
MASTER THESIS

Automatic object segmentation and
reconstruction in LIDAR point clouds

of railway environments

Author:
Morten Asscheman

Supervisors:
Marc van Kreveld

Benny Onrust
Bertram Bourdrez

Virtual worlds
Computer Science

June 27, 2017

iii

UNIVERSITY OF UTRECHT

Abstract
Computer Science

Master of Science

Automatic object segmentation and reconstruction in LIDAR point

clouds of railway environments

by Morten Asscheman

Point clouds are very valuable in GIS and can be used to extract many
kinds of information from an environment. However, there are two main
shortcomings of unprocessed point clouds: they are not very efficient in
visualizations, and it is hard to visually discern between objects. This thesis
presents an automatic method for segmenting and reconstructing objects
inside point clouds in the context of railway environments. To achieve a
more efficient visualization and better discernibility, various railway objects
are replaced by polygon meshes and rendered with a Phong shading model.
Compared to the original point cloud using an octree, the results show a
reduction of more than 95% in both memory usage and average rendering
costs as well as an improvement in the discernibility between objects.

HTTP://WWW.UU.NL

v

Acknowledgements

I would like to thank my thesis supervisor Professor Marc van Kreveld
for his expert guidance, valuable feedback and replying to my emails even
at weekends. I am also indebted to my supervisors at Fugro: Benny Onrust
for thinking with me during the early stages, and Bertram Bourdrez for
advising me throughout the last part of the thesis. Thanks are also due to
Martin Kodde for giving me a various office desks to work at: not a single
day was the same.

I would like to express my gratitude to my colleagues at Infi for playing
a big role in the development of my technical skills which I could success-
fully apply while working on the thesis. I also acknowledge the contribu-
tion of Chris Foster and other collaborators of Displaz (https://github.
com/c42f/displaz): this tool was crucial for the debugging and visual-
ization of the algorithms.

My special thanks go to Julia Golubeva for looking over my drafts and
suggesting grammatical and stylistic improvements. Additionally, I would
like to thank my girlfriend Maija, whose selfless time and care kept me writ-
ing.

Morten Asscheman

https://github.com/c42f/displaz
https://github.com/c42f/displaz

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Context . 1
1.2 Problem statement . 1
1.3 Research questions . 2
1.4 Research method . 2
1.5 Related work . 2
1.6 Scope . 3
1.7 Dataset description . 3
1.8 Thesis structure . 4

2 Segmentation and reconstruction algorithms 5

2.1 Terrain segmentation and reconstruction 5
2.2 Rail segmentation and reconstruction 8

2.2.1 Rail cant . 9
2.2.2 Track simplification . 10
2.2.3 Track alignment . 11

2.3 Pole segmentation and reconstruction 11
2.3.1 Multi-level RANSAC 13
2.3.2 Cantilever . 15

2.4 Wire segmentation and reconstruction 15
2.4.1 Mini grids . 15
2.4.2 Wire fitting . 16
2.4.3 Connecting wire segments 18
2.4.4 Reconstruction . 20

3 Results and discussion 23

3.1 Terrain segmentation and reconstruction 23
3.2 Rail segmentation and reconstruction 28

3.2.1 Rail cant . 30
3.2.2 Track simplification . 31

3.3 Pole segmentation and reconstruction 31
3.3.1 Multi-level RANSAC 32

3.4 Wire segmentation and reconstruction 33
3.5 Computational efficiency . 38

4 Conclusions 41

4.1 Future work . 41

A Results 43

viii

Bibliography 49

ix

List of Figures

2.1 A 25m slice from the Abington point cloud. Right image
shows the wire frames of non-empty voxels. 6

2.2 Visualization of terrain clusters. Each color represents a sep-
arate voxel cluster. 7

2.3 (A) The reconstructed model using Delaunay triangulation.
(B) The same model, but discarding long edges between points
that lie on the concave hull. 7

2.4 An illustration of the construction of a track segment. Start-
ing points sleft and sright are calculated based on the cross
product of ~sup and ~sdir. (see Equation (2.4)). 8

2.5 (A) The rail beam model based on the UIC60 profile com-
monly used in European countries. The mesh is constructed
as a triangle strip between the start and the end of the rail
beam. (B) A track segment including a wire frame of the fi-
nal model. Also visible in blue and red: the vectors used for
construction ~sup and ~sdir respectively. 9

2.6 The cant of a track segment is defined as the rotation around
the segment direction ~sdir with spos as the origin. The vector
~sup can be calculated by taking the cross product of ~sdir and
~scant. The method of finding this vector ~scant in-between the
points pleft and pright is explained in Section 2.2.1 and Fig-
ure 2.7. 10

2.7 The computation of point pleft for the purpose of determin-
ing the cant of a track segment. (A) First a cross-section of
points in proximity of the approximated left beam is made.
Points within the green cylinder, defined by radius r and
depth d, are collected and projected onto the plane perpen-
dicular to ~sdir. (B) The resulting projection. The point pleft is
computed by taking the average position of the upper 10% of
projected points. The above method is repeated on the right
beam in order to find pright. Subsequently, using pleft and
pright the canting vector ~scant can be calculated. 11

2.8 Finding vertical structures by starting at a terrain voxel Vt

and traversing up until either vh ∗ (n+2) > Pmax or Vn+1 is
an empty voxel. The terrain voxel is included in the approx-
imated pole height Ph. Green and gray points represent the
pole and terrain in the point cloud respectively. 13

2.9 Reconstructed mesh of a catenary pole. The model is com-
posed of cylinders with varying radii. 14

x

2.10 (A) An example of one line fitting step inside mini grid vox-
els. One catenary wire crosses the border of a voxel and joins
another wire at a junction. This is a case where multiple
wires go through the same voxel. The RANSAC algorithm
is performed repeatedly on the teal colored points in voxel
v′ and its sideway neighbor, resulting in two wire segments.
The bold teal points represent the endpoints of the wire seg-
ments. (B) A visualization of non-empty mini grid voxels
where each color represents a separate mini grid. Each grid
is aligned to the local direction of the centerline. 17

2.11 A wire segment w has two endpoints wstart and wend where
each endpoint also has a direction ~ws and ~we respectively.
In the context of connecting wire segments wi and wj , end-
points ei and ej can either refer to wstart or wend of segments
wi and wj , depending on which endpoint pair is the closest. 19

2.12 The two possibilities of connecting w1 to an adjacent wire
segment. The connection vector ~cij spans between the clos-
est endpoints of segments wi and wj . Only endpoints within
distance Cmax are considered. This example shows that con-
necting endpoints based on shortest distance does not yield
the optimal solution. It is required to take the alignment of
the connection vector into account. The algorithm uses a
heuristic that maximizes the sum of the interior angles (θ1 +
θ2) between the segments and the connection vector respec-
tively (see Equation (2.18)). 20

2.13 (A) A collection of wire segments that satisfy the constraints
from Section 2.4.2. Each color represents a separate wire seg-
ment. The green and red perpendicular line segments indi-
cate wstart and wend of each wire segment respectively. (B)
The small wire segments are merged into bigger segments by
connecting endpoints. 21

3.1 The histograms show the effect of vh on the distribution of
vσ with vsize = 0.6m and vpoints ≥ 5. The x-axis is scaled
proportionally to the maximum possible value of vσ (i.e.
0.5×vh). The red line marks where vσ is equal to the standard
deviation of a voxel with a uniform distribution of points (i.e.
vh√
12

). Choosing a too low vh results in more voxels having a

uniform distribution, which is due to more objects not fitting
vertically inside one voxel. Choosing a higher vh results in
a better approximation of the ’true’ distribution of standard
deviations. 24

3.2 The relationship between averages ∆µ and ∆σ, and voxel
dimensions. Increasing both the voxel size and height causes
an increase in the average differences in height characteris-
tics. Each data point is generated by averaging

∣

∣vµ − wµ

∣

∣ and
|vσ − wσ| over all adjacent voxel pairs (v, w) where min(vpoints, wpoints) ≥
5. 25

xi

3.3 The results of various values of tµ. This threshold is responsi-
ble for the maximum vertical climb. A higher value results in
that the terrain can climb a steeper slope. Other parameters:
[vsize = 0.4m, vheight = 1m, tσ = 2.0m, tminp = 11] 26

3.4 The results of various values of tσ. This threshold is respon-
sible for the maximum change in slope that the algorithm can
handle. A too low threshold leads to gaps in the terrain; con-
versely, a too high threshold results in objects being mistak-
enly classified as terrain (see the fence). Other parameters:
[vsize = 0.4m, vheight = 1m, tµ = 0.6m, tminp = 12] 27

3.5 The reconstructed terrain mesh with on top the original point
cloud. 28

3.6 (A) The result of rail segmentation. The red points represent
the rail class. (B) The result of rail reconstruction. The recon-
structed beams closely align with the original track (seen in
the point cloud). 29

3.7 Canted track segments are shown in green. The white line
segment represents the horizontal. 29

3.8 This illustration, with exaggerated cant angle, shows the cal-
culation of the maximum error between the initial approxi-
mation s≈left and actual location of the rail beam sleft in the
case of a maximum canting angle θmax. This gives us intu-
ition for choosing parameter r in the cant calculation. The
maximum error is calculated with x = h − h cos θmax and
y = h sin θmax. 30

3.9 The effect of margin ǫ on the track simplification results on a
slightly curved track. A larger margin greatly decreases the
number of segments needed to represent the track at the cost
of model accuracy. 31

3.10 The effect of margin ǫ on the number of track segments. . . . 32
3.11 Results of finding vertical structures based on terrain vox-

els and pole height. The algorithm found 66 poles out of
a dataset containing 73 poles (recall 90.4%). Additionally,
it found 10 vertical structures that are not poles (precision
86.8%). However, most of these structures are rejected later
by the RANSAC algorithm (see Figure 3.12). 32

3.12 Results of classifying poles based on single and multi-level
RANSAC. The input structures are the 76 vertical structures
classified as the pole class from Figure 3.11. (A) The single
RANSAC approach is rather conservative and has no false
positives (precision 100%). At the same time, a lot of poles
are rejected due to unsatisfied diameter constraints (recall
69.9%). (B) The multi-level RANSAC method classifies more
poles (recall 84.9%). However, it introduces one false posi-
tive (precision 98.4%), which is caused by a semaphore (see
Figure 3.13). 33

xii

3.13 (A) Catenary pole with tensioning weights attached. Despite
the presence of the weights or the overhead wires, the esti-
mated position (green line segment) and diameter (white cir-
cle) resembles the actual pole. The green and orange points
represent the positive and negative sections respectively. Neg-
ative sections do not contribute to the calculation of the pole
position and diameter. (B) A railway semaphore that has
been misclassified as a pole due to similar height and shape. 34

3.14 The poles shown in pink are two of the false negatives from
Figure 3.11. They are rejected by the algorithm due to a large
number of outliers. This is essentially a limitation of the sim-
plistic circle model. 34

3.15 The final result of the pole segmentation. Green and blue
points represent the pole and cantilever class respectively. . 35

3.16 Statistics from 588 wire segments on a slightly curved 300m
piece of track with Wminlength = 1m. 36

3.17 The results of different values for the maximum angle be-
tween a wire segment and the centerline. Due to the viaduct
being in the search space of the wire segmentation algorithm,
large parts are classified as wires (shown in teal). By limiting
the angle of a wire segment with the centerline, all false pos-
itives disappear. 37

3.18 (A) Wire segments after merging in a situation with two wire
junctions. (B) Wrong wire classification caused by a pulley
system for line tensioning. Additionally, part of the top wire
(in black) is left unclassified due to a lot of missing points,
probably caused by an object obstruction. 37

3.19 Comparison between the point cloud visualization and the
mesh representation. Figure 3.22 shows a comparison in ren-
der time. (A) The octree offers a high level of detail up-close,
while reducing computation time on far points. Each color
presents the depth in the octree. (B) All objects within the
viewing frustum are rendered, regardless of the distance to
the camera. 39

3.20 Comparison between render primitives for the point cloud
and mesh representation. Calculated on the Burnhead dataset
(2 km). Only classified points are included in the count. . . . 39

3.21 Memory usage comparison between object classes. A cloud
point takes up 13 B of memory (4 * 3 bytes for position + 1
byte for class). 1KB = 1000 bytes. 39

3.22 Comparison of frame render time between point cloud and
mesh shows an average time reduction of 97.26%. The the-
oretical average number of frames per second is: 46 versus
1694, for point cloud and mesh respectively. Taken over 2000
frames while moving the camera along the environment. Hard-
ware: Intel i7-4720HQ, Geforce GTX 950M. 40

3.23 Memory and disk usage comparison between various forms
of point clouds. A point takes up 13 B of memory. Addition-
ally, the size on disk using laz compression is included as a
reference. 1KB = 1000 bytes. 40

xiii

A.1 (A) Original point cloud (B) Segmentation (C) Reconstruc-
tion (D) A more elaborate shading model 43

A.2 Segmentation (left) and reconstruction (right) results on the
Abington dataset. 44

A.3 Segmentation (left) and reconstruction (right) results on the
Burnhead dataset. 45

A.4 Pole reconstruction. (D) Despite the line tensioning weights,
the algorithm finds a good approximation of the pole center
and diameter. 46

A.5 Wire reconstruction of multiple junctions. 47
A.6 Passing train (in black) is ignored by the segmentation algo-

rithms. 47

xv

List of Abbreviations

GIS Geographic Information Science/System
LIDAR Light Detection and Ranging
ALS Airborne Laser Scanning
MLS Mobile Laser Scanning
GPS Global Positioning System
IMU Inertial Measurement Unit
DEM Digital Elevation Model
TIN Triangulated Irregular Network
RANSAC Random Sample Consensus
BVH Bounding Volume Hierarchy

1

Chapter 1

Introduction

Point clouds are very valuable in GIS and can be used to extract differ-
ent kinds of information about an environment. However, an unprocessed
point cloud is of limited use: it contains raw unstructured data. Addition-
ally, point clouds are not an efficient representation of terrain and other ob-
jects, as they generally contain a lot of redundant data. This thesis presents
an automatic method for segmenting and reconstructing objects inside point
clouds, which addresses both problems stated above in the context of rail-
way environments.

1.1 Context

LIDAR is a remote sensing technology that uses light from a laser to cre-
ate a three-dimensional mapping of an environment. Vehicles equipped
with LIDAR scanners drive around the world to gather data from their sur-
roundings. This data is stored in the form of a point cloud – a collection of
points in 3D space. Point clouds are used in various fields, such as archeol-
ogy, geology, urban planning, etc. In the context of railway environments,
point clouds are generally used for the purpose of visualization, mainte-
nance planning and inventory management.

Traditionally, point clouds are visualized in a desktop application, which
must first be installed by the user. However, with the recent widespread of
WebGL it is now trivial to render 3D graphics on almost any platform that
runs a web browser. This opens up a lot of possibilities for users to engage
with point clouds, such as running a viewer on a portable device, while at
the same time increasing the demand for efficient visualizations.

1.2 Problem statement

Point clouds obtained from mobile LIDAR scanning generally contain a
massive and dense collection of points. Additionally, it is typical to merge
data from multiple passes to even further increase the level of detail. This
approach produces a better approximation of the real-life environment but
has implications on processing, memory, and network requirements. These
conditions might be tolerable for off-line algorithms, but in the context of
real-time 3D web visualizations, this causes long loading times and low
frame rates, especially on low-end hardware and poor network connec-
tions.

The existing solutions such as point decimation and spatial data struc-
tures only partially fulfill the above-mentioned requirements. In the first

2 Chapter 1. Introduction

place, decimation works only to a certain degree, since excessively remov-
ing points from the datasets has an impact on the discernibility of objects,
which is arguably important in a visualization. And secondly, spatial data
structures (e.g. a multi-resolution octree [WS06]) prevent the unnecessary
rendering of points from occurring in the distance, while maintaining a
high level of detail up close. Despite greatly reducing rendering time, this
approach does not address the memory usage requirement.

So, intuitively, the problem might lie in the fact that a point cloud might
not be a good representation of the environment for the purpose of visu-
alization. For example, (roughly) coplanar points provide redundant in-
formation about a surface that could otherwise be summarized as a set of
geometric primitives.

1.3 Research questions

The shortcomings described in the previous section lead to the following
research questions:

1. How effective is it, in terms of quality, to segment and reconstruct
various objects in a mobile-scanned LIDAR point cloud of a railway
environment by using voxel-based segmentation algorithms?

2. How effective is it, in terms of efficiency, to replace a mobile-scanned
LIDAR point cloud of a railway environment with a reconstructed
mesh?

The quality of a solution refers not only to the accuracy of the final seg-
mentation and reconstruction, but also to the improvement of discernibility
between objects. The efficiency is defined as the amount computational re-
sources required to render the virtual environment.

1.4 Research method

To convert a point cloud to an alternative representation of the environ-
ment, several algorithms are proposed. In order to answer the research
questions, the quality and the efficiency of the outputs of the algorithms are
evaluated. For most of the railway objects, the quality is assessed by means
of visually inspecting the results of the segmentation and reconstruction al-
gorithms. But for the relatively small number of catenary poles, the quality
can be determined by manually counting the false positives and negatives.
The efficiency is measured by observing the memory usage and rendering
time in a visualization of the reconstructed model.

1.5 Related work

Object segmentation and reconstruction in point clouds is a classic topic
in GIS. Many of the related work in this field focuses on ALS, because its
advantage of mapping a large area in little time. However, ALS datasets
generally have a lower point density and steeper scanning angle compared
to MLS datasets, which makes the techniques proposed in this thesis more
difficult to apply.

1.6. Scope 3

[Ara12; ZH14] both use a combination of ALS and MLS to segment var-
ious objects in railway environments. Additionally, [ZH14] proposes mul-
tiple reconstruction techniques to create a 3D visualization of the environ-
ment. To classify rail tracks, [Ara12] uses height jump detection followed
by template matching or region growing. [ZH14] uses point gradients and
height differences to segment poles, power lines and building roofs, and
Hough transformations to extract building facades.

[Dou+11] offers a voxel-based terrain segmentation algorithm for dense
point clouds, and a probabilistic, continuous ground surface estimation
method for sparse point clouds. The authors show that performing prior
terrain segmentation significantly improves performance on segmenting re-
maining objects.

[Axe99] takes a different approach by looking height fluctuations on
a per scan-line basis. The ground surface is allowed to fluctuate accord-
ing to a certain model (e.g. minimum description length or an active con-
tour model). A similar scan-line based terrain segmentation method is sug-
gested in [SV03], which looks at height differences and angles between con-
secutive points.

1.6 Scope

The segmentation and reconstruction algorithms focus on the following
(railway) objects: terrain, rail tracks, catenary poles and overhead lines.
The terrain consists of the ground surface as well as various low objects,
such as rails, transponders, curbs, low vegetation, etc. Only terrain within
5m to the rail tracks is considered relevant, because past this distance the
point density goes down significantly. For rail tracks the railway ties are
not included, as they are mostly buried in the gravel and therefore hard to
discern. Catenary poles with various profiles, such as circular, rectangu-
lar, H-beam, within the scope, but with the exception of catenary structures
such as portals. All relevant overhead lines such as catenary, contact and
return wires are included.

1.7 Dataset description

Experimentation is performed on two datasets supplied by Fugro Geoser-
vices B.V. The first dataset is a 1.25 km piece of track located near Abington,
UK. The second dataset is a 2 km stretch of track near Burnhead, UK. Both
datasets are point cloud representations of rural England that contain many
different kinds of natural and man-made objects.

Each dataset also contains a centerline for each rail track. Centerlines are
ordered collections of points that signify the middle of a track. The center-
line positions are calculated with almost sub-centimeter accuracy through
the combination of GPS and IMU measurements as well as averaging this
data from multiple passes.

4 Chapter 1. Introduction

1.8 Thesis structure

The thesis is divided into four chapters. The current chapter describes the
context and the problem statement, poses research questions and suggests
a research method. Besides, this chapter mentions related work, presents
the scope and provides information on datasets.

Chapter 2 contains the full description of the proposed segmentation
and reconstruction algorithms. Each section describes the algorithm used
for segmenting and reconstructing one type of object.

Chapter 3 discusses the results of the segmentation and reconstruction
algorithms and has a structure similar to Chapter 2.

Chapter 4 provides the conclusions and also describes the opportunities
for future work.

Appendix A presents visual results of the segmentation and reconstruc-
tion algorithms.

5

Chapter 2

Segmentation and
reconstruction algorithms

This chapter provides a description of the proposed algorithms used to ob-
tain the final reconstruction. Each section describes the methods used in
the segmentation and reconstruction of one or more railway objects.

The main algorithm can be seen as a pipeline of consecutive steps, where
the output of each step is the input of the next. A step receives a point cloud
as input and outputs a partially classified point cloud and a collection of
meshes. Some steps depend on the result of one of the earlier steps, such
as the pole and wire algorithms, and terrain reconstruction; others can be
performed in arbitrary order, such as the rail algorithm, and terrain seg-
mentation. The main algorithm performs the steps in the following order:

1. Terrain segmentation

2. Rail segmentation and reconstruction

3. Terrain reconstruction

4. Pole segmentation and reconstruction

5. Wire segmentation and reconstruction

Most of the algorithms use a voxel-based method for segmentation,
with the exception of the rail algorithm. A voxel grid is a three-dimensional
regular grid containing discrete cells called voxels. The voxel grids used
in this algorithm are dense, which means that empty voxels take up mem-
ory. However, each voxel contains a reference to multiple data it represents.
Therefore, empty voxels only take a penalty for the size of a pointer.

2.1 Terrain segmentation and reconstruction

The terrain segmentation algorithm presented in this thesis is adapted from
the voxel-based method described in [Dou+11]. The idea is to cluster adja-
cent voxels together that share similar height characteristics. In the original
algorithm only cubic-shaped voxels are allowed. An extension to the algo-
rithm is made by allowing cuboid-shaped voxels instead of only cubic ones.
The shape of a voxel is defined by vsize (width and depth) and its height vh.

The algorithm starts by overlaying an axis-aligned voxel grid of at least
the extent of the point cloud. Then, for every populated voxel v, two height
characteristics are calculated: the vertical mean vµ and standard deviation
vσ of the points in voxel v. Adjacent (including diagonal) voxels v and w

6 Chapter 2. Segmentation and reconstruction algorithms

FIGURE 2.1: A 25m slice from the Abington point cloud.
Right image shows the wire frames of non-empty voxels.

are clustered together if the differences in height characteristics are within
a certain threshold. The intuition behind putting thresholds on ∆µ and
∆σ is to limit the slope and the jaggedness of the terrain respectively. The
following equation defines the criteria for clustering adjacent voxels:

∆µ ≤ tµ and ∆σ ≤ tσ

∆µ =
∣

∣vµ − wµ

∣

∣

∆σ = |vσ − wσ|

(2.1)

Values ∆µ and ∆σ represent the absolute differences of vertical mean and
standard deviation respectively between adjacent voxels v and w. Parame-
ters tµ and tσ are empirically determined thresholds.

In order to minimize the misclassification of terrain due to non-representative
voxels, another criterion is added. A voxel containing only a few points is
more susceptible to noise and does not result in meaningful height charac-
teristics. Therefore, a voxel v is only considered for joining a cluster if it
meets a minimum points criterion:

vpoints ≥ tminp (2.2)

where vpoints is the number of points in voxel v and tminp is an empirically
determined threshold.

Voxels are clustered together by means of three-dimensional breadth-
first search traversal starting at an arbitrary unassigned voxel. A cluster
is considered completed if it has no more adjacent voxels satisfying Equa-
tions (2.1) and (2.2). This process is repeated until all populated voxels are
assigned to a cluster. Finally, the terrain can be extracted by taking the clus-
ter with the highest number of voxels.

The terrain reconstruction is performed after the rail segmentation step.
This step reclassifies terrain points that actually belong to the rail class (see
Section 2.2), and this prevents these points from being used in the terrain
reconstruction. The reason for this decision is that the reconstructed area
near the rail tracks would otherwise contain height displacements caused
by rails.

2.1. Terrain segmentation and reconstruction 7

FIGURE 2.2: Visualization of terrain clusters. Each color
represents a separate voxel cluster.

(A) (B)

FIGURE 2.3: (A) The reconstructed model using Delaunay
triangulation. (B) The same model, but discarding long
edges between points that lie on the concave hull.

To allow the final model to have a separate grid resolution, the terrain
reconstruction algorithm uses a separate voxel grid with dimensions differ-
ent from the ones used for segmentation. First, the grid is filled with the
previously classified terrain points. Then for every voxel the average posi-
tion of all the points within the voxel is taken. These average positions are
projected onto the horizontal plane, while maintaining each point’s original
height. Afterwards, the points are triangulated using the two-dimensional
Delaunay triangulation. Then, a three-dimensional mesh is created from
the triangulated points by restoring the original height of each point. Fi-
nally, in order to prevent large triangles in the reconstructed model, the
concave hull is calculated (see Figure 2.3).

8 Chapter 2. Segmentation and reconstruction algorithms

FIGURE 2.4: An illustration of the construction of a track
segment. Starting points sleft and sright are calculated
based on the cross product of ~sup and ~sdir. (see Equa-
tion (2.4)).

2.2 Rail segmentation and reconstruction

The centerlines, supplied with the dataset, are used for the reconstruction
of the rail beams. A centerline is a sequence of three-dimensional points
c0, c1, ..., cn following the trajectory of a rail track through the middle. The
final reconstruction of the track is composed of multiple segments, each
spanning in-between consecutive centerline points ci and cj .

A track segment s is defined by a start position spos , a length slen , a
normalized direction vector ~sdir , and lastly, a vector ~sup pointing up that
determines the cant of the segment.

spos = ci, slen = ‖cj − ci‖

~sdir =
1

slen
(cj − ci)

~sup = (0, 0, 1)

(2.3)

The rail gauge g is the width of a rail track (i.e. distance between rail
beams). The datasets used in this thesis contain tracks with the standard
rail gauge of 1435mm. The cross product of ~sup and ~sdir is used to find the
starting points of the left and the right rail beams, sleft and sright respec-
tively (see Figure 2.4). The endpoints sleft′ and sright′ are found based on
the length and direction.

sleft = spos + (~sup × ~sdir) ∗ 0.5g

sleft′ = sleft + ~sdir ∗ slen

sright = spos − (~sup × ~sdir) ∗ 0.5g

sright′ = sright + ~sdir ∗ slen

(2.4)

This model gives a good approximation of the true position of the rail
beams. However, it does not account for the cant of a rail track, result-
ing in a misaligned model on a curved track. This problem is addressed in
Section 2.2.1 by calculating an appropriate value for ~sup.

The reconstruction of a track segment is performed by replacing the line
segments with a more realistic looking model of the rail beam. A tem-
plate consisting of two-dimensional points is created, loosely resembling

2.2. Rail segmentation and reconstruction 9

(A) (B)

FIGURE 2.5: (A) The rail beam model based on the UIC60
profile commonly used in European countries. The mesh is
constructed as a triangle strip between the start and the end
of the rail beam. (B) A track segment including a wire frame
of the final model. Also visible in blue and red: the vectors
used for construction ~sup and ~sdir respectively.

the standard UIC60 beam profile. Two copies of the template are posi-
tioned at the start and the end of each rail beam respectively, and oriented
perpendicular to ~sdir. The origin of the template is chosen is such a way
that the beam profile aligns with the actual beams from the point cloud.
Then a three-dimensional mesh is created by means of a triangle strip, al-
ternating between the points of the two templates (see Figure 2.5).

One final step is performed for the sole purpose of improving the qual-
ity of the terrain model. The terrain segmentation algorithm does not dis-
tinguish between terrain and a rail beam since their height difference is
negligible. This produces a terrain model with elevated areas near the rail
beams, which in turn causes the final rail track mesh to intersect with the
terrain mesh. Therefore, the rail segmentation step must be performed be-
fore terrain reconstruction. This ensures that misclassified terrain points are
reassigned to the rail class. The segmentation happens by classifying points
in proximity of the left and the right beams (i.e. line segments (sleft, sleft′)
and (sright, sright′)).

2.2.1 Rail cant

The cant (or cross slope) of a rail track is the height difference between the
left and the right beams, providing for a train to make a banked turn. This
difference is usually greater if the track is curved, allowing the train to make
a turn at much higher speeds. There are multiple ways to measure the cant
of a rail track, such as the height difference between inner and outer rail, or
the angle with the ground. However, for our purposes the cant of a track
segment is defined as its rotation around ~sdir with its origin at spos. This
rotation is determined by the orientation of ~sup, which can be calculated by

10 Chapter 2. Segmentation and reconstruction algorithms

FIGURE 2.6: The cant of a track segment is defined as the
rotation around the segment direction ~sdir with spos as the
origin. The vector ~sup can be calculated by taking the cross
product of ~sdir and ~scant. The method of finding this vector
~scant in-between the points pleft and pright is explained in
Section 2.2.1 and Figure 2.7.

taking the cross product between ~sdir and ~scant (see Figure 2.6).

~scant = pright − pleft

~sup = ~sdir ×
~scant
‖~scant‖

(2.5)

The vector ~scant is constructed based on points pleft and pright, located on
the left and the right beams respectively. These points are found by analyz-
ing cross-sections of the point cloud. First, the model is constructed using
~sup = (0, 0, 1) (see Equations (2.3) and (2.4)). This gives us approximate lo-
cations for sleft and sright (named s≈left and s≈right respectively) that do not
account for the cant of the track segment. Afterwards, points in proximity
of both beams are collected and then projected onto the plane perpendicu-
lar to ~sdir. The points pleft and pright are computed from these projections
(see Figure 2.7). Now the vectors ~scant and ~sup can be constructed using
these points. Subsequently, the model can be reconstructed with a better
approximated up vector ~sup. The end result is a track segment model with
sleft and sright which are better aligned with the actual rail beams from the
point cloud.

2.2.2 Track simplification

Up to now, the track segments discussed in this chapter were of equal
length. This is due to slen being the distance between two consecutive
centerline points ci and cj , which have a constant spacing of 1m. Ideally,
if a long piece of track is perfectly straight, only one track segment is suffi-
cient to represent it. This leads to a more efficient mesh in terms of memory
and rendering costs.

In order to achieve this goal, the Ramer–Douglas–Peucker line simplifi-
cation algorithm is used [DP73]. Given a centerline, with points c0, c1, ..., cn,
the algorithm simplifies it by discarding points that are co-linear within a

2.3. Pole segmentation and reconstruction 11

(A) (B)

FIGURE 2.7: The computation of point pleft for the pur-
pose of determining the cant of a track segment. (A) First a
cross-section of points in proximity of the approximated left
beam is made. Points within the green cylinder, defined by
radius r and depth d, are collected and projected onto the
plane perpendicular to ~sdir. (B) The resulting projection.
The point pleft is computed by taking the average position
of the upper 10% of projected points. The above method is
repeated on the right beam in order to find pright. Subse-
quently, using pleft and pright the canting vector ~scant can
be calculated.

certain margin ǫ. In other words, this algorithm produces an approxima-
tion of the original centerline. A larger ǫ results in a more aggressive sim-
plification at the cost of accuracy of the final model, while an ǫ of zero
yields the original sequence of points. This algorithm generates a track
model which contains track segments of varying length, based on the local
curvature of the track. Due to train tracks being mostly straight and con-
taining no sharp curves, we can expect the average track segment length to
be greater than 1m.

2.2.3 Track alignment

A railway track is represented by a number of discrete track segments. In a
curve this can cause small gaps between consecutive segments, which are
visible in the final model. To alleviate this problem, the rail beams of con-
secutive track segments are adjusted. More specifically, the end and start
points of each consecutive pair of segments s and t are brought together
by moving them to the average position of both points:

sleft′ = tleft =
1

2
(sleft′ + tleft)

sright′ = tright =
1

2
(sright′ + tright)

(2.6)

2.3 Pole segmentation and reconstruction

This section describes the process of segmenting and reconstructing cate-
nary poles. These poles come in different shapes, e.g circular, hexagonal,

12 Chapter 2. Segmentation and reconstruction algorithms

rectangular, H-shaped, etc. It is beyond the scope of this research to ac-
count for all variations of pole profiles. Therefore, a simplified model is
proposed, i.e. all poles are assumed to be circular.

One point to note is that the algorithm described below takes place after
the terrain segmentation step. Therefore, the input of the pole segmenta-
tion algorithm is a partially classified point cloud with some points being
assigned to the terrain class, while other points are still unclassified. Im-
portantly, this previously obtained knowledge on the terrain is leveraged
in order to ease the search for catenary poles.

Conceptually, the algorithm can be divided into two activities: first,
searching for vertical structures based on location and height, and second,
classifying those structures based on their cross-sections. The algorithm
starts by overlaying the point cloud with a voxel grid. This is an entirely
separate grid from the terrain segmentation algorithm and does not neces-
sarily share the same voxel dimensions vsize and vh. All points from the
point cloud are assigned to their corresponding voxels. If a voxel contains
at least one point classified as terrain, it is considered a terrain voxel. Now
the algorithm searches for vertical structures that could potentially be poles
by investigating the space above each terrain voxel. Starting at a terrain
voxel Vt , the algorithm traverses over each pole voxel Vi in the upward
direction, until it either encounters an empty voxel, or has surpassed the
maximum pole height Pmax by a certain margin (see Figure 2.8). Then, an
approximation of the pole height is calculated by multiplying the number
of voxels (including the terrain voxel) by the voxel height and subtracting
a residual height ∆h. This residual height is the empty space between the
highest point Phigh and the ceiling Vtop of voxel Vn :

∆h = Vtop − Phigh

Ph = vh ∗ (n+ 2)−∆h
(2.7)

Vertical structures with a height below Pmin (e.g. fences, utility boxes, etc.)
or above Pmax (e.g. overpasses, trees, etc.) are omitted and left unclassified.
Therefore, Ph is subject under the following height constraint:

Pmin ≤ Ph ≤ Pmax (2.8)

After the structure passes the above constraint, the next step is to an-
alyze its shape. This step has two purposes: to reject structures that do
not look like poles, and to discover the center and diameter of the pole.
The first step is to collect points from every pole voxel Vi and each of its 8
horizontal neighbors. The reason for including neighboring voxels is to ac-
count for partially enclosed poles (i.e. poles cut off by the border of a voxel).
The collected points that compose the vertical structure are then projected
onto the ground plane and analyzed with RANSAC. However, in practice, a
catenary pole can have one or more attachments, such as signs, cantilevers,
line tensioning weights, etc. This leads to a messy cross-section, which in
turn can cause a wrongly estimated pole center or diameter. Section 2.3.1
describes a way to mitigate this problem.

The analysis of the cross-section is done by fitting a circle on the pro-
jected points using the two-dimensional RANSAC algorithm with param-
eters Rt (threshold) and Rp (probability). A successful circle fit gives us

2.3. Pole segmentation and reconstruction 13

FIGURE 2.8: Finding vertical structures by starting at a ter-
rain voxel Vt and traversing up until either vh ∗ (n + 2) >
Pmax or Vn+1 is an empty voxel. The terrain voxel is in-
cluded in the approximated pole height Ph. Green and gray
points represent the pole and terrain in the point cloud re-
spectively.

a two-dimensional pole center Pc and pole diameter P�. The resulting
model is subject to a constraint on the minimum and maximum diameter:

�min ≤ P� ≤ �max (2.9)

If all of the previous conditions have been met, the structure is consid-
ered a catenary pole, and its points can now be classified in the following
way. A line segment is constructed based on the pole height Ph, pole center
Pc, and the bottom of the terrain voxel Pbottom. The start and end vertices
of the line segment are defined as follows:

Pstart = (P x
c , P

y
c , Pbottom)

Pend = (P x
c , P

y
c , Pbottom + Ph)

(2.10)

Pole points are classified based on their distance to the line segment. Specif-
ically, all points within a distance 1

2
P� + Rt + ǫ to the line segment are

considered pole points. An optional margin ǫ can be added to also include
pole attachments in the classification.

The pole model is composed of multiple shape primitives: three cylin-
der meshes representing the pole itself, a round foot, and a cantilever (see
Figure 2.9). The pole position and size are based on the line segment used
in segmentation (Pstart, Pend) and the diameter P�.

2.3.1 Multi-level RANSAC

Classifying a pole by using RANSAC on the complete projection of a cate-
nary pole does not work in all cases. The problem lies in the fact that cate-
nary poles are not always a pole alone: equipment or other structures can
be attached to it. Consequently, fitting a circle on such projection can lead
to wrong results. Therefore, a slightly different approach is taken, which is
more robust to pole attachments.

14 Chapter 2. Segmentation and reconstruction algorithms

FIGURE 2.9: Reconstructed mesh of a catenary pole. The
model is composed of cylinders with varying radii.

An observation is that these attached objects rarely span the complete
height of a catenary pole, but rather a subset of the height. The idea of this
method is to analyze the vertical structure at different heights and classify
the structure as a pole if the majority of the cross-sections agree that it is a
pole. This is done by vertically partitioning points from the structure into
sections S0, S1, ..., Sn of equal height Sh. For each section Si , the contained
points are projected onto the ground plane, then RANSAC is performed on

them, resulting in a center Sc
i and S�

i for each section (see Equation (2.9)).
In order to ignore the parts of the pole where the attachments are located, a
new constraint is introduced based on the inlier ratio:

Sinliers
i % ≥ Smininliers% (2.11)

In other words, the percentage of points in Si within distance Rt to the
fitted circle must be greater than threshold Smininliers. In addition, the pre-
viously described diameter constraint from Equation (2.9) is also enforced
for each section. If Si satisfies all constraints, then it is considered a positive
section, otherwise, it is a negative one. This could be interpreted as a system
where each section can cast a vote whether it thinks it is part of a pole (pos-
itive), or not (negative). The class of the structure is then determined based
on the percentage of positive sections. If more than a threshold percent (de-
noted by Sminpositive) of the sections is positive, then the whole structure is
classified as a pole, otherwise it is left unclassified.

Finally, the pole center Pc and diameter P� are calculated by averaging
over the centers and diameters of the positive sections:

S+ = {Si ∈ S : Si is positive}

Pc =
1

|S+|

|S+|
∑

i=0

Sc
i

P� =
1

|S+|

|S+|
∑

i=0

S�
i

(2.12)

2.4. Wire segmentation and reconstruction 15

2.3.2 Cantilever

The cantilever is a metal structure, attached at the top of the pole, respon-
sible for holding up the overhead wires. Originally, classifying and recon-
structing the cantilever is beyond the scope of this research. However, if
the cantilever remained unclassified, it could potentially be misclassified as
part of a wire due to its proximity. Therefore, the cantilever is classified for
the sole purpose of helping the wire classification in the next step.

This classification step makes use of the fact that we now know the po-
sitions and heights of the poles. The algorithm works as follows: for each
pole P , the closest track segment s is found. We can construct a line seg-
ment starting at the top of the pole Pend with a direction orthogonal to ~sdir.
In reality, there is no strict specification on the direction of the cantilever.
Therefore, an extra step is needed to find the cantilever. Points in proximity
of the constructed line segment are collected and projected onto the ground
plane. Now, a line is fitted on the cantilever using RANSAC and inliers are
assigned to the cantilever class. A small RANSAC threshold is chosen in
order to prevent classification of wire points.

2.4 Wire segmentation and reconstruction

In this section the process of catenary wire segmentation and reconstruc-
tion is discussed. The centerlines of the rail track are used to define a search
space in which the wire segmentation will take place. First, the line simpli-
fication algorithm (see Section 2.2.2) aggressively simplifies the centerlines
using a large ǫ. Computation efficiency is chosen in favor of accuracy, as
the simplified centerline is only used as a guide for the discovery of wire
points. The search space is defined by a height range, Wmin and Wmax,
relative to the track, and a maximum horizontal distance Wdistance from
the centerline. All unclassified points that fall within this search space are
collected and eventually used in the following steps. In order to speed up
the collection of points, a voxel grid with large dimensions is used as a data
structure.

2.4.1 Mini grids

Catenary overhead lines are not straight due to several reasons, including
track curvature and the force of gravity. However, wires can be considered
straight over small distances within a certain margin. The main idea is to
classify the wires based on local linearity. This is achieved by repeatedly
fitting a three-dimensional line onto points using RANSAC, resulting in a
collection of wire segments. A wire segment w is defined as an ordered set
of points wpoints that have some kind of linear relation to each other. These
points are the resulting inliers from the RANSAC line fitting step, sorted
along the centerline direction. A wire segment also has a start point wstart

and an end point wend, which are the first and the last points from wpoints

respectively. Furthermore, wlen is the approximate length of a wire seg-
ment, defined as the Euclidean distance between wstart and wend. Lastly,
both endpoints have direction vectors ~ws and ~we respectively, which point

16 Chapter 2. Segmentation and reconstruction algorithms

away from the wire segment in the following way:

~ws =
wend − wstart

‖wend − wstart‖

~we =
wstart − wend

‖wstart − wend‖

(2.13)

Wire segmentation is done in a structured way by using tiny voxel grids,
spanning between each consecutive pair of centerline points ci and cj (see
Figure 2.10). These mini grids are completely separate from the main voxel
grid, and each grid even has its own local Cartesian coordinate system. The
main advantage of using a separate grid is that the voxels can be aligned
with the general direction of the wires (i.e. the centerline direction). This
makes the wire fitting phase easier, as it reduces the number of degenerate
cases caused by voxel misalignment (e.g. wires getting cut off by a voxel).
Additionally, this method ensures that the resulting wire segments are ap-
proximately of the same length.

The dimensions of a mini grid voxel v′ are defined by a width (x-axis),
a depth (y-axis) and a height (z-axis), denoted by v′width , v′depth and v′h re-
spectively. The mini grid coordinate system is defined by an origin ci and
base vectors î, ĵ and k̂, where vector î aligns with the direction of the
centerline.

~cdir =
cj − ci

‖cj − ci‖
(centerline direction)

î = ~cdir (x-axis)

ĵ = î× (0, 0, 1) (y-axis) (2.14)

k̂ = ĵ × î (z-axis)

Points are assigned to the mini grid in the following way: first unclas-
sified points near the centerline segment (ci, cj) are collected. Afterwards,
their coordinates are transformed into the local coordinate system of the
mini grid. Lastly, each point is assigned to its corresponding voxel v′. It
is important to note that there is at most one mini grid constructed at any
time. The process described above (i.e. the collection of points near the cen-
terline, construction of mini grids), and also in section 2.4.2 below, is done
consecutively for every centerline segment (ci, cj) for the sake of memory
efficiency.

2.4.2 Wire fitting

The purpose of wire fitting is to find linear relations between points. The
algorithm operates on the points inside a mini grid voxel v′ and it neighbor-
ing voxels. In particular, neighbors in the y and z direction are included in
the wire fitting, but not neighbors in the x (centerline) direction. The pur-
pose of including neighbors is for the situation where a wire grazes the side
of a voxel and half-way leaves into a neighboring voxel (see Figure 2.10). In
this case the fitting algorithm produces two shorter disjoint wire segments
instead of one long segment. As a result, each wire segment contains less
points, which in turn makes it less certain whether there is a linear relation
between the points inside each segment. The reasons for not including the

2.4. Wire segmentation and reconstruction 17

(A) (B)

FIGURE 2.10: (A) An example of one line fitting step in-
side mini grid voxels. One catenary wire crosses the border
of a voxel and joins another wire at a junction. This is a
case where multiple wires go through the same voxel. The
RANSAC algorithm is performed repeatedly on the teal col-
ored points in voxel v′ and its sideway neighbor, resulting
in two wire segments. The bold teal points represent the
endpoints of the wire segments. (B) A visualization of non-
empty mini grid voxels where each color represents a sepa-
rate mini grid. Each grid is aligned to the local direction of
the centerline.

x neighbors is to limit the size of the resulting wire segments to approxi-
mately v′depth, and to reduce the chance of overlapping wire segments in
the centerline direction.

Points from voxel v′ and its neighbors are then used as input for the
three-dimensional RANSAC line fitting algorithm. Most of the time a voxel
contains only a single wire, but there are cases where multiple overhead
lines go through the same voxel (see Figure 2.10). For example, it is not
uncommon for wires to cross each other. Therefore, RANSAC must be re-
peated multiple times in order to extract all the straight wire segments. Af-
ter each iteration the inliers are removed from the point collection. This
is repeated until there are either less than Wminpoints remaining, or the
number of iterations exceeds Rn. In this context, the number of iterations
should not be confused with traditional RANSAC iterations. Instead, the
parameter Rn refers to the maximum number of times the whole RANSAC
algorithm is repeated on a point collection.

The result of the line fitting step is a collection of points with linear
properties. However, it is not sufficient to classify a wire segment based on
linearity alone. There are several properties that can be used to eliminate
false positives:

1. Linear relation between points

2. Number of points

3. Point distribution

4. Segment direction

18 Chapter 2. Segmentation and reconstruction algorithms

Firstly, the number of points a wire segment is based on is important. For
example, it is uncertain whether a line fit through two points is indeed part
of a wire, or that these points are entirely unrelated. Therefore, a wire seg-
ment must contain at least Wminpoints before the points are considered co-
linear by the algorithm:

‖wpoints‖ ≥ Wminpoints (2.15)

Furthermore, the distribution of these points within the wire segment is of
importance too. It is expected that a segment has a significant length, and
that its points are approximately evenly distributed along the wire segment.
Therefore, a constraint is put on the length of the segment and also the
maximum space Wmaxspace between consecutive points:

wlen ≥ Wminlength

max
2≤i≤n

‖wpointsi−1
− wpointsi

‖ ≤ Wmaxspace
(2.16)

The next piece of information we can use to limit the number of false pos-
itives is the centerline direction. Wires are expected to go in the general
direction of the centerlines. For example, wire segments perpendicular to
the track are most likely other types wires, or can even be a different type
of object (e.g. fence on a viaduct). Therefore, a constraint is put on the
maximum angular difference between a wire segment and the centerline:

cos−1 |~we · ~cdir| ≤ Wθ (2.17)

Lastly, in the case that a structure intersects with the wire search space (e.g.
a viaduct), the algorithm wrongly finds a lot of wire segments. For example,
RANSAC will successfully fit a lot of lines on the collection of points that
make up the wall or ceiling of a viaduct. Therefore, if the maximum number
of RANSAC steps Rn is reached, all the points contained in the voxel are
left unclassified, regardless of whether the algorithm has found valid wire
segments in the voxel or not.

2.4.3 Connecting wire segments

The result of the line fitting step is a disjoint set of wire segments. Recon-
structing the wires at this point would mean that the final wire model con-
tains gaps. Ideally, the mesh of a single catenary wire should be a continu-
ous sequence of smaller segments. In order to build this sequence, the cor-
rect order of wire segments must be determined. This is achieved by con-
necting endpoints of neighboring wire segments and then merging them
into a bigger segment, while maintaining the correct point order. An end-
point is either connected to exactly a single endpoint of another segment,
or is left unconnected. The underlying data structure is a doubly linked
list, i.e. each wire segment contains a reference to the previous and the next
wire segment in the sequence. The original voxel grid (not to be confused
with the mini grid) is used to speed up endpoint adjacency queries. Each
voxel from this grid contains a list of wire segments that have at least one
endpoint inside that voxel. The algorithm starts at an arbitrary voxel and
collects all the wire segments within the voxel and its neighboring voxels.

2.4. Wire segmentation and reconstruction 19

FIGURE 2.11: A wire segment w has two endpoints wstart

and wend where each endpoint also has a direction ~ws and
~we respectively. In the context of connecting wire segments
wi and wj , endpoints ei and ej can either refer to wstart or
wend of segments wi and wj , depending on which endpoint
pair is the closest.

Then a heuristic is used to evaluate all combinations of valid connections
between distinct wire segments. A connection is defined as an endpoint
pair (ei, ej), where ei and ej are the closest endpoints of two distinct wire
segments wi and wj . For instance, endpoint ei can either refer to wstart or
wend of segment wi, depending on which endpoint is closer to segment wj

(see Figure 2.11). Furthermore, endpoints ei and ej both have a direction
vector denoted by ~ei or ~ej respectively. For example, direction vector ~ei
can either refer to ~ws or ~we, depending on which endpoint is closer.

Figure 2.12 shows why it is not sufficient to connect endpoints based on
their mutual distance alone. A heuristic is proposed which assigns a score
Cscoreij to a connection between segments wi and wj , based on their angle
with the connection vector ~cij .

~cij =
ej − ei

‖ej − ei‖

Cscore(wi, wj) = ~ei · ~cij + ~ej · −~cij

(2.18)

Given a disjoint set of wire segments, all valid combinations of segment
pairs are generated and sorted in descending order by the scoring function
Cscore. The maximum score of 2 is reached if the interior angles θ1 and θ2 are
180◦ (see Figure 2.12). This is considered an optimal connection: the wire
segments are exactly in line with each other. Wire segments are connected
in a greedy manner, starting at endpoint pairs with the highest scores, go-
ing down in descending order. This continues until either all endpoints are
connected, or no valid connections are left. There are several constraints
that decide whether a connection is valid or not. In order to limit the search
space and to prevent irrelevant wire segments being connected, the connec-
tion distance between endpoints is limited:

‖ei − ej‖ ≤ Cmax (2.19)

Furthermore, to prevent connecting wire segments which are completely
unaligned, the score is subject to the constraint below. A connection must
have a minimum score of Cminscore, which can be interpreted as setting a
minimum on the sum of interior angles θ1 + θ2.

Cscore(wi, wj) ≥ Cminscore (2.20)

20 Chapter 2. Segmentation and reconstruction algorithms

(A) (B)

FIGURE 2.12: The two possibilities of connecting w1 to an
adjacent wire segment. The connection vector ~cij spans be-
tween the closest endpoints of segments wi and wj . Only
endpoints within distance Cmax are considered. This ex-
ample shows that connecting endpoints based on shortest
distance does not yield the optimal solution. It is required
to take the alignment of the connection vector into account.
The algorithm uses a heuristic that maximizes the sum of
the interior angles (θ1 + θ2) between the segments and the
connection vector respectively (see Equation (2.18)).

The current scoring function rewards the connection between two wire
segments based on their alignment with the connection vector ~cij . How-
ever, there are degenerate cases where the endpoints are so close that the
direction of the connection vector is mostly dominated by noise distribu-
tion of the points. Therefore, in the situation that two unconnected end-
points are within a distance of Cforced to each other, they are guaranteed to
have at least the minimum score, unless the score is negative. A negative
score means that one or both interior angles (θ1 or θ2) are acute and there-
fore should not be connected. The new scoring function Cscore′ is defined
as follows:

Fscore =

{

Cminscore, if ‖ei − ej‖ ≤ Cforced

0, otherwise

Cscore′(wi, wj) = Cscore(wi, wj) + Fscore

(2.21)

Finally, the wire segment sequences are generated by starting at an arbi-
trary wire segment, and then following the doubly linked list in both direc-
tions. This produces two ordered sequences of wire segments, where one is
in reverse order of the other. The first one is reversed and then prepended
to the second sequence. The final result is a continuous sequence of wire
segments, which can subsequently be used to reconstruct the final model.

2.4.4 Reconstruction

The reconstruction algorithm converts a sequence of wire segments into a
continuous mesh composed of cylinders. As mentioned before, a wire seg-
ment contains an ordered list of wire points wpoints. The line simplification
algorithm, previously used for the centerlines, is applied to these points in
order to generate a sequence of line segments. This essentially regulates

2.4. Wire segmentation and reconstruction 21

(A) (B)

FIGURE 2.13: (A) A collection of wire segments that satisfy
the constraints from Section 2.4.2. Each color represents a
separate wire segment. The green and red perpendicular
line segments indicate wstart and wend of each wire seg-
ment respectively. (B) The small wire segments are merged
into bigger segments by connecting endpoints.

the number of vertices needed in straight and curved parts of the wire seg-
ment. However, before simplifying the points, they are first smoothed by
taking a moving average of the point positions. Lastly, each line segment is
substituted by a cylinder with the same length and orientation.

23

Chapter 3

Results and discussion

This chapter discusses the results of the segmentation and reconstruction
algorithms. The chapter follows roughly the same structure as Chapter 2:
each section is centered around the results and discussion of one or more
railway objects. Additionally, visual results of segmentation and recon-
struction are provided in Appendix A.

3.1 Terrain segmentation and reconstruction

This section describes the rationale of choosing the right values for pa-
rameters vsize, vh, tµ, tσ and tminpoints for terrain segmentation. Intu-
itively, one would think that choosing tiny voxel dimensions produces a
high-resolution grid and therefore a better segmentation. However, chang-
ing the voxel dimensions (vsize and vh) has an implication on the height
characteristics of each voxel in the whole dataset. In particular, we are in-
terested in the height characteristics of relevant parts of our dataset, includ-
ing rails, poles, wires and immediate terrain. Therefore, a trimmed dataset
containing points only within 3.5m of the tracks is chosen, which excludes
noise, such as buildings and vegetation. To show the effect of vsize and vh
on the height characteristics, a couple of observations are made based on
Figures 3.1 and 3.2.

For example, increasing vh has a positive effect on average vσ over all
voxels. This is due to two reasons, namely that the point cloud is not uni-
formly distributed, and that the maximum standard deviation of a voxel is
proportional to its height. More specifically,

vσ is bounded by
vh
2

(3.1)

This can also be seen in Figure 3.1 below, where the distribution of vσ in
relation to vh is shown. The effect of choosing a too small vh is that a large
portion of the voxels cannot accurately represent the height characteristics
of its area, because of the fact that vσ is clamped between 0 and vh

2
. Railway

objects higher than vh will not fit vertically inside a voxel, which results
in the points in those voxels being close to uniformly distributed. This is
characterized by the second peak being near the red line in Figure 3.1 where
vh = 0.2m. On the contrary, a large vh ensures that objects are less likely to
be cut off by a voxel, but choosing a too high value for vh results in some
voxels containing both points from catenary wires and terrain.

Another observation is that increasing the voxel dimensions has an ef-
fect on the average difference between height characteristics of adjacent
voxels. This is partly due to the fact that the maximum difference in vertical

24 Chapter 3. Results and discussion

0 0.05 0.1

0

10

20

30

%
to

ta
l

v
o

x
el

s

vh = 0.2m

0 0.1 0.2

0

10

20

30
vh = 0.5m

0 0.1 0.2 0.3 0.4

0

10

20

30

vσ

%
to

ta
l

v
o

x
el

s

vh = 0.8m

0 0.2 0.4

0

10

20

30

vσ

vh = 1.1m

FIGURE 3.1: The histograms show the effect of vh on the
distribution of vσ with vsize = 0.6m and vpoints ≥ 5. The x-
axis is scaled proportionally to the maximum possible value
of vσ (i.e. 0.5 × vh). The red line marks where vσ is equal
to the standard deviation of a voxel with a uniform distri-
bution of points (i.e. vh√

12
). Choosing a too low vh results in

more voxels having a uniform distribution, which is due to
more objects not fitting vertically inside one voxel. Choos-
ing a higher vh results in a better approximation of the ’true’
distribution of standard deviations.

3.1. Terrain segmentation and reconstruction 25

0.5
1

0.5
1

0.1

0.2

vsizevheight

Average ∆µ

0.5
1

0.5
1

2

4

·10−2

vsizevheight

Average ∆σ

FIGURE 3.2: The relationship between averages ∆µ and
∆σ , and voxel dimensions. Increasing both the voxel size
and height causes an increase in the average differences in
height characteristics. Each data point is generated by aver-
aging

∣

∣vµ − wµ

∣

∣ and |vσ − wσ| over all adjacent voxel pairs
(v, w) where min(vpoints, wpoints) ≥ 5.

mean and standard deviation is also proportional to the height of a voxel:

∆µ is bounded by 2 ∗ vh

∆σ is bounded by
vh
2

(3.2)

This can be also seen in Figure 3.2 where increasing vsize and vh is pos-
itively correlated with the average vertical mean and standard deviation
differences. This suggests that thresholds tµ and tσ are largely dependent
on the voxel dimensions and therefore must be chosen, based on the values
of vsize and vh.

Figures 3.3 and 3.4 show the effect of various tµ and tσ values when the
other parameters are fixed. Threshold tµ can be seen as the maximum slope
the terrain can have, and tσ is the maximum change in slope.

26 Chapter 3. Results and discussion

(A) tµ = 0.05m (B) tµ = 0.4m

(C) tµ = 1.2m (D) tµ = 1.6m

FIGURE 3.3: The results of various values of tµ. This thresh-
old is responsible for the maximum vertical climb. A higher
value results in that the terrain can climb a steeper slope.
Other parameters: [vsize = 0.4m, vheight = 1m, tσ =
2.0m, tminp = 11]

3.1. Terrain segmentation and reconstruction 27

(A) tσ = 0.03m (B) tσ = 0.06m

(C) tσ = 0.08m (D) tσ = 0.12m

FIGURE 3.4: The results of various values of tσ . This thresh-
old is responsible for the maximum change in slope that the
algorithm can handle. A too low threshold leads to gaps in
the terrain; conversely, a too high threshold results in ob-
jects being mistakenly classified as terrain (see the fence).
Other parameters: [vsize = 0.4m, vheight = 1m, tµ =
0.6m, tminp = 12]

28 Chapter 3. Results and discussion

FIGURE 3.5: The reconstructed terrain mesh with on top the
original point cloud.

After thorough experimentation on different datasets, the following pa-
rameters yield satisfactory results: a small voxel size of vsize = 0.4m is
chosen to produce a tight segmentation around objects, but big enough to
contain a representable number of points. Furthermore, a large voxel height
of vh = 1m is chosen in order to capture most height differences in the ter-
rain. Moreover, the maximum height difference between voxels is set to
tµ = 0.3m. This allows the algorithm to climb up gradual slopes, but pre-
vents climbing up vertical objects, such as poles. In addition, the threshold
for the difference in standard deviation is set to tσ = 0.08m. This is large
enough to include low objects, such as rails and curbs, in the terrain cluster.
Lastly, each terrain voxel must at least have tminp = 10 points, otherwise it
is not included in the final segmentation.

The voxel dimensions used for the terrain reconstruction are vsize =
0.5m and vh = 15m. Due to the triangulation being two-dimensional,
the height of the voxel does not matter. Essentially, the result is equivalent
to representing the terrain as a DEM. Figure 3.5 shows the reconstructed
terrain model.

3.2 Rail segmentation and reconstruction

In this section the results of rail segmentation and reconstruction are pre-
sented. The model is constructed largely based on the centerline points sup-
plied with the dataset, and its alignment is therefore highly dependent on
the accuracy of these points. However, in practice this is not a problem, as
these centerlines are computed from multiple sources (e.g. global satellite
systems, inertia measurement units), resulting in an almost sub-centimeter
accuracy. Figure 3.6 shows the classified rail points and the reconstructed
model.

3.2. Rail segmentation and reconstruction 29

(A) (B)

FIGURE 3.6: (A) The result of rail segmentation. The red
points represent the rail class. (B) The result of rail recon-
struction. The reconstructed beams closely align with the
original track (seen in the point cloud).

FIGURE 3.7: Canted track segments are shown in green.
The white line segment represents the horizontal.

30 Chapter 3. Results and discussion

FIGURE 3.8: This illustration, with exaggerated cant angle,
shows the calculation of the maximum error between the
initial approximation s≈left and actual location of the rail
beam sleft in the case of a maximum canting angle θmax.
This gives us intuition for choosing parameter r in the cant
calculation. The maximum error is calculated with x =
h− h cos θmax and y = h sin θmax.

3.2.1 Rail cant

The maximum allowed rail cant for European high-speed railways is a
180mm height difference between inner and outer rail [TSI02], which is
equivalent to a horizontal angle of around 7.21◦. This means that the max-
imum error of the initial approximation of a track segment beam (i.e. be-
tween s≈left and sleft) using ~sup = (0, 0, 1) is a little above 90mm. The equa-
tion below shows the calculation for determining the maximum error e.
Additionally, Figure 3.8 shows a visualization for the following calculation:

h =
1435mm

2
(half the rail gauge)

θmax = sin−1 180mm

1435mm
(max. cant angle)

e =
√

(h sin θmax)2 + (h− h cos θmax)2

= 90.1782mm (max. error)

(3.3)

The above calculation gives us a lower bound for the value of r. A margin
must be added in order to include the head of the rail beam. A radius of
r = 0.2m is sufficient to capture the whole beam profile. Furthermore,
parameter d needs to be large enough for the cross-section to contain a
sufficient number of points to average out the noise. However, long track
segments may start canting before a curve despite the centerline segment
being straight. This subtle canting is done in order to minimize the jerk
(derivative of acceleration) before entering the curve. Therefore, to avoid
a blurry cross-section, a limit of d = 2m is set on the depth of the cross-
sections. This additionally reduces the computation cost per track segment.

3.3. Pole segmentation and reconstruction 31

3.2.2 Track simplification

The track simplification algorithm proves to be great at reducing the num-
ber of segments needed to represent the track. Figure 3.9 below shows the
effect of ǫ on the number of track segments and their average lengths. By al-
lowing a margin of only 1 cm the number of segments decreases drastically,
with little visual difference. This margin is within an acceptable range, be-
cause the original centerline contains inaccuracies around that value due to
noise.

ǫ Track segments Average length

0 643 1.01m
0.01 67 10.02m
0.05 34 20.40m
0.1 18 40.87m

FIGURE 3.9: The effect of margin ǫ on the track simplifi-
cation results on a slightly curved track. A larger margin
greatly decreases the number of segments needed to repre-
sent the track at the cost of model accuracy.

3.3 Pole segmentation and reconstruction

In this section the results of the pole segmentation and reconstruction are
discussed. As mentioned in Section 2.3, the algorithm makes use of the
knowledge on the terrain to find vertical structures. At the same time, this
fact makes pole segmentation highly reliant on the quality of the segmented
terrain. Figure 3.11 shows a confusion matrix with the results of the ini-
tial search for vertical structures. Out of 73 poles, 7 poles have not been
found by the algorithm due to difficult (sloped) terrain, or low point den-
sity areas. Furthermore, it found additional vertical structures that are not
poles, such as two viaducts (counted as multiple structures due to their
sizes) and a semaphore. However, it is important to note that the algorithm
also rightfully ignored countless vertical structures, such as fences, bushes,
trees, utility boxes, etc. The count for these true negatives is excluded from
the confusion matrix, as it is rather subjective which structures should be
included or not.

In order to accurately discern the terrain from the pole, a high vertical
grid resolution is needed. With this in mind, a very small vh of 0.2m is
chosen. In contrast, using a small voxel size is less important, but it should
be at least big enough to fit the diameter of the biggest pole in the dataset.
Therefore, it is acceptable to set vsize to a bigger value such as 1m. Ad-
ditionally, this keeps the memory usage contained, as increasing the voxel
dimensions leads to a decrease in the number of voxels.

The datasets contain catenary poles with heights between 5m and 6m.
The variation in height exists due to compensation of terrain elevation dif-
ferences. Therefore, parameters Pmin and Pmax are chosen to be 4.5m and
6.5m respectively, with an additional margin of 50 cm on both sides.

The diameters of the poles range from 15 cm to 45 cm. The latter diam-
eter is big due to special double poles (see Figure 3.14), which are treated

32 Chapter 3. Results and discussion

(A) ǫ = 0 (B) ǫ = 0.1

FIGURE 3.10: The effect of margin ǫ on the number of track
segments.

Predicted
Pole Not pole Total

Actual
Pole 66 7 73
Not pole 10 −

Total 76

FIGURE 3.11: Results of finding vertical structures based
on terrain voxels and pole height. The algorithm found 66
poles out of a dataset containing 73 poles (recall 90.4%). Ad-
ditionally, it found 10 vertical structures that are not poles
(precision 86.8%). However, most of these structures are re-
jected later by the RANSAC algorithm (see Figure 3.12).

as one structure by the algorithm due to their proximity. Parameters �min

and �max are set to 0.1m and 0.5m.

3.3.1 Multi-level RANSAC

The RANSAC algorithm uses a circle-shaped model on the cross-sections of
the pole. However, most of the poles in the dataset are actually not round.
In order to combat this problem, a high RANSAC threshold of Rt = 0.05m
is used. Furthermore, the minimum inlier ratio is set to Smininliers = 0.3.
This means that if less than 30% of the points is an inlier (e.g. in the case
of an attachment), the section does not count in the calculation of the pole
center and radius. Moreover, the minimum ratio of positive sections is set
to Sminpositive = 0.5, which means that at least half of the sections should
pass the diameter and inlier constraints.

Figure 3.12 shows a comparison between the single and multi-level fit-
ting algorithms. The reason for a large number of false negatives in the
single RANSAC variant is the violation of the diameter constraint. The ex-
planation for RANSAC fitting circles with a too big diameter are the high
number of outliers that are sometimes caused by attachments, but more of-
ten by the catenary wires around the pole. The above reasons, together with
a high RANSAC threshold Rt, cause the diameter of the fitted circle to be
much bigger than allowed. The multi-level RANSAC algorithm shows an

3.4. Wire segmentation and reconstruction 33

Predicted
Pole Not pole Total

Actual
Pole 51 15 66
Not pole 0 10 10

Total 51 25

(A) single RANSAC

Predicted
Pole Not pole Total

Actual
Pole 62 4 66
Not pole 1 9 10

Total 63 13

(B) multi-level RANSAC

FIGURE 3.12: Results of classifying poles based on sin-
gle and multi-level RANSAC. The input structures are the
76 vertical structures classified as the pole class from Fig-
ure 3.11. (A) The single RANSAC approach is rather con-
servative and has no false positives (precision 100%). At
the same time, a lot of poles are rejected due to unsat-
isfied diameter constraints (recall 69.9%). (B) The multi-
level RANSAC method classifies more poles (recall 84.9%).
However, it introduces one false positive (precision 98.4%),
which is caused by a semaphore (see Figure 3.13).

improvement in the number of recalled poles. However, it also introduces
one mistakenly classified semaphore due to it having similar characteristics
as a pole (see Figure 3.13).

3.4 Wire segmentation and reconstruction

This section presents the parameter choices and algorithm results of cate-
nary wire segmentation and reconstruction. The search space is defined
by the position of points relative to the rail tracks. Catenary wires are ex-
pected to be located in-between Wmin = 3.5m and Wmax = 6.2m height
relative to the track. Additionally, points within a horizontal distance of
Wdistance = 4.5m to the centerline are included.

The main voxel grid is not used for the purpose of segmentation, but
rather to increase the efficiency of point retrieval and endpoint adjacency
queries. Therefore, a low resolution grid is sufficient with large voxel di-
mensions, such as vsize = 6m and vh = 2m.

The choice of voxel dimensions for the mini grid is more important, as it
has a direct effect on the quality of wire segmentation. As explained in Sec-
tions 2.4.1 and 2.4.2, the mini grids are aligned in the general direction of the
catenary wires. This means that the wire segments going through the mini
grid voxels have a predictable length, namely approximately the width of
a voxel. For this reason, the minimum wire segment length Wminlength

and the voxel width v′width are dependent on each other. More specifically,
v′width should be at least Wminlength, but preferably much larger to allow for
potentially longer wire segments. Therefore, a width of v′width = 3m is cho-
sen together with a minimum length of Wminlength = 1m. Additionally, the

34 Chapter 3. Results and discussion

(A) (B)

FIGURE 3.13: (A) Catenary pole with tensioning weights
attached. Despite the presence of the weights or the over-
head wires, the estimated position (green line segment) and
diameter (white circle) resembles the actual pole. The green
and orange points represent the positive and negative sec-
tions respectively. Negative sections do not contribute to
the calculation of the pole position and diameter. (B) A rail-
way semaphore that has been misclassified as a pole due to
similar height and shape.

FIGURE 3.14: The poles shown in pink are two of the false
negatives from Figure 3.11. They are rejected by the algo-
rithm due to a large number of outliers. This is essentially a
limitation of the simplistic circle model.

3.4. Wire segmentation and reconstruction 35

FIGURE 3.15: The final result of the pole segmentation.
Green and blue points represent the pole and cantilever
class respectively.

depth and the height of the mini grid voxel also play a role in the expected
length of a wire segment. Catenary wires are not exactly aligned with the
centerline direction: they can slightly move up, down, left and right inside
a voxel. The depth and the height of a voxel should be at least big enough
to allow for this movement in order to prevent voxels cutting off wire seg-
ments prematurely. At the same time, a small depth and height is preferred,
as this limits the number of wires going through the same voxel. Therefore,
the depth and the height of a voxel are set to v′depth = 1m and v′height = 0.5m
respectively.

The chosen parameters for RANSAC are as follows: a threshold of Rt =
0.05m and a probability of Rp = 0.99. The threshold is considered big in
comparison to the diameters of catenary or contact wires, which are both
less than 0.01m. However, during experimentation it became clear that the
threshold must be chosen generously because of noise. A smaller thresh-
old resulted in a higher chance that a seemingly straight part of a wire
was represented by multiple small wire segments. Choosing a threshold
this big has little impact on the number of false positives, because there are
not many outliers in the search space, apart from viaducts and cantilevers.
Therefore, the role of RANSAC in the wire segmentation algorithm is less
about outlier rejection, but more about clustering points together which
form an approximately straight wire segment. Furthermore, parameter Rn

is based on the maximum number of wire segments that are expected in
one voxel. For example, in general it is expected that only one wire seg-
ment occupies a voxel. However, in the case of a wire junction where none
of the wires are in each others extension, the voxel can contain up to four
wire segments (two segments going in; two coming out). In other cases
the height between the contact wire and the catenary support wire is very
small, which results in two wire segments within one voxel. To account

36 Chapter 3. Results and discussion

for the above cases (and more), a small margin is added, which results in a
value of Rn = 6.

The statistics in Figure 3.16 are calculated on a large set of wire seg-
ments in order to get an idea of the thresholds for the minimum number
of points, the maximum spacing and the maximum angle. Several obser-

µ σ min max

Segment length 2.82m 0.22m 1.10m 3.00m
Point density 16.90 p/m 2.93 p/m 7.51 p/m 27.92 p/m
Point spacing 60.94mm 36.35mm 1.56mm 367.96mm

Angle to centerline 1.22◦ 0.77◦ 0.04◦ 4.39◦

FIGURE 3.16: Statistics from 588 wire segments on a slightly
curved 300m piece of track with Wminlength = 1m.

vations can be made in connection with these wire segment statistics. First,
the segment lengths are largely above Wminlength and near the approximate
maximum of v′depth. Therefore, it can be concluded that the RANSAC line
fitting works as expected with the chosen parameters. Furthermore, the
average point density of the wire segments is around 17 points per meter.
With this in mind, together with the segment length Wminlength = 1m, the
minimum number of points is set to Wminpoints = 15. Moreover, the av-
erage space between two consecutive points is around 0.06m. However,
sometimes there are large parts of wire points missing due to them being
in the shadow of another object, leaving a significant gap. This can be seen
in the table above where the max point spacing is almost 0.4m. For this
reason, a large margin is added to the maximum space threshold and ulti-
mately set to Wmaxspace = 0.9m. This value is low enough to prevent some
cases where a line is fit through two separate wires. Lastly, the maximum
angle between the centerline and a wire segment is chosen to be Wθ = 20◦.
This angle is sufficient for allowing wires to move horizontally as well as
vertically.

In order to reduce the number of endpoint pairs that need to be con-
sidered, a limit is put on the length of a connection. Endpoint pairs with
a distance greater than Cmax = 1.5m are ignored. Furthermore, endpoints
that are in very close proximity to each other should be connected regard-
less of alignment with the connection vector, except when one of the interior
angles θ1 or θ2 is acute (see Figure 2.12). The purpose of this exception is to
prevent connecting wire segments which partially overlap, or which come
from the same direction. Therefore, endpoints with a distance less than or
equal to Cforced = 0.1m receive a boost to the connection score Cminscore.

To prevent completely misaligned wire segments from becoming con-
nected, a minimum threshold of Cminscore = 1.5 is set on the scoring
function Cscore. Recalling the definition of the scoring function from Equa-
tion (2.18), we can rewrite it in the following way:

~ei · ~cij + ~ej · −~cij ≥ 1.5 (3.4)

This threshold can be interpreted as follows: the sum of the dot products
should be greater than or equal to 1.5. The value range of each dot product
is −1 to 1. Setting the threshold to 1.5 means that any combination of
the two dot products must sum up to at least that value. For example,

3.4. Wire segmentation and reconstruction 37

(A) Wθ = 20
◦ (B) Wθ = 90

◦

FIGURE 3.17: The results of different values for the maxi-
mum angle between a wire segment and the centerline. Due
to the viaduct being in the search space of the wire segmen-
tation algorithm, large parts are classified as wires (shown
in teal). By limiting the angle of a wire segment with the
centerline, all false positives disappear.

(A) (B)

FIGURE 3.18: (A) Wire segments after merging in a situa-
tion with two wire junctions. (B) Wrong wire classification
caused by a pulley system for line tensioning. Additionally,
part of the top wire (in black) is left unclassified due to a lot
of missing points, probably caused by an object obstruction.

38 Chapter 3. Results and discussion

the combination ~ei · ~cij = 1 and ~ej · −~cij = 0.5 (or vice versa) results in a
score exactly on the threshold. This combination is analogous to the first
interior angle being θ1 = 180◦ − cos−1(1) = 180◦ and the second angle
being θ2 = 180◦−cos−1(0.5) = 120◦. Another example of a connection score
exactly on the threshold is when ~ei ·~cij = 0.75 and ~ej · −~cij = 0.75, which is
the same as both interior angles being θ1 = θ2 = 138.59◦ respectively.

3.5 Computational efficiency

This section describes the computational efficiency of the algorithm. De-
pending on the context, there are two ways to interpret the computational
efficiency: first, in terms of efficiency of the segmentation and reconstruc-
tion algorithms, or second, in terms of the efficiency of the output. Since
the proposed algorithms are essentially off-line and are only run once per
dataset, it is more interesting to assess the efficiency of the final reconstruc-
tion. Therefore, the performance of the algorithm is measured in terms of
memory usage of the model and the frame render time in the visualization.

Figure 3.20 shows a comparison of the number of render primitives be-
tween a point cloud and its reconstruction. Comparing the number of prim-
itives is a good indicator for the performance, since it correlates roughly
with both memory usage and frame render time. It is assumed that the
difference in render cost between a point and a triangle is negligible. Most
notably, the terrain class benefits the most from reconstruction, with a prim-
itive reduction of 98.82%. This great decrease in primitives can be explained
by two facts: the terrain has a high point density, and additionally, the ter-
rain mesh uses relatively big triangles in comparison to other mesh types.
Therefore, the ratio between points replaced by one triangle is relatively
high.

The same reasoning can be applied to the rail points: each track segment
has a constant number of faces, but the segment can vary in length. This
means that with an average track segment length of 10m (see Figure 3.9)
a lot of points are replaced by a relative small number of triangles. Con-
versely, pole reconstruction has the least reduction, which can be explained
by the low point density of poles and the higher complexity of the three
cylinders used in the mesh. Nevertheless, the pole class benefits from a
primitive reduction of 92.52%.

Furthermore, Figure 3.21 provides an overview of the memory reduc-
tion for each class. Notably, the terrain requires the largest percentage of
memory in both representations, but also has the greatest relative reduc-
tion. Conversely, the pole and wire class have a much lower decrease due
to the same reasons stated in the previous paragraph.

Lastly, the performance of two representations is evaluated in a web
visualization using WebGL and threejs. A point cloud in an octree data
structure is compared against the reconstructed meshes. Figure 3.22 shows
the difference in frame render time for each of the representations.

3.5. Computational efficiency 39

(A) (B)

FIGURE 3.19: Comparison between the point cloud visu-
alization and the mesh representation. Figure 3.22 shows
a comparison in render time. (A) The octree offers a high
level of detail up-close, while reducing computation time
on far points. Each color presents the depth in the octree.
(B) All objects within the viewing frustum are rendered, re-
gardless of the distance to the camera.

Class Cloud points Mesh faces Reduction

Terrain 20,894,692 246,920 98.82%
Rail 1,782,902 26,208 98.53%
Pole + Cantilever 41,689 + 8018 3720 92.52%
Wire 202,335 11,436 94.35%

Total 22,929,636 288,284 98.74%

FIGURE 3.20: Comparison between render primitives for
the point cloud and mesh representation. Calculated on
the Burnhead dataset (2 km). Only classified points are in-
cluded in the count.

Class Point cloud Mesh Reduction

Terrain 271.6 MB 6.2 MB 97.71%
Rail 23.2 MB 1.6 MB 93.10%
Pole 646.2 KB 148.2 KB 77.06%
Wire 2.6 MB 469.1 KB 82.17%

Total 298.1 MB 8.4 MB 97.18%

FIGURE 3.21: Memory usage comparison between object
classes. A cloud point takes up 13 B of memory (4 * 3 bytes
for position + 1 byte for class). 1KB = 1000 bytes.

40 Chapter 3. Results and discussion

Representation µ σ min max

Point cloud (octree) 21.57ms 40.62ms 6.79ms 1808.51ms
Mesh 0.59ms 9.03ms 0.24ms 403.00ms

FIGURE 3.22: Comparison of frame render time between
point cloud and mesh shows an average time reduction of
97.26%. The theoretical average number of frames per sec-
ond is: 46 versus 1694, for point cloud and mesh respec-
tively. Taken over 2000 frames while moving the camera
along the environment. Hardware: Intel i7-4720HQ, Geforce
GTX 950M.

Data structure Points Memory Size on disk

List 22,929,636 298.1 MB 145.2 MB (.laz)
Octree 22,929,636 (4111 nodes) 298.9 MB 79.1 MB (.laz)

FIGURE 3.23: Memory and disk usage comparison between
various forms of point clouds. A point takes up 13 B of
memory. Additionally, the size on disk using laz compres-
sion is included as a reference. 1KB = 1000 bytes.

41

Chapter 4

Conclusions

The algorithms presented in this thesis improve the two main shortcom-
ings of unprocessed point clouds: the discernibility between objects and
efficiency of visualization. The algorithms successfully produce an alter-
native representation of a railway environment by segmenting and recon-
structing objects inside a point cloud. The resulting reconstructed model
improves the discernibility between railway objects by using mesh surfaces
in combination with a Phong shading model. In addition, the reconstructed
mesh provides a reduction in memory requirements and average rendering
costs of more than 95%, compared to a point cloud using an octree data
structure. The pole segmentation algorithm correctly classified 62 out of 73
catenary poles with a precision and recall of 98.4% and 84.9% respectively.
Concluding, the proposed method turned out to be successful in increasing
the discernibility between objects and the efficiency of visualization. How-
ever, further improvements can be made, for example, in the segmentation
quality and reconstruction efficiency, which can become subject to future
work.

4.1 Future work

The quality of the pole segmentation algorithm could be improved by em-
ploying a more elaborate analysis on the cross-sections, which would ac-
count for different types of pole profiles. This analysis could be performed
by some template matching technique, or even with the help of a machine
learning classifier trained on a database of various pole models.

Improvements in the reconstructed model can be made by applying op-
timizations commonly implemented in game engines, such as using a BVH
data structure for selectively rendering meshes. Additionally, a mechanism
for replacing distant objects with low quality versions of themselves would
further improve efficiency in the case of large datasets.

Furthermore, it might be worth researching whether it is possible to
automatically deduce algorithm parameters based on dataset statistics, for
example, using the statistics from Figures 3.1 and 3.2 in the case of terrain
segmentation.

On another note, it might be worth pursuing whether it is possible to
massively parallelize the segmentation methods. A big dataset could be
divided into partially overlapping tiles, and the segmentation algorithms
would run in parallel. The challenge would lie in combining the results
from overlapping areas between adjacent tiles. This could potentially pose
as an even bigger challenge for the reconstruction algorithms.

43

Appendix A

Results

(A) (B)

(C) (D)

FIGURE A.1: (A) Original point cloud (B) Segmentation (C)
Reconstruction (D) A more elaborate shading model

44 Appendix A. Results

(A) (B)

(C) (D)

(E) (F)

FIGURE A.2: Segmentation (left) and reconstruction (right)
results on the Abington dataset.

Appendix A. Results 45

(A) (B)

(C) (D)

(E) (F)

FIGURE A.3: Segmentation (left) and reconstruction (right)
results on the Burnhead dataset.

46 Appendix A. Results

(A) (B)

(C) (D)

FIGURE A.4: Pole reconstruction. (D) Despite the line ten-
sioning weights, the algorithm finds a good approximation
of the pole center and diameter.

Appendix A. Results 47

(A) (B)

(C) (D)

FIGURE A.5: Wire reconstruction of multiple junctions.

(A) (B)

FIGURE A.6: Passing train (in black) is ignored by the seg-
mentation algorithms.

49

Bibliography

[Ara12] MOSTAFA Arastounia. “Automatic classification of LiDAR point
clouds in a railway environment”. MA thesis. University of Twente,
Netherlands, 2012.

[Axe99] Peter Axelsson. “Processing of laser scanner data—algorithms
and applications”. In: ISPRS Journal of Photogrammetry and Re-
mote Sensing 54.2 (1999), pp. 138–147.

[Dou+11] Bertrand Douillard, James Underwood, Noah Kuntz, Vsevolod
Vlaskine, Alastair Quadros, Peter Morton, and Alon Frenkel.
“On the segmentation of 3D LIDAR point clouds”. In: Robotics
and Automation (ICRA), 2011 IEEE International Conference on.
IEEE. 2011, pp. 2798–2805.

[DP73] David H Douglas and Thomas K Peucker. “Algorithms for the
reduction of the number of points required to represent a dig-
itized line or its caricature”. In: Cartographica: The International
Journal for Geographic Information and Geovisualization 10.2 (1973),
pp. 112–122.

[SV03] George Sithole and George Vosselman. “Automatic structure
detection in a point-cloud of an urban landscape”. In: Remote
Sensing and Data Fusion over Urban Areas, 2003. 2nd GRSS/ISPRS
Joint Workshop on. IEEE. 2003, pp. 67–71.

[TSI02] HS TSI. “Commission decision of 30 May 2002 concerning the
technical specification for interoperability relating to the rolling
stock subsystem of the trans-European high-speed rail system
referred to in Article 6 (1) of Directive 96/48”. In: EC (2002/735/EC)
(2002).

[WS06] Michael Wimmer and Claus Scheiblauer. “Instant Points: Fast
Rendering of Unprocessed Point Clouds.” In: SPBG. 2006, pp. 129–
136.

[ZH14] Lingli Zhu and Juha Hyyppa. “The use of airborne and mobile
laser scanning for modeling railway environments in 3D”. In:
Remote Sensing 6.4 (2014), pp. 3075–3100.

	Abstract
	Acknowledgements
	Introduction
	Context
	Problem statement
	Research questions
	Research method
	Related work
	Scope
	Dataset description
	Thesis structure

	Segmentation and reconstruction algorithms
	Terrain segmentation and reconstruction
	Rail segmentation and reconstruction
	Rail cant
	Track simplification
	Track alignment

	Pole segmentation and reconstruction
	Multi-level RANSAC
	Cantilever

	Wire segmentation and reconstruction
	Mini grids
	Wire fitting
	Connecting wire segments
	Reconstruction

	Results and discussion
	Terrain segmentation and reconstruction
	Rail segmentation and reconstruction
	Rail cant
	Track simplification

	Pole segmentation and reconstruction
	Multi-level RANSAC

	Wire segmentation and reconstruction
	Computational efficiency

	Conclusions
	Future work

	Results
	Bibliography

