-times
R× Σ, where Σ is given by one of the eight Thurston Geometries. The starting point for each
of these calculations is the metric (6.4), so that we don’t have to show the steps in the previous
section every time. For the purpose of legibility we will write often t instead of η after the
discussion of flat geometry, but conformal time η is implied every time we write t.

For spaces of positive curvature we will prefer to use the embedding method outlined in
section 5.1. For spaces of negative curvature we will solve the conformal Killing equations
explicitly, solving the Killing equation first to find the Killing vectors and then solving the con-
formal Killing equation to find longitudinal conformal Killing vectors, in line with the discussion
in sections 5.3 and 5.5.

7.1 Flat Geometry R1,3

For the flat Thurston Geometry very little remains to calculate. From the previous section we
see that the metric of this geometry may be presented as

ds2 = −dη2 + δijdx
idxj . (7.1)

This puts us in the situation of section 4 and we immediately recover the full conformal algebra.

Conf(R1,3) = SO(2, 4), conf(R1,3) = so(2, 4) = 〈Pµ, Lµν , D,Kµ〉 . (7.2)

Here the angular brackets 〈...〉 indicate that the algebra is spanned by the elements between
them. For the sake of completeness we reproduce the explicit form of the generators from section
4 below, where now µ α and β run over the elements η, x, y and z.

Pµ = ∂µ Lµν = xν∂µ − xµ∂ν D = xµ∂µ Kµ = 2xµx
ν∂ν − x2∂µ (7.3)

These will satisfy the commutation relations given by (4.26), which are reproduced below. Again
µ α and β now run over η, x, y and z

[Pµ, D] = Pµ [Kµ, D] = −Kµ (7.4a)

[Pµ,Kν ] = 2(ηµν − Lµν) (7.4b)

[Pµ, Lαβ] = ηµβPα − ηµαPβ (7.4c)

[Kµ, Lαβ] = ηµβKα − ηµαKβ (7.4d)

[Lµν , Lαβ] = ηµαLνβ + ηνβLµα − ηµβLνα − ηναLµβ. (7.4e)

By invariance of the conformal Killing equation under Weyl transformations the algebra gener-
ators given in (7.3) also generate the conformal Killing algebra of the original metric

ds2 = −dt2 + a(t)2δijdx
idxj . (7.5)

To rewrite the generators in these coordinates, we simply coordinate transform terms in (7.3)
using dt = a(t)dη. For instance, the generator of conformal time translations, Pη = ∂η, will
simply be a−1(t)∂t in the original coordinates.
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7.2 Spherical Geometry R× S3

Drawing upon the example of section 5.1 we present the following explicit embedding of R×S3

into R1,4.
X0 = t (7.6a)

X1 = L sin(θ1) sin(θ2) sin(φ) (7.6b)

X2 = L sin(θ1) sin(θ2) cos(φ) (7.6c)

X3 = L sin(θ1) cos(θ2) (7.6d)

X4 = L cos(θ1), (7.6e)

where t ∈ R, θ1, q2 ∈ [0, π) and φ ∈ [0, 2π). This can be summarized compactly by the state-
ment that X0 = t and ~X2 = L2. The question is which of the conformal isometries of R1,4

preserve both equations. To this end, recall the form of these transformations from section 4
on the next page.

To (conformally) preserve X0 = t we can immediately rule out Lorentz boosts Λ0
i , but all of

the other transformations are permissible, given that we set B0 = 0. We can then rewrite the
contribution of a dilation or special conformal transformation to this embedding as multiplica-
tion by a factor D or (1− 2B ·X +B2X2)−1 respectively.

Type Locally Globally

Translation X ′µ = Xµ + aµ X ′µ = Xµ +Aµ

Lorentz X ′µ = Xµ + λµαXα X ′µ = ΛµνXν

Dilation X ′µ = Xµ +Xµd X ′µ = DXµ

SCT X ′µ = Xµ + 2(b ·X)Xµ −X2bµ X ′µ = Xµ−BµX2

1−2B·X+B2X2

To (conformally) preserve ~X2 = L2, we can rule out spatial translations Ai in addition to
Lorentz boosts Λ0

i . Dilations are fine in principle, but we will have to do a bit more work for
the special conformal transformations. Given that we have set B0 = 0, write

~X ′
2

=
~X2 − 2 ~B · ~XX2 + ~B2X4

(1− 2 ~B · ~X + ~B2X2)2
(7.7)

=
(X2 + (X0)2)− 2 ~B · ~XX2 + ~B2X4

(1− 2 ~B · ~X + ~B2X2)2
(7.8)

= X2 1− 2 ~B · ~X + ~B2X2

(1− 2 ~B · ~X + ~B2X2)2
+

(X0)2

(1− 2 ~B · ~X + ~B2X2)2
(7.9)

=
X2

1− 2 ~B · ~X + ~B2X2
+

(X0)2

(1− 2 ~B · ~X + ~B2X2)2
. (7.10)

If the two denominators agree, this equation will read ~X ′
2

= ~X2 and we preserve the embedding
of S3. But requiring that 1−2 ~B · ~X+ ~B2X2 is equal to its square means that it is either zero or
one. Zero is not permissible as all SCTs then diverge and one can only be obtained for every X
by setting ~B = 0. Then we have set Bµ = 0 entirely and no special conformal transformation
survives, as suggested by the Geometric Isolation conjecture.

Similar to section 5.1, no transformation of the angles θ1, θ2 or φ in the embedding (7.6) in-
duces a dilation on the spatial slice ofR1,4 and so it is not a conformal isometry for this geometry.
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This leaves us with just the X0-translations and spatial rotations Λij so that we may write

Conf(R× S3) = R× SO(3), conf(R× S3) = R× so(3) = 〈Pt, Lij〉 . (7.11)

Note that, despite the presence of conformal symmetry, we only pick up a single proper conformal
Killing vector in the form of a time translation.

7.3 Spherical Geometry R1,1 × S2

This geometry akin to the previous one. We embed this space-time intoR1,4 by (X0, X1) = (t, x)

and X
2

= L2, where X indicates a ‘vector’ of the three components (X2, X3, X4).

Repeating the arguments of the previous section we see that the three rotations L23, L34,
L42 preserve the embedding of S2, while translations in the X2, X3 and X4 directions violate
it. We see separately that the translations P0, P1 and the boost L01 are fine in the R1,1 sector.
Dilations are again appear to be fine, but there is no transformation of the angles on S2 that
induces a dilation on the last three coordinates of R1,4, hence we throw them out. The procedure
for the special conformal transformations is almost identical: we argue that B0 = B1 = 0 and
can write the analogue of (7.7) as

X ′
2

=
X

2 − 2B ·XX2 +B
2
X4

(1− 2B ·X +B
2
X2)2

(7.12)

= ... =
X2

1− 2B ·X +B
2
X2

+
(X0)2 − (X1)2

(1− 2B ·X +B
2
X2)2

. (7.13)

Again, we will only obtain a term proportional to X
2

if the denominators agree, leading to
B = 0→ Bµ = 0.

Thus only translations and boosts on R1,1 and rotations on S2 separately will correspond
to conformal isometries on R1,1 × S2.

Conf(R1,1 × S2) = R2 o SO(1)× SO(2)

conf(R1,1 × S2) = R2 o so(1)× so(2) = 〈Pt, Px, Ltx, L23, L34, L42〉 .
(7.14)

7.4 Hyperbolic Geometry R×H3

We will tackle the hyperbolic spaces R×H3 and R×R×H2 by solving the conformal Killing
equation in full. The former will be covered in this section and the latter in the section hereafter.

To describe H3, we opt for the upper half-space representation as it easier to tackle than
the FLRW metric (1.2) with negative k. Taking coordinates t, y, z ∈ R and x > 0, the metric
of this space takes the form

ds2R×H3 = −dt2 +
L2

x2

(
dx2 + dy2 + dz2

)
. (7.15)

Here L ∝ 1/
√
−k characterizes the curvature. The nontrivial Christoffel symbols are

Γx
xx = Γ y

xy = Γ z
xz = −1/x Γx

yy = Γx
zz = 1/x, (7.16)

and the Ricci scalar is −6/L2, indicating that this is indeed a negatively curved space.
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As promised, we will first solve the Killing Equation before moving on to the conformal
isometries. We may decompose the components of the Killing equation as follows.

Diagonal Homogeneous Inhomogeneous

(1) ∂tξt = 0 (i) ∂tξx + ∂xξt = 0 (I) ∂xξy + ∂yξx + 2ξy/x = 0

(2) ∂xξx + ξx/x = 0 (ii) ∂tξy + ∂yξt = 0 (II) ∂xξz + ∂zξx + 2ξz/x = 0

(3) ∂yξy − ξx/x = 0 (iii) ∂tξz + ∂zξt = 0

(4) ∂zξz − ξx/x = 0 (iv) ∂yξz + ∂zξy = 0

We start by noting that equation (2) is a simple ODE that is solved by ξx = fx(t, y, z)/x for
a yet-to-be determined function fx. Now take the y-derivative of equation (I) to see that, via
equation (3),

0 = ∂2yξx + (∂x + 2/x)∂yξy = ∂2yξx + (∂x + 2/x)ξx/x =
∂2yfx

x
+���

���
�:0

(∂x + 2/x)
fx
x2

=
∂2yfx

x
. (7.17)

Hence we see that fx is at most first-order in y. Similarly, we can take the z-derivative of
equation (II) and use (4) to conclude that fx is also at most first-order in z.

Now make the ansatz that fx(t, y, z) = 2ay(t)y + 2az(t)z + b(t) + 2d(t)yz and use this to
find a formal solution to equation (3),

ξy = fy(t, x, z) +
1

x2

∫
dyfx(t, y, z). (7.18)

Plug this solution into (I) to obtain

∂xfy −
���

���
���2

x3

∫
dyfx(t, y, z) +

∂yfx
x

+
2fy
x

+
���

���
���2

x3

∫
dyfx(t, y, z) = 0, (7.19)(

∂x +
2

x

)
fy = −∂yfx

x
→ fy(t, x, z) =

cy(t, z)

x2
− 1

2
∂yfx. (7.20)

Again, we can do a similar derivation for z and obtain the following two expressions for ξy and
ξz,

ξy =
ay(t)y

2 + b(t)y + cy(t, z) + d(t)y2z + 2az(t)yz

x2
− ay(t)− d(t)z, (7.21)

ξz =
az(t)z

2 + b(t)z + cz(t, y) + d(t)yz2 + 2ay(t)yz

x2
− az(t)− d(t)y. (7.22)

The only y- and z-dependence that we have not made explicit is contained in the functions cy
and cz. So we plug the above expressions into equation (iv) to determine this dependence,

∂ycz(t, y) + d(t)z2 + 2ay(t)z

x2
− d(t) +

∂zcy(t, z) + d(t)y2 + 2az(t)y

x2
− d(t) = 0. (7.23)

We see immediately that d(t) = 0 as it is the only function not multiplied by 1/x2. We can
solve for cy and cz by equating powers of y and z,

∂zcy(t, z) = −2ay(t)z + e(t) → cy(t, z) = cy(t)− ay(t)z2 + e(t)z, (7.24)

∂ycz(t, y) = −2az(t)y − e(t) → cz(t, y) = cz(t)− az(t)y2 − e(t)y. (7.25)

Thus we obtain an explicit solution for the spatial Killing Vector components,

ξx =
2ayy + 2azy + b

x
, (7.26)

ξy =
ay(y

2 − z2) + 2azyz + by + cy + ez

x2
− ay, (7.27)

ξz =
az(z

2 − y2) + 2ayyz + bz + cz − ey
x2

− az, (7.28)
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in terms of six functions, ay(t), az(t), b(t), cy(t), cz(t), e(t). What remains is to check their time-
dependence and to find ξt(t, x, y, z). Here we see that the two factors of R ×H3 don’t like to
mix even at the level of isometries. We can solve equations (i), (ii) and (iii) formally by writing

ξt = −∂t
∫
ξx dx = g(y, z)− log(x)

(
2ȧyy + 2ȧzy + b

)
, (7.29)

ξt = −∂t
∫
ξy dy = h(x, z) +

ȧy(y
2 − z2) + 2ȧzyz + ḃy + ċy + ėz

x
− ȧy, (7.30)

ξt = −∂t
∫
ξz dz = k(x, y) +

ȧz(z
2 − y2) + 2ȧyyz + ḃz + ċz − ėy

x
− ḃz. (7.31)

It is immediate from comparing powers of x, y and z that ay, az, b, cy, cz, e are all constants with
respect to time. Equality of all three expressions means that the integration functions g, h and
k are identical and constant. Hence we have found the full Killing algebra consisting of seven
independent Killing vectors.

The seven associated symmetry generators are,

Pt = ∂t, Py = ∂y, Pz = ∂z, Lyz = z∂y − y∂z, D = x∂x + y∂y + z∂z,

F = 2xy∂x + (y2 − z2 − x2)∂y + 2yz∂z, G = 2xz∂x + 2yz∂y + (z2 − y2 − x2)∂z.

The P -generators generate translations, Lyz generates rotations in the (y, z)-plane, D generates
spatial dilations and F and G are generators of the so-called spherical inversions in hyperbolic
space. Pt commutes with all other generators while the spatial algebra satisfies the commutation
relations on Table 1 below.

Py Pz Lyz D F G

Py 0 0 −Pz Py 2D 2Lyz

Pz 0 0 Py −Pz −2Lyz 2D

Lyz −Pz −Py 0 0 G −F
D −Py −Pz 0 0 F G

F −2D 2Lyz −G −F 0 0

G −2Lyz −2D F −G 0 0

Table 1: The commutation relations of isom(H3).

This Lie algebra should be isomorphic to the Lie algebra sl(2,C) of the Lie group PSL(2,C),
which is the canonical isometry group of H3. We may identify the elements we have found above
with generators of sl(2,C) under the maps,

−F 7→ X =

(
0 1

0 0

)
Py 7→ Y =

(
0 0

1 0

)
2D 7→ H =

(
1 0

0 −1

)

−G 7→ iX =

(
0 i

0 0

)
−Pz 7→ iY =

(
0 0

i 0

)
2Lyz 7→ iH =

(
i 0

0 −i

)
.

It is straightforward to check that, under this identification, the commutation relations in Table
1 map to those of sl(2,C) coming from the standard sl2 triplet [H,X] = 2X, [H,Y ] = 2Y ,
[X,Y ] = H.
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7. THE CONFORMAL ALGEBRA OF THE THURSTON GEOMETRIES 32

Moving on to the conformal isometries, we will elect to write out most of the connection
tensors and covariant derivatives. Doing this, the components of the Conformal Killing Equation
decompose as:

Diagonal Homogeneous Inhomogeneous

(1) ∂2t θ + ω = 0 (i) ∂t∂xθ = 0 (I) ∂x∂yθ +
2∂yθ

x
= 0

(2) ∂2xθ +
∂xθ

x
−L

2

x2
ω = 0 (ii) ∂t∂yθ = 0 (II) ∂x∂zθ +

2∂zθ

x
= 0

(3) ∂2yθ −
∂xθ

x
−L

2

x2
ω = 0 (iii) ∂t∂zθ = 0

(4) ∂2zθ −
∂xθ

x
−L

2

x2
ω = 0 (iv) ∂y∂zθ = 0 (Aux) ∇2θ = 4ω

In accordance with our discussion in section 5.5, the homogeneous equations immediately tell
us that θ decomposes as

θ(t, x, y, z) = A(t) +B(x, y) + C(x, z). (7.32)

Using this decomposition, equation (I) and (II) read,

∂x∂yB + ∂yB/x = 0 → B(x, y) = B(y)/x+ Ey(x), (7.33)

∂x∂zC + ∂zC/x = 0 → C(x, z) = C(z)/x+ Ez(x). (7.34)

We combine Ey(x) and Ez(x) into a single function E(x),

θ(t, x, y, z) = A(t) +
B(y) + C(z)

x
+ E(x). (7.35)

Now we make use of the simplified form of the diagonal equations. Plug θ first into equation
(1),

A′′(t) + ω = 0 → A(t) = At− ωt2

2
(7.36)

and then into equation (3),

B′′(y)

x
+
B(y) + C(z)

x2
+ E′(x) +

ωL2

x2
= 0. (7.37)

From the second term in (7.37) we see that B and C must be constant as the last term does
not depend on y or z. We absorb their contributions into E(x), so that (7.37) can be rewritten
as

E′(x) =
ωL2

x2
→ E(x) = −ωL

2

x
. (7.38)

so that

θ(t, x, y, z) = At− ωt2

2
− ωL2

x
. (7.39)

Finally, plug this into the auxiliary Poisson equation to find

4ω = ∇2θ = −∂2t θ +
x2

L2
∂2xθ −

x∂xθ

L2
+ vanishing terms = ω − 2ω

x
− ω

x
= ω − 3ω

x
. (7.40)

Hence we conclude that ω = 0. So the only conformal killing vector comes from

θ(t, x, y, z) = At → ξµ = (A, 0, 0, 0) → Pt, (7.41)
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33 7. THE CONFORMAL ALGEBRA OF THE THURSTON GEOMETRIES

which we already found in the isometries. Hence we find no proper conformal Killing vectors
and write

Conf(R×H3) = R× PSL(2,C)

conf(R×H3) = R× sl(2,C) =
〈
Pt, Py, Pz, Lyz, D, F,G

〉
.

(7.42)

7.5 Hyperbolic Geometry R1,1 ×H2

Similar to the previous case, we will use the upper half-plane representation for H2. Pick
coordinates t, y, z ∈ R and x > 0, then the metric of this space can be written as

ds2R1,1×H2 = −dt2 +
L2

x2

(
dx2 + dy2

)
+ dz2. (7.43)

Again L ∝ −1/k characterizes the curvature. The nontrivial Christoffel symbols are

Γx
xx = Γ y

xy = −1/x Γx
yy = 1/x, (7.44)

and the Ricci scalar is −2/L2. We decompose the Killing equation as:

Diagonal Homogeneous Inhomogeneous

(1) ∂tξt = 0 (i) ∂tξx + ∂xξt = 0 (I) ∂xξy + ∂yξx + 2ξy/x = 0

(2) ∂xξx + ξx/x = 0 (ii) ∂tξy + ∂yξt = 0

(3) ∂yξy − ξx/x = 0 (iii) ∂xξz + ∂zξx = 0

(4) ∂zξz = 0 (iv) ∂yξz + ∂zξy = 0

(v) ∂tξz + ∂zξt = 0

Again we see that equation (2) is an ODE that admits the solution ξx = fx(t, y, z)/x for a yet
unspecified function fx. Take the y-derivative of equation (I) to derive, via equation (3), that

0 = ∂2yξx + (∂x + 2/x)∂yξy = ∂2yξx + (∂x + 2/x)ξx/x =
∂2yfx

x
+���

���
�:0

(∂x + 2/x)
fx
x2

=
∂2yfx

x
. (7.45)

Hence we see that fx is at most first-order in y. We can make the ansatz fx(t, y, z) = 2a(t, z)y+
b(t, z) and plugging this into equation (3) yields

∂yξy −
fx
x2

= 0 → ξy = fy(t, x, z) +
1

x2

∫
fx dy = fy(t, x, z) +

ay2 + by + c

x2
. (7.46)

Equation (I) now tells us that

�
��

�
��
�

− 2

x3

∫
fx dy +

∂yfx
x

+
2fy
x

+
��

�
��
�2

x3

∫
fx dy = 0, (7.47)

hence fy = −∂yfx
2 = −a and have completely specified the dependence of ξx and ξy on x and y:

ξx =
2a(t, z)y + b(t, z)

x
, (7.48)

ξy =
a(t, z)y2 + b(t, z)y + c(t, z)

x2
− a(t, z). (7.49)

(7.50)
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7. THE CONFORMAL ALGEBRA OF THE THURSTON GEOMETRIES 34

Next, let’s focus on the t and z coordinates of the flat factor R1,1. The diagonal equations
(1) and (4) tell us immediately that

ξt = ft(x, y, z), ξz = fz(t, x, y). (7.51)

Equation (iiiv) relating these two components can be written as

∂zft(x, y, z) = −∂tfz(t, x, y). (7.52)

Now note that the left-hand side of this equation does not depend on t, while the right-hand
side is independent of z. As a result, both sides must depend only on x and y so that

ft(x, y, z) = f
(1)
t (x, y) + f

(2)
t (x, y)z (7.53)

fz(t, x, y) = f (1)z (x, y) + f (2)z (x, y)t. (7.54)

By equation (7.52) it follows that f
(2)
t = −f (2)z so that

ξt = f(x, y) + h(x, y)z, (7.55)

ξz = g(x, y)− h(x, y)t. (7.56)

(7.57)

What remains is to see what happens when we plug these into equations (i) through (iv).
Consider equation (i) and (ii) simultaneously,

∂xf(x, y) + ∂xh(x, y)z = −2ȧ(t, z)y + ḃ(t, z)

x
, (7.58)

∂yf(x, y) + ∂yh(x, y)z = − ȧ(t, z)y2 + ḃ(t, z)y + ċ(t, z)

x2
− ȧ(t, z). (7.59)

Since the right-hand side of equation (7.58) is O(x−1), the left hand side of this equation must
be too, which tells us that ft and h can be written as

ξt = f1(y) + f2(y) log(x) + z(h1(y) + h2(y) log(x)). (7.60)

However, the right-hand side of equation (7.59) is O(x−2). The only way to make this work with
(7.60) is to require f1, f2, h1 and h2 to be constant with respect to y and a, b and c constant
with respect to t. But then the right-hand side of (7.58) vanishes entirely, so that f2 = h2 = 0.
The argument is exactly the same when considering equations (iii) and (iv), so that we may
write, for six constants a, b, c, f , g, h, that

ξt = f + hz, ξz = g − ht, (7.61)

ξx =
2ay + b

x
, ξy =

ay2 + by + c

x2
− a.

The associated generators are, in the same order asa, b, c, f , g, h,

F = (x2 − y2)∂x + 2xy∂y, D = x∂x + y∂y,

Py = ∂y, Pt = ∂t, Pz = ∂z, Ltz = z∂t − t∂z.

As before, the P -generators generate translations, Ltz generates rotations in the (t, z)-plane, D
generates spatial dilations and F is a generator of so-called spherical inversions. The commuta-
tion relations between the set {F,D, Py} and the set {Pt, Pz, Ltz} are trivial so that the algebra
factors as isom(R1,1)× isom(H2).
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35 7. THE CONFORMAL ALGEBRA OF THE THURSTON GEOMETRIES

The relations among {F,D, Py} can be summarized as

[D,Py] = −Py [D,F ] = −F [Py, F ] = 2D. (7.62)

It is easy to verify that under the identification D/2 7→ H, Py 7→ X, F 7→ −Y , we obtain
the standard sl2 triplet [H,X] = 2X, [H,Y ] = 2Y , [X,Y ] = H. Hence {F,D, Py} form the
Lie algebra sl(2,R), whereas {Pt, Pz, Ltz} simply form the two-dimensional Poincaré algebra
R2 o so(1).

Moving on to the conformal isometries, we decompose the conformal Killing equations in a
similar fashion.

Diagonal Homogeneous Inhomogeneous

(1) ∂2t θ + ω = 0 (i) ∂t∂xθ = 0 (I) ∂x∂yθ +
2∂yθ

x
= 0

(2) ∂2xθ +
∂xθ

x
−L

2

x2
ω = 0 (ii) ∂t∂yθ = 0

(3) ∂2yθ −
∂xθ

x
−L

2

x2
ω = 0 (iii) ∂t∂zθ = 0

(4) ∂2zθ − ω = 0 (iv) ∂y∂zθ = 0

(v) ∂t∂zθ = 0 (Aux)∇2θ = 4ω

The homogeneous equations tell us that we may decompose θ as

θ(t, x, y, z) = A(t) +B(x, y) + C(z). (7.63)

(I) then reads
∂x(∂yB(x, y)) = −(∂yB(x, y))/x, (7.64)

so that B(x, y) = B(y)/x+D(y) and

θ(t, x, y, z) = A(t) +B(y)/x+ C(z) +D(y). (7.65)

(1) and (4) give us a direct expression for A and B as

A(t) = −ωt
2

2
+At C(z) =

ωz2

2
+ Cz. (7.66)

Plug this into the auxiliary Poisson equation to find that

4ω = ∇2θ = ∂2θ = ω + ω − x2

L2

(B′′(y)

x
+D′′(y) + 2

B(y)

x3

)
. (7.67)

Hence ω = 0 and we will not find any proper, conformal Killings vectors. We write simply

Conf(R1,1 ×H2) = R2 o SO(1)× PSL(2,R)

conf(R1,1 ×H2) = R2 o so(1)× sl(2,R) =
〈
Pt, Pz, Ltz, Py, D, F

〉
.

(7.68)

7.6 Hyperbolic Geometry R× ˜SL(2,R)

The ˜SL(2,R) Thurston geometry is a bit of a strange beast at first, as there is no easy matrix
representation of the space. However, it can be understood in terms of hyperbolic geometry as
follows. Any A ∈ SL(2,R) can be decomposed by the Iwasawa decomposition, sometimes also
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referred to as the KAN decomposition. [17] We may find k > 0, n ∈ R and θ ∈ [0, 2π) so that
we can write A as the following product of three matrices:

A =

(
a b

c d

)
=

(
k 0

0 1/k

)(
1 n

0 1

)(
cos θ − sin θ

sin θ cos θ

)
(7.69)

=

(
k(cos θ + n sin θ) k(n cos θ − sin θ)

sin θ
k

cos θ
k

)
.

The group of orientation-preserving isometries of H2 is PSL(2,R) and can be identified with the
unit tangent bundle of H2, UTH2. This tangent bundle inherits a metric from H2, which we

may pull back onto PSL(2,R). ˜SL(2,R) then inherits its metric from SL(2,R), which in turn
inherits its metric from PSL(2,R). We will go through this procedure explicitly.

Present the hyperbolic plane H2 as the set {x+ iy ∈ C|x > 0} equipped with the metric

ds2 =
1

y2

(
dx2 + dy2

)
=

dzdz

im(z)2
. (7.70)

The tangent bundle TH2 is now the set {(z,~v)|z ∈ H2, ~v ∈ R2} endowed with the metric

ds2 =
1

y2

(
dx2 + dy2 + dv2x + dv2y

)
. (7.71)

Now restrict ~v to lie on the unit circle with respect to this metric, i.e. (v2x + v2y)/y
2 = 1 so

that ~v has ‘coordinate radius’ y, but is nonetheless of unit length. This gives us the Unit
Tangent Bundle UTH2 = {(z,~v) ∈TH2| ‖~v‖ = 1}. We may represent any point (z,~v) ∈UTH2

as (z, im(z)eiφ), with z ∈ H2 and φ ∈ [0, 2π). In these coordinates, the metric on UTH2 is
simply

ds2 =
1

y2

(
dx2 + dy2

)
+ dφ2. (7.72)

A matrix A ∈ PSL(2,R) acts on H2 by way of a rational linear transformation,

A · z =

(
a b

c d

)
· z =

az + b

cz + d
, (7.73)

where ad − bc = 1. We now consider the tangent map A′(z) acting on TzH
2 for some point

z ∈ H2 by taking the derivative of (7.73).

A′(z) =
a

cz + d
− azc+ bc

(cz + d)2
=
acz + ad− azc− bc

(cz + d)2
=

ad− bc
(cz + d)2

=
1

(cz + d)2
. (7.74)

Using the Iwasawa decomposition from (7.69) we obtain the following expressions,

A · z = k2
(cos θ(n+ z) + sin θ(nz − 1)

cos θ + z sin θ

)
, (7.75)

A′(z) =
k2

(cos2 θ + z sin2 θ)2
(7.76)

Notice that these expressions are unchanged if we send θ → θ + π, hence θ ∈ [0, π) and A is
truly an element of PSL(2,R) rather than of SL(2,R).
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We now consider the action of the pair (A,A′(z)) acting on the element (i, 1) ∈UTH2,

(A,A′(z)) · (i, e−iφ) = k2
(cos θ(n+ i) + sin θ(ni− 1)

cos θ + i sin θ
,

1

(cos2 θ + i sin2 θ)2

)
(7.77)

= k2
(
���

���
�cos θ + i sin θ

cos θ + i sin θ
(n+ i),

1

e2iθ

)
(7.78)

= k2
(
n+ i, e−2iθ

)
. (7.79)

This allows us to map PSL(2,R) bijectively to UTH2 by identifying

x = k2n, y = k2, φ = 2θ, (7.80)

k =
√
y, n = x/y, θ = φ/2. (7.81)

This directly induces the following metric on PSL(2,R),

ds2 =
1

y2

(
dx2 + dy2

)
+ dφ2 ↔ ds2 = dn2 +

4n

k
dkdn+

4(n2 + 1)

k2
dk2 + 4dθ2. (7.82)

This metric can then be lifted to SL(2,R) and from there on to the universal cover ˜SL(2,R).
Since SL(2,R) can be viewed as the double cover of a circle bundle over H2, taking the universal

will unwrap this circle to a line. So we may think of ˜SL(2,R) as matrices in the Iwasawa
decomposition (7.69) that are not invariant under the transformation θ → θ + 2π. Since θ
appears only in periodic functions it is easy to see why the universal cover does not admit an
easy matrix group representation.

The upshot of this is that we may promote the coordinate θ ∈ [0, 2π) to a coordinate z ∈ R
and write the metric for ˜SL(2,R) as

ds2 =
1

y2

(
dx2 + dy2

)
+ dz2. (7.83)

This is exactly the form of the metric for the Σ = H2 × R Thurston Geometry and we can
simply borrow the algebra results from the previous section. However, the Lie group formed by
the spatial transformations will differ. For H2 ×R we will find PSL(2,R), whereas in this case

the global transformations form the group ˜SL(2,R) itself.

Conf(R× ˜SL(2,R)) = R2 o SO(1)× ˜SL(2,R)

conf(R× ˜SL(2,R)) = R2 o so(1)× ˜sl(2,R) =
〈
Pt, Pz, Ltz, Py, D, F

〉
.

(7.84)

7.7 The Nil-Geometry

We may think of the Nil geometry as R1,3 equipped with the metric

ds2 = −dt2 + dx2 + dy2(1 +
x2

L2
)− 2x

L
dydz + dz2. (7.85)

It admits quite a zoo of Levi-Civita connection symbols, namely

Γx
yy =− x/L2, Γ y

xy = Γ y
yx = x/2L2, Γ z

xz = Γ z
zx = −x/2L2, (7.86)

Γx
yz = Γx

zy =1/2L, Γ z
xy = Γ z

yx =
x2 − L2

2L3
, Γ y

xz = Γ y
zx = −1/2L.

From here we see that solving the Killing equation of this metric is a difficult task. As we
have not managed to accomplish this yet, we will instead present only the calculation for the
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longitudinal conformal Killing vectors. As in the previous cases, we will see that the Nil-
geometry picks up little additional conformal symmetry.

Diagonal Homogeneous Inhomogeneous

(1) ∂2t θ + ω = 0 (i) ∂t∂xθ = 0 (I) ∇x∇yθ = 0

(2) ∂2xθ − ω = 0 (ii) ∂t∂yθ = 0 (II) ∇y∇zθ +
xω

L
= 0

(3) ∂2yθ +
x∂xθ

L2
−
(

1 + x2

L2

)
ω = 0 (iii) ∂t∂zθ = 0 (III) ∇z∇xθ = 0

(4) ∂2zθ − ω = 0 (Aux) ∇2θ = 4ω

As before, we can write θ as
θ = A(t) +B(x, y, z) (7.87)

The diagonal equations (1), (2) and (4) now tell us subsequently that

A(t) = At− ωt2

2
, (7.88)

∂2xB = ω → B(x, y, z) = C1(y, z) + C2(y, z)x+
ωx2

2
(7.89)

∂2zB = ω → B(x, y, z) = D1(x, y) +D1(x, y)z +
ωz2

2
. (7.90)

This allows us to refine our ansatz for θ as

θ = A(t) +B(y) + C(y)x+D(y)z + E(y)xz +
ω

2
(x2 + z2 − t2). (7.91)

Consider now the auxiliary Poisson equation, which can be expanded as

4ω = ∇2θ = −∂2t θ + ∂2xθ + ∂2yθ +
(

1 +
x2

L2

)
∂2zθ +

2x∂y∂zθ

L
(7.92)

= 2ω +
(
B′′(y) + C ′′(y)x+D′′(y)z + E′′(y)xz

)
+ ω

(
1 +

x2

L2

)
+

2x

L

(
D′(y) + E′(y)x

)
=
(

3ω +B′′(y)
)

+ x
(
C ′′(y) +

2D′(y)

L

)
+ z
(
D′′(y)

)
+ xz

(
E′′(y)

)
+
x2

L

(ω
L

+ 2E′(y)
)
.

To satisfy this we must require

B(y) = By +
ωy2

2
D(y) = Dy C(y) = Cy − Dy2

L
E(y) = −ωy

2L
, (7.93)

so that we may rewrite θ as

θ = At+By + Cxy − Dxy2

L
+Dyz − ωxyz

2L
+

1

2
ω
(
−t2 + x2 + y2 + z2

)
. (7.94)

From here, consider equation (3), which says that

0 = −2Dx

L
+�ω +

x

L2

(
Cy − Dy2

L
− ω yz

2L
+HHωx

)
−
(
�1 +
A
A
A

x2

L2

)
ω (7.95)

=
x

L

(
− 2D +

Cy

L
− Dy2

L2
− ω yz

2L2

)
. (7.96)

Since every term in this equation contains a different power of the coordinates, it is clear that
C = D = ω = 0. Plugging what remains into equation (I) yields

0 = ∂x∂yθ −
x

2L2
∂yθ −

x2 − L2

2L3
∂θ =

xB

2L2
. (7.97)

As a result, only time translations Pt remain. Hence, regardless of what the isometry group of
the Nil geometry is, it will only pick up one extra generator in a conformal context.
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7.8 The Solv-Geometry

We will treat the Solv Geometry similar to the Nil geometry in that we will only study the
longitudinal conformal isometries. Like the Nil geometry, we may think of Solv geometry as
R1,3 equipped with a non-flat metric

ds2 = −dt2 + dx2 + dy2e2x/L + dz2e−2x/L. (7.98)

The following components of its connection tensors are nonzero,

Γx
yy = −e2x/L/L, Γx

zz = e−2x/L/L, Γ y
xy = Γ y

yx = 1/L, Γ z
xz = Γ z

zx = −1/L. (7.99)

We may write the conformal Killing equation as

Diagonal Homogeneous Inhomogeneous

(1) ∂2t θ +ω = 0 (i) ∂t∂xθ = 0 (I) ∂x∂yθ −
∂yθ

L
= 0

(2) ∂2xθ −ω = 0 (ii) ∂t∂yθ = 0 (II) ∂x∂zθ +
∂zθ

L
= 0

(3) ∂2yθ + e2x/L
∂xθ

L
−e2x/Lω = 0 (iii) ∂t∂zθ = 0

(4) ∂2zθ − e−2x/L
∂xθ

L
−e−2x/Lω = 0 (iv) ∂y∂zθ = 0 (Aux) ∇2θ = 4ω

We can immediately decompose θ as

θ = A(t) +B(x, y) + C(x, z) (7.100)

and set A(t) = At− ωt2

2 via equation (1). Equation (2) then reads

∂2xB(x, y) + ∂2xC(x, z) = ω (7.101)

so that we can write

θ = At+
(
B0(y) + C0(z)

)
+ x
(
B1(y) + C1(z)

)
+
ω

2

(
x2 − t2

)
. (7.102)

Plugging this into equations (I) and (II) gives us, respectively,

B′1(y)− B′0(y) + xB′1(y)

L
= 0, (7.103)

C ′1(z) +
C ′0(z) + xC ′1(z)

L
= 0. (7.104)

Since each of the terms of either equation is multiplied by a different powers of the coordinates,
they must all vanish simultaneously. B0 and C0 can be eliminated from θ entirely as they do not
contribute to the conformal Killing vector ξµ = ∇mθ. Absorb B1 and C1 into a new constant
parameter E so that we may write

θ = At+Dx+
ω

2

(
x2 − t2

)
. (7.105)

Using this expression the Poisson equation reads

4ω∇2θ = ∂2θ = −∂2t θ + ∂2xθ + e−2x/L∂2yθ + e2x/L∂2zθ = 2ω (7.106)

and we see that ω = 0. Equation (3) then yields

Ee2x/L

L
= 0, (7.107)

so that, the time translation Pt is the only conformal isometry Solv picks up.
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8 Conclusion

In conclusion, we propose to extend ’t Hooft’s criterion for technical naturalness to include
space-time isometries and curvature.

Our motivation for this is the observed large-scale homogeneity and isotropy of the universe.
This suggests that we may describe the space-time metric of the universe in terms of a back-
ground metric g with perturbations δg, with a similar decomposition for the action into Sbg and
Spert. In this picture, we identify the isometries of g with the symmetries of Sbg and interpret
the curvature parameter k of the background as a physical parameter in the theory. With this
extension of ’t Hooft’s criterion, we can understand smallness of curvature in our universe as
technically natural if setting k to zero enhances the number of isometries of the background.

If smallness of the curvature is indeed technically natural, we can argue that a small value
for the curvature parameter is protected from quantum fluctuations during inflation.

In ordinary General Relativity, the background has at most six isometries for any expand-
ing, cosmological space-time. In particular, the three classical Friedmann-Lemâıtre-Robertson-
Walker space-times have exactly six isometries regardless of the value of the curvature parameter
k in the metric (1.2). Hence a flat geometry with k = 0 is no more symmetric than any curved
geometry with k 6= 0 and we cannot appeal to technical naturalness.

We showed in section 6.2 that symmetry restoration occurs for the background of cosmolog-
ical space-times in a conformal setting. As a result, the group of isometries of flat space-time is
enhanced from six to the maximal number of 15 conformal isometries. Our calculations show
that curved space-times, however, pick up little extra symmetry due to the Geometric Isolation
conjecture proposed in section 5.5. The results of our calculations are presented below.

Geometry Isometry Group Conformal Generators CKVs added Total No.

R1,3 R3 o SO(3) Pη, D, Lij , Kµ +9 15

R× S3 SO(4) Pη +1 7

R×H3 PSL(2,C) Pη +1 7

R1,1 × S2 R× SO(3) Pη, Lηz +2 6

R1,1 ×H2 R× PSL(2,R) Pη, Lηz +2 6

R× ˜SL(2,R) R× ˜SL(2,R) Pη, Lηz +2 6

Nil Pη +1 ≤ 7

Solv Pη +1 ≤ 7

Table 2: A summary of results from section 7, detailing the conformal Killing vectors (CKVs)
picked up by various Thurston geometries in Conformal Gravity. The isometry groups of Nil
and Solv are not presented as we have not derived them; instead we present an upper bound.
As these two manifolds are the least symmetric of the group, it is unlikely they will reach this
upper limit.

From this table we see that the flat geometry R1,3 has more than twice as many conformal
generators as any other geometry. In our conformal enhancement of General Relativity, there-
fore, setting k to zero puts us at a point of exceedingly enhanced symmetry. So we conclude
that, in conformal gravity, a universe with small curvature is indeed technically natural.

The ’t Hooft criterion, unfortunately, does not tell us anything about which of the Thurston
geometries is realised. At best, we can infer a slight preference for the first three geometries on
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Table 2 by their higher degree of symmetry.

There are some limitations to and imprecisions in our approach that future effort may seek
to iron out.

First of all, in section 5.1 we have tacitly assumed that any that any conformal isometry of
a pseudo-Riemannian manifold M will extend to a conformal isometry of Rp,q upon embedding
ϑ : M ↪→ Rp,q isometrically. This is by no means a trivial statement and it should be checked
that this holds.

Secondly the Geometric Isolation conjecture in 5.3 is just that, a conjecture with evidence
presented in support of it, but without definite proof. To check its general validity, one could
embed ϑ : M ↪→ Rp,q and then pullback the action of a special conformal transformation on
Rp,q to M . Express the requirement that it should be a conformal isometry in local coordinates
and see what sort of constraints this puts on the form of the embedding map ϑ. Since this
requirement boils down to solving a PDE, this should in principle be possible.

Thirdly, as outlined in section 6.1, Thurston’s Geometrization conjecture is not a full classifi-
cation of all possible 3-manifolds, but of the maximal geometries that admit a compact quotient
and the closed and oriented manifolds that follow from them. Maximality of these geometries
implies that there is no other 3-manifold containing them with a bigger isometry group, hence
there will be no other manifold with a compact quotient that is more symmetric than the eight
Thurston Geometries. Nonetheless, it is conceivable that there are manifolds Σ without such
a compact quotient so that the cosmological space-time R × Σ has a number of independent
conformal Killing vectors closer to the 15 we get for flat space-time.

The conformal group of a manifold forms a Lie group, for which we also have classification
schemes. It may be possible to approach this problem via Lie theory rather than directly from
geometry, as we have done. It would suffice to find an upper limit on the number of independent
conformal Killing vectors for a non-flat geometry.

Lastly, since we have been able to eliminate the scale factor a entirely, one may argue
that there is no particular need to decompose M as R × Σ anymore. As such, we should also
consider indecomposable 4-manifolds. Ideally, in fact, we would wish to obtain a classification
of 4-manifolds similar to Thurston’s work for 3-manifolds. However, such a classification is still
an open problem in mathematics today.

However, there are specific indecomposable space-times of interest that future work can in-
vestigate, most notably de Sitter space, Anti-de Sitter space and Black Hole space-times such
as the Schwarzschild solution.

Similarly, there are ample open questions concerning cosmologies based on conformal gravity.

An interesting question is how inflation relates to conformal symmetry. On large scales,
inflationary fluctuations are almost conformal and a spectral tilt ns different from 1 measures
deviation from scale invariance. We can therefore investigate at what energy scales conformal
symmetry is broken and if this can be made to coincide with the start of the inflationary epoch?
If conformal symmetry persists until some finite time tc, how does the evolution of the universe
change for times t < tc? Can this still be made consistent with today’s observations and, if so,
does it provide a good fit to the data?

There is also plenty more work to be done on Conformal Gravity as a field theory itself.

The obvious first question to ask is whether or not conformal symmetry gets carried over
from the classical regime to the quantum regime. Whether or not this happens may have
consequences for any model of inflation as perturbations to primordial spectra are (partially)
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generated by quantum fluctuations during inflation. Additionally, we may hope that any con-
formal symmetry that survives quantization helps to renormalize the theory. It may grant us
some insight into the conditions of the early universe and into what a UV-completion of gravity
may look like.

Furthermore, it is well-known that string theory contains classical General Relativity. Given
that conformal symmetry is an important component of string theory, we may hope to investi-
gate a similar connection to conformal gravity where conformal symmetry is inherited directly
from string theory. Such a description could help us learn more about the nature of conformal
gravity, especially in studying the quantum regime.
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