
Oil-Spill Simulation Using
Bi-Layer Shallow Water

equations

Utrecht University

Department of Information and Computing Sciences

Master Thesis - Game and Media Technology
Program

Supervisor:
Dr. A.
Vaxman

Student:
T. Percheul

May 2017

Abstract

We describe a novel algorithm to simulate oils spills on open oceans,
as a two-layer fluid simulation with the Shallow Water Equation (SWE).
Our algorithm simulates spreading and advection, as the main driving
forces of oil spread, while also attending to emulsification and evapora-
tion, as secondary driving forces. We provide a solver using the two step
Lax-Wendroff method, that allows the algorithm to run efficiently and in
parallel on the GPU.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation and Challenges . 2
1.3 Research Question . 2
1.4 Contribution . 2

2 Background Research: Fluid Simulation 3
2.1 Procedural Water . 4
2.2 Particle Based Fluids . 4
2.3 Eulerian 3D Grid . 5
2.4 Eulerian 2D Grid . 6
2.5 Conclusion on Fluid Simulation 6

3 Simulating Oil Slicks 8
3.1 Oil Slick Weathering . 8

3.1.1 Spreading . 8
3.1.2 Advection . 9
3.1.3 Evaporation . 9
3.1.4 Dispersion . 10
3.1.5 Emulsification . 10
3.1.6 Dissolution . 11
3.1.7 Photo-Oxidation . 11
3.1.8 Sedimentation . 11
3.1.9 Biodegradation . 11

3.2 Oil Slick Cleaning Process . 12
3.3 Physical Phenomena in Our Environment 13

4 Our Approach: The Shallow Water Equations 14
4.1 Inputs and Variables . 14
4.2 Shallow Water Simulation . 14

4.2.1 Shallow water equations 15
4.3 Discretization of SWE . 16

4.3.1 Conservative vs non-conservative form 16
4.3.2 Choice of grid . 17
4.3.3 Simplistic non-conservative discretization 17
4.3.4 Boundary behavior . 21
4.3.5 Flag system . 21

5 Addition of a second layer of fluid 23
5.1 SWE Modifications for Oil . 23
5.2 The Algorithm . 23

6 Interaction with solids 27
6.1 Floating objects . 27
6.2 Addition and deletion of fluids 28

7 Fluid Boundary Expansion 29

8 Performance improvement 31

9 Results 32
9.1 Simulations results . 32
9.2 Encountered Issues . 32

10 Conclusion and future work 36
10.1 Conclusion . 36
10.2 Limitation and future work . 36

A Oil slick Estimation 41

B Oil Dispersion at Sea 41

C Calculation of the finite differences 42

1 Introduction

Oil spills are primarily man-made catastrophes that have a severe negative im-
pact on the long-term natural and economical resources of large regions for
decades. In order to limit the impact of such accidents, human intervention
can help collect and clean the slicks (spill of oil). However, proper training
for such procedures is expensive (need of maritime resources, collection instru-
ments, etc.) and cannot faithfully simulate the correct effect in the required
scale. Computer-based simulation naturally presents itself as a cost-effective
alternative, permitting representation of different and realistic scenarios, with
high reproducibility and flexible customization to the problem at hand.

We present a novel way to simulate slicks, making it possible to design train-
ning software involving boats, changing environemental conditions (wind, cur-
rent, shores and other water limits, etc.) and cleaning forces (booms, skimmer,
burning, chemical cleaning, etc.).

1.1 Background

The work described in this thesis is done in collaboration and supervision of
VSTEP. The core activity of VSTEP is the production of simulations for pro-
fessional trainning (Figure 1). They produce the ”Nautis 3 Maritime simula-
tor” for recreating plausible maritime scenarios in the perspective of training
and educating pilots, mates and other vessel operators. The Nautis3 has the
following features: realistic sea state and weather, radar reading, navigations
of ships with accurate physical controllers. In particular motors for navigation
and steering act realistically. The Nautis 3 offers also a wide range of ships and
environments, from container ships in the open ocean, through tug boats in the
harbour of Hong-Kong, to péniches in the canals around Rotterdam.

The given assignment by VSTEP is to create an oil-spill simulation to be
integrated inside the Nautis simulator (Realistic Maritime Simulator used by
civilian and military professionals). The oil spills are required to behave realis-
tically (considering all the physical and weather-based effects), respond to user
interaction (e.g., a boat could part the slick, as in a real spill) and most impor-
tantly, run in real time; the algorithm is meant for real-time training, and thus
has to be highly efficient. This mandates a highly-parallelizable formulation
that can run efficiently on the GPU.

A training session takes about around two hours. A supervisor builds a
scenario for the trainees beforehand. The scenario comprises the amount of oil
and its sources, the elapsed time since the spill, the available boats and resources
and the other environmental hazards. The trainees manoeuvre the boats and
their resources to curb the progression of the slick and clean it. Therefore, the
ease of setting up a spill should also be taken into account (adding oil with a
click, or changing its ”age” and properties through a graphical user interface).

1

Figure 1: One of the possible NAUTIS trainning station from VSTEP (here for
oil tankers) and a screnshot of the NAUTIS software during a tugboat trainning.

1.2 Motivation and Challenges

There are many technical challenges in setting up a simulation, and in this
thesis we focus on some of the challenges in the faithful discretization of physical
properties of slicks. They are as follows:

� Simulation of two non-miscible (non mixing) fluids, such as oil and sea
water, is not well-studied, especially for simplified models to be used in
real-time;

� The density and viscosity of oil spills changes over time, and there is (very)
little work considering this aspect;

� State-of-the-art methods for oil spill are more oriented towards non-interactive
long-term simulation (i.e., weather forecasting), whereas there is an in-
creasing demand for real-time simulation of oil spills and cleaning.

1.3 Research Question

We provide solutions to the following research questions:

� How to discretize and represent the important elements of an real time oil
spill simulation?

� Can we provide a discretization, and consequent simulation, that would
be parallelizable and cost effective?

� How should we model the simulated fluid to reflect oils with different
densities and properties?

1.4 Contribution

Our main contributions are:

� A highly parallelizable, GPU intensive algorithm, based on the Shallow
Water Equations(SWE), for simulating bi-layer, non-miscible, viscous flu-
ids.

� Introducing a novel grid refinement technique based on automatic mesh
refinement (AMR) that improves efficiency.

2

2 Background Research: Fluid Simulation

Fluid Simulation is an extensively researched topic. It is popular for various ap-
plications, ranging from entertainment (fluids for games and films) to physical
modelling and measurement (e.g. astrophysical phenomenon and cellular level
modelling). There are several approaches to fluid simulation, and each has its
own advantages and disadvantages. Typically, the ultimate goal of these simu-
lations is to provide an approximation and discretization to the Navier-Stokes
equations (see 3.1.1). Such approximations may be achieved by modelling the
entire fluid (3D grid-based or particle-based methods), or reducing the problem
to model only the surface of the fluid (e.g., with height fields).

There are two major approaches for the discretization and representation
of fluids in a simulation: Lagrangian and Eulerian. Lagrangian methods track
packets of material as they move through space, and Eulerian methods track
changes at fixed points over time (e.g., on grids. See Figure 2). Broadly speak-
ing, the difference between these approaces can be explained as follows [BMF07]:
for a bridge over a river, the Lagrangian method is equivalent to sitting in a
boat and making measurement of the drifting, whereas the Eulerian method is
equivalent to remaining on the bridge and making measurement of the water
passing under it.

We recommend [GDC08a] and [GDC08b] for a review of the (serious) game-
industry preferred algorithms for fluid simulation and [MSJT08] for a deeper
review.

In this section, we review state of the art fluid simulation algorithms, and see
how the computational cost or lack of realism is limiting us to simpler methods
such as 2D Euleurian grids

Figure 2: Lagrangian vs. Eulerian representation of fluids: one tracks spatial
changes of a point, the other one changes at a fixed point in space.

3

2.1 Procedural Water

Procedural water is the implicit simulation of the surface of a fluid body (usually
oceans, or lakes, but can apply to any fluids) in 2D (domain reduction to re-
duce simulation costs) using groups of sine waves whose interference creates the
waves. The waves are formed by combining a set of sine waves, that interfere in
an certain region of space, making a wave train (or wave packet) [FR86](Figure
3a). The simulation of several train waves with different amplitude, speed and
wave numbers over the body, creates a realistic agitation of the sea. This sim-
ulates different types of waves such as open sea gravitational waves ([HNC02],
Figure 3b) breaking waves ([FR86]) and even waves generated from interaction
with objects ([YHK07] & [BHN07], Figure 3c).

This type of simulation offers a broad creativity for animations: a animator
can add as many waves as wanted, as long it fits his view of the fluid. However,
for realistic simulations, specific sets of waves have to be given such as the ones
in [FR86] .

Having breaking waves is very simple using this model, as detecting the
breaking waves is straightforward [FR86, HNC02]. Most of the remaining work
lies in visually representing the break.

An important component of oil-spill simulation is managing the spreading.
Above papers only consider unbounded water bodies or fixed boundaries, and
focus on the simulation of waves on such bodies. The simulation also requires
the oil slick to have an expanding body (whilst tracking volume). As such, not
only interaction effects need to be present, but also the spreading behaviour.
This requirement is sufficient enough to consider another modelling algorithm.

(a) (b) (c)

Figure 3: Procedural waves from [FR86], [HNC02] and [YHK07] respectively,
Very suitable for animation, harder to use to expanding 3D fluids

2.2 Particle Based Fluids

Particle-based simulations are straightforward, but näıve. In nature, liquids are
composed of billions of particles interacting with each other simultaneously. As
a computer cannot hope to process so much information, some trade-offs are
made : every simulation particle represents a fraction of the fluids (a packet of
molecules) that interacts with its neighbours in every frame.

4

Many particle simulations are based on the Smoothed Particle Hydrody-
namics method (SPH) from [Mon92], more recently implemented by [PTB+03]
(Figure 4a). In this method, the positions of the particles are tracked (and thus
this is a Lagrangian model). As this was originally developed for simulating
large astrophysical events, the method is based on distance-based kernels that
model the effect of particles on each other, permitting the addition of different
effect one would like to apply like gravity, external forces, magnetism or even
space-time deformation.

Interactive, real time simulation can be obtained ([KW06] & [MCG03], figure
4b), but it is limited in the number of simulated particles, restricting to small to
medium simulations ([MCG03] works with barely 5000 particles), and therefore
ruling it out for a slick on open ocean simulation.

(a) (b) (c)

Figure 4: Particle fluids from [PTB+03], [MCG03] and [MSD07] respectively, we
can observe the incredible level of detail, but it forbids real time computations.

2.3 Eulerian 3D Grid

Fluids can be modeled using 3D grids, in the Eulerian method. Conversely
to Lagrangian methods, they track the behavior of the fluid in a fixed point
on a grid. These Eulerian grids have the capability to track many different
effects like splashing, but are limited in their simulation quality by their grid
resolution. Recent work like [CM11] (figure 5a) use varying height cells to
efficiently simulate complex effects by focusing the quality of the simulation at
the surface (a finer grid is used at the surface for more fine-grained effects, and
a coarser grid at the bottom for the correct volume advection).

There are also several hybrid methods that combine Lagrangian and Eulerian
elements for efficiency, such as [TWGT10], by using a grid for the general advec-
tion, and a particle-based method for fine elements (such as droplets). There are
also implementations to improve the quality using a surface tracker [BHW13]
(figure 5b), spatio-temporal extrapolation [ZM13] (figure 5c) or a coarser grid
with progressive refinement [LZF10].

3D grids can prove very effective for fluid simulations, but oil spills occur
mostly on the surface of the fluid, and thus simulating the entire grid can be
wasteful.

5

(a) (b) (c)

Figure 5: 3D Eulerian methods from [CM11], [BHW13] and [ZM13] respectively,
3D grids permits high level of details, and usage of different quality grids can
vary the realism as for [ZM13].

2.4 Eulerian 2D Grid

Following the same principle of the 3D Eulerian grid, 2D grid methods track the
fluctuation of a whole column of fluid. The correct equations for representing
the fluid transfer from a column to another are derived from an adaptation of
the Navier-Strokes equations (discussed in greater details in Section 4).

This method is very appreciated in simulations handling fluids alongside
other elements, as in videos games (containing physical objects,). They require
this cost-effective method to allow computation of other events (physic system,
characters, etc...). The shallow water equations (SWE) are one of the latest
algorithms used by the industry, as it can take into consideration varying to-
pography while staying fast, lightweight and allowing easy interaction[MSJT08]
(Figure 6b).

[MSJT08] provides an implementation of the basic SWE solver, and [OH95],
[KM90], [TMFSG07] and [CM10] provide together several minor improvement
for realism such a small scale details, foam formation, splashing, breaking waves
and immersion of solid objects (Figure 6a and 6c). Our Solution takes mainly
from the work of [MSJT08] for its simple implementation and ease of modifica-
tion, but differs by allowing multiple fluids at the same time.

2.5 Conclusion on Fluid Simulation

Considering all the algorithms available for fluid simulation, we have to reject
procedural animation techniques, as they do not allow us to model easily ex-
panding fluids, even less when considering a changing topography over time (the
”topography” being the surface of the water where the oil rest).

Particle-based methods offer incredible realism, but are too expensive for
real-time simulations, where the fluid simulation should leave computation re-
sources available to other game elements (for the NAUTIS to simulate boats and
other physics events). However, they can still be used for hybrid techniques as
in [TWGT10] for having both advantages of Lagrangian and Eulerian methods
(that is breaking waves and splashes).

6

(a) (b) (c)

Figure 6: 2D Eulerian methods from [KM90], [MSJT08] and [TMFSG07] respec-
tively. Early implementations of the grid permitted tracking acurrate changes
([KM90], or [MSJT08] for the more modern version) and later improvement as
[TMFSG07] incorporate small scale details re-enforcing realism.

We thus use Eulerian methods, but as we model a flat expanding fluid, it
makes sense to reduce the costs and go for 2D Eulerian grid simulation. More
precisely, the Shallow Water Equations, as they are well researched and favoured
in real time simulations in the game industry (and other industry asking real
time realistic simulations) [MSJT08]. No particular research directly treats two
layers of non-miscible fluids (at the exception of [DL78] & [ZLO13] who look at
a mathematical solution to the problem in 1D), it is thus a contribution of our
work to provide a much-needed solution to this problem.

7

3 Simulating Oil Slicks

We present the principal physical laws governing the behaviour of oil slicks, in
order to provide a background to simulating them. We define the discretization
we use to simulate these effects in 3.3.

3.1 Oil Slick Weathering

Weathering concerns all the changes occurring from oil water interaction. They
are depicted by Figure 7.

Figure 7: A schematic depiction of all physical phenomena taking place in an
oil spill. Some of them are negligible enough to ignore during a real-time real
time simulation.

3.1.1 Spreading

Upon contact with water, the oil starts to spread. The model proposed by
[Fay71] defines a formulation for oil-spread estimation (see Appendix A). It
states the three main spreading ways of a slick: the inertial spread, the viscous
spread, and the surface-tension spread. We focus solely on the viscous spread.
We do so since, according to [LFBC84, SS95], inertial spreading is only mean-
ingful in the first few seconds, and the surface tension spread is meaningful only
after a few months.

We can thus model and simulate the expansion of the oil as a viscous fluid
simulation, under viscous spread. These spreading forces are modelled by the
incompressible Navier-Strokes equations [BMF07]. They are as follows:

δ~u

δt
+ ~u · ∇~u+

1

ρ
∇p = ~g + v∇ · ∇~u (1)

∇ · ~u = 0 (2)

Where ρ as the fluid density (kg/m3), p is the pressure (Pa), ~g represents
the external forces such as gravity and v is the kinematic viscosity (m2/s).

(1), called the ”momentum equation”, is actually the combination of three
equations:

8

� The ”Material derivative”, represent the derivative of the property of a
material point as it moves with time. it is written:

Dq

Dt
=
δq

δt
+ ~u · ∇q = 0 (3)

With q the element we are tracking; it could be a packet of matter or
temperature of the fluid, but in our context, it is the velocity of the fluid.

� Gravity and other external forces as ~g. Gravity is represented with a
downward force applied evenly at any point of the fluid, resulting in a
progressive smoothing of the slicks.

� Internal forces, divided in 2 :

– 1
ρ∇p represents the effect of hydrostatic pressure (the pressure that

the fluid has on self);

– ∇ · ∇~u is the viscosity resistance. Viscosity resistance can be seen
as a combination of surface tension, inertia and friction. It represent
the resisting motion from oil interaction with water (friction), the
resistance to changes of state (inertia) and the cohesive force of the
fluid to itself (surface tension). Viscosity is usually omitted in most
of the simulations, whereas small errors from computations are gen-
erally perceived as the fluid viscosity. However, we do use viscosity
for oil slick simulation..

The divergence free condition (2) ensures the conservation of mass, and the
stability of the simulation as a whole.

3.1.2 Advection

Advection is the drift of the oil spills due to the surface current and wind. It is
computed in [NKAS08], and corresponds to:

~Vd = αw~Vw + αc~Vc (4)

αw is the drift factor (usually between 0.02 and 0.04 [SS95]). ~Vw is the wind
vector above water, αc is the advection factor of the water current (typically

1.1) and ~Vc is the surface current vector. Note that according to [SS95], surface
current might be disregarded in open sea where the surface currents tend to be
negligible.

3.1.3 Evaporation

[Fin99] provides a detailed evaporation model for most common oils. Typically,
oil loses 25-30% of its mass during the first 24 hours. The vapours are mostly
the lighter component of the oil, leaving a denser and more viscous slick. Note
that unlike water, oil is not strictly boundary-layer regulated, meaning that
wind and other factor (except temperature) have very limited influence on the
evaporation we can then practically consider the rate of evaporation as constant,
if the temperature is considered as constant as well.

9

We can thus describe the evaporation process with two simple equations,
depending on the type of oil (see [Fin99][Table 2] for the correct equation per
Oil type).

For oils following a logarithmic equation:

Percentage Evaporated E = [.165 (D) + .045 (T − 15)] ln (t) (5)

For oils following a square root equation:

Percentage Evaporated E = [.0254 (D) + .01 (T − 15)]
√
t (6)

Where D is the percentage (by weight) distilled at 180°C, T the temperature
(°C), and t the time in minutes.

[SS95] also provides complementary equations to calculate the impact of
evaporation on the density ρ and viscosity µ parameters of the oil:

ρt = ρoil + C3(Et)

µt = µoil × exp [C4Et]

C3 and C4 are constant paremeters depending on the type of oil. C3 is the
mousse viscosity constant (the maximal water content, assumed around .7 for
crude/heavy fuel oils and .25 for lighter oils) and C4 being between 1 and 10
with 1 for gasoline and 10 for crude oil. Both constant values can be found in
[MBMP80]

3.1.4 Dispersion

Dispersion refers to the process of oil droplets forming and transferring into
water columns due to the turbulences in the sea. This process is influenced
by the oil layer thickness, the breaking-wave energy (waves breaking in the
slick) and the water temperature [DS88]. Natural dispersion can be separated
in 3 phases: globulation, where waves crashing in the slick form oil droplets;
dispersion, where the energy given by the waves coupled with the rising forces
spreads the droplets; and coalescence, where droplets rise back and merge with
the slick [SS95]. However, this quantity is very small (> 1mg/L), it can thus
be neglected in the simulation.

3.1.5 Emulsification

Emulsification is the process of water droplets mixing into the oil, creating a sort
of ”oil mousse” emulsion. The incorporation of water increases the viscosity and
volume of the slick [NKAS08] and makes it harder to clean (burning becomes
impossible, and dispersion or recovery more complex) . The main factor that
determines the stability and potential amount of an oil emulsion is the amount
of surface active agent (surfactant). It is generally acknowledged that the level
of asphaltene determines the ability to emulsify, and the concentration of wax
increases the stability of the oil emulsion [SS95]. The water incorporation can
be modelled over time as follow [MBMP80] & [SS95]:

Yt = C3

[
1− exp

(
−2× 10−2

C3
(1 +W)2t

)]
(7)

10

Where Yt is the relative quantity of water, W is the wind speed (m · s−1)
and C3 is the mousse viscosity constant.

[SS95] also provides the changes of density ρ and viscosity µ using the
Mooney equations:

ρt = ρoil(1− Yt) + ρwater(Yt)

µt = µoil exp

[
2.5Yt

(1− C3Yt)

]
(8)

With ρoil and µoil the base oil density (kg.m−3) and viscosity (cP). µoil can
be obtained using [BH88] methods, µoil = 224A1/2, with A being the asphaltene
content (%) of the oil.

3.1.6 Dissolution

Although few papers cover the large-scale phenomenom, [SS95] estimates that
roughly 1% of the oil dissolutes very shortly after contact with water. The
lighter components of oil are also the first ones lost through evaporation, a
process which is 10 to 1000 times faster [Spa88]. Essentially, this process is
more relevant to toxicological studies (impact on marine life) rather than slick
spread simulation, and can thus be neglected for a cleaning training simulation
[SS95].

3.1.7 Photo-Oxidation

Photo-oxidation is the slow reaction of oil with ambient oxygen, either breaking
down in soluble products, or forming persistent hard compounds called tars. As
suggested, this process is exacerbated by sunlight, but very slowly, and can take
weeks/months to be noticeable [Spa88]. We thus also neglect it from our model.

3.1.8 Sedimentation

Sedimentation is the sinking of oil component due to an increase in density
that compromises their buyonancy. This happens due to the compsumtion by
the marine life or due to fixation of oil on the surroounding suspended matter
[Spa88].

3.1.9 Biodegradation

Biodegradation is the consumption of the oil components by the local marine
life that rely on hydrocarbons as a source of energy (mostly micro-organism
that one would also find near natural cold seep / hydrothermal vents) [Spa88].
Biodegradation occurs along the weathering process and is exacerbated by other
weathering mechanisms, as the micro-organism can only consume oil from the
oil-water interface. This is nevertheless a very slow mechanism and effects take
years to be seen, we thus do not model it.

11

3.2 Oil Slick Cleaning Process

Cleaning of an oil spill is done in different procedures, the common procedure is
to first contain the slick and then collect or dispose of it. Here are the principal
methods used for cleaning:

Containment Booms are floating barriers that prevent spreading and scat-
tering of the oil (figure 8b). This permit to contain and allow a certain
thickness of oil layer for later treatment.

Chemicals are used mainly when there is turbulence preventing the usage of
booms. Different chemicals have different effects on the oil. Solidifiers are
used to solidify the oil to be collected, and dispersants break down oils to
include water and allows it to sink (and be degraded by micro-organisms).

Sorbents are insoluble materials that collects the oil by absorption. They can
be later reprocessed (extraction of the oil and reuse of the sorbent).

In Situ burning is used when the water is calm and the oil slick contained by
booms (figure 8a). Burning the slick is not environmentally friendly, but
saves costs.

Bioremediation is the introduction of oil-consuming bacteria or degrading
enzymes to accelerate the bio-degradation of oil.

Mechanical removal is done using pumps or skimmers (rotating discs) to
separate the oil from the water (figure 8c).

(a) (b) (c)

Figure 8: Some cleaning examples: (left) In Situ burning, (middle) slick con-
tainment by booms and (right) mechanical skimming of the oil.

12

3.3 Physical Phenomena in Our Environment

Considering the requirements for simulation and the time span of a training
session (Section 1.1), we can factor the behavior of our model into 3 parts:

Modelled in real time: these include advection, spreading, interaction with
solids and to some extend evaporation and emulsification. These be-
haviours are crucial for the realism of the slick, we make sure that they
are computed at each time step (or once every several time steps for more
minute changes of evaporation, dispersion and emulsification).

This means that at a time t, the volume Vt, density ρt and viscosity µt of
the slick are:

Vt = V0· (1− Et + Yt)

ρt = (ρoil + C3(Et))(1− Yt) + ρwater(Yt)

µt = µoil × exp [C4Et]× exp
[

2.5Yt
(1− C3Yt)

]
The velocity of the oil from spreading and advection are covered in Sec-
tion 4. The calculation of derivatives for these quantities are covered in
Appendix C.

Considered at start-up: these phenomena evolve to slowly to be modelled in
real-time, this includes photo-oxidation, sedimentation, and biodegrada-
tion. As mentioned, they affect the oil over a long span of time, so we can
specify the age of the slick at start-up, and apply their changes on the oil.

Not considered: these are the behaviours that are unnoticeable; dissolution,
that happens almost immediately after contact with water, and dispersion,
which is for the most part negligible.

13

4 Our Approach: The Shallow Water Equations

VSTEP has a running simulator for boats (Nautis3), comprising a procedural
sea generator (Section 2.1) for the scenery, and SWE for boat/water interaction.
As their simulation of water is still in development, they only implement a
simple version of the Shallow Water Equations (SWE) (Section 4.2.1), which is
a simplified model made for (serious) games, and which is based on the Navier-
Stokes Equations (NSE)(Section 3.1.1).

In this section, we define the input and outputs we have to take into account
for our simulation. We then describe a simple SWE solver for a better under-
standing of its mathematical representation of water. This solver is then used
in Section 5 as a base for the oil and water simulation.

4.1 Inputs and Variables

We work with grids of n ×m cells, where the cells have edge lengths of x × y
respectively. We follow the evolution of the simulation over time t, and dt refers
to the elapsed time between each time-step.

Inputs

� Water: we store the water on a 2D grid, where each cell center stores the
height of the water ηwater, the ground elevation at this point gwater and
the total height hwater. At the edges of the cells, we store the horizontal
velocity ~Uwater (figure 9).

� Oil Slick: the oil slick is stored on a grid of the same format as the water,
storing ηoil, goil, hoil and ~Uoil at the same locations as its water equivalent.
We also store global variables for the slick, which are the slick density ρoil,
viscosity µoil, evaporated fraction Eoil , water content fraction Yoil

� Wind: it is a vector field ~Vw, taking effect in the whole simulation.

� Current: There are no currents present in the simulation other than
the one generated by the movement of the fluids. The currents are thus
described solely by the fluid’s horizontal velocities ~Uwater and ~Uoil.

� Boats: the vessels influence the water by direct contact (influencing the
water height). The boats propulsion system adds a repulsive force at the
rear of the ship, pushing water and oil away (and the ship forward). This

influence by the propellers is directly added to the relevant cells ~Uwater
and ~Uoil.

4.2 Shallow Water Simulation

We next explain how we simulate water on a large scale.
Oil, as any fluid, can be modelled using the Navier-Stokes Equation (Section

3.1.1), however, it is notoriously difficult to discretize and simulate exactly.
Therefore, we approximate it by the Shallow Water Equation SWE (Section
4.2.1). The SWE reduces the complexity of the equation by representing the
fluids as a two-dimensional height field.

We use the following notation (as in [MSJT08]):

14

Figure 9: Values and their meaning in SWE

� h denotes the height of the fluid above a fixed level which is ”zero”.

� g is the height of the ground below the fluid (above zero-level).

� η denotes the height of the fluid above ground, η = h− g.

� ~U = (~u,~v)> denotes the velocity of the fluid in the horizontal plane.

The above allows us to represent the state of the fluid as follow:

St = S (x, y, t) =

η (x, y, t)
~u (x, y, t)
~v (x, y, t)

 =

ηt~ut
~vt

 (9)

Where the fluid state S at time t is represented by its fluid column η, and
its horizontal velocity ~u.

4.2.1 Shallow water equations

The shallow-water equations (SWE) is an approximation of the Navier-Stokes
equations, that reduce the problem of a three-dimensional fluid motion to a
two-dimensional description, using a height-field representation. To reduce the
complexity, several assumptions are made:

� The fluid pressure is hydrostatic, meaning that the vertical velocity is
constant over time and equal 0;

� The fluid is incompressible, meaning that the density is uniform over space;

� The viscosity of the fluids is negligible.

Several works [ZB11] handle density changes over space, and other complex
multi-fluids set-ups. However we consider the oil as non-miscible, as a distinctive
layer above water, and where density and viscosity change uniformly over time.

Considering the above rules, the basic formulation of SWE can be written
as follow:

δη

δt
+ (∇η)~u = −η∇ · ~u (10)

δ~u

δt
+ (∇~u)~u = an∇h (11)

With an as the vertical acceleration of the fluid (e.g., gravity).

15

4.3 Discretization of SWE

We next use the shallow-water equations to model the base algorithm proposed
by [TMFSG07]. We then modify this basic SWE solver, and add modifications
to consider floating oil with changing properties over time.

4.3.1 Conservative vs non-conservative form

Before laying out an algorithm for the SWE, we need to choose if we go for a
conservative or non-conservative form of discretization. This affects the diffi-
culty (and consequently, the efficiency) of the calculation, as well as its precision
[LeV02].

Conservative and non-conservative forms of equations are directly related
to the definition of their derivatives. We consider the following example of a
derivation, using arbitrary variables λ and ω:

δωλ

δx

A classical discretization in the conservative form is:

δωλ

δx
≈ (ρλ)i − (ωλ)i−1

∆x

whereas in the non-conservative form we split the derivative apart, obtaining
the following discretization:

ω
δλ

δx
+ λ

δω

δx
= ωi

λi − λi−1

∆x
+ λi

ωi − ωi−1

∆x

While these two discretization converge to the same in the limit, they behave
differently otherwise. This is mostly evident when we expand it on an grid.
Consider a one-dimensional grid of 4 points, where the boundary vertices are
i = 0 and i = 3. Both equations expand as follow:

(ωλ)1 − (ωλ)0

∆x
+

(ωλ)2 − (ωλ)1

∆x
+

(ωλ)3 − (ωλ)2

∆x
(α)

ω1
λ1 − λ0

∆x
+λ1

ω1 − ω0

∆x
+ω2

λ2 − λ1

∆x
+λ2

ω2 − ω1

∆x
+ω3

λ3 − λ2

∆x
+λ3

ω3 − ω2

∆x
(β)

For the expanded conservative form (α), we can see that, when summing
the derivatives, we end up only with the boundary terms (i = 0 & i = 3) as the
interior points have cancelled out. This highlight that the conservative form is
only dependent on the boundary conditions. It also means that for what goes
in the simulation must comes out, we have conservation of values over time (i.e.
a closed differential form).

However for the non conservative form (β), cancellation is not possible, thus
adding grid point also makes the number of terms grow. Simply put, what
comes in does not balance what goes out, hence the name non-conservative.

16

Note that non-conservative equations introduce, by the way they are cal-
culated, some errors, that is viewed as artificial viscosity in the case of fluid
simulation (slower propagation of the fluid). This makes them not suitable to
calculate, in fluids, hydraulic jump and other abrupt discontinuities known as
shocks (occurring at supersonic speeds), were the computation is likely to crash
or yield unrealistic results.

Conservative equations do not introduce those errors and hold for more com-
plex scenarios, but they come at a much higher relative cost (more calculations
steps for their resolution). Thus for our SWE solver, using the non conservative
form is perfectly suitable, as the oil does, in the general case, expand at a sub-
sonic rate, and it is also a viscous fluid, so the introduction of artificial viscosity
is not a problem (e.g. [MSJT08] uses the non-conservative form).

4.3.2 Choice of grid

This method makes the use of a staggered grid, instead of naive collocated grids.
Collocated grids are the standard grid type, were all types of values are stored

per cells (usually at their center), accessing these values at position (x, y) would
simply resume to quering the grid a position (x, y).

A staggered grid is a different setting for the spatial discretization, where
some variables are set on the vertices [HW65, Lil61]. As seen in Figure 9, our
staggered grid stores the different heights of the column in the center of each
cells (h, g and η for oil and water), and the velocities ~u and ~v on the edges.

Querying heights values stays the same as with the collocated grid, and
querying the velocities at the same spatial position (x, y) becomes a linear in-
terpolation:

~u(x,y) = (~u(x+1/2,y) + ~u(x−1/2,y)) ∗
1

2
or

~v(x,y) = (~v(x,y+1/2) + ~v(x,y−1/2)) ∗
1

2

Although seemingly tedious, staggered grids avoids extra calculations. As
non staggered grids usually require error correction at each steps (to avoid
the ”odd-even decoupling problem”, leading to the appearance of checkerboard
patterns and other instabilities). The staggered grid requires no correction and
is particularly fit (as it was developed) for our computing method (and other
fluid/gases simulations).

4.3.3 Simplistic non-conservative discretization

We follow the techniques proposed originally by [Sta99] and applied to a basic
SWE solver in [TMFSG07] and [Mol11]. This method is called semi-Lagrangian,
despite being nonetheless Eulerian, as we calculate the fluid position over the
next time step by following imaginary arbitrary particles. The solver follow the
mathematical Lax-Wendroff method to calculate the values at each time step.
More precisely, a variant named the MacCormack method, as it is widely used
in fluid simulation for its simplicity of understanding and implementing.

The basic algorithm is:

17

Algorithm 1 The full shallow-water time step

function Shallow-water-Step()
Resolve Boundaries()

h′ = Advect Water(η, ~U, g)
~U ′ = Advect Velocities(h, ~U, g)

η and h = Update Height(~U ′)
~U = Update Velocities(~U ′, h′)

A full time step following the MacCormack method is decoupled into two
interleaving steps. The advection (also named ”half-time step” or ”predictor
step”) and the update step (”full-time step” or ”corrector step”). As seen,
there is a need to store temporary values for h′ and ~u′, as the half time step
values in the x and y direction are at imaginary positions (storing 6 temporary
values per cell).

18

Advection step: water height and velocities advection are computed as fol-
low:

Algorithm 2 water height advection on both axis

function Advect Water(η, ~U, g)
for i = 1 to n do

for j = 1 to n− 1 do
hx(i,j) = η(i+1/2,j+1) − ~u(i+1/2,j+1) ∗ ∆t

∆x + g(i+1/2,j+1)

for i = 1 to n− 1 do
for j = 1 to n do

hy(i,j) = η(i+1,j+1/2) − ~v(i+1,j+1/2) ∗ ∆t
∆x + g(i+1,j+1/2)

return h′

Algorithm 3 water velocity advection on both axis

function Advect Velocities(h, ~U, g)

Considering A(a, b)(i,j) = a(i,j)∗b(i,j)
h(i,j)

for i = 1 to n do
for j = 1 to n− 1 do

~ux(i,j) = ~u(i+1/2,j+1)

−[[A(~u, ~u)(i+1,j+1) + g
2h(i+1,j+1)2]

−[A(~u, ~u)(i,j+1) + g
2h(i,j+1)2]] ∗ ∆t

2∆x

~vx(i,j) = ~v(i+1/2,j+1)

−[A(~u,~v)(i+1,j+1) −A(~u,~v)(i,j+1)]
∆t

2∆x

for i = 1 to n− 1 do
for j = 1 to n do

~uy(i,j) = ~u(i+1,j+1/2)

−[A(~u,~v)(i+1,j+1) −A(~u,~v)(i+1,j)]
∆t

2∆x
~vy(i,j) = ~v(i+1,j+1/2)

−[[A(~v,~v)i+1,j+1 + g
2h(i+1,j+1)2]

−[A(~v,~v)i+1,j) + g
2h(i+1,j)2]] ∗ ∆t

2∆x

return ~U ′

The purpose of the Advection step is to compute an imaginary particle at
the previous time step (Algorithm 2 and 3). Despite being fairly tedious, it
is very simple: we take the point at an imaginary position X (water height or
velocity, at either the center or the edge of our cells), and calculate its position
at a previous time step x′ along the u or v direction (note that X is at a well
defined position on the grid, but it is not the case for x′).

For the height of the water surface at the (imaginary) particle position (Al-

gorithm 2), h′ is simply (η − ~U + g) as h = η + g (we consider the floor static).
As for the estimated velocity (Algorithm 3), ~u′ (or ~v′) is the current velocity

minus an estimated neighbouring velocity attenuated by the height of the water
column and gravity (like in reality, with less depth, waves tend to accelerate
and diffuse less).

19

Update step water height and velocities update step :

Algorithm 4 water height update

function Update Height(~U ′)
for i = 1 to n do

for j = 1 to n− 1 do
η(i, j) −= [~ux(i−1/2,j−1) ∗ ∆t

∆x − ~vy(i−1,j−1/2) ∗ ∆t
∆y

h(i, j) = η(i, j) + g(i, j)

return η, h

Algorithm 5 water velocity update

function Update Velocities(~U ′, h′)

Considering Ax(a, b)(i,j) = ax(i,j)∗bx(i,j)
hx(i,j)

for i = 1 to n do
for j = 1 to n− 1 do

~u(i, j) −= [[Ax(~u, ~u)(i,j−1) + g
2∗h2

x(i,j−1)

]

−[Ax(~u, ~u)(i−1,j−1) + g
2∗h2

x(i−1,j−1)

]] ∗ ∆t
∆x

−[Ay(~u,~v)(i,j−1) −Ay(~u,~v)(i−1,j−1)] ∗ ∆t
∆y

~v(i, j) −= [[Ay(~v,~v)(i−1,j) + g
2∗h2

y(i−1,j)

]

−[Ay(~v,~v)(i−1,j−1) + g
2∗h2

y(i−1,j−1)

]] ∗ ∆t
∆y

−[Ax(~u,~v)(i−1,j) −Ax(~u,~v)(i−1,j−1)] ∗ ∆t
∆x

return ~U

The correction step (Algorithm 4 and 5) is there to obtain the correct values
for rendering and the next time step.

For the height of the fluid column and the total height (Algorithm 4), it is
simply η(t+1) = η(t) − ~u′ and h = η − g.

As for the final velocities (Algorithm 5), it is where the half time step
advected values become visibly useful. The new velocity for u is u(t+1) =

~u(t)− [~u
′2

h′ + g
2h′2]− [~u

′∗~v
h′] and same goes for ~v with some adjustments [MSJT08].

We note that in the above algorithms, many of the variables are located at
a half spatial step (e.g. ~u(i+1/2,j+1/2); this simply suggest that a basic linear
interpolation to obtain their values is necessary (e.g. [~u(i,j) + ~u(i+1,j+1)]/2).

20

4.3.4 Boundary behavior

We next define the behavior of the boundary, in order for the simulation to be
coherent.

For the water layer, we cannot hope to compute the whole map using SWE
(as VSTEP training worlds are up to 200 km2). The solution is to narrow our
focus to important areas (where the oil is), and the rest of the ocean is then
computed following VSTEP current model (procedural water). This is done by
having absorbing boundaries at the far limits of our grid (at the edges of the
map), in order to avoid reflection of the wave. Absorbing boundaries here means
wave energy absorbtion, so no volume is lost over time.

In the case where grid boundaries are against a wall or other reflective struc-
ture, we want reflective boundary conditions. The two boundary conditions are
computed as follow (here only the left side of the grid is considered):

Reflective boundary Conditions

η(0,j) = η(1,j)

~u(0,j) = 0

~v(0,j) = 0

(12)

Absorbing boundary conditions

η(0,j) = η(1,j)

~u(0,j) = ~u(1,j)

~v(0,j) = ~v(1,j)

(13)

4.3.5 Flag system

To reduce costs, we avoid computing changes on areas without fluids. A flag
system is thus put in place. Every cells contains contains a flag f that determines
if the cell is updated or not. The flag system for a basic SWE is presented in
[MSJT08]. The flags are computed per cells at each time steps as well as a ratio
r. This ratio r keeps track of the ”wetness” of the cell, with a value bounded
between 0 (for dry, i.e devoid of the tracked fluid) and 1 (fully immersed). Any
value in between indicates how much of the cell is covered by the fluid (e.g.
r = 0, 5 would represent an half immersed cell). The computation of the flags
is made in two steps as follows:

Algorithm 6 Calculate the needed values to update the flags

function Precompute flags
for i = 1 to n do

for j = 1 to n do
gmin(i, j) = (g(i, j) + min g(p)) ∗ 1

2
gmax(i, j) = (g(i, j) + max g(p)) ∗ 1

2 + εH
ηmax(i, j) = (η(i, j) + max η(p)) ∗ 1

2

With p the four direct neighbour of our cell (i, j). The first step computes
the maximum and minimum ground height of each cells (gmin and gmax) and
the maximum fluid thickness (ηmax). The addition of the small value εH is
to prevent gmin to be equal to gmax in flat areas, we choose epsilon to be
εH = 0.000001. We then update the flags for each cells:

21

Algorithm 7 Flag computation

function Update flags
for i = 1 to n do

for j = 1 to n do
if (g(i, j) ≤ gmin(i, j)) && (ηmax(i, j) < εηmax) then

f(i, j) = DRY
r(i, j) = 0

else if g(i, j) > gmax then
f(i, j) = FLUID
r(i, j) = 0

else
f(i, j) = DRY
r(i, j) = (g(i, j)− gmin(i, j))/(gmax(i, j)− gmin(i, j))

Every cells is marked with a flag stating either DRY or FLUID, and the
fill rate r is stored. There is also an other small value εηmax (equal to 0.00001 in
our implementation) that prevents the water flowing to other cells if the fluid
layer is very thin; this is interpreted as an artificial viscosity.

It is important to note that this flag system was implemented for an early
prototype and is not used as is in the NAUTIS simulator. Instead, to fit their
expanding grid system, a cell that would be marked as DRY is automatically
removed from the grid. For more details refer to section 7.

22

5 Addition of a second layer of fluid

So far, we reviewed how to properly model a single fluid using the SWE ef-
ficiently using the proper discretization, staggered grids and flags. We next
review how to add an extra layer.

To add a second layer, we modify the SWE algorithm to work both for water
and for oil (one copy to resolve water, one to resolve oil). We also modify the
SWE Algorithms to reproduce oil and water behaviours.

5.1 SWE Modifications for Oil

SWE stores density and viscosity with the variables ρ and µ, respectively (see
Section 3.3). For the water layer, density ρ and viscosity µ are both equal to
1. For the oil, we update ρ and µ in a slow pace (every minute, or 3000 steps),
although their change will be unnoticeable on short term.

We also consider the changes of oil volume over time (due to water incorpo-
ration), despite them being minute. For these changes, we adjust the oil volume
per cells over time by 1 + %increased before computing the spreading (also at
large interval, every minute).

The details for the computations of derivatives for volume density and vis-
cosity are in Appendix C.

5.2 The Algorithm

To adapt the algorithm for an oil layer above the water, we have to consider the
changes necessary to account for the interacting forces between oil and water
(enforcing floating oil and account for the oil-water pressure), as well as how
they integrate into the existing algorithm.

First, we enforce the oil to be floating above the water at all time. This
means that the oil ”ground” level is equal to the surface of the water layer at
all time, i.e. goil = hwater. This can be done easily using pointers, if provided
by the programming language.

Next, we model the forces applied by the oil on the water, and vice versa.
The water has to account for a downward force exerted by the oil (pressure
from oil movement and weight of the oil), and the oil accounts for an upward
force from water displacement. We model the pressure of oil on water after the
Bernoulli equation:

v2

2
+ gz +

p

ρ
= constant (14)

With v the fluid flow speed, g the gravity constant, z the elevation, p the
pressure and ρ the density of the fluid. This equation is normally used to relate
fluids velocity with pressure, the higher the velocity of a fluid, the less pressure:
it exerts on its surroundings.

23

We can modify Equation 14 to extract the static pressure SPwater (Equation
15, a downward force from the oil column, always positive) and the dynamic
pressure DPwater (Equation 16) of the oil on the water (up- or downward force
resulting of the movement of the oil). Static pressure refers to the pressure
exerted by the fluid if considered at rest (the weight of the fluid), whereas
dynamic pressure refers to the pressure exerted by the movement of the fluid
(its kinetic energy).

SPwater = Voil · µ · g (15)

DPwater = µoil · ~v2
oil ·

1

2dt
· α (16)

With Voil the oil volume, ~v the instant velocity of the fluid. α is the direction
of the fluid column (α = −1 if the column is losing volume at time t and α = 1
if it is gaining volume).

The oil is also influenced by the water movement, but only by the dynamic
pressure DPoil (as the water is under the oil):

DPoil = µwater · |~v|2water ·
1

2dt
· −α (17)

We note that normally pressure is a scalar quantity, i.e. pressure apply in
every direction. Here the terms static and dynamic pressure are referring to the
approximate global force vector applied by the oil on the water and vice versa.

We integrate these pressures into the SWE algorithm, by defining the Static
Pressure() and Dynamic Pressure() functions (Algorithm 8, 9). The function

signum() in algorithm 8 is the ”sign of” function, returning 1 for positive argu-
ments and −1 for negatives.

Algorithm 8 Dynamic Pressure

function Dynamic Pressure(∆η, η, ρ)
return signum (∆η) ∗ η ∗ ρ ∗∆η2 ∗ 1

2dt

Algorithm 9 Static Pressure

function Static Pressure(η, ρ)
return g

2 ∗ η
2 ∗ ρ

The parameters of these functions are the instant vertical velocity of the
fluid ∆η , the volume of fluid in the column η, and the density of the fluid ρ
(lighter fluid exert less pressure). They both return a force that is then applied
to the fluids.

We also modify the SWE algorithms to include Static Pressure() and Dy-
namic Pressure() for both fluids. When computing the pressure, there is a need
for the instant vertical velocity ∆η of the fluid, we thus store it at the half time
step under ∆ηx and ∆ηy (see Algorithm 10) and at full time step under ∆η
(Algorithm 11).

24

Algorithm 10 Height Advection for 2 layers SWE

function Advect Height Corrected(η, ~U, g)
for i = 1 to n do

for j = 1 to n− 1 do
∆ηx(i,j) = −~u(i+1/2,j+1) ∗ ∆t

∆x
hx(i,j) = η(i+1/2,j+1) + ∆ηx(i,j) + g(i+1/2,j+1)

for i = 1 to n− 1 do
for j = 1 to n do

∆ηy(i,j) = −~v(i+1,j+1/2) ∗ ∆t
∆x

hy(i,j) = η(i+1,j+1/2) + ∆ηy(i,j) + g(i+1,j+1/2)

return h′

Algorithm 11 Height Update for 2 layers SWE

function Update Height Corrected(~U ′)
for i = 1 to n do

for j = 1 to n− 1 do
∆η(i,j) = −[~ux(i−1/2,j−1) ∗ ∆t

∆x − ~vy(i−1,j−1/2) ∗ ∆t
∆y

η(i, j) += ∆η(i,j)

h(i, j) = η(i, j) + g(i, j)

return η, h

Once we have the instant velocities, we can modify the rest of the algorithm
to account for the different pressures. This comes by modifying the A function
in the half and full time step (from Algorithm 3 and 5).

For oil it becomes:

A(a, b)(i,j) =
a(i, j) ∗ b(i, j)

h(i, j)
(18)

−Dynamic Pressure(water → ∆η(i,j), water → η(i,j), water → ρ)

Ax(a, b)(i,j) =
ax(i, j) ∗ bx(i, j)

hx(i, j)
(19)

−Dynamic Pressure(water → ∆ηx(i,j), water → ηx(i,j), water → ρ)

And for Water:

A(a, b)(i,j) =
a(i, j) ∗ b(i, j)

h(i, j)

+ Dynamic Pressure(oil→ ∆η(i,j), oil→ η(i,j), oil→ ρ) (20)

+ Static Pressure(oil→ η(i,j), oil→ ρ)

Ax(a, b)(i,j) =
ax(i, j) ∗ bx(i, j)

hx(i, j)

+ Dynamic Pressure(oil→ ∆ηx(i,j), oil→ ηx(i,j), oil→ ρ) (21)

+ Static Pressure(oil→ ηx(i,j), oil→ ρ)

25

With these new version of the A function, we can now execute the full algo-
rithm twice in a row (once for each layer) to calculate a full timestep (Algorithm
12).

Algorithm 12 The full Shallow Water time step for 2 fluids

function Shallow water Step Corrected()
Resolve Boundaries ()
Water Resolution
h′water = Advect Height Corrected(η, ~U, g)
~U ′water = Advect Velocities Water(h, ~U, g)

ηwater and hwater = Update Height Corrected(~U ′)
~Uwater = Update Velocities Water(~U ′, h′)
Oil Resolution
h′oil = Advect Height Corrected(η, ~U, g)
~U ′oil = Advect Velocities Oil(h, ~U, g)

ηoil and hoil = Update Height Corrected(~U ′)
~Uoil = Update Velocities Oil(~U ′, h′)

26

6 Interaction with solids

6.1 Floating objects

Immersed objects are subject to buoyancy, an upward force making light objects
float. Buoyancy is expressed as follows:

Fb = ρgV (22)

Where Fb is the buoyant upward force, ρ the fluid density, g gravity, and V
the submerged volume. This mean that objects that are denser than the fluid
sink, and the less dense ones are partially submerged.

As the basic SWE algorithm only keeps track of the elevation h of the water
columns, adding dense sinking objects would create holes in the water (see
figure 10a, sunken ships problem) and would prevent circulation of fluids over
the solid. We directly account for this, and use insights for [GDC08b] and the
work of [OH95, Gom00, Tes04]. Their approach is to let the solid pass through
the fluid, and add the solid submerged volume as fluid in the simulation. By
adding the submerged volume to the solution, we indirectly generate the waves
from the solid-fluid interaction as the added fluid volume propagates to the other
cells of the simulation (see Figure 10b). The resulting equation for buoyancy
becomes:

Fb = −∆u · ρg · dxdy (23)

Where dxdy is the surface of the cell, and ∆u is the volume of fluid replaced
by the body. Note that the force is applied at the center of the cells, and can be
summed at the center of gravity of our solid (resulting in a not always upward
force due to different buoyant forces).

Another aspect to be considered is the reflection of waves on partially sub-
merged solids. If a wave crashes in a floating solid (boat, buoy), we reflect it in
the same manner we reflect waves at boundary conditions. That is, for water
from a free cell denoted as free and the ”occupied” cell obj :

ηobj = ηfree

~uobj = 0

~vobj = 0

(24)

27

(a) (b)

Figure 10: Submerged boat causing the Moses effect in ”Assassin’s creed black
flag” (10a), who uses the same SWE system for its water, and a visual repre-
sentation of how to solve it, by accounting for the displaced water volume(10b)

6.2 Addition and deletion of fluids

Another possible interaction of objects with fluids comes from an the object
forcing displacement (i.e propeller pushing the oil), acting as a water source (i.e
leaking pipe) or as a drain (i.e removal via a pump). Those three interactions are
handled in the same function Add Delta() (algorithm 13), handling the changes
between 2 updates:

Algorithm 13 Add Delta

function Add Delta(~W, ~O)
Resolve Boundaries ()

~uwater += ~W.x
~vwater += ~W.y
hwater += ~W.z
~uoil += ~O.x
~voil += ~O.y
hoil += ~O.z

Where ~W and ~O the changes over one time step in velocity (x and y com-
ponent) and height (z component). We show examples in Figure 11, where, on
a test oil slick, we delete and push oil away at each time step by applying a
pushing or drainning vector (~O = (0, 0,−10) for a left push and ~O = (0, 10, 0)
to drain the oil).

28

(a) (b)

Figure 11: Two simulation instances of an oil slick. Left: Add Delta() deleting
oil. Right: Add Delta() forcing oil away to left, creating ripples in one direction.
Color represent relative thickness of the slick, where a thin layer is blue and a
thick layer black.

7 Fluid Boundary Expansion

In addition to the flag system made to optimize computations, we expand and
reduce the grid size to fit the active water and oil active cells. This means that
cells of the grid are added/deleted at runtime whenever needed. A cell is consid-
ered active if there is water movement (|∆η| or |∆~u| is above a certain threshold,
here 0.02), or if there is oil on it. If a cell does not meet this requirement, we
take it out of the grid and continue the simulation.

This is possible by the way the NAUTIS system implements the SWE equa-
tions, using 2D double-linked list, making it easy for every cells to access their
neighbours (e.g. cell.right.value), but also to delete the edges of the grid
(e.g. a cell is deleted and its left neighbour updates to cell.right = NULL).

For cells at the edges, the missing neighbours are replaced with pointers to a
”dummy” default cells that contains default values (default water height, no oil
and no velocities).Figure 12 illustrate this by showing a cell x(m,n), its existing
neigbours x(m,n+1) and x(m,n−1) and its dummy neighbour x(m+1,n). As we
always expand the grid when water and oil nearly reaches the borders, only a
negligible amount of water is lost over time.

It is to note that the base algorithm was already present in the NAUTIS
software and iterated upon. An error appears while querying the dummy cells
in certain cases and we discuss it in section 9.2.

29

Figure 12: Example of the grid cells,during a time step: x(m,n) needs access to
all its direct neighbor. As a border cell, x(m+1,n) does not exit, x(m,n) thus uses
default values with no oil, water at sea level and no velocites

30

8 Performance improvement

We improve the already decent performance of SWE using Streaming SIMD
Extensions (SSE). Essentially, we replace all the calculations done on single
float values (height, velocity etc ...) by the m128 data type (or m256 or
m512 on appropriate processors). Using m128 permits to work with 4 float

values at once. For example, calculating the average of 2 cell water heights is
done as follows:

1 //Assuming c e l l . he ight and c e l l . r ightNeighbour . he ight
2 // are ar rays o f s i z e N.
3

4 __m128 *cellHeight , *nghbrCellHeight , half , result [(N%4)+1] ;
5

6 cellHeight = (__m128d*)cell . height ;
7 nghbrCellHeight = (__m128d*)cell . rightNeighbour . height ;
8 half = _mm_set1_ps (0 . 5f) // used to d iv id e by 2
9

10 f o r (i = 0 ; i < numberOfCells /4 ; i++){
11 // r e s p e c t i v e l y add the he i gh t s and mult ip ly by 0 .5
12 result [i] = _mm_add_ps (cellHeight [i] ,
13 nghbrCellHeight [i]) ;
14 result [i] = _mm_mul_ps (result , half) ;
15 }

We thus use it to compute the half and full time-step of 4 square neighbour
cells in parallel. If there is no 4 cells to compute (edges of the grid) we fill the
missing values with ”dummy” variables (zeroes) that are discarded at the end
of the computation.

31

9 Results

9.1 Simulations results

We implemented the algorithm in the NAUTIS simulator as an interchangeable
fluid system with their already existing SWE simulating their water environ-
ment.

Visuals of several test scenarios can be found in figure 13 to 15. These scenar-
ios includes basic spreading of oil with different viscosities, addition, deletion,
and pushing of oil. There are also specific cases such the visualisation of how
water is affected by the oil or how the oil interacts with boundaries.

For each of these simulations, the computation time depends on the grid
size and not on what is happening within the simulation. While testing, for a
fixed grid size (64 by 64 cells), the average computation time for 30 time steps
(equivalent to 1 second) is around 10 ms without SSE and around 3 ms with
SSE. Limits of the simulations are reached for grids of more than 3500 by 3500
cells, where the computations with SSE is more than half a second per time
steps, but for the average slick, the computation time using SSE stays correct,
averaging 20 ms per time steps, or 50 fps. Results are found in table 1.

Grid size 64 by 64 Average slick >3500x3500
With SSE 0.1ms ∼ 20ms 500ms

Without SSE 0.3ms ∼ 50ms >1s

Table 1: Average computation time per time steps (in ms), with and without
SSE. The 64 by 64 Slick is a bounded environment for testing, and the average
slick is comparable to the slicks seen in figures 13 to 15 (∼ 1000 by 1000 cells)

Figure 13: Removing oil over time: a negative ∆η is applyied on selected cells,
effectively deleting the oil over time. This can be used to simulate de effect of
a cleaning pump sucking the oil out of the water.

9.2 Encountered Issues

The main issue for the stability of the simulation is a build-up of oil at certain
edges of the grid (”right” and ”up” side of the grid). The problem is occurring
during the first half time step, while computing ux, uy, vx and vy. During the
calculation of these values, as we are on the edge of the grid, we use default
values for the non-active cells used in the calculation (Section 7).

32

Figure 14: Push water over time: a velocity is enforced on selected cells, pushing
the oil in a certain direction. This can be used to model the repeling force of a
propeller.

Figure 15: Effect of different viscosities: The top images represent oil with the
same viscosity as water, while the bottom one the viscosity of thick tar. The
spread of oil over the same timeframe becomes thus very different

The problems comes from the value returned by the default cell are not null
(as empty cells should have 0 oil with null velocity). It results in a creation of
oil that causes the oil slick to spread indefinitely in one direction.

A similar problem with the default cells also occurs during the calculation
of the dynamic pressure using SEE. As SEE requires to calculate values 4 by
4, the dynamic pressure of 4 cells are calculated in parallel. In the case were
the computation is made on a group of less than 4 cells, we fill in with default
cells. The dynamic pressure function returned for such a case a NaN value for
all cells, effectively bringing the simulation to an halt.

As the cells and grid system was made by VSTEP for their own water system,
and reused for the bilayer SWE, the problem was raised but could not be solved.
It also appeared that this build-up problem was present in the NAUTIS SWE
water system, but not visible as their algorithm deleted active cells below a
certain velocity/height threshold (deleting also a minimal negligible amount of
water). This could however not be a solution for oil simulation, as we have a
finite volume of oil that cannot be deleted.

33

Only a partial temporary fix was found, where disabling the usage of SSE
would not cause the error, but it comes with a cost for performance and is thus
not a desired fix

Figure 16 through 18 illustrate the problem, showing an oil slick propagating
along one or both axis, having a build up of oil at its edges.

34

Figure 16: Oil slick propagating on 1 axis, showing the difference between the
expected behaviour (left side) and the error induced by the build up (right side).

Figure 17: Zoom on the right side of the slick, showing oil ”creation”, the border
cell creates oil and pass it to the inner cells.

Figure 18: Oil slick propagating on both axis, showing its excessive spreading
in one direction.

35

10 Conclusion and future work

10.1 Conclusion

The objective of this thesis was to simulate oil slicks on open ocean waters.
We developed a modified version of the SWE to support 2 non-miscible fluids
of different density, so that one (the oil slick) would always be atop the other.
The robustness of the algorithm comes from the usage of a 2 step Lax-Wendroff
solver proposed by [Sta99] for simulation of fluids under subsonic conditions (no
”shocks” and hydraulic jumps), which fits our simulations conditions.

The algorithm was then implemented in the NAUTIS simulator as an inter-
changeable fluid system with their already existing SWE simulating their water
environment. It was also developed to use SSE, saving computing time without
altering the quality calculations, a critical element for real time simulation.

Other minor improvements where also made. For instance, improving object
interaction with fluids, in order to avoid the Moses effect when having submerged
objects.

The end result is a simulation of oil over water that can interact with its
environment (boats, walls...) in a realistic manner, as well being added, pushed
around and deleted in real time from the simulation (i.e during training, oil can
be emitted from a leaking pipe, containned by booms and collected by pumps)
as seen in Figure 13 to 15.

10.2 Limitation and future work

In its current state, the bi-layer SWE is very useful to model slicks on rela-
tively calm waters (as cleaning training requires it). It has however still several
limitations that could be addressed in future iterations of the algorithm:

� The question of visualisation is not touched here. Techniques used for
SWE such as [HHL+05] could be adapted for multiple fluids. At the
moment, the default rendering are used here the cells outline changes
height and color depending on a chosen variable (either water height, oil
height, or both).

� The usage of automatic mesh refinement (AMR) to reduce simulation
costs. This would be useful for larger operations, especially if we have
several disparate oil slicks, where we could reduce the computational cost
of less active (already well spread) and far from the user slicks. VSTEP
is developing such an algorithm for their SWE, but it is not used as still
under testing.

� Breaking waves are not possible with the classical SWE, [TMFSG07] pro-
poses a solution for it. This would improve realism for places where beach-
ing or crashing waves can appear and allow for wilder sea state and a wider
range of trainings.

� Implementation of more effects, for example the droplets effects proposed
by [OH95] adjusted for 2 fluids. This would permit better propagation
of fluids when interacting with other objects (falling objects in the slick
creating a splash, boat passing through, etc.)

36

� The grid and flag system could also be reviewed to avoid the computation
error and oil build-up at certain edges. Maybe by starting with the simplier
flag system of [MSJT08], deactivating computation on empty cells instead
of deleting them.

References

[BH88] Ian Buchanan and Neil Hurford. Methods for predicting the physi-
cal changes in oil spilt at sea. Oil and Chemical Pollution, 4(4):311–
328, 1988.

[BHN07] Robert Bridson, Jim Houriham, and Marcus Nordenstam. Curl-
noise for procedural fluid flow. ACM Transactions on Graphics
(TOG), 26(3):46, 2007.

[BHW13] Morten Bojsen-Hansen and Chris Wojtan. Liquid surface tracking
with error compensation. ACM Transactions on Graphics (TOG),
32(4):68, 2013.

[BMF07] Robert Bridson and Matthias Müller-Fischer. Fluid simulation:
Siggraph 2007. In ACM SIGGRAPH 2007 courses, pages 1–81.
ACM, 2007.

[CM10] Nuttapong Chentanez and Matthias Müller. Real-time simulation
of large bodies of water with small scale details. In Proceedings of
the 2010 ACM SIGGRAPH/Eurographics symposium on computer
animation, pages 197–206. Eurographics Association, 2010.

[CM11] Nuttapong Chentanez and Matthias Müller. Real-time eulerian
water simulation using a restricted tall cell grid. ACM Transactions
on Graphics (TOG), 30(4):82, 2011.

[DL78] Robert A Dalrymple and Philip LF Liu. Waves over soft muds:
a two-layer fluid model. Journal of Physical Oceanography,
8(6):1121–1131, 1978.

[DS88] Gerardus Athenasius Leonardus Delvigne and C E Sweeney. Nat-
ural dispersion of oil. Oil and Chemical Pollution, 4(4):281–310,
1988.

[Fay71] James A Fay. Physical processes in the spread of oil on a water
surface. In International Oil Spill Conference, volume 1971, pages
463–467. American Petroleum Institute, 1971.

[Fin99] Mervin F Fingas. The evaporation of oil spills: development
and implementation of new prediction methodology. In Interna-
tional Oil Spill Conference, volume 1999, pages 281–287. American
Petroleum Institute, 1999.

[FR86] Alain Fournier and William T Reeves. A simple model of ocean
waves. ACM Siggraph Computer Graphics, 20(4):75–84, 1986.

37

[GDC08a] GDC. Fast Water Simulation for Games Using Height
Fields [Audio], http://www.gdcvault.com/play/391/
Fast-Water-Simulation-for-Games, 02 2008. Accessed:
2016-07-26.

[GDC08b] GDC. Fast Water Simulation for Games Using Height
Fields [Slides], http://www.gdcvault.com/play/203/
Fast-Water-Simulation-for-Games, 02 2008. Accessed:
2016-07-26.

[Gom00] Miguel Gomez. Interactive simulation of water surfaces. Game
programming gems, 1:187–194, 2000.

[HHL+05] Trond Runar Hagen, Jon M Hjelmervik, K-A Lie, Jostein R Natvig,
and M Ofstad Henriksen. Visual simulation of shallow-water waves.
Simulation Modelling Practice and Theory, 13(8):716–726, 2005.

[HNC02] Damien Hinsinger, Fabrice Neyret, and Marie-Paule Cani. In-
teractive animation of ocean waves. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion, pages 161–166. ACM, 2002.

[HW65] Francis H Harlow and J Eddie Welch. Numerical calculation of
time-dependent viscous incompressible flow of fluid with free sur-
face. The physics of fluids, 8(12):2182–2189, 1965.

[KM90] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for
computer graphics. In ACM SIGGRAPH Computer Graphics, vol-
ume 24, pages 49–57. ACM, 1990.

[KW06] Peter Kipfer and Rüdiger Westermann. Realistic and interactive
simulation of rivers. In Proceedings of Graphics Interface 2006,
pages 41–48. Canadian Information Processing Society, 2006.

[LeV02] Randall J LeVeque. Finite volume methods for hyperbolic prob-
lems. volume 31, chapter 12.9. Cambridge university press, 2002.

[LFBC84] WoJ Lehr, RJ Fraga, MS Belen, and HM Cekirge. A new technique
to estimate initial spill size using a modified fay-type spreading
formula. Marine Pollution Bulletin, 15(9):326–329, 1984.

[Lil61] DK Lilly. A proposed staggered-grid system for numerical integra-
tion of dynamic equations. Monthly Feather Review, 89(3):59–65,
1961.

[LZF10] Michael Lentine, Wen Zheng, and Ronald Fedkiw. A novel algo-
rithm for incompressible flow using only a coarse grid projection.
In ACM Transactions on Graphics (TOG), volume 29, page 114.
ACM, 2010.

[MBMP80] D Mackay, I Buist, R Mascarenhas, and S Paterson. Oil spill pro-
cesses and models. Environment Canada Manuscript Report No.
EE-8, Ottawa, Ontario, 1980.

38

http://www.gdcvault.com/play/391/Fast-Water-Simulation-for-Games
http://www.gdcvault.com/play/391/Fast-Water-Simulation-for-Games
http://www.gdcvault.com/play/203/Fast-Water-Simulation-for-Games
http://www.gdcvault.com/play/203/Fast-Water-Simulation-for-Games

[MCG03] Matthias Müller, David Charypar, and Markus Gross. Particle-
based fluid simulation for interactive applications. In Proceedings
of the 2003 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, pages 154–159. Eurographics Association, 2003.

[Mol11] Cleve B Moler. Experiments with MATLAB. Society for Industrial
and Applied Mathematics, 2011.

[Mon92] Joe J Monaghan. Smoothed particle hydrodynamics. Annual re-
view of astronomy and astrophysics, 30:543–574, 1992.

[MSD07] Matthias Müller, Simon Schirm, and Stephan Duthaler. Screen
space meshes. In Proceedings of the 2007 ACM SIGGRAPH/Eu-
rographics symposium on Computer animation, pages 9–15. Euro-
graphics Association, 2007.

[MSJT08] Matthias Müller, Jos Stam, Doug James, and Nils Thürey. Real
time physics: class notes. In ACM SIGGRAPH 2008 classes,
page 88. ACM, 2008.

[NKAS08] Muddassir Nazir, Faisal Khan, Paul Amyotte, and Rehan Sadiq.
Multimedia fate of oil spills in a marine environment—an inte-
grated modelling approach. process safety and environmental pro-
tection, 86(2):141–148, 2008.

[OH95] James F O’brien and Jessica K Hodgins. Dynamic simulation of
splashing fluids. In Computer Animation’95., Proceedings., pages
198–205. IEEE, 1995.

[PTB+03] Simon Premžoe, Tolga Tasdizen, James Bigler, Aaron Lefohn, and
Ross T Whitaker. Particle-based simulation of fluids. In Computer
Graphics Forum, volume 22, pages 401–410. Wiley Online Library,
2003.

[Spa88] Malcolm L Spaulding. A state-of-the-art review of oil spill trajec-
tory and fate modeling. Oil and Chemical Pollution, 4(1):39–55,
1988.

[SS95] P Sebastiao and C Guedes Soares. Modeling the fate of oil spills
at sea. Spill Science & Technology Bulletin, 2(2):121–131, 1995.

[Sta99] Jos Stam. Stable fluids. In Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques, pages
121–128. ACM Press/Addison-Wesley Publishing Co., 1999.

[Tes04] Jerry Tessendorf. Interactive water surfaces. Game Programming
Gems, 4(265-274):8, 2004.

[TMFSG07] Nils Thurey, Matthias Muller-Fischer, Simon Schirm, and Markus
Gross. Real-time breaking waves for shallow water simulations. In
Computer Graphics and Applications, 2007. PG’07. 15th Pacific
Conference on, pages 39–46. IEEE, 2007.

39

[TWGT10] Nils Thürey, Chris Wojtan, Markus Gross, and Greg Turk. A
multiscale approach to mesh-based surface tension flows. In ACM
Transactions on Graphics (TOG), volume 29, page 48. ACM, 2010.

[YHK07] Cem Yuksel, Donald H House, and John Keyser. Wave particles.
In ACM Transactions on Graphics (TOG), volume 26, page 99.
ACM, 2007.

[ZB11] Jian Guo Zhou and Alistair GL Borthwick. Lattice boltzmann
method for variable density shallow water equations. Computers
& Fluids, 49(1):146–149, 2011.

[ZLO13] Jean De Dieu Zabsonré, Carine Lucas, and Adama Ouedraogo.
Strong solutions for a 1d viscous bilayer shallow water model. Non-
linear Analysis: Real World Applications, 14(2):1216–1224, 2013.

[ZM13] Yubo Zhang and Kwan-Liu Ma. Spatio-temporal extrapolation
for fluid animation. ACM Transactions on Graphics (TOG),
32(6):183, 2013.

40

A Oil slick Estimation

Using [Fay71], this is the still used equation to estimate a spilled volume for the
approximate shape of the slick:

A = π0.982

{
gV 2t3/2v−1/2

w

[
ρw − ρo
ρo

]}1/3

With A the area of the slick (m2), V denotes initial volume of the slick (m3),
g denotes gravity constant (m/s2), t denotes time (s), vw denotes kinematic
viscosity of water(m2/s), ρw denotes water density (kg/m3), ρo denotes oil
density (kg/m3). And a maximum area for A proposed in A to occur when the
slick thickness is about 10−5V 3/4 [Fay71].

A = 105V 3/4

But all this concerns a slick that is not subject to wind, this is corrected by
[LFBC84] who divide the slick in an minor and major axis. He considers the
slick as more or less an ellipse, having the major axis oriented in the direction
of the wind. (A) thus become:

A = 2.27

[
ρw − ρo
ρo

]2/3

V 2/3t−1/2 + 0.04

[
ρw − ρo
ρo

]1/3

V 1/3W 4/3t

With W the wind (knots) and V the Volume in barrels (159 L/barrels).

B Oil Dispersion at Sea

The fraction of oil lost at sea can be expressed as follow:

D = DaDb

With Da the fraction of sea surface lost at sea per hour, and Db the fraction
of dispersed oil not returning to the slick expressed as:

Da = 0.11(W + 1)2

Db = (1 + 50µ1/2δst)
−1

With W the Wind speed (m ·s−1), µ the viscosity (cP), δ the slick thickness
(cm) and st the oil-water inter-facial tension (dyne · cm−1). [SS95] estimates
the dispersion at in between 10µg.l−1 up to 2mg.l−1, justifying why it would be
ignored in our simulation

41

C Calculation of the finite differences

This section presents how we came to the finite difference formulas for ∆V , ∆ρ
and ∆µ, representing Volume, density and viscosity changes over one time step.

They are crucial as we used in the simulation obtained from the base equa-
tions

Volume change

Considering evaporation of the oil and incorporation of water inside the slick
(the 2 behaviours tracked in this simulation), the volume occupied by the slick
at time t is:

Vt = V0· − VEvaporated + VWaterInOil

We have from (7) the Fraction of oil in water Y , and from (5) & (6) the
Volume evaporated E:

Vt = V0· − V0· × Et + V0· ∗ Yt
= V0· (1− Et + Yt)

Naturally t, (t− 1) and 0· designate the current time step, the previous time
step and the start conditions respectively.

We then obtain the ∆V by doing Vt − Vt−1 :

∆V = V0· (1− Et + Yt)− [V0· (1− Et−1 + Yt−1)]

= V0· (Yt − Yt−1) (Et−1 − Et)

At each time step we have thus calculate Et & Yt and reuse the data from
the previous time step as Et−1 & Yt−1 to compute the changes.

Density change

Considering the same mechanism as for the volume change, the density at time
t is:

ρt = ρEvap(1− Yt) + ρwater(Yt)

And we can replace ρEvap by:

ρEvap = ρoil + C3(Et)

Again, to use it in the simulation, we calculate ∆ρ by:

∆ρ = ρt − ρt−1

= ρoil(Yt−1 − Yt) +C3(Et(1− Yt)− Et−1(1− Yt−1) +ρwater(Yt − Yt−1)

At each time step we just reuse E and Y used in ∆V to compute the changes
of density. We also remind that C3 and C4 are constant depending on the type
of oil (see [3.1.3])

42

Viscosity change

Also considering only Evaporation and Emulsion:

µt = µoil × exp [C4Et]× exp
[

2.5Yt
(1− C3Yt)

]
And again the derivative ∆µ

∆µ = µoil × exp [C4Et]× exp
[

2.5Yt
(1− C3Yt)

]
− µoil × exp [C4Et−1]× exp

[
2.5Yt−1

(1− C3Yt−1)

]
= µoil(exp

[
C4Et +

2.5Yt
(1− C3Yt)

]
− exp

[
C4Et−1 +

2.5Yt−1

(1− C3Yt−1)

]
)

43

	Introduction
	Background
	Motivation and Challenges
	Research Question
	Contribution

	Background Research: Fluid Simulation
	Procedural Water
	Particle Based Fluids
	Eulerian 3D Grid
	Eulerian 2D Grid
	Conclusion on Fluid Simulation

	Simulating Oil Slicks
	Oil Slick Weathering
	Spreading
	Advection
	Evaporation
	Dispersion
	Emulsification
	Dissolution
	Photo-Oxidation
	Sedimentation
	Biodegradation

	Oil Slick Cleaning Process
	Physical Phenomena in Our Environment

	Our Approach: The Shallow Water Equations
	Inputs and Variables
	Shallow Water Simulation
	Shallow water equations

	Discretization of SWE
	Conservative vs non-conservative form
	Choice of grid
	Simplistic non-conservative discretization
	Boundary behavior
	Flag system

	Addition of a second layer of fluid
	SWE Modifications for Oil
	The Algorithm

	Interaction with solids
	Floating objects
	Addition and deletion of fluids

	Fluid Boundary Expansion
	Performance improvement
	Results
	Simulations results
	Encountered Issues

	Conclusion and future work
	Conclusion
	Limitation and future work

	Oil slick Estimation
	Oil Dispersion at Sea
	Calculation of the finite differences

