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Abstract

Automated program analyses are useful tools for verification and optimization, naming
only two important use cases. In this thesis, we focus on type-based analyses for func-
tional programming languages tracking certain forms of program dependencies. Some
uncover dependencies of outputs on inputs, such as binding-time or information flow
security analysis. Others find which parts of a program contribute to its final result, for
example call-tracking or slicing analysis.

It has been found by Abadi et al. that all these analyses (and more) share a common
structure in their respective type and effect systems. Their dependency core calculus
(DCC) formalizes these commonalities and serves as a framework for dependency anal-
yses. An appealing consequence of this unification is the fact that certain results about
the analyses in question only need to be proven once.

One such result is the noninterference theorem. It states that, for example in the
context of binding-time analysis, expressions deemed evaluable at compile-time cannot
access dynamic values. It is therefore an important safety guarantee for subsequently
using the analysis results.

However, the dependency core calculus is a monovariant system which limits its pre-
cision. A relatively recent technique for improving the quality of results of type based
analyses is higher-ranked polyvariance. It has been successfully applied to flow analysis
by Holdermans and Hage and later to exception analysis by Koot.

In this thesis, we devise a type and effect system based on DCC, but equipped with
higher-ranked polyvariance. On top of that, we prove a noninterference theorem with
respect to a call-by-name operational semantics. Moreover, we adapt the type recon-
struction algorithm by Koot to our dependency analysis and prove that it always yields
correct results.
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1. Introduction

Many type-based analyses for functional programming languages are tracking some form
of program dependencies. Some examples are binding-time analysis, secure information
flow analysis and slicing analysis. All these analyses share some commonalities that have
been formalized in the dependency core calculus by Abadi et al. [1].

First of all, we explain the kind of type based analyses being in the focus of this thesis.
The subsequent section provides a brief description of the dependency core calculus. This
chapter is concluded by outlining the contributions made by this thesis.

1.1. Type-Based Analyses
We start by giving an account of common features of type systems for functional lan-
guages. Type-based analyses are extensions of such type systems that keep track of
additional information about the program in question.

1.1.1. Type Systems
Type systems are used to statically check that a program only executes well-defined
actions at runtime. The basis for most type systems of functional programming languages
is the Hindley-Milner type system used in ML. Milner proved for the polymorphic ML
type system that “Well-typed expressions do not go wrong” [18]. This means that the
execution of well-typed programs according to the semantics does not get stuck due to
undefined behavior (e.g. trying to use an integer where a function is needed).

This section provides a broad overview over the topics related to the Hindley-Milner
type discipline that are relevant for the subject of the thesis.

Algorithm W A popular type inference algorithm for the Hindley-Milner type system is
the so called Algorithm W, described by Milner [18] extending prior work by Hindley [7].
It has the important property that it always infers the so called principal type of an
expression, i.e. the most general type that can be instantiated to any more specific type
that could be assigned to that expression.

Higher-ranked Polymorphism The original Hindley-Milner type system only allows
let-polymorphism. Quantification of type variables is only possible for let-bound values,
while arguments to lambda expressions are restricted to monomorphic types.

Kfoury and Tiuryn [13] gave an account of type reconstruction in higher-ranked
lambda calculi. They show that reconstruction for rank 2 types is polynomial-time
equivalent to the ML type system and that reconstruction for rank k > 2 is undecidable.
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Polymorphic recursion The original ML type system only allows monomorphic recur-
sion, where recursive functions could only be used polymorphically in subsequent defini-
tions. Mycroft found real-world examples where monomorphic recursion prevents typing
of an otherwise valid function definition and therefore proposed an extension to the ML
type system consisting of a polymorphic rule for the fixpoint combinator [19]. This al-
lows to derive types where multiple recursive call sites can use different instantiations of
the polymorphically typed recursive function.

For computing the type of polymorphically recursive functions, Mycroft devised an
algorithm based on fixpoint iteration on the complete partial order of type schemes with
an artificial top element denoting failure.

It has later been shown by Henglein in “Type inference with polymorphic recursion” [6]
that type inference in the presence of polymorphic recursion is undecidable by reducing
the problem to semi-unification. The latter has been proved undecidable by Kfoury,
Tiuryn, and Urzyczyn [14].

1.1.2. Type and Effect Systems
A type and effect system usually consists of an underlying type system, enriched by
adding annotations and effects to types. Those capture additional properties of the
expressions, resulting in a better approximation of the dynamic semantics than conven-
tional types alone.

Sometimes, an analysis can lose precision due to restrictions in the type system. This
happens because the annotations and effects of the formal parameters of functions must
match the actual arguments. Wansbrough and Jones identified this problem as the
poisoning problem, because one call to a function poisons the other use sites [25].

The remainder of this section consists of techniques that are used for alleviating the
poisoning problem. A general overview over type and effect systems is given by Nielson
and Nielson in their 1999 paper “Type and Effect Systems” [20].

Subeffecting, subtyping and polyvariance Subeffecting describes the “enlarging” of
effects on the outermost position, thereby making the analysis more imprecise. However,
subeffecting is usually necessary to match the types of different branches of the program
(e.g. in conditionals). The enlarging of effects happens early, so that all demands by the
type and effect system are met when they occur later on in nested positions [20].

Subtyping introduces a subsumption relation between types, allowing to “adapt” types
to a certain degree at use-sites [20]. While subeffecting only considers the topmost effect
on a type, subtyping extends to nested positions (i.e. function arguments/return types)
as well. This makes it possible to delay the widening, therefore losing less precision than
subeffecting.

Polyvariance denotes polymorphism over the annotations in a type and effect system.
It allows for a greater precision by having different instantiations of annotations at each
use-site of bindings [20].
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Higher-ranked Polyvariance Analogously to rank-1 polymorphism, rank-1 polyvari-
ance only allows universal quantification of annotation and effect variables at the top-
most level of a function type. On the contrary, higher-ranked polyvariance allows quan-
tification to occur anywhere in a type and is another measure for increasing the precision
of a type based analysis.

While rank-1 polyvariance is prevalent in a lot of type and effect systems throughout
the available literature, there is only a small number that is using higher-ranked poly-
variance. Two examples with slightly different approaches are “Polyvariant flow analysis
with higher-ranked polymorphic types and higher-order effect operators” by Holdermans
and Hage [10] and “Higher-ranked Exception Types” by Koot [15].

Although, as outlined earlier, type inference in general is undecidable for higher-ranked
polymorphism of rank three or higher, Holdermans and Hage note that the inference of
polyvariant annotations remains decidable even in a higher-ranked setting. Essentially,
this is because the underlying types are known and the places where annotations and
quantifications are added are uniquely determined by the underlying type.

1.2. Dependency Core Calculus
The term dependency analysis is used by Abadi et al. to describe a certain type of
program analysis that computes dependencies between program values of some sort.
They devised a formal framework capturing the commonalities of these analyses, called
the Dependency Core Calculus (DCC) [1]. Notably, DCC is a monovariant type and
effect system with subtyping.

Annotations form a lattice and the type system distinguishes annotated values from
unannotated values through monadic type constructors, one for each value of the lattice.
The monadic structure is also reflected at the term level through the usual bind and
return operations. It is noteworthy that the typing rule of the bind operation allows to
return an annotation greater than or equal to the one that has been passed in.

Besides the annotation monads, there is also a special monadic type for creating
pointed types (see [11]), designating expressions that might not terminate.

By choosing an appropriate lattice, DCC can be adapted to a variety of analyses, such
as binding-time analysis, security analysis and slicing analysis.

Binding-time analysis is used in partial evaluation to find expressions that can be eval-
uated at compile time, as opposed to those that can only be computed at runtime because
they depend on dynamic values such as user input. Zhang compared the precision and
resource usage of several variants of a type-based binding-time analysis with respect
to polyvariance, subeffecting and subtyping in his 2008 Master’s thesis “Binding-Time
Analysis: Subtyping versus Subeffecting” [26].

Security analysis classifies values in “high-security” and “low-security” (or more inter-
mediate classes), making sure that computations that lead to low-security values cannot
depend on high-security values. An example for a type and effect system performing
this kind of analysis is the SLam calculus by Heintze and Riecke [5].

Slicing analysis computes the set of program parts that are actually used in producing

9



the result [23]. As an example, consider the expression (λx. fst x + 1) (e1, e2). Only the
expression e1 and the lambda function contribute to the result of the program, whereas
e2 is not used.

All theses analyses have in common that they compute some form of dependency
between outputs and inputs of a computation. Furthermore, they all share the property
that values with lower classification cannot depend on values with higher classification.
For example, a value with static binding-time cannot depend on a dynamic one, a low-
security value cannot depend on a high-security one, and a computation deemed to only
use a certain set of program parts cannot use values whose computation depends on
other parts. This is often called the noninterference property in literature [16].

1.3. Contributions
First of all, we devise a type and effect system akin to DCC, but utilizing higher-
ranked polyvariance with the goal of improving the precision of the analysis. Similar to
DCC, it works with an arbitrary lattice abstracting over concrete analyses. This is a
generalization of the exception analysis by Koot.

Secondly, we prove a noninterference theorem for our system with respect to a call-
by-name operational semantics.

Additionally, we present a type reconstruction algorithm based on Koot’s exception
analysis. In the process, a prototype implementation of the type reconstruction has also
been developed. In doing so, we uncovered and fixed a flaw in the handling of polymor-
phic recursion in the previous work that caused the type reconstruction to diverge on
certain inputs.

Besides the algorithm itself, we provide soundness and completeness proofs ensuring
its correctness with respect to the type and effect system. In particular, the fixpoint
iteration used for inferring types and effects in the presence of polymorphic recursion
always terminates. Additionally, we give a partial proof that the type reconstruction
always yields the best analysis, under some restrictions.

1.4. Structure
Chapter 2 starts by defining the source language, i.e. the language of the programs that
can be fed into the analysis. We proceed by presenting the λt-calculus, a simply typed
lambda calculus enriched with a lattice structure that is used for representing effects in
our analysis. It is based on the λ∪-calculus by Koot which in turn is modeled after the
effect operators used by Holdermans and Hage.

Then, the target language is presented. It makes effects and annotations explicitly
visible on the term level. This language is used for defining the type and effect system
for higher-ranked dependency analyses. By means of several examples we show how the
system can be instantiated to concrete analyses. The chapter concludes with a call-by-
name operational semantics for the target language and the noninterference theorem.
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The goal of chapter 3 is to introduce the type reconstruction algorithm and to provide
its correctness proofs. But first, various definitions are introduced. It starts by outlining
the canonicalization procedure that has been used by Koot for deciding term equality.
We note that even though that approach turned out to be incomplete, equality of λt-
terms is decidable for finite lattices. After that, the notions of conservative and pattern
types are introduced, as they are essential for the modularity of the analysis. Only then,
the type reconstruction algorithm and various auxiliary procedures are introduced. At
this point, a more in-depth explanation follows as to why the previous approaches were
not fully correct. We also present some ideas for improving the decision procedure for
λt-term equality. The last section of this chapter is devoted to the correctness proofs.

Next, chapter 4 briefly introduces the prototype implementation of the analysis that
has been developed alongside this thesis.

In chapter 5, the empirical results of the analysis are scrutinized. In particular, we
identify some programs that benefit from a higher-ranked analysis, i.e. where non-higher-
ranked analyses cannot provide the same precision.

Lastly, we present related work in chapter 6, in particular a different system for re-
source analysis that achieves similar precision to what could be expected from higher-
ranked polyvariance. Then, we finish with a conclusion and several starting points for
future work in chapter 7.

Appendix A holds the particularly lengthy proofs of some lemmas and theorems.
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2. Declarative Type System

In this chapter we will lay the foundation for our dependency analysis with higher-ranked
polyvariance. Similar to the dependency core calculus by Abadi et al., our analysis will
be parameterized over the actual dependencies being traced. These dependencies are
represented by values from some bounded, finite join-semilattice L, defined as follows.

Definition 2.1. A join-semilattice L is an algebraic structure 〈L,t〉 consisting of an
underlying set L and an associative, commutative and idempotent binary operation t,
called join. Often, we also let L denote the underlying set.

The binary operation of a join-semilattice induces a binary relation on L given by

x v y ⇐⇒ x t y = y, for any x, y ∈ L.

The join x t y of two elements is the least upper bound of x and y w.r.t. v.
A join-semilattice L is bounded if there exists a least element ⊥ (called bottom) such

that for all x ∈ L we have x t ⊥ = x.
A join-semilattice L is finite if the underlying set is finite.

Although the constructions in this chapter do not depend on the lattice to be finite,
this condition is needed for the completeness of the algorithm presented in the next
chapter.

The definitions in this chapter therefore assume that there is such a lattice, but they
are entirely independent of the concrete lattice being chosen. Usually, we will use the
letter ` to denote an element of the lattice L. Because the lattice L determines the kind
of dependencies traced by the analysis, we will also call it the dependency lattice.

We start by defining a source language of programs to be analyzed. This includes
a description of the underlying type system relating the terms and types of the source
language.

The next step is the definition of a simply-typed lambda calculus extended with a
lattice structure that will be used for representing dependency annotations and effects
in the type and effect system.

Then, we build a target language that makes the dependency annotations explicit on
both the type and the term level. Subsequently, we can define the declarative type and
effect system for our dependency analysis. It will relate annotated terms to annotated
types and form the basis for the syntax-driven analysis defined in the next chapter.

We will also present a few examples of how our system can perform various analyses
by defining a translation into the source language and choosing the lattice L accordingly.

The chapter concludes with a small-step semantics for the target language and the
noninterference theorem built thereupon.
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Types:

τ ∈ Ty ::= unit (unit type)
| τ1 + τ2 (sum type)
| τ1 × τ2 (product type)
| τ1 → τ2 (function type)

Terms:

x ∈ Var (term variables)

` ∈ L (underlying lattice)

t ∈ Tm ::= x (variable)
| () (unit constructor)
| λx : τ.t (abstraction)
| t1 t2 (application)
| (t1, t2) (pair constructor)
| proji(t) (pair projections)
| inlτ2(t) | inrτ1(t) (sum constructors)
| case t of { inl(x)→ t1; inr(y)→ t2} (sum eliminator)
| µx : τ.t (fixpoint)
| seq t1 t2 (forcing)
| ann`(t) (raise annotation level)

Figure 2.1.: Source language: syntax

2.1. Source Language
The source language is largely based on the language of the dependency core calculus
by Abadi et al. [1]. It is an explicitly typed call-by-name lambda calculus extended with
basic data types and general recursion.

2.1.1. Syntax
Figure 2.1 shows the syntax of the types and terms of our source language. In addition
to function types, it features a unit type as well as sum and product types. We use
the letter τ to refer to underlying types and the letter t to refer to terms of the source
language.

On the term level, products are introduced by the pair constructor (t1, t2) and elimi-
nated through projection proji(t) on one of the components (i ∈ {1, 2}). Similarly, sums
are introduced via injection in one of the alternatives inlτ2(t) or inrτ1(t) and eliminated
through case expressions. Due to the explicit typing, the sum constructors are annotated
with the type of the other alternative, as the argument passed to the constructor only
determines the type of one alternative of the sum type.

13



The language supports general recursion by means of a fixpoint combinator µx : τ.t
that binds x in t to the value that t will eventually evaluate to. Being a call-by-name
calculus, there is also a primitive seq t1 t2 that explicitly forces the evaluation of t1
before returning t2.

The most important addition is the ann`(t) expression. Operationally, it behaves just
like the identity function. However, it is used in the annotated type system described
further below for ensuring that the dependency annotation of the term t is at least as
large as ` ∈ L.

Note that the term language does not provide let-bindings. For now, they are not
required because the underlying type system does not support polymorphism, and hence
bindings of the form let x : τ = t1 in t2 can be written as (λx : τ.t2) t1 when they are
non-recursive, or as (λx : τ.t2) (µx : τ.t1) when they are recursive.

Definition 2.2. We denote the set of free (term) variables in a source term t by ftv(t),
defined as follows:

ftv(x) = {x}
ftv(()) = ∅

ftv(λx : τ.t) = ftv(t) \ {x}
ftv(t1 t2) = ftv(t1) ∪ ftv(t2)

ftv((t1, t2)) = ftv(t1) ∪ ftv(t2)
ftv(proji(t)) = ftv(t)
ftv(inlτ (t)) = ftv(t)
ftv(inrτ (t)) = ftv(t)

ftv(case t of { inl(x)→ t1; inr(y)→ t2}) = ftv(t1) ∪ (ftv(t2) \ {x}) ∪ (ftv(t3) \ {y})
ftv(µx : τ.t) = ftv(t) \ {x}

ftv(seq t1 t2) = ftv(t1) ∪ ftv(t2)
ftv(ann`(t)) = ftv(t)

2.1.2. Underlying Type System
The type system of the source language is shown in figure 2.2. It consists of judgments
of the form Γ `t t : τ , expressing that term t has type τ under the environment Γ.

The following definition gives a formal description of environments and introduces the
notation we use when working with them.

Definition 2.3 (type environment). A type environment or type context Γ is a finite
list of bindings from term variables to types.

1. The empty context is written as [] or ∅, and the context Γ extended with the
binding of the variable x to the type τ is written Γ, x : τ .

2. Let dom(Γ) denote the set of variables in the context, defined by

dom([]) = ∅
dom(Γ, x : τ) = {x} ∪ dom(Γ)
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Γ(x) = τ
[U-Var]Γ ` x : τ

[U-Unit]
Γ ` () : unit

Γ ` t : τ [U-Ann]
Γ ` ann`(t) : τ

Γ ` t1 : τ1 Γ ` t2 : τ2 [U-Pair]
Γ ` (t1, t2) : τ1 × τ2

Γ ` t : τ1 × τ2 [U-Proj]
Γ ` proji(t) : τi

Γ ` t : τ1 [U-Inl]
Γ ` inlτ2(t) : τ1 + τ2

Γ ` t : τ2 [U-Inr]
Γ ` inrτ1(t) : τ1 + τ2

Γ ` t : τ1 + τ2 Γ, x : τ1 ` t1 : τ Γ, y : τ2 ` t2 : τ [U-Case]
Γ ` case t of { inl(x)→ t1; inr(y)→ t2} : τ

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1 [U-App]Γ ` t1 t2 : τ2

Γ, x : τ1 ` t : τ2 [U-Abs]Γ ` λx : τ1.t : τ1 → τ2

Γ, x : τ ` t : τ [U-Fix]Γ ` µx : τ.t : τ
Γ ` t1 : τ1 Γ ` t2 : τ2 [U-Seq]Γ ` seq t1 t2 : τ2

Figure 2.2.: Underlying type system (Γ `t t : τ)

3. A statement Γ(x) = τ shall mean that x ∈ dom(Γ) and the rightmost occurrence
of x binds it to τ . If x ∈ dom(Γ), let Γ(x) denote the type τ such that Γ(x) = τ .

4. Γ \X where X ⊆ Var denotes the context Γ where all bindings of variables in X
have been removed.

5. We define the index idx(x,Γ) of a variable in Γ as the number of bindings we need
to skip in order to reach it.

idx(x,Γ, y : τ) =
{

0 if x = y

1 + idx(x,Γ) if x 6= y

idx(x, []) = ∞

Note that whenever x ∈ dom(Γ), idx(x,Γ) 6=∞.

6. The image of the environment, denoted im(Γ), is the set of types that are bound
by the environment, i.e.

im([]) = ∅
im(Γ, x : τ) = {τ} ∪ im(Γ)

The underlying type system consists of the standard rules, with the notable exception
of [U-Ann] for the annotation construct ann`(t). Such an explicitly annotated term has
simply the same underlying type as the term itself. The annotation ` imposed on t only
becomes relevant in the annotated type system.
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Sorts:

κ ∈ AnnSort ::= ? (base sort)
| κ1 ⇒ κ2 (function sort)

Annotations:

` ∈ L (underlying lattice)

β ∈ AnnVar (annotation variables)

ξ ∈ AnnTm ::= β (variable)
| λβ :: κ.ξ (abstraction)
| ξ1 ξ2 (application)
| ` (lattice value)
| ξ1 t ξ2 (lattice join operation)

Figure 2.3.: λt-calculus: syntax

2.2. λt-calculus
In this section we define a simply-typed lambda-calculus that will later be used for
representing annotations in the type and effect system. It is inspired by Koot’s set based
λ∪-calculus [15]. However, we will generalize it to arbitrary bounded join-semilattices1

as this is what our analysis requires annotations to be. Hence, we dub our variant the
λt-calculus.

2.2.1. Syntax
The syntax of the types and terms of the λt-calculus is shown in figure 2.3. In order to
avoid confusion, from now on we will refer to the types of the λt-calculus exclusively by
sorts. Furthermore, the letter κ denotes sorts, β denotes variables and ξ denotes terms
in the λt-calculus. We will also refer to terms of the λt-calculus as dependency terms.

There are only two sorts, the base sort ? representing values in the underlying lattice
L and the function sort κ1 ⇒ κ2.

On the term level, we allow arbitrary elements of the underlying lattice and a bi-
nary join operator in addition to the usual variables, function applications and lambda
abstractions.

Definition 2.4. Let ξ be a λt-term. We denote the set of free annotation variables

1Actually, the λt-calculus does not require the lattice to be bounded. The dependency analysis in its
current formulation does, however.
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Σ(β) = κ
[S-Var]Σ `s β : κ

` ∈ L [S-Lat]Σ `s ` : ?
Σ `s ξ1 : κ Σ `s ξ2 : κ [S-Join]Σ `s ξ1 t ξ2 : κ

Σ, β : κ1 `s ξ : κ2 [S-Abs]Σ `s λβ :: κ1.ξ : κ1 ⇒ κ2

Σ `s ξ1 : κ1 ⇒ κ2 Σ `s ξ2 : κ1 [S-App]Σ `s ξ1 ξ2 : κ2

Figure 2.4.: λt-calculus: sorting rules (Σ `s ξ : κ)

occurring in ξ by fav(ξ), recursively defined by

fav(β) = {β}
fav(λβ :: κ.ξ) = fav(ξ) \ {β}
fav(ξ1 ξ2) = fav(ξ1) ∪ fav(ξ2)
fav(`) = ∅
fav(ξ1 t ξ2) = = fav(ξ1) ∪ fav(ξ2).

2.2.2. Sorting
Figure 2.4 shows the sorting rules of the λt-calculus. For variables, functions and appli-
cations, these are just the standard rules known from the simply-typed lambda calculus.
Values of the underlying lattice are always of sort ?. The join operator, however, is
defined on arbitrary terms of the same sorts. This will be justified semantically in the
following section.

Analogous to type environments in the underlying type system (see definition 2.3),
the sorting rules use sort environments denoted by the letter Σ. Instead of mapping
term variables to types, they map annotation variables β to sorts κ. We denote the set
of sort environments by SortEnv.

Additionally, the well-sorted judgment provides some insight into the free variables of
dependency terms.

Lemma 2.5. If we have Σ `s ξ : κ, then fav(ξ) ⊆ dom(Σ).

Proof. By induction on Σ `s ξ : κ.

[S-Var] We have ξ = β for some variable β and Σ(β) = κ. Hence, β ∈ dom(Σ) and
fav(ξ) = {β} ⊆ dom(Σ).

[S-Abs] We have ξ = λβ1 :: κ1.ξ
′ and κ = κ1 ⇒ κ2 for some β1, κ1, κ2 and ξ′ such

that Σ, β1 :: κ1 `s ξ
′ : κ2 holds. By induction, fav(ξ′) ⊆ dom(Σ, β1 :: κ1). But then,

fav(ξ) = fav(ξ′) \ {β1} ⊆ dom(Σ).

[S-App] We have ξ = ξ1 ξ2 such that Σ `s ξ1 : κ2 ⇒ κ and Σ `s ξ2 : κ2 hold for
some κ2. By induction, fav(ξ1) ⊆ dom(Σ) and fav(ξ2) ⊆ dom(Σ). Thus, fav(ξ) =
fav(ξ1) ∪ fav(ξ2) ⊆ dom(Σ).

[S-Join] Analogous to the previous case.
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[S-Lat] We have ξ = ` for some ` ∈ L. Hence, fav(ξ) = ∅ ⊆ dom(Σ).

The following lemma allows us to modify unrelated bindings in the sort environment
without harming well-sortedness.

Lemma 2.6. Let ξ be a λt-term of sort κ and let Σ denote a sort environment such
that Σ `s ξ : κ. Then, for all Σ′ such that for all β ∈ fav(ξ) we have Σ(β) = Σ′(β),
Σ′ `s ξ : κ also holds.

Proof. By induction on the derivation tree of Σ `s ξ : κ.

[S-Var] By definition of the rule, ξ = β′ for some variable β′. The premise is Σ(β′) = κ.
By assumption Σ′(β′) = Σ(β′) since β′ ∈ fav(β′). Therefore, Σ′ `s β

′ : κ holds by
[S-Var].

[S-Abs] By definition of the rule, ξ = λβ′ :: κ1.ξ
′ for some β′, κ1 and ξ′ and further

κ = κ1 ⇒ κ2 for some κ2. The premise is Σ, β′ :: κ1 `s ξ
′ : κ2.

By definition, we have fav(ξ) = fav(ξ′)\{β′}. Therefore, (Σ′, β′ :: κ1)(β) = (Σ, β′ ::
κ1)(β) for all β ∈ fav(ξ′). This means we can apply the induction hypothesis in
order to get Σ′, β′ :: κ1 `s ξ

′ : κ2. By [S-Abs], we have Σ `s ξ : κ.

[S-App] By definition of the rule, ξ = ξ1 ξ2. The premises are Σ `s ξ1 : κ′ ⇒ κ and
Σ `s ξ2 : κ′ for some κ′.
Since fav(ξ1 ξ2) = fav(ξ1)∪ fav(ξ2), we have in particular that Σ(β) = Σ′(β) for all
β ∈ fav(ξ1). Hence we can apply the induction hypothesis and get Σ′ `s ξ1 :κ′ ⇒ κ.
Analogously, we can conclude Σ′ `s ξ2 : κ′. Lastly, Σ′ `s ξ1 ξ2 : κ holds by [S-App].

[S-Join] Can be proven analogously to the previous case by propagating the environ-
ments.

[S-Lat] Trivial, because [S-Lat] can be used with any environment.

Lastly, we show that well-sorted substitutions preserve the well-sortedness of depen-
dency terms. A substitution is a map from variables to terms usually denoted by the
letter θ. The application of a substitution θ to a term ξ is written θξ and replaces all
free variables in ξ that are also in the domain of ξ with the corresponding terms they
are mapped to. A concrete substitution replacing the variables β1, . . . , βn with terms
ξ1, . . . , ξn is written [ξ1/β1, . . . , ξn/βn].

Lemma 2.7. Let ξ be a dependency term, let κ be a sort, let Σ, Σ′ be sort environments
such that Σ,Σ′ `s ξ : κ and let θ be a substitution such that Σ `s θ(β) : Σ′(β) for all
β ∈ dom(θ) = dom(Σ′). Then Σ `s θξ : κ.

Proof. By induction on the derivation of Σ `s ξ : κ.
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[S-Var] We have ξ = β and (Σ,Σ′)(β) = κ. If β ∈ dom(θ) = dom(Σ′), we have
Σ `s θξ : Σ′(β) by assumption. If β 6∈ dom(θ) = dom(Σ′), θξ = ξ, and therefore
Σ `s θξ : κ by [S-Var].

[S-Abs] We have ξ = λβ :: κ1.ξ
′, κ = κ1 ⇒ κ2 and the premise is Σ,Σ′, β : κ1 `s ξ

′ : κ2.
We can assume without loss of generality that β is distinct from any variables in
the contexts Σ and Σ′, simply by renaming them. Then, the above statement is
equivalent to Σ, β : κ1,Σ′ `s ξ

′ : κ2 by lemma 2.6 and θ(λβ :: κ1.ξ
′) = λβ :: κ1.θξ

′.
Also by lemma 2.6, Σ, β : κ1 `s θ(β) : Σ′(β) for all β ∈ dom(θ). By induction,
Σ, β : κ1 `s θξ

′ : κ2. Hence, Σ′ `s θξ : κ by [S-Abs].

The remaining cases simply propagate the substitution.

2.2.3. Denotational Semantics
In order to better characterize the functionality of the λt-calculus and to lay the foun-
dations for the meta-theory of our analysis, we define the denotational semantics for the
λt-calculus.

First of all, we need an auxiliary definition providing us with the pointwise extension
of a lattice into a function space.

Definition 2.8 (pointwise extension). Given a join-semilattice L and some set X we
define the join-semilattice X → L to be the pointwise extension of L, i.e.

⊥ = λx ∈ X.⊥ (pointwise bottom)
f t g = λx ∈ X.f(x) t g(x) (pointwise join)

It follows that the induced binary relation v on X → L is exactly the pointwise extension
of the underlying comparison, i.e.

f v g ⇐⇒ ∀x ∈ X.f(x) v g(x).

Furthermore, we need the following property when defining the denotational seman-
tics.

Definition 2.9. Let L1, L2 be bounded join-semilattices and f : L1 → L2 a function
between lattices. We say that f is monotone or order-preserving if for all x, y ∈ L1,
x v y =⇒ f(x) v f(y).

Figure 2.5 shows the denotational semantics of the λt-calculus. The universe Vκ
denotes the lattice that is represented by the sort κ. The base sort ? represents the
underlying lattice L and the function sort κ1 ⇒ κ2 represents the lattice constructed by
pointwise extension of the lattice Vκ2 restricted to monotone functions.

The denotation function J·Kρ is parameterized with an environment ρ that provides
the values of variables. The denotation of a lambda term is simply an element of the cor-
responding function space. Applications are therefore mapped directly to the underlying
function application of the meta-theory.
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Universes:

V? = L
Vκ1⇒κ2 = {f : Vκ1 → Vκ2 | f monotone}

Environment:

ρ : AnnVar→fin
⋃
{Vκ | κ ∈ AnnSort}

Semantics:

JβKρ = ρ(β)
Jλβ :: κ1.ξKρ = λv ∈ Vκ1 . JξKρ[β 7→v]

Jξ1 ξ2Kρ = Jξ1Kρ (Jξ2Kρ)
J`Kρ = `

Jξ1 t ξ2Kρ = Jξ1Kρ t Jξ2Kρ

Figure 2.5.: λt-calculus: denotational semantics

This is unlike the λ∪-calculus by Koot where lambda terms are mapped to singleton
sets of functions and function application is defined in terms of the union of the results
of individually applying each function. The crucial difference is that we have offloaded
this complexity into the definition of the pointwise extension of lattices. It is therefore
important to note that the join operator used in the denotation of a term ξ1tξ2 depends
on the sort κ of this term and belongs to the lattice Vκ.

We will now prove that this definition of the denotational semantics is well-defined
when applied to well-typed terms, but first we need the following definition.

Definition 2.10 (compatible environments). We say a sort environment Σ and an en-
vironment ρ : AnnVar →fin

⋃
{Vκ | κ ∈ AnnSort} used in the denotational semantics

are compatible if

1. they are defined on the same variables, i.e. dom(Σ) = dom(ρ) and

2. for all β ∈ dom(Σ) we have ρ(β) ∈ VΣ(β).

Given this notion of compatibility between the sort environment and the environment
used in the denotational semantics, we can now establish the well-definedness of the
semantics in the following lemma.

Lemma 2.11. Given a term ξ of sort κ, a sort environment Σ and a compatible envi-
ronment ρ : AnnVar→fin

⋃
{Vκ | κ ∈ AnnSort} such that Σ `s ξ : κ holds, then

1. JξK− is monotone in the environment ρ, i.e. for all environments ρ1 such that
ρ v ρ1 (seen as a pointwise extension lattice), JξKρ v JξKρ1

.

2. JξKρ is well-defined,
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3. JξKρ ∈ Vκ.

Proof. See appendix, page 99.

Based on the denotational semantics, we can now define what it means for one depen-
dency term to subsume another. This definition will become relevant for subtyping in
order to widen effects where necessary.

Definition 2.12 (subsumption). Given two dependency terms ξ1 and ξ2 and a sort κ
such that Σ `s ξ1 :κ and Σ `s ξ2 :κ, we say that ξ2 subsumes ξ1 under the environment Σ,
written Σ `sub ξ1 v ξ2, if for all environments ρ compatible with Σ, we have Jξ1Kρ v Jξ2Kρ.

Remark 2.13. It follows directly from the reflexivity, transitivity and antisymmetry of the
partial order v that the subsumption relation Σ `sub ξ1 v ξ2 is also reflexive, transitive
and antisymmetric for a fixed environment Σ.

In a similar way we can define what it means for two terms to be semantically equal.

Definition 2.14. Given two dependency terms ξ1 and ξ2 and a sort κ such that Σ `s ξ1:κ
and Σ `s ξ2 : κ, we say that ξ1 and ξ2 are semantically equal under the environment Σ,
written Σ ` ξ1 ≡ ξ2, if for all environments ρ compatible with Σ, we have Jξ1Kρ = Jξ2Kρ.

Remark 2.15. It is obvious that two terms are semantically equal exactly when each
subsumes the other due to the antisymmetry of the order v in a lattice.

The following lemma shows that computing the denotation of a dependency term after
a substitution can always be replaced by simply choosing an appropriate environment
when evaluating the original term.

Lemma 2.16. For all sort environments Σ,Σ′ with disjoint domains, environments ρ
compatible with Σ, dependency terms ξ and substitutions θ : dom(Σ′) → AnnTm such
that Σ,Σ′ `s ξ : κ and Σ `s θ(β′) : Σ′(β′) for all β′ ∈ dom(θ), we have JθξKρ = JξKρ′ for
the environment ρ′ compatible with Σ,Σ′ given by

ρ′(β) =
{
ρ(β) if β ∈ dom(Σ)
Jθ(β)Kρ otherwise

Proof. By induction on ξ.

ξ = β By definition of ρ′, JθβKρ = ρ′(β) = JβKρ′ .

ξ = λβ :: κ1.ξ
′ We have

q
θλβ :: κ1.ξ

′y
ρ

= λv ∈ Vκ1 .
q
θξ′

y
ρ[β 7→v] = λv ∈ Vκ1 .

q
ξ′
y
ρ′′ =

q
λβ :: κ1.ξ

′y
ρ′

The first and third step use the definition of the denotational semantics while the
second step follows by induction, giving us a suitable ρ′′. We denote by ρ �X
the restriction of the environment to the variables in a set X. Then, we have
ρ′ = ρ′′ �dom(ρ′′)\{β}. Without loss of generality we assume that the variable β
bound in the abstraction is fresh.

21



ξ = ξ1 ξ2 We apply the induction hypothesis to both subterms. Since we have the same
sort environment and substitution in both cases, the environment ρ′ is also the
same. We get

Jθ(ξ1 ξ2)Kρ = Jθξ1Kρ (Jθξ2Kρ) = Jξ1Kρ′ (Jξ2Kρ′) = Jξ1 ξ2Kρ′

ξ = ξ1 t ξ2 Similar to the previous case.

ξ = ` Trivial, as the denotation of a constant is independent of the environment.

It remains to show that the environment ρ′ is compatible with Σ,Σ′. Let β ∈ dom(ρ′)
be arbitrary. If β ∈ dom(Σ), we have ρ′(β) = ρ(β) ∈ VΣ(β) because ρ is compatible with
Σ. If β ∈ dom(Σ′), we have ρ′(β) = Jθ(β)Kρ ∈ VΣ′(β) because Σ `s θ(β) : Σ′(β) and by
lemma 2.11.

We will also need the following fact that subsumption is preserved by certain substi-
tutions.

Lemma 2.17. Let Σ and Σ′ be sort environments with disjoint domains and let θ1 :
dom(Σ′) → AnnTm and θ2 : dom(Σ′) → AnnTm be substitutions such that Σ `sub
θ1(β) v θ2(β), Σ `s θ1(β) : Σ′(β) and Σ `s θ2(β) : Σ′(β) for all β ∈ dom(Σ′).

Let ξ1 and ξ2 be dependency terms such that Σ,Σ′ `s ξ1 :κ and Σ,Σ′ `s ξ2 :κ for some
sort κ.

If we have Σ,Σ′ `sub ξ1 v ξ2 we also have Σ `sub θ1ξ1 v θ2ξ2.

Proof. We have to show that Jθ1ξ1Kρ v Jθ2ξ2Kρ for all environments ρ compatible with
Σ.

Applying lemma 2.16 to ξ1 and ξ2 we get two environments ρ1 and ρ2 such that
Jθ1ξ1Kρ = Jξ1Kρ1

and Jθ2ξ2Kρ = Jξ2Kρ2
.

Moreover, we know ρ1(β) v ρ2(β) for all β ∈ dom(ρ1) = dom(ρ2). In order to see
why, let β ∈ dom(ρ1) be arbitrary. If β ∈ dom(Σ), we have ρ1(β) = ρ(β) = ρ2(β).
If β ∈ dom(Σ′), we have ρ1(β) = Jθ1(β)Kρ v Jθ2(β)Kρ = ρ2(β) due to the fact that
Σ `sub θ1(β) v θ2(β).

Now we can derive Jθ1ξ1Kρ = Jξ1Kρ1
v Jξ1Kρ2

v Jξ2Kρ2
= Jθ2ξ2Kρ. The first and last

step simply use lemma 2.16. The second step uses the fact that the denotation function
is monotone in the environment parameter (by lemma 2.11). The third step holds by
Σ,Σ′ `sub ξ1 v ξ2.

We can omit variables that do not occur free in a term from the environment when
computing its denotation.

Lemma 2.18. Let ξ be a dependency term, and let Σ be a context such that Σ `s ξ : κ
for some κ. Let ρ be an environment compatible with Σ. Let X ⊇ fav(ξ) be a set of
variables.

Then, JξKρ = JξKρ�X .

Proof. By induction on ξ.
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ξ = β We have X ⊇ fav(β) = {β}. Clearly, JβKρ = ρ(β) = ρ �X (β) = JβKρ�X .

ξ = λβ :: κ.ξ′ Using the induction hypothesis, we can show
q
λβ :: κ.ξ′

y
ρ

= λv ∈ Vκ.
q
ξ′
y
ρ[β 7→v] = λv ∈ Vκ.

q
ξ′
y
ρ[β 7→v]�X∪{β}

=λv ∈ Vκ.
q
ξ′
y
ρ�X [β 7→v] =

q
λβ :: κ.ξ′

y
ρ�X

.

ξ = ξ1 ξ2 Since X ⊇ fav(ξ1 ξ2) = fav(ξ1) ∪ fav(ξ2), we have

Jξ1 ξ2Kρ = Jξ1Kρ (Jξ2Kρ) = Jξ1Kρ�X (Jξ2Kρ�X ) = Jξ1 ξ2Kρ�X .

ξ = ξ1 t ξ2 Since X ⊇ fav(ξ1 t ξ2) = fav(ξ1) ∪ fav(ξ2), we have

Jξ1 t ξ2Kρ = Jξ1Kρ t Jξ2Kρ = Jξ1Kρ�X t Jξ2Kρ�X = Jξ1 t ξ2Kρ�X .

ξ = ` Trivial, as J`Kρ = ` regardless of the environment.

Additionally, it is possible to change the context of subsumption statements under
certain conditions.

Lemma 2.19. Let ξ1 and ξ2 be dependency terms and Σ a sort environment such that
Σ `s ξ1 : κ, Σ `s ξ2 : κ and Σ `sub ξ1 v ξ2. Then, Σ′ `sub ξ1 v ξ2 holds for all Σ′ such
that for all β ∈ fav(ξ1) ∪ fav(ξ2) we have Σ(β) = Σ′(β).

Proof. See appendix, page 100.

2.3. Target Language
We can now take the next step towards the declarative type and effect system by defining
the target language of our analysis. It extends the source language introduced earlier
(see figure 2.1) with dependency annotations.

2.3.1. Terms and Types
The syntax of the target language is shown in figure 2.6. Annotated types of the target
language are denoted by τ̂ and annotated terms are denoted by t̂. In order to avoid syn-
tactic noise, we sometimes denote annotated terms just by t when there is no ambiguity.

On the type level, there is an additional construct ∀β :: κ.τ̂ quantifying over an anno-
tation variable β of sort κ. Furthermore, the recursive occurrences in the sum, product
and arrow types now each carry an annotation.

On the term level, the explicit type annotations of lambda expressions and fixpoints are
now annotated types and also include a dependency annotation. Moreover, dependency
abstraction and application have been added to reflect the quantification of dependency
variables on the type level.
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Annotated Types:

τ̂ ∈ T̂y ::= ∀β :: κ.τ̂ (annotation quantification)
| ûnit (unit type)
| τ̂1〈ξ1〉+ τ̂2〈ξ2〉 (sum type)
| τ̂1〈ξ1〉 × τ̂2〈ξ2〉 (product type)
| τ̂1〈ξ1〉 → τ̂2〈ξ2〉 (function type)

Terms

t̂ ∈ T̂m ::= · · ·
| λx : τ̂ & ξ.t̂ (abstraction)
| µx : τ̂ & ξ.t̂ (fixpoint)
| · · ·
| Λβ :: κ.t̂ (dependency abstraction)
| t̂ 〈ξ〉 (dependency application)

Figure 2.6.: Target language: syntax

Definition 2.20. We denote the set of free (term) variables in a target term t̂ by ftv(t̂).

The actual definition of ftv(t̂) is completely analogous to what we have done for source
terms.

Figure 2.7 shows the rules for well-formed annotated types that are used by the fol-
lowing definition.

Definition 2.21. An annotated type τ̂ is well-formed under a sort environment Σ if
Σ `wft τ̂ holds.

Informally, a type is well-formed only if all annotations are of sort ? and all annotation
variables that are used have previously been bound.

As the following lemma demonstrates, we can modify the environment in a well-
formedness judgment in a similar way to what we have shown for sorting judgments in
lemma 2.6.

Lemma 2.22. Let τ̂ be an annotated type and Σ a sort environment such that Σ `wft τ̂ .
Then, for all Σ′ such that for all β ∈ fav(τ̂) we have Σ(β) = Σ′(β), Σ′ `wft τ̂ holds.

Proof. This follows directly by induction using lemma 2.6 on the well-sortedness judg-
ments.

Additionally, we can define the underlying terms and types that correspond to anno-
tated terms and types.
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Definition 2.23. Let τ̂ be an annotated type. We denote by bτ̂c the erasure of an-
notations, mapping each annotated type to its corresponding underlying type. It is
recursively defined as

b∀β :: κ.τ̂c = bτ̂c
bûnitc = unit

bτ̂1〈ξ1〉+ τ̂2〈ξ2〉c = bτ̂1c+ bτ̂2c
bτ̂1〈ξ1〉 × τ̂2〈ξ2〉c = bτ̂1c × bτ̂2c
bτ̂1〈ξ1〉 → τ̂2〈ξ2〉c = bτ̂1c → bτ̂2c

Moreover, we define erasure from target terms to source terms. Let t̂ be an annotated
term. We denote by bt̂c the corresponding source term defined as follows.

bλx : τ̂ & ξ.t̂ ′c = λx : bτ̂c.bt̂ ′c
bµx : τ̂ & ξ.t̂ ′c = µx : bτ̂c.bt̂ ′c
bΛβ :: κ.t̂ ′c = bt̂ ′c
bt̂ ′ 〈ξ〉c = bt̂ ′c

...

The remaining cases are defined by recursively erasing the sub-terms.

We also extend the definition of free annotation variables to annotated types as follows.

Definition 2.24. Let τ̂ be an annotated type. The set of free annotation variables of τ̂
is recursively defined by:

fav(∀β :: κ.τ̂) = fav(τ̂) \ {β}
fav(ûnit) = ∅
fav(τ̂1〈ξ1〉+ τ̂2〈ξ2〉) = fav(τ̂1) ∪ fav(ξ1) ∪ fav(τ̂2) ∪ fav(ξ2)
fav(τ̂1〈ξ1〉 × τ̂2〈ξ2〉) = fav(τ̂1) ∪ fav(ξ1) ∪ fav(τ̂2) ∪ fav(ξ2)
fav(τ̂1〈ξ1〉 → τ̂2〈ξ2〉) = fav(τ̂1) ∪ fav(ξ1) ∪ fav(τ̂2) ∪ fav(ξ2)

Furthermore, we define what it means for two annotated types to have the same shape.

Definition 2.25. We say two annotated types τ̂1 and τ̂2 have the same shape if

1. τ̂1 = ûnit and τ̂2 = ûnit, or

2. τ̂1 = ∀β κ τ̂ ′1, τ̂2 = ∀β κ τ̂ ′2 and τ̂ ′1 and τ̂ ′2 have the same shape, or

3. τ̂1 = τ̂ ′1〈ξ′1〉+ τ̂ ′′1 〈ξ′′1 〉, τ̂2 = τ̂ ′2〈ξ′2〉+ τ̂ ′′2 〈ξ′′2 〉 and τ̂ ′1 and τ̂ ′2 have the same shape and
τ̂ ′′1 and τ̂ ′′2 have the same shape, or

4. τ̂1 = τ̂ ′1〈ξ′1〉 × τ̂ ′′1 〈ξ′′1 〉, τ̂2 = τ̂ ′2〈ξ′2〉 × τ̂ ′′2 〈ξ′′2 〉 and τ̂ ′1 and τ̂ ′2 have the same shape and
τ̂ ′′1 and τ̂ ′′2 have the same shape, or

5. τ̂1 = τ̂ ′1〈ξ′1〉 → τ̂ ′′1 〈ξ′′1 〉, τ̂2 = τ̂ ′2〈ξ′2〉 → τ̂ ′′2 〈ξ′′2 〉 and τ̂ ′1 and τ̂ ′2 have the same shape
and τ̂ ′′1 and τ̂ ′′2 have the same shape.
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Σ, β :: κ `wft τ̂ [W-Forall]Σ `wft ∀β :: κ.τ̂
[W-Unit]

Σ `wft ûnit

Σ `wft τ̂1 Σ `s ξ1 : ? Σ `wft τ̂2 Σ `s ξ2 : ? [W-Sum]
Σ `wft τ̂1〈ξ1〉+ τ̂2〈ξ2〉

Σ `wft τ̂1 Σ `s ξ1 : ? Σ `wft τ̂2 Σ `s ξ2 : ? [W-Prod]
Σ `wft τ̂1〈ξ1〉 × τ̂2〈ξ2〉

Σ `wft τ̂1 Σ `s ξ1 : ? Σ `wft τ̂2 Σ `s ξ2 : ? [W-Arr]
Σ `wft τ̂1〈ξ1〉 → τ̂2〈ξ2〉

Figure 2.7.: Well-formedness of annotated types (Σ `wft τ̂)

Remark 2.26. We can view having the same shape as an equivalence relation. The
conditions for reflexivity, symmetry and transitivity can be easily checked by induction.

Lemma 2.27. If two target types τ̂1 and τ̂2 have the same shape, then bτ̂1c = bτ̂2c.

Proof. By induction on τ̂1.

τ̂1 = ûnit Then τ̂2 = ûnit as well, and clearly bτ̂1c = bτ̂2c.

τ̂1 = ∀β κ τ̂ ′1 Then τ̂2 = ∀β κ τ̂ ′2 and τ̂ ′1 and τ̂ ′2 have the same shape. By induction,
bτ̂ ′1c = bτ̂ ′2c. Therefore, bτ̂1c = bτ̂2c.

τ̂1 = τ̂ ′1〈ξ′1〉+ τ̂ ′′1 〈ξ′′1 〉 Then τ̂2 = τ̂ ′2〈ξ′2〉 + τ̂ ′′2 〈ξ′′2 〉 and τ̂ ′1 and τ̂ ′2 have the same shape,
as well as τ̂ ′′1 and τ̂ ′′2 . By induction, bτ̂ ′1c = bτ̂ ′2c and bτ̂ ′′1 c = bτ̂ ′′2 c. Therefore,
bτ̂1c = bτ̂2c.

τ̂1 = τ̂ ′1〈ξ′1〉 × τ̂ ′′1 〈ξ′′1 〉 Analogous to the previous case.

τ̂1 = τ̂ ′1〈ξ′1〉 → τ̂ ′′1 〈ξ′′1 〉 Analogous to the previous case.

The following lemma shows that substitutions satisfying certain conditions preserve
well-formedness of annotated types.

Lemma 2.28. Let τ̂ be an annotated type and let Σ, Σ′ be sort environments such that
Σ,Σ′ `wft τ̂ and let θ be a substitution such that Σ `s θ(β) : Σ′(β) for all β ∈ dom(θ) =
dom(Σ′). Then Σ `wft θτ̂ .

Proof. By induction on the derivation tree of Σ,Σ′ `wft θ.

[W-Forall] We have τ̂ = ∀β ::κ.τ̂ ′ and the premise Σ,Σ′, β ::κ `wft τ̂
′. Without loss of

generality, we can assume that β is distinct from all variables in the environments
Σ,Σ′ by renaming. We can then reorder the context to Σ, β :: κ,Σ′ `wft τ̂

′ by
lemma 2.22 and θτ̂ = ∀β :: κ.θτ̂ ′.
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Also by lemma 2.22, Σ, β :: κ `s θ(β′) : Σ′(β′) for all β′ ∈ dom(θ) = dom(Σ′). By
induction, Σ, β :: κ `wft θτ̂

′. Hence, Σ `wft θτ̂ by [W-Forall].

[W-Unit] Trivial, since θûnit = ûnit.

[W-Sum] We have τ̂ = τ̂1〈ξ1〉+ τ̂2〈ξ2〉 such that Σ,Σ′ `wft τ̂1, Σ,Σ′ `wft τ̂2, Σ,Σ′ `s ξ1 :?
and Σ,Σ′ `s ξ2 : ? hold.
By lemma 2.7, Σ `s θξ1 :? and Σ `s θξ2 :?. By induction, Σ `wft θτ̂1 and Σ `wft θτ̂2.
Thus, we can derive Σ `wft θτ̂1〈ξ1〉+ τ̂2〈ξ2〉 by [W-Sum].

The cases for [W-Prod] and [W-Arr] can be proven analogously.

2.3.2. Subtyping
An important part of a type and effect system is subtyping, or the weaker subeffecting.
In order to achieve the full generality we aim for, we choose subtyping over subeffecting
for our analysis.

Figure 2.8 shows the rules defining the subtyping relation on annotated types. A type
τ̂1 is a subtype of τ̂2 under a sort environment Σ, written Σ `sub τ̂1 6 τ̂2, if a value of
type τ̂1 can be used in places where a value of type τ̂2 is required.

Note that the subtyping relation still requires types to have the same shape, i.e. only
sums can be subtypes of sums, etc. It only relates the annotations inside the types using
the subsumption relation Σ `sub ξ1 v ξ2 between dependency terms (see definition 2.12).
Moreover, the subtyping relation implicitly demands that both types are well-formed
under the environment.

The [Sub-Forall] rule requires that the quantified variable has the same name in
both types. This is not a restriction, as we can simply rename the variables in one or
both of the types accordingly in order to make them match and prevent unintentional
capturing of previously free variables.

Furthermore, in the [Sub-Sum] and [Sub-Prod] rules, both nested occurrences are in
a covariant position, whereas the argument in the [Sub-Arr] rule is in a contravariant
position.

The following lemma shows that the subtyping relation implies that the two involved
types have the same shape.

Lemma 2.29. Let Σ be a sort environment, and let τ̂1 and τ̂2 be well-formed annotated
types. If Σ `sub τ̂1 6 τ̂2, then τ̂1 and τ̂2 have the same shape.

Proof. By induction on Σ `sub τ̂1 6 τ̂2.

[Sub-Refl] Since τ̂1 = τ̂2, they clearly have the same shape.

[Sub-Trans] There is a τ̂3 such that Σ `sub τ̂1 6 τ̂3 and Σ `sub τ̂3 6 τ̂2 hold. By
induction, τ̂1 and τ̂3 have the same shape, and τ̂3 and τ̂2 do. Therefore, τ̂1 and τ̂2
also have the same shape.
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[Sub-Refl]Σ `sub τ̂ 6 τ̂
Σ `sub τ̂1 6 τ̂2 Σ `sub τ̂2 6 τ̂3 [Sub-Trans]Σ `sub τ̂1 6 τ̂3

Σ, β :: κ `sub τ̂1 6 τ̂2 [Sub-Forall]Σ `sub ∀β :: κ.τ̂1 6 ∀β :: κ.τ̂2

Σ `sub τ̂1 6 τ̂ ′1 Σ `sub ξ1 v ξ′1 Σ `sub τ̂2 6 τ̂ ′2 Σ `sub ξ2 v ξ′2 [Sub-Sum]
Σ `sub τ̂1〈ξ1〉+ τ̂2〈ξ2〉 6 τ̂ ′1〈ξ′1〉+ τ̂ ′2〈ξ′2〉

Σ `sub τ̂1 6 τ̂ ′1 Σ `sub ξ1 v ξ′1 Σ `sub τ̂2 6 τ̂ ′2 Σ `sub ξ2 v ξ′2 [Sub-Prod]
Σ `sub τ̂1〈ξ1〉 × τ̂2〈ξ2〉 6 τ̂ ′1〈ξ′1〉 × τ̂ ′2〈ξ′2〉

Σ `sub τ̂
′
1 6 τ̂1 Σ `sub ξ

′
1 v ξ1 Σ `sub τ̂2 6 τ̂ ′2 Σ `sub ξ2 v ξ′2 [Sub-Arr]

Σ `sub τ̂1〈ξ1〉 → τ̂2〈ξ2〉 6 τ̂ ′1〈ξ′1〉 → τ̂ ′2〈ξ′2〉

Figure 2.8.: Subtyping relation (Σ `sub τ̂1 6 τ̂2)

[Sub-Forall] We have τ̂1 = ∀β κ.τ̂ ′1 and τ̂2 = ∀β κ.τ̂ ′2 such that Σ, β :: κ `sub τ̂
′
1 6 τ̂ ′2

holds. By induction, τ̂ ′1 and τ̂ ′2 have the same shape, thus τ̂1 and τ̂2 also have the
same shape.

[Sub-Sum] We have τ̂1 = τ̂ ′1〈ξ′1〉+ τ̂ ′′1 〈ξ′′1 〉 and τ̂2 = τ̂ ′2〈ξ′2〉+ τ̂ ′′2 〈ξ′′2 〉 such that Σ `sub τ̂
′
1 6

τ̂ ′2 and Σ `sub τ̂
′′
1 6 τ̂

′′
2 hold. By induction, τ̂ ′1 and τ̂ ′2 have the same shape, as well

as τ̂ ′′1 and τ̂ ′′2 . Therefore, τ̂1 and τ̂2 also have the same shape.

The cases for [Sub-Prod] and [Sub-Arr] can be proven analogously to [Sub-Sum].

The following lemma allows us to draw conclusions about the subtyping relation be-
tween parts of two types when there is a subtyping relation between the whole types.

Lemma 2.30. 1. If we have Σ `sub τ̂1〈ξ1〉 → τ̂2〈ξ2〉 6 τ̂ ′1〈ξ′1〉 → τ̂ ′2〈ξ′2〉, then we also
have Σ `sub τ̂

′
1 6 τ̂1, Σ `sub ξ

′
1 v ξ1, Σ `sub τ̂2 6 τ̂ ′2 and Σ `sub ξ2 v ξ′2.

2. If we have Σ `sub τ̂1〈ξ1〉+τ̂2〈ξ2〉 6 τ̂ ′1〈ξ′1〉+τ̂ ′2〈ξ′2〉, then we also have Σ `sub τ̂1 6 τ̂ ′1,
Σ `sub ξ1 v ξ′1, Σ `sub τ̂2 6 τ̂ ′2 and Σ `sub ξ2 v ξ′2.

3. If we have Σ `sub τ̂1〈ξ1〉×τ̂2〈ξ2〉 6 τ̂ ′1〈ξ′1〉×τ̂ ′2〈ξ′2〉, then we also have Σ `sub τ̂1 6 τ̂ ′1,
Σ `sub ξ1 v ξ′1, Σ `sub τ̂2 6 τ̂ ′2 and Σ `sub ξ2 v ξ′2.

4. If we have Σ `sub ∀β :: κ.τ̂1 6 ∀β :: κ.τ̂2, then we also have Σ, β :: κ `sub τ̂1 6 τ̂2.

Proof. We prove the first statement by induction on the derivation of Σ `sub τ̂1〈ξ1〉 →
τ̂2〈ξ2〉 6 τ̂ ′1〈ξ′1〉 → τ̂ ′2〈ξ′2〉.

[Sub-Refl] We have τ̂1 = τ̂ ′1, τ̂2 = τ̂ ′2, ξ1 = ξ′1 and ξ2 = ξ′2. The conclusions hold by
reflexivity.
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[Sub-Trans] There are τ̂ , τ̂ ′, ξ, ξ′ such that Σ `sub τ̂1〈ξ1〉 → τ̂2〈ξ2〉 6 τ̂〈ξ〉 → τ̂ ′〈ξ′〉
and Σ `sub τ̂〈ξ〉 → τ̂ ′〈ξ′〉 6 τ̂ ′1〈ξ′1〉 → τ̂ ′2〈ξ′2〉. The conclusions follow by induction
and transitivity.

[Sub-Arr] The conclusions follow directly from the premises of the rule at hand.

All other cases can be ruled out because they do not apply to arrow types.
The remaining statements about sum types, product types and quantification follow

analogously.

Similar to the previous kinds of judgments, we can reorder the environment of sub-
typing judgments under certain conditions.

Lemma 2.31. Let τ̂1 and τ̂2 be annotated types and Σ a sort environment such that
Σ `sub τ̂1 6 τ̂2. Then, for all Σ′ such that for all β ∈ fav(τ̂1 ∪ τ̂2) we have Σ(β) = Σ′(β),
Σ′ `sub τ̂1 6 τ̂2 holds.

Proof. By induction on Σ `sub τ̂1 6 τ̂2.

[Sub-Refl] We have τ̂1 = τ̂2. Since we implicitly assume the well-formedness of this
type, we also have Σ′ `wft τ̂1 by lemma 2.22. Thus, we can derive Σ′ `sub τ̂1 6 τ̂2
by [Sub-Refl].

[Sub-Trans] There is a τ̂3 such that Σ `sub τ̂1 6 τ̂3 and Σ `sub τ̂3 6 τ̂2 hold. By
induction, Σ′ `sub τ̂1 6 τ̂3 and Σ′ `sub τ̂3 6 τ̂2. Therefore, Σ′ `sub τ̂1 6 τ̂2 holds by
[Sub-Trans].

[Sub-Forall] We have τ̂1 = ∀β ::κ.τ̂ ′1 and τ̂2 = ∀β ::κ.τ̂ ′2 such that Σ, β ::κ `sub τ̂
′
1 6 τ̂

′
2

holds.
By definition, fav(τ̂ ′1) ⊆ fav(τ̂1) ∪ {β} and fav(τ̂ ′2) ⊆ fav(τ̂2) ∪ {β}. Since addition-
ally, (Σ, β :: κ)(β) = κ = (Σ′, β :: κ)(β), we can apply the induction hypothesis.
This results in Σ′, β :: κ `sub τ̂

′
1 6 τ̂

′
2, from which we can derive Σ′ `sub τ̂1 6 τ̂2 by

[Sub-Forall].

[Sub-Sum] We have τ̂1 = τ̂ ′1〈ξ′1〉+ τ̂ ′′1 〈ξ′′1 〉 and τ̂2 = τ̂ ′2〈ξ′2〉+ τ̂ ′′2 〈ξ′′2 〉 such that Σ `sub τ̂
′
1 6

τ̂ ′2, Σ `sub τ̂
′′
1 6 τ̂

′′
2 , Σ `sub ξ

′
1 v ξ′2 and Σ `sub ξ

′′
1 v ξ′′2 hold.

By induction, Σ′ `sub τ̂
′
1 6 τ̂

′
2 and Σ′ `sub τ̂

′′
1 6 τ̂

′′
2 . By lemma 2.19, Σ′ `sub ξ

′
1 v ξ′2

and Σ′ `sub ξ
′′
1 v ξ′′2 . In conclusion, we have Σ′ `sub τ̂1 6 τ̂2 by [Sub-Sum].

[Sub-Prod] Analogous to the previous case.

[Sub-Arr] Analogous to the previous cases, except taking into account the contravari-
ance of the argument types and effects.

We also show that substitutions preserve the subtyping relation of annotated types.
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Lemma 2.32. Let τ̂1, τ̂2 be annotated types, let Σ and Σ′ be sort environments and let
θ : dom(Σ′)→ AnnTm be a substitution.

If we have Σ,Σ′ `sub τ̂1 6 τ̂2, then we also have Σ `sub θτ̂1 6 θτ̂2.

Proof. By induction on the derivation of Σ,Σ′ `sub τ̂1 6 τ̂2.

[Sub-Refl] We have τ̂1 = τ̂2 and the type θτ̂1 is well-formed under Σ by lemma 2.28
(because τ̂1 is implicitly assumed to be well-formed), hence we have Σ `sub θτ̂1 6
θτ̂2 by [Sub-Refl].

[Sub-Trans] There is some τ̂3 such that Σ,Σ′ `sub τ̂1 6 τ̂3 and Σ,Σ′ `sub τ̂3 6 τ̂2
hold. By induction, we get Σ `sub θτ̂1 6 θτ̂3 and Σ `sub θτ̂3 6 θτ̂2. Thus,
Σ `sub θτ̂1 6 θτ̂2 can be derived using transitivity.

[Sub-Forall] We have τ̂1 = ∀β :: κ.τ̂ ′1 and τ̂2 = ∀β :: κ.τ̂ ′2 such that Σ,Σ′, β :: κ `sub
τ̂ ′1 6 τ̂

′
2 holds.

We assume without loss of generality that β does not occur in the environment Σ′
by appropriate renaming.
By lemma 2.31, we have Σ, β::κ,Σ′ `sub τ̂

′
1 6 τ̂

′
2. Applying the induction hypothesis

results in Σ, β :: κ `sub θτ̂
′
1 6 θτ̂

′
2. We can derive Σ `sub ∀β :: κ.θτ̂ ′1 6 ∀β :: κ.θτ̂ ′2 by

[Sub-Forall]. By assumption, β is not in the domain of θ, hence θ∀β :: κ.τ̂ ′1 =
∀β :: κ.θτ̂ ′1 and similarly θ∀β :: κ.τ̂ ′2 = ∀β :: κ.θτ̂ ′2. This completes the proof.

[Sub-Sum] We have τ̂1 = τ̂ ′1〈ξ′1〉+ τ̂ ′′1 〈ξ′′1 〉 and τ̂2 = τ̂ ′2〈ξ′2〉+ τ̂ ′′2 〈ξ′′2 〉 such that Σ,Σ′ `sub
τ̂ ′1 6 τ̂

′
2, Σ,Σ′ `sub τ̂

′′
1 6 τ̂

′′
2 , Σ `sub ξ

′
1 v ξ′2 and Σ `sub ξ

′′
1 v ξ′′2 hold.

Applying lemma 2.17 using θ as both the left and the right substitution results in
Σ `sub θξ

′
1 v θξ′2 as well as Σ `sub θξ

′′
1 v θξ′′2 . By induction, we get Σ `sub θτ̂

′
1 6

θτ̂ ′2 and Σ `sub θτ̂
′′
1 6 θτ̂

′′
2 .

This lets us derive Σ `sub θτ̂1 6 θτ̂2 using [Sub-Sum].

[Sub-Prod] Analogous to the previous case.

[Sub-Arr] We have τ̂1 = τ̂ ′1〈ξ′1〉 → τ̂ ′′1 〈ξ′′1 〉 and τ̂2 = τ̂ ′2〈ξ′2〉 → τ̂ ′′2 〈ξ′′2 〉) such that
Σ,Σ′ `sub τ̂ ′2 6 τ̂ ′1, Σ,Σ′ `sub τ̂ ′′1 6 τ̂ ′′2 , Σ `sub ξ′2 v ξ′1 and Σ `sub ξ′′1 v ξ′′2
hold.
Applying lemma 2.17 using θ as both the left and the right substitution results in
Σ `sub θξ

′
2 v θξ′1 as well as Σ `sub θξ

′′
1 v θξ′′2 . By induction, we get Σ `sub θτ̂

′
2 6

θτ̂ ′1 and Σ `sub θτ̂
′′
1 6 θτ̂

′′
2 .

This lets us derive Σ `sub θτ̂1 6 θτ̂2 using [Sub-Arr].
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2.3.3. Type and Effect System
We have now all the definitions in place in order to explain the declarative type and
effect system shown in figure 2.9. It consists of judgments of the form Σ | Γ̂ `te t̂ : τ̂ & ξ
expressing that under the sort environment Σ and the type and effect environment Γ̂, the
annotated term t̂ has the annotated type τ̂ and the dependency term ξ. The dependency
term in this context is also called the effect of t̂. It is implicitly assumed that every type
τ̂ is also well-formed under Σ, i.e. Σ `wft τ̂ , and that the resulting effect ξ is of sort ?,
i.e. Σ `s ξ : ?.
Remark 2.33. Since the type system relates an expression to both a type and an effect,
we write top level type signatures for a term t̂ as t̂ : τ̂ & ξ with the meaning that the
term t̂ has the annotated type τ̂ and the effect ξ.

A type and effect environment Γ̂ is defined analogously to type environments (see
definition 2.3), but instead maps term variables x to pairs of an annotated type τ̂ and
an effect ξ. We extend the definition of the set of free annotation variables to type
and effect environments by taking the union of all types and effects occurring in the
environment, denoted by fav(Γ̂). We denote the set of type and effect environments by
TyEffEnv. When it is clear from the context whether we mean a type environment Γ
or a type and effect environment Γ̂, we simply write Γ in both cases.

We can also define the erasure function pointwise on type and effect environments by
erasing annotations from the type mappings and forgetting about the effects:

b[ ]c = [ ]
bΓ̂, x : τ̂ & ξc = bΓ̂c, x : bτ̂c.

Most of the typing rules correspond to a rule from the underlying type system. How-
ever, there are three new rules, namely [T-Sub] for subtyping and [T-AnnAbs] and
[T-AnnApp] for dependency abstraction and application.

The following list gives a short description of every rule in the type and effect system.

[T-Var] Here, both the annotated type and the effect are looked up in the envi-
ronment.

[T-Unit] The effect of the unit value defaults to the least annotation. While we
could admit an arbitrary effect here, the same can be achieved by using
the subtyping rule [T-Sub].

[T-App] The rule for function application seems overly restrictive by requiring
that the types and effects of the arguments match, and that the effects
of the return value and the function itself are the same. However, in
combination with the subtyping rule [T-Sub], this effectively does not
restrict the analysis in any way.
Moreover, the effect of the argument does not play a role in the resulting
effect of the application. This is because we are dealing with a lazy
language which means that the argument is not necessarily evaluated
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Γ̂(x) = τ̂ & ξ
[T-Var]

Σ | Γ̂ `te x : τ̂ & ξ
[T-Unit]

Σ | Γ̂ `te () : ûnit &⊥

Σ | Γ̂, x : τ̂1 & ξ1 `te t : τ̂2 & ξ2 [T-Abs]
Σ | Γ̂ `te λx : τ̂1 & ξ1.t : τ̂1〈ξ1〉 → τ2〈ξ2〉&⊥

Σ | Γ̂ `te t1 : τ̂1〈ξ1〉 → τ̂2〈ξ2〉& ξ2 Σ | Γ̂ `te t2 : τ̂1 & ξ1 [T-App]
Σ | Γ̂ `te t1 t2 : τ̂2 & ξ2

Σ | Γ̂ `te t1 : τ̂1 & ξ1 Σ | Γ̂ `te t2 : τ̂2 & ξ2 [T-Pair]
Σ | Γ̂ `te (t1, t2) : τ̂1〈ξ1〉 × τ̂2〈ξ2〉&⊥

Σ | Γ̂ `te t : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi [T-Proj]
Σ | Γ̂ `te proji(t) : τ̂i & ξi

Σ | Γ̂ `te t : τ̂1 & ξ1 [T-Inl]
Σ | Γ̂ `te inlbτ̂2c(t) : τ̂1〈ξ1〉+ τ̂2〈ξ2〉&⊥

Σ | Γ̂ `te t : τ̂2 & ξ2 [T-Inr]
Σ | Γ̂ `te inrbτ̂1c(t) : τ̂1〈ξ1〉+ τ̂2〈ξ2〉&⊥

Σ | Γ̂ `te t : τ̂1〈ξ1〉+ τ̂2〈ξ2〉& ξ Σ | Γ̂, y : τ̂2 & ξ2 `te t2 : τ̂ & ξ

Σ | Γ̂, x : τ̂1 & ξ1 `te t1 : τ̂ & ξ

[T-Case]
Σ | Γ̂ `te case t of { inl(x)→ t1; inr(y)→ t2} : τ̂ & ξ

Σ | Γ̂ `te t : τ̂ & ξ Σ `sub ` v ξ [T-Ann]
Σ | Γ̂ `te ann`(t) : τ̂ & ξ

Σ | Γ̂, x : τ̂ & ξ `te t : τ̂ & ξ
[T-Fix]

Σ | Γ̂ `te µx : τ̂ & ξ.t : τ̂ & ξ

Σ | Γ̂ `te t1 : τ̂1 & ξ Σ | Γ̂ `te t2 : τ̂2 & ξ
[T-Seq]

Σ | Γ̂ `te seq t1 t2 : τ̂2 & ξ

Σ | Γ̂ `te t : τ̂ ′ & ξ′ Σ `sub τ̂
′ 6 τ̂ Σ `sub ξ

′ v ξ
[T-Sub]

Σ | Γ̂ `te t : τ̂ & ξ

Σ, β :: κ | Γ̂ `te t : τ̂ & ξ β 6∈ fav(Γ̂) ∪ fav(ξ)
[T-AnnAbs]

Σ | Γ̂ `te Λβ :: κ.t : ∀β :: κ.τ̂ & ξ

Σ | Γ̂ `te t : ∀β :: κ.τ̂ & ξ Σ `s ξ
′ : κ

[T-AnnApp]
Σ | Γ̂ `te t 〈ξ′〉 : [ξ′ / β ]τ̂ & ξ

Figure 2.9.: Declarative type and effect system (Σ | Γ `te t̂ : τ̂ & ξ)
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before the function call. It should be noted that this does not mean that
the effects of arguments are ignored completely. If the body of a function
makes use of an argument, the type system makes sure that its effect is
also incorporated into the result.

[T-Pair] When constructing a pair, the effects of the components are stored in the
type while the pair itself is assigned the least effect.

[T-Proj] When accessing a component of a pair, we require that the effect of the
pair matches the effect of the projected component. Again, this is no
restriction due to the subeffecting rule.

[T-Inl/Inr] The argument to the injection constructor only determines the type and
annotation of one component of the sum type while the other component
can be chosen arbitrarily as long as the underlying type matches the
annotation on the constructor.

[T-Case] Again, to keep the rule simple, we demand that the types of both branches
match, and that additionally the effects of both branches and the scruti-
nee are equal.

[T-Ann] The annotation rule requires that the effect of the term being annotated
is at least as large as the lattice element `. This can be achieved through
prior application of the subtyping rule.

[T-Fix] In the fixpoint rule, not only the types but also the effects of the term
itself and the bound variables must match. Note that this rule also ad-
mits polyvariant recursion, since quantification can occur anywhere in an
annotated type.

[T-Seq] Since seq t1 t2 forces the evaluation of its first argument, it requires that
its effect is part of the final result. This is justified because the result
depends on the termination behavior of t1.
Note that the current formulation assumes that t1 is only evaluated to
weak head normal form [22, p. 198]. If this were not the case, we would
need to include all nested annotations belonging to forced subterms in
the resulting effect as well.

[T-Sub] The subtyping rule allows to weaken the annotations nested inside a type
through the subtyping relation (see figure 2.8), as well as the effects itself
through the subsumption relation (see definition 2.12).

[T-AnnAbs] This rule introduces an annotation variable β of sort κ in the body t of
the abstraction. The second premise ensures that the annotation variable
does not escape its scope determined by the quantification on the type
level.

33



[T-AnnApp] The annotation application rule allows the instantiation of an annotation
variable with an arbitrary well-sorted dependency term.

The remainder of this section contains several lemmas about the declarative type
system that will become useful in later proofs. We begin by showing that whenever a
target term is typeable in the declarative type system, the corresponding source term is
typeable in the underlying type system with the erased annotated type.

Lemma 2.34. If we have Σ | Γ̂ `te t̂ : τ̂ & ξ then we also have bΓ̂c `t bt̂c : bτ̂c.

Proof. See appendix, page 101.

The converse of the foregoing lemma, i.e. that every well-typed source term has a
corresponding target term that is typeable in the declarative type system, is covered in
the next chapter.

The following lemma is used in various proofs making assumptions about the structure
of a typing derivation.

Lemma 2.35. If we have a derivation Σ | Γ̂ `te t : τ̂ & ξ, then there is a derivation of
the statement that ends with exactly one application of [T-Sub].

Proof. By induction on Σ | Γ̂ `te t : τ̂ & ξ.

[T-Sub] We have

Σ | Γ̂ `te t : τ̂ ′ & ξ′ Σ `sub τ̂
′ 6 τ̂ Σ `sub ξ

′ v ξ
[T-Sub]

Σ | Γ̂ `te t : τ̂ & ξ

and by induction, there is a derivation for Σ | Γ̂ `te t : τ̂ ′& ξ′ ending with [T-Sub]:

Σ | Γ̂ `te t : τ̂ ′′ & ξ′′ Σ `sub τ̂
′′ 6 τ̂ ′ Σ `sub ξ

′′ v ξ′
[T-Sub]

Σ | Γ̂ `te t : τ̂ ′ & ξ′

But then we can derive

Σ | Γ̂ `te t : τ̂ ′′ & ξ′′
Σ `sub τ̂

′′ 6 τ̂ ′ Σ `sub τ̂
′ 6 τ̂

Σ `sub τ̂
′′ 6 τ̂ Σ `sub ξ

′′ v ξ
Σ | Γ̂ `te t : τ̂ & ξ

by [Sub-Trans] and the transitivity of subsumption.

In all other cases, we can derive

Σ | Γ̂ `te t : τ̂ & ξ Σ `sub τ̂ 6 τ̂ Σ `sub ξ v ξ [T-Sub]
Σ | Γ̂ `te t : τ̂ & ξ

by reflexivity.
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Remark 2.36. The above lemma lets us deconstruct a typing judgment for a known term,
because all rules except for [T-Sub] are syntax directed.

In particular, the following lemma allows us to deconstruct the typing judgment of an
annotated term.

Lemma 2.37. If we have Σ | Γ̂ `te ann`(t) : τ̂ & ξ, then we also have Σ | Γ̂ `te t : τ̂ & ξ
and Σ `sub ` v ξ.

Proof. By lemma 2.35, there is a derivation for Σ | Γ̂ `te ann`(t) : τ̂ & ξ of the following
form.

Σ | Γ̂ `te t : τ̂ ′ & ξ′ Σ `sub ` v ξ′ [T-Ann]
Σ | Γ̂ `te ann`(t) : τ̂ ′ & ξ′

Σ `sub τ̂
′ 6 τ̂

Σ `sub ξ
′ v ξ [T-Sub]

Σ | Γ̂ `te ann`(t) : τ̂ & ξ

But then, we can derive Σ | Γ̂ `te t : τ̂ & ξ using rule [T-Sub], and we have Σ `sub ` v ξ
by transitivity.

The existence of a typing derivation also provides information about the free variables
in a target term.

Lemma 2.38. If we have Σ | Γ̂ `te t : τ̂ & ξ, then ftv(t) ⊆ dom(Γ̂).

Proof. By induction on the derivation of Σ | Γ̂ `te t : τ̂ & ξ. In particular, whenever we
encounter a variable in t, that variable is also part of the context Γ̂. Also, whenever
bound variables are removed from the context (as in the [T-Abs] and [T-Case] rules),
this is reflected by the definition of ftv.

Similar to the well-sortedness judgments for dependency terms we can show that all
variables in the context that are not free in the term have no effect on its typing judgment.

Lemma 2.39. Let t be a target term, τ̂ & ξ a type and effect pair, Σ a sort environment
and Γ̂, Γ̂′ two type and effect environments.

If we have Σ | Γ̂ `te t : τ̂&ξ and for all x ∈ ftv(t), Γ̂(x) = Γ̂′(x), then Σ | Γ̂′ `te t : τ̂&ξ.

Proof. By induction on Σ | Γ̂ `te t : τ̂ & ξ, similar to the previous reordering proofs.

Unsurprisingly, the same holds for annotations variables.

Lemma 2.40. Let t be a target term, τ̂ & ξ a type and effect pair, Σ and Σ′ sort
environments and Γ̂ two type and effect environments.

If we have Σ | Γ̂ `te t : τ̂&ξ and for all β ∈ fav(t), Σ(x) = Σ′(x), then Σ′ | Γ̂ `te t : τ̂&ξ.

Proof. By induction on Σ | Γ̂ `te t : τ̂ & ξ, again similar to previous proofs for the other
judgments.
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2.4. Embedding Various Analyses
This section serves to demonstrate how we can instantiate L to concrete lattices in
order to perform various kinds of dependency analyses. Even though all of the following
lattices are finite, they allow expressive analyses nonetheless. We also motivate the
noninterference theorem that will be introduced later in this chapter by presenting cases
where it can be applied to guarantee the safety of the analysis.

2.4.1. Binding-Time Analysis
Binding-time analysis is used in partial evaluation to determine which parts of a program
can be evaluated at compile time, and which parts depend on dynamic values like user
input and therefore can only be evaluated at runtime [21].

We can capture this distinction with a two-element lattice BT = {S,D} with S @ D.
Static binding-time is denoted by S while D denotes dynamic binding-time. By adding
more intermediate values, this analysis can be generalized to staged compilation

This choice of lattice can be motivated by looking at the subtyping and subsumption
relations. These rules allow us to use values annotated with static binding-time wherever
dynamic binding-time is required, but not the other way around.

Any terms t that somehow depend on dynamic input can then be wrapped in an
annotation, e.g. annD(t), and any terms depending on t are then also identified as
dynamic.
Example 2.41. Consider the following term (λx : int & D.0) annD(t). We assume here
that we have another base type, int, besides the unit type in order to present a more
meaningful example.

We find that even though the term involves parts with dynamic binding-time, it is
actually static. As the lambda-term represents a constant function, there is indeed a
valid typing derivation where the function takes a dynamic argument and returns a static
value.

∅ | x : int & D `te 0 : int & S
∅ | ∅ `te λx : int & D.0 : int〈D〉 → int〈S〉& S

...
∅ | ∅ `te t : int & D D v D
∅ | ∅ `te annD(t) : int & D

∅ | ∅ `te (λx : int & D.0) annD(t) : int & S

The typing judgment of the function body assigns it a static effect. As we will later
see, noninterference guarantees that the variable x in the context has no influence on
the outcome of the evaluation in that case.

2.4.2. Security Analysis
The goal of security analyses, such as the SLam calculus [5], is to find out the flow of
classified values in a program. If computations depend on high-security values, their
results should also be marked as such.
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A simple security analysis would only distinguish between low- and high-security val-
ues, which can be represented as the lattice S1 = {L,H} with L @ H.

The desired security guarantee, i.e. that computations depending on high-security
values are themselves classified as high-security, then follows from noninterference.

As the two element security lattice is identical to the one used in binding-time analysis,
let us provide a more involved example with a four-element lattice S2 given by the
following Hasse diagram2.

H

M1 M2

L

In addition to a low- and a high-security annotation, we also have two intermediate
classes M1 and M2 that are unrelated to each other. This means that any computation
only working with values of class either M1 or M2 produces a result with the same
classification. However, if a computation depends on both a value of class M1 and a
value of class M2, it can only be assigned the highest security class H. That is because
neither M1 nor M2 subsume the other.

In a real world case, M1 and M2 might denote the security levels of two different gov-
ernment departments that are only allowed to see their own information and unclassified
(L) data. The highest security level (H) marks data that only the president may see.

Therefore, a function creating an overall activity report of all departments mixing this
data returns a value classified as H. It is, in fact, guaranteed to do so by noninterference.
Example 2.42. For the sake of simplicity, we assume that the data from each depart-
ment is a simple boolean (for example indicating some kind of success). The following
aggregation function returns whether both departments reported a success.

λr1 : b̂ool & M1.λr2 : b̂ool & M2. if r1 then r2 else false

The example uses a type b̂ool which can simply be seen as an abbreviation for the equiva-
lent sum type ûnit〈⊥〉+ ûnit〈⊥〉 with true = inlunit(()) and false = inrunit(()). Likewise,
conditionals if c then t1 else t2 can then be substituted by case c of { inl( ) →
t1; inr( )→ t2}.

If we want to prevent each department from gaining knowledge of the result of the
other department, the aggregation must have the highest security level. This is because
knowing one input and the output can be enough to infer the second parameter under
certain circumstances.

Indeed, this is ensured by the type system, in this case in particular by the rule [T-
Case]. It requires the effects of the scrutinee as well as both branches to be the same. As

2There is an upward edge from x to y whenever x @ y and there is no z such that x @ z @ y.
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the subtyping rule only allows us to increase effects, the only annotation that is greater
than both M1 and M2 is H .

Hence, the type of the above aggregation function is b̂ool〈M1〉 → b̂ool〈M2〉 → b̂ool〈H 〉.

2.4.3. Exception Analysis
It turns out that this system is even general enough to capture the exception analysis
that has been the starting point of this work.

To see why, suppose there is a finite set of exceptions E. We then define the base
lattice of exception analysis E := 〈P(E),∪〉, the lattice of sets of exception sets with the
union operator.

The source language used in the paper by Koot [15] includes an exception term  eτ of
type τ raising the exception e ∈ E. It can be translated to ann{e}(errorτ ) where errorτ
is some value of type τ that causes evaluation to get stuck.

Since our source language does not directly include such a term, we could define it as
a non-terminating fixpoint errorτ = µx : τ.x.

Indeed, this translation also admits the desired typing in the declarative type and
effect system, as witnessed by the following derivation tree.

(Γ̂, x : τ̂ & {e}) (x) = τ̂ & {e}
[T-Var]

Σ | Γ̂, x : τ̂ & {e} `te x : τ̂ & {e}
[T-Fix]

Σ | Γ̂ `te µx : τ̂ & ({e}).x : τ̂ & {e}
∀ρ. J{e}Kρ ⊆ J{e}Kρ
Σ `sub {e} v {e} [T-Ann]

Σ | Γ̂ `te ann{e}(µx : τ̂ & ({e}).x) : τ̂ & {e}

Note that in this case we could have just omitted the explicit annotation because the
fixpoint rule allows us to choose an arbitrary effect anyway. However, it serves as a
guard that we indeed do make the right choice. Furthermore, the type reconstruction
algorithm presented in the next chapter will produce the smallest possible effects and
annotations, therefore requiring the explicit annotation to enforce the inclusion of the
exception e in the effect.

2.5. Operational Semantics
The last part of this chapter is devoted to developing a noninterference proof for our
declarative type system. We start by defining a small-step operational semantics for the
target language based on the call-by-name semantics employed by Koot for exception
terms [15].

Special care is taken when manipulating annotation terms ann`(t). They are moved
just as far outwards as necessary in order to reach a normal form, thereby computing
the least “permission” an evaluator must possess for computing a certain output.

Standard progress and subject reduction theorems ensure that well-typed terms can
always be evaluated, and that the dynamic computation of the annotation value is indeed
approximated by the static semantics.
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v′ ∈ Nf ′ ::= λx : τ̂ & ξ.t ′
| Λβ :: κ.t ′
| ()
| inlτ (t ′)
| inrτ (t ′)
| (t1, t2)

v ∈ Nf ::= v′ | ann`(v′)

Figure 2.10.: Values in the target language

C ::= proji(�) | � t2 | � 〈ξ〉 | ann`(�) | seq � t2
| case � of { inl(x)→ t2; inr(y)→ t3}

Figure 2.11.: Evaluation contexts

Figure 2.10 defines the values of the target language, i.e. those terms that cannot be
further evaluated. Apart from a technicality related to annotations, they correspond
exactly to the weak head normal forms of terms. The distinction for Nf ′ ⊂ Nf is made
in order to ensure that there is at most one annotation on the top level. Terms that are
not values are called redexes.

Sometimes it is necessary to perform reduction on a sub-term, e.g. on the scrutinee
of a case expression. Those circumstances are captured by contexts C (see figure 2.11)
corresponding to terms with exactly one hole �. We denote by C[t] the term obtained
by filling the single hole in C with t.

The reduction rules of the small-step semantics are shown in figure 2.12. It is an
extension of the standard rules for a call-by-name evaluation of a functional language, i.e.
in particular β-reduction is provided by [E-Abs] and deconstruction of data constructors
by [E-Proj], [E-CaseInl] and [E-CaseInr]. The rule for fixpoints [E-Fix] unrolls the
term one level at a time. Similar to β-reduction for term variables, rule [E-AnnAbs]
implements β-reduction for annotation variables.

The [E-Context] rule allows to evaluate sub-terms where it is required for progressing
the overall evaluation, and only there. This means that it is, for example, not possible
to perform reduction on the argument of a constructor. The reason is that the semantics
is designed to evaluate terms to WHNF, but not further.

Annotation terms ann`(t) are always preserved by the semantics, in the sense that
a term that is enclosed by an annotation always remains enclosed by an annotation at
least as large. The rules moving annotations outwards are called lifting rules. There is
also a rule [E-JoinAnn] which merges two adjacent annotation terms. Since the lattice
values are joined, the resulting annotation is never smaller than any of the original ones.
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[E-Abs]
(λx : τ̂ & ξ.t1) t2 → [t2 / x ]t1

[E-AnnAbs]
(Λβ :: κ.t ′) 〈ξ〉 → [ξ / β ]t ′

[E-Fix]
µx : τ̂ & ξ.t → [µx : τ̂ & ξ.t / x ]t

[E-Proj]
proji(t1, t2)→ ti

[E-CaseInl]
case inlτ (t ′) of {inl(x)→ t2; inr(y)→ t3} → [t ′ / x ]t2

[E-CaseInr]
case inrτ (t ′) of { inl(x)→ t2; inr(y)→ t3} → [t ′ / y ]t3

v′ ∈ Nf ′ [E-Seq]
seq v′ t2 → t2

t → t ′ [E-Context]
C [t ]→ C [t ′ ]

v′ ∈ Nf ′ [E-LiftApp]
(ann`(v′)) t2 → ann`(v′ t2)

v′ ∈ Nf ′ [E-LiftAnnApp]
(ann`(v′)) 〈ξ〉 → ann`(v′ 〈ξ〉)

v′ ∈ Nf ′ [E-LiftProj]
proji(ann`(v′))→ ann`(proji(v′))

v′ ∈ Nf ′ [E-LiftCase]
case (ann`(v′)) of { inl(x)→ t2; inr(y)→ t3}
→ann`( case v′ of { inl(x)→ t2; inr(y)→ t3})

v′ ∈ Nf ′ [E-LiftSeq]
seq (ann`(v′)) t2 → ann`(seq v′ t2)

v′ ∈ Nf ′ [E-JoinAnn]
ann`1(ann`2(v′))→ ann`1t`2(v′)

Figure 2.12.: Small-step semantics (t1 → t2)
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All these rules require the annotated term to be a value already in order to make the
reduction deterministic.

In the remainder of this section we present the theorems that ensure that our small-
step semantics is compatible with the type system. The following progress theorem
demonstrates that any well-typed term is either already a normal form, or an evaluation
step can be performed.

Theorem 2.43 (Progress). If ∅ | ∅ `te t : τ̂ & ξ, then either t ∈ Nf or there is a t ′ such
that t → t ′.

Proof. See appendix, page 101.

The following lemma is needed in the proof of subject reduction. It states that substi-
tuting a variable in a well-typed term with a closed term of the right type again results
in a well-typed term that no longer depends on the variable.

Lemma 2.44. If Σ | Γ̂, x : τ̂ ′ & ξ′ `te t : τ̂ & ξ and ∅ | ∅ `te t ′ : τ̂ ′ & ξ′, then Σ | Γ̂ `te
[t ′ / x ]t : τ̂ & ξ.

Proof. See appendix, page 103.

Similarly, substituting an annotation variable with an annotation term of the right
sort in a well-typed target term results again in a well-typed term.

Lemma 2.45. If we have Σ, β :: κ | Γ̂ `te t̂ : τ̂ & ξ and Σ `s ξ
′ : κ, then Σ | [ξ′ / β ]Γ̂ `te

[ξ′ / β ]̂t : [ξ′ / β ]τ̂ & [ξ′ / β ]ξ.

Proof. See appendix, page 105.

Now we can show subject reduction, i.e. the reduction of a well-typed term results in
a term of the same type.

Theorem 2.46 (Subject Reduction). If ∅ | ∅ `te t : τ̂ & ξ and there is a t ′ such that
t → t ′, then ∅ | ∅ `te t ′ : τ̂ & ξ.

Proof. See appendix, page 106.

Another useful property is that our small-step semantics is deterministic, i.e. for every
term there is just one unique term a reduction can lead to.

Lemma 2.47 (Determinism). If we have t1 → t2 and t1 → t ′2, then t2 = t ′2.

Proof. By induction on t1 → t2.

[E-Abs] We have t1 = (λx : τ̂ & ξ.t ′1) t. If t1 → t ′2 also follows by [E-Abs], t2 = t ′2 by
definition. The only other rule with a matching head is [E-Context] with the
context � t. But then, there would be a reduction λx : τ̂ & ξ.t ′1 → t ′′1 . This is a
contradiction because a λ-abstraction is a normal form.
The cases for [E-AnnAbs], [E-Proj], [E-CaseInl], [E-CaseInr] and [E-Seq]
can be proven analogously to the previous one. The same applies to [E-LiftApp],
[E-LiftAnnApp], [E-LiftProj], [E-LiftCase], [E-LiftSeq] and [E-JoinAnn].
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[E-Fix] Only this rule applies, therefore t2 = t ′2 by definition.

[E-Context] We have t1 = C [t ] and t2 = C [t ′ ] and a reduction t → t ′. Therefore, t
cannot be a normal form. This rules out all potentially matching rules for t1 → t ′2,
except for [E-Context] where we have t ′2 = C [t ′′ ] and a reduction t → t ′′. By
induction, t ′ = t ′′ and therefore t2 = C [t ′ ] = C [t ′′ ] = t ′2.

In order to describe the evaluation of whole programs, we need to chain multiple
individual reduction steps together.

Definition 2.48. We write t →∗ v if there is a finite sequence of terms (ti)06i6n with
t0 = t and tn = v ∈ Nf and reductions (ti → ti+1)06i<n between them. If there is no
such a sequence, this is denoted by t ⇑ and t is said to diverge.

As expected, subject reduction extends naturally to a sequence of reductions.

Corollary 2.49. If we have ∅ | ∅ `te t : τ̂ & ξ and t →∗ v, then ∅ | ∅ `te v : τ̂ & ξ.

Proof. By induction on the length of the reduction sequence, using theorem 2.46.

And lastly, if a term evaluates to an annotated value, this annotation is compatible
with the effect that has been assigned to the term.

Theorem 2.50 (Semantic Soundness). If we have ∅ | ∅ `te t : τ̂ & ξ and t →∗ ann`(v′),
then ∅ `sub ` v ξ.

Proof. By corollary 2.49, we have ∅ | ∅ `te ann`(v′) : τ̂ & ξ. By lemma 2.37, we then also
have ∅ | ∅ `te v′ : τ̂ & ξ and, in particular, ∅ `sub ` v ξ.

For example, a term that has been assigned a low security annotation during secu-
rity analysis cannot evaluate to a value annotated with high security protection. The
other way around is possible, however. This is because the static semantics can only be
an approximation to the dynamic semantics. Consider the term case t1 of {inl(x) →
annL(t2); inr(x)→ annH (t3)}. Whether the evaluation ends with a low or high annota-
tion depends on whatever t evaluates to. As predicting this is an undecidable problem,
the static type system can only over-approximate the result and assign an effect that
encompasses both branches.

2.6. Noninterference
An important theorem for the safety of program transformations/optimizations using
the results of dependency analysis is noninterference. Informally, it guarantees that if
there is a target term t depending on some variable x such that ∅ | x : τ̂ ′& ξ′ `te t : τ̂ & ξ
holds and the effect ξ′ of the variable is not encompassed by the resulting effect ξ (i.e.
∅ `sub ξ

′ 6v ξ), then t will always evaluate to the same normal form, regardless of the
value of x.
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Since we are working in a non-strict setting, our noninterference property will only
apply to the topmost constructors of the resulting values. This is because the effects
derived in the annotated type system only provide information about the evaluation to
weak head normal form. Nested terms might possess lower as well as higher classifica-
tions. In particular, the subterms with greater effects than their enclosing constructors
prevent us from making a more general statement because those can still depend on the
context whereas the top-level constructor cannot.

In the noninterference theorem presented for the SLam calculus by Heintze and Riecke,
this problem is circumvented by restricting the statement to so called transparent types,
where the annotations of nested components are decreasing when moving further in-
ward [5]. For example, a low-security constructor may only contain other low-security
values.

The following definition gives a formal description of what it means for two values to
have the same top-level constructor.

Definition 2.51. We say two normal forms v1, v2 ∈ Nf are similar, if their top level
constructors (and annotations, if present) match, i.e. if

• v1 = λx : τ̂ & ξ.t1 and v2 = λx : τ̂ & ξ.t2 for some t1, t2, or

• v1 = Λβ :: κ.t1 and v2 = Λβ :: κ.t2 for some t1, t2, or

• v1 = () and v2 = (), or

• v1 = inlτ (t1) and v2 = inlτ (t2) for some t1, t2, or

• v1 = inrτ (t1) and v2 = inrτ (t2) for some t1, t2, or

• v1 = (t1, t ′1) and v2 = (t2, t ′2) for some t1, t ′1, t2, t ′2, or

• v1 = ann`(v′1) and v2 = ann`(v′2) and v′1 and v′2 (which cannot be annotations
themselves) are similar.

We also use v1 ' v2 to denote the statement that v1 and v2 are similar.

When we have v1 ' v2 this means that these two values are indistinguishable with-
out further evaluation. This is the property that is guaranteed by our noninterference
theorem developed in this section.

We first show noninterference for normal forms.

Lemma 2.52. Let t be a target term such that ∅ | x : τ̂ ′&ξ′ `te t : τ̂&ξ and ∅ `sub ξ
′ 6v ξ.

If there is a t1 with ∅ | ∅ `te t1 : τ̂ ′ & ξ′ such that [t1 / x ]t ∈ Nf , then for all t2 with
∅ | ∅ `te t2 : τ̂ ′ & ξ′ we have [t2 / x ]t ∈ Nf and [t1 / x ]t ' [t2 / x ]t.

Proof. We first show that t 6= x by contradiction. Suppose that t = x, then by
lemma 2.35 there is a derivation

(x : τ̂ ′ & ξ′)(x) = τ̂ ′ & ξ′
[T-Var]

∅ | x : τ̂ ′ & ξ′ `te x : τ̂ ′ & ξ′ ∅ `sub τ̂
′ 6 τ̂ ∅ `sub ξ

′ v ξ
[T-Sub]

∅ | x : τ̂ ′ & ξ′ `te x : τ̂ & ξ
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contradicting our assumption ∅ `sub ξ
′ 6v ξ. A similar reasoning can be used to rule out

the case t = ann`(x).
This leaves us with either t = v or t = ann`(v) where v falls under one of the following

cases.

v = λy : τ̂1 & ξ1.t ′ We assume without loss of generality that x 6= y. Then, [t1/x ]v ∈ Nf ′
and [t2 / x ]v ∈ Nf ′, and we have [t1 / x ]v ' [t2 / x ]v.

v = Λβ :: κ.t ′ We have [t1 /x ]v = Λβ ::κ.[t1 /x ]t ′ ∈ Nf ′ and [t2 /x ]v = Λβ ::κ.[t2 /x ]t ′ ∈
Nf ′, therefore [t1 / x ]v ' [t2 / x ]v.

v = () It is easy to see that [t1 / x ]v = () ∈ Nf ′ and [t2 / x ]v = () ∈ Nf ′, and therefore
[t1 / x ]v ' [t2 / x ]v.

v = inlτ (t ′) We have [t1 /x ]v = inlτ ([t1 /x ]t ′) ∈ Nf ′ and [t2 /x ]v = inlτ ([t2 /x ]t ′) ∈ Nf ′,
therefore [t1 / x ]v ' [t2 / x ]v.

v = inrτ (t ′) Analogous to the previous case.

v = (t1, t2) Similar to the previous cases.

In each of the cases, we have [t1 / x ]v, [t2 / x ]v ∈ Nf ′ and [t1 / x ]v ' [t2 / x ]v, and
therefore also [t1 / x ]ann`(v) ' [t2 / x ]ann`(v). This lets us conclude [t2 / x ]t ∈ Nf and
[t1 / x ]t ' [t2 / x ]t.

The following lemma is used to “recover” a more general typing statement from a type
that is well-typed after a substitution.

Lemma 2.53. If we have a term t such that for all t ′ with ∅ | ∅ `te t ′ : τ̂ ′ & ξ′ we have
Σ | Γ̂ `te [t ′ / x ]t : τ̂ & ξ, then Σ | Γ̂, x : τ̂ ′ & ξ′ `te t : τ̂ & ξ.

Proof. See appendix, page 110.

The following lemma provides the noninterference property for an individual reduction
step.

Lemma 2.54. Let t be a target term such that ∅ | x : τ̂ ′&ξ′ `te t : τ̂&ξ and ∅ `sub ξ
′ 6v ξ.

Let t ′ be a target term.
If there is a t1 with ∅ | ∅ `te t1 : τ̂ ′ & ξ′ such that [t1 / x ]t → t ′, then there is a t ′′

such that ∅ | x : τ̂ ′ & ξ′ `te t ′′ : τ̂ & ξ and for all t2 with ∅ | ∅ `te t2 : τ̂ ′ & ξ′ we have
[t2 / x ]t → [t2 / x ]t ′′.

Proof. See appendix, page 114.

And finally, we extend this statement to a sequence of reduction steps using the
previous lemmas.
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Theorem 2.55 (Noninterference). Let t be a target term such that ∅ | x :τ̂ ′&ξ′ `te t :τ̂&ξ
and ∅ `sub ξ

′ 6v ξ. Let v be a value.
If there is a t1 with ∅ | ∅ `te t1 : τ̂ ′ & ξ′ such that [t1 / x ]t →∗ v, then there is a t ′ such

that for all t2 with ∅ | ∅ `te t2 : τ̂ ′&ξ′ we have [t2/x ]t →∗ [t2/x ]t ′ and [t1/x ]t ′ ' [t2/x ]t ′.

Proof. By induction on the length n of the reduction sequence [t1 / x ]t →∗ v.

n = 0 In this case, [t1 / x ]t = v ∈ Nf . By lemma 2.52, we have for all t2 with ∅ | ∅ `te
t2 : τ̂ ′ & ξ′, [t2 / x ]t ∈ Nf and [t1 / x ]t ' [t2 / x ]t. We choose t ′ = t and get
[t2 / x ]t →∗ [t2 / x ]t ′ and [t1 / x ]t ′ ' [t2 / x ]t ′.

n = n′ + 1 We have [t1 / x ]t → t3 and t3 →∗ v. By lemma 2.54, there is a t ′′ such
that ∅ | x : τ̂ ′ & ξ′ `te t ′′ : τ̂ & ξ holds and for all t2 with ∅ | ∅ `te t2 : τ̂ ′ & ξ′,
[t2 / x ]t → [t2 / x ]t ′′ holds. In particular, [t1 / x ]t → [t1 / x ]t ′′ and by lemma 2.47,
t3 = [t1 / x ]t ′′.
By induction, we get a t ′ such that for all t2 with ∅ | ∅ `te t2 : τ̂ ′ & ξ′ we have
[t2 / x ]t ′′ →∗ [t2 / x ]t ′ and [t1 / x ]t ′ ' [t2 / x ]t ′.
Combining this with the previous result, we can conclude for all t2 with ∅ | ∅ `te
t2 : τ̂ ′ & ξ′ that [t2 / x ]t →∗ [t2 / x ]t ′ holds.

The noninterference proofs crucially rely on the fact that the source term is well-typed,
and the additional assumption ∅ `sub ξ

′ 6v ξ stating that the effect of the variable in the
context is not encompassed by the effect of the term being evaluated.

By introducing a restriction to transparent types, we can recover the notion of non-
interference used for the SLam calculus. For example, if we have a transparent type
τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξ (i.e. ∅ `sub ξ1 v ξ and ∅ `sub ξ2 v ξ) and ∅ `sub ξ

′ 6v ξ holds, then we
also know ∅ `sub ξ

′ 6v ξ1 and ∅ `sub ξ
′ 6v ξ2. Otherwise, we would get ∅ `sub ξ

′ v ξ by
transitivity, contradicting the assumption. This means all prerequisites of the noninter-
ference theorem are still fulfilled.

Hence, it is possible in these cases to apply the noninterference theorem to the nested
(possibly unevaluated) subterms of a constructor in weak head normal form. It cannot
be applied to the bodies of lambda abstractions though, because it only deals with terms
depending on exactly one variable.
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3. Type Reconstruction

In this chapter we will present an algorithmic interpretation of the type and effect system
introduced in the previous chapter. We will first describe several important pieces that
eventually lead to the type reconstruction algorithm, before finishing the chapter with
its correctness proofs.

3.1. Equality of Dependency Terms
The type reconstruction algorithm is meant to handle polymorphic recursion through
Kleene-Mycroft-iteration. Such an algorithm based on fixpoint iteration needs a way to
efficiently decide whether two dependency terms are equal according to the denotational
semantics of the λt calculus.

A straightforward, yet inefficient way to decide semantic equivalence is to enumerate
all possible environments and compare the denotations of the two terms in all of these.
This leads to the following lemma.

Lemma 3.1. Semantic equality of two dependency terms ξ1 and ξ2 under an environ-
ment Σ is decidable.

Proof. First, we show by induction on sorts κ that the universes Vκ are finite.

κ = ? In this case we have Vκ = V? = L which by assumption is finite.

κ = κ1 ⇒ κ2 By induction, Vκ1 and Vκ2 are finite. Therefore, the set V Vκ1
κ2 of functions

from Vκ1 to Vκ2 is also finite (with cardinality |V Vκ1
κ2 | = |Vκ2 ||Vκ1 |). Since

Vκ1⇒κ2 ⊆ V
Vκ1
κ2 , it must also be finite.

For any environment ρ that is compatible with Σ we know dom(ρ) = dom(Σ) and for
all β ∈ dom(ρ) we have ρ(β) ∈ VΣ(β). dom(Σ) is finite because sort environments are
finite. Moreover, the image im(ρ) ⊆

⋃
{Vκ | κ ∈ im(Σ)} ⊆

⋃
{Vκ | κ ∈ AnnSort} is

finite because the image of Σ can only consist of finitely many sorts and a finite union
of finite sets is again finite, even though there are infinitely many sorts.

Hence, there can only be a finite number of environments ρ that are compatible with
Σ.

The denotation function J−Kρ is structurally recursive on terms and can therefore be
computed in finite time.

Thus, equality of two dependency terms ξ1 and ξ2 can be decided by enumerating
all environments ρ, computing the denotations Jξ1Kρ and Jξ2Kρ and then comparing the
results.
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As the universes can grow quite large, especially if the base lattice V? is already big
(think of the set of all program locations in slicing analysis), this method of deciding
equality is impractical to use in an actual algorithm.

The exception analysis by Koot [15] that was the starting point for this thesis therefore
computed term equality in a purely syntactic manner. In order to compare two exception
terms for equality, they are converted into a normal form and then checked for alpha
equivalence.

However, during the writing of this thesis it turned out that this approach is in-
complete. Two terms can have different canonical forms even though they are actually
semantically equivalent. This causes the reconstruction algorithm to diverge on certain
input programs. We will discuss this issue further in section 3.4 of this chapter after
presenting the parts involved in the issue.

In the remainder of this section, we will present a canonical form for λt-terms similar
to the one for the λ∪-calculus by Koot. While we are reusing the reduction rules and
normal forms of the λ∪-calculus, we tried to provide a more precise formulation for the
canonical ordering that is imposed on normal forms in order to make them unique.

Note that it suffers from the same problems as the one it is modeled on. Nevertheless
it is still useful in its current state by making the annotations computed by the analysis
smaller and more readable for humans. Therefore, canonical forms are not required for
the correct functioning of our version of the type reconstruction algorithm.

3.1.1. Reduction
The first step towards canonical forms is to provide syntactic transformations for manip-
ulating terms while maintaining semantic equivalence. Figure 3.1 shows the reduction
rules of the λt-calculus.

In addition to the β-reduction rule known from the simply-typed λ-calculus, there
are two reduction rules [R-Gamma1] and [R-Gamma2] similar to the ones used in the
λ∪-calculus [15]. Furthermore, the ACI1 axioms of the t-operator naturally give rise to
the corresponding syntactic transformations.

Besides the aforementioned reduction rules, we may also perform η-reduction and
η-expansion on λt-terms which is justified by the denotational semantics and by the
assumption of functional extensionality in the meta-theory.

Lemma 3.2. Suppose ξ is a λt-term such that Σ `s ξ : κ1 ⇒ κ2 holds. Then ξ and
λβ :: κ1.ξ β are semantically equal if β does not occur free in ξ.

Proof. Suppose ρ is an arbitrary environment that is compatible with Σ.

Jλβ :: κ1.ξ βKρ = λv ∈ Vκ1 . Jξ βKρ[β 7→v]

= λv ∈ Vκ1 . JξKρ[β 7→v] (JβKρ[β 7→v])
= λv ∈ Vκ1 . JξKρ (v) = JξKρ

The last step is justified by functional extensionality while the preceding steps follow
from the definition of the denotational semantics and lemma 2.18.
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ξ1 −→ ξ′1 [R-App1]
ξ1 ξ2 −→ ξ′1 ξ2

ξ2 −→ ξ′2 [R-App2]
ξ1 ξ2 −→ ξ1 ξ

′
2

ξ1 −→ ξ2 [R-Lam]
λβ :: κ.ξ1 −→ λβ :: κ.ξ2

[R-Beta]
(λβ :: κ.ξ1) ξ2 −→ [ξ2 / β ]ξ1

[R-Gamma1]
(ξ1 t ξ2) ξ −→ ξ1 ξ t ξ2 ξ

[R-Gamma2]
(λβ :: κ.ξ1) t (λβ :: κ.ξ2) −→ λβ :: κ.ξ1 t ξ2

ξ1 −→ ξ′1 [R-Join1]
ξ1 t ξ2 −→ ξ′1 t ξ2

ξ2 −→ ξ′2 [R-Join2]
ξ1 t ξ2 −→ ξ1 t ξ′2

Figure 3.1.: λt-calculus: reduction rules

The following lemma demonstrates the correctness of the above reduction rules with
respect to the denotational semantics.

Lemma 3.3. Let ξ1 and ξ2 be dependency terms such that Σ `s ξ1 : κ and Σ `s ξ2 : κ
hold for some Σ and κ.

If ξ1 → ξ2 holds, then Σ ` ξ1 ≡ ξ2.

Proof. By induction on ξ1 → ξ2. Let ρ be an arbitrary environment compatible with Σ.

[R-Beta] Using lemma 2.16, we can derive

J(λβ :: κ.ξ1) ξ2Kρ = Jλβ :: κ.ξ1Kρ (Jξ2Kρ) = (λv ∈ Vκ. Jξ1Kρ[β 7→v])(Jξ2Kρ)
= Jξ1Kρ[β 7→Jξ2Kρ] = J[ξ2 / β ]ξ1Kρ

[R-Gamma1]

J(ξ1 t ξ2) ξKρ = Jξ1 t ξ2Kρ (JξKρ) = (Jξ1Kρ t Jξ2Kρ)(JξKρ)
=(λv. Jξ1Kρ (v) t Jξ2Kρ (v))(JξKρ) = Jξ1Kρ (JξKρ) t Jξ2Kρ (JξKρ)
= Jξ1 ξKρ t Jξ2 ξKρ = Jξ1 ξ t ξ2 ξKρ

[R-Gamma2]

J(λβ :: κ.ξ1) t (λβ :: κ.ξ2)Kρ = Jλβ :: κ.ξ1Kρ t Jλβ :: κ.ξ2Kρ
=(λv ∈ Vκ. Jξ1Kρ[β 7→v]) t (λv ∈ Vκ. Jξ2Kρ[β 7→v])
=λv ∈ Vκ. Jξ1Kρ[β 7→v] t Jξ2Kρ[β 7→v]

=λv ∈ Vκ. Jξ1 t ξ2Kρ[β 7→v]

= Jλβ :: κ.ξ1 t ξ2Kρ
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[R-App1] We have ξ1 −→ ξ′1 as a premise. Using the induction hypothesis, we can
derive

Jξ1 ξ2Kρ = Jξ1Kρ (Jξ2Kρ) =
q
ξ′1
y
ρ

(Jξ2Kρ) =
q
ξ′1 ξ2

y
ρ

[R-App2] We have ξ2 −→ ξ′2 as a premise. Using the induction hypothesis, we can
derive

Jξ1 ξ2Kρ = Jξ1Kρ (Jξ2Kρ) = Jξ1Kρ (
q
ξ′2
y
ρ
) =

q
ξ1 ξ

′
2
y
ρ

[R-Join1/2] Analogous to the application cases.

[R-Lam] We have ξ1 −→ ξ2 as a premise. Using the induction hypothesis, we can derive

Jλβ :: κ.ξ1Kρ = λv ∈ Vκ. Jξ1Kρ[β 7→v] = λv ∈ Vκ. Jξ2Kρ[β 7→v] = Jλβ :: κ.ξ2Kρ

3.1.2. Canonical Forms
Equipped with the reduction rules and equivalences from the previous section we can
now introduce canonical forms.
Definition 3.4. A λt-term c of sort κ1 ⇒ · · · ⇒ κn ⇒ ? is in canonical form if it has
the following shape.

λβ1 : κ1. . . . .λβn : κn. k1 t · · · t km
where each of the k1, . . . , km is either a lattice element ` or a saturated function appli-
cation β c1 · · · caβ where β is a variable with arity aβ and c1, . . . , caβ are canonical forms
themselves.

We call the sub-terms k1, . . . , kn atoms.
Remark 3.5. There are a few things to note about canonical forms. First of all, they are
η-long, i.e. it is not possible to η-expand a sub-term without introducing additional β-
redexes. This is because all function applications are already fully saturated, lattice
elements are always η-long and all sub-terms that are possibly of function sort are
canonical forms themselves.

They are also βγ-normal since there are no applications to lambda terms or joins, and
no joins of lambda-terms.

However, we do not call them normal forms because the atoms can still be reordered
and thereby possibly further reduced due to the underlying algebraic structure. For
example, reordering could allow further joining of lattice elements that have not been
adjacent previously.

We originally planned to prove that every λt-term can be transformed into such a
canonical form by applying the given reduction rules and equivalences. However, due
to the fact that canonicalization is no longer required for the correct functioning of the
reconstruction algorithm, this goal became secondary and has ultimately been dropped
in favor of other parts of this thesis. We assume that such a proof will likely be similar to
a proof of strong normalization of the simply typed lambda-calculus while additionally
ensuring the particular shape of the normal form.
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idx(β,Σ1) < idx(β′,Σ2)
[CO-Var]

Σ1 | Σ2 ` β <C β′

Σ1, β1 :: κ1, ..., βn :: κn | Σ2, β
′
1 :: κ1, ..., β

′
n :: κn ` (k1, ..., km) <C (k ′1, ..., k′m′) [CO-Abs]

Σ1 | Σ2 ` λβ1 :: κ1. ... λβn :: κn .k1 t ... t km <C λβ
′
1 :: κ1. ... λβ

′
n :: κn .k ′1 t ... t k′m′

`1 <L `2 [CO-Lat]
Σ1 | Σ2 ` `1 <C `2

[CO-Lat-App]
Σ1 | Σ2 ` ` <C β c1 ... caβ

Σ1 | Σ2 ` (β, c1 , ..., caβ ) <C (β′, c′1, ..., c′aβ′ )
[CO-App]

Σ1 | Σ2 ` β c1 ... caβ <C β
′ c′1 ... c′aβ′

Σ1 | Σ2 ` x1 <C y1 [CO-Lex1]
Σ1 | Σ2 ` (x1, ..., xm) <C (y1, ..., yn)

n > 1 [CO-Lex2]
Σ1 | Σ2 ` () <C (y1, ..., yn)

Σ1 | Σ2 ` x1 ≡α y1 Σ1 | Σ2 ` (x2, ..., xm) <C (y2, ..., yn)
[CO-Lex3]

Σ1 | Σ2 ` (x1, ..., xm) <C (y1, ..., yn)

Figure 3.2.: Canonical order on dependency terms (Σ1 | Σ2 ` ξ1 <C ξ2)

3.1.3. Canonical Ordering
The canonical forms introduced in the previous subsection are unique up to the order
of the operands of the t-terms and further reduction using the join operation of the
underlying lattice.

In order to impose a unique order on the atoms in canonical forms, we need to fix
an arbitrary (strict) total order <L on the elements of the lattice L. For example, in
the case of finite and countably infinite lattices, we can simply identify every element
of L with a unique natural number through an injective function ι : L → N and define
x <L y ⇐⇒ ι(x) <N ι(y) for all x, y ∈ L.

We extend this strict total order to canonical forms and atoms using the rules in
figure 3.2. A judgment Σ1 | Σ2 ` ξ1 <C ξ2 states that ξ1 under the environment Σ1
is less than ξ2 under the environment Σ2. That also means that the canonical order
is only defined on canonical forms of the same sort. The environments may only differ
in the names of the variables, but not in the sorts they are mapped to. That means,
variables are identified by their position in the environment which indicates the level of
the lambda abstraction introducing a variable, similar to how De Bruijn indices work.

The inference rules of the order relation make use of judgments Σ1 | Σ2 ` ξ1 ≡α ξ2
which hold whenever ξ1 and [Σ1 / Σ2 ]ξ2 are alpha-equivalent, i.e. ξ1 and ξ2 are alpha-
equivalent after renaming all free variables in ξ2 (given by Σ2) to the corresponding name
in Σ1.

The strict total order <C also implies a non-strict order 6C . The judgment Σ1 | Σ2 `
ξ1 6C ξ2 holds if and only if Σ1 | Σ2 ` ξ1 <C ξ2 or Σ1 | Σ2 ` ξ1 ≡α ξ2.
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[CO-Var] Variables are compared by their index in the respective environment. Since
environments are extended on the right in λ-abstractions, this amounts to compar-
ing variables by their De Bruijn index in the terms we initially started comparing.
We cannot simply compare variables by name, because the order relation must be
invariant under alpha-equivalence. Otherwise, equal terms such as λx. x and λy. y
would not compare equal under the relation.

[CO-Abs] Normal forms are compared by first moving all abstractions in to the context
and then lexicographically comparing the atoms in the bodies. Note that since both
normal forms have the same type, they must have the same number of abstractions
only differing in the names.

[CO-Lat] Lattice elements are compared by the (arbitrary) total order <L that was
fixed in the beginning.

[CO-Lat-App] This rule ensures that lattice atoms always compare less than applica-
tion atoms.

[CO-App] Two saturated applications are compared lexicographically. Note that if the
first symbols are equal, they must be functions of the same sort, and hence all
pairs of arguments of the first and second atom have the same sorts.

[CO-Lex1] A sequence is lexicographically smaller than another if its first element is
less than the other’s first element.

[CO-Lex2] The empty sequence is less than any non-empty sequence.

[CO-Lex3] If the heads of two sequences are equal, their order is determined by their
tails.

Definition 3.6. A λt-term c = λβ1 :: κ1. . . . .λβn :: κn.k1 t · · · t km in canonical form
that is well-sorted under some environment Σ is said to be canonically ordered if

1. its atoms k1, . . . , km are canonically ordered and

2. Σ, βi :: κi | Σ, βi :: κi ` kj 6C kj+1 for all j ∈ {1, . . . ,m− 1} and

3. it is irreducible, i.e. all atoms that are lattice elements have been joined, and there
is only an atom that is equal to bottom if it is the only atom.

An atom k is canonically ordered if it is a lattice element, or if it is a saturated application
β c1 · · · caβ where each of the arguments c1, . . . , caβ is canonically ordered.

At this point we would like to provide a theorem stating that two semantically equiv-
alent λt-terms always reduce to the same canonically ordered forms. However, as men-
tioned earlier, this guarantee does not hold in the current formulation of the reduction
system. Fixing this problem has proven to be a task beyond the scope of this thesis.
Nonetheless, we will present some ideas in section 3.4.
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Definition 3.7. We denote by bbξccΣ the canonically ordered term derived from ξ under
the environment Σ.

We extend this definition to annotated types in the following way.

bbûnitccΣ = ûnit
bbτ̂1〈ξ1〉+ τ̂2〈ξ2〉ccΣ = bbτ̂1ccΣ〈bbξ1ccΣ〉+ bbτ̂2ccΣ〈bbξ2ccΣ〉
bbτ̂1〈ξ1〉 × τ̂2〈ξ2〉ccΣ = bbτ̂1ccΣ〈bbξ1ccΣ〉 × bbτ̂2ccΣ〈bbξ2ccΣ〉
bbτ̂1〈ξ1〉 → τ̂2〈ξ2〉ccΣ = bbτ̂1ccΣ〈bbξ1ccΣ〉 → bbτ̂2ccΣ〈bbξ2ccΣ〉
bb∀β :: κ.τ̂ccΣ = ∀β :: κ.bbτ̂ccΣ,β::κ

Remark 3.8. The environment Σ in the above definition is necessary because we need
to know the types of free variables in order to correctly perform η-expansion. This
information has been left implicit in the preceding definitions.

3.2. Ensuring Modularity
When designing the type reconstruction algorithm we have two goals in mind. Firstly,
every program typeable in the underlying type system should have a valid typing deriva-
tion in the type and effect system. This means our analysis should be a conservative
extension of the underlying type system.

Secondly, types assigned by the analysis should be as general as possible in order
to achieve modularity. Concretely, this means that a function’s type must be general
enough to be able to adapt to arguments with arbitrary annotations.

These two goals give rise to the notion of fully flexible and fully parametric types
defined by Holdermans and Hage [10]. Koot calls these types conservative and pattern
types respectively. We will adopt the latter notation.

Informally, an annotated type is a pattern type if it can be instantiated to any con-
servative type of the same shape and a conservative type is an analysis of an expression
that is able to cope with any arguments it might depend on.

These types are conservative in a sense because they make the least assumptions about
their arguments and therefore are a conservative estimate compared to other typings with
less degrees of freedom.

3.2.1. Pattern Types
For a pattern type to be instantiable to any conservative type, we first need to make sure
that all dependency annotations occurring in it can be instantiated to the corresponding
dependency terms in a matching conservative type.

This leads to the following definition of a pattern in the λt-calculus. It is based on
the similar definition by Koot which in turn is a special case of an earlier definition of a
pattern in higher-order unification theory [3, 17].

Definition 3.9. A λt-term is a pattern if it is of the form f β1 · · · βn where f is a free
variable and β1, . . . , βn are distinct bound variables.
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β 6∈ αi [P-Unit]
αi :: καi `p ûnit & β αi . β :: καi ⇒ ?

αi :: καi `p τ̂1 & ξ1 . βj :: κβj αi :: καi `p τ̂2 & ξ2 . γk :: κγk β 6∈ αi , βj , γk [P-Sum]
αi :: καi `p τ̂1〈ξ1〉+ τ̂2〈ξ2〉& β αi . β :: καi ⇒ ?, βj :: κβj , γk :: κγk

αi :: καi `p τ̂1 & ξ1 . βj :: κβj αi :: καi `p τ̂2 & ξ2 . γk :: κγk β 6∈ αi , βj , γk [P-Prod]
αi :: καi `p τ̂1〈ξ1〉 × τ̂2〈ξ2〉& β αi . β :: καi ⇒ ?, βj :: κβj , γk :: κγk

∅ `p τ̂1 & ξ1 . βj :: κβj αi :: καi , βj :: κβj `p τ̂2 & ξ2 . γk :: κγk β 6∈ αi , βj , γk [P-Arr]
αi :: καi `p ∀βj :: κβj .τ̂1〈ξ1〉 → τ̂2〈ξ2〉& β αi . β :: καi ⇒ ?, γk :: κγk

Figure 3.3.: Pattern types (Σ `p τ̂ & ξ . Σ′)

A unification problem of the form ∀β1 · · ·βn.f β1 · · ·βn = ξ where the left-hand side
is a pattern is called pattern unification.

Remark 3.10. A pattern unification problem ∀β1 · · ·βn.f β1 · · ·βn = ξ has a unique most
general solution, namely the substitution [f 7→ λβ1. · · ·λβn.ξ] [3].

The definition of a pattern is then extended to annotated types using the rules from
figure 3.3. Our definition is more precise than the ones from the previous work it is
based on in that it makes explicit which variables are expected to be bound and which
are free. We require that all variables with different names in the definition of these
rules are distinct from each other.

Definition 3.11. An type and effect pair τ̂ & ξ is a pattern type under the sort envi-
ronment Σ if the judgment Σ `p τ̂ & ξ .Σ′ holds for some Σ′. We call the variables in Σ
argument variables and the variables in Σ′ pattern variables.

In such a judgment Σ `p τ̂ & ξ .Σ′, the context Σ contains the types of variables that
have already been bound earlier on the same chain of function arrows1. They correspond
to the annotations of preceding arguments. On the other hand, the pattern variables
Σ′ are those free variables of τ̂ that are not part of Σ and that will later be assigned in
order to instantiate a pattern to a conservative type.

One small but important detail in this definition is that, strictly speaking, the ξ in a
pattern type is not always a pattern as defined in definition 3.9. Even though it is of
the form f β1 · · ·βn, and the β1, . . . , βn are always bound higher up in the type, f might
also be bound if the pattern occurs as an argument of another function pattern.

However, as we will later see when discussing the type reconstruction algorithm, f will
be instantiated with a fresh variable, and thereby become free before pattern unification
is performed.

1By a chain of function arrows we mean a type of the form τ̂1 → ... → τ̂n .
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Example 3.12. A simple pattern type with the pattern variables β :: ?⇒ ? and β′ :: ?⇒
?⇒ ? is

∀β1 :: ?.ûnit〈β1〉 → (∀β2 :: ?.ûnit〈β2〉 → ûnit〈β′ β1 β2〉)〈β β1〉

as witnessed by the following derivation tree (where sort signatures have been omitted
as they are the same as in the above type signature).

∅ `p ûnit & β1 . β1

∅ `p ûnit & β2 . β2 β1, β2 `p ûnit & β′ β1 β2 . β
′

β1 `p ∀β2.ûnit〈β2〉 → ûnit〈β′ β1 β2〉& β β1 . β, β
′

∅ `p ∀β1.ûnit〈β1〉 → (∀β2.ûnit〈β2〉 → ûnit〈β′ β1 β2〉)〈β β1〉& β′′ . β′′, β, β′

Note that since β1 is quantified on the same function arrow chain, it is passed on to the
second function arrow. However, it is not propagated into the second argument.

In general, annotations on the return type may depend on the annotations of all
previous arguments while annotations of the arguments may not. This prevents any
dependency between the annotations of arguments and guarantees that they are as
permissive as possible.

This is also why pattern variables in a covariant position are passed on to the next
higher level while pattern variables in arguments are quantified in the enclosing function
arrow. This allows the caller of a function to instantiate the effects of the parameters to
the actual arguments.
Example 3.13. As another example, consider the underlying type (unit→ unit)→ unit
and a matching pattern type

∀β1 :: ?.∀β2 :: ?⇒ ?.(∀β3 :: ?.unit〈β3〉 → unit〈β2 β3〉)〈β1〉 → unit〈β4 β1 β2〉

which contains a single pattern variable β4 :: ? ⇒ (? ⇒ ?) ⇒ ?. This is an example
of a higher-order effect operator. It arises because a general analysis of a higher order
function is abstracted over the analysis of its argument, which itself is represented as an
effect operator.

The pattern variables β1 and β2 of the function parameter are quantified on the outer
function arrow. Informally, this is because the pattern must be valid for all possible
arguments it might receive, hence the universal quantification.

The following lemma characterizes how the free variables in a pattern type relate to
the argument and pattern variables of the corresponding judgment.

Lemma 3.14. If for an annotated type τ̂ , a dependency term ξ and sort environments
Σ,Σ′ the judgment Σ `p τ̂ & ξ . Σ′ holds, then

1. dom(Σ) ∩ dom(Σ′) = ∅,

2. fav(τ̂) ∪ fav(ξ) = dom(Σ) ∪ dom(Σ′), and

3. Σ,Σ′ `s ξ : ? and Σ,Σ′ `wft τ̂ .

Proof. See appendix, page 118.
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In particular, this lemma lets us conclude that for patterns occurring in argument
positions, i.e. where the sort environment Σ is empty, the free variables of the pattern
type are exactly the pattern variables of that type.

Moreover, pattern types are unique up to alpha-equivalence, as the following lemma
demonstrates.

Lemma 3.15. Suppose τ̂ and τ̂ ′ are annotated types and ξ and ξ′ are dependency terms
such that bτ̂c = bτ̂ ′c and Σ `p τ̂ & ξ . Σ′ and Σ `p τ̂ ′ & ξ′ . Σ′′ for some Σ, Σ′ and Σ′′.
Then Σ′ and Σ′′ are equal up to renaming, τ̂ ≡α [Σ′ / Σ′′ ]τ̂ ′ and ξ ≡α [Σ′ / Σ′′ ]ξ′, i.e.
they are alpha-equivalent up to the names of the pattern variables.2

Proof. See appendix, page 120.

3.2.2. Conservative Types
As we stated earlier, a conservative function type makes the least assumptions over its
arguments. Formally, this means that arguments of conservative functions are pattern
types. We will later see that a pattern type can be instantiated to any conservative
type of the same shape. On the other hand, non-functional conservative types are not
constrained in their annotations. These characteristics are captured by the following
definition based on conservative types by Koot and fully flexible types by Holdermans
and Hage.

Definition 3.16. An annotated type τ̂ is conservative if

1. τ̂ = ûnit, or

2. τ̂ = τ̂1〈ξ1〉+ τ̂2〈ξ2〉 and both τ̂1 and τ̂2 are conservative, or

3. τ̂ = τ̂1〈ξ1〉 × τ̂2〈ξ2〉 and both τ̂1 and τ̂2 are conservative, or

4. τ̂ = ∀βj :: κj .τ̂1〈ξ1〉 → τ̂2〈ξ2〉 and both
a) ∅ `p τ̂1 & ξ1 . βj :: κj and
b) τ̂2 is conservative.

A type and effect pair τ̂ & ξ is conservative if τ̂ is conservative.
A type and effect environment Γ̂ is conservative if for all x ∈ dom(Γ̂), Γ̂(x) is conser-

vative.

Example 3.17. The following type signature for the function f is a conservative type
that takes the function type from example 3.12 as an argument.

f : ∀β :: ?⇒ ?.∀β′ :: ?⇒ ?⇒ ?.∀β3 :: ?.
(∀β1 :: ?.ûnit〈β1〉 → (∀β2 :: ?.ûnit〈β2〉 → ûnit〈β′ β1 β2〉)〈β β1〉)〈β3〉
→ ûnit〈β3 t β ⊥ t β′ ⊥ `〉&⊥

2The notation [Σ′/Σ′′] is used to denote a substitution that replaces every variable in Σ′′ with the
corresponding variable from Σ′
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Note that the pattern variables of the argument have been bound in the top-level function
type. This allows callers of f to instantiate these patterns accordingly. Suppose there is
another function g of the following (conservative) type.

g : ∀(β1 :: ?).ûnit〈β1〉 → (∀(β2 :: ?).ûnit〈β2〉 → ûnit〈β2〉)〈⊥〉&⊥

Since the type of g and the formal parameter of f have the same shape, we can de-
rive the type of the application f g by instantiating the pattern variables with the
substitution [β 7→ λβ1.⊥, β′ 7→ λβ1.λβ2.β2, β3 7→ ⊥] obtained by performing pattern
unification. Applying this substitution to the return annotation of the function f yields
⊥ t (λβ1.⊥) ⊥ t (λβ1. λβ2. β2) ⊥ `. Further normalization of this dependency term
results in `.

The following lemma establishes that a pattern type is always conservative.

Lemma 3.18. Let τ̂ be an annotated type, ξ a dependency term and Σ,Σ′ sort environ-
ments such that Σ `p τ̂ & ξ . Σ′ holds. Then τ̂ is conservative.

Proof. By induction on the derivation of Σ `p τ̂ & ξ . Σ′.

[P-Unit] We have τ̂ = ûnit which is conservative by definition.

[P-Sum] We have τ̂ = τ̂1〈ξ1〉 + τ̂2〈ξ2〉. By induction, both τ̂1 and τ̂2 are conservative,
and therefore τ̂ is conservative.

[P-Prod] Analogous to the previous case.

[P-Arr] We have τ̂ = ∀βj :: κβj .τ̂1〈ξ1〉 → τ̂2〈ξ2〉 which is conservative because ∅ `p
τ̂1&ξ1.βj :: κβj holds by assumption of [P-Arr] and τ̂2 is conservative by induction.

Moreover, substitutions preserve conservativeness.

Lemma 3.19. Let τ̂ be a conservative type and θ a substitution on annotation variables.
Then θτ̂ is also conservative.

Proof. By induction on τ̂ . Since τ̂ is conservative, one of the following cases holds

τ̂ = ûnit Trivial, since θûnit = ûnit.

τ̂ = τ̂1〈ξ1〉+ τ̂2〈ξ2〉 By induction, θτ̂1 and θτ̂2 are conservative. Therefore, θ(τ̂1〈ξ1〉 +
τ̂2〈ξ2〉) = θτ̂1〈θξ1〉+ θτ̂2〈θξ2〉 is also conservative.

τ̂ = τ̂1〈ξ1〉 × τ̂2〈ξ2〉 Analogous to the previous case.

τ̂ = ∀βj :: κβj .τ̂1〈ξ1〉 → τ̂2〈ξ2〉 We have ∅ `p τ̂1 & ξ1 . βj :: κβj and τ̂2 is conservative.
By lemma 3.14, fav(τ̂1) ∪ fav(ξ1) = βj . Define θ′ := θ �dom(θ)\βj

. Then, θτ̂ =
∀βj :: κβj .τ̂1〈ξ1〉 → θ′τ̂2〈θ′ξ2〉. By induction, θ′τ̂2 is conservative. Hence θτ̂ , is also
conservative.
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β fresh [C-Unit]
αi :: καi `c unit : ûnit & β αi . β :: καi ⇒ ?

αi :: καi `c τ1 : τ̂1 & ξ1 . βj :: κβj αi :: καi `c τ2 : τ̂2 & ξ2 . γk :: κγk β fresh
[C-Sum]

αi :: καi `c τ1 + τ2 : τ̂1〈ξ1〉+ τ̂2〈ξ2〉& β αi . β :: καi ⇒ ?, βj :: κβj , γk :: κγk

αi :: καi `c τ1 : τ̂1 & ξ1 . βj :: κβj αi :: καi `c τ2 : τ̂2 & ξ2 . γk :: κγk β fresh
[C-Prod]

αi :: καi `c τ1 × τ2 : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& β αi . β :: καi ⇒ ?, βj :: κβj , γk :: κγk

`c τ1 : τ̂1 & ξ1 . βj :: κβj αi :: καi , βj :: κβj `c τ2 : τ̂2 & ξ2 . γk :: κγk β fresh
[C-Arr]

αi :: καi `c τ1 → τ2 : ∀βj :: κβj .τ̂1〈ξ1〉 → τ̂2〈ξ2〉& β αi . β :: καi ⇒ ?, γk :: κγk

Figure 3.4.: Type completion (Σ `c τ : τ̂ & ξ . Σ′)

3.2.3. Type Completion
We can extend the previous definition of pattern types to the type completion relation
shown in figure 3.4. It relates every underlying type τ with a pattern type τ̂ such that
τ̂ erases to τ . It is defined through judgments Σ `c τ : τ̂ & ξ .Σ′ with the meaning that
under the sort environment Σ, τ is completed to the annotated type τ̂ and the effect ξ
containing the pattern variables Σ′. The completion relation can also be interpreted as
a function taking Σ and τ as arguments and returning τ̂ , ξ and Σ′.

The following lemma establishes basic correctness properties of the type completion
relation. In particular, the completed type is always a pattern type.

Lemma 3.20. Suppose there are Σ, τ , τ̂ , ξ and Σ′ such that Σ `c τ : τ̂ & ξ . Σ′ holds,
then

1. τ = bτ̂c, and

2. τ̂ & ξ is a pattern type, i.e. Σ `p τ̂ & ξ . Σ′ holds

Proof. By induction on the derivation tree of Σ `c τ : τ̂ & ξ . Σ′.

[C-Unit] By definition of the rule [C-Unit], Σ = αi :: καi , τ = unit, τ̂ = ûnit, ξ = β αi
and Σ′ = β :: καi ⇒ ?.
By definition, bûnitc = unit and by rule [P-Unit], Σ `p τ̂ & ξ . Σ′ holds.

[C-Sum] By definition of the rule [C-Sum], Σ = αi :: καi , τ = τ1+τ2, τ̂ = τ̂1〈ξ1〉+ τ̂2〈ξ2〉,
ξ = β αi and Σ′ = β :: καi ⇒ ?, βj :: κβj , γk :: κγk .
The premises are αi :: καi `c τ1 : τ̂1&ξ1.βj :: κβj and αi :: καi `c τ2 : τ̂2&ξ2.γk :: κγk .
By induction, we have bτ̂1c = τ1 and bτ̂2c = τ1, and therefore bτ̂1〈ξ1〉+ τ̂2〈ξ2〉c =
bτ̂1c+bτ̂2c = τ1 +τ2. Moreover, we get αi :: καi `p τ̂1 &ξ1 .βj :: κβj and αi :: καi `p
τ̂2 & ξ2 . γk :: κγk from which we can conclude αi :: καi `p τ̂1〈ξ1〉 + τ̂2〈ξ2〉 & β αi .
β :: καi ⇒ ?, βj :: κβj , γk :: κγk by applying rule [P-Sum].
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[C-Prod] Analogous to [C-Sum].

[C-Arr] In this case we have Σ = αi :: καi , τ = τ1 → τ2, τ̂ = ∀βj :: κβj .τ̂1〈ξ1〉 → τ̂2〈ξ2〉,
ξ = β αi and Σ′ = β :: καi ⇒ ?, γk :: κγk .
The premises are ∅ `c τ1:τ̂1&ξ1.βj :: κβj and αi :: καi , βj :: κβj `c τ2:τ̂2&ξ2.γk :: κγk .
By induction, we have bτ̂1c = τ1 and bτ̂2c = τ1, and therefore

b∀βj :: κβj .τ̂1〈ξ1〉 → τ̂2〈ξ2〉c = bτ̂1〈ξ1〉 → τ̂2〈ξ2〉c = bτ̂1c → bτ̂2c = τ1 → τ2.

Moreover, we get ∅ `p τ̂1 & ξ1 . βj :: κβj and αi :: καi , βj :: κβj `p τ̂2 & ξ2 . γk :: κγk

from which we can conclude by [P-Arr]

αi :: καi `p ∀βj :: κβj .τ̂1〈ξ1〉 → τ̂2〈ξ2〉& β αi . β :: καi ⇒ ?, γk :: κγk .

Lastly, we revisit the examples from the previous sections and show how a pattern
type can be mechanically derived from an underlying type.
Example 3.21. In example 3.12 we presented a pattern type for the underlying type
unit→ unit→ unit. Using the type completion relation, we can derive the pattern type
without having to guess. This is because the components τ̂ , ξ and Σ′ in a judgment
Σ `c τ : τ̂ & ξ .Σ′ are uniquely determined by Σ and τ from looking at the syntax alone.

∅ `c unit : ûnit & β1 . β1

∅ `c unit : ûnit & β2 . β2 β1, β2 `c unit : ûnit & β′ β1 β2 . β
′

β1 `c unit→ unit : ∀β2.ûnit〈β2〉 → ûnit〈β′ β1 β2〉& β β1 . β, β
′

∅ `c unit→ unit→ unit : ∀β1.ûnit〈β1〉 → (∀β2.ûnit〈β2〉 → ûnit〈β′ β1 β2〉)〈β β1〉& β3 . β, β
′, β3

The resulting pattern type contains three pattern variables, β :: ?⇒ ?, β′ :: ?⇒ ?⇒ ?
and β3 :: ?. Since the initial sort environment was empty, these are also the only free
variables of the pattern type.

A more involved example is the completion of the underlying type ((unit × unit →
unit + unit)→ unit)→ unit. We omit the derivation tree due to its size.

∀β5 β
′
4.

(∀β4 β
′
1 β
′
2 β
′
3.

(∀β1 β2 β3.(unit〈β1〉 × unit〈β2〉)〈β3〉
→ (unit〈β′1 β1 β2 β3〉+ unit〈β′2 β1 β2 β3〉)〈β′3 β1 β2 β3〉)〈β4〉

→ unit〈β′4 β4 β
′
1 β
′
2 β
′
3〉)〈β5〉

→ unit〈β6 β5 β
′
4〉& β7

Here, only β6 :: ? ⇒ (? ⇒ (? ⇒ ? ⇒ ? ⇒ ?) ⇒ (? ⇒ ? ⇒ ? ⇒ ?) ⇒ (? ⇒ ? ⇒
?⇒ ?)⇒ ?)⇒ ? and β7 :: ? are pattern variables because the return annotation of the
topmost function arrow and the annotation of the function itself are the only things in
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this type that may instantiated in order to adapt to a conservative type. Functions that
are consumed as arguments must always be as general as possible.

The complicated sort of β6 arises from the fact that the outermost function might call
its argument, which in turn needs to be able to adapt to any function it gets applied to.

3.2.4. Least Types
Based on the type completion relation we can define least type completions. These are
conservative types that are subtypes of all other conservative types of the same shape.
Therefore, all annotations occurring in positive positions on the top level function arrow
chain must also be least. We do not need to consider arguments here because those are
by definition equal up to alpha-conversion due to being pattern types.

Since our annotations are based on bounded lattices, we know by definition that there
are least elements. The following definition gives a way of constructing terms in the
λt-calculus corresponding to these least elements.

Definition 3.22 (least annotations). We define the least annotation term of sort κ
recursively as

⊥? = ⊥
⊥κ1⇒κ2 = λβ : κ1.⊥κ2 .

The following lemma shows that these terms indeed correspond to the least elements
of the lattices.

Lemma 3.23. For all sorts κ and all sort environments Σ, least annotations terms ⊥κ
are

1. well-sorted, i.e. Σ `s ⊥κ : κ and

2. least w.r.t. the subsumption relation Σ `sub ξ1 v ξ2.

Proof. 1. We show by induction on κ that Σ `s ⊥κ : κ holds for all Σ.
κ = ? By definition Σ `s ⊥ : ?.
κ = κ1 ⇒ κ2 By the induction hypothesis, Σ, β :: κ1 `s ⊥κ2 : κ2. Therefore we can

conclude Σ `s λβ :: κ1.⊥κ2 : κ1 ⇒ κ2.

2. We show by induction on κ that J⊥κKρ = ⊥ ∈ Vκ, i.e. that it is the bottom value
of lattice Vκ for all environments ρ.
Suppose ρ is an arbitrary environment.
κ = ? By definition, J⊥κKρ = J⊥Kρ = ⊥ ∈ V?.
κ = κ1 ⇒ κ2 J⊥κ1⇒κ2Kρ = Jλβ :: κ1.⊥κ2Kρ = λv ∈ Vκ1 . J⊥κ2Kρ[β 7→v] = λv ∈ Vκ1 .⊥

which is exactly the bottom value of the pointwise extension lattice
Vκ1 → Vκ2 .
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Consequentially, for all environments ρ and annotation terms ξ of sort κ we have
J⊥κKρ = ⊥ v JξKρ. Since this holds in particular for all environments compatible
with an arbitrary Σ, we can conclude Σ `sub ⊥κ v ξ.

Based on our definition of least annotations, we can define the least type completions
as follows.

Definition 3.24 (least types). We define the least completion of type τ (see figure 3.4)
by substituting all free variables in the completion with the least annotation of the
corresponding sort, i.e.

⊥τ = [⊥κi / βi ]τ̂ for ∅ `c τ : τ̂ & ξ . βi :: κi .

Note that we can ignore the effect part of the type completion in the above definition
because it is always ⊥?. No matter which completion rules applies, there is some β ∈ βi
such that ξ = β because the initial sort environment is always empty. Since we instantiate
all βi to the corresponding bottom value, we instantiate β to ⊥ in particular.

We proceed by showing that least type completions are well-formed, conservative types
of the correct shape.

Lemma 3.25. For all types τ of the underlying type system,

1. ⊥τ is conservative,

2. Σ `wft ⊥τ for all sort environments Σ, i.e. ⊥τ is well-formed in any environment,
and

3. b⊥τc = τ .

Proof. Recall the definition of ⊥τ :

⊥τ = [⊥κi / βi ]τ̂ for ∅ `c τ : τ̂ & ξ . βi :: κi .

We define the substitution θ = [⊥κi / βi ] : dom(βi :: κi) → AnnTm. By lemma 3.23,
the terms in the image of θ are always well-sorted.

By lemma 3.20, we have ∅ `p τ̂&ξ .βi :: κi and bτ̂c = τ . Since θ only applies to nested
annotations, but does not change the shape of the type, we can conclude bθτ̂c = τ . Note
that fav(θβ) = ∅ for all β and fav(τ̂) = βi by lemma 3.14.

By lemma 3.18, τ̂ is conservative and βi :: κi `wft τ̂ . By lemma 2.28, ∅ `wft θτ̂ and
by lemma 3.19, θτ̂ is conservative. By lemma 2.22 Σ `wft θτ̂ holds for any Σ. Since
⊥τ = θτ̂ , this completes the proof.

We demonstrate that the given definition of least type completions indeed leads to
least types with respect to the subtyping relation. For this, we need a slightly more
general statement.
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Lemma 3.26. Suppose there are Σ, τ , τ̂ , ξ and Σ′ such that Σ `c τ : τ̂ & ξ . Σ′ holds.
Furthermore, let θ : dom(Σ′)→ AnnTm denote a substitution defined by θ(β) = ⊥Σ′(β).
Then, for all conservative τ̂ ′ and sort environments Σ′′ such that bτ̂ ′c = τ and Σ′′ `wft τ̂

′,
we have

1. Σ′′ `sub θτ̂ 6 τ̂ ′ and

2. Σ′′ `sub θξ v ⊥.

Proof. See appendix, page 121.

The previous lemma established that substituting the pattern variables of a pattern
type in an arbitrary environment with the least annotations of the right sort always yields
the least type under that environment. We now relate this statement to the definition
of ⊥τ .

Lemma 3.27. For all types τ , the least type completions ⊥τ is least w.r.t. the subtyping
relation 6, i.e. for all conservative types τ̂ with bτ̂c = τ and sort environments Σ such
that Σ `wft τ̂ , we have Σ `sub ⊥τ 6 τ̂ .

Proof. Let Σ be an arbitrary sort environment and τ̂ ′ be a conservative type such that
bτ̂ ′c = τ . Furthermore, there are ξ and τ̂ such that ∅ `c τ : τ̂ & ξ . Σ′ holds. By
lemma 3.26, we have Σ `sub θτ̂ 6 τ̂ where θ is the substitution as defined in the lemma.
We note that this exactly the same substitution that is used in the definition of ⊥τ ,
thereby completing the proof.

Example 3.28. As an example, let us consider again the type ((unit × unit → unit +
unit) → unit) → unit. The least completion is obtained by instantiating all its pattern
variables with least annotations of the correct sort, resulting in the following type (with
further reduction of dependency terms).

∀β5 β
′
4.

(∀β4 β
′
1 β
′
2 β
′
3.

(∀β1 β2 β3.(unit〈β1〉 × unit〈β2〉)〈β3〉
→ (unit〈β′1 β1 β2 β3〉+ unit〈β′2 β1 β2 β3〉)〈β′3 β1 β2 β3〉)〈β4〉

→ unit〈β′4 β4 β
′
1 β
′
2 β
′
3〉)〈β5〉

→ unit〈⊥〉&⊥

3.3. Reconstruction Algorithm
Having defined all the preliminaries, we can now move on to the type reconstruction
algorithm that is performing the actual analysis. At its core lies the algorithm R shown
in figure 3.5. The input of the algorithm is a triple (Γ̂,Σ, t) consisting of a well-typed
source term t, a type and effect environment Γ̂ providing the types and effects of the
free term variables in t and a sort environment Σ mapping each free annotation variable
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in scope to its sort. It returns a triple t̂ : τ̂ & ξ consisting of an elaborated term t̂ in the
target language (that erases to the source term t), an annotated type τ̂ and an effect ξ
such that Σ | Γ̂ `te t̂ : τ̂ & ξ holds. In the definition of R, we write Γ instead of Γ̂ because
we are only dealing with one kind of type environment.

The algorithm relies on the invariant that all types in the type environment and the
inferred type must be conservative. In the version by Koot, all inferred effects (including
those nested as annotations in types) had to be canonically ordered as well. But as
it turned out that this canonically ordered form was not enough for deciding semantic
equality, we lifted this requirement. We still marked those places in the algorithm where
canonicalization would have occurred, but the actual effects of this operation do not
matter as long as the dependency terms remain equivalent.

Moreover, we will later present a partial proof that R computes the least conservative
type and effect that can be assigned to the source term, under some restrictions.

The two simplest cases of the algorithm are variables and the unit constructor. The
former are simply looked up in the environment, and the latter receives the least possible
effect ⊥.

In the case of annotations ann`(t), the required annotation ` is joined with the effect
of the term t. This ensures that the resulting effect is at least as large as t, but not
larger than necessary.

Similarly, the implementation for seq t1 t2 simply joins the effects of the expression t1
being evaluated and the expression t2 being returned.

The effects of product and sum constructors become the annotations in the corre-
sponding types. In the latter case, the part of the sum that is not given is assigned the
least possible type and effect. Note that regardless of the effects of the components, the
effect of the newly created constructor is always bottom.

When eliminating a product, it must first be evaluated and therefore the top level
effect is always propagated to the result and combined with the effect of the component
we are projecting. The effect of the unused component is thrown away.

In contrast to the construction of a product, the analysis of projections must deal
with arbitrary annotations on the product. Even though products are always created
with the effect ⊥, that effect could be enlarged directly through annotations ann`(t) or
indirectly through joining two branches of a case statement.

Case elimination of sums is a bit more involved. The resulting effect is the least upper
bound of the effects of both branches and the effect of the sum itself. The types and
effects of the alternatives of the sum are made known to the branches when reconstructing
their types. Whether or not the effect of a value stored in a sum is part of the resulting
effect therefore depends on whether the corresponding case branch makes use of this
value.

Furthermore, we must ensure that all nested annotations of the types of the branches
are compatible. This is done by defining the least upper bound t on types as shown in
figure 3.6.

The algorithm for computing the least upper bound of types requires that both types
are conservative, have the same shape and use the same names for bound variables.
The latter can be trivially ensured by performing α-conversion while the former two
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R : TyEffEnv× SortEnv×Tm→ T̂m× T̂y×AnnTm
R(Γ; Σ; x) = x : Γ(x)
R(Γ; Σ; ()) = () : ûnit &⊥
R(Γ; Σ; ann`(t)) =

let t̂ : τ̂ & ξ = R(Γ; Σ; t)
in ann`(t̂) : τ̂ & bbξ t `ccΣ
R(Γ; Σ; seq t1 t2) =

let t̂1 : τ̂1 & ξ1 = R(Γ; Σ; t1)
t̂2 : τ̂2 & ξ2 = R(Γ; Σ; t2)

in seq t̂1 t̂2 : τ̂2 & bbξ1 t ξ2ccΣ
R(Γ; Σ; (t1, t2)) =

let t̂1 : τ̂1 & ξ1 = R(Γ; Σ; t1)
t̂2 : τ̂2 & ξ2 = R(Γ; Σ; t2)

in (t̂1, t̂2) : τ̂1〈ξ1〉 × τ̂2〈ξ2〉&⊥
R(Γ; Σ; inlτ2(t)) =

let t̂ : τ̂1 & ξ1 = R(Γ; Σ; t)
in inlτ2(t̂) : τ̂1〈ξ1〉+⊥τ2〈⊥〉&⊥
R(Γ; Σ; inrτ1(t)) =

let t̂ : τ̂2 & ξ2 = R(Γ; Σ; t)
in inrτ1(t̂) :⊥τ1〈⊥〉+ τ̂2〈ξ2〉&⊥
R(Γ; Σ; proji(t)) =

let t̂ : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξ = R(Γ; Σ; t)
in proji(t̂) : τ̂i & bbξ t ξiccΣ
R(Γ; Σ; case t1 of { inl(x)→ t2;

inr(y)→ t3}) =

let t̂1 : τ̂〈ξ〉+ τ̂ ′〈ξ′〉& ξ1 = R(Γ; Σ; t1)
t̂2 : τ̂2 & ξ2 = R(Γ, x : τ̂ & ξ; Σ; t2)
t̂3 : τ̂3 & ξ3 = R(Γ, y : τ̂ ′ & ξ′; Σ; t3)

in case t̂1 of {inl(x)→ t̂2; inr(y)→ t̂3}
: bbτ̂2 t τ̂3ccΣ & bbξ1 t ξ2 t ξ3ccΣ

R(Γ; Σ;λx : τ1.t) =
let τ̂1 & β . βi :: κi = C([ ]; τ1)

Γ′ = Γ, x : τ̂1 & β

Σ′ = Σ, βi :: κi
t̂ : τ̂2 & ξ2 = R(Γ′; Σ′; t)

in Λβi :: κi .λx : τ̂1 & β.̂t
: ∀βi :: κi .τ̂1〈β〉 → τ̂2〈ξ2〉&⊥

R(Γ; Σ; t1 t2) =
let t̂1 : τ̂1 & ξ1 = R(Γ; Σ; t1)

t̂2 : τ̂2 & ξ2 = R(Γ; Σ; t2)
τ̂ ′2〈β〉 → τ̂〈ξ〉 . βi = I(τ̂1)
θ = [β 7→ ξ2 ] ◦M([ ]; τ̂ ′2; τ̂2)

in t̂1 〈θβi〉 t̂2 : bbθτ̂ccΣ & bbξ1 t θξccΣ
R(Γ; Σ;µx : τ.t) =

do i; τ̂0 & ξ0 ← 0;⊥τ &⊥
repeat t̂i+1 : τ̂i+1 & ξi+1

← R(Γ, x : τ̂i & ξi ; Σ; t)
i ← i + 1

until (τ̂i−1 ≡ τ̂i ∧ ξi−1 ≡ ξi)
return (µx : τ̂i & ξi .̂t) : τ̂i & ξi

Figure 3.5.: Type reconstruction algorithm (R)

t : T̂y× T̂y→ T̂y
ûnit t ûnit = ûnit
(τ̂1〈ξ1〉+ τ̂2〈ξ2〉) t (τ̂ ′1〈ξ′1〉+ τ̂ ′2〈ξ′2〉) = (τ̂1 t τ̂ ′1)〈ξ1 t ξ′1〉+ (τ̂2 t τ̂ ′2)〈ξ2 t ξ′2〉
(τ̂1〈ξ1〉 × τ̂2〈ξ2〉) t (τ̂ ′1〈ξ′1〉 × τ̂ ′2〈ξ′2〉) = (τ̂1 t τ̂ ′1)〈ξ1 t ξ′1〉 × (τ̂2 t τ̂ ′2)〈ξ2 t ξ′2〉
(τ̂1〈β〉 → τ̂2〈ξ2〉) t (τ̂1〈β〉 → τ̂ ′2〈ξ′2〉) = τ̂1〈β〉 → (τ̂2 t τ̂ ′2)〈ξ2 t ξ′2〉
(∀β :: κ.τ̂) t (∀β :: κ.τ̂ ′) = ∀β :: κ.τ̂ t τ̂ ′

Figure 3.6.: Least upper bound of types (t)
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C : SortEnv→ T̂y×AnnTm× SortEnv
C(Σ; τ) = τ̂ & ξ . βi :: κi where Σ `c τ : τ̂ & ξ . βi :: κi

Figure 3.7.: Completion algorithm (C)

I : T̂y→ T̂y× SortEnv
I(∀β :: κ.τ̂) = let τ̂ ′ . Σ = I(τ̂)

β′ be fresh
in [β 7→ β′ ](τ̂ ′) . β′ :: κ,Σ

I(τ̂) = τ̂ . [ ]

Figure 3.8.: Instantiation algorithm (I)

requirements are fulfilled by how this function is used in R.
The restriction to conservative types allows us to ignore functions arguments because

these are always required to be pattern types, which are unique up to α-equivalence.
This alleviates the need for computing a corresponding greatest lower bound of types
because the algorithm only traverses covariant positions.

The handling of λ-abstractions needs the type completion algorithm C as shown in
figure 3.7. It defers its work to the type completion relation defined earlier (see figure 3.4)
which can be interpreted in a functional way.

The underlying type of the function argument is completed to a pattern type. The
function body is analyzed in the presence of the newly introduced pattern variables.
Note that this pattern type is also conservative, thereby preserving the invariant that
the context only holds conservative types.

The inferred annotated type of the lambda abstraction universally quantifies over all
pattern variables and the quantification is reflected on the term level through annotation
abstractions Λβ :: κ.t.

In order to analyze function applications, we need two more auxiliary algorithms. The
first one is the instantiation procedure I (see figure 3.8) which instantiates all top-level
quantifiers with fresh annotation variables.

Secondly, we need the matching algorithmM (see figure 3.9) which is used to instan-
tiate a pattern type with a conservative type of the same shape. It returns a substitution
obtained by performing pattern unification on corresponding annotations.
Example 3.29. In order to provide some more insight into the inner workings of the
matching algorithm, we apply it to the pattern type

τ̂1 = ∀β1 :: ?.ûnit〈β1〉 → (∀β2 :: ?.ûnit〈β2〉 → ûnit〈β′ β1 β2〉)〈β β1〉

and the following conservative type of the same shape

τ̂2 = ∀β1 :: ?.ûnit〈β1〉 → (∀β2 :: ?.ûnit〈β2〉 → ûnit〈β1 t β2〉)〈⊥〉.
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M : SortEnv× T̂y× T̂y→ AnnSubst
M(Σ; ûnit; ûnit) = [ ]
M(Σ; τ̂ ′1〈β βi〉+ τ̂ ′2〈β′ βi〉; τ̂1〈ξ1〉+ τ̂2〈ξ2〉) = [β 7→ λβi :: Σ(βi).ξ1, β

′ 7→ λβi :: Σ(βi).ξ2 ]
◦M(Σ; τ̂ ′1; τ̂1) ◦M(Σ; τ̂ ′2; τ̂2)

M(Σ; τ̂ ′1〈β βi〉 × τ̂ ′2〈β′ βi〉; τ̂1〈ξ1〉 × τ̂2〈ξ2〉) = [β 7→ λβi :: Σ(βi).ξ1, β
′ 7→ λβi :: Σ(βi).ξ2 ]

◦M(Σ; τ̂ ′1; τ̂1) ◦M(Σ; τ̂ ′2; τ̂2)
M(Σ; τ̂1〈β〉 → τ̂ ′2〈β′ βi〉; τ̂1〈β〉 → τ̂2〈ξ〉) = [β′ 7→ λβi :: Σ(βi).ξ ] ◦M(Σ; τ̂ ′2; τ̂2)
M(Σ; ∀β :: κ.τ̂ ′; ∀β :: κ.τ̂) =M(Σ, β :: κ; τ̂ ′; τ̂)

Figure 3.9.: Matching algorithm (M)

Performing stepwise expansion results in the following derivation.

M([ ];∀β1 :: ?.ûnit〈β1〉 → (∀β2 :: ?.ûnit〈β2〉 → ûnit〈β′ β1 β2〉)〈β β1〉;
∀β1 :: ?.ûnit〈β1〉 → (∀β2 :: ?.ûnit〈β2〉 → ûnit〈β1 t β2〉)〈⊥〉)

=M(β1 :: ?; ûnit〈β1〉 → (∀β2 :: ?.ûnit〈β2〉 → ûnit〈β′ β1 β2〉)〈β β1〉;
ûnit〈β1〉 → (∀β2 :: ?.ûnit〈β2〉 → ûnit〈β1 t β2〉)〈⊥〉)

= [β 7→ λβ1 :: ?.⊥] ◦M(β1 :: ?; ∀β2 :: ?.ûnit〈β2〉 → ûnit〈β′ β1 β2〉;
∀β2 :: ?.ûnit〈β2〉 → ûnit〈β1 t β2〉)

= [β 7→ λβ1 :: ?.⊥] ◦M(β1 :: ?, β2 :: ?; ûnit〈β2〉 → ûnit〈β′ β1 β2〉;
ûnit〈β2〉 → ûnit〈β1 t β2〉)

= [β 7→ λβ1 :: ?.⊥] ◦ [β′ 7→ λβ1 :: ?.λβ2 :: ?.β1 t β2 ] ◦M(β1 :: ?, β2 :: ?; ûnit; ûnit)
= [β 7→ λβ1 :: ?.⊥] ◦ [β′ 7→ λβ1 :: ?.λβ2 :: ?.β1 t β2 ] ◦ [ ]

Note that similar to the least upper bound algorithm presented above, the matching
procedure only traverses the covariant parts of function arrows.

We have now covered the preliminaries required to describe the analysis of function
applications. The first step is to separately analyze the function being applied and the
argument. Then, all top-level quantifiers of the function type are instantiated (which are
exactly those quantifying over the pattern variables of the function argument). Match-
ing the pattern type of the formal parameter with the conservative type of the actual
argument then results in a substitution of the pattern variables.

The function application term is extended with annotation applications t 〈ξ〉 reflecting
the instantiations of the quantified variable through the aforementioned substitution.
This substitution is also applied to the annotated type and the effect of the functions
return type in order to instantiate the “abstract” analysis of the function body to a
concrete analysis specialized to the given argument.

The last defining clause of R is dealing with recursion. It performs a Kleene-Mycroft-
iteration in order to infer a polymorphically recursive type and effect for the fixpoint
construct. This is the part of the analysis that requires a computable function for decid-
ing semantic equality of annotations. The comparison operator ≡ could be implemented
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in terms of the denotational semantics as outlined in the beginning of this chapter.
In the next section we will discuss the issues we encountered when dealing with the
Mycroft-iteration.

3.4. Problems with Earlier Approaches
Now that the canonicalization procedure and the reconstruction have been explained,
we can look into the termination issues we encountered in more detail.

The problem is that there is a certain class of programs that makes the resulting type
annotations grow indefinitely because none of the reduction rules currently in use apply.
The most simple such program we found is the following.

µf : (unit→ unit)→ unit→ unit.λg : unit→ unit.λx : unit.g (f g x)

In order to find the annotated type of this term, Mycroft-iteration repeatedly infers
the type of the body of the fixpoint using the previous result as the type for f in the
environment. This results in the following steps.

1. The iteration is started with the least type ⊥(unit→unit)→unit→unit, which is

∀β1 β2.(∀β3.ûnit〈β3〉 → ûnit〈β1 β3〉)〈β2〉 → ∀β4.(ûnit〈β4〉 → ûnit〈⊥〉)〈⊥〉&⊥.
The return type and effect of the recursive call f g x is therefore ûnit &⊥. Hence,
the call to g is instantiated with ⊥ and the resulting effect of g x is β1 ⊥ t β2, in
accordance with the [T-App] rule.

2. This leads to the next approximation for the type of the fixpoint, namely
∀β1 β2.(∀β3.ûnit〈β3〉 → ûnit〈β1 β3〉)〈β2〉 → ∀β4.(ûnit〈β4〉 → ûnit〈β1 ⊥tβ2〉)〈⊥〉&
⊥.
By the same argument as in the first step, the annotation of the return value grows
to β1 (β1 ⊥ t β2) t β2.

The annotation continues to grow, adding more and more layers of β1 because at the
time when the normalization happens, β1 is unknown and neither β- nor γ-reduction
applies.

While using the enumerative approach to semantic equality at least made it possible to
guarantee termination of the type reconstruction algorithm, the number of combinations
that is currently checked is too high for practical use. For now, we see two speculative
starting points for further research into alleviating this issue.

1. Currently, the universes Vκ1⇒κ2 representing dependency terms of functional sorts
consist of all monotone functions between the two lattices. However, there could
be stronger properties that hold for such functions, due to the limited way in which
they can be constructed in the λt-calculus.
Such stronger guarantees could then serve as the foundation for additional reduc-
tion rules that ultimately make a syntactic approach to semantic equality viable
again.
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2. On the other hand, there could be possibilities for speeding up the brute force
approach. The algorithm currently in use simply enumerates all environments and
computes and compares the denotations of the terms in question for each of them.
Similar to the first point, additional properties known about the universes or about
the denotation function itself might have the potential to be used in pruning the
search space.

Besides the direct approach to higher-ranked polyvariance that was taken by Koot and
which we chose to adapt, there is also the earlier constraint based system by Holdermans
and Hage that has been used for performing flow analysis.

Unfortunately, we cannot further investigate how the issue at hand would manifest
itself in this constraint based system because their algorithm [10] is incorrect in its
current form. All the constraints that are generated by the algorithm are free of cycles.
Consequently, it never actually finds a fixpoint as demonstrated by the following example.
Example 3.30. The function in the following term cycles through its arguments, which
causes each of the initial parameters to flow into the condition of the if-expression at
some point.

(fix (λf . λx. λy. λz. if x then True else f z x y)) True True True

Labeling the program points where values are produced or consumed leads to the term

((((fix (λf . (λx. (λy. (λz.
(if x then True {1} else (((f z) {2} x) {3} y) {4}) {5})
{6}){7}){8}) {9}) {10} True {11}) {12} True {13}) {14} True {15}) {16}

We would expect that the set of values that flow to the if-expression (5) consists of all
three arguments (11, 13 and 15), but the flow analysis algorithm only outputs the set
{11, 15}. In fact, even variants of this example with more arguments are always analyzed
to just have two arguments flowing to the if-expression.

3.5. Correctness of the Algorithm
In order to demonstrate the correctness of the analysis algorithm presented in this chap-
ter we have to show that for every well-typed underlying term it produces an analysis
(i.e. annotated types and effects) that can be derived in the annotated type system (see
figure 2.9). That is to say, algorithm R is sound w.r.t. the annotated type system.

3.5.1. Soundness
Definition 3.31. We say a type and effect environment Γ̂ is well-formed under an
environment Σ, if Γ̂ is conservative and for all bindings x : τ̂ & ξ in Γ̂ we have Σ `wft τ̂
and Σ `s ξ : ?.
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Since the reconstruction algorithm applies canonicalization after every step, the fol-
lowing two lemmas are needed to show that this still leads to a valid derivation. It does
not matter what bbξccΣ evaluates to, as long as it is semantically equivalent to ξ.

Lemma 3.32. If we have Σ | Γ̂ `te t̂ : τ̂ & ξ, then we also have Σ | Γ̂ `te t̂ : τ̂ & bbξccΣ.

Proof. A fundamental property of canonicalization is that bbξccΣ is semantically equiva-
lent to ξ under the environment Σ, that is to say Σ `sub ξ v bbξccΣ and Σ `sub bbξccΣ v ξ.
The conclusion follows from a single application of [T-Sub].

Lemma 3.33. If we have Σ `wft τ̂ , then Σ `sub τ̂ 6 bbτ̂ccΣ and Σ `sub bbτ̂ccΣ 6 τ̂ .

Proof. By induction on the derivation tree of Σ `wft τ̂ using the fact that canonical
forms preserve semantics.

Next, we establish the correctness of the matching algorithm M that is used in the
type reconstruction algorithm.

Lemma 3.34. Let τ̂ ′ be a pattern type such that αi :: καi `p τ̂ ′&β αi .βj :: κβj and τ̂ be a
conservative type such that bτ̂c = bτ̂ ′c and Σ, αi :: καi `wft τ̂ . Then there is a substitution
θ =M(αi :: καi ; τ̂ ′; τ̂) such that θτ̂ ′ = τ̂ and Σ `s θβj :κβj for all βj ∈ dom(θ) = βj \{β}.

Proof. See appendix, page 122.

Similarly, we show some useful properties of the join τ̂1 t τ̂2 of two annotated types.

Lemma 3.35. Let τ̂1 and τ̂2 be conservative types and Σ a sort environment such that
bτ̂1c = bτ̂2c = τ for some τ , Σ `wft τ̂1 and Σ `wft τ̂2.

Then bτ̂1 t τ̂2c = τ , Σ `sub τ̂1 6 τ̂1 t τ̂2, Σ `sub τ̂2 6 τ̂1 t τ̂2, Σ `wft τ̂1 t τ̂2 and τ̂1 t τ̂2
is conservative.

Proof. See appendix, page 124.

Based on this knowledge, we can now show that algorithm R is sound w.r.t. to the
declarative type system.

Theorem 3.36. Let t be a source term, Σ a sort environment and Γ̂ a type and effect
environment well-formed under Σ such that R(Γ̂; Σ; t) = t̂ : τ̂ & ξ for some t̂, τ̂ and ξ.

Then, Σ | Γ̂ `te t̂ : τ̂ & ξ, Σ `wft τ̂ , Σ `s ξ : ? and τ̂ is conservative.

Proof. See appendix, page 125.

3.5.2. Completeness
The next step is to show that our analysis succeeds in deriving an annotated type and
effect for any well-typed source term. The crucial part here is the termination of the
fixpoint iteration.

In order to show the convergence of the fixpoint iteration, we start by defining an
equivalence relation on type and effect pairs.
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Definition 3.37. Let τ be an underlying type and let Σ be a sort environment. We
define

1. the set of conservative annotated type and effect pairs with corresponding under-
lying type τ well-formed under Σ,

TyEffτ (Σ)

=
{
τ̂ & ξ ∈ T̂y×AnnTm | Σ `wft τ̂ ∧ Σ `s ξ : ? ∧ τ̂ conservative ∧ bτ̂c = τ

}
2. the equivalence relation ≡τ ;Σ⊆ TyEffτ (Σ)×TyEffτ (Σ) given by

τ̂1 & ξ1 ≡τ ;Σ τ̂2 & ξ2

⇐⇒ Σ `sub τ̂1 6 τ̂2 ∧ Σ `sub τ̂2 6 τ̂1 ∧ Σ `sub ξ1 v ξ2 ∧ Σ `sub ξ2 v ξ1,

3. TyEffτ (Σ)/ ≡τ ;Σ to be the quotient of the set of well-formed annotated type and
effect pairs by the equivalence relation ≡τ ;Σ,

4. [τ̂ & ξ]Σ to denote the equivalence class of τ̂ & ξ ∈ TyEffbτ̂c(Σ).

When the underlying type τ is obvious from the context, we write ≡Σ instead of ≡τ ;Σ.

Lemma 3.38. ≡Σ is an equivalence relation.

Proof. We need to show that ≡Σ is reflexive, symmetric and transitive.

Reflexivity For all τ̂ & ξ ∈ TyEffτ (Σ) we have Σ `sub τ̂ 6 τ̂ by [Sub-Refl] and
Σ `sub ξ v ξ by the reflexivity of subsumption. Therefore τ̂ & ξ ≡Σ τ̂ ξ.

Symmetry Given τ̂1 & ξ1 and τ̂2 & ξ2 such that τ̂1 & ξ1 ≡Σ τ̂2 & ξ2, then we also have
τ̂2 & ξ2 ≡Σ τ̂1 & ξ1 by the symmetry of ∧.

Transitivity Given τ̂1 &ξ1, τ̂2 &ξ2 and τ̂3 &ξ3 such that τ̂1 &ξ1 ≡Σ τ̂2 &ξ2 and τ̂2 &ξ2 ≡Σ
τ̂3 & ξ3. Then we have Σ `sub τ̂1 6 τ̂2, Σ `sub τ̂2 6 τ̂1, Σ `sub τ̂2 6 τ̂3 and
Σ `sub τ̂3 6 τ̂2. By [Sub-Trans], we can infer Σ `sub τ̂1 6 τ̂3 and Σ `sub τ̂3 6 τ̂1.
By the transitivity of subsumption, we have Σ `sub ξ1 v ξ3 and Σ `sub ξ3 v ξ1.
Hence τ̂1 & ξ1 ≡Σ τ̂3 & ξ3.

An important ingredient in the completeness proof is the fact that the set of equiva-
lence classes defined above is finite.

Lemma 3.39. TyEffτ (Σ)/ ≡τ ;Σ is finite.

Proof. Suppose not. Then there is an infinite number of type and effect pairs (τ̂i &ξi)i∈N
such that none of them is equivalent to any other pair. Since the type and effect pairs
are all of the same shape, they can only differ in the (potentially nested) annotations.
Hence, there must be an infinite number of dependency terms (ξ′i)i∈N occurring in the
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same position that are not semantically equivalent to any other (because there are only
finitely many positions where an annotation can occur in a type). For every pair of such
terms ξ′i, ξ′j , there is an environment ρi,j such that Jξ′iKρi,j 6=

q
ξ′j
y
ρi,j

.
In the proof of lemma 3.1 we established that there can only be a finite number

of environments compatible with any given sort environment. Therefore, there is an
environment ρ and an infinite subset S ⊆ N such that for all i, j ∈ S with i 6= j we have
Jξ′iKρ 6=

q
ξ′j
y
ρ
. However, by assumption, the underlying lattice is finite. Contradiction.

Next, we define an order relation on equivalence classes based on the subtyping and
subsumption relations.

Definition 3.40. We define a relation vτ ;Σ on TyEffτ (Σ)/ ≡τ ;Σ given by

[τ̂1 & ξ1]Σ vτ ;Σ [τ̂2 & ξ2]Σ ⇐⇒ Σ `sub τ̂1 6 τ̂2 ∧ Σ `sub ξ1 v ξ2.

Lemma 3.41. vΣ is well-defined and a partial order.

Proof. We first show that the definition of vτ ;Σ is independent of the chosen represen-
tative. Let E1, E2 ∈ TyEffτ (Σ)/ ≡τ ;Σ denote two arbitrary equivalence classes and let
τ̂1 &ξ1, τ̂

′
1 &ξ′1 ∈ E1 and τ̂2 &ξ2, τ̂

′
2 &ξ′2 ∈ E2 be arbitrary representatives of theses classes.

We have τ̂1 & ξ1 ≡τ ;Σ τ̂ ′1 & ξ′1 and τ̂2 & ξ2 ≡τ ;Σ τ̂ ′2 & ξ′2.
Suppose that Σ `sub τ̂1 6 τ̂2 and Σ `sub ξ1 v ξ2 hold. By definition 3.37, we

additionally have (among others) Σ `sub τ̂ ′1 6 τ̂1 ∧ Σ `sub ξ′1 v ξ1 and Σ `sub τ̂2 6
τ̂ ′2 ∧ Σ `sub ξ2 v ξ′2. By [Sub-Trans], Σ `sub τ̂ ′1 6 τ̂ ′2 and by the transitivity of
subsumption we have Σ `sub ξ

′
1 v ξ′2. Hence, vΣ is well-defined.

In order to show that vΣ is a partial order, we show that the relation is reflexive,
transitive and anti-symmetric.

Reflexivity By [Sub-Refl] and the reflexivity of subsumption, Σ `sub τ̂ 6 τ̂ and Σ `sub
ξ v ξ for all τ̂ & ξ ∈ TyEffτ (Σ). Hence, [τ̂ & ξ]Σ vΣ [τ̂ & ξ]Σ.

Transitivity Given τ̂1 & ξ1, τ̂2 & ξ2 and τ̂3 & ξ3 such that [τ̂1 & ξ1]Σ vΣ [τ̂2 & ξ2]Σ and
[τ̂2 & ξ2]Σ vΣ [τ̂3 & ξ3]Σ. Then we have Σ `sub τ̂1 6 τ̂2 and Σ `sub τ̂2 6 τ̂3
as well as Σ `sub ξ1 v ξ2 and Σ `sub ξ2 v ξ2. By [Sub-Trans], we can infer
Σ `sub τ̂1 6 τ̂3. By the transitivity of subsumption, we have Σ `sub ξ1 v ξ3. Hence
[τ̂1 & ξ1]Σ vΣ [τ̂3 & ξ3]Σ.

Antisymmetry Suppose that [τ̂1 & ξ1]Σ vΣ [τ̂2 & ξ2]Σ and [τ̂2 & ξ2]Σ vΣ [τ̂1 & ξ1]Σ. Then,
by definition τ̂1 & ξ1 ≡Σ τ̂2 & ξ2. Therefore, [τ̂1 & ξ1]Σ = [τ̂2 & ξ2]Σ.

Definition 3.42. We define a pointwise join operation on type and effect pairs as follows:

(τ̂1 & ξ1) t (τ̂2 & ξ2) := τ̂1 t τ̂2 & ξ1 t ξ2.

Lemma 3.43. The join operation t on type and effect pairs is

70



1. associative, i.e. for all τ̂1 & ξ1, τ̂2 & ξ2, τ̂3 & ξ3 ∈ TyEffτ (Σ) we have ((τ̂1 & ξ1) t
(τ̂2 & ξ2)) t (τ̂3 & ξ3) ≡Σ (τ̂1 & ξ1) t ((τ̂2 & ξ2) t (τ̂3 & ξ3)),

2. commutative, i.e. for all τ̂1&ξ1, τ̂2&ξ2 ∈ TyEffτ (Σ) we have (τ̂1&ξ1)t(τ̂2&ξ2) ≡Σ
(τ̂2 & ξ2) t (τ̂1 & ξ1), and

3. idempotent, i.e. for all τ̂1 &ξ1 ∈ TyEffτ (Σ) we have (τ̂1 &ξ1)t(τ̂1 &ξ1) ≡Σ τ̂1 &ξ1.

Proof. All three properties follow from the associativity, commutativity and idempotence
of the underlying lattice. We show an exemplary proof for commutativity, the other two
can be done similarly.

Let τ̂1 & ξ1, τ̂2 & ξ2 ∈ TyEffτ (Σ) be arbitrary. We show (τ̂1 & ξ1) t (τ̂2 & ξ2) ≡Σ
(τ̂2 & ξ2)t (τ̂1 & ξ1) by induction on τ̂1. In all cases, we have Σ ` ξ1 t ξ2 ≡ ξ2 t ξ1 by the
commutativity of the underlying lattice.

τ̂1 = ûnit In this case, τ̂2 = ûnit and therefore τ̂1 t τ̂2 = ûnit = τ̂2 t τ̂1 as well. The
equivalence follows from reflexivity.

τ̂1 = ∀β :: κ.τ̂ ′1 Then τ̂2 = ∀β′ :: κ′.τ̂ ′2 for some τ̂ ′2. We can assume β′ = β due to alpha-
equivalence. By induction, we have (τ̂ ′1 & ξ1)t (τ̂ ′2 & ξ2) ≡Σ,β::κ (τ̂ ′2 & ξ2)t (τ̂ ′1 & ξ1).
We have (τ̂1 & ξ1)t (τ̂2 & ξ2) = ∀β ::κ.τ̂ ′1 t τ̂ ′2 & ξ1 t ξ2 ≡Σ ∀β ::κ.τ̂ ′2 t τ̂ ′1 & ξ2 t ξ1 =
(τ̂2 & ξ2) t (τ̂1 & ξ1) by [Sub-Forall].

τ̂1 = τ̂ ′1〈ξ′1〉+ τ̂ ′′1 〈ξ′′1 〉 Then τ̂2 = τ̂ ′2〈ξ′2〉+ τ̂ ′′2 〈ξ′′2 〉 for some τ̂ ′2, τ̂ ′′2 , ξ′2 and ξ′′2 . By induction,
we have (τ̂ ′1 &ξ′1)t(τ̂ ′2 &ξ′2) ≡Σ (τ̂ ′2 &ξ′2)t(τ̂ ′1 &ξ′1) and (τ̂ ′′1 &ξ′′1 )t(τ̂ ′′2 &ξ′′2 ) ≡Σ (τ̂ ′′2 &
ξ′′2 )t(τ̂ ′′1 &ξ′′1 ). Therefore, we must also have (τ̂1&ξ1)t(τ̂2&ξ2) ≡Σ (τ̂2&ξ2)t(τ̂1&ξ1)
by [Sub-Sum].

τ̂1 = τ̂ ′1〈ξ′1〉 × τ̂ ′′1 〈ξ′′1 〉 Analogously to the previous case.

τ̂1 = τ̂ ′1〈ξ′1〉 → τ̂ ′′1 〈ξ′′1 〉 Similarly to the previous case, but noting that the contravariant
positions of the function arrows must be the same.

The following lemma shows that the join operation interacts with the subtyping and
subsumption relation in a way we would expect from a lattice.

Lemma 3.44. For all τ̂1 & ξ1, τ̂2 & ξ2 ∈ TyEffτ (Σ), we have

Σ `sub τ̂1 6 τ̂2 ∧ Σ `sub ξ1 v ξ2 ⇐⇒ (τ̂1 & ξ1) t (τ̂2 & ξ2) ≡Σ τ̂2 & ξ2.

Proof. Suppose that Σ `sub τ̂1 6 τ̂2∧Σ `sub ξ1 v ξ2 holds. We show (τ̂1&ξ1)t(τ̂2&ξ2) ≡Σ
τ̂2 & ξ2 by induction on τ̂1.

τ̂1 = ûnit Then τ̂2 = ûnit as well. Because we have Σ ` ξ1 t ξ2 ≡ ξ2 due to the lattice
properties, it follows that (ûnit & ξ1) t (ûnit & ξ2) ≡Σ ûnit & ξ2 must also hold.
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τ̂1 = ∀β :: κ.τ̂ ′1 The τ̂2 = ∀β :: κ.τ̂ ′2 for some τ̂ ′2. By lemma 2.30, we have Σ, β :: κ `sub
τ̂ ′1 6 τ̂ ′2. By induction, we have (τ̂ ′1 & ξ1) t (τ̂ ′2 & ξ2) ≡Σ τ̂ ′2 & ξ2. By applying
[Sub-Forall], we get ∀β :: κ.τ̂ ′1 t τ̂ ′2 & ξ1 t ξ2 ≡Σ ∀β :: κ.τ̂ ′2 & ξ2.

τ̂1 = τ̂ ′1〈ξ′1〉+ τ̂ ′′1 〈ξ′′1 〉 Then τ̂2 = τ̂ ′2〈ξ′2〉+τ̂ ′′2 〈ξ′′2 〉 for some τ̂ ′2, τ̂ ′′2 , ξ′2 and ξ′′2 . By lemma 2.30,
we have Σ `sub τ̂

′
1 6 τ̂

′
2, Σ `sub ξ

′
1 v ξ′2, Σ `sub τ̂

′′
1 6 τ̂

′′
2 and Σ `sub ξ

′′
1 v ξ′′2 .

By induction, we have (τ̂ ′1 &ξ′1)t (τ̂ ′2 &ξ′2) ≡Σ (τ̂ ′2 &ξ′2) and (τ̂ ′′1 &ξ′′1 )t (τ̂ ′′2 &ξ′′2 ) ≡Σ
τ̂ ′′2 &ξ′′2 . Therefore, we must also have (τ̂1 &ξ1)t(τ̂2 &ξ2) ≡Σ τ̂2 &ξ2 by [Sub-Sum].

τ̂1 = τ̂ ′1〈ξ′1〉 × τ̂ ′′1 〈ξ′′1 〉 Analogously to the previous case.

τ̂1 = τ̂ ′1〈ξ′1〉 → τ̂ ′′1 〈ξ′′1 〉 Similarly to the previous case, but noting that the contravariant
positions of the function arrows must be the same.

We also need this lemma relating the substitutions obtained when matching a subtype
of another type with the same pattern type.

Lemma 3.45. If we have Σ,Σ′ `sub τ̂1 6 τ̂2, θ1 = M(Σ′; τ̂ ; τ̂1) and θ2 = M(Σ′; τ̂ ; τ̂2),
then Σ `sub θ1(β) v θ2(β) for all β ∈ dom(θ1) = dom(θ2).

Proof. By induction on the derivation of Σ,Σ′ `sub τ̂1 6 τ̂2.

[Sub-Refl] Trivial, since τ̂1 = τ̂2 and therefore also θ1 = θ2.

[Sub-Trans] We have τ̂ ′ such that Σ,Σ′ `sub τ̂1 6 τ̂ ′ and Σ,Σ′ `sub τ̂ ′ 6 τ̂2. By
induction, we get θ1 =M(Σ′; τ̂ ; τ̂1), θ′ =M(Σ′; τ̂ ; τ̂ ′), θ2 =M(Σ′; τ̂ ; τ̂2) such that
Σ `sub θ1(β) v θ′(β) and Σ `sub θ

′(β) 6 θ2(β) for all β. We apply [Sub-Trans]
once for every variable and get Σ `sub θ1(β) 6 θ2(β) for all β.

[Sub-Forall] We have τ̂1 = ∀β :: κ.τ̂ ′1 and τ̂2 = ∀β :: κ.τ̂ ′2 such that Σ,Σ′, β :: κ `sub
τ̂ ′1 6 τ̂

′
2. Therefore, θ1 =M(Σ′, β :: κ; τ̂ ; τ̂ ′1) and θ2 =M(Σ′, β :: κ; τ̂ ; τ̂ ′2).

By induction, Σ `sub θ1(β) v θ2(β) for all β ∈ dom(θ1) = dom(θ2).

[Sub-Sum] We have τ̂ = τ̂ ′〈β〉+ τ̂ ′′〈β′〉, τ̂1 = τ̂ ′1〈ξ′1〉+ τ̂ ′′1 〈ξ′′1 〉 and τ̂2 ·+ · (τ̂ ′2〈ξ′2〉) (τ̂ ′′2 〈ξ′′2 〉)
such that Σ,Σ′ `sub τ̂

′
1 6 τ̂ ′2, Σ,Σ′ `sub ξ

′
1 v ξ′2, Σ,Σ′ `sub τ̂

′′
1 6 τ̂ ′′2 and Σ,Σ′ `sub

ξ′′1 v ξ′′2 .
Suppose that Σ′ = βi :: κβi . We get

θ1 = [β 7→ λβi :: κβi .ξ
′
1, β
′ 7→ λβi :: κβi .ξ

′′
1 ] ◦M(Σ′; τ̂ ′; τ̂ ′1) ◦M(Σ; τ̂ ′′; τ̂ ′′1 )

and

θ2 = [β 7→ λβi :: κβi .ξ
′
2, β
′ 7→ λβi :: κβi .ξ

′′
2 ] ◦M(Σ′; τ̂ ′; τ̂ ′2) ◦M(Σ; τ̂ ′′; τ̂ ′′2 ).

For β, we have to show Σ `sub θ1(β) v θ2(β), i.e. for all compatible environments
ρ we have

q
λβi :: κβi .ξ

′
1
y
ρ
v
q
λβi :: κβi .ξ

′
2
y
ρ
. We need to compare the resulting
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functions pointwise. But by assumption, we already have Jξ′1Kρ′ v Jξ′2Kρ′ for all
environments compatible with Σ,Σ′, and therefore in particular for all possible
arguments that could be passed to these functions. The same holds for β′ using a
similar reasoning and the remaining subsumption statements follow by induction.

[Sub-Prod] Analogously to the previous case.

[Sub-Arr] Analogously to the previous cases, but only recursing on the covariant part
of the function arrow, since the contravariant positions are necessarily equal.

The following lemma shows that the subtyping relation between conservative types is
preserved by certain kinds of substitutions.

Lemma 3.46. Let Σ and Σ′ be sort environments with disjoint domains and let τ̂1 and τ̂2
be conservative types. If we have Σ,Σ′ `sub τ̂1 6 τ̂2 then we also have Σ `sub θ1τ̂1 6 θ2τ̂2
for all substitutions θ1, θ2 : dom(Σ′) → AnnTm such that Σ `sub θ1(β) v θ2(β),
Σ `s θ1(β) : Σ′(β) and Σ `s θ2(β) : Σ′(β) for all β ∈ dom(Σ′).

Proof. By induction on the conservative type τ̂1. By lemma 2.29, we know that τ̂2 has
the same shape as τ̂1.

τ̂1 = ûnit In this case, τ̂2 = ûnit as well. Since θ1ûnit = ûnit = θ2ûnit, Σ `sub θ1τ̂1 6
θ2τ̂2 holds by assumption.

τ̂1 = τ̂ ′1〈ξ′1〉+ τ̂ ′′1 〈ξ′′1 〉 We must have τ̂2 = τ̂ ′2〈ξ′2〉 + τ̂ ′′2 〈ξ′′2 〉 for some τ̂ ′2, τ̂ ′′2 , ξ′2 and ξ′′2 .
By lemma 2.30, Σ,Σ′ `sub τ̂ ′1 6 τ̂ ′2, Σ,Σ′ `sub τ̂ ′′1 6 τ̂ ′′2 , Σ,Σ′ `sub ξ′1 v ξ′2 and
Σ,Σ′ `sub ξ

′′
1 v ξ′′2 .

Then, by induction Σ `sub θ1τ̂
′
1 6 θ2τ̂

′
2, Σ `sub θ1τ̂

′′
1 6 θ2τ̂

′′
2 and by lemma 2.17,

Σ `sub θ1ξ
′
1 v θ1ξ

′
2 and Σ `sub θ1ξ

′′
1 v θ2ξ

′′
2 . Hence, we can derive Σ `sub θ1(τ̂ ′1〈ξ′1〉+

τ̂ ′′1 〈ξ′′1 〉) 6 θ2(τ̂ ′2〈ξ′2〉+ τ̂ ′′2 〈ξ′′2 〉).

τ̂1 = τ̂ ′1〈ξ′1〉 × τ̂ ′′1 〈ξ′′1 〉 This case can be proven analogously to the previous case.

τ̂1 = ∀βj :: κβj .τ̂
′
1〈ξ′1〉 → τ̂ ′′1 〈ξ′′1 〉 This case needs special care in handling the contravariant

argument position of the function type. We have τ̂2 = ∀βj :: κβj .τ̂
′
2〈ξ′2〉 → τ̂ ′′2 〈ξ′′2 〉.

As τ̂1 and τ̂2 are conservative, we have ∅ `p τ̂ ′1&ξ′1.βj :: κβj and ∅ `p τ̂ ′2&ξ′2.βj :: κβj .

We assume that the variables βj are disjoint from those in Σ and Σ′, because
we could always obtain an equivalent type through renaming. By lemma 3.14,
fav(τ̂ ′1) ∪ fav(ξ′1) ⊆ βj and fav(τ̂ ′2) ∪ fav(ξ′2) ⊆ βj . Therefore, none of the free
variables of τ̂ ′1 and ξ′1 are free in τ̂1, and the same holds for τ̂2.
As the substitutions do not apply to the free variables of the argument positions,

θ1τ̂1 = ∀βj :: κβj .τ̂
′
1〈ξ′1〉 → θ1τ̂

′′
1 〈θ1ξ

′′
1 〉 and θ2τ̂2 = ∀βj :: κβj .τ̂

′
2〈ξ′2〉 → θ2τ̂

′′
2 〈θ2ξ

′′
2 〉.

We can assume τ̂ ′1 = τ̂ ′2 and ξ′1 = ξ′2 due to lemma 3.15.
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Through repeated application of lemma 2.30, we can infer Σ,Σ′, βj :: κβj `sub τ̂
′′
1 6

τ̂ ′′2 and Σ,Σ′, βj :: κβj `sub ξ
′′
1 v ξ′′2 . The contexts in the judgments above can be

reordered to Σ, βj :: κβj ,Σ′ `sub τ̂
′′
1 6 τ̂

′′
2 and Σ, βj :: κβj ,Σ′ `sub ξ

′′
1 v ξ′′2 .

By induction, respectively lemma 2.17, we get Σ, βj :: κβj `sub θ1τ̂
′′
1 6 θ2τ̂

′′
2 and

Σ, βj :: κj `sub θ1ξ
′′
1 v θ2ξ

′′
2 . The judgments Σ, βj :: κβj `sub τ̂ ′2 6 τ̂ ′1 as well as

Σ, βj :: κβj `sub ξ
′
2 v ξ′1 follow by removing the variables in Σ′ from the context, as

they are not free in the respective types and effects (using lemma 2.31).
Lastly, we can derive Σ `sub θ1τ̂1 6 θ2τ̂2 by [Sub-Arr] and [Sub-Forall].

Note that, in contrast to lemma 2.32, the proof of the foregoing lemma crucially
relies on the fact that conservative types are invariant in the argument types of function
arrows.

We now prove the following monotonicity lemma stating that increasing a type or
effect in the environment (w.r.t. the subtyping or subsumption relations) passed to R
also leads to greater or equal type and effect being computed.
Lemma 3.47. Let Σ be a sort environment, let Γ̂1, Γ̂2 be type and effect environments
with identical domains well-formed under Σ and let t be a source term such that we have
R(Γ̂1; Σ; t) = t̂1 : τ̂1 & ξ1 and R(Γ̂2; Σ; t) = t̂2 : τ̂2 & ξ2.

If for all x ∈ dom(Γ̂1) with Γ̂1(x) = τ̂ & ξ and Γ̂2(x) = τ̂ ′ & ξ′ we have Σ `sub τ̂ 6 τ̂ ′

and Σ `sub ξ v ξ′, then also Σ `sub τ̂1 6 τ̂2 and Σ `sub ξ1 v ξ2.
Proof. See appendix, page 129.

We have now covered the preliminaries required for proving the completeness of our
type reconstruction algorithm.
Theorem 3.48 (Completeness). Given a source term t, a sort environment Σ, a type
and effect environment Γ̂ well-formed under Σ, and an underlying type τ such that
bΓ̂c `t t :τ , then there are t̂, τ̂ and ξ such that R(Γ̂; Σ; t) = t̂ : τ̂&ξ and bτ̂c = τ , bt̂c = t.
Proof. See appendix, page 133.

As a corollary from the foregoing theorems, our analysis is a conservative extension
of the underlying type system.
Corollary 3.49 (Conservative Extension). Let t be a source term, τ be a type and
Γ a type environment such that Γ `t t : τ . Then there are Σ, Γ̂, t̂, τ̂ , ξ such that
Σ | Γ̂ `te t̂ : τ̂ & ξ with bt̂c = t, bτ̂c = τ and bΓ̂c = Γ.
Proof. Construct Γ̂ from Γ by replacing every binding x : τ ′ with a binding x :⊥τ ′ &⊥?.
Set Σ to be the empty sort context. By lemma 3.25, ⊥τ ′ is conservative, Σ `wft ⊥τ ′ and
b⊥τ ′c = τ ′ for all such τ ′. The latter also implies bΓ̂c = Γ and therefore bΓ̂c `t t : τ . By
lemma 3.23, Σ `s ⊥? : ?. Hence, Γ̂ is well-formed under Σ.

This allows us to apply theorem 3.48, so there must be t̂, τ̂ and ξ such thatR(Γ̂; Σ; t) =
t̂ : τ̂ & ξ with bτ̂c = τ and bt̂c = t. Since Γ̂ is well-formed under Σ, we can conclude from
theorem 3.36 that Σ | Γ̂ `te t̂ : τ̂ & ξ holds.
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3.5.3. Best Analyses
Now that we have established that the algorithm R can always compute a valid anno-
tated type for every well-typed source term, we need to show that the types and effects
computed by R are always the best possible ones in the following sense.

Definition 3.50 (Best Analysis). Let Σ be a sort environment, Γ̂ be a type and effect
environment well-formed under Σ and t a source term.

A triple t̂ : τ̂ & ξ is a best analysis for t under the environments Σ and Γ̂ if τ̂ is
conservative, bt̂c = t and Σ | Γ̂ `te t̂ : τ̂ & ξ and for all triples t̂ ′ : τ̂ ′ & ξ′ such that
τ̂ ′ is conservative, bt̂ ′c = t and Σ | Γ̂ `te t̂ ′ : τ̂ ′ & ξ′ we have that Σ `sub τ̂ 6 τ̂ ′ and
Σ `sub ξ v ξ′.

As proving the best analyses theorem unfortunately turned out to be harder than
expected, it has not been finished to date. Nonetheless, we managed to provide a partial
proof sketch for a restricted variant of said theorem.

We start by showing several parts required for proving that the fixpoints computed
by R are least. Our proof will use the equivalence classes we have introduced in the
previous part. We begin by defining the join operation for equivalence classes and show
that this definition is in fact well-defined.

Definition 3.51. We define the join of two equivalence classes of type and effect pairs
as follows:

[τ̂1 & ξ1]Σ t [τ̂2 & ξ2]Σ := [τ̂1 t τ̂2 & ξ1 t ξ2]·.

Lemma 3.52. [τ̂1 & ξ1]Σ t [τ̂2 & ξ2]Σ is well-defined.

Proof. Let τ̂1 & ξ1 ≡Σ τ̂ ′1 & ξ′1 and τ̂2 & ξ2 ≡Σ τ̂ ′2 & ξ′2 be arbitrary.
By definition of ≡Σ, we have in particular Σ `sub τ̂1 6 τ̂ ′1 and Σ `sub ξ1 v ξ′1 as well

as Σ `sub τ̂2 6 τ̂ ′2 and Σ `sub ξ2 v ξ′2. Using lemma 3.43 and lemma 3.44, we can derive

((τ̂1 & ξ1) t (τ̂2 & ξ2)) t ((τ̂ ′1 & ξ′1) t (τ̂ ′2 & ξ′2))
≡Σ((τ̂1 & ξ1) t (τ̂ ′1 & ξ′1)) t ((τ̂2 & ξ2) t (τ̂ ′2 & ξ′2))
≡Σ(τ̂ ′1 & ξ′1) t (τ̂ ′2 & ξ′2)

and therefore Σ `sub τ̂1 t τ̂2 6 τ̂ ′1 t τ̂ ′2 and Σ `sub ξ1 t ξ2 v ξ′1 t ξ′2.
By a similar argument, we also have Σ `sub τ̂

′
1t τ̂ ′2 6 τ̂1t τ̂2 and Σ `sub ξ

′
1tξ′2 v ξ1tξ2,

and thus τ̂1t τ̂2&ξ1tξ2 = (τ̂1&ξ1)t(τ̂2&ξ2) ≡Σ (τ̂ ′1&ξ′1)t(τ̂ ′2&ξ′2) = τ̂ ′1t τ̂ ′2&ξ′1tξ′2.

We show that the partially ordered set of equivalence classes has a lower bound and
least upper bounds.

Lemma 3.53. The partially ordered set (TyEffτ (Σ)/ ≡Σ,vΣ) has 1. a least element
[⊥τ &⊥?]Σ and 2. least upper bounds [τ̂1 & ξ1]Σ t [τ̂2 & ξ2]Σ.

Proof. For the first part, let τ̂ & ξ ∈ TyEffτ (Σ) be arbitrary. By lemma 3.23, Σ `sub
⊥? v ξ and by lemma 3.26, Σ `sub ⊥τ 6 τ̂ . Hence, [⊥τ &⊥?]Σ is indeed a least element.
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For the second part, let [τ̂1 & ξ1]Σ, [τ̂2 & ξ2]Σ be arbitrary. Then, by lemma 3.43 and
lemma 3.44, [τ̂1 & ξ1]Σ t [τ̂2 & ξ2]Σ is an upper bound. Suppose that there is another
upper bound [τ̂ & ξ]Σ vΣ [τ̂1 & ξ1]Σ t [τ̂2 & ξ2]Σ. Then

τ̂ & ξ ≡Σ (τ̂ & ξ) t (τ̂2 & ξ2) ≡Σ ((τ̂ & ξ) t (τ̂1 & ξ1)) t (τ̂2 & ξ2)
≡Σ(τ̂ & ξ) t ((τ̂1 & ξ1) t (τ̂2 & ξ2)) ≡Σ (τ̂1 & ξ1) t (τ̂2 & ξ2).

Hence, [τ̂ & ξ]Σ = [τ̂1 & ξ1]Σ t [τ̂2 & ξ2]Σ.

The following lemma provides us with a method for obtaining least fixpoints of a
monotone function on the set of equivalence classes.

Lemma 3.54. Let f : (TyEffτ (Σ)/ ≡Σ,vΣ) → (TyEffτ (Σ)/ ≡Σ,vΣ) be a monotone
function. Then there is an n ∈ N such that F = fn([⊥τ &⊥?]Σ) (where fn denotes the
n-fold application of f) is the least fixpoint of f .

Proof. We define the sequence ([τ̂i & ξi ]Σ)i∈N by

[τ̂0 & ξ0]Σ = [⊥τ &⊥?]Σ
[τ̂i+1 & ξi+1]Σ = f([τ̂i & ξi ]Σ).

Since f is monotone and TyEffτ (Σ)/ ≡Σ is finite by lemma 3.39, there must be an
n ∈ N such that for all i > n, [τ̂i & ξi ]Σ = [τ̂i+1 & ξi+1]Σ. We set F = [τ̂n & ξn ]Σ which
is clearly a fixpoint.

Now suppose that there is another fixpoint F ′. We show by induction that [τ̂i &ξi ]Σ vΣ
F ′ for all i.

i = 0 [τ̂i & ξi ]Σ = [⊥τ &⊥?]Σ is the least element.

i→ i+ 1 By induction, we have [τ̂i & ξi ]Σ vΣ F ′, and by monotonicity [τ̂i+1 & ξi+1]Σ =
f([τ̂i & ξi ]Σ) vΣ f(F ′) = F ′

In particular, F vΣ F ′.

The main issue is the lack of knowledge about t̂ ′, except that its type is conservative.
However, just because the outer type is conservative, this does not mean its subterms also
have conservative types. Therefore, we additionally assume that the other target term
follows a certain structure which ensures that the relevant subterms are conservative as
well. This facilitates the comparison between the result of R and the term this result is
related to. The following definition formalizes this structural assumption.

Definition 3.55. A well-typed target term t̂ is called conservative, if

• t̂ = x, or

• t̂ = (), or

• t̂ = ann`(t̂ ′) and t̂ ′ is conservative, or
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• t̂ = seq t̂1 t̂2 and t̂1 and t̂2 are conservative, or

• t̂ = (t̂1, t̂2) and t̂1 and t̂2 are conservative, or

• t̂ = proji(t̂ ′) and t̂ ′ is conservative, or

• t̂ = inlτ (t̂ ′) and t̂ ′ is conservative, or

• t̂ = inrτ (t̂ ′) and t̂ ′ is conservative, or

• t̂ = case t̂1 of {inl(x1)→ t̂2; inr(x2)→ t̂3} and t̂1, t̂2, t̂3 are conservative, or

• t̂ = Λβi :: κi .λx : τ̂1 & ξ1.t̂2 such that ∅ `p τ̂1 & ξ1 . βi :: κi and t̂2 is conservative, or

• t̂ = t̂1 〈ξi〉 t̂2 and t̂1 and t̂2 are conservative, or

• t̂ = µx : τ̂ ′ & ξ′.t̂ ′ and both τ̂ ′ and t̂ ′ are conservative

The definition restricts the locations where annotation abstractions and applications
can occur. We conjecture that for every well-typed conservative term, there is a con-
servative type less than or equal to its original type. There is a partial proof sketch,
particularly for the interesting cases of fixpoints, lambda abstractions and applications.

Conjecture 3.56. If Σ | Γ̂ `te t̂ : τ̂&ξ holds for a conservative environment Γ̂ compatible
with Σ and t̂ is conservative, then there is a conservative τ̂ ′ such that Σ | Γ̂ `te t̂ : τ̂ ′ & ξ
and Σ `sub τ̂

′ 6 τ̂ hold.

Proof. By induction on t̂ where the following cases are complete:

t̂ = x By lemma 2.35, there is a derivation

Γ̂(x) = τ̂ ′ & ξ′
[T-Var]

Σ | Γ̂ `te x : τ̂ ′ & ξ′
Σ `sub τ̂

′ 6 τ̂
Σ `sub ξ

′ v ξ
[T-Sub]

Σ | Γ̂ `te x : τ̂ & ξ

By assumption, τ̂ ′ is conservative and we can derive Σ | Γ̂ `te x : τ̂ ′ & ξ.

t̂ = Λβi :: κi .λx : τ̂1 & ξ1.t̂2 By repeatedly applying lemma 2.35 to Σ | Γ̂ `te t̂ : τ̂ & ξ, we
eventually get a derivation

Σ, βi :: κi | Γ̂, x : τ̂1 & ξ1 `te t̂2 : τ̂2 & ξ2 [T-Abs]
Σ, βi :: κi | Γ̂ `te λx : τ̂1 & ξ1.t̂2 : τ̂1〈ξ1〉 → τ̂2〈ξ2〉&⊥

followed by interleaved applications of [T-Sub] and [T-AnnAbs].
By assumption, τ̂1 is a pattern type and therefore conservative. Hence, we can
apply the induction hypothesis and get a conservative τ̂ ′2 such that Σ, βi :: κi `sub
τ̂ ′2 6 τ̂2 and Σ, βi :: κi | Γ̂, x : τ̂1 & ξ1 `te t̂2 : τ̂ ′2 & ξ2.
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Moreover, since we have Σ, βi :: κi `sub τ̂1〈ξ1〉 → τ̂ ′2〈ξ2〉 6 τ̂1〈ξ1〉 → τ̂2〈ξ2〉 by [Sub-
Arr], we can also derive Σ `sub ∀βi :: κi .τ̂1〈ξ1〉 → τ̂2〈ξ2〉 6 τ̂ using the subtyping
judgments from the above derivation sequence, interleaved with [Sub-Forall].
By disregarding the subtyping in the above derivation sequence and only retaining
the subeffecting part, we can eventually derive Σ | Γ̂ `te t̂ : ∀βi :: κi .τ̂1〈ξ1〉 →
τ̂2〈ξ2〉& ξ. The type is conservative by definition.

t̂ = µx : τ̂ ′ & ξ′.t̂ ′ By lemma 2.35, there is a derivation

Σ | Γ̂, x : τ̂ ′ & ξ′ `te t̂ ′ : τ̂ ′ & ξ′
[T-Fix]

Σ | Γ̂ `te µx : τ̂ ′ & ξ′.t̂ ′ : τ̂ ′ & ξ′
Σ `sub τ̂

′ 6 τ̂
Σ `sub ξ

′ v ξ
[T-Sub]

Σ | Γ̂ `te µx : τ̂ ′ & ξ′.t̂ ′ : τ̂ & ξ

By assumption, τ̂ ′ is conservative and we can derive the desired Σ | Γ̂ `te t̂ : τ̂ ′& ξ.

The proof for applications could be done as follows.

t̂ = t̂1 〈ξi〉 t̂2 The idea in this case is to use lemma 2.35 to expose the typing derivation
and to use the induction hypothesis for obtaining conservative types for both t̂1
and t̂2.
We could then build a substitution from the annotation applications and apply it
to the conservative return type of the function. This preserves the conservativeness
and the resulting type is still a subtype of the original type.

Presumably, the remaining cases can be proven in a similar fashion.

While the following lemma is not the result we initially aimed to prove, we hope that
it can serve as a starting point for a more general theorem by combining it with some
sort of proof normalization for target terms. Again, the proof is incomplete, and more
to be understood as a proof sketch at some points.

Conjecture 3.57 (Best Analyses). Let Σ be a sort environment, Γ̂ be a well-formed
type and effect environment under Σ and t a source term. R(Γ̂; Σ; t) = t̂ : τ̂ & ξ is a best
analysis for t under Σ and Γ̂ under the assumption that the other term is conservative,
according to the preceding definition.

Proof. By theorem 3.48, there are t̂, τ̂ and ξ with bt̂c = t such that R(Γ̂; Σ; t) = t̂ : τ̂ &ξ.
Additionally, by theorem 3.36 Σ | Γ̂ `te t̂ : τ̂ & ξ and τ̂ is conservative.

It remains to show that for all triples t̂ ′ : τ̂ ′ & ξ′ such that τ̂ ′ is conservative, bt̂ ′c = t
and Σ | Γ̂ `te t̂ ′ : τ̂ ′ & ξ′ we have Σ `sub τ̂ 6 τ̂ ′ and Σ `sub ξ v ξ′. Additionally, we
assume that t̂ ′ is conservative.

Proof by induction on t. The following cases can be considered as complete.

t = x We have R(Γ̂; Σ; x) = x : Γ̂(x) and Γ̂(x) = τ̂ & ξ.
By assumption, t̂ ′ = x using bt̂ ′c = x to eliminate other possibilities. By lemma 2.35,
any other valid type and effect τ̂ ′& ξ′ must be larger than or equal to τ̂ & ξ. Thus,
x : τ̂ & ξ is the best analysis.
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t = () Since τ̂ ′ is conservative and bτ̂ ′c = unit, τ̂ ′ = ûnit. By definition, R(Γ̂; Σ; ()) =
() : ûnit & ⊥. Since ⊥ is the least element, Σ `sub ⊥ v ξ′ always holds. We have
Σ `sub ûnit 6 ûnit by [Sub-Refl].

t = ann`(t1) We have R(Γ̂; Σ; ann`(t1)) = ann`(t̂1): τ̂1 &bb`tξ1ccΣ such that R(Γ̂; Σ; t1) =
t̂1 : τ̂1 & ξ1.
By assumption, t̂ ′ = ann`(t̂ ′1) for some conservative t̂ ′1 and by lemma 2.35 and con-
jecture 3.56, there is a derivation

Σ | Γ̂ `te t̂ ′1 : τ̂ ′1 & ξ′1 Σ `sub ` v ξ′1 [T-Ann]
Σ | Γ̂ `te ann`(t̂ ′) : τ̂ ′1 & ξ′1

Σ `sub τ̂
′
1 6 τ̂

′

Σ `sub ξ
′
1 v ξ′ [T-Sub]

Σ | Γ̂ `te ann`(t̂ ′) : τ̂ ′ & ξ′

with τ̂ ′1 being conservative.
By induction, t̂1 : τ̂ & ξ1 is a best analysis for t1, hence Σ `sub τ̂1 6 τ̂ ′1 and Σ `sub
ξ1 v ξ′1. By transitivity, we then also have Σ `sub τ̂1 6 τ̂ ′ and Σ `sub ξ1 v ξ′.
Since we also have Σ `sub ` v ξ′, we can conclude Σ `sub ` t ξ1 v ξ′.

t = inlτ2(t1) We have R(Γ̂; Σ; inlτ2(t1)) = inlτ2(t̂1): τ̂1〈ξ1〉+⊥τ2〈⊥〉&⊥ where t̂1 : τ̂1&ξ1 =
R(Γ̂; Σ; t1).

By assumption, t̂ ′ = inlτ2(t̂ ′1) with t̂ ′1 conservative, and by lemma 2.35 and con-
jecture 3.56, there are conservative τ̂ ′1, τ̂ ′2 such that the following derivation for
Σ | Γ̂ `te t̂ ′ : τ̂ ′ & ξ′ is valid.

Σ | Γ̂ `te t̂ ′1 : τ̂ ′1 & ξ′1 [T-Inl]
Σ | Γ̂ `te inlτ2(t̂ ′1) : τ̂ ′1〈ξ′1〉+ τ̂ ′2〈ξ′2〉&⊥

Σ `sub τ̂
′
1〈ξ′1〉+ τ̂ ′2〈ξ′2〉 6 τ̂ ′

Σ `sub ⊥ v ξ′ [T-Sub]
Σ | Γ̂ `te inlτ2(t̂ ′1) : τ̂ ′ & ξ′

By induction, Σ `sub τ̂1 6 τ̂ ′1 and Σ `sub ξ1 v ξ′1. By lemma 3.26, Σ `sub ⊥τ2 6 τ̂
′
2.

Clearly, Σ `sub ⊥ v ξ′2. Thus, we can derive Σ `sub τ̂1〈ξ1〉+⊥τ2〈⊥〉 6 τ̂ ′1〈ξ′1〉+τ̂ ′2〈ξ′2〉
by [T-Sum].
By transitivity, we get Σ `sub τ̂1〈ξ1〉+⊥τ2〈⊥〉 6 τ̂ ′ and Σ `sub ⊥ v ξ′ trivially.

t = λx : τ1.t2 We have R(Γ̂; Σ;λx : τ1.t ′) = Λβi :: κi .λx : τ̂1 & ξ1.t̂2 : ∀βi :: κi .τ̂1〈ξ1〉 →
τ̂2〈ξ2〉&⊥ such that ∅ `c τ1 : τ̂1 & ξ1 . βi :: κi holds and t̂2 : τ̂2 & ξ2 = R(Γ̂, x : τ̂1 &
ξ1; Σ, βi :: κi ; t2).

By assumption, we have t̂ ′ = Λβi :: κi .λx : τ̂ ′1 & ξ′1.t̂ ′2 such that t̂ ′2 is conservative
and ∅ `p τ̂ ′1 &ξ′1 .βi :: κi holds. Since pattern types are unique, we can assume that
t̂ ′ quantifies over the same annotation variables βi . By lemma 2.35 and conjec-
ture 3.56, there is a conservative type τ̂ ′2 such that Σ, βi :: κi | Γ̂, x :τ̂ ′1&ξ′1 `te τ̂

′
2:ξ′2&·

holds.
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By induction, we then get Σ `sub τ̂2 6 τ̂ ′2 and Σ `sub ξ2 v ξ′2. As the argument
position can be treated invariantly, this allows us to derive Σ, βi :: κi `sub τ̂1〈ξ1〉 →
τ̂2〈ξ2〉 6 τ̂ ′1〈ξ′1〉 → τ̂ ′2〈ξ′2〉. Using [Sub-Forall], we arrive at the desired conclusion.

t = µx : τ.t1 We have R(Γ̂; Σ;µx : τ.t1) = µx : τ̂ & ξ.t̂1 : τ̂ & ξ for some τ̂ and ξ. Using
lemmas 3.47 and 3.54 we can express this result as the least fixpoint [τ̂ & ξ]Σ of
the monotone function

f([τ̂1 & ξ1]Σ) = [τ̂ ′1 & ξ′1]Σ where t̂1 : τ̂ ′1 & ξ′1 = R(Γ̂, x : τ̂1 & ξ1; Σ; t1)

Note that due to the monotonicity of R, the result of f does not depend on the
choice of a particular representative of the equivalence class. This is because any
representative is both a sub- and a supertype of all others, and so are the results
of R by monotonicity. Thus, they are all in the same equivalence class as well.
By assumption, we have t̂ ′ = µx : τ̂ ′ & ξ′.t̂ ′1 such that t̂ ′1 is conservative, and by
lemma 2.35 and conjecture 3.56, there is the following derivation.

Σ | Γ̂, x : τ̂ ′′ & ξ′′ `te t̂ ′1 : τ̂ ′′ & ξ′′
[T-Fix]

Σ | Γ̂ `te µx : τ̂ ′′ & ξ′′.t̂ ′1 : τ̂ ′′ & ξ′′
Σ `sub τ̂

′′ 6 τ̂ ′

Σ `sub ξ
′′ v ξ′

[T-Sub]
Σ | Γ̂ `te µx : τ̂ ′′ & ξ′′.t̂ ′1 : τ̂ ′ & ξ′

We define the sequence (τ̂ ′′i & ξ′′i )i∈N by

[τ̂ ′′0 & ξ′′0 ]Σ = [τ̂ ′′ & ξ′′]Σ
[τ̂ ′′i+1 & ξ′′i+1]Σ = f([τ̂ ′′i & ξ′′i ]Σ)

Claim: [τ̂ ′′i+1 & ξ′′i+1]Σ vΣ [τ̂ ′′i & ξ′′i ]Σ for all i.
Proof: By induction on i.
i = 0 By using the outer induction hypothesis, R(Γ̂, x : τ̂ ′′0 & ξ′′0 ; Σ; t1) is a best

analysis for t1. Therefore, [τ̂ ′′1 & ξ′′1 ]Σ = f([τ̂ ′′0 & ξ′′0 ]Σ) vΣ [τ̂ ′′0 & ξ′′0 ]Σ.
i→ i+ 1 By induction, we have

[τ̂ ′′i+2 & ξ′′i+2]Σ = f([τ̂ ′′i+1 & ξ′′i+1]Σ) vΣ f([τ̂ ′′i & ξ′′i ]Σ) = [τ̂ ′′i+1 & ξ′′i+1]Σ

�

Since the number of equivalence classes is finite, there must be some index j such
that [τ̂ ′′j & ξ′′j ]Σ is a fixpoint of f . By lemma 3.54, [τ̂ & ξ]Σ vΣ [τ̂ ′′j & ξ′′j ]Σ and by
transitivity, [τ̂ & ξ]Σ vΣ [τ̂ ′′ & ξ′′]Σ.
Thus, Σ `sub τ̂ 6 τ̂ ′ and Σ `sub ξ v ξ′ hold by transitivity.

The following case consists of a sketch for proving the result for function applications.
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t = t1 t2 The crucial part of this case is to show that the annotation applications com-
puted by the matching algorithm are subsumed by those used in the other analysis
t̂ ′. This can likely be shown by inspecting the subtyping relation obtained by
applying the induction hypothesis to the argument term.

We think that the remaining cases, i.e. pairs, projections, seq and case-expressions,
can be proven analogously.
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4. Implementation

This section briefly outlines the prototype implementation based on the algorithm pre-
sented in the previous chapter. It has been realized using Haskell with version 8.0.2 of
GHC1.

4.1. Additional Features
While the only base type in the analysis described in the previous chapters is unit, the
prototype has additional built-in support for booleans and integers. Therefore, there is
additional syntax for boolean literals (true and false), and for integer literals. Boolean
values can be deconstructed using if-expressions if c then t1 else t2.

The typing rules for literals can be straightforwardly derived from [T-Unit] and the
typing rule for if-expressions is just [T-Case] without the additional variable bindings.

Note that there are no builtin operators, since these can be represented by providing
a suitable initial type environment containing functions with the right type annotations.
Example 4.1. A basic set of functions for working with integers could consist of the
following signatures.

plus : ∀β1.int〈β1〉 → (∀β2.int〈β2〉 → int〈β1 t β2〉)〈⊥〉&⊥
minus : ∀β1.int〈β1〉 → (∀β2.int〈β2〉 → int〈β1 t β2〉)〈⊥〉&⊥
mult : ∀β1.int〈β1〉 → (∀β2.int〈β2〉 → int〈β1 t β2〉)〈⊥〉&⊥
eq : ∀β1.int〈β1〉 → (∀β2.int〈β2〉 → bool〈β1 t β2〉)〈⊥〉&⊥
gt : ∀β1.int〈β1〉 → (∀β2.int〈β2〉 → bool〈β1 t β2〉)〈⊥〉&⊥

We can observe that all these functions follow the same pattern. There are two inputs
and the result depends on both.

Interestingly, these types are valid for any choice of a concrete dependency lattice
because they only mention the join operation and bottom. There are of course examples
for builtin functions where this is not the case. Consider a function

readInt : ∀β1.ûnit〈β1〉 → int〈D〉& S

that reads an integer from the standard input. In this case, we must provide a specific
type signature for binding-time analysis in order to assign the non-bottom annotation
D to the return value.

This method can also be used for providing primitive operations that cannot be ex-
pressed in the language. Consider an example in security analysis where we want to

1The Glasgow Haskell Compiler, https://www.haskell.org/ghc/

82

https://www.haskell.org/ghc/


be able to declassify data if it meets certain requirements. This is not possible with
the constructs provided by the language where we have only means for increasing the
security level. We could however provide a function in the initial environment such as

declassify : ∀β1.A〈β1〉 → A〈β1〉+ A〈⊥〉&⊥

which takes an argument of some type A and depending on whether it meets certain
criteria returns it without classification (⊥), or with the same classification β1 as before.

It is important to note though, that while such type signatures can be artificially
added to the environment, there is a good reason why it is not possible to construct
these within the language. Functions like these can be used to break noninterference,
i.e. it is no longer evident from the type of an expression whether or not it may use
certain variables from the context.

However, this is not a problem in our noninterference theorem because it only relates
closed terms obtained by substituting the only free variable. Therefore, it only applies to
those terms where there is actually a closed term that can be used for the substitution.

4.2. Project Structure
The project itself is structured into several modules that correspond to the different
sections of this thesis.

We are effectively dealing with three different but related languages, the source lan-
guage, the target language and the annotation language (the λt-calculus). Their respec-
tive implementations reside in the DependencyAnalysis.Source, DependencyAnaly-
sis.Target and DependencyAnalysis.LambdaJoin namespaces, while using common
definitions from the DependencyAnalysis.Common namespace. Each of these names-
paces contains an AST module containing the data types used for representing the ab-
stract syntax trees. Furthermore, there are Parser and Pretty modules for languages
that need to be parsed, respectively pretty printed.

Additionally, the λt-namespace also contains the modules Normalization implement-
ing the canonicalization presented in the previous chapter, Equality providing functions
for testing λt-terms for semantic or syntactic equality, and Sorting implementing a sort-
inference for dependency terms.

The actual reconstruction algorithmR is realized in the DependencyAnalysis.Recon-
struction module. So far, it assumes that it is provided with a well-typed underlying
term. It makes use of the implementation of the completion rules provided in the module
DependencyAnalysis.Completion.

4.3. REPL
While the analysis itself is developed as a library, the project also contains an exe-
cutable providing a simple read-eval-print-loop (REPL) for analyzing source terms and
computing type completions of underlying types. Only binding-time analysis and secu-
rity analysis using the four element lattice presented in an earlier example have been
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implemented. However, the implementation of the analysis is abstracted over the choice
of a particular lattice. Therefore, new concrete analyses can be added independent of
the reconstruction algorithm.

It needs to be considered that the current implementation uses the brute-force ap-
proach to deciding semantic equality (as outlined at the beginning of chapter 3) for the
lack of a better alternative. Thus, using larger lattices will likely result in very slow
computations.

The concrete syntax resembles the abstract syntax used in this thesis, using an ASCII
representation of the symbolic notation. It is shown in figure 4.1 in an EBNF-like
presentation. The join operation in the inferred annotations and effects is represented
by the + symbol. The two values of the binding-time lattice are mapped to S (static)
and D (dynamic) whereas the security lattice uses L (low), M1, M2 (two unrelated medium
classifications) and H (high).

In order to provide meaningful operations for the additional base types besides unit,
the type and effect environment is prepopulated with the functions from example 4.1
as well as analogously defined binary functions and and or for booleans and additional
order predicates lt, leq, geq and neq.
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〈type〉 ::= 〈stype〉 | 〈stype〉 -> 〈type〉 (function type)
〈stype〉 ::= 〈ptype〉 | 〈ptype〉 + 〈ptype〉 (sum type)
〈ptype〉 ::= 〈btype〉 | 〈btype〉 * 〈btype〉 (product type)
〈btype〉 ::= bool | int | unit | (〈type〉) (base types)

〈ident〉 ::= [a− z][a− zA− Z0− 9 ’]∗

〈latticeval〉 ::= depends on lattice

〈term〉 ::= 〈ident〉 (variable)
| () (unit constructor)
| fun 〈ident〉 : 〈type〉 => 〈term〉 (λ-abstraction)
| fix 〈ident〉 : 〈type〉 => 〈term〉 (fixpoint)
| 〈term〉 〈term〉 (application)
| (〈term〉, 〈term〉) (pair constructor)
| fst(〈term〉) | snd(〈term〉) (pair projections)
| true | false (boolean constructors)
| if 〈term〉 then 〈term〉 else 〈term〉 (bool elimination)
| inl<〈type〉>(〈term〉) | inr<〈type〉>(〈term〉) (sum constructors)
| case 〈term〉 of { inl(〈ident〉) -> 〈term〉

; inr(〈ident〉) -> 〈term〉 }
(sum elimination)

| seq(〈term〉, 〈term〉) (forcing)
| ann<〈latticeval〉>(〈term〉) (annotations)

Figure 4.1.: Concrete syntax of the source language
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5. Evaluation

In this chapter we evaluate the type reconstruction algorithm and the type system itself
by means of some examples. At the end of chapter 2 we have already seen how the
underlying lattice can be chosen in order to specialize the algorithm to a certain analysis.

The examples here use the additional types provided by our implementation, as pre-
sented in the previous chapter.

5.1. Construction and Elimination
We start with a few simple examples demonstrating that the effects inferred for con-
structors and eliminators are sensible. We use the terms constructors and eliminators
deliberately here, because the basic concept generalizes over product types, sum types
and function types.

Whenever something is constructed, be it a product, a sum or a lambda abstraction,
the outermost effect that is assigned is ⊥. This is because the analysis aims to produce
the best possible and thereby least annotations for a given source program.

On the other hand, when eliminating through projection, case distinction or function
application, the effect of the term that is eliminated is included in the result. This is a
necessary requirement for the analysis results to be sound.

Consider the case of binding-time analysis, and suppose we have a variable of function
type f :∀β.int〈β〉 → int〈β〉&D. We see that it preserves the annotations of its arguments,
i.e. if we apply f to a static value, the return annotation is also instantiated to be static.
The function itself, however, is dynamic. And therefore, the whole result of the function
application must also be dynamic, because we cannot know which particular function
has been assigned to f .

As elimination always introduces a dependency in the program, this can uncover
subtleties arising when functions only differ in their termination behavior. For example,
compare λp : int× int.p with λp : int× int.(proj1(p),proj2(p)).

In a call-by-value language, these two functions would be (extensionally) equivalent.
However, with non-strict evaluation, p might be a non-terminating computation. In
that case, applying the former function would diverge, while the latter function at least
produces the pair constructor. This is also reflected in the annotated types that are
inferred for the above functions,

∀β0, β1, β2 :: ?.(int〈β0〉 × int〈β1〉)〈β2〉 → (int〈β0〉 × int〈β1〉)〈β2〉& S

for the former and

∀β0, β1, β2 :: ?.(int〈β0〉 × int〈β1〉)〈β2〉 → (int〈β0 t β2〉 × int〈β1 t β2〉)〈S〉& S
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for the latter. In particular, the annotation of the product in the second type signature
is S. Therefore, it can not depend on the input of the function.

5.2. Polymorphic Recursion
One class of functions where the analysis benefits from polymorphic recursion are those
that permute their arguments on recursive calls.
Example 5.1. This example is a slightly modified version of the motivating example of
Dussart, Henglein, and Mossin [4] for polymorphic recursion in binding-time analysis.

µf : bool→ bool→ bool.λx : bool.λy : bool. if x then true else f y x

In an analysis with monomorphic recursion, this would force the analysis to assign
the same annotations to both parameters. It must be large enough (in terms of the
lattice order) to accommodate for both arguments. This is due to the permutation of
the arguments in the else branch, where the same instantiation of f must be used as in
the initial call.

On the other hand, an analysis with polymorphic recursion is allowed to use a different
instantiation for f in that case. Our algorithm hence infers the following most general
type.

∀β1 :: ?.b̂ool〈β1〉 → (∀β2 :: ?.b̂ool〈β2〉 → b̂ool〈β1 t β2〉)〈⊥〉&⊥

We see that the result of the function indeed depends on the annotations of both
arguments, as both end up in the condition of the if-expression at some point. Yet, both
arguments are completely unrestricted, and unrelated in their annotations.

The instantiation of the recursive call is explicitly visible in the target language term
generated by the analysis.

µf : (∀β1 :: ?.b̂ool〈β1〉 → (∀β2 :: ?.b̂ool〈β2〉 → b̂ool〈β1 + β2〉)〈⊥〉) &⊥.
Λβ1 :: ?.λx : b̂ool & β1.Λβ2 :: ?.λy : b̂ool & β2. if x then true else f 〈β2〉 y 〈β1〉 x

A type that is polymorphic in the annotations of the arguments is assigned to the
fixpoint binding and the quantification is explicit on the term level. We can observe
that β2 is passed to the formal parameter β1.

In contrast, a type system with monomorphic recursion would only admit a weaker
type, possibly similar to the following, where the annotations of both arguments must
be the same.

∀β1 :: ?.b̂ool〈β1〉 → (b̂ool〈β1〉 → b̂ool〈β1〉)〈⊥〉&⊥

A real world example where the annotations of the arguments eventually end up in
both formal parameters is Euclid’s algorithm for computing the greatest common divisor.
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Example 5.2. We can formulate the gcd algorithm in our language as follows, assuming
that the context is already populated with the function minus for performing subtraction
and the order predicates eq (for equality) and gt (for greater than). What these auxiliary
definitions would look like is outlined in the previous chapter (see example 4.1).

µgcd : int→ int→ int.λa : int.λb : int.
(if eq a b then a else if gt a b then gcd (minus a b) b else gcd a (minus b a))

In one branch of the inner if-expression, gcd’s first parameter is instatiated with the
join of the annotations of both arguments (due to the type signature of minus). In the
other branch, this is the case for the second parameter of gcd.

Again, this becomes visible in the annotated type signature and the elaborated term.

gcd : ∀β1 :: ?.int〈β1〉 → (∀β2 :: ?.int〈β2〉 → int〈β1 t β2〉)〈⊥〉&⊥
gcd = µgcd : ∀β1 :: ?.int〈β1〉 → (∀β2 :: ?.int〈β2〉 → int〈β1 t β2〉)〈⊥〉&⊥.

Λβ1 :: ?.λa : int & β1.Λβ2 :: ?.λb : int & β1.
(if eq 〈β1〉 a 〈β2〉 b then a else

if gt 〈β1〉 a 〈β2〉 b then gcd 〈β1 t β2〉 (minus 〈β1〉 a 〈β2〉 b) 〈β2〉 b
else gcd 〈β1〉 a 〈β1 t β2〉 (minus 〈β2〉 b 〈β1〉 a))

5.3. Higher-Ranked Polyvariance
This section discusses several examples where the analysis benefits from higher-ranked
polyvariance. In particular, we compare our results to existing analyses that are not
higher-ranked. The situations in which higher-ranked analyses lead to advantages are
those where arguments of function types are used more than once.

In the following example we illustrate the gains of using our higher-ranked system in
the context of binding-time analysis by comparing it to the polyvariant, but not higher-
ranked binding time analysis by Zhang [26]. Note that Zhang’s system is constraint
based, while we are using a more direct formulation.
Example 5.3. A simple example to start with is a function that applies a function to
both components of a pair.

both : (int→ int)→ int× int→ int× int
both = λf : int→ int.λp : int× int.(f (proj1(p)), f (proj2(p)))

Suppose in the context of binding-time analysis that both is used to apply a statically
known function to a pair whose the first component is always computable at compile
time, but whose second component is dynamic.

For simplicity’s sake, we will use the identity function as an argument to both.

id : int→ int
id = λx : int.x
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The non-higher-ranked analysis would assign the following types to our example func-
tions.

id : ∀β1 β2.(β1 v β2, β3 v β1, β3 v β2)⇒ int〈β1〉
β3−→ int〈β2〉

both : ∀β1 ... β10.(β3 v β1, β3 v β2, β4 v β3, β4 v β8, β7 v β5, β7 v β6, β8 v β7
, β8 v β11, β11 v β9, β11 v β10, β5 v β1, β6 v β1, β2 v β9, β2 v β10)

⇒ (int〈β1〉
β3−→ int〈β2〉)

β4−→ (int〈β5〉 × int〈β6〉)〈β7〉
β8−→ (int〈β9〉 × int〈β10〉)〈β11〉

The limiting factor in the expressiveness of the analysis is the fact that the annotations
β1 and β2 of the return value of the function argument to both are chosen wherever both
is called. In order for this instantiation to be valid for all occurrences of the argument
f in the body of both, the constraints β5 v β1, β6 v β1, β2 v β9 and β2 v β10 must be
fulfilled. The first two constraints state that the annotation of the function’s argument
must be large enough to be able to take both components of the pair as input. The latter
two ensure that the annotations of the returned pair are at least as large as whatever
the function returns.

When we look at the partial application both id, we have the additional constraint
β1 v β2 from the type of id. This forces β9 and β10 to be larger than both β5 and β6.
Consider the call both id p for some pair p : int〈S〉 × int〈D〉 & S. Then, β5 = S and
β6 = D, but even though we are applying the identity function, the whole call has the
type int〈D〉 × int〈D〉.

In our higher-ranked analysis, we can infer the following conservative type for the
identity function.

id : ∀β :: ?.int〈β〉 → int〈β〉&⊥
id = Λβ :: ?.λx : int & β.x

Because id is not a higher-order function, we have not yet gained more precision at this
point. However, we obtain the following target term and annotated type for the function
both.

both : ∀β1 :: ?.∀β2 :: ?⇒ ?.(∀β :: ?.int〈β〉 → int〈β2 β〉)〈β1〉
→ (∀β3, β4, β5 :: ?.(int〈β3〉 × int〈β4〉)〈β5〉
→ (int〈β2 (β3 t β5) t β1〉 × int〈β2 (β4 t β5) t β1〉)〈S〉)〈S〉& S

both = Λβ1 :: ?.Λβ2 :: ?⇒ ?.λf : (∀β :: ?.int〈β〉 → int〈β2 β〉).
Λβ3 :: ?.Λβ4 :: ?.Λβ5 :: ?.λp : int〈β3〉 × int〈β4〉.

(f 〈β3 t β5〉 (proj1(p)), f 〈β4 t β5〉 (proj2(p)))

The function parameter f can be instantiated separately for each component because our
analysis assigns it a type that universally quantifies over the annotation of its argument.
It is evident from the type signature that the components of the resulting pair only
depend on the corresponding components of the input pair, and the function and the
input pair itself. They do not depend on the respective other component of the input.

If we again consider the call both id p, we obtain β2 = λβ :: ?.β, β1 = β3 = β5 = S and
β4 = D through pattern unification. Normalization of the resulting dependency terms
results in the expected return type int〈S〉 × int〈D〉.
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The generality provided by the higher-ranked analysis extends to an arbitrarily deep
nesting of function arrows. The following example demonstrates this for two levels of
arrows.
Example 5.4. Consider the following function that takes a function argument which again
requires a function.

foo : ((int→ int)→ int)→ int× int
foo = λf : (int→ int)→ int.(f (λx : int.x), f (λx : int.0))

The higher-ranked analysis infers the following type and target term (where we omitted
the type in the argument of the lambda term because it essentially repeats what is
already visible in the top level type signature).

foo : ∀β4 :: ?.∀β3 :: ?⇒ (?⇒ ?)⇒ ?.
(∀β2 :: ?.∀β1 :: ?⇒ ?.(∀β0 :: ?.int〈β0〉 → int〈β1 β0〉)〈a2〉 → int〈β3 β2 β1〉)〈β4〉
→ (int〈β3 S (λβ5 :: ?.β5) t β4〉 × int〈β3 S (λβ6 :: ?.S) t β4〉)〈S〉& S

foo = Λβ4 :: ?.Λβ3 :: ?⇒ (?⇒ ?)⇒ ?.λf : · · · .
(f 〈S〉 〈λβ0 :: ?.β0〉 (Λβ5 :: ?.λx : int & β5.x)
, f 〈S〉 〈λβ0 :: ?.S〉 (Λβ6 :: ?.λx : int & β6.1))

Since the type of f is a pattern type, the argument to f is also a pattern type by
definition. Therefore, the analysis of f depends on the analysis of the function passed
to it. This gives rise to the higher-order effect operator β3. Thus, f can be applied to
any function with a conservative type of the right shape. As our type reconstruction
algorithm always infers conservative types, the type of f is as general as possible.

This is reflected in the body of the lambda where in both cases f is instantiated with
the effect corresponding to the function passed to it. The result of this instantiation
can be observed in the returned product type where β3 is applied to the effect operators
λβ0 :: ?.β0 and λβ0 :: ?.S corresponding to the respective functions used as arguments
to f .

Only when we finally apply foo, the resulting annotations can be evaluated. We
consider three simple functions that differ in their behavior.

bar1 : ∀a2 :: ?.∀a1 :: ?⇒ ?.(∀a0 :: ?.int〈a0 〉 → int〈a1 a0 〉)〈a2〉 → int〈S〉& S
bar1 = Λa2 :: ?.Λa1 :: ?⇒ ?.λf : · · · .0
bar2 : ∀a2 :: ?.∀a1 :: ?⇒ ?.(∀a0 :: ?.int〈a0 〉 → int〈a1 a0 〉)〈a2〉 → int〈a1 S t a2〉& S
bar2 = Λa2 :: ?.Λa1 :: ?⇒ ?.λf : · · · .f 0
bar3 : ∀a2 :: ?.∀a1 :: ?⇒ ?.(∀a0 :: ?.int〈a0 〉 → int〈a1 a0 〉)〈a2〉 → int〈a1 D t a2〉& S
bar3 = Λa2 :: ?.Λa1 :: ?⇒ ?.λf : · · · .f (annD(0))

We obtain the following types when applying foo to the above functions.

foo bar1 : int〈S〉 × int〈S〉& S The effect operator β3 is instantiated to the constant func-
tion λβ2 :: ?.λβ1 :: ? ⇒ ?.S. Therefore, the components are annotated with S
regardless of the arguments to β3.
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foo bar2 : int〈S〉 × int〈S〉& S Even though β3 = λβ2 :: ?.λβ1 :: ? ⇒ ?.β1 S t β2 makes
use of its arguments, the particular effect operators it is applied to still cause the
result to be static. We have

(λβ2 :: ?.λβ1 :: ?⇒ ?.β1 S t β2) S (λβ :: ?.β) = (λβ :: ?.β) S t S = S

and

(λβ2 :: ?.λβ1 :: ?⇒ ?.β1 S t β2) S (λβ :: ?.S) = (λβ :: ?.S) S t S = S.

foo bar3 : int〈D〉 × int〈S〉& S Now β3 = λβ2 :: ?.λβ1 :: ? ⇒ ?.β1 D t β2 because bar3
applies its argument to a value with dynamic binding time.
This causes the first component of the returned pair to be deemed dynamic as well.
This becomes evident when we reduce the resulting annotation:

(λβ2 :: ?.λβ1 :: ?⇒ ?.β1 D t β2) S (λβ :: ?.β) = (λβ :: ?.β) D t S = D

where λβ :: ?.β is of course the effect operator belonging to the identity function
passed to bar3.
On the other hand, in the second component bar3 is applied to a constant function.
Thus, regardless of the argument’s dynamic binding time, the resulting binding
time is static.

In the rank-1 type and effect system, we can assign the following type to foo:

∀β1 . . β8 :: ?.(β1 v β2,S v β2, β3 v β2, β5 v β4, β4 v β6, β4 v β7)
⇒ ((int〈β1〉 → int〈β2〉)〈β3〉 → int〈β4〉)〈β5〉 → (int〈β6〉 × int〈β7〉)〈β8〉

The first two constraints arise from the lambda expressions that are passed as arguments
to f . The next constraints, β3 v β2 and β5 v β4 come from the well-formedness condition
on function types. That is, the functions result must be as dynamic as the function itself.
Lastly, β4 v β6 and β4 v β7 propagate the results of the function calls to the components
of the pair.

The increased precision becomes visible in the third example. We can assign the
following type to bar3:

∀β1 β2 β3 β4 :: ?.(β3 v β4, β2 v β4,D v β1)
⇒ (int〈β1〉 → int〈β2〉)〈β3〉 → int〈β4〉

For determining the type of foo bar3, we instantiate the latter accordingly resulting in
the following constraints in particular: D v β1, β1 v β2, β2 v β4, β4 v β6 and β4 v β7.
The resulting type therefore is int〈D〉 × int〈D〉.

Such functions with more than two levels of arrows can arise in actual programs, e.g.
as the result of replacing type classes in Haskell with explicit dictionary passing. The
above example can be seen as a heavily restricted instance of this, due to the lack of
user-defined data types and polymorphism in the underlying type system.
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6. Related Work

In preparation for this thesis we also looked at region analysis, in particular the system
by Tofte and Talpin used in the MLKit compiler [24], and the automated amortized
resource analysis by Jost et al.[12].

6.1. Region Analysis
Region-based memory management strikes a middle-ground between garbage collection
and manual memory management in terms of memory safety and determinism. The
idea is to have (usually) lexically scoped regions in which memory can be allocated
throughout their lifetime, but it is only freed at the end of the region’s scope.

While it would be possible for a programmer to manually specify regions, that ap-
proach is only marginally less unsafe and time-consuming than managing memory en-
tirely manually.

Therefore, region analysis is used for automatically determining the places in the
source program where memory allocation and deallocation should take place. In order
to prevent use-after-free errors, it must be ensured that a region will always outlive any
uses of references to the data inside.

Although region analysis initially seemed like a promising candidate, several problems
appeared upon closer investigation. It is uncertain whether the approach to higher-
ranked polyvariance taken in this thesis and the work it is based on is actually applicable
to region analysis.

There is a major difference between the flow and exception analyses for which the
higher-ranked system had already been formulated, and region analysis. The former
two compute the annotations of function effects and return values solely in terms of the
arguments. They do not impose any restrictions on the annotations of the arguments
of a function. On the contrary, in region analysis the annotations of the arguments are
constrained by the function implementation.
Example 6.1. The following function definitions serve as examples for the problems we
were facing. The actual type signature for h is intentionally left open, because it turned
out that there is no clear or straightforward way for assigning one based on the higher-
ranked frameworks we investigated. The region annotations and effects of function
types have been omitted in order to increase readability, as they are not essential for
demonstrating the problem.

f :: ∀ρ1 ρ2.int〈ρ1〉 → int〈ρ2〉 → int〈ρ2〉 → int〈ρ2〉
f c x y = if c > 0 then x else y
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g :: ∀ρ1 ρ2 ρ3 ρ4.int〈ρ1〉 → int〈ρ2〉 → int〈ρ3〉 → int〈ρ4〉
g c x y = if c > 0 then x + y else x − y
h :: ?
h k x = k 1 x 2

Because f returns either x or y unchanged, the return value of f and the last two
arguments must live in the same region. On the other hand, function g does not suffer
from the same problem, because it only reads its arguments and produces a fresh result
that is stored in a region chosen by the caller.

Of course, in this example integers would likely be stored on the stack, but the problem
persists for larger types. One could also imagine implicitly copying the values in the body
of f , but similarly, this hides program behavior from the programmer at best, and leads
to performance problems with larger values at worst.

The last problem is assigning a proper type signature to h that would allow it to be
applied to f as well as g. We need a way of expressing certain constraints involving the
annotations of arguments. But then, the types would lose their flexibility, which is a
crucial invariant of the type reconstruction algorithm in its current form.

We concluded that the techniques by Holdermans and Hage and Koot cannot be
readily applied to region analysis due to the necessity of imposing additional constraints
on the annotations of arguments. Of course, it should be noted that this does not rule
out the existence of other approaches that allow higher-ranked polyvariance to be used
in region analysis.

6.2. Resource Analysis
Resource analysis also looked like a good candidate for extending it to a higher-ranked
analysis. However, we refrained from further investigating this topic, not for technical
reasons, but because there is already an analysis by Hoffmann, Das, and Weng[8] de-
livering results akin to what we would expect from higher-ranked polyvariance. It has
been implemented in Resource Aware ML1. Notably, it is more precise than a previous
implementation of the analysis in the functional programming language Hume2 with
higher-order functions, but only rank-1 polyvariance following the 2010 paper by Jost
et al. [12].

However, their type system differs in quite a few points from the general approach
taken in this thesis. Therefore, it might still be interesting to study the differences and
the respective advantages and disadvantages of either method.

1RAML can be interactively tried at http://raml.co/interface.html (last visited 07-06-2017).
2Hume can be interactively tried at http://www-fp.cs.st-andrews.ac.uk/embounded/software/

cost/cost.cgi (last visited 07-06-2017).
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7. Conclusion and Future Work

We presented a type and effect system for dependency analyses employing higher-ranked
polyvariance together with polymorphic recursion. This increased the precision com-
pared to rank-1 polyvariance. It can be seen as an extension of the dependency core
calculus by Abadi et al. [1] and is therefore general enough to cover various analyses
such as binding-time analysis, security analysis, exception analysis and more.

The system has been formulated for a lazy functional language with general recursion.
Moreover, there are data types for sums, products and a unit value. It is modeled after
the language used to represent the dependency core calculus. We distinguish the source
language and the target language. The source language is used in the formulation of
the underlying type system. The target language is used for the type and effect system
and provides explicit terms for abstracting and instantiating effects. This is similar to
System-F, where abstraction over type variables and their subsequent instantiation is
likewise reflected on the term level.

We adopted the use of effect operators which have been introduced by Holdermans
and Hage in order to make the analysis of a function generic in its arguments. They
have been formalized for exception analysis by Koot in the λ∪-calculus, a simply typed
lambda calculus enriched with an algebraic set structure consisting of singleton sets and
unions. We generalized this concept to the λt-calculus that works with an arbitrary
lattice instead.

A main result of the first part of this thesis is the noninterference theorem with
respect to a call-by-name operational semantics for the target language. Noninterference
guarantees that the evaluation to WHNF of a term with a certain effect is not influenced
by a variable it depends on, if the effect of said variable is not encompassed by the term’s
effect. For that reason, it is an important result for the correctness of the type and effect
system and for subsequent usage of the analysis results.

As a preparation for the type reconstruction algorithm, we showed that deciding se-
mantic equality of λt-terms is decidable using the fact that the underlying lattice is
finite. We then present canonical forms for λt-terms using reduction and a fixed or-
dering of terms. These canonical forms are based on Koot’s work and were supposed
to be used in conjunction with syntactic equality (up to α-equivalence) in order to effi-
ciently decide semantic equality. However, it turned out that in our system as well as
in the prior work, there are certain terms with different canonical forms that are still
semantically equivalent.

We then proceeded by introducing certain kinds of annotated types, namely pattern
types and conservative types. They are essential for the modularity of the analysis
and have been previously used by Koot and Holdermans and Hage (calling them fully
parametric and fully flexible respectively). Conservative types are, in a certain sense,
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the most general types possible corresponding to a given underlying type. Pattern types
can be instantiated to any conservative type of the same shape using pattern unification,
a restricted form of higher-order unification. Any function parameters in a conservative
type are required to be pattern types, thereby making the least assumptions about the
arguments. It is possible to automatically compute the pattern type corresponding to
a certain underlying type. This type completion is used in the inference algorithm for
assigning the argument types of lambda expressions.

We continued by developing a type reconstruction algorithm for our type and effect
system based on the prior work by Koot. It works directly on the syntactic structure of
the input terms and does not use constraint solving. This is in contrast to the earlier
approach by Holdermans and Hage. Polymorphic recursion is handled through Mycroft
fixpoint interation.

Furthermore, we proved the correctness of the reconstruction algorithm. Notably, its
results are typeable in the type and effect system, and it will always terminate with a
correct answer for any well-typed source term. As a corollary, our type and effect system
is a conservative extension of the underlying type system, i.e. every well-typed source
term is analyzable. Moreover, the types computed by the reconstruction algorithm are
always the least ones, under some restrictions.

Additionally, we realized a prototype implementation of the type reconstruction al-
gorithm for the simple functional language, but extended with integers and booleans in
order to allow for more meaningful examples. Note that due to the inefficient method
that is used for deciding semantic equality of annotations, the performance of the im-
plementation is rather poor.

An evaluation, where we compared our higher-ranked system to analyses employing
rank-1 polyvariance, showed that we can indeed expect precision gains from a higher-
ranked analysis. However, due to the simplicity of the language, we could not investigate
the impact on real world programs.

Finally, there are several directions in which the topic of this thesis could be developed,
including the aforementioned shortcomings.

First of all, the language we have used as a base for our analysis is far away from
a fully-fledged functional language such as Haskell. Notably, it is missing support for
recursive data types, type polymorphism and user defined data types. A particular
challenge with the latter two features is likely to be the handling of annotations hidden
inside a type variable or type constructor.

Furthermore, deciding semantic equality of dependency terms is slow due to using
a brute force approach that does not scale well to large lattices and programs. One
starting point could be the investigation of stronger guarantees than just monotonicity
about functions expressible in the λt-calculus. These, in turn, could be used for defining
more extensive reduction rules. Alternatively, there might be ways of improving the
performance of the current brute-force approach, e.g. by pruning the search space in
some way.

Another approach to improving the performance of inference for recursive bindings
might be the usage of accelerated Kleene-Mycroft iteration, as described by Dussart,
Henglein, and Mossin. In order to reduce the cost of fixpoint iteration in the presence
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of nested recursive bindings, they initialize the fixpoint iteration with the result of the
most recent execution instead of bottom [4].

Orthogonal to the previous issues is the addition of minimal typing derivations [2].
While the most general analyses provided through conservative types are necessary for
modularity, they can hinder certain program transformations based on the analysis re-
sults because they are too general. Holdermans and Hage show this is the case for dead
code analysis [9]. Thus, it would be desirable to find the least general types possible for
bindings not accessible from other modules.

Lastly, it would certainly be useful to formalize the criteria that an analysis has to
fulfill in order for the higher-ranked approach taken in this thesis to be applicable. For
example, a characterization of the properties of region analysis that make it unsuitable
for this method. In this context, it might also be worthwhile to thoroughly compare this
approach with the type system used for resource analysis by Hoffmann, Das, and Weng.
While the latter seems to produce similar results, it achieves those through different
means.
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A. Proofs

Proof of Lemma 2.11. Proof by induction on the derivation tree of Σ `s ξ : κ.

[S-Var] By definition of the rule, we have ξ = β and Σ(β) = κ.
1. Let ρ v ρ1 be arbitrary. Then JβKρ = ρ(β) v ρ1(β) = JβKρ1

by assumption.
2. Since ρ is compatible with Σ, and β ∈ dom(Σ), JβKρ is well-defined.
3. By the same argument JβKρ ∈ VΣ(β).

[S-Abs] By definition of the rule, we have ξ = λβ :: κ1.ξ
′ and κ = κ1 ⇒ κ2. The premise

is Σ, β :: κ1 `s ξ
′ : κ2.

1. Let ρ v ρ1 be arbitrary, then
q
λβ :: κ1.ξ

′y
ρ

=λv ∈ Vκ2 .
q
ξ′
y
ρ[β 7→v]

vλv ∈ Vκ2 .
q
ξ′
y
ρ1[β 7→v] =

q
λβ :: κ1.ξ

′y
ρ1

2. By induction, Jξ′Kρ′ is well-defined for all ρ′ compatible with Σ, β :: κ1. There-
fore, Jλβ :: κ1.ξ

′Kρ is well-defined as well.
3. By induction, Jξ′Kρ′ ∈ Vκ2 for all ρ′ compatible with Σ, β : κ1. Furthermore,

since Jξ′K is monotone, so is the function λv ∈ Vκ1 . Jξ′Kρ[β 7→v]. In order to see
why, let x, y ∈ Vκ2 be arbitrary such that x v y,

(λv ∈ Vκ1 .
q
ξ′
y
ρ[β 7→v])(x) =

q
ξ′
y
ρ[β 7→x]

v
q
ξ′
y
ρ[β 7→y] = (λv ∈ Vκ1 .

q
ξ′
y
ρ[β 7→v])(y).

Consequently, Jλβ :: κ1.ξ
′Kρ ∈ Vκ1⇒κ2 .

[S-App] By definition of the rule, we have ξ = ξ1 ξ2. The premises are Σ `s ξ1 : κ1 ⇒ κ
and Σ `s ξ2 : κ1.

1. Let ρ v ρ1 be arbitrary. By induction, Jξ1Kρ is a monotone function. Hence,

Jξ1 ξ2Kρ = Jξ1Kρ (Jξ2Kρ) v Jξ1Kρ (Jξ2Kρ1
) v Jξ1Kρ1

(Jξ2Kρ1
) = Jξ1 ξ2Kρ1

.

The first and last step hold by definition of the denotational semantics, the
first inequality is due to the monotone function, the second inequality due to
the pointwise extension of inequality.

2. By induction Jξ1Kρ ∈ Vκ1⇒κ and Jξ2Kρ ∈ Vκ1 , therefore the function applica-
tion is well-defined.
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3. Since by the previous argument Jξ1Kρ is a function from Vκ1 to Vκ, we know
Jξ1 ξ2Kρ ∈ Vκ.

[S-Join] By definition of the rule, we have ξ = ξ1 t ξ2. The premises are Σ `s ξ1 :κ and
Σ `s ξ2 : κ.

1. Let ρ v ρ1 be arbitrary. Then

Jξ1 t ξ2Kρ = Jξ1Kρ t Jξ2Kρ
v Jξ1Kρ1

t Jξ2Kρ1
= Jξ1 t ξ2Kρ1

.

2. By induction, Jξ1Kρ ∈ Vκ and Jξ2Kρ ∈ Vκ, therefore the join operation is
well-defined.

3. By the previous argument, we have Jξ1Kρ t Jξ2Kρ ∈ Vκ.

[S-Lat] By definition of the rule, we have ξ = ` and κ = ?.
1. Let ρ v ρ1 be arbitrary, then

J`Kρ = ` v ` = J`Kρ1
.

2. This case is trivially well-defined.
3. By definition, ` ∈ V?.

Proof of Lemma 2.19. In order to prove Σ′ `sub ξ1 v ξ2, we need to show that Jξ1Kρ v
Jξ2Kρ holds for all environments ρ compatible with Σ′.

First, we prove that the assignments of the variables that are not free in a certain
term have no effect on its denotation.

Let ρ′ be an arbitrary environment compatible with Σ′. We define an environment ρ
with domain dom(Σ) by

ρ(β) =
{
ρ′(β) if β ∈ fav(ξ1) ∪ fav(ξ2)
⊥ otherwise

where ⊥ denotes the least element of the corresponding lattice VΣ(β). Clearly, ρ �fav(ξ1)=
ρ′ �fav(ξ1) and ρ �fav(ξ2)= ρ′ �fav(ξ2) by definition.
Claim: ρ is compatible with Σ.
Proof: Let β ∈ dom(Σ) be an arbitrary variable. If β ∈ fav(ξ1) ∪ fav(ξ2), then ρ(β) =
ρ′(β) ∈ VΣ′(β) by lemma 2.11. Since Σ(β) = Σ′(β), ρ(β) ∈ VΣ(β).

Otherwise, if β 6∈ fav(ξ1) ∪ fav(ξ2), then we have ρ(β) = ⊥ ∈ VΣ(β) by definition. �
Using lemma 2.18, we can derive

Jξ1Kρ′ = Jξ1Kρ′�fav(ξ1)
= Jξ1Kρ�fav(ξ1)

= Jξ1Kρ
v Jξ2Kρ = Jξ2Kρ�fav(ξ2)

= Jξ2Kρ′�fav(ξ2)
= Jξ2Kρ′

where the inequality follows from Σ `sub ξ1 v ξ2 and the above claim, stating that ρ is
compatible with Σ.
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Proof of Lemma 2.34. By induction on the derivation of Σ | Γ̂ `te t̂ : τ̂ & ξ.

[T-Var] We have Γ̂(x) = τ̂ & ξ. By definition bΓ̂c(x) = bτ̂c and bxc = x. Hence,
bΓ̂c `t x : bτ̂c holds by [U-Var].

[T-Unit] Since bûnitc = unit and b()c = (), we have bΓ̂c `t () : unit by [U-Unit].

[T-Sub] There are τ̂ ′ and ξ′ such that Σ | Γ̂ `te t̂ :τ̂ ′&ξ′, Σ `sub τ̂
′ 6 τ̂ and Σ `sub ξ

′ v ξ.
By induction, we have bΓ̂c `t bt̂c : bτ̂ ′c and by lemmas 2.27 and 2.29, we have
bτ̂ ′c = bτ̂c.

[T-AnnAbs] We have t̂ = Λβ ::κ.t̂ ′ and τ̂ = ∀β ::κ.τ̂ ′. Moreover, Σ, β ::κ | Γ̂ `te t̂ ′ : τ̂ ′&ξ
holds. By induction, bΓ̂c `t bt̂ ′c :bτ̂ ′c holds. Furthermore, bτ̂c = b∀β :: κ.τ̂ ′c = bτ̂ ′c
and bt̂c = bΛβ :: κ.t̂ ′c = bt̂ ′c hold by definition.

[T-AnnApp] We have t̂ = t̂ ′ 〈ξ′〉, τ̂ = [ξ′ / β ]τ̂ ′ and Σ | Γ̂ `te t̂ ′ : ∀β ::κ.τ̂ ′& ξ. Since the
substitution only affects annotations, we have b[ξ′ / β ]τ̂ ′c = bτ̂ ′c. By definition,
b∀β :: κ.τ̂ ′c = bτ̂ ′c and bt̂ ′ 〈ξ′〉c = bt̂ ′c. By induction, bΓ̂c `t bt̂ ′c : bτ̂ ′c.

The remaining cases follow analogously.

Proof of Theorem 2.43. By induction on annotated terms t.

t = x By lemma 2.38, {x} = ftv(x) ⊆ ∅, contradiction. Thus, this case cannot happen.

t = λx : τ̂ ′ & ξ′.t1 Clearly, t ∈ Nf .

t = t1 t2 We apply the induction hypothesis to t1 and distinguish two cases.
If t1 ∈ Nf , then either t1 ∈ Nf ′ or t1 = ann`(v′). Suppose the former holds, then
t1 = λx : τ̂ ′ & ξ′.t ′1 as this is the only possibility such that t is well-typed. But
then, we can apply [E-Abs] and get (λx : τ̂ ′ & ξ′.t ′1) t2 → [t2 / x ]t ′1. In the latter
case, we can apply [E-LiftApp], and get (ann`(v′)) t2 → ann`(v′ t2).
When the above is not the case, we get a reduction t1 → t ′1 and we can apply
[E-Context], resulting in

t1 → t ′1
t1 t2 → t ′1 t2

t = (t1, t2) Clearly, t ∈ Nf .

t = proji(t ′) We apply the induction hypothesis to t ′ and distinguish two cases.
If t ′ ∈ Nf , then either t ′ ∈ Nf ′ or t ′ = ann`(v′). Suppose the former holds, then
t ′ = (t1, t2) as this is the only possibility such that t is well-typed. But then, we
can apply [E-Proj] and get proji(t1, t2) → ti . In the latter case, we can apply
[E-LiftProj] and get proji(ann`(v′))→ ann`(proji(v′)).
When the above is not the case, we get a reduction t ′ → t ′′ and we can apply
[E-Context], resulting in

t ′ → t ′′
proji(t ′)→ proji(t ′′)
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t = inlτ (t ′) Clearly, t ∈ Nf .

t = inrτ (t ′) Clearly, t ∈ Nf .

t = case t1 of { inl(x)→ t2; inr(y)→ t3} We apply the induction hypothesis to t1 and
distinguish two cases.
If t1 ∈ Nf , then either t1 ∈ Nf ′ or t1 = ann`(v′). In the former case, we have
either t1 = inlτ2(t ′1) or t1 = inrτ1(t ′1) as these are the only possibilities for t to be
well-typed. But then, we either have

case inlτ2(t ′1) of { inl(x)→ t2; inr(y)→ t3} → [t ′1 / x ]t2
by [E-CaseInl] or

case inrτ1(t ′1) of {inl(x)→ t2; inr(y)→ t3} → [t ′1 / y ]t3
by [E-CaseInr]. In the latter case, t1 = ann`(v′), we have

(case (ann`(v′)) of { inl(x)→ t2; inr(y)→ t3})
→ann`( case v′ of { inl(x)→ t2; inr(y)→ t3})

by [E-LiftCase].
If the above does not hold, we get a reduction t1 → t ′1 and we have

t1 → t ′1
case t1 of { inl(x)→ t2; inr(y)→ t3} → case t ′1 of {inl(x)→ t2; inr(y)→ t3}

by [E-Context].

t = µx : τ̂ ′ & ξ′.t ′ We can apply [E-Fix] and get µx : τ̂ ′ & ξ′.t ′ → [µx : τ̂ ′ & ξ′.t ′ / x ]t ′.

t = seq t1 t2 We apply the induction hypothesis to t1 and distinguish two cases.
If t1 ∈ Nf , then either t1 ∈ Nf ′ or t1 = ann`(v′). In the former case, we have
seq t1 t2 → t2 by [E-Seq], in the latter case seq (ann`(v′)) t2 → ann`(seq v′ t2) by
[E-LiftSeq].
If the above does not hold, then there is a reduction t1 → t ′1 and we have

t1 → t ′1
seq t1 t2 → seq t ′1 t2

by [E-Context].

t = ann`(t ′) We apply the induction hypothesis to t ′ and distinguish two cases.
If t ′ ∈ Nf , then either t ′ ∈ Nf ′ or t ′ = ann`′(v′). In the former case, t ∈ Nf . In the
latter case, we have v′ ∈ Nf ′ and ann`(ann`′(v′))→ ann`t`′(v′) by [E-AnnJoin].
If the above does not hold, then there is a reduction t ′ → t ′′ and we have

t ′ → t ′′
ann`(t ′)→ ann`(t ′′)

by [E-Context].
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t = Λβ :: κ.t ′ Clearly, t ∈ Nf .

t = t ′ 〈ξ〉 We apply the induction hypothesis to t ′ and distinguish two cases.
If t ′ ∈ Nf , then either t ′ ∈ Nf ′ or t ′ = ann`(v′). Suppose the former holds, then
t ′ = Λβ :: κ.t ′′ as this is the only possibility such that t is well-typed. But then,
we can apply [E-AnnAbs] and get (Λβ :: κ.t ′′) 〈ξ〉 → [ξ / β ]t ′′. In the latter case,
we can apply [E-LiftAnnApp] and get (ann`(v′)) 〈ξ〉 → ann`(v′ 〈ξ〉).
When the above is not the case, we get a reduction t ′ → t ′′, and we can apply
[E-Context], resulting in

t ′ → t ′′
t ′ 〈ξ〉 → t ′′ 〈ξ〉

Proof of Lemma 2.44. By induction on Σ | Γ̂, x : τ̂ ′ & ξ′ `te t : τ̂ & ξ.

[T-Var] If t = x, we have τ̂ = τ̂ ′ and ξ = ξ′ and therefore ∅ | ∅ `te [t ′ / x ]x : τ̂ & ξ. By
extending the context (see lemma 2.39), we arrive at Σ | Γ̂ `te [t ′ / x ]t : τ̂ & ξ. If
t 6= x, then [t ′ /x ]t = t. As t is a different variable than x, we get Σ | Γ̂ `te t : τ̂ & ξ
by removing the binding for x from the context in the assumption (allowed by
lemma 2.39).

[T-Unit] We have [t ′ / x ]t = [t ′ / x ]() = (). Since t does not contain a free occurrence
of x, the result can be inferred by applying lemma 2.39 to the assumption.

[T-Abs] We have t = λx1 : τ̂1&ξ1.t2 for some t2 and Σ | Γ̂, x :τ̂ ′&ξ′, x1:τ̂1&ξ1 `te t2:τ̂2&ξ2
such that τ̂ = τ̂1〈ξ1〉 → τ̂2〈ξ2〉 and ξ = ξ2.
If x1 = x, then [t ′ / x ]λx : τ̂1 & ξ1.t2 = λx : τ̂1 & ξ1.t2. Moreover, we can replace the
context (Γ̂, x : τ̂ ′&ξ′, x1 : τ̂1 &ξ1) in the premise with (Γ̂, x1 : τ̂1 &ξ1) because the older
binding of x is shadowed by the newer one. Then we get Σ | Γ̂ `te [t ′ / x ]t : τ̂ & ξ
by [T-Abs].
If x1 6= x, then we can swap the bindings in the context of the premise and get
Σ | Γ̂, x1 : τ̂1 & ξ1, x : τ̂ ′ & ξ′ `te t2 : τ̂2 & ξ2 by lemma 2.39. We can then apply the
induction hypothesis in order to get Σ | Γ̂, x1 : τ̂1 & ξ1 `te [t ′ / x ]t2 : τ̂2 & ξ2. Finally,
we apply [T-Abs], arriving at Σ | Γ̂ `te λx1 : τ̂1 & ξ1.[t ′ / x ]t2 : τ̂ & ξ. As x1 6= x,
[t ′ / x ]λx1 : τ̂1 & ξ1.t2 = λx1 : τ̂1 & ξ1.[t ′ / x ]t2, hence the proof is complete.

[T-App] We have t = t1 t2 and some type and effect pair τ̂2 & ξ2 such that Σ | Γ̂, x : τ̂ ′&
ξ′ `te t1 : τ̂2〈ξ2〉 → τ̂〈ξ〉& ξ and Σ | Γ̂, x : τ̂ ′ & ξ′ `te t2 : τ̂2 & ξ2 hold.
By induction, we get Σ | Γ̂ `te [t ′ / x ]t1 : τ̂2〈ξ2〉 → τ̂〈ξ〉& ξ and Σ | Γ̂ `te [t ′ / x ]t2 :
τ̂2 & ξ2. Hence, we can also derive Σ | Γ̂ `te [t ′ / x ](t1 t2) : τ̂ & ξ.

[T-Pair] We have t = (t1, t2), ξ = ⊥ and τ̂ = τ̂1〈ξ1〉 × τ̂2〈ξ2〉 for some τ̂1, ξ1, τ̂2 and ξ2
such that Σ | Γ̂, x : τ̂ ′ & ξ′ `te t1 : τ̂1 & ξ1 and Σ | Γ̂, x : τ̂ ′ & ξ′ `te t2 : τ̂2 & ξ2 hold.
By induction, we get Σ | Γ̂ `te [t ′ / x ]t1 : τ̂1 & ξ1 and Σ | Γ̂ `te [t ′ / x ]t2 : τ̂2 & ξ2.
Hence, Σ | Γ̂ `te [t ′ / x ](t1, t2) : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξ also holds.
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[T-Proj] We have t = proji(t1) and some τ̂1, τ̂2, ξ1, ξ2 such that τ̂ = τ̂i , ξ = ξi and
Σ | Γ̂, x : τ̂ ′ & ξ′ `te t1 : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi .
By induction, we have Σ | Γ̂ `te [t ′ / x ]t1 : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi . Using [T-Proj], we
can infer Σ | Γ̂ `te [t ′ / x ]proji(t1) : τ̂ & ξ.

[T-Inl] We have t = inlτ (t1), ξ = ⊥ and τ̂ = τ̂1〈ξ1〉+ τ̂2 ξ2 such that Σ | Γ̂, x : τ̂ ′& ξ′ `te
t1 : τ̂1 & ξ1 holds and bτ̂2c = τ .
By induction, we get Σ | Γ̂ `te [t ′ / x ]t1 : τ̂1 & ξ1 and by [T-Inl] we can derive
Σ | Γ̂ `te [t ′ / x ]inlτ (t1) : τ̂ & ξ.

[T-Inr] Analogous to the previous case.

[T-Case] We have t = case t1 of { inl(x1)→ t2; inl(x2)→ t3} and τ̂1, τ̂2, ξ1 and ξ2 such
that Σ | Γ̂, x : τ̂ ′&ξ′ `te t1 : τ̂1〈ξ1〉+ τ̂2〈ξ2〉&ξ, Σ | Γ̂, x : τ̂ ′&ξ′, x1 : τ̂1 &ξ1 `te t2 : τ̂ &ξ
and Σ | Γ̂, x : τ̂ ′ & ξ′, x2 : τ̂2 & ξ2 `te t3 : τ̂ & ξ hold. By induction, we have
Σ | Γ̂ `te [t ′ / x ]t1 : τ̂1〈ξ1〉+ τ̂2〈ξ2〉& ξ.
If x = x1 = x2, we have Σ | Γ̂, x1 : τ̂1 &ξ1 `te t2 : τ̂&ξ and Σ | Γ̂, x2 : τ̂2 &ξ2 `te t3 : τ̂&ξ
by lemma 2.39. Moreover, [t ′ / x ] case t1 of { inl(x) → t2; inr(x) → t3} =
case ([t ′ / x ]t1) of { inl(x)→ t2; inrx()→ t3} because x is bound in the subterms.
Hence, we can derive Σ | Γ̂ `te [t ′ / x ]t : τ̂ & ξ by [T-Case].
If x = x1 6= x2, we again have Σ | Γ̂, x1 : τ̂1 & ξ1 `te t2 : τ̂ & ξ, and we have
Σ | Γ̂, x2 : τ̂2 & ξ2, x : τ̂ ′ & ξ′ `te t3 : τ̂ & ξ by lemma 2.39. By induction, we get
Σ | Γ̂, x2 : τ̂2 & ξ2 `te [t ′ / x ]t3 : τ̂ & ξ. As [t ′ / x ] case t1 of {inl(x1)→ t2; inr(x2)→
t3} = case ([t ′ / x ]t1) of {inl(x1) → t2; inr(x2) → [t ′ / x ]t3} in this case, we can
derive Σ | Γ̂ `te [t ′ / x ]t : τ̂ & ξ by [T-Case].
The case where x = x2 6= x1 can be handled analogously. Similarly, if x 6= x1 and
x 6= x2, we apply the induction hypothesis to both branches of the case expression.

[T-Ann] We have t = ann`(t1), Σ `sub ` v ξ and Σ | Γ̂, x : τ̂ ′ & ξ′ `te t1 : τ̂ & ξ. By
induction, Σ | Γ̂ `te [t ′ / x ]t : τ̂ & ξ holds. Then, Σ | Γ̂ `te [t ′ / x ]ann`(t1) : τ̂ & ξ
can be inferred by [T-Ann].

[T-Fix] We have t = µx1 : τ̂ & ξ.t1 and Σ | Γ̂, x : τ̂ ′ & ξ′, x1 : τ̂ & ξ `te t1 : τ̂ & ξ.
If x = x1, then Σ | Γ̂, x1 : τ̂&ξ `te t1 : τ̂&ξ because the newer binding in the context
shadows the old one. Since in this case, [t ′ / x ]µx1 : τ̂ & ξ.t1 = µx1 : τ̂ & ξ.t1, we
get Σ | Γ̂ `te [t ′ / x ]t : τ̂ & ξ simply by applying [T-Fix].
If x 6= x1, then we can use lemma 2.39 to infer Σ | Γ̂, x1 : τ̂&ξ, x : τ̂ ′&ξ′ `te t1 : τ̂&ξ.
By induction, we have Σ | Γ̂, x1 : τ̂ & ξ `te [t ′ / x ]t1 : τ̂ & ξ. As [t ′ / x ]µx1 : τ̂ & ξ.t1 =
µx1 : τ̂ & ξ.[t ′ / x ]t1, we have Σ | Γ̂ `te [t ′ / x ]t : τ̂ & ξ by [T-Fix].

[T-Seq] We have t = seq t1 t2 and Σ | Γ̂, x : τ̂ ′ & ξ′ `te t1 : τ̂1 & ξ for some τ̂1 and
Σ | Γ̂, x : τ̂ ′ & ξ′ `te t2 : τ̂ & ξ. By induction and [T-Seq], we can infer Σ | Γ̂ `te
[t ′ / x ]seq t1 t2 : τ̂ & ξ.
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[T-Sub] We have Σ | Γ̂, x : τ̂ ′& ξ′ `te t : τ̂1 & ξ1 for some τ̂1 & ξ1 such that Σ `sub τ̂1 6 τ̂
and Σ `sub ξ1 v ξ hold. By induction, we have Σ | Γ̂ `te [t ′ / x ]t : τ̂1 & ξ1 and by
[T-Sub] we get Σ | Γ̂ `te [t ′ / x ]t : τ̂ & ξ.

[T-AnnAbs] We have t = Λβ ::κ.t1 and τ̂ = ∀β ::κ.τ̂1 such that Σ, β ::κ | Γ̂, x : τ̂ ′&ξ′ `te
t1 : τ̂1 & ξ holds.
By induction, we get Σ, β :: κ | Γ̂ `te [t ′ / x ]t1 : τ̂1 & ξ and by [T-AnnAbs],
Σ | Γ̂ `te Λβ :: κ.[t ′ / x ]t1 : τ̂ & ξ. Since [t ′ / x ]Λβ :: κ.t1 = Λβ :: κ.[t ′ / x ]t1, this
completes the proof.

[T-AnnApp] We have t = t1 〈ξ1〉 and τ̂ = [ξ1 / β ]τ̂1 such that Σ | Γ̂, x : τ̂ ′ & ξ′ `te
t1 : ∀β :: κ.τ̂1 & ξ holds.
By induction, we get Σ | Γ̂ `te [t ′ / x ]t1 : ∀β :: κ.τ̂1 & ξ. Applying [T-AnnApp]
results in Σ | Γ̂ `te [t ′ /x ]t1 〈ξ1〉 : [ξ1 /β ]τ̂1 & ξ. Since [t ′ /x ](t1 〈ξ1〉) = [t ′ /x ]t1 〈ξ〉,
this completes the proof.

Proof of Lemma 2.45. By induction on Σ, β :: κ | Γ̂ `te t̂ : τ̂ & ξ.

[T-Var] We have t̂ = x and Γ̂(x) = τ̂ & ξ. Then, ([ξ′ / β ]Γ̂)(x) = [ξ′ / β ]τ̂ & [ξ′ / β ]ξ.
Since [ξ′ / β ]x = x, we have Σ | [ξ′ / β ]Γ̂ `te x : [ξ′ / β ]τ̂ & [ξ′ / β ]ξ by [T-Var].

[T-Unit] We have t̂ = (), τ̂ = ûnit and ξ = ⊥. Since [ξ′ / β ]ûnit = ûnit and [ξ′ / β ]⊥ =
⊥, the result follows trivially.

[T-Abs] We have t̂ = λx : τ̂1 & ξ1.t̂1 and τ̂ = τ̂1〈ξ1〉 → τ̂2〈ξ2〉 such that Σ, β :: κ |
Γ̂, x : τ̂1 & ξ1 `te t̂1 : τ̂2 & ξ2. By induction, Σ | [ξ′ / β ]Γ̂, x : [ξ′ / β ]τ̂1 & [ξ′ / β ]ξ1 `te
[ξ′ /β ]t̂1 : [ξ′ /β ]τ̂2 &[ξ′ /β ]ξ2. From this, we can derive Σ | [ξ′ /β ]Γ̂ `te [ξ′ /β ]λx :
τ̂1 & ξ1.t̂1 : [ξ′ / β ](τ̂1〈ξ1〉 → τ̂2〈ξ2〉) & [ξ′ / β ]ξ2 by applying [T-Abs] and moving
the substitutions outwards.

[T-Inl] We have t̂ = inlbτ̂2c(t̂ ′), τ̂ = τ̂1〈ξ1〉+ τ̂2〈ξ2〉 and ξ = ⊥ for some t̂ ′, τ̂1 &ξ1, τ̂2 &ξ2

such that Σ, β :: κ | Γ̂ `te t̂ ′ : τ̂1 & ξ1 holds.
By induction, Σ | [ξ′ / β ]Γ̂ `te [ξ′ / β ]t̂ ′ : [ξ′ / β ]τ̂1 & [ξ′ / β ]ξ1 holds. Using [T-Inl]
and moving the substitutions outwards, Σ | [ξ′ / β ]Γ̂ `te [ξ′ / β ]inlbτ̂2c(t̂ ′) : [ξ′ /
β ](τ̂1〈ξ1〉+ τ̂2〈ξ2〉) &⊥ can be derived.

[T-Ann] We have t̂ = ann`(t̂ ′) such that Σ, β ::κ | Γ̂ `te t̂ ′ : τ̂ & ξ and Σ, β ::κ `sub ` v ξ.
Applying lemma 2.17 using [ξ′/β ] for both substitutions results in Σ `sub [ξ′/β ]` v
[ξ′ / β ]ξ. But [ξ′ / β ]` = `, hence we can omit the substitution of the left term.
By induction, we get Σ | [ξ′ / β ]Γ̂ `te [ξ′ / β ]t̂ ′ : [ξ′ / β ]τ̂ & [ξ′ / β ]ξ. We can derive
the desired result by [T-Ann].
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[T-Sub] We have τ̂1 and ξ1 such that Σ, β :: κ | Γ̂ `te t̂ : τ̂1 & ξ1, Σ, β :: κ `sub τ̂1 6 τ̂ and
Σ, β :: κ `sub ξ1 v ξ hold.
By induction, Σ | [ξ′ /β ]Γ̂ `te [ξ′ /β ]̂t : [ξ′ /β ]τ̂1 & [ξ′ /β ]ξ1. Applying lemma 2.17
with θ1 = θ2 = [ξ′ / β ] leads to Σ `sub [ξ′ / β ]ξ1 v [ξ′ / β ]ξ. By lemma 2.32,
Σ `sub [ξ′ / β ]τ̂1 6 [ξ′ / β ]τ̂ . Hence, Σ | [ξ′ / β ]Γ̂ `te [ξ′ / β ]̂t : [ξ′ / β ]τ̂ & [ξ′ / β ]ξ
also holds.

[T-AnnAbs] We have t̂ = Λβ1 :: κ1.t̂ ′ for some t̂ ′ and τ̂ = ∀β1 :: κ1.τ̂
′ for some τ̂ ′ such

that Σ, β :: κ, β1 :: κ1 | Γ̂ `te t̂ ′ : τ̂ ′ & ξ and β 6∈ fav(Γ̂) ∪ fav(ξ).
We assume β1 6= β, as the substitution would not apply to t̂ ′ otherwise and the
result follows trivially. By lemma 2.40, we then also have Σ, β :: κ, β1 :: κ1 | Γ̂ `te
t̂ ′ : τ̂ ′ & ξ.
Applying the induction hypothesis results in Σ, β1 ::κ1 | [ξ′ /β ]Γ̂ `te [ξ′ /β ]t̂ ′ : [ξ′ /
β ]τ̂ ′ & [ξ′ / β ]ξ.
By lemma 2.5, fav(ξ′) ⊆ dom(Σ). Therefore, the condition β 6∈ fav([ξ′ / β ]Γ̂) ∪
fav([ξ′ / β ]ξ) is still fulfilled (as no occurrences of β could have been introduced).
This allows us to derive Σ | [ξ′/β ]Γ̂ `te [ξ′/β ]̂t :[ξ′/β ]τ̂&[ξ′/β ]ξ by [T-AnnAbs].

[T-AnnApp] We have t̂ = t̂1 〈ξ1〉, τ̂ = [ξ1 / β1 ]τ̂ ′, Σ, β :: κ | Γ̂ `te t̂1 : ∀β1 :: κ1.τ̂
′& ξ and

Σ, β :: κ `s ξ1 : κ1. By lemma 2.7, Σ `s [ξ′ / β ]ξ1 : κ1.
Without loss of generality, we assume β1 6= β. Then [ξ′ / β ]∀β1 :: κ1.τ̂

′ = ∀β1 ::
κ1.[ξ′ / β ]τ̂ ′. By induction, Σ | [ξ′ / β ]Γ̂ `te [ξ′ / β ]t̂1 : ∀β1 :: κ1.[ξ′ / β ]τ̂ ′& [ξ′ / β ]ξ.
Hence, we can derive Σ | [ξ′/β ]Γ̂ `te [ξ′/β ]t̂1 〈[ξ′/β ]ξ1〉:[ξ1/β1 ][ξ′/β′ ]τ̂ ′&[ξ′/β ]ξ
by [T-AnnApp]. As β1 6= β, [ξ1 / β1 ][ξ′ / β′ ]τ̂ ′ = [ξ′ / β ][ξ1 / β1 ]τ̂ ′ = [ξ′ / β ]τ̂ , this
is what we needed to show.

The remaining cases can be proven similarly.

Proof of Theorem 2.46. By induction on t → t ′.

[E-Abs] We have t = (λx : τ̂1 & ξ1.t1) t2 and t ′ = [t2 / x ]t1. By applying lemma 2.35
and discarding the cases of non-matching rules, we can assume that the derivation
of ∅ | ∅ `te (λx : τ̂1 & ξ1.t1) t2 : τ̂ & ξ has the following form.

∅ | ∅ `te λx : τ̂1 & ξ1.t1 : τ̂1〈ξ1〉 → τ̂2〈ξ2〉& ξ2 ∅ | ∅ `te t2 : τ̂1 & ξ1 [T-App]
∅ | ∅ `te (λx : τ̂1 & ξ1.t1) t2 : τ̂2 & ξ2

∅ `sub τ̂2 6 τ̂
∅ `sub ξ2 v ξ [T-Sub]

∅ | ∅ `te (λx : τ̂1 & ξ1.t1) t2 : τ̂ & ξ

Similarly, the derivation for the lambda expression can be assumed to have the
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following form.

∅ | x : τ̂ ′1 & ξ′1 `te t1 : τ̂ ′2 & ξ′2 [T-Abs]
∅ | ∅ `te λx : τ̂ ′1 & ξ′1.t1 : τ̂ ′1〈ξ′1〉 → τ̂ ′2〈ξ′2〉& ξ′2
∅ `sub τ̂

′
1〈ξ′1〉 → τ̂ ′2〈ξ′2〉 6 τ̂1〈ξ1〉 → τ̂2〈ξ2〉

∅ `sub ξ
′
2 v ξ2 [T-Sub]

∅ | ∅ `te λx : τ̂1 & ξ1.t1 : τ̂1〈ξ1〉 → τ̂2〈ξ2〉& ξ2

By lemma 2.30, we also must have ∅ `sub τ̂1 6 τ̂ ′1, ∅ `sub ξ1 v ξ′1, ∅ `sub τ̂
′
2 6 τ̂2

and ∅ `sub ξ
′
2 v ξ2. Hence, we can derive ∅ | ∅ `te t2 : τ̂ ′1 & ξ′1 using [T-Sub].

By lemma 2.44, we get ∅ | ∅ `te [t2 / x ]t1 : τ̂ ′2 & ξ′2. Since we know ∅ `sub τ̂
′
2 6 τ̂2

and ∅ `sub τ̂2 6 τ̂ (and the same for the corresponding effect), we can derive
∅ | ∅ `te [t2 / x ]t1 : τ̂ & ξ.

[E-AnnAbs] We have t = (Λβ :: κ.t1) 〈ξ′〉 and t ′ = [ξ′ / β ]t1. By lemma 2.35, there is a
derivation

∅ | ∅ `te Λβ :: κ.t1 : ∀β :: κ.τ̂1 & ξ1 ∅ `s ξ
′ : κ

[T-AnnApp]
∅ | ∅ `te (Λβ :: κ.t1) 〈ξ′〉 : [ξ′ / β ]τ̂1 & ξ1

∅ `sub [ξ′ / β ]τ̂1 6 τ̂
∅ `sub ξ1 v ξ [T-Sub]

∅ | ∅ `te (Λβ :: κ.t1) 〈ξ′〉 : τ̂ & ξ

And by the same lemma,

β :: κ | ∅ `te t1 : τ̂2 & ξ2 β 6∈ fav(∅) ∪ fav(ξ2)
[T-AnnAbs]

∅ | ∅ `te Λβ :: κ.t1 : ∀β :: κ.τ̂2 & ξ2
∅ `sub ∀β :: κ.τ̂2 6 ∀β :: κ.τ̂1

∅ `sub ξ2 v ξ1 [T-Sub]
∅ | ∅ `te Λβ :: κ.t1 : ∀β :: κ.τ̂1 & ξ1

By lemma 2.30, β :: κ `sub τ̂2 6 τ̂1. Since β 6∈ fav(ξ2) (and also β 6∈ fav(ξ1)), we
have β :: κ `sub ξ2 v ξ1 by lemma 2.31. We can then derive β :: κ | ∅ `te t1 : τ̂1 & ξ1
by [T-Sub].
By lemma 2.45, we then have ∅ | ∅ `te [ξ′ /β ]t1 : [ξ′ /β ]τ̂1 &[ξ′ /β ]ξ1. Applying [T-
Sub] and noting that β is not a free variable of ξ1 results in ∅ | ∅ `te [ξ′/β ]t1 : τ̂&ξ.

[E-Fix] We have t = µx : τ̂1 & ξ1.t1 and t ′ = [µx : τ̂1 & ξ1.t1 / x ]t1. By lemma 2.35, we
have

∅ | x : τ̂1 & ξ1 `te t1 : τ̂1 & ξ1 [T-Fix]
∅ | ∅ `te µx : τ̂1 & ξ1.t1 : τ̂1 & ξ1

∅ `sub τ̂1 6 τ̂
∅ `sub ξ1 v ξ [T-Sub]

∅ | ∅ `te µx : τ̂1 & ξ1.t1 : τ̂ & ξ

Applying lemma 2.44 results in ∅ | ∅ `te [µx : τ̂1 & ξ1.t1 / x ]t1 : τ̂1 & ξ1. Applying
subtyping allows us to infer ∅ | ∅ `te [µx : τ̂1 & ξ1.t1 / x ]t1 : τ̂ & ξ.
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[E-Proj] We have t = proji(t1, t2) and t ′ = ti . By applying lemma 2.35 twice, we get
∅ | ∅ `te t1 : τ̂ ′1 & ξ′1 ∅ | ∅ `te t2 : τ̂ ′2 & ξ′2 [T-Pair]
∅ | ∅ `te (t1, t2) : τ̂ ′1〈ξ′1〉 × τ̂ ′2〈ξ′2〉&⊥
∅ `sub τ̂

′
1〈ξ′1〉 × τ̂ ′2〈ξ′2〉 6 τ̂1〈ξ1〉 × τ̂2〈ξ2〉

∅ `sub ⊥ v ξi [T-Sub]
∅ | ∅ `te (t1, t2) : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi [T-Proj]
∅ | ∅ `te proji(t1, t2) : τ̂i & ξi

∅ `sub τ̂i 6 τ̂
∅ `sub ξi v ξ [T-Sub]

∅ | ∅ `te proji(t1, t2) : τ̂ & ξ

By lemma 2.30, we have ∅ `sub τ̂ ′i 6 τ̂i and ∅ `sub ξ′i v ξi . Hence, we can also
derive ∅ | ∅ `te ti : τ̂ & ξ.

[E-CaseInl] We have t = case inlτ (t1) of { inl(x)→ t2; inr(y)→ t3} and t ′ = [t1 /x ]t2.
By lemma 2.35, we have

∅ | ∅ `te inlτ (t1) : τ̂1〈ξ1〉+ τ̂2〈ξ2〉& ξ′
∅ | x : τ̂1 & ξ1 `te t2 : τ̂ ′ & ξ′

∅ | y : τ̂2 & ξ2 `te t3 : τ̂ ′ & ξ′
[T-Case]

∅ | ∅ `te t : τ̂ ′ & ξ′

∅ `sub τ̂
′ 6 τ̂

∅ `sub ξ
′ v ξ [T-Sub]

∅ | ∅ `te t : τ̂ & ξ

By the same lemma,
∅ | ∅ `te t1 : τ̂ ′1 & ξ′1 [T-Inl]

∅ | ∅ `te inlτ (t1) : τ̂ ′1〈ξ′1〉+ τ̂ ′2〈ξ′2〉&⊥
∅ `sub τ̂

′
1〈ξ′1〉+ τ̂ ′2〈ξ′2〉 6 τ̂1〈ξ1〉+ τ̂2〈ξ2〉

∅ `sub ⊥ v ξ [T-Sub]
∅ | ∅ `te inlτ (t1) : τ̂1〈ξ1〉+ τ̂2〈ξ2〉& ξ

By lemma 2.30, ∅ `sub τ̂
′
1 6 τ̂1 and ∅ `sub ξ

′
1 v ξ1. Then, ∅ | ∅ `te t1 : τ̂1 & ξ1 holds

by [T-Sub].
By lemma 2.44, we get ∅ | ∅ `te [t1 / x ]t2 : τ̂ ′ & ξ′. Using [T-Sub], we can derive
∅ | ∅ `te [t1 / x ]t2 : τ̂ & ξ.

[E-CaseInr] Analogous to the previous case.

[E-Seq] We have t = seq v′ t ′ for any t ′. By lemma 2.35, we have
∅ | ∅ `te v′ : τ̂1 & ξ′ ∅ | ∅ `te t ′ : τ̂2 & ξ′

[T-Seq]
∅ | ∅ `te seq v′ t ′ : τ̂2 & ξ′

∅ `sub τ̂2 6 τ̂
∅ `sub ξ

′ v ξ [T-Sub]
∅ | ∅ `te seq v′ t ′ : τ̂ & ξ

But then we can also derive ∅ | ∅ `te t ′ : τ̂ & ξ by [T-Sub].
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[E-Context] We prove this case exemplarily for C = proji(�), the other cases can
be handled similarly. We have t = proji(t1) and t ′ = proji(t ′1) with t1 → t ′1. By
lemma 2.35, there is a derivation

∅ | ∅ `te t1 : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi [T-Proj]
∅ | ∅ `te proji(t1) : τ̂i & ξi

∅ `sub τ̂i 6 τ̂
∅ `sub ξi v ξ [T-Sub]

∅ | ∅ `te proji(t1) : τ̂ & ξ

By induction, ∅ | ∅ `te t ′1 : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi holds. Then

∅ | ∅ `te t ′1 : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi [T-Proj]
∅ | ∅ `te proji(t ′1) : τ̂i & ξi

∅ `sub τ̂i 6 τ̂
∅ `sub ξi v ξ [T-Sub]

∅ | ∅ `te proji(t ′1) : τ̂ & ξ

is also a valid derivation, completing the proof. The general idea for the remaining
cases is to simply replace t1 with t ′1 in the derivation tree, as both share the same
type and effect by induction.

[E-LiftApp] We have t = ann`(v′) t2 and t ′ = ann`(v′ t2). By lemma 2.35, we have

∅ | ∅ `te ann`(v′) : τ̂1〈ξ1〉 → τ̂2〈ξ2〉& ξ2 ∅ | ∅ `te t2 : τ̂1 & ξ1 [T-App]
∅ | ∅ `te ann`(v′) t2 : τ̂2 & ξ2

∅ `sub τ̂2 6 τ̂
∅ `sub ξ2 v ξ [T-Sub]

∅ | ∅ `te ann`(v′) t2 : τ̂ & ξ

By lemma 2.37, we have ∅ | ∅ `te v′ : τ̂1〈ξ1〉 → τ̂2〈ξ2〉& ξ2 and ∅ `sub ` v ξ2. Then
we can also derive ∅ | ∅ `te v′ t2 : τ̂ & ξ analogously to the above tree, and we
have ∅ `sub ` v ξ by transitivity. Therefore, ∅ | ∅ `te ann`(v′ t2) : τ̂ & ξ holds by
[T-Ann].

[E-LiftAnnApp] We have t = ann`(v′) 〈ξ′〉 and t ′ = ann`(v′ 〈ξ′〉). By lemma 2.35, we
have

∅ | ∅ `te ann`(v′) : ∀β :: κ.τ̂1 & ξ1 ∅ `s ξ
′ : κ

[T-AnnApp]
∅ | ∅ `te ann`(v′) 〈ξ′〉 : [ξ′ / β ]τ̂1 & ξ1

∅ `sub [ξ′ / β ]τ̂1 6 τ̂
∅ `sub ξ1 v ξ [T-Sub]

∅ | ∅ `te ann`(v′) 〈ξ′〉 : τ̂ & ξ

By lemma 2.37, we have ∅ | ∅ `te v′ : ∀β :: κ.τ̂1 & ξ1 and ∅ `sub ` v ξ1. Then we
can also derive ∅ | ∅ `te v′ 〈ξ′〉 : τ̂ & ξ analogously to the above tree, and we have
∅ `sub ` v ξ by transitivity. Therefore, ∅ | ∅ `te ann`(v′ 〈ξ′〉) : τ̂ & ξ holds by
[T-Ann].
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[E-LiftProj] We have t = proji(ann`(v′)) and t ′ = ann`(proji(v′)). By lemma 2.35,

∅ | ∅ `te ann`(v′) : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi [T-Proj]
∅ | ∅ `te proji(ann`(v′)) : τ̂i & ξi

∅ `sub τ̂i 6 τ̂
∅ `sub ξi v ξ [T-Sub]

∅ | ∅ `te proji(ann`(v′)) : τ̂ & ξ

Similar to the preceding cases, we can derive ∅ | ∅ `te proji(v′):τ̂&ξ and ∅ `sub ` v ξ
from the results of lemma 2.37. Therefore, ∅ | ∅ `te ann`(proji(v′)) : τ̂ & ξ must
also hold.

[E-LiftCase] We have t = case ann`(v′) of { inl(x) → t2; inr(y) → t3} and t ′ =
ann`( case v′ of {inl(x)→ t2; inr(y)→ t3}). By lemma 2.35,

∅ | ∅ `te ann`(v′) : τ̂1〈ξ1〉+ τ̂2〈ξ2〉& ξ′
∅ | x : τ̂1 & ξ1 `te t2 : τ̂ ′ & ξ′

∅ | y : τ̂2 & ξ2 `te t3 : τ̂ ′ & ξ′
[T-Case]

∅ | ∅ `te case ann`(v′) of { inl(x)→ t2; inr(y)→ t3} : τ̂ ′ & ξ′

∅ `sub τ̂
′ 6 τ̂

∅ `sub ξ
′ v ξ [T-Sub]

∅ | ∅ `te case ann`(v′) of { inl(x)→ t2; inr(y)→ t3} : τ̂ & ξ

From the results of lemma 2.37 we can derive ∅ | ∅ `te case v′ of { inl(x) →
t2; inr(y)→ t3} : τ̂ & ξ and ∅ `sub ` v ξ. Then, ∅ | ∅ `te ann`( case v′ of { inl(x)→
t2; inr(y)→ t3}) : τ̂ & ξ must also hold.

[E-LiftSeq] We have t = seq (ann`(v′)) t2 and t ′ = ann`(seq v′ t2). By lemma 2.35,

∅ | ∅ `te ann`(v′) : τ̂1 & ξ′ ∅ | ∅ `te t2 : τ̂2 & ξ′
[T-Seq]

∅ | ∅ `te seq (ann`(v′)) t2 : τ̂2 & ξ′

∅ `sub τ̂2 6 τ̂
∅ `sub ξ

′ v ξ [T-Sub]
∅ | ∅ `te seq (ann`(v′)) t2 : τ̂ & ξ

Again, we infer ∅ | ∅ `te seq v′ t2 : τ̂ & ξ and ∅ `sub ` v ξ from the results of
lemma 2.37. Then, ∅ | ∅ `te ann`(seq v′ t2) : τ̂ & ξ must also hold.

[E-JoinAnn] We have t = ann`1(ann`2(v′)) and t ′ = ann`1t`2(v′). Applying lemma 2.37
twice results in ∅ | ∅ `te ann`2(v′) : τ̂ & ξ and ∅ | ∅ `te v′ : τ̂ & ξ with Σ `sub `1 v ξ
and Σ `sub `2 v ξ. Hence, we also have Σ `sub `1 t `2 v ξ and therefore

∅ | ∅ `te v′ : τ̂ & ξ ∅ `sub `1 t `2 v ξ [T-Ann]
∅ | ∅ `te ann`1t`2(v′) : τ̂ & ξ

Proof of Lemma 2.53. By induction on t.
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t = x1 If x1 = x, then τ̂ ′ = τ̂ , ξ′ = ξ and clearly Σ | Γ̂, x : τ̂ ′ & ξ′ `te t : τ̂ & ξ. Otherwise,
[t ′ / x ]x1 = x1 and we have Σ | Γ̂ `te x1 : τ̂ & ξ by assumption. Extending the
context allows us to conclude Σ | Γ̂, x : τ̂ ′ & ξ′ `te x1 : τ̂ & ξ by lemma 2.39.

t = () Since [t ′ /x ]() = (), we have τ̂ = ûnit and therefore Σ | Γ̂, x : τ̂ ′&ξ′ `te () : ûnit&ξ
by [T-Unit] and [T-Sub].

t = λx1 : τ̂1 & ξ1.t2 If x = x1, then [t ′ / x ]t = t and the result follows by lemma 2.39. If
x 6= x1, then we have [t ′ / x ]t = λx1 : τ̂1 & ξ1.[t ′ / x ]t2. By lemma 2.35, there is a
derivation of the form

Σ | Γ̂, x1 : τ̂1 & ξ1 `te [t ′ / x ]t2 : τ̂2 & ξ2 [T-Abs]
Σ | Γ̂ `te λx1 : τ̂1 & ξ1.[t ′ / x ]t2 : τ̂1〈ξ1〉 → τ̂2〈ξ2〉&⊥

Σ `sub τ̂1〈ξ1〉 → τ̂2〈ξ2〉 6 τ̂
Σ `sub ⊥ v ξ [T-Sub]

Σ | Γ̂ `te λx1 : τ̂1 & ξ1.[t ′ / x ]t2 : τ̂ & ξ

By induction, we therefore have Σ | Γ̂, x1 : τ̂1 & ξ1, x : τ̂ ′ & ξ′ `te t2 : τ̂2 & ξ2. We
can swap the last two bindings in the context and infer Σ | Γ̂, x : τ̂ ′ & ξ′ `te λx1 :
τ̂1 & ξ1.t2 : τ̂1〈ξ1〉 → τ̂2〈ξ2〉 & ⊥ by [T-Abs], due to x 6= x1. Lastly, applying rule
[T-Sub] results in Σ | Γ̂, x : τ̂ ′ & ξ′ `te λx1 : τ̂1 & ξ1.t2 : τ̂ & ξ.

t = t1 t2 We have [t ′ / x ](t1 t2) = [t ′ / x ]t1 [t ′ / x ]t2, and by lemma 2.35, there is a
derivation

Σ | Γ̂ `te [t ′ / x ]t1 : τ̂2〈ξ2〉 → τ̂1〈ξ1〉& ξ1 Σ | Γ̂ `te [t ′ / x ]t2 : τ̂2 & ξ2 [T-App]
Σ | Γ̂ `te [t ′ / x ]t1 [t ′ / x ]t2 : τ̂1 & ξ1

Σ `sub τ̂1 6 τ̂
Σ `sub ξ1 v ξ [T-Sub]

Σ | Γ̂ `te [t ′ / x ]t1 [t ′ / x ]t2 : τ̂ & ξ

for any t ′ with ∅ | ∅ `te t ′ : τ̂ ′ & ξ′.
By induction, we get Σ | Γ̂, x :τ̂ ′&ξ′ `te t1:τ̂2〈ξ2〉 → τ̂1〈ξ1〉&ξ1 and Σ | Γ̂, x :τ̂ ′&ξ′ `te
t2 : τ̂2 & ξ2. Thus, we can derive Σ | Γ̂, x : τ̂ ′ & ξ′ `te t1 t2 : τ̂ & ξ by [T-App] and
[T-Sub].

t = (t1, t2) We have [t ′ / x ](t1, t2) = ([t ′ / x ]t1, [t ′ / x ]t2). By lemma 2.35, we get a
derivation

Σ | Γ̂ `te [t ′ / x ]t1 : τ̂1 & ξ1 Σ | Γ̂ `te [t ′ / x ]t2 : τ̂2 & ξ2 [T-Pair]
Σ | Γ̂ `te ([t ′ / x ]t1, [t ′ / x ]t2) : τ̂1〈ξ1〉 × τ̂2〈ξ2〉&⊥

Σ `sub τ̂1〈ξ1〉 × τ̂2〈ξ2〉 6 τ̂
Σ `sub ⊥ v ξ [T-Sub]

Σ | Γ̂ `te ([t ′ / x ]t1, [t ′ / x ]t2) : τ̂ & ξ

By induction, we get Σ | Γ̂, x : τ̂ ′&ξ′ `te t1 : τ̂1 &ξ1 and Σ | Γ̂, x : τ̂ ′&ξ′ `te t2 : τ̂2 &ξ2.
Thus, we can derive Σ | Γ̂, x : τ̂ ′ & ξ′ `te (t1, t2) : τ̂ & ξ by [T-Pair] and [T-Sub].
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t = proji(t1) We have [t ′ / x ]proji(t1) = proji([t ′ / x ]t1). By lemma 2.35, there is a
derivation

Σ | Γ̂ `te [t ′ / x ]t1 : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi [T-Proj]
Σ | Γ̂ `te proji([t ′ / x ]t1) : τ̂i & ξi

τ̂i `sub τ̂ 6 ·
ξi `sub ξ v · [T-Sub]

Σ | Γ̂ `te proji([t ′ / x ]t1) : τ̂ & ξ

By induction, we have Σ | Γ̂, x : τ̂ ′ & ξ′ `te t1 : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi . Using [T-Proj]
and [T-Sub], we can infer Σ | Γ̂, x : τ̂ ′ & ξ′ `te t : τ̂ & ξ.

t = inlτ2(t1) We have [t ′/x ]inlτ (t1) = inlτ ([t ′/x ]t1). By lemma 2.35, we get a derivation

Σ | Γ̂ `te [t ′ / x ]t1 : τ̂1 & ξ1 [T-Inl]
Σ | Γ̂ `te inlτ ([t ′ / x ]t1) : τ̂1〈ξ1〉+ τ̂2〈ξ2〉&⊥

Σ `sub τ̂1〈ξ1〉+ τ̂2〈ξ2〉 6 τ̂
Σ `sub ⊥ v ξ [T-Sub]

Σ | Γ̂ `te inlτ ([t ′ / x ]t1) : τ̂ & ξ

By induction, we get Σ | Γ̂, x : τ̂ ′ & ξ′ `te t1 : τ̂1 & ξ1. Thus, we can derive Σ |
Γ̂, x : τ̂ ′ & ξ′ `te inlτ (t1) : τ̂ & ξ by [T-Inl] and [T-Sub].

t = inrτ1(t2) Analogous to the previous case.

t = case t1 of { inl(x1)→ t2; inr(x2)→ t3} If x 6= x1 and x 6= x2, then we have [t ′/x ]t =
case [t ′ / x ]t1 of { inl(x1)→ [t ′ / x ]t2; inr(x2)→ [t ′ / x ]t3}. By lemma 2.35, there
is a derivation

Σ | Γ̂ `te [t ′ / x ]t1 : τ̂1〈ξ1〉+ τ̂2〈ξ2〉& ξ3

Σ | Γ̂, x1 : τ̂1 & ξ1 `te [t ′ / x ]t2 : τ̂3 & ξ3

Σ | Γ̂, x2 : τ̂2 & ξ2 `te [t ′ / x ]t3 : τ̂3 & ξ3 [T-Case]
Σ | Γ̂ `te [t ′ / x ] case t1 of {inl(x1)→ t2; inr(x2)→ t3} : τ̂3 & ξ3

Σ `sub τ̂3 6 τ̂
Σ `sub ξ3 v ξ [T-Sub]

Σ | Γ̂ `te [t ′ / x ] case t1 of {inl(x1)→ t2; inr(x2)→ t3} : τ̂ & ξ

By induction, we get Σ | Γ̂, x : τ̂ ′& ξ′ `te t1 : τ̂1〈ξ1〉+ τ̂2〈ξ2〉& ξ3, Σ | Γ̂, x1 : τ̂2 & ξ2, x :
τ̂ ′&ξ′ `te t2 : τ̂3 &ξ3 and Σ | Γ̂, x2 : τ̂2 &ξ2, x : τ̂ ′&ξ′ `te t3 : τ̂3 &ξ3. Using lemma 2.39,
we can reorder the contexts of the latter two typing statements, resulting in Σ |
Γ̂, x : τ̂ ′& ξ′, x1 : τ̂2 & ξ2 `te t2 : τ̂3 & ξ3 and Σ | Γ̂, x : τ̂ ′& ξ′, x2 : τ̂2 & ξ2 `te t3 : τ̂3 & ξ3.
Now we can derive Σ | Γ̂, x : τ̂ ′&ξ′ `te case t1 of { inl(x1)→ t2; inr(x2)→ t3} : τ̂&ξ
using [T-Case] and [T-Sub].
If x = x1 or x = x2, the substitution does not apply to the corresponding branches.
We can then handle the corresponding cases using lemma 2.39 directly without
resorting to induction, similar to what we did in the case for lambda abstractions.
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t = µx1 : τ̂1 & ξ1.t1 If x = x1, then [t ′ / x ]t = t and the result follows by lemma 2.39. If
x 6= x1, then we have [t ′ / x ]t = µx1 : τ̂1 & ξ1.[t ′ / x ]t1. By lemma 2.35, there is a
derivation of the form

Σ | Γ̂, x1 : τ̂1 & ξ1 `te [t ′ / x ]t1 : τ̂1 & ξ1 [T-Fix]
Σ | Γ̂ `te µx1 : τ̂1 & ξ1.[t ′ / x ]t1 : τ̂1 & ξ1

Σ `sub τ̂1 6 τ̂
Σ `sub ξ1 v ξ [T-Sub]

Σ | Γ̂ `te µx1 : τ̂1 & ξ1.[t ′ / x ]t1 : τ̂ & ξ

By induction, we therefore have Σ | Γ̂, x1 : τ̂1 & ξ1, x : τ̂ ′ & ξ′ `te t1 : τ̂1 & ξ1. We
can swap the last two bindings in the context and infer Σ | Γ̂, x : τ̂ ′ & ξ′ `te µx1 :
τ̂1 & ξ1.t1 : τ̂1 & ξ1 by [T-Fix], for x 6= x1. Lastly, applying rule [T-Sub] results in
Σ | Γ̂, x : τ̂ ′ & ξ′ `te µx1 : τ̂1 & ξ1.t1 : τ̂ & ξ.

t = seq t1 t2 We have [t ′ / x ]seq t1 t2 = seq ([t ′ / x ]t1) ([t ′ / x ]t2). By lemma 2.35, we
get a derivation

Σ | Γ̂ `te [t ′ / x ]t1 : τ̂1 & ξ1 Σ | Γ̂ `te [t ′ / x ]t2 : τ̂2 & ξ2 [T-Seq]
Σ | Γ̂ `te seq ([t ′ / x ]t1) ([t ′ / x ]t2) : τ̂2 & ξ2

Σ `sub τ̂2 6 τ̂
Σ `sub ξ2 v ξ [T-Sub]

Σ | Γ̂ `te seq ([t ′ / x ]t1) ([t ′ / x ]t2) : τ̂ & ξ

By induction, we get Σ | Γ̂, x : τ̂ ′&ξ′ `te t1 : τ̂1 &ξ1 and Σ | Γ̂, x : τ̂ ′&ξ′ `te t2 : τ̂2 &ξ2.
Thus, we can derive Σ | Γ̂, x : τ̂ ′ & ξ′ `te seq t1 t2 : τ̂ & ξ by [T-Seq] and [T-Sub].

t = ann`(t1) We have [t ′ / x ]ann`(t1) = ann`([t ′ / x ]t1). By lemma 2.37, we have Σ |
Γ̂ `te [t ′ / x ]t1 : τ̂ & ξ and Σ `sub ` v ξ.
By induction, we get Σ | Γ̂, x : τ̂ ′ & ξ′ `te t1 : τ̂ & ξ. Thus, we can derive Σ |
Γ̂, x : τ̂ ′ & ξ′ `te ann`(t1) : τ̂ & ξ by [T-Ann].

t = Λβ :: κ.t1 We have [t ′ / x ]Λβ :: κ.t1 = Λβ :: κ.[t ′ / x ]t1. By lemma 2.35, we get a
derivation

Σ, β :: κ | Γ̂ `te [t ′ / x ]t1 : τ̂1 & ξ1 β 6∈ fav(Γ̂) ∪ fav(ξ)
[T-AnnApp]

Σ | Γ̂ `te Λβ :: κ.[t ′ / x ]t1 : ∀β :: κ.τ̂1 & ξ1
Σ `sub ∀β :: κ.τ̂1 6 τ̂

Σ `sub ξ1 v ξ [T-Sub]
Σ | Γ̂ `te Λβ :: κ.[t ′ / x ]t1 : τ̂ & ξ

We assume that β 6∈ dom(Σ), because we could simply rename the annotation
variable otherwise. We can then extend the typing judgment for t ′ with this
variable, obtaining Σ, β :: κ | Γ̂ `te t ′ : τ̂ ′ & ξ′ by lemma 2.40.
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Applying the induction hypothesis results in Σ, β::κ | Γ̂, x :τ̂ ′&ξ′ `te t1:∀β::κ.τ̂1&ξ1.
The side condition is still fulfilled, because β 6∈ fav(τ̂ ′) ∪ fav(ξ′), as the typing
judgment Σ | Γ̂ `te t ′ : τ̂ ′ & ξ′ does not refer to β.
Thus, we can derive Σ | Γ̂, x : τ̂ ′ & ξ′ `te Λβ :: κ.t1 : τ̂ & ξ by [T-AnnAbs] and
[T-Sub].

t = t1 〈ξ1〉 We have [t ′ / x ]t1 〈ξ1〉 = [t ′ / x ]t1 〈ξ2〉. The ξ2 subterm is unaffected because
the substitution only applies to term variables. By lemma 2.35, we get a derivation

Σ | Γ̂ `te [t ′ / x ]t1 : ∀β :: κ.τ̂1 & ξ1 Σ `s ξ2 : κ
[T-AnnApp]

Σ | Γ̂ `te [t ′ / x ]t1 〈ξ2〉 : [ξ2 / β ]τ̂1 & ξ1
Σ `sub [ξ2 / β ]τ̂1 6 τ̂

Σ `sub ξ1 v ξ [T-Sub]
Σ | Γ̂ `te [t ′ / x ]t1 〈ξ2〉 : τ̂ & ξ

By induction, we get Σ | Γ̂, x : τ̂ ′ & ξ′ `te t1 : ∀β :: κ.τ̂1 & ξ1. Thus, we can derive
Σ | Γ̂, x : τ̂ ′ & ξ′ `te t1 〈ξ2〉 : τ̂ & ξ by [T-AnnApp] and [T-Sub].

Proof of Lemma 2.54. By induction on [t1 /x ]t → t ′. The general idea in all of the cases
is to use the assumption ∅ `sub ξ

′ 6v ξ to rule out certain cases for the term t so that the
same reduction rule applies regardless of the substituted subterm.

[E-Abs] We have [t1 / x ]t = (λy : τ̂1 & ξ1.t3) t4. Without loss of generality we assume
x 6= y. Due to the assumption ∅ `sub ξ

′ 6v ξ, we can rule out the cases where t = x
and t = x t ′4. Therefore, there are terms t ′3 and t ′3 such that t = (λy : τ̂1 & ξ1.t ′3) t ′4
and [t1 / x ]t = (λy : τ̂1 & ξ1.[t1 / x ]t ′3) [t1 / x ]t ′4.
But then we have for arbitrary t2 with ∅ | ∅ `te t2 : τ̂ ′ & ξ′ that (λy : τ̂1 & ξ1.[t2 /
x ]t ′3) [t2 / x ]t ′4 → [ [t2 / x ]t ′4 / y ][t2 / x ]t ′3 holds. Because y does not occur free in t2,
we can reorder the substitutions and arrive at (λy : τ̂1 & ξ1.[t2 / x ]t ′3) [t2 / x ]t ′4 →
[t2 / x ][t ′4 / y ]t ′3. By defining t ′′ = [t ′4 / y ]t ′3, we reach the desired conclusion
[t2 / x ]t → [t2 / x ]t ′′.

[E-AnnAbs] We have [t1 / x ]t = (Λβ :: κ.t3) 〈ξ1〉. Again, we can rule out t = x and
t = x 〈ξ1〉. Hence, there is a t ′3 such that t = (Λβ :: κ.t ′3) 〈ξ1〉.
But then [t2 / x ]t → [ξ1 / β ][t2 / x ]t ′3 is a valid derivation by [E-AnnAbs] for all
t2 such that ∅ | ∅ `te t2 : τ̂ ′& ξ′. Since β cannot occur free in t2, [ξ1 / β ][t2 / x ]t ′3 =
[t2 / x ][ξ1 / β ]t ′3. Therefore, we choose t ′′ = [ξ1 / β ]t ′3.

[E-Fix] We have [t1 / x ]t = µy : τ̂1 & ξ1.t3. Again, we know t 6= x.
If x = y, then t = µx : τ̂1 & ξ1.t3 and x does not occur free in t. But then we
always have µx : τ̂1 & ξ1.t3 → [µy : τ̂1 & ξ1.t3 / x ]t3 by [T-Fix]. Moreover, x also
does not occur free in [µy : τ̂1 & ξ1.t3 / x ]t3, implying [t2 / x ][µy : τ̂1 & ξ1.t3 / x ]t3 =
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[µy : τ̂1 & ξ1.t3 / x ]t3 for all t2. Hence, choosing t ′′ = [µy : τ̂1 & ξ1.t3 / x ]t3 leads to
the desired result.
If x 6= y, then t = µy : τ̂1 & ξ1.t ′3 for some t ′3. Let t2 be arbitrary such that
∅ | ∅ `te t2 : τ̂ ′ & ξ′. Then [t2 / x ]t = µy : τ̂1 & ξ1.[t2 / x ]t ′3 and we have µy :
τ̂1 & ξ1.[t2 / x ]t ′3 → [µy : τ̂1 & ξ1.[t2 / x ]t ′3 / y ][t2 / x ]t ′3 by [T-Fix]. Since y does not
occur free in t2, we can reorder the substitutions as follows: [µy : τ̂1 & ξ1.[t2 /x ]t ′3 /
y ][t2 / x ]t ′3 = [t2 / x ][µy : τ̂1 & ξ1.t ′3 /y ]t ′3. Thus, choosing t ′′ = [µy : τ̂1 & ξ1.t ′3 /y ]t ′3
leads to the desired result.

[E-Proj] We have [t1 / x ]t = proji(t3, t4), hence t must be of the form t = proji(e1, e2)
for ∅ `sub ξ

′ v ξ to hold. Then indeed for all t2 with ∅ | ∅ `te t2 : τ̂ ′ & ξ′, we have
[t2 / x ]proji(t3, t4) = proji([t2 / x ]e1, [t2 / x ]e2) and therefore [t2 / x ]t → [t2 / x ]ei
by [E-Proj]. We choose t ′′ = ei .

[E-CaseInl] We have [t1 / x ]t = case inlτ (e1) of { inl(x1) → e2; inr(x2) → e3}. As
we can rule out the cases where t = x and t = case x of { ...}, we must have
t = case inlτ (e′1) of { inl(x1) → e′2; inr(x2) → e′3} for some e′1, e′2 and e′3. We
assume x 6= x1 and x 6= x2 as we have seen previously how to handle constructs
where name shadowing occurs.
Let t2 be any target term such that ∅ | ∅ `te t2 : τ̂ ′ & ξ′ holds. Then, [t2 /
x ] case inlτ (e′1) of {inl(x1)→ e′2; inr(x2)→ e′3} = case inlτ ([t2/x ]e′1) of { inl(x1)→
[t2 / x ]e′2; inr(x2) → [t2 / x ]e′3} and therefore case inlτ ([t2 / x ]e′1) of {inl(x1) →
[t2 / x ]e′2; inr(x2) → [t2 / x ]e′3} → [ [t2 / x ]e′1 / x1 ][t2 / x ]e′2. We choose t ′′ =
[e′1 / x1 ]e′2. We can reorder the substitutions because x1 does not occur free in t2,
thus [t2/x ]t ′′ = [[t2/x ]e′1/x1 ][t2/x ]e′2. Hence, we get the desired [t2/x ]t → [t2/x ]t ′′.

[E-CaseInr] Analogous to previous case.

[E-Context] We show this case exemplarily for C = proji(�), but it can be proven
in a similar way for other evaluation contexts. Thus, we have [t1 / x ]t = proji(t3)
and t ′ = proji(t ′3) such that t3 → t ′3.
Due to the assumption ∅ `sub ξ

′ 6v ξ, we can rule out the cases where t = x and
t = proji(x). This is because the typing rule [T-Proj] ensures that the effect of
the argument of the projection is the same as the effect of the projection itself.
Therefore, t = proji(t4) for some term t4 6= x, but possibly containing x. This also
implies [t1 / x ]t = proji([t1 / x ]t4).
Then we also have t3 = [t1 / x ]t4 and thus [t1 / x ]t4 → t ′3. By lemma 2.35, there is
a derivation for ∅ | x : τ̂ ′ & ξ′ `te proji(t4) : τ̂ & ξ of the following form

∅ | x : τ̂ ′ & ξ′ `te t4 : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi [T-Proj]
∅ | x : τ̂ ′ & ξ′ `te proji(t4) : τ̂i & ξi

∅ `sub τ̂i 6 τ̂
∅ `sub ξi v ξ [T-Sub]

∅ | x : τ̂ ′ & ξ′ `te proji(t4) : τ̂ & ξ
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As ∅ `sub ξi v ξ holds, we also have ∅ `sub ξ
′ 6v ξi .

Therefore, all prerequisites for the induction hypothesis are met, and we get a term
t ′4 such that for all terms t2 with ∅ | ∅ `te t2 : τ̂ ′ & ξ′ we have [t2 / x ]t4 → [t2 / x ]t ′4.
Moreover, ∅ | x : τ̂ ′ & ξ′ `te t ′4 : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi .
But then we also have for all such t2

[t2 / x ]t4 → [t2 / x ]t ′4 [E-Context]
proji([t2 / x ]t4)→ proji([t2 / x ]t ′4)

and hence by setting t ′′ = proji(t ′4) the desired [t2 / x ]t → [t2 / x ]t ′′.

[E-LiftApp] We have [t1 / x ]t = ann`(v1) e1 for some v1 ∈ Nf ′. As t = x or t = x e1
would violate the assumptions, t = ann`(v2) e2 for some v2, e2 and [t1 / x ]v2 = v1,
[t1 / x ]e2 = e1.
Using lemma 2.35, there is a derivation for ∅ | x : τ̂ ′ & ξ′ `te ann`(v2) e2 : τ̂ & ξ of
the following form.

∅ | x : τ̂ ′ & ξ′ `te ann`(v2) : τ̂1〈ξ1〉 → τ̂2〈ξ2〉& ξ2 ∅ | x : τ̂ ′ & ξ′ `te e2 : τ̂1 & ξ1 [T-App]
∅ | x : τ̂ ′ & ξ′ `te ann`(v2) e2 : τ̂2 & ξ2

∅ `sub τ̂2 6 τ̂
∅ `sub ξ2 v ξ [T-Sub]

∅ | x : τ̂ ′ & ξ′ `te ann`(v2) e2 : τ̂ & ξ

Since [t1 / x ]v2 ∈ Nf ′, [t1 / x ]ann`(v2) ∈ Nf .
Let t2 be an arbitrary target term such that ∅ | ∅ `te t2:τ̂ ′&ξ′ holds. By lemma 2.52,
[t2 / x ]ann`(v2) ∈ Nf . Then, [t2 / x ]v2 ∈ Nf ′ by definition. This means we can
derive [t2 / x ]ann`(v2) e2 → [t2 / x ]ann`(v2 e2) by [E-LiftApp]. Thus, choosing
t ′′ = ann`(v2 e2) leads to the desired conclusion.

[E-LiftAnnApp] We have [t1 / x ]t = ann`(v1) 〈ξ2〉 for some v1 ∈ Nf ′. As t = x or
t = x 〈ξ2〉 would violate the assumptions, t = ann`(v2) 〈ξ′2〉 for some v2, ξ′2 and
[t1 / x ]v2 = v1, [t1 / x ]ξ′2 = ξ2.
Using lemma 2.35, there is a derivation for ∅ | x : τ̂ ′ & ξ′ `te ann`(v2) 〈ξ′2〉 : τ̂ & ξ of
the following form.

∅ | x : τ̂ ′ & ξ′ `te ann`(v2) : ∀β κ.τ̂1 & ξ1 ∅ `s ξ2 : κ
[T-AnnApp]

∅ | x : τ̂ ′ & ξ′ `te ann`(v2) 〈ξ2〉 : [ξ2 / β ]τ̂1 & ξ1
∅ `sub [ξ2 / β ]τ̂1 6 τ̂
∅ `sub ξ1 v ξ [T-Sub]

∅ | x : τ̂ ′ & ξ′ `te ann`(v2) 〈ξ2〉 : τ̂ & ξ

Since [t1 / x ]v2 ∈ Nf ′, [t1 / x ]ann`(v2) ∈ Nf .
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Let t2 be an arbitrary target term such that ∅ | ∅ `te t2:τ̂ ′&ξ′ holds. By lemma 2.52,
[t2 / x ]ann`(v2) ∈ Nf . Then, [t2 / x ]v2 ∈ Nf ′ by definition. This means we can
derive [t2 / x ]ann`(v2) 〈ξ2〉 → [t2 / x ]ann`(v2 〈ξ2〉) by [E-LiftAnnApp]. Thus,
choosing t ′′ = ann`(v2 〈ξ2〉) leads to the desired conclusion.

[E-LiftProj] We have [t1 / x ]t = proji(ann`(v1)) for some v1 ∈ Nf ′. As t = x or
t = proji(x) would violate the assumptions, t = proji(ann`(v2)) for some v2 and
[t1 / x ]v2 = v1.
Using lemma 2.35, there is a derivation for ∅ | x : τ̂ ′ & ξ′ `te proji(ann`(v2)) : τ̂ & ξ
of the following form.

∅ | x : τ̂ ′ & ξ′ `te ann`(v2) : τ̂1〈ξ1〉 × τ̂2〈ξ2〉& ξi [T-Proj]
∅ | x : τ̂ ′ & ξ′ `te proji(ann`(v2)) : τ̂i & ξi

∅ `sub τ̂i 6 τ̂
∅ `sub ξi v ξ [T-Sub]

∅ | x : τ̂ ′ & ξ′ `te proji(ann`(v2)) : τ̂ & ξ

Since [t1 / x ]v2 ∈ Nf ′, [t1 / x ]ann`(v2) ∈ Nf .
Let t2 be an arbitrary target term such that ∅ | ∅ `te t2:τ̂ ′&ξ′ holds. By lemma 2.52,
[t2 / x ]ann`(v2) ∈ Nf . Then, [t2 / x ]v2 ∈ Nf ′ by definition. This means we can
derive [t2 / x ]proji(ann`(v2)) → [t2 / x ]ann`(proji(v2)) by [E-LiftProj]. Thus,
choosing t ′′ = ann`(proji(v2)) leads to the desired conclusion.

[E-LiftCase] We have [t1 / x ]t = case ann`(v1) of {inl(x1) → e1; inr(x2) → e2} for
some v1 ∈ Nf ′. As t = x or t = case x of {...} would violate the assumptions, t =
case ann`(v2) of {inl(x1)→ e′1; inr(x2)→ e′2} for some v2, e′1, e′2 and [t1/x ]v2 = v1,
[t1 / x ]e′1 = e1, [t1 / x ]e′2 = e2.
Using lemma 2.35, there is a derivation of the following form.

∅ | x : τ̂ ′ & ξ′ `te ann`(v2) : τ̂1〈ξ1〉+ τ̂2〈ξ2〉& ξ3
∅ | x : τ̂ ′ & ξ′, x1 : τ̂1 & ξ1 `te e′1 : τ̂3 & ξ3
∅ | x : τ̂ ′ & ξ′, x2 : τ̂2 & ξ2 `te e′2 : τ̂3 & ξ3 [T-Case]

∅ | x : τ̂ ′ & ξ′ `te case ann`(v2) of { inl(x1)→ e′1; inr(x2)→ e′2} : τ̂3 & ξ3
∅ `sub τ̂3 6 τ̂
∅ `sub ξ3 v ξ [T-Sub]

∅ | x : τ̂ ′ & ξ′ `te case ann`(v2) of { inl(x1)→ e′1; inr(x2)→ e′2} : τ̂ & ξ

Since [t1 / x ]v2 ∈ Nf ′, [t1 / x ]ann`(v2) ∈ Nf .
Let t2 be an arbitrary target term such that ∅ | ∅ `te t2 : τ̂ ′ & ξ′ holds. By
lemma 2.52, [t2 / x ]ann`(v2) ∈ Nf . Then, [t2 / x ]v2 ∈ Nf ′ by definition. This
means we can derive [t2 / x ] case (ann`(v2)) of { inl(x1) → e′1; inr(x2) → e′2} →
[t2 / x ]ann`( case v2 of { inl(x1) → e′1; inr(x2) → e′2}) by [E-LiftCase]. Thus,
choosing t ′′ = ann`( case v2 of {inl(x1) → e′1; inr(x2) → e′2}) leads to the desired
conclusion.
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[E-LiftSeq] We have [t1 / x ]t = seq (ann`(v1)) t3 for some v′ and t3. Again, we
can rule out the cases t = x and t = seq x t3 due to ∅ `sub ξ′ 6v ξ. Then,
t = seq (ann`(v2)) t4 such that [t1 / x ]v2 = v1 and [t1 / x ]t4 = t3.
Using lemma 2.35, there is a derivation for ∅ | x : τ̂ ′& ξ′ `te seq (ann`(v2)) t4 : τ̂ & ξ
of the following form.

∅ | x : τ̂ ′ & ξ′ `te ann`(v2) : τ̂ ′1 & ξ1 ∅ | x : τ̂ ′ & ξ′ `te t4 : τ̂1 & ξ1 [T-Seq]
∅ | x : τ̂ ′ & ξ′ `te seq (ann`(v2)) t4 : τ̂1 & ξ1

∅ `sub τ̂1 6 τ̂
∅ `sub ξ1 v ξ [T-Sub]

∅ | x : τ̂ ′ & ξ′ `te seq (ann`(v2)) t4 : τ̂ & ξ

We note that [t1 / x ]ann`(v2) = ann`(v1) ∈ Nf . By lemma 2.52, for all terms t2
with ∅ | ∅ `te t2 : τ̂ ′&ξ′, [t2/x ]ann`(v2) ∈ Nf and [t1/x ]ann`(v2) ' [t2/x ]ann`(v2).
Therefore, the following derivation is valid for all such t2.

[t2 / x ]v2 ∈ Nf ′
[E-LiftSeq]

seq (ann`([t2 / x ]v2)) ([t2 / x ]t4)→ ann`(seq ([t2 / x ]v2) ([t2 / x ]t4))

By setting t ′′ = ann`(seq v2 t4) we get the desired result.

[E-JoinAnn] We have [t1 / x ]t = ann`1(ann`2(v1)) with v1 ∈ Nf ′. The assumptions let
us rule out the cases t = x and t = ann`1(x). Hence, t = ann`1(ann`2(v2)) for some
v2 such that [t1/x ]v2 = v1. By lemma 2.37, we have ∅ | x :τ̂ ′&ξ′ `te ann`2(v2):τ̂&ξ.
Note that ann`2(v1) ∈ Nf . We can apply lemma 2.52, therefore [t2 / x ]ann`2(v2) ∈
Nf for all t2 with ∅ | ∅ `te t2:τ̂ ′&ξ′. This allows us to derive [t2/x ]ann`1(ann`2(v2))→
[t2 / x ]ann`1t`2(v2) by [E-JoinAnn] for all such t2. Choosing t ′′ = ann`1t`2(v2)
results in the desired statement.

By theorem 2.46, we have ∅ | ∅ `te [t2/x ]t ′′ : τ̂&ξ for all t2 such that ∅ | ∅ `te t2 : τ̂ ′&ξ′.
By lemma 2.53, ∅ | x : τ̂ ′ & ξ′ `te t ′′ : τ̂ & ξ.

Proof of Lemma 3.14. By induction on the derivation of Σ `p τ̂ & ξ . Σ′.

[P-Unit] In the premise of the [P-Unit] rule we have β 6∈ αi . Since dom(Σ) = αi and
dom(Σ′) = {β} in this case, we have dom(Σ) ∩ dom(Σ′) = ∅.
Furthermore, we have fav(ûnit) = ∅ and fav(β αi) = {β}∪αi = dom(Σ′)∪dom(Σ).
Lastly, we have Σ′ = β :: Σ(αi)⇒ ?. By repeated application of [S-App], we can
derive Σ,Σ′ `s β αi : ?. By [W-Unit] we have Σ,Σ′ `wft ûnit.

[P-Sum] In this case, Σ = αi :: καi . The premises of the [P-Sum] rule are Σ `p τ̂1 & ξ1 .
Σ′1, Σ `p τ̂2 & ξ2 . Σ′2 and β 6∈ Σ,Σ′1,Σ′2 with Σ′1 = βj :: κβj and Σ′2 = γj :: κγk .
We can then apply the induction hypothesis in order to get

1. dom(Σ) ∩ dom(Σ′1) = ∅ and dom(Σ) ∩ dom(Σ′2) = ∅ and
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2. fav(τ̂1) ∪ fav(ξ1) = dom(Σ) ∪ dom(Σ′1) and fav(τ̂2) ∪ fav(ξ2) = dom(Σ) ∪
dom(Σ′2), and

3. Σ,Σ′1 `s ξ1 : ? and Σ,Σ′1 `wft τ̂1 and Σ,Σ′2 `s ξ2 : ? and Σ,Σ′2 `wft τ̂2.
Since we have Σ′ = β :: καi ⇒ ?,Σ′1,Σ′2 and β 6∈ Σ,Σ′1,Σ′2 it follows that

dom(Σ) ∩ dom(Σ′) = dom(Σ) ∩ ({β} ∪ dom(Σ′1) ∪ dom(Σ′2)) = ∅

and

fav(τ̂1〈ξ1〉+ τ̂2〈ξ2〉) ∪ fav(β αi)
=fav(τ̂1) ∪ fav(ξ1) ∪ fav(τ̂2) ∪ fav(ξ2) ∪ fav(β αi)
= dom(Σ) ∪ dom(Σ′1) ∪ dom(Σ′2) ∪ {β} = dom(Σ) ∪ dom(Σ′).

Similar to the previous case, we can derive Σ,Σ′ `s β αi : ?. By application
of [W-Sum] and result (3) of the induction hypothesis, we get Σ,Σ′1,Σ′2 `wft
τ̂1〈ξ1〉 + τ̂2〈ξ2〉. The latter derivation is possible because all parts of the com-
bined environment have disjoint domains and therefore do not shadow existing
bindings (see lemma 2.22).

[P-Prod] Analogous to the [P-Sum] case.

[P-Arr] In this case, Σ = αi :: καi . The premises of the [P-Arr] rule are ∅ `p τ̂1&ξ1.Σ′1,
Σ,Σ′1 `p τ̂1 & ξ2 . Σ′2 and β 6∈ Σ,Σ′1,Σ′2 with Σ′1 = βj :: κβj and Σ′2 = γj :: κγk .
We can then apply the induction hypothesis in order to get

1. ∅ ∩ dom(Σ′1) = ∅ and dom(Σ,Σ′1) ∩ dom(Σ′2) = ∅,
2. fav(τ̂1)∪fav(ξ1) = ∅∪dom(Σ′1) and fav(τ̂2)∪fav(ξ2) = dom(Σ,Σ′1)∪dom(Σ′2),

and
3. Σ′1 `s ξ1 : ? and Σ′1 `wft τ̂1 and Σ,Σ′1,Σ′2 `s ξ2 : ? and Σ,Σ′1,Σ′2 `wft τ̂2.

Since we have Σ′ = β :: καi ⇒ ?,Σ′2 and β 6∈ Σ,Σ′1,Σ′2 it follows that

dom(Σ) ∩ dom(Σ′) = dom(Σ) ∩ ({β} ∪ dom(Σ′2)) = ∅

and

fav(∀βj :: κβj .τ̂1〈ξ1〉 → τ̂2〈ξ2〉) ∪ fav(β αi)
=((fav(τ̂1) ∪ fav(ξ1) ∪ fav(τ̂2) ∪ fav(ξ2)) \ βj) ∪ fav(β αi)
=((dom(Σ′1) ∪ dom(Σ) ∪ dom(Σ′2)) \ dom(Σ′1)) ∪ {β} ∪ dom(Σ)
= dom(Σ) ∪ dom(Σ′2) ∪ {β} = dom(Σ) ∪ dom(Σ′).

Similar to the previous case, we can derive Σ,Σ′ `s β αi : ?.
We can show Σ,Σ′ `wft ∀βj :: κβj .τ̂1〈ξ1〉 → τ̂2〈ξ2〉 by repeatedly applying [W-
Forall] and then showing that Σ,Σ′, βj :: κβj `wft τ̂1〈ξ1〉 → τ̂2〈ξ2〉 holds.
We apply rule [W-Arr] whose premises are given by
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1. Σ,Σ′, βj :: κβj `s ξ1 : ? follows by context extension from Σ′1 `s ξ1 : ?,

2. analogously, Σ,Σ′, βj :: βκj `wft τ̂1 follows from Σ′1 `wft τ̂1

3. Σ,Σ′, βj :: βκj `s ξ2 : ? follows from Σ,Σ′1,Σ′2 `s ξ2 : ? by exploiting that the
domains of Σ′1 and Σ′2 are disjoint and that β does not occur free in ξ2 (which
are both known by induction), and

4. analogously Σ,Σ′, βj :: βκj `wft τ̂1 follows from Σ,Σ′1,Σ′2 `wft τ̂1.

Proof of Lemma 3.15. Proof by induction on the derivation tree of Σ `p τ̂ & ξ . Σ′.

[P-Unit] We have τ̂ = ûnit and from the assumption bτ̂c = bτ̂ ′c we can infer that the
only rule that possibly applies to Σ `p τ̂ ′&ξ′.Σ′ is also [P-Unit]. Hence, τ̂ ′ = ûnit
as well.
We have Σ′ = β :: καi ⇒ ? and Σ′′ = β′ :: καi ⇒ ?. Therefore, Σ′ and Σ′′ are equal
up to renaming.
From the definition of [P-Unit] we know ξ = β αi and ξ′ = β′ αi . Since by
lemma 3.14, Σ′ and Σ as well as Σ′′ and Σ are disjoint, we have [Σ′ / Σ′′ ]ξ′ =
[β / β′ ]ξ′ = ξ and therefore in particular ξ ≡α [Σ′ / Σ′′ ]ξ′.

[P-Sum] We have τ̂ = τ̂1〈ξ1〉 + τ̂2〈ξ2〉 for some τ̂1, ξ1, τ̂2 and ξ2. Furthermore, we can
infer from bτ̂c = bτ̂ ′c that the the only rule that possibly applies to Σ `p τ̂ ′&ξ′.Σ′′
is [P-Sum]. Therefore, τ̂ ′ = τ̂ ′1〈ξ′1〉+ τ̂ ′2〈ξ′2〉 for some τ̂ ′1, ξ′1, τ̂ ′2 and ξ′2.
The premises of Σ `p τ̂ & ξ . Σ′ are Σ `p τ̂1 & ξ1 . Σ′1 and Σ `p τ̂2 & ξ2 . Σ′2, and
the premises of Σ `p τ̂ ′ & ξ′ . Σ′ are Σ `p τ̂ ′1 & ξ′1 . Σ′′1 and Σ `p τ̂ ′2 & ξ′2 . Σ′′2.
By induction, we know that Σ′1 and Σ′′1 as well as Σ′2 and Σ′′2 are equal up to
renaming. Moreover, τ̂1 ≡α [Σ′1 / Σ′′1 ]τ̂ ′1, τ̂2 ≡α [Σ′2 / Σ′′2 ]τ̂ ′2, ξ1 ≡α [Σ′1 / Σ′′1 ]ξ′1 and
ξ2 ≡α [Σ′2 / Σ′′2 ]ξ′2.
Suppose that Σ = αi :: καi . Since Σ′ = β :: καi ⇒ ?,Σ′1,Σ′2 and Σ′′ = β′ ::
καi ⇒ ?,Σ′′1,Σ′′2, they are equal up to renaming.
Hence, we must also have τ̂ ≡α [Σ′ / Σ′′ ]τ̂ ′. Analogously to the previous case, we
have ξ = [Σ′ / Σ′′ ]ξ′.

[P-Prod] Analogous to the previous case.

[P-Arr] We have τ̂1 = ∀βj :: κβj .τ̂1〈ξ1〉 → τ̂2〈ξ2〉 for some τ̂1, ξ1, τ̂2 and ξ2. Furthermore,
we can infer from bτ̂c = bτ̂ ′c that the only rule that applies to Σ `p τ̂ ′ & ξ′ .Σ′′ is
[P-Arr]. Thus, τ̂ ′ = ∀β′j′ :: κβ′

j′
.τ̂ ′1〈ξ′1〉 → τ̂ ′2〈ξ′2〉.

The premises of Σ `p τ̂ & ξ . Σ′ are ∅ `p τ̂1 & ξ1 . βj :: κβj and Σ, βj :: κβj `p
τ̂2 & ξ2 . Σ′2, and the premises of Σ `p τ̂ ′ & ξ′ . Σ′ are ∅ `p τ̂ ′1 & ξ′1 . β

′
j′ :: κ′β′

j′
and

Σ, β′j′ :: κ′β′
j′
`p τ̂ ′2 & ξ′2 . Σ′′2.
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By induction, we know that βj :: κβj is equal to β′j′ :: κ′β′
j′

up to renaming. Therefore,
the environments have the same size and κβj = κ′β′

j
for all j. Moreover, τ̂1 ≡α

[βj / β′j ]τ̂ ′1 and ξ1 ≡α [βj / β′j ]ξ′1.

Hence, we can perform renaming in the second premise and get Σ, βj :: κβj `p
[βj / β′j ]τ̂ ′2 & [βj / β′j ]ξ′2 . Σ′′2.
Now we can apply induction here as well, hence Σ′2 and Σ′′2 are equal up to renaming
and τ̂2 ≡α [Σ′2 / Σ′′2, βj / β′j ]τ̂ ′2 and ξ2 ≡α [Σ′2 / Σ′′2, βj / β′j ]ξ′2.
Suppose that Σ = αi :: καi . Since Σ′ = β :: καi ⇒ ?,Σ′2 and Σ′′ = β′ :: καi ⇒ ?,Σ′′2,
they are equal up to renaming.
Since the βj are bound in τ̂ and τ̂ ′, we have indeed τ̂ ≡α [Σ′ /Σ′′ ]τ̂ ′ and similar to
the previous cases, ξ = [Σ′ / Σ′′ ]ξ′.

Proof of Lemma 3.26. By induction on the derivation tree of Σ `c τ : τ̂ & ξ . Σ′.

[C-Unit] By definition of the rule [C-Unit], Σ = αi :: καi , τ = unit, τ̂ = ûnit, ξ = β αi
and Σ′ = β :: καi ⇒ ?.
By definition θξ = (λxi :: καi .⊥?) αi . We have Σ `sub (λxi :: καi .⊥?) αi v ⊥?.
Hence, we can apply lemma 3.23 and get Σ′′ `sub θξ v ⊥.
Since ûnit is the only conservative type τ̂ ′ such that bτ̂ ′c = unit, we also have
Σ′′ `sub θτ̂ 6 τ̂ ′ by [Sub-Refl].

[C-Sum] By definition of the rule [C-Sum], Σ = αi :: καi , τ = τ1+τ2, τ̂ = τ̂1〈ξ1〉+ τ̂2〈ξ2〉,
ξ = β αi and Σ′ = β :: καi ⇒ ?, βj :: κβj , γk :: κγk .

The premises are αi :: καi `c τ1 : τ̂1&ξ1.βj :: κβj and αi :: καi `c τ2 : τ̂2&ξ2.γk :: κγk .
By definition of b·c and the fact that τ̂ ′ is conservative, we know that τ̂ ′ = τ̂ ′1〈ξ′1〉+
τ̂ ′2〈ξ′2〉 for some τ̂ ′1, τ̂ ′2, ξ′1, ξ′2.
Note that the substitutions occurring in the induction hypothesis are simply re-
strictions of the substitution θ.
By induction, we have Σ′′ `sub θτ̂1 6 τ̂ ′1 and Σ′′ `sub θξ1 v ⊥ as well as Σ′′ `sub
θτ̂2 6 τ̂ ′2 and Σ′′ `sub θξ2 v ⊥.
From the transitivity of the subsumption relation on dependency terms we can
deduce Σ′′ `sub θξ1 v ξ′1 and Σ′′ `sub θξ2 v ξ′2, as ⊥ is the least element of this
order.
Subtyping rule [S-Sum] lets us conclude Σ′′ `sub θτ̂ 6 τ̂ ′.
Analogously to the first case, we can also prove Σ′′ `sub θξ v ⊥.

[C-Prod] Analogous to [C-Sum].
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[C-Arr] In this case we have Σ = αi :: καi , τ = τ1 → τ2, τ̂ = ∀βj :: κβj .τ̂1〈ξ1〉 → τ̂2〈ξ2〉,
ξ = β αi and Σ′ = β :: καi ⇒ ?, γk :: κγk .
The premises are ∅ `c τ1:τ̂1&ξ1.βj :: κβj and αi :: καi , βj :: κβj `c τ2:τ̂2&ξ2.γk :: κγk .
By definition of b·c and the fact that τ̂ ′ is conservative, we know that τ̂ ′ =
∀β′j :: κβ′

j
.τ̂ ′1〈ξ′1〉 → τ̂ ′2〈ξ′2〉 for some τ̂ ′1, τ̂

′
2, ξ
′
1, ξ
′
2. Since the number and sorts of

the variables that are quantified over are determined by the definition of conser-
vative types and the shape of τ̂ ′1, we can assume without loss of generality that
βj = β′j for all j.

Due to τ̂ ′ being conservative, we also know ∅ `p τ̂ ′1 & ξ′1 . βj :: κβj . By lemma 3.20
applied to the first premise we have ∅ `p τ̂1 & ξ1 . βj :: κβj . Since pattern types are
unique up to alpha-equivalence (see lemma 3.15), we can again assume without
loss of generality that τ̂ ′1 = τ̂1 and ξ′1 = ξ1. Then we have βj :: κβj `sub τ̂

′
1 6 τ̂1

by [Sub-Refl] and βj :: κβj `sub ξ
′
1 v ξ1 from the reflexivity of the subsumption

relation. We can extend the contexts with arbitrary variables not occurring free
in τ̂1 and ξ1 (using lemmas 2.19 and 2.31), therefore Σ′′, βj :: κβj `sub τ̂

′
1 6 τ̂1 and

Σ′′, βj :: κβj `sub ξ
′
1 v ξ1 also hold.

By induction, we have Σ′′, βj :: κβj `sub θτ̂2 6 τ̂ ′2 and Σ′′, βj :: κβj `sub θξ2 v ⊥.
From the transitivity of the subsumption relation on dependency terms we can
deduce Σ′′, βj :: κβj `sub θξ2 v ξ′2, as ⊥ is the least element of this order.

Subtyping rule [S-Arr] lets us conclude Σ′′, βj :: κβj `sub τ̂1〈ξ1〉 → θτ̂2〈θξ2〉 6
τ̂ ′1〈ξ′1〉 → τ̂ ′2〈ξ′2〉. The substitution θ only applies to the return type, because all of
the free variables of τ̂1 and ξ1 are in bound in τ̂ (see also lemma 3.14).
Repeated application of [Sub-Forall] gives us the desired Σ′′ `sub θτ̂ 6 τ̂ ′.
Analogously to the previous cases, we can also prove Σ′′ `sub ξ v ⊥.

Proof of Lemma 3.34. By induction on the derivation of Σ `p τ̂ ′ & ξ′ . βi :: κβi .

[P-Unit] We have τ̂ ′ = ûnit and βj :: κβj = β :: καi ⇒ ?. Since τ̂ is conservative and
bτ̂c = bτ̂ ′c, we also have τ̂ = ûnit. Therefore, θ =M(αi :: καi ; τ̂ ′; τ̂) = [ ]. Clearly,
θτ̂ ′ = θûnit = ûnit = τ̂ and ∅ = dom(θ) = {β} \ {β}.

[P-Sum] We have τ̂ ′ = τ̂ ′1〈ξ′1〉 + τ̂ ′2〈ξ′2〉 for some τ̂ ′1, ξ′1, τ̂ ′2 and ξ′2. The premises of
the rule are αi :: καi `p τ̂ ′1 & ξ′1 . γk :: κγk and αi :: καi `p τ̂ ′2 & ξ′2 . γ

′
k′ :: κγ′

k′
with

βj :: κβj = β :: καi ⇒ ?, γk :: κγk , γ
′
k′ :: κγ′

k′
. By the definition of the pattern rules,

ξ′1 = β′ αi and ξ′2 = β′′ αi for some β′ :: καi ⇒ ? and β′′ :: καi ⇒ ?.
Because bτ̂c = bτ̂ ′c and τ̂ is conservative, τ̂ = τ̂1〈ξ1〉+ τ̂2〈ξ2〉 for some τ̂1, ξ1, τ̂2 and
ξ2. By definition, both τ̂1 and τ̂2 are conservative as well. From Σ, αi :: καi `wft τ̂
we can infer Σ, αi :: καi `wft τ̂1 and Σ, αi :: καi `wft τ̂2 as they are the premises of
[W-Sum] which is the only rule that applies.
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By induction, we get θ′ = M(αi :: καi ; τ̂ ′1; τ̂1) and θ′′ = M(αi :: καi ; τ̂ ′2; τ̂2). It
follows

θ =M(αi :: καi ; τ̂ ′; τ̂) = [β′ 7→ λαi :: καi .ξ1, β
′′ 7→ λαi :: καi .ξ2 ] ◦ θ′ ◦ θ′′.

We have dom(θ) = {β′, β′′} ∪ dom(θ′) ∪ dom(θ′′) = {β′, β′′} ∪ (γk \ {β′}) ∪ (γ′k′ \
{β′′}) = βj \ {β}. Moreover, θ(τ̂ ′1〈ξ′1〉+ τ̂ ′2〈ξ′2〉) = θτ̂ ′1〈θξ′1〉+ θτ̂ ′2〈θξ′2〉 = θ′τ̂ ′1〈ξ1〉+
θ′′τ̂ ′2〈ξ2〉 = τ̂1〈ξ1〉+ τ̂2〈ξ2〉 = τ̂ where the second step is justified by lemma 3.14.
Lastly, we need to show Σ `s θβ

′ :καi ⇒ ? and Σ `s θβ
′′ :καi ⇒ ?. These statements

can be derived by repeated application of [S-Abs].

Σ, αi :: καi `s ξ1 : ?
[S-Abs]iΣ `s λαi :: καi .ξ1 : καi ⇒ ?

The assumption follows as a premise of Σ, αi :: καi `wft τ̂ . This holds analogously
for θβ′′ and the remaining judgments follow by induction. Hence, Σ `s θβj :κβj for
all βj ∈ dom(θ).

[P-Prod] Analogous to previous case.

[P-Arr] We have τ̂ ′ = ∀β′k :: κβ′
k
.τ̂ ′1〈ξ′1〉 → τ̂ ′2〈ξ′2〉 for some τ̂ ′1, ξ′1, τ̂ ′2 and ξ′2. The premises

of the rule are ∅ `p τ̂ ′1 &ξ′1 .β
′
k :: κβ′

k
and αi :: καi , β

′
k :: κβ′

k
`p τ̂ ′2 &ξ′2 .γl :: κγl where

βj :: κβk = β :: καi ⇒ ?, γl :: κγl .
Since we have bτ̂c = bτ̂ ′c and τ̂ is conservative, τ̂ = ∀β′′l :: κβ′′

l
.τ̂1〈ξ1〉 → τ̂2〈ξ2〉 for

some τ̂1, τ̂2, ξ1 and ξ2 with ∅ `p τ̂1 & ξ1 . β
′′
l :: κβ′′

l
. Because pattern types are

unique up to renaming (see lemma 3.15), we can assume without loss of generality
that β′′l :: κβ′′

l
= β′k :: κβ′

k
and therefore τ̂1 = τ̂ ′1 and ξ1 = ξ′1. By the definition of

the pattern rules, ξ2 = γ′ αi β′k for some γ′ :: καi ⇒ κβ′
k
⇒ ?. By assumption,

Σ, αi :: καi `wft τ̂ . But then we must also have Σ, αi :: καi , β
′
k :: κβ′

k
`wft τ̂2.

We can now apply the induction hypothesis. We get a substitution

θ′ =M(αi :: καi , β
′
k :: κβ′

k
; τ̂ ′2; τ̂2)

such that θ′τ̂ ′2 = τ̂2 and Σ `s θ
′γl : κγl for all γl ∈ dom(θ′) = γl \ {γ′}. Unfolding

the definition of M yields

θ =M(αi :: καi ; τ̂ ′; τ̂)
=M(αi :: καi ;∀β′k :: κβ′

k
.τ̂ ′1〈ξ′1〉 → τ̂ ′2〈ξ′2〉; ∀β′k :: κβ′

k
.τ̂ ′1〈ξ′1〉 → τ̂2〈ξ2〉)

...
=M(αi :: καi , β

′
k :: κβ′

k
; τ̂ ′1〈ξ′1〉 → τ̂ ′2〈ξ′2〉; τ̂ ′1〈ξ′1〉 → τ̂2〈ξ2〉)

=[γ′ 7→ λαi :: καi , β
′
k :: κβ′

k
.ξ2 ] ◦M(αi :: καi , β

′
k :: κβ′

k
; τ̂ ′2; τ̂2)

=[γ′ 7→ λαi :: καi , β
′
k :: κβ′

k
.ξ2 ] ◦ θ′.
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Clearly, dom(θ) = γl = βj \ {β}. From the well-formedness of τ̂ we can infer
Σ, αi :: καi , β

′
k :: κβ′

k
`s ξ2 : ?. Therefore, Σ `s λαi :: καi , β

′
k :: κβ′

k
.ξ2 :καi ⇒ κβ′

k
⇒ ?

by repeated application of [S-Abs]. Also, θτ̂ ′ = ∀β′k :: κβ′
k
.θτ̂ ′1〈θξ′1〉 → θτ̂ ′2〈θξ′2〉 =

∀β′k :: κβ′
k
.τ̂ ′1〈ξ′1〉 → θτ̂ ′2〈θξ′2〉 = ∀β′k :: κβ′

k
.τ̂ ′1〈ξ′1〉 → τ̂2〈ξ2〉 = τ̂ . The second step is

justified by the fact that the free variables of τ̂ ′1 and ξ′1 are disjoint from dom(θ)
(see lemma 3.14). The third step follows from the induction hypothesis.

Proof of Lemma 3.35. By induction on τ (i.e. the underlying structure of both τ̂1 and
τ̂2).

τ = unit Then τ̂1 = τ̂2 = ûnit because τ̂1 and τ̂2 are also conservative. By definition,
ûnit t ûnit = ûnit. Clearly, bûnitc = unit by definition, Σ `sub ûnit 6 ûnit by
[Sub-Refl], Σ `wft ûnit by [W-Unit] and ûnit conservative by definition.

τ = τ ′ + τ ′′ Then τ̂1 = τ̂ ′1〈ξ′1〉+τ̂ ′′1 〈ξ′′1 〉 and τ̂2 = τ̂ ′2〈ξ′2〉+τ̂ ′′2 〈ξ′′2 〉 such that bτ̂ ′1c = τ ′ = bτ̂ ′2c
and bτ̂ ′′1 c = τ ′′ = bτ̂ ′′2 c, because τ̂1 and τ̂2 are conservative. Moreover, we know
Σ `wft τ̂1 and Σ `wft τ̂2, and the only rule applying here is [W-Sum]. Therefore,
Σ `wft τ̂

′
1, Σ `wft τ̂

′′
1 , Σ `wft τ̂

′
2 and Σ `wft τ̂

′′
2 .

By induction, we get bτ̂ ′1 t τ̂ ′2c = τ ′, Σ `sub τ̂
′
1 6 τ̂

′
1t τ̂ ′2, Σ `sub τ̂

′
2 6 τ̂

′
1t τ̂ ′2, Σ `wft

τ̂ ′1 t τ̂ ′2 and τ̂ ′1 t τ̂ ′2 conservative. Analogously, bτ̂ ′′1 t τ̂ ′′2 c = τ ′′, Σ `sub τ̂
′′
1 6 τ̂

′′
1 t τ̂ ′′2 ,

Σ `sub τ̂
′′
2 6 τ̂

′′
1 t τ̂ ′′2 , Σ `wft τ̂

′′
1 t τ̂ ′′2 and τ̂ ′′1 t τ̂ ′′2 conservative.

We have τ̂1 t τ̂2 = (τ̂ ′1〈ξ′1〉 + τ̂ ′′1 〈ξ′′1 〉) t (τ̂ ′2〈ξ′2〉 + τ̂ ′′2 〈ξ′′2 〉) = (τ̂ ′1 t τ̂ ′2)〈ξ′1 t ξ′2〉 +
(τ̂ ′′1 t τ̂ ′′2 )〈ξ′′1 t ξ′′2 〉. Clearly, b(τ̂ ′1 t τ̂ ′2)〈ξ′1 t ξ′2〉+ (τ̂ ′′1 t τ̂ ′′2 )〈ξ′′1 t ξ′′2 〉c = bτ̂ ′1 t τ̂ ′2c +
bτ̂ ′′1 t τ̂ ′′2 c = τ ′ + τ ′′ = τ .
We can derive

Σ `sub τ̂
′
1 6 τ̂

′
1 t τ̂ ′2

Σ `sub ξ
′
1 v ξ′1 t ξ′2

Σ `sub τ̂
′
2 6 τ̂

′′
1 t τ̂ ′′2

Σ `sub ξ
′′
1 v ξ′′1 t ξ′′2 [Sub-Sum]

Σ `sub τ̂
′
1〈ξ′1〉+ τ̂ ′′1 〈ξ′′1 〉 6 (τ̂ ′1 t τ̂ ′2)〈ξ′1 t ξ′2〉+ (τ̂ ′′1 t τ̂ ′′2 )〈ξ′′1 t ξ′′2 〉

and Σ `sub τ̂
′
2〈ξ′2〉+τ̂ ′′2 〈ξ′′2 〉 6 (τ̂ ′1tτ̂ ′2)〈ξ′1tξ′2〉+(τ̂ ′′1 tτ̂ ′′2 )〈ξ′′1tξ′′2 〉 follows analogously.

The resulting type (τ̂ ′1t τ̂ ′2)〈ξ′1t ξ′2〉+ (τ̂ ′′1 t τ̂ ′′2 )〈ξ′′1 t ξ′′2 〉 is conservative, as its parts
are conservative by induction.
Lastly,

Σ `wft τ̂
′
1 t τ̂ ′2

Σ `wft τ̂
′′
1 t τ̂ ′′2

Σ `s ξ
′
1 t ξ′2 : ?

Σ `s ξ
′′
1 t ξ′′2 : ?

Σ `wft (τ̂ ′1 t τ̂ ′2)〈ξ′1 t ξ′2〉+ (τ̂ ′′1 t τ̂ ′′2 )〈ξ′′1 t ξ′′2 〉
where the well-sortedness of the annotations follows from the well-formedness of
τ̂1 and τ̂2 and [S-Join].

τ = τ ′ × τ ′′ Analogous to the previous case.
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τ = τ ′ → τ ′′ Then τ̂1 = ∀βi :: κβi .τ̂
′
1〈ξ′1〉 → τ̂ ′′1 〈ξ′′1 〉 and τ̂2 = ∀β′j :: κβ′

j
.τ̂ ′2〈ξ′2〉 → τ̂ ′′2 〈ξ′′2 〉

since both are conservative. Since bτ̂1c = τ = bτ̂2c, we also know bτ̂ ′1c = τ ′ = bτ̂ ′2c
and bτ̂ ′′1 c = τ ′′ = bτ̂ ′′2 c.
By definition of conservativeness, ∅ `p τ̂ ′1&ξ′1.βi :: κβi and ∅ `p τ̂ ′2&ξ′2.β′j :: κβ′

j
. By

lemma 3.15, patterns are unique up to renaming. Hence, we can assume without
loss of generality that βi :: κβi = β′j :: κβ′

j
, and therefore τ̂ ′1 = τ̂ ′2 and ξ′1 = ξ′2.

Then, τ̂1 t τ̂2 = ∀βi :: κβi .τ̂
′
1〈ξ′1〉 → (τ̂ ′′1 t τ̂ ′′2 )〈ξ′′1 t ξ′′2 〉.

From Σ `wft τ̂1 and Σ `wft τ̂2 we can infer Σ, βi :: κβi `wft τ̂
′′
1 and Σ, βi :: κβi `wft τ̂

′′
2 .

The induction hypothesis yields bτ̂ ′′1 t τ̂ ′′2 c = τ ′′, Σ, βi :: κβi `sub τ̂ ′′1 6 τ̂ ′′1 t τ̂ ′′2 ,
Σ, βi :: κβi `sub τ̂

′′
2 6 τ̂ ′′1 t τ̂ ′′2 , Σ, βi :: κβi `wft τ̂

′′
1 t τ̂ ′′2 and the conservativeness of

τ̂ ′′1 t τ̂ ′′2 .
Clearly, bτ̂1 t τ̂2c = b∀βi :: κβi .τ̂

′
1〈ξ′1〉 → (τ̂ ′′1 t τ̂ ′′2 )〈ξ′′1 t ξ′′2 〉c = bτ̂ ′1c → bτ̂ ′′1 t τ̂ ′′2 c =

τ ′ → τ ′′.
Using [Sub-Arr], we can derive Σ, βi :: κβi `sub τ̂ ′1〈ξ′1〉 → τ̂ ′′1 〈ξ′′1 〉 6 τ̂ ′1〈ξ′1〉 →
(τ̂ ′′1 t τ̂ ′′2 )〈ξ′′1 tξ′′2 〉 and Σ, βi :: κβi `sub τ̂

′
1〈ξ′1〉 → τ̂ ′′2 〈ξ′′2 〉 6 τ̂ ′1〈ξ′1〉 → (τ̂ ′′1 t τ̂ ′′2 )〈ξ′′1 tξ′′2 〉.

The contravariant position can be treated invariantly, because we could assume
τ̂ ′1 = τ̂ ′2.
Repeated application of [Sub-Forall] results in the desired Σ `sub τ̂1 6 τ̂1 t τ̂2
and Σ `sub τ̂2 6 τ̂1 t τ̂2.
As τ̂ ′′1 t τ̂ ′′2 is conservative and ∅ `p τ̂ ′1 & ξ′1 . βi :: κβi , τ̂1 t τ̂2 is also conservative.
Similarly, Σ `wft τ̂1 t τ̂2 follows from Σ, βi :: κi `wft τ̂

′
1 and Σ, βi :: κi `wft τ̂

′′
1 t τ̂ ′′2 .

Proof of Theorem 3.36. By induction on t. All of the following cases assume an implicit
application of the foregoing lemmas 3.32 and 3.33, as we only show that the types and
effects before canonicalization are derivable in the annotated type system.

t = x We have R(Γ̂; Σ; x) = x : Γ̂(x). Suppose Γ̂(x) = τ̂ & ξ. By assumption, Γ̂ is
well-formed under Σ, therefore τ̂ is conservative, Σ `wft τ̂ and Σ `s ξ : ?.

t = () R(Γ̂; Σ; ()) = () : ûnit :⊥. Trivially, Σ | Γ̂ `te :ûnit &⊥ by [T-Unit], Σ `wft ûnit
by [W-Unit], Σ `s ⊥ : ? by [S-Lat] and ûnit is conservative by definition.

t = ann`(t ′) In this case R(Γ̂; Σ; ann`(t ′)) = ann`(t̂ ′) : τ̂ ′ & bbξ′ t `ccΣ where t̂ ′ : τ̂ ′ & ξ′ =
R(Γ̂; Σ; t ′).
By induction, Σ | Γ̂ `te t̂ ′ : τ̂ ′ & ξ′, Σ `wft τ̂

′, Σ `s ξ
′ : ? and τ̂ ′ is conservative. We

can then derive

Σ | Γ̂ `te t̂ ′ : τ̂ ′ & ξ′
[Sub-Refl]

Σ `sub τ̂
′ 6 τ̂ ′ Σ `sub ξ

′ v ξ′ t `
[T-Sub]

Σ | Γ̂ `te t : τ̂ ′ & ξ′ t `
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and subsequently

Σ | Γ̂ `te t : τ̂ & ξ′ t ` Σ `sub ` v ξ′ t ` [T-Ann]
Σ | Γ̂ `te ann`(t̂ ′) : τ̂ & ξ′ t `

Moreover, Σ `s ξ
′ t ` : ? by [S-Join].

t = seq t1 t2 In this case R(Γ̂; Σ; seq t1 t2) = seq t̂1 t̂2 : τ̂2 &bbξ1tξ2ccΣ where t̂1 : τ̂1 &ξ1 =
R(Γ̂; Σ; t1) and t̂2 : τ̂2 & ξ2 = R(Γ̂; Σ; t2).
We can derive

by induction
Σ | Γ̂ `te t̂1 : τ̂1 & ξ1 Σ `sub τ̂1 6 τ̂1 Σ `sub ξ1 v ξ1 t ξ2 [T-Sub]

Σ | Γ̂ `te t̂1 : τ̂1 & ξ1 t ξ2

and
by induction

Σ | Γ̂ `te t̂2 : τ̂2 & ξ2 Σ `sub τ̂2 6 τ̂2 Σ `sub ξ2 v ξ1 t ξ2 [T-Sub]
Σ | Γ̂ `te t̂2 : τ̂2 & ξ1 t ξ2

concluding with

Σ | Γ̂ `te t̂1 : τ̂1 & ξ1 t ξ2 Σ | Γ̂ `te t̂2 : τ̂2 & ξ1 t ξ2 [T-Seq]
Σ | Γ̂ `te seq t̂1 t̂2 : τ̂2 & ξ1 t ξ2

Moreover, the conservativeness of τ̂2 and Σ `wft τ̂2 follow by induction and Σ `s
ξ1 t ξ2 : ? follows by induction and rule [S-Join].

t = (t1, t2) We have R(Γ̂; Σ; t1, t2) = (t̂1, t̂2) : τ̂1〈ξ1〉 + τ̂2〈ξ2〉 & ⊥ where t̂1 : τ̂1 & ξ1 =
R(Γ̂; Σ; t1) and t̂2 : τ̂2 & ξ2 = R(Γ̂; Σ; t2).
We can derive

by induction
Σ | Γ̂ `te t̂1 : τ̂1 & ξ1

by induction
Σ | Γ̂ `te t̂2 : τ̂2 & ξ2 [T-Pair]

Σ | Γ̂ `te (t̂1, t̂2) : τ̂1〈ξ1〉+ τ̂2〈ξ2〉&⊥

By induction, we also have Σ `wft τ̂1, Σ `wft τ̂2, Σ `s ξ1 : ? and Σ `s ξ2 : ?. This
allows us to conclude Σ `wft τ̂1〈ξ1〉+ τ̂2〈ξ2〉. By [S-Lat], Σ `s ⊥ : ?. Lastly, since
τ̂1 and τ̂2 are conservative by induction, so is τ̂1〈ξ1〉+ τ̂2〈ξ2〉.

t = inlτ2(t1) We have R(Γ̂; Σ; inlτ2(t1)) = inlτ2(t̂1): τ̂1〈ξ1〉+⊥τ2〈⊥〉&⊥ where t̂1 : τ̂1&ξ1 =
R(Γ̂; Σ; t1).
By induction, we have Σ | Γ̂ `te t̂1 : τ̂1 & ξ1, Σ `wft τ̂1, Σ `s ξ1 : ? and τ̂1 is
conservative. By lemma 3.25, ⊥τ2 is conservative, Σ `wft ⊥τ2 and b⊥τ2c = τ2. We
can therefore apply [T-Inl] and get Σ | Γ̂ `te inlτ2(t̂1) : τ̂1〈ξ1〉 + ⊥τ2〈⊥〉 & ⊥. By
[W-Sum], Σ `wft τ̂1〈ξ1〉 + ⊥τ2〈⊥〉 and by [S-Lat], Σ `s ⊥ : ?. Lastly, as both τ̂1
and ⊥τ2 are conservative, so is τ̂1〈ξ1〉+⊥τ2〈⊥〉.
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t = inlτ1(t2) Analogous to the previous case.

t = proji(t ′) We have R(Γ̂; Σ; proji(t ′)) = proji(t̂ ′) : τ̂i & bbξ t ξiccΣ where t̂ ′ : τ̂1〈ξ1〉 ×
τ̂2〈ξ2〉& ξ = R(Γ̂; Σ; t ′) and i = 1 or i = 2.
By induction, we have Σ | Γ̂ `te t̂ ′ : τ̂1〈ξ1〉 × τ̂2〈ξ2〉 & ξ, Σ `wft τ̂1〈ξ1〉 × τ̂2〈ξ2〉,
Σ `s ξ : ? and τ̂1〈ξ1〉 × τ̂2〈ξ2〉 is conservative. This implies that Σ `wft τ̂i and
Σ `s ξi : ? hold and that τ̂i is conservative.
We can derive the following subtyping judgment

Σ `sub τ̂1 6 τ̂1
Σ `sub ξ1 v ξ1 t ξ

Σ `sub τ̂2 6 τ̂2
Σ `sub ξ2 v ξ2 t ξ [Sub-Prod]

Σ `sub τ̂1〈ξ1〉 × τ̂2〈ξ2〉 6 τ̂1〈ξ1 t ξ〉 × τ̂2〈ξ2 t ξ〉

Together with Σ `sub ξ v ξitξ we can derive Σ | Γ̂ `te t̂ ′ :τ̂1〈ξ1tξ〉×τ̂2〈ξ2tξ〉&ξitξ
using [T-Sub]. This has the right form to apply [T-Proj], leaving us with Σ |
Γ̂ `te proji(t̂ ′) : τ̂i & ξi t ξ.

t = case t ′ of { inl(x)→ t1; inr(y)→ t2} In this case, R(Γ̂; Σ; t) = case t̂ ′ of {inl(x)→
t̂1; inr(y)→ t̂2}:bbτ̂1t τ̂2ccΣ&bbξ1tξ2tξ2ccΣ where t̂1 : τ̂〈ξ〉+ τ̂ ′〈ξ′〉&ξ1 = R(Γ̂; Σ; t1),
t̂2 : τ̂2 & ξ2 = R(Γ̂, x : τ̂ & ξ; Σ; t2) and t̂3 : τ̂3 & ξ3 = R(Γ̂, y : τ̂ ′ & ξ′; Σ; t3).
By induction, Σ | Γ̂ `te t̂1 : τ̂〈ξ〉 + τ̂ ′〈ξ′〉 & ξ1, Σ `wft τ̂〈ξ〉 + τ̂ ′〈ξ′〉, Σ `s ξ1 : ?
and τ̂〈ξ〉 + τ̂ ′〈ξ′〉 is conservative. Hence, both Γ̂, x : τ̂ & ξ and Γ̂, x : τ̂ ′ & ξ′ are
well-formed under Σ and we can apply the induction hypothesis to the remaining
recursive calls. This results in Σ | Γ̂, x : τ̂ & ξ `te t̂2 : τ̂2 & ξ2, Σ `wft τ̂2, Σ `s ξ2 : ?
and τ̂2 conservative, and similarly for the third call.
Using [T-Sub] and lemma 3.35, we can derive Σ | Γ̂ `te t̂1 : τ̂〈ξ〉+ τ̂ ′〈ξ′〉&ξ1tξ2tξ3,
Σ | Γ̂, x : τ̂&ξ `te t̂2 : τ̂2t τ̂3 &ξ1tξ2tξ3 and Σ | Γ̂, y : τ̂ ′&ξ′ `te t̂3 : τ̂2t τ̂3 &ξ1tξ2tξ3.
This makes it possible to apply [T-Case], leaving us with the desired

Σ | Γ̂ `te case t̂1 of {inl(x)→ t̂2; inr(y)→ t̂3} : τ̂2 t τ̂2 & ξ1 t ξ2 t ξ3

Also by lemma 3.35, Σ `wft τ̂2 t τ̂3 and τ̂2 t τ̂3 conservative. By [S-Join], Σ `s
ξ1 t ξ2 t ξ3 : ?.

t = λx : τ1.t ′ We have R(Γ̂; Σ;λx : τ1.t ′) = Λβi :: κi .λx : τ̂1 & β.t̂ ′ : ∀βi :: κi .τ̂1〈β〉 →
τ̂2〈ξ2〉 & ⊥ where τ̂1 & β . βi :: κi = C([ ]; τ1) and t̂ ′ : τ̂2 & ξ2 = R(Γ̂, x : τ̂1 &
β; Σ, βi :: κi ; t ′).
By lemma 3.20 we get ∅ `p τ̂1 & β . βi :: κi . Applying lemma 3.14 to the latter
judgment gives us βi :: κi `wft τ̂1 and βi :: κi `s β : ?. We can now extend the
context in the previous two judgments with Σ since the βi are fresh. For the
same reason, Γ̂ is well-formed under Σ, βi :: κi . By lemma 3.18, τ̂1 is conservative.
We can conclude that the extended environment Γ̂, x : τ̂1 & β is well-formed under
Σ, βi :: κi as well.
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We can derive
by induction

Σ, βi :: κi | Γ̂, x : τ̂1 & β `te t̂ ′ : τ̂2 & ξ2 [T-Abs]
Σ, βi :: κi | Γ̂ `te λx : τ̂1 & β.t̂ ′ : τ̂1〈β〉 → τ̂2〈ξ2〉&⊥

[T-AnnAbs]iΣ | Γ̂ `te Λβi :: κi .λx : τ̂1 & β.t̂ ′ : ∀βi :: κi .τ̂1〈β〉 → τ̂2〈ξ2〉&⊥

where [T-AnnAbs]i denotes an application of rule [T-AnnAbs] for every i. We
have omitted the side-conditions of [T-AnnAbs] in the tree above. However, since
the βi are fresh, we have βi 6∈ fav(Γ̂) ∪ fav(⊥) = fav(Γ̂) for all i.
Similarly, we can derive

by lemma 3.14
Σ, βi :: κi `wft τ̂1
Σ, βi :: κi `s β : ?

by induction
Σ, βi :: κi `wft τ̂2
Σ, βi :: κi `s ξ2 : ? [W-Arr]

Σ, βi :: κi `wft τ̂1〈β〉 → τ̂2〈ξ2〉 [W-Forall]iΣ `wft ∀βi :: κi .τ̂1〈β〉 → τ̂2〈ξ2〉

Σ `s ⊥ : ? follows trivially from [S-Lat]. By induction, τ̂2 is conservative, and
since we established earlier that ∅ `p τ̂1 & β . βi :: κi holds, the resulting type
∀βi :: κi .τ̂1〈β〉 → τ̂2〈ξ2〉 is conservative.

t = t1 t2 In this case R(Γ̂; Σ; t1 t2) = t̂1 〈θ βi〉 t̂2 : bbθ τ̂ ′ccΣ & bbξ1 t θ ξ′ccΣ where t̂1 :
τ̂1 & ξ1 = R(Γ; Σ; t1), t̂2 : τ̂2 & ξ2 = R(Γ; Σ; t2), τ̂ ′2〈β〉 → τ̂ ′〈ξ′〉 . βi = I(τ̂1) and
θ = [β 7→ ξ2 ] ◦M([ ]; τ̂ ′2; τ̂2).
By induction, we have Σ | Γ̂ `te t̂1 : τ̂1 & ξ1 and Σ | Γ̂ `te t̂2 : τ̂2 & ξ2, Σ `wft τ̂1 and
Σ `wft τ̂2, Σ `s ξ1 : ? and Σ `s ξ2 : ? and both τ̂1 and τ̂2 are conservative.
Since I(τ̂1) = τ̂ ′2〈β〉 → τ̂ ′〈ξ′〉 . βi , we know that τ̂1 = ∀β′i :: κβ′

i
.τ̂ ′1〈ξ′1〉 → τ̂ ′′1 〈ξ′2〉 for

some β′i . Additionally, τ̂1 is conservative. This implies ∅ `p τ̂ ′1 & ξ′1 . β
′
i :: κβ′

i
. By

the definitions of the pattern rules we can infer that ξ′1 = β′ for some β′ ∈ β′i.
Furthermore, due to the way I is defined, [βi/β′i](τ̂ ′1〈ξ′1〉 → τ̂ ′′1 〈ξ′2〉) = τ̂ ′2〈β〉 →
τ̂ ′〈ξ′〉.
Since by induction Σ `wft τ̂2 and Σ `s ξ2 : ?, we can apply lemma 3.34 in order to
get Σ `s θβi : κβ′

i
for all i.

We can derive

Σ | Γ̂ `te t̂1 : ∀β′i :: κβ′
i
.τ̂ ′1〈ξ′1〉 → τ̂ ′′1 〈ξ′2〉& ξ1 Σ `s θβi : κβ′

i [T-AnnApp]iΣ | Γ̂ `te t̂1 〈θβi〉 : [θβi / β′i ] (τ̂ ′1〈ξ′1〉 → τ̂ ′′1 〈ξ′2〉) & ξ1

We define θ′ = [θβi / β′i ]. Note that θ′ = θ◦[βi/β′i]. It follows, by using lemma 3.34,
that θ′τ̂ ′1 = θ([βi/β′i]τ̂ ′1) = θτ̂ ′2 = τ̂2. Similarly, θ′ξ′1 = θ([βi/β′i]ξ′1) = θβ = ξ2,
θ′τ̂ ′′1 = θ([βi/β′i]τ̂ ′′1 ) = θτ̂ ′ and θ′ξ′2 = θ([βi/β′i]ξ′2) = θξ′.
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This allows us to rewrite the above derivation as Σ | Γ̂ `te t̂1 〈θβi〉 : τ̂2〈ξ2〉 →
θτ̂ ′1〈θξ′〉 & ξ1. By applying [T-Sub] and [Sub-Arr], we can further derive Σ |
Γ̂ `te t̂1 〈θβi〉 : τ̂2〈ξ2〉 → θτ̂ ′1〈ξ1 t θξ′〉& ξ1 t θξ′.
This has the right shape for applying [T-App] which lets us conclude Σ | Γ̂ `te
t̂1 〈θβi〉 t̂2 : θτ̂ ′ & ξ1 t θξ′.
Because all terms in the image of θ are of the right sort and we know Σ `wft τ̂1,
we can conclude Σ `wft θτ̂

′ and Σ `s θξ
′ : ? from its premises. Applying [S-Join]

results in Σ `s ξ1 t θξ′ : ?.
Since τ̂1 is conservative, so is τ̂ ′′1 and therefore also θ′τ̂ ′′1 = θτ̂ ′.

t = µx : τ.t ′ In this case R(Γ̂; Σ;µx : τ.t ′) = µx : τ̂n &ξn .t̂ ′ : τ̂n &ξn for some t̂ ′, τ̂n and ξn
such that t̂ ′ : τ̂n &ξn = R(Γ̂, x : τ̂n &ξn ; Σ; t ′). These exist because by assumption, R
has produced a result, and that only happens if the fixpoint iteration terminated
after a finite number of iterations. We denote the number of iterations by n.
We have ξ0 = ⊥. Hence, Σ `s ξ0 : ? follows trivially from [S-Lat]. Σ `wft τ̂0 and
the fact that τ̂0 is conservative for τ̂0 = ⊥τ follows from lemma 3.25.
For every iteration i we can apply the induction hypothesis in order to get Σ `wft
τ̂i+1 and Σ `s ξi+1 : ? and the conservativeness of τ̂i+1 from the facts established
about the previous iteration.
By repeating this step n times, we can eventually derive Σ | Γ̂, x : τ̂n & ξn `te
t̂ ′ : τ̂n & ξn , Σ `wft τ̂n and Σ `s ξn : ?. Furthermore, τ̂n is conservative.
We can conclude Σ | Γ̂ `te µx : τ̂n & ξn .t̂ ′ : τ̂n & ξn by [T-Fix].

Proof of Lemma 3.47. By induction on t.

t = x We have R(Γ̂1; Σ; x) = x : Γ̂1(x) and R(Γ̂2; Σ; x) = x : Γ̂2(x). The result follows by
assumption.

t = () The assigned type and effect pair is always ûnit&⊥, therefore the result is trivially
true by reflexivity.

t = ann`(t ′) We haveR(Γ̂1; Σ; ann`(t ′)) = ann`(t̂ ′1):τ̂ ′1&bbξ′1t`ccΣ andR(Γ̂2; Σ; ann`(t ′)) =
ann`(t̂ ′2) : τ̂ ′2 & bbξ′2 t `ccΣ.

By induction, R(Γ̂1; Σ; t ′) = t̂ ′1 : τ̂ ′1 & ξ′1 and R(Γ̂2; Σ; t ′) = t̂ ′2 : τ̂ ′2 & ξ′2 such that
Σ `sub τ̂ ′1 6 τ̂ ′2 and Σ `sub ξ′1 v ξ′2. Using the lattice properties, we can derive
Σ `sub ξ

′
1 t ` v ξ′2 t `.

t = seq t ′ t ′′ We haveR(Γ̂1; Σ; seq t ′ t ′′) = seq t̂ ′1 t̂ ′′1 :τ̂ ′′1 &bbξ′1tξ′′1ccΣ andR(Γ̂2; Σ; seq t ′ t ′′) =
seq t̂ ′2 t̂ ′′2 : τ̂ ′′2 & bbξ′2 t ξ′′2ccΣ.
By induction, Σ `sub τ̂ ′′1 6 τ̂ ′′2 , Σ `sub ξ′1 v ξ′2 and Σ `sub ξ′′1 v ξ′′2 . Using the
lattice properties, we can derive Σ `sub ξ

′
1 t ξ′′1 v ξ′2 t ξ′′2 .
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t = (t1, t2) By applying [Sub-Prod] to the induction hypotheses for both recursive calls.

t = inlτ2(t1) By applying [Sub-Sum] to the induction hypothesis for the recursive call
and lemmas 3.23 and 3.26.

t = inlτ1(t2) Analogous to the previous case.

t = proji(t ′) By applying lemma 2.30 to the induction hypothesis.

t = case t1 of { inl(x)→ t2; inr(x)→ t3} By induction, we get

R(Γ̂1; Σ; t1) = t̂1 : τ̂ l
1〈ξl

1〉+ τ̂ r
1 〈ξr

1〉& ξ1 and R(Γ̂2; Σ; t1) = t̂4 : τ̂ l
4〈ξl

4〉+ τ̂ r
4 〈ξr

4〉& ξ4

such that Σ `sub τ̂ l
1〈ξl

1〉 + τ̂ r
1 〈ξr

1〉 6 τ̂ l
4〈ξl

4〉 + τ̂ r
4 〈ξr

4〉 and Σ `sub ξ1 v ξ4. By
lemma 2.30, we get Σ `sub τ̂

l
1 6 τ̂ l

4 and Σ `sub τ̂
r
1 6 τ̂ r

4 as well as Σ `sub ξ
l
1 v ξl

4
and Σ `sub ξ

r
1 v ξr

4 .
This allows us to apply the induction hypothesis to the recursive call for both
branches of the case-expression, and we get

R(Γ̂1, x : τ̂ l
1 & ξl

1; Σ; t2) = t̂2 : τ̂2 & ξ2 and R(Γ̂2, x : τ̂ l
4 & ξl

4; Σ; t2) = t̂5 : τ̂5 & ξ5

such that Σ `sub τ̂2 6 τ̂5 and Σ `sub ξ2 v ξ5. Similarly, for the other branch we
have

R(Γ̂1, x : τ̂ r
1 & ξr

1 ; Σ; t3) = t̂3 : τ̂3 & ξ3 and R(Γ̂2, x : τ̂ r
4 & ξr

4 ; Σ; t3) = t̂6 : τ̂6 & ξ6

such that Σ `sub τ̂3 6 τ̂6 and Σ `sub ξ3 v ξ6.
Using lemma 3.43 and lemma 3.44, we can derive

((τ̂2 & ξ2) t (τ̂3 & ξ3)) t ((τ̂5 & ξ5) t (τ̂6 & ξ6))
≡Σ((τ̂2 & ξ2) t (τ̂5 & ξ5)) t ((τ̂3 & ξ3) t (τ̂6 & ξ6))
≡Σ(τ̂5 & ξ5) t (τ̂6 & ξ6)

and therefore Σ `sub τ̂2t τ̂3 6 τ̂5t τ̂6 and Σ `sub ξ2t ξ3 v ξ5t ξ6. Using the lattice
properties, we also have Σ `sub ξ1 t ξ2 t ξ3 v ξ4 t ξ5 t ξ6.
SinceR(Γ̂1; Σ; t) = case t̂1 of { inl(x)→ t̂2; inr(x)→ t̂3}:bbτ̂2tτ̂3ccΣ&bbξ1tξ2tξ3ccΣ
and R(Γ̂2; Σ; t) = case t̂4 of { inl(x)→ t̂5; inr(x)→ t̂6}:bbτ̂5t τ̂6ccΣ&bbξ4tξ5tξ6ccΣ,
this completes the proof.

t = λx : τ1.t ′ We note that the argument position can be treated invariantly due to
the fact that pattern completions are unique. The desired result then follows
by applying [Sub-Arr] using the induction hypothesis for the covariant position,
followed by repeated applications of [Sub-Forall].
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t = t ′ t ′′ By induction, we get R(Γ̂1; Σ; t ′) = t̂ ′1 : τ̂ ′1 & ξ′1 and R(Γ̂2; Σ; t ′) = t̂ ′2 : τ̂ ′2 & ξ′2
such that Σ `sub τ̂

′
1 6 τ̂ ′2 and Σ `sub ξ

′
1 v ξ′2 as well as R(Γ̂1; Σ; t ′′) = t̂ ′′1 : τ̂ ′′1 & ξ′′1

and R(Γ̂2; Σ; t ′′) = t̂ ′′2 : τ̂ ′′2 & ξ′′2 such that Σ `sub τ̂
′′
1 6 τ̂

′′
2 and Σ `sub ξ

′′
1 v ξ′′2 .

We know that τ̂ ′1 and τ̂ ′2 are conservative and function types, therefore they are of
the form τ̂ ′1 = ∀βj :: κβj .τ̂

′a
1 〈ξ′a1 〉 → τ̂ ′r1 〈ξ′r1 〉 and τ̂ ′2 = ∀βj :: κβj .τ̂

′a
2 〈ξ′a2 〉 → τ̂ ′r2 〈ξ′r2 〉.

We can deconstruct the derivation of Σ `sub τ̂ ′1 6 τ̂ ′2 by repeated application of
lemma 2.30, once for every quantifier and finally for the arrow type itself. We end
up with Σ, βj :: κβj `sub τ̂

′r
1 6 τ̂

′r
2 and Σ, βj :: κβj `sub ξ

′r
1 v ξ′r2 .

Without loss of generality we can assume that the βj are fresh and therefore

τ̂ ′a1 〈ξ′a1 〉 → τ̂ ′r1 〈ξ′r1 〉 . βj :: κβj = I(τ̂ ′1) and τ̂ ′a2 〈ξ′a2 〉 → τ̂ ′r2 〈ξ′r2 〉 . βj :: κβj = I(τ̂ ′2).

Since τ̂ ′a1 &ξ′a1 and τ̂ ′a2 &ξ′a2 are patterns of the same underlying type, we can assume
that τ̂ ′a1 & ξ′a1 = τ̂ ′a2 & ξ′a2 because pattern types are unique up to renaming. We
know that ξ′a1 and ξ′a2 must be single variables because they are part of a pattern,
so suppose ξ′a1 = ξ′a2 = β1.
Then we get one substitution for each call to R given by

θ1 = [β1 7→ ξ′′1 ] ◦M([ ]; τ̂ ′a1 ; τ̂ ′′1 )) and θ2 = [β1 7→ ξ′′2 ] ◦M([ ]; τ̂ ′a2 ; τ̂ ′′2 )).

By lemma 3.45, Σ `sub θ1(γ) v θ2(γ) holds for all variables γ. That allows us
to apply lemma 2.17 and lemma 3.46 in order to derive Σ `sub θ1τ̂

′r
1 6 θ2τ̂

′r
2 and

Σ `sub θ1ξ
′r
1 v θ2ξ

′r
2 . Together with Σ `sub ξ

′
1 v ξ′2 deduced in the beginning, we

also have Σ `sub ξ
′
1 t ξ′r1 v ξ′2 t ξ′r2 .

As we have R(Γ̂1; Σ; t ′ t ′′) = t̂ ′1 t̂ ′′1 : bbθ1τ̂
′′r
1 ccΣ & bbξ′1 t ξ′r1 ccΣ and R(Γ̂2; Σ; t ′ t ′′) =

t̂ ′2 t̂ ′′2 : bbθ2τ̂
′′r
2 ccΣ & bbξ′2 t ξ′r2 ccΣ, this completes the proof.

t = µx : τ.t ′ By assumption, we have R(Γ̂1; Σ;µx : τ.t ′) = µx : τ̂1 & ξ1.t̂ ′1 : τ̂1 & ξ1 and
R(Γ̂2; Σ;µx : τ.t ′) = µx : τ̂2 & ξ2.t̂ ′2 : τ̂2 & ξ2. Therefore, both fixpoint iterations
converged and there are sequences (τ̂ (i)

1 & ξ
(i)
1 )i6m and (τ̂ (i)

2 & ξ
(i)
2 )i6n such that

τ̂
(0)
1 & ξ

(0)
1 = τ̂

(0)
2 & ξ

(0)
2 = ⊥τ &⊥, t ′(i+1)

1 : τ̂ (i+1)
1 & ξ

(i+1)
1 = R(Γ̂1, x : τ̂ (i)

1 & ξ
(i)
1 ; Σ; t ′)

and t ′(i+1)
2 : τ̂ (i+1)

2 &ξ(i+1)
2 = R(Γ̂2, x : τ̂ (i)

2 &ξ(i)
2 ; Σ; t ′) for some sequences (t ′(i)1 )16i6m

and (t ′(i)2 )16i6n.
We proceed by showing that both sequences of type and effect pairs are monoton-
ically increasing.

Claim: For all i 6 m we have Σ `sub τ̂
(i)
1 6 τ̂ (i+1)

1 and Σ `sub ξ
(i)
1 v ξ

(i+1)
1 .

Proof: By induction on i.

i = 0 We have τ̂ (0)
1 = ⊥τ and ξ

(0)
1 = ⊥?. By lemma 3.26, Σ `sub ⊥τ 6 τ̂

(1)
1 and by

lemma 3.23 Σ `sub ⊥? v ξ
(1)
1 .
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i = i′ + 1 By induction, we have Σ `sub τ̂
(i′)
1 6 τ̂

(i′+1)
1 and Σ `sub ξ

(i′)
1 v ξ

(i′+1)
1 .

Since we haveR(Γ̂1, x :τ̂ (i′)
1 &ξ(i′)

1 ; Σ; t ′) = t̂ ′1
(i′+1)

:τ̂ (i′+1)
1 &ξ(i′+1)

1 andR(Γ̂1, x :
τ̂

(i′+1)
1 & ξ

(i′+1)
1 ; Σ; t ′) = t̂ ′1

(i′+2)
: τ̂ (i′+2)

1 & ξ
(i′+2)
1 , we can apply the outer

induction hypothesis, resulting in Σ `sub τ̂
(i′+1)
1 6 τ̂ (i′+2)

1 and Σ `sub ξ
(i′+1)
1 v

ξ
(i′+2)
1 .

�

Claim: For all i 6 n we have Σ `sub τ̂
(i)
2 6 τ̂ (i+1)

2 and Σ `sub ξ
(i)
2 v ξ

(i+1)
2 .

Proof: Analogously to that of the previous claim. �

We can now relate both sequences.

Claim: For all i 6 min {m,n} we have Σ `sub τ̂
(i)
1 6 τ̂ (i)

2 and Σ `sub ξ
(i)
1 v ξ

(i)
2 .

Proof: By induction on i.

i = 0 Σ `sub τ̂
(0)
1 6 τ̂

(0)
2 and Σ `sub ξ

(0)
1 v ξ

(0)
2 hold by [Sub-Refl] and the

reflexivity of subsumption.

i = i′ + 1 By induction, we have Σ `sub τ̂
(i′)
1 6 τ̂

(i′)
2 and Σ `sub ξ

(i′)
1 v ξ

(i′)
2 .

Moreover, we can apply the outer induction hypothesis to R(Γ̂1, x : τ̂ (i′)
1 &

ξ
(i′)
1 ; Σ; t ′) = t̂ ′1

(i′+1)
: τ̂ (i′+1)

1 & ξ
(i′+1)
1 and R(Γ̂2, x : τ̂ (i′)

2 & ξ
(i′)
2 ; Σ; t ′) = t̂ ′2

(i′+1)
:

τ̂
(i′+1)
2 & ξ

(i′+1)
2 . This results in Σ `sub τ̂

(i′+1)
1 6 τ̂

(i′+1)
2 and Σ `sub ξ

(i′+1)
1 v

ξ
(i′+1)
2 .

�

We distinguish three cases.

• If m = n, from the previous claim we get Σ `sub τ̂
(m)
1 6 τ̂

(n)
2 and Σ `sub

ξ
(m)
1 v ξ(n)

2 .

• If m < n, we have Σ `sub τ̂
(m)
1 6 τ̂

(m)
2 and Σ `sub ξ

(m)
1 v ξ

(m)
2 as well

as Σ `sub τ̂
(i)
2 6 τ̂

(i+1)
2 and Σ `sub ξ

(i)
2 v ξ

(i+1)
2 for all m 6 i < n. By

transitivity, we get Σ `sub τ̂
(m)
1 6 τ̂ (n)

2 and Σ `sub ξ
(m)
1 v ξ(n)

2 .
• If m > n, we can prove the following claim by induction.

Claim: For all n 6 i < m we have Σ `sub τ̂
(i)
1 6 τ̂ (n)

2 and Σ `sub ξ
(i)
1 v ξ

(n)
2 .

Proof: By induction on i.
i = n This follows from a previous claim.

i = i′ + 1 By induction, we have Σ `sub τ̂
(i′)
1 6 τ̂

(n)
2 and Σ `sub ξ

(i′)
1 v ξ

(n)
2 .

Moreover, we can apply the outer induction hypothesis to R(Γ̂1, x : τ̂ (i′)
1 &

ξ
(i′)
1 ; Σ; t ′) = t̂ ′1

(i′+1)
: τ̂ (i′+1)

1 & ξ
(i′+1)
1 and R(Γ̂2, x : τ̂ (n)

2 & ξ
(n)
2 ; Σ; t ′) =

t̂ ′2
(n)

: τ̂ (n)
2 & ξ

(n)
2 . The latter holds because τ̂ (n)

2 & ξ
(n)
2 is a fixpoint. This

results in Σ `sub τ̂
(i′+1)
1 6 τ̂ (n)

2 and Σ `sub ξ
(i′+1)
1 v ξ(n)

2 .
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In particular, we can conclude Σ `sub τ̂
(m)
1 6 τ̂ (n)

2 and Σ `sub ξ
(m)
1 v ξ(n)

2 .

Since τ̂1 & ξ1 = τ̂
(m)
1 & ξ

(m)
1 and τ̂2 & ξ2 = τ̂

(m)
2 & ξ

(m)
2 , we have shown the desired

result Σ `sub τ̂1 6 τ̂2 and Σ `sub ξ1 v ξ2.

Proof of Theorem 3.48. By induction on t.

t = x We have R(Γ̂; Σ; x) = x : Γ̂(x). Suppose Γ̂(x) = τ̂ & ξ. By assumption, bΓ̂c `t x : τ .
As [U-Var] is the only matching rule, we have bΓ̂c(x) = τ and therefore bτ̂c = τ .
Also, bxc = x.

t = () We have R(Γ̂; Σ; ()) = () : ûnit : ⊥ and clearly b()c = (). By assumption, bΓ̂c `t
() : τ . As the only rule that applies is [U-Unit], we have τ = unit and therefore
bûnitc = unit = τ .

t = ann`(t ′) By assumption, bΓ̂c `t ann`(t ′):τ . This must be by [U-Ann], and therefore
bΓ̂c `t t ′ : τ . By induction, R(Γ̂; Σ; t ′) = t̂ ′ : τ̂ ′& ξ′ such that bt̂ ′c = t ′ and bτ̂ ′c = τ .
Then we also have R(Γ̂; Σ; ann`(t ′)) = ann`(t̂ ′) : τ̂ ′ & bbξ t `ccΣ with bann`(t̂ ′)c =
ann`(bt̂ ′c) = ann`(t ′) and bτ̂ ′c = τ .

t = seq t1 t2 By assumption, bΓ̂c `t seq t1 t2 : τ . The only rule that applies is [U-Seq],
and therefore bΓ̂c `t t1 : τ1 for some τ1 and bΓ̂c `t t2 : τ .
By induction, we have R(Γ̂; Σ; t1) = t̂1 : τ̂1 & ξ1 and R(Γ̂; Σ; t2) = t̂2 : τ̂2 & ξ2 such
that bt̂1c = t1, bt̂2c = t2, bτ̂1c = τ1 and bτ̂2c = τ .
Then we also have R(Γ̂; Σ; seq t1 t2) = seq t̂1 t̂2 : τ̂2 & bbξ1 t ξ2ccΣ with bseq t̂1 t̂2c =
seq bt̂1c bt̂2c = seq t1 t2 and bτ̂2c = τ .

t = (t1, t2) By assumption, bΓ̂c `t (t1, t2) : τ . The only matching rule is [U-Pair],
therefore we have τ = τ1 × τ2 for some τ1, τ2, bΓ̂c `t t1 : τ1 and bΓ̂c `t t2 : τ2.
By induction we get R(Γ̂; Σ; t1) = t̂1 : τ̂1 & ξ1 and R(Γ̂; Σ; t2) = t̂2 : τ̂2 & ξ2 such that
bt̂1c = t1, bτ̂1c = τ1, bt̂2c = t2 and bτ̂2c = τ2.
Then,R(Γ̂; Σ; t1, t2) = (t̂1, t̂2):τ̂1〈ξ1〉×τ̂2〈ξ2〉&⊥ and we have b(t̂1, t̂2)c = (bt̂1c, bt̂2c) =
(t1, t2) and bτ̂1〈ξ1〉 × τ̂2〈ξ2〉c = bτ̂1c × bτ̂2c = τ1 × τ2 = τ .

t = inlτ2(t1) By assumption, bΓ̂c `t inlτ2(t1) : τ . The only matching rule is [U-Inl],
therefore we have τ = τ1 + τ2 for some τ1 such that bΓ̂c `t t1 : τ1.
By induction we get R(Γ̂; Σ; t1) = t̂1 : τ̂1 & ξ1 such that bt̂1c = t1 and bτ̂1c = τ1.
Then, R(Γ̂; Σ; inlτ2(t1)) = inlτ2(t̂1) : τ̂1〈ξ1〉+⊥τ2〈⊥〉&⊥ and we have binlτ2(t̂1)c =
inlτ2(bt̂1c) = inlτ2(t1) and bτ̂1〈ξ1〉+⊥τ2〈⊥〉c = bτ̂1c+ b⊥τ2c = τ1 + τ2 = τ . In the
second to last step, b⊥τ2c = τ2 follows from Lemma 3.25.

t = inlτ1(t2) Analogously to the previous case.
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t = proji(t ′) By assumption, bΓ̂c `t proji(t ′) : τ . The only matching rule is [U-Proj],
therefore we have bΓ̂c `t t ′ : τ1 × τ2 for some τ1 and τ2 such that τ = τi .
By induction, R(Γ̂; Σ; t ′) = t̂ ′ : τ̂ ′ & ξ′ such that bt̂ ′c = t ′ and bτ̂ ′c = τ1 × τ2. By
theorem 3.36, τ̂ ′ is conservative. Therefore, τ̂ ′ = τ̂ ′1〈ξ′1〉× τ̂ ′2〈ξ′2〉 such that bτ̂ ′1c = τ1
and bτ̂ ′2c = τ2.
Then, R(Γ̂; Σ; proji(t ′)) = proji(t̂ ′) : τ̂ ′i & bbξ t ξiccΣ and bproji(t̂ ′)c = proji(bt̂ ′c) =
proji(t ′), bτ̂ ′ic = τi = τ .

t = case t ′ of { inl(x)→ t1; inr(x)→ t2} By assumption, bΓ̂c `t case t ′ of { inl(x) →
t1; inr(x)→ t2} : τ . Only [U-Case] applies, hence bΓ̂c `t t ′ : τ1 + τ2 for some τ1, τ2
and bΓ̂c, x : τ1 `t t1 : τ and bΓ̂c, x : τ2 `t t2 : τ .
By induction, R(Γ̂; Σ; t ′) = t̂ ′ : τ̂ ′ & ξ′ such that bt̂ ′c = t ′ and bτ̂ ′c = τ1 + τ2. By
theorem 3.36, τ̂ ′ is conservative and Σ `wft τ̂

′. Therefore, τ̂ ′ = τ̂ ′1〈ξ′1〉+ τ̂ ′2〈ξ′2〉 such
that bτ̂ ′1c = τ1 and bτ̂ ′2c = τ2.
Note that only [W-Sum] applies to the well-formedness judgment. But then τ̂ ′1 and
τ̂ ′2 are also conservative and Σ `s ξ

′
1 :? and Σ `s ξ

′
2 :? hold. Hence, Γ̂, x : τ̂ ′1 & ξ′1 and

Γ̂, x : τ̂ ′2 & ξ′2 are both well-formed under Σ. Moreover, bΓ̂, x : τ̂ ′1 & ξ′1c = bΓ̂c, x : τ1
and bΓ̂, x : τ̂ ′2 & ξ′2c = bΓ̂c, x : τ2.
Now we can apply the induction hypothesis to both case branches, resulting in
R(Γ̂, x : τ̂ ′1 & ξ′1; Σ; t1) = t̂1 : τ̂1 & ξ1 and R(Γ̂, x : τ̂ ′2 & ξ′2; Σ; t2) = t̂2 : τ̂2 & ξ2 such
that bt̂1c = t1, bτ̂1c = τ , bt̂2c = t2 and bτ̂2c = τ .
Then, R(Γ̂; Σ; case t ′ of {inl(x) → t1; inr(x) → t2}) = case t̂ ′ of { inl(x) →
t̂1; inr(x)→ t̂2} : bbτ̂1 t τ̂2ccΣ & bbξ′ t ξ1 t ξ2cc·. Now, clearly

b case t̂ ′ of { inl(x)→ t̂1; inr(x)→ t̂2}c
=case bt̂ ′c of { inl(x)→ bt̂1c; inr(x)→ bt̂2c}
=case t ′ of { inl(x)→ t1; inr(x)→ t2}.

By lemma 3.35, bbbτ̂1 t τ̂2ccΣc = bτ̂1 t τ̂2c = τ .

t = λx : τ1.t ′ By assumption, bΓ̂c `t λx : τ1.t ′ : τ . The only rule that applies is [U-Abs],
therefore τ = τ1 → τ2 for some τ2 and the premise is bΓ̂c, x : τ1 `t t ′ : τ2.
We have τ̂1 & β . βi :: κi = C([ ]; τ1). We define Γ̂′ = Γ̂, x : τ̂1 & β. By lemma 3.20
we have bτ̂1c = τ1. Then bΓ̂′c = bΓ̂c, x : bτ̂1c = bΓ̂c, x : τ1. By a reasoning similar
to the corresponding soundness proof, we know Γ̂′ is well-formed under Σ, βi :: κi .
We can now apply the induction hypothesis, so we have R(Γ̂′; Σ, βi :: κi ; t ′) =
t̂ ′ : τ̂2 & ξ2 such that bt̂ ′c = t ′ and bτ̂2c = τ2.
Then, R(Γ̂; Σ;λx : τ1.t ′) = Λβi :: κi .λx : τ̂1 & β.t̂ ′ : ∀βi :: κi .τ̂1〈β〉 → τ̂2〈ξ2〉 & ⊥
with bΛβi :: κi .λx : τ̂1 & β.t̂ ′c = bλx : τ̂1 & β.t̂ ′c = λx : bτ̂1c.bt̂ ′c = λx : τ1.t ′ and
b∀βi :: κi .τ̂1〈β〉 → τ̂2〈ξ2〉c = bτ̂1〈β〉 → τ̂2〈ξ2〉c = bτ̂1c → bτ̂2c = τ1 → τ2.
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t = t1 t2 By assumption, bΓ̂c `t t1 t2 :τ . Only [U-App] applies, therefore bΓ̂c `t t1 :τ2 →
τ and bΓ̂c `t t2 : τ2 for some τ2.
By induction, R(bΓ̂c; Σ; t1) = t̂1 : τ̂1 & ξ1 and R(bΓ̂c; Σ; t2) = t̂2 : τ̂2 & ξ2 such that
bt̂1c = t1, bτ̂1c = τ2 → τ , bt̂2c = t2 and bτ̂2c = τ2. By theorem 3.36, τ̂1 and τ̂2 are
conservative.
As τ̂1 is a function type and I is structurally recursive, the call always succeeds,
yielding τ̂ ′2〈β〉 → τ̂〈ξ〉 . βi = I(τ̂1). The call to M match also succeeds by
lemma 3.34, resulting in θ = [β 7→ ξ2 ] ◦M([ ]; τ̂ ′2; τ̂2).
Since bτ̂1c = τ2 → τ , we must also have bτ̂ ′2〈ξ′2〉 → τ̂〈ξ〉c = τ2 → τ by definition of
I. That implies bτ̂c = τ .
Then, R(Γ̂; Σ; t1 t2) = t̂1 〈θ βi〉 t̂2 : bbθτ̂ccΣ & bbξ1 t θ ξccΣ. We have bt̂1 〈θ βi〉 t̂2c =
bt̂1c bt̂2c = t1 t2 and bbbθτ̂ccΣc = bθτ̂c = bτ̂c = τ . The second step is justified by
the fact that substitutions do not change the structure of types.

t = µx : τ.t ′ By assumption, bΓ̂c `t µx : τ.t ′ : τ . The only matching rule is [U-Fix],
therefore bΓ̂c, x : τ `t t ′ : τ must hold as its premise.
We define the sequences (t̂ ′i)i∈N+ and (τ̂i & ξi)i∈N by

τ̂0 & ξ0 := ⊥τ &⊥?
t̂ ′i+1 : τ̂i+1 & ξi+1 := R(Γ̂, x : τ̂i & ξi ; Σ; t ′)

The well-definedness of this definition follows from the induction hypothesis. More-
over, bτ̂ic = τ follows from lemma 3.25 for i = 0 and from the induction hypothesis
for i > 0.
Claim: For all i ∈ N we have Σ `sub τ̂i 6 τ̂i+1 and Σ `sub ξi v ξi+1.
Proof: By induction on i.
i = 0 We have τ̂0 = ⊥τ and ξ0 = ⊥?. By lemma 3.26, Σ `sub ⊥τ 6 τ̂1 and by

lemma 3.23 Σ `sub ⊥? v ξ1.
i = i′ + 1 By induction, we have Σ `sub τ̂i′ 6 τ̂i′+1 and Σ `sub ξi′ v ξi′+1. Since we

haveR(Γ̂, x :τ̂i′ &ξi′ ; Σ; t ′) = t̂ ′i′+1:τ̂i′+1&ξi′+1 andR(Γ̂, x :τ̂i′+1&ξi′+1; Σ; t ′) =
t̂ ′i′+2 : τ̂i′+2 &ξi′+2, we can apply lemma 3.47, resulting in Σ `sub τ̂i′+1 6 τ̂i′+2
and Σ `sub ξi′+1 v ξi′+2.

�

This implies [τ̂i & ξi ]Σ vΣ [τ̂i+1 & ξi+1]Σ for all i by definition. By lemma 3.39,
there is only a finite number of such equivalence classes. Hence, there is an index
j such that [τ̂i & ξi ]Σ = [τ̂i+1 & ξi+1]Σ for all i > j. But then τ̂i & ξi ≡Σ τ̂i+1 & ξi+1
for all i > j. In particular, the termination condition of the fixpoint iteration is
fulfilled after the j-th iteration.
We can conclude R(Γ̂; Σ; t) = µx : τ̂j+1 & ξj+1.t̂ ′j+1 : τ̂j+1 & ξj+1. Clearly,

bµx : τ̂j+1 & ξj+1.t̂ ′j+1c = µx : bτ̂j+1c.bt̂ ′j+1c = µx : τ.t ′.
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