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Abstract

The intensity and frequency of (extreme) precipitation are likely affected by climate change. While
many studies have focused on trends in extreme daily sums, extreme precipitation often occurs
on shorter timescales. The present work aims to assess and understand trends in intensity and
frequency of hourly extreme precipitation for 5 stations in the Netherlands (De Bilt, De Kooy,
Vlissingen, Maastricht and Eelde) for the period 1958 until 2015.

Robust signals are found in hourly precipitation data with spatial and seasonal variation in
magnitude and number of significant trends. Multiple significant trends (p > 95%) for independent
2-day periods show a rapid increase of the (25-5%) highest intensities, a decrease in the frequency
of wet hours (of the mean and 50-0.1% wettest 2-days), and a constant to increasing signal in the
mean and (10-1% highest) precipitation sums.

Our study confirms previous findings (IPCC, 2013) that the “high” extremes increase in a
disproportional way, compared to the yearly mean and “low” extremes.

To explain the observed trends, we studied from theory and by statistical analysis four impor-
tant factors for extreme precipitation, (i) temperature, (ii) dewpoint temperature, (iii) CAPE and
(iv) wind speed. The observed trends in precipitation intensity are likely caused by the increase in
temperature, via Clausius-Clapeyron related increase of the atmospheric “moisture-holding capac-
ity”. This finding matches well with our observed negative trends in the frequency of wet hours,
as warmer air becomes less easily saturated.

Promising for future research is the integration with high-resolution (e.g. satellite and radar)
observational data, testing of models’ capability to capture extreme precipitation and scaling up
the research to larger regions such as Europe.





Chapter 1

Introduction

1.1 Background

One of the meteorological factors affecting our society the most are changes in precipitation (Berg
and Haerter, 2013a). In particular the extreme events regarding precipitation give rise to natural
hazards such as floods and droughts, of which the impact is determined by the occurrence, mag-
nitude and location (Trenberth and Parsons, 2003; IPCC, 2013).Resultant from extreme precipi-
tation are multiple forms of damage to private and public assets, as well as temporary disruption
of social and economic activities (Cramer and Tibig, 2014, p.998) such as traffic or long-term
socioeconomic effects related to crop production (Rosenzweig and Bloomfield, 2002; Koetse and
Rietveld, 2009). Therefore, the Fourth Assessment Report(AR4) of the Intergovernmental Panel
on Climate Change (IPCC) emphasized the importance of understanding the changes of weather
extremes in time. As climate change can cause changes in the probability of occurrence or the
severity of extreme weather events, it could drive trends in temperature and precipitation extremes
(IPCC, 2013).

The AR5 of the IPCC concluded that it is likely that since 1951 there have been in more regions
where there have been statistically significant increases in heavy precipitation events (e.g. above
the 95ht percentile) than regions where there have been statistically significant decreases (IPCC,
2013). Note that there are strong seasonal and (sub)regional variations in the trends. For Europe,
from 1951 to 2010, Besselaar and Buishand (2013) found a median reduction in 5- to 20-year
return periods for extreme precipitation events of 21% with a range between 2% and 58% depend-
ing on the subregion and season. However, the annual heavy precipitation events have increased
globally in a disproportional way compared to mean changes between 1951 and 2003 over various
mid-latitude areas, even in regions where a reduction was found in the mean (IPCC, 2013). This
difference in changes between mean and extreme precipitation can be explained from the fact that
the global-mean precipitation is constrained by the energy budget of the atmosphere, while the ex-
treme events depend in a non-linear way on the moisture availability (Pall and Stone, 2007; IPCC,
2013). With global warming, the moisture-holding capacity of the atmosphere rises. Under the
constraint of constant relative humidity, changes in the uppermost quantiles of precipitation are
expected to be thermodynamically related to temperature following the Clausius-Clapeyron (CC)
equation (approximately 7% increase per degree of warming)(Pall and Stone, 2007). According
to multiple studies (Pall and Stone, 2007; Lenderink and Van Meijgaard, 2010; Hardwick Jones
and Sharma, 2010; Lenderink and Van Oldenborgh, 2011) this is because the heaviest events are
expected when all the moisture in a volume of air is precipitated out.

Changes in temperature, and more directly in dewpoint temperature (as measure of the satu-
ration level of the air) (Lenderink, Meijgaard, and Selten, 2009) can thus be seen as explanatory
factors for trends in extremes. Furthermore, vertical instability is important for the formation of
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intense rain showers (Monkam, 2002; Adams and Souza, 2009; Loriaux and Siebesma, 2013). Next
to temperature, dewpoint temperature and vertical instability, the degree of wind shear can be an
important factor for trends in extreme precipitation (Brauer, 2007; Trenberth, 2011). Wind shear
can namely influence the intensity of precipitation via the organisation of precipitation systems
(Browning, 1964; Sumner, 1988; Weisman and Klemp, 1982; Wingo and Cecil, 2010).

1.2 Relevance of this study

While numerous studies (e.g. Zhang and Niitsoo (2000), Klein Tank et al. (2002), Sen Roy and
Balling (2004), Zhai (2005), Buishand and Brandsma (2013), Daniels and Holtslag (2014), and
Roth and Jongbloed (2015)) have investigated trends in datasets of daily precipitation sums, trend
analysis on datasets of hourly precipitation sums has only been done in recent years (Lenderink
and Van Meijgaard, 2008; Sen Roy, 2009; Lenderink and Van Oldenborgh, 2011). In contrast to
daily data, hourly data provides the possibility to capture short-lasting, intensive precipitation.
Analysis thereof is essential regarding precipitation extremes. On a daily basis, long-lasting, weak
stratiform precipitation could add up to a relatively high daily sum, while one single convective
extreme precipitation event could produce the the same daily sum (see Chapter 3 for information
about cloud types). Thus, the combination of duration and intensity indicates what kind of pre-
cipitation mechanism is producing the event in question.

Lenderink and Van Meijgaard (2008), Lenderink and Van Meijgaard (2010), and Lenderink
and Van Oldenborgh (2011) studied the relationship between hourly precipitation intensity and
temperature and/or dewpoint temperature and found a super Clausius-Clapeyron(CC)-scaling for
the Netherlands, Belgium, Switzerland and Hong Kong. Although, scaling beyond that expected
from thermodynamic theories is controversial. Haerter and Berg (2009) argued that the scaling is a
statistical product of the transition from large-scale to convective precipitation with temperature.
Besides, they suggest that studying extremes on an hourly basis instead of a daily basis, implies
a shift from more large-scale-dominated rain events to convective-dominated events, because the
latter type occurs during a shorter time scale than the former type. Overall, convective precipita-
tion is characterized by higher intensities than stratiform precipitation (Berg and Haerter, 2013a).
As convective (large-scale) precipitation occurs more often at high (low) temperature, this could
explain the super CC-scaling with temperature (Haerter and Berg, 2009).

Moreover, from the few studies based on hourly precipitation sums almost none of them have
considered differentiating trends on season and/or region within the Netherlands and Europe.
However, mechanisms behind precipitation extremes are related to the climate at that location
and season. For instance, significant trends in daily summer precipitation amounts were restricted
to coastal regions, assumedly explained by an increase in the sea surface temperature (Lenderink,
Meijgaard, and Selten, 2009). Additionally, Daniels and Holtslag (2014) concluded that the dis-
tance to the coast is a more important factor for the seasonal mean precipitation and quantiles of
wet-day precipitation amounts than soil type, topography or urbanization.

Next to spatial factors, the time of the year can be important for the type of precipitation.
Buishand and Brandsma (2013) found trends over the period 1951-2009 for annual precipitation
and seasonal amounts, with the strongest increases in the winter season. This is consistent with
the increases found in western and central Europe (Besselaar and Buishand, 2013). For this part
of Europe, the relative contribution of the synoptic weather systems is prevalent to winter pre-
cipitation, while local thunderstorm-like events dominate summer precipitation . The probability
density function of wet events consists of the sum of large-scale and convective precipitation.
As both types of precipitation differ in intensity, frequency and duration, it is relevant to study
changes differentiating on time scale, season and location.
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1.3 Aim and structure of this study

This thesis aims at understanding how extreme hourly precipitation in the Netherlands change in
time and what the mechanism is behind these changes. In a threefold approach we investigated
this: (i) analyzing seasonal and spatial characteristics of hourly precipitation, (ii) applying trend
analysis on 2-day maxima in hourly precipitation intensity, 2-day frequencies of wet hours and
2-day precipitation sums for five stations, and (iii) deriving key variables for changes in extreme
precipitation from theory and strength of correlation and thoroughly investigating time related
changes for the maxima of the key variables themselves and for their relationships with precipi-
tation maxima. The present work concentrates on five Dutch stations; De Kooy, De Bilt, Eelde,
Vlissingen and Maastricht.

This thesis has been divided into 6 chapters. In the first Chapter, the Method Chapter, we
describe the type of data used and the data quality. Here, we also explain how we define extremes,
how we apply trend analysis and investigate the reason for the observed trends. In Chapter 3, we
describe from theory the conditions favorable for the production of extreme precipitation and the
different cloud types. This provides us with the basic knowledge required to be able to interpret
spatial and seasonal variability in precipitation data, which is studied and reported in Chapter
4. The importance of spatial and seasonal factors is analysed for the intensity and frequency of
wet hours and the intensity of extremes. Consequently, we decide that it is relevant to study the
trends of hourly precipitation extremes for the five stations in the Netherlands separately instead
of bundling the station data to enhance the chance on trend detection. We also defined two
key seasons based on the seasonal dependence of the precipitation characteristics. This spatial
analysis combined with differentiating on season, provides more detailed and robust knowledge
about changes in hourly precipitation.

In Chapter 5, we present the results of trend analysis in precipitation characteristics between
1958-2016 for the five stations. We investigate whether extreme intensities increase or decrease
in time. Thereby, we compare these trends to trends in mean intensity and compare the trends
in extreme and mean intensities between the different stations. Furthermore, we examine trends
in precipitation frequency and study whether we observe trends in the 2-day precipitation sum as
excepted as the product of the trends in intensity and frequency. In this trend analysis both ordi-
nary least-square, and quantile regression is applied. Based on how the data is distributed, these
regression techniques are used solely or in combination. The significance of all fitted regression
slopes is investigated in a 9999 Monte Carlo Permutation test.

The fifth part (Chapter 6) attempts to identify and attribute variables responsible for the
detected trends in Chapter 5. We defined key variables based on theory and their strength of
correlation with precipitation maxima. Furthermore, time regression is applied on temperature,
dewpoint temperature, Convective Available Potential Energy (CAPE) and wind speed to observe
if their trends match the trends found for precipitation intensity. Besides, we verify whether
the super Clausius-Clapeyron scaling found by Lenderink and Van Meijgaard (2008), Lenderink,
Meijgaard, and Selten (2009), and Lenderink and Van Oldenborgh (2011) is present in our hourly
data and if it may be attributed to mixing of winter-and-summer-dominated processes only or
to the evolution of the climate state in time. Additionally we investigate whether changes in
precipitation intensity maxima are the result of changes in the distribution(s) of the key variable(s)
and/or whether these are the result of changes in the relationship of precipitation intensity with
the key variable(s).

Lastly, we end with a discussion of the research method and results and present the main
conclusions (Chapter ??).

5



Chapter 2

Method

2.1 Introduction

In this chapter an overview is given of the method involved in this work. Firstly, the type of
data used in the present work and its quality is described. Secondly, theory about linear trend
analysis and quantile regression is discussed, which forms the basis for Chapter 5. Furthermore,
the underlying assumptions of trend analysis are discussed. Moreover, methods of fulfilling the
assumption of independence and testing for significance are given. Lastly, we elaborate on how
we expanded the general statistical analysis in such a way that the causes behind the detected
trends in hourly precipitation can be investigated. This part of the method includes Pearson
and Spearman correlations and regression of binned quantiles, of which the results are shown in
Chapter 6.

2.2 Data

2.2.1 Time and place

For the first part of this thesis hourly rain gauge data is used from five stations in the Netherlands.
Taking into consideration the need for having an as long as possible consistent time series as well
as data which is spatially representative for different parts of the country, we were left with data
of five stations. These stations are: De Kooy (235), De Bilt (260), Eelde (280), Vlissingen (310)
and Maastricht (380), of which the location is shown in Figure 2.1. Coordinates and altitude of
the stations are listed in Table 2.1. For each station data is available on hourly resolution of which
the following variables are used in this study: time, hourly precipitation sum, duration (defined as
the hourly time fraction of precipitation), temperature, dew point temperature, relative humid-
ity, wind strength and CAPE (source data: http://www.knmi.nl/nederland-nu/klimatologie/
uurgegevens).

As our focus of interest is precipitation extremes and their lifetime is often on the sub-hourly
to hourly scale, we have chosen a time period by considering both a high resolution as well as a
long enough time span for the detection of trends. For the period from 1958 until 2015 coherent
time series for all stations are present, which can be easily compared and simultaneously analysed.
Only CAPE data are more restricted in time and place. These CAPE observations are derived
from radiosonde measurements at the Bilt in the period 01-03-1993 until 2015 (source: de Haan,
2016), and are not available for the other stations. Moreover, CAPE measurements also differ in
temporal resolution, from a mean of 4 per day to 1 per day in the course of time (see Figure 2.2).
Days which were thought to be of meteorological interest, have up to 5-6 CAPE measurements
per day.
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Figure 2.1: A map of the Netherlands showing the locations of the five stations; De Kooy (235),
De Bilt (260), Eelde (280), Vlissingen (310) and Maastricht (380).

Table 2.1: Station location and altitude

Station STN LON(east) LAT(north) ALT (m)
De Kooy 235 4.785 52.924 0.50
De Bilt 260 5.177 52.101 1.90
Eelde 280 6.586 53.125 3.50
Vlissingen 310 3.596 51.442 8.00
Maastricht 380 5.768 50.910 114.00

2.2.2 Type of data and instruments

The variables investigated in this thesis, and their unit, resolution and measurement instrument,
are listed in Table 2.2. Precipitation intensity is defined as the mean hourly intensity in mm hr−1,
so the accumulated rain amount per hour. CAPE is defined as the amount of energy available for
free convection, in Joule/kg, and computed as the amount of work done by the buoyancy force in
a parcel of air that is lifted from the lifting condensation level to the level of no buoyancy (Lin,
2007),

CAPE =

∫ zLNB

zLCL

g(
T − T̄
T̄

)dz (2.1)
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The resolution of CAPE observations
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Figure 2.2: The number of CAPE measurements (N) per day showed as a point cloud in a, and
the yearly average per day, represented by bars, in b.

In this equation T is the temperature of the air parcel (the temperature inside the radiosonde),
and T̄ is the temperature of the environment. Furthermore, g is the gravitational acceleration
and zLNB the height at the level of no buoyancy and zLCL the height of the lifted condensation
level. For more information about the instruments involved and the exact instrument setup for
each variable, see KNMI (2000a, Chapter 14).

Table 2.2: Data characteristics

Name Unit Resolution Instrument
Precipitation Hourly sum in mm 0.1 mm Automatic rain gauge

(=liter m−2)
Duration part of the hour 0.1 hour Rain sensor
Temperature ◦C 0.1 ◦C Electronic KNMI

Pt-500 sensor
Dewpoint temperature ◦C 0.1 ◦C KNMI Pt-500 and

E&E33 sensor
CAPE J kg−1 1 J kg−1 Radiosonde
Relative humidity % 1 % E&E33 sensor at 1.5m height)
Wind strength Hourly mean m/s 0.1 m/s AWS at 10m height

Until the beginning of the nineties all precipitation measurements were conducted manually
with a pluviograph. This is an instrument which measures the amount of water fallen into the
rain gauge with the help of a plastic graduated cylinder (KNMI, 2000a, Chapter 6). Between
1963 and 1981 the manual rain gauges of the different stations were replaced by gauges with an
orifice, collecting area from 200 cm2 instead of 400 cm2, of which the effect is considered to be
small (Denkema, 1980; Denkema, 1981; Warmerdam, 1981; Brandsma, 2014). Measurement un-
certainties of manual rain gauges may be caused by wind-induced transport of water droplets or
snow flakes, evaporation of droplets or loss due to water pouring over (to the graduated cylinder).

8



These errors can be reduced by choosing a good environment (KNMI, 2000a, Chapter 6).

Figure 2.3: Exam-
ple of a manual
gauge (with the rim
at 0.4 m).

Since 1991 (Eelde and Maastricht) or 1993 (De Kooy, De Bilt
and Vlissingen) the rain measurements are automatized (see Ta-
ble 2.3). Table 2.3 summarizes the most important historical
changes for the five stations regarding precipitation measurements
(from http://projects.knmi.nl/klimatologie/metadata/). For his-
torical changes of the other meteorological parameters than precipita-
tion, go to the KNMI site (http://projects.knmi.nl/klimatologie/
metadata/).

The newer rain gauge automatically registers the height of the float,
which is attached to a potentiometer, representing the amount of fallen pre-
cipitation (KNMI, 2000a, Chapter 6). Any precipitation fallen in the solid
phase is first melted by heating of the funnel, in order to be measured in the
liquid phase. An illustration of the so-called KNMI rain gauge is given by
Figure 2.4 (for more information see Wauben (2004)). The common setup of
an automatic measuring site is the English setup (Figure 2.5). In a compar-
ison study between manual and automatic networks of rain gauges, Brandsma (2014) concluded
that automatic rain gauges measure 5-8% less on annual basis (6.5% averaged over the entire
period 2001-2013).

Figure 2.4: The design of an automatic rain
gauge (KNMI, 2000a, Chapter 6).

Figure 2.5: An automatic rain gauge of the
KNMI in English setting (Brandsma, 2014).

In English setup the gauge is placed on a small concrete box with a drainage tube in the middle
of a circular wall with a diameter of 3 meters (Brandsma, 2014). The standard height of both the
top of the rain gauge and the wall is 40 cm. See Brandsma (2014) for further details about the
material and environment surrounding the pit. The English setup was implemented to prevent
wind-induced loss, however in a study of Braak (1945) this is contradicted. Currently, most rain
gauges are no longer in the English setup, but situated in an Ott windscreen. Compared to the
English set up, Wauben (2004) concluded that the Ott wind screen has a (extra) reduction in
the annual mean precipitation of 1.5% (to 6% in windy conditions). For further details about the
measurements in temperature, dewpoint temperature, wind direction and wind speed, see KNMI
(2000b).

The hourly precipitation data are rounded to 0.1 mm (Table 2.2), except for the hourly pre-
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Table 2.3: Historical changes in precipitation data

Orifice area reduction from 400 to 200cm2

Station When
De Kooy 19720801
De Bilt 19810401
Eelde 19730502
Vlissingen 19620410
Maastricht 19760701

Automatic measurement
Station When
De Kooy 19930101
De Bilt 19930301
Eelde 19910316
Vlissingen 19930501
Maastricht 19910301

Ott windscreen
Station When
De Kooy 20070426
De Bilt 20080925
Eelde 20090518
Vlissingen -
Maastricht -

Relocation of instrument
Station When How much
De Kooy - -
De Bilt 20080925, 13.00 UT 200 m
Eelde 19730501 750 m
Vlissingen - -
Maastricht 20051101 1770 m

cipitation sums of < 0.05 mm. For this study we rounded hourly precipitation sums of < 0.05
mm to 0 in order to have a consistent rounding. This leads to more dry hours (± 8% of total
amount of hours). For frequency analysis we could argue to include these hours and code them as
wet, however for intensity analysis this is not desired. The exact amounts are namely not known.
Therefore, we choose for a consistent data set, in which wet hours are defined as hours in which
precipitation accumulates to amounts higher than 0.05 mm. Furthermore, we converted the unit
from sums (or degrees, speeds) of 0.1 mm (◦C, m/s) to sums (or degrees, speeds) of 1 mm (◦C, m/s).

Moreover, for some research questions in this thesis we only consider wet hours, days, daily
or 2-days maxima. For instance in Chapter 4 we analyse only wet hours, when we are interested
in the characteristics of precipitation events. In Chapter 6 we are interested in the correlation
between precipitation and other variables. Therefore, when considering daily or 2-day maxima
in intensity, we only take into account wet maxima (higher than 0.05 mm/hr). Another reason
to investigate the statistics of wet events only, is that these are less dependent on changes in the
atmospheric circulation (Lenderink and Van Oldenborgh, 2011), which can be convenient when
studying local factors such as moisture availability and CAPE.
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2.2.3 Data quality

For trend analysis a high-quality data set is required, especially one whose variability consists
solely of changes in weather and climate. This is the definition of an homogeneous climate time
series (Freitas and Nunes, 2013). Nonetheless, long instrumental records are rarely homogeneous,
for example due to station relocations, changes of rain gauge type, and changes in the rain gauge
site (Buishand and Brandsma, 2013; Freitas and Nunes, 2013). As can be deduced from Table
2.3 our data sets also have inhomogeneities. Although much attention has been devoted to ho-
mogeneity testing and adjusting for inhomogeneities, methods thereof are not considered here for
multiple reasons.

First of all, inventing and applying homogenization tests for hourly data is a time consuming
and difficult task and would not fit within the time framework of this thesis. Secondly, there are
no existing homogenization programs available on hourly resolution to implement easily. Thirdly,
homogenization tests in which neighboring stations are used in pairwise comparison would not be
suited here, due to the large spatial distance between the stations. As a matter of fact, there are
no other neighboring stations matching in resolution and length of data set.

A possible way of correcting for instrumental errors is by comparing the automatic rain gauges
with the hand rain gauges, because we know from Brandsma (2014) that the former measures an-
nually 5-8% lower than the latter (Section 2.2.2). This can be explained by errors in evaporation
values due to a warming element in the automatic rain gauge and by a relatively less favorable
aerodynamic shape (Smits and Kok, 2004). However, there are several limitations to this correc-
tion. First, the timing of manual measurement is less trustworthy, especially in case of extreme
precipitation, resulting in large absolute differences. Second, the correction factor as applied by
Buishand (1988) (multiplying every hour by the factor, f = D/P , with D the daily sum of the
manual rain gauge and P the daily sum of the automatic rain gauge) is not valid here. Rain is
namely not evenly distributed over the hours, and this kind of errors will be bigger for extreme
rain intensities. Third, the manual and automatic rain gauges are often placed further from each
other in the course of time (Table 2.3). The larger the distance and the more local the rain events
of interest, the smaller the benefit of this correction technique. As intense convective rain events
can be very local, this is a serious limitation.

Last, an underestimation of automatic measurements is not that relevant for trends in ex-
tremes, when this bias is consistent in time. Then we can still deduce trends. This leads us to
the conclusion that the proposed types of correction are not worthwhile to apply on our data.
As we can deduce from Table 2.3 some time-wise steps in measurements are expected due to the
implementation of different kind of instruments or due to relocation. Therefore, these errors are
not consistent over the entire time period.

In order to study possible jumps in our precipitation data, we show the annual means of the
hourly precipitation sums (P) in combination with the timing of the important historical changes
for every station in Figure 2.6. The regression lines (solid red lines) of the annual means in P are
drawn by the geom smooth function of the “ggplot2” package in R, which are in fact estimates of
the conditional mean function. In other words, such a regression line is an estimate of the average
of the annual means in P conditional on the year (the type of estimator is called LOESS). The
gray bands in Figure 2.6 enclosing the regression lines, are plotted by the same R function, and
represent the 95% confidence level intervals for the predictions from the smoothed LOESS model.

For De Kooy three important historical changes have taken place, of which the timing is indi-
cated in Figure 2.6a by dashed lines. The dashed purple line is linked to the reduction in the orifice
area from 400 to 200 cm2 in 1972. In Figure 2.6a this effect seems to be negligible, confirming
what was stated in Section 2.2.2. The dashed green line represents the change from manual to
automatic (electric) measurements in 1993. In this figure it is hard to detect an evident jump in
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the data between the period before and after the change. The little bump in the year 1993 is not
thought to be the result of the change, as we would expect a long-term shift in the data. In other
words, we are seeking for simultaneous occurrence of an historical change with a breakpoint in the
annual precipitation means. The dashed blue line in Figure 2.6a relates to the change of setup;
since 2007 the rain gauge is located in an Ott windscreen instead of an English setup. This would
lead to a decrease in the annual means in P of 1.5%, which could have influenced the breakpoint
in the smoothed regression fit around 2007.

Relation between annual precipitation means and historical changes
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Figure 2.6: The annual means of the hourly precipitation sums (P in mm) of De Kooy (a), De
Bilt (b), Eelde (c), Vlissingen (d), and Maastricht (e), from 1958 till 2015. The red line presents a
regression fitting of the annual means in P, enclosed by the corresponding 95% confidence interval
(gray band). The vertical dashed lines give the timings of important historical changes, the type of
change is indicated by the color: orifice area reduction (purple), automatic measurement (green),
Ott windscreen (blue), and relocation of the instrument (orange). When one of the changes occurs
simultaneously with a relocation a solid line is used instead of a dashed line.

Contrary to a large temporal jump in the year 1982, we do not spot a clear shift in the precip-
itation data of De Bilt for the reduction in orifice area (Figure 2.6b). The increase in the annual
mean loss due to the change from manual to automatic rain gauge can not be deduced from Figure
2.6b. However, for the implementation of the Ott windscreen and simultaneous relocation (200
m) of the station in 2008, we again observe a breakpoint in the smoothed regression line. It is
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possible that this change in setup has had an effect on the precipitation measured, although keep
in mind that the confidence interval increases at the same time.

None of the historical changes regarding precipitation measurements at Eelde can be linked to
breakpoints in the regression of the yearly mean (2.6c). This is interesting regarding the change
to the Ott windscreen setup, of which we thought it might have influenced the decreasing trends
in annual mean P observed in Figures 2.6a, 2.6b. This is apparently not a consistent relationship.
Therefore, it is still possible that this decreasing trend starting the early 2000s has another (f.e.
climatic) reason. Note that the uncertainty, expressed by the confidence interval band, is quite
high for this time period and station.

Figure 2.6d demonstrates the regression and individual points of the annual precipitation means
and two historical changes for the station in Vlissingen. Both the change in orifice area, as well
as the implementation of an automatic rain gauge, can not be linked to a breakpoint in the
regression of the annual means. What is more striking about Figure 2.6d, is the much less pro-
nounced interdecadal pattern in the annual means in precipitation, compared to the other stations.

The reduction in orifice area (in 1976) and change to an automatic rain gauge (1991) in Maas-
tricht, does not correspond to a clear shift or jump in the annual precipitation means (2.6e). The
relocation in 2005, which was the farthest in distance compared to the other stations, goes hand
in hand with a breakpoint. However, this is probably the same start (in the early 2000s) of a
decreasing trend as for the other stations, which indicates that the mean driver is not related to
a change in type of instrument.

Overall, the observed breakpoints in Figure 2.6 do not match the same type of change for
every station. Therefore, the effects of changes in type of instrument, setting and/or location
are not likely to have caused a significant jump in the hourly precipitation data. Whether the
observed interdecadal patterns in Figure 2.6 might be linked to climatic changes (f.e. changes in
temperature) will be further investigated in Chapter 6.

2.3 Definition of extremes

A couple of so-called ‘extreme indices’ are listed in the Fifth Assessment Report of the IPCC, which
are widely used in literature. These indices are based on either the probability of occurrence of
given quantities or on absolute or percentage threshold exceedances (relative to the climatological
reference period), but also some complex definitions about duration, intensity and persistence of
extreme events are involved (IPCC, 2013). These extreme indices have been selected on basis
of their robust statistical properties, their applicability across a wide range of climate types and
extensive data availability over space and time. These indices reflect more “moderate” extremes,
as they do not include 1 in 100 year events, but events taking place as often as 5% or 10% of all
hours per year (IPCC, 2013).

The indices used in this study are expressions of events occurring 1 − 45 times a year, so in-
cluding “high” to “moderate” precipitation extremes. Accordingly, the annual number of events is
large enough to apply meaningful trend analysis on 58 yr time series. Extreme events are defined
using the 75, 90, 95, 99, 99.9 %- quantiles, so hours with the highest 25− 0.1 % intensities. Quan-
tiles are cut points partitioning a probability distribution into contiguous intervals, expressed as
the values above which 100− τ % (where τ is f.e. 75%, the 75%-quantile) of the highest values are
situated. For the entire data set with all hourly values, the 99 and 99.9 %-quantiles express “mod-
erate” extremes occurring 10-85 times a year, whereas dry hours occurring ± 88% of the time.
However, we only apply full trend analysis on data consisting of 2-day maxima (the reason for this
will be given in Section 2.4.2). The 75−99.9 %-quantiles of this data set correspond to 1−45 times
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a year and intensities of > 2−24 mm hr−1. Here, the 99 and 99.9 %-quantiles represent the “high”
extremes, with frequencies of approximately 0.18 and 2 times per year. The 75, 90, 95 %-quantiles
belong to values occurring roughly 10, 18 and 45 times a year. These indices are chosen such that
the extremes selected have impacting intensities( > 1.6−6 mm hr−1 for “moderate” extremes and
> 8-30 mm/hr for “high” extremes), as well as a high enough occurrence per year for trend analysis.

2.4 Trends

In Chapter 5 trend analysis is applied on intensity and frequency (number of wet hours per day)
data for every station. In this section we will explain how we applied trend analysis and on which
assumptions it is based. We differentiate between two linear regression techniques: least-square
and quantile regressing. Furthermore, we describe how we tested the significance of the observed
trends.

2.4.1 Simple linear trend

To detect and quantify historical climate trends, the linear component of the change over time
is often estimated. The strengths and weaknesses of this approach are well understood as it is
frequently and widely applied (Von Storch and Zwiers, 1999; Wilks, 2011; IPCC, 2013). In linear
trend modelling the way in which the trend is dependent on the sampling distribution (Gaussian,
lognormal or otherwise) and the residuals on the trend line, has to be considered carefully. More-
over, uncertainty and serial correlation in the data have to be taken into account (Von Storch and
Zwiers, 1999; Santer et al., 2008; IPCC, 2013). Two different methods of linear regression are
used in this study; fitting a linear regression model by the ordinary least square approach, and
by linear quantile regression. The choice for a certain method is based on the sampling distri-
bution and the type of result (e.g. regression of the mean or the extreme part) we are interested in.

Least-square regression fitting

The ordinary least square (OLS) method is a minimization function of the sum of squares of the
vertical distance,

∑
(yi − β0 − β1xi)

2, from the data points to the regression line (Leng et al.,

2007). Figure 2.7 illustrates this. The slope of this regression β̂1 is given by
∑

(xi−x̄)(yi−ȳ)∑
(xi−x̄)2 =

Sxy

Syy
.

In a similar way the OLS estimate of X on Y minimizes the horizontal distance between the points
and the regression line. The latter is also named the reverse regression. Ordinary least regression
is only applicable when only one of two variables is random (Leng et al., 2007).
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Figure 2.7: Ordinary least square regression, which minimizes the vertical (a) or horizontal (b)
distance between the data points and the regression line.

Quantile regression

Multiple studies use linear regression for changes in seasonal or annual quantiles. However, when
quantiles are calculated from small samples (i.e. from data per season or year), these can be
biased. Therefore, quantile regression is used to overcome this problem (Wasko and Sharma,
2014; Roth and Jongbloed, 2015). Quantile regression can be viewed as an optimization of a
linear τ -dependent fit to a certain data set, thereby estimating the τ -th quantiles of the response
variable. As described in Koenker and Bassett Jr (1978) and Koenker and Ng (2005) we can
describe the minimization problem to obtain the τ -th sample quantile of data series y as function
of t as

min
β∈R

T∑
t=1

 ∑
(yt−β)≤0

(τ − 1)(yt − β) +
∑

(yt−β)>0

τ(yt − β)

 (2.2)

where the value of β for which the function is minimal is the estimator. To solve a linear
quantile fit, we make the estimator time dependent, β → (β0 + β1 ∗ t), and rewrite Equation 2.2
to

min
β∈R

T∑
t=1

 ∑
(yt−β)≤0

(τ − 1)(yt − (β0 + β1 ∗ t)) +
∑

(yt−β)>0

τ(yt − β0 + β1 ∗ t)

 (2.3)

To illustrate how quantile regression works we plotted Figure 2.8.
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Example quantile regression

−2

−1

0

1

2

0 25 50 75 100
x

y
Quantiles

25%

50%

75%

Figure 2.8: For a random data set of 100 values of y for all x (numbers from 1 to 100) the colored
lines (black-green) give quantile regression fits with respectively τ = 25, 50, 75%. The dots in
black give all values higher than the 25%-quantile. Note, these dots are overplotted by the blue
dots which indicate all values higher than the 50%-quantile. The latter dots are also over plot by
the green dots giving all values higher than the 75%-quantile.

Complementing the least square method, quantile regression is less sensitive for outliers and
therefore a more robust alternative for estimating the main tendency in extremes (Koenker, 2005;
Roth and Jongbloed, 2015). Besides, for spatial comparison quantiles are more relevant then
counts of exceedance over thresholds (Klein Tank and Können, 2003), as they correspond to the
same part of the distribution for all stations. Therefore, quantile regression offers the possibility to
investigate better the conditional distribution (τ -% of the data) of the response (Koenker, 2005).
Note, that trend estimates of high quantiles can still be noisy due to data scarcity (Roth and
Jongbloed, 2015).

Quantile regression was performed using the R package “quantreg” (Package quantreg: Quan-
tile regression). The default method for computing quantile regression is a modified version of
the Barrodale and Roberts algorithm for l1-regression, described in detail in Koenker and d’Orey
(1987) and Koenker and d’Orey (1994). For large data sets (n > 10000) we use Frisch-Newton
interior point method ((Koenker, 2005)) to calculate quantile regression.

2.4.2 Time dependency of data

When notable autocorrelation is present, the linear regression estimates may be potentially invalid
and inconsistent (Time-series Analysis). Autocorrelation is cross-correlation of a signal with itself
at different points in time. In other words, hourly values successive in time are dependent on each
other. Partial autocorrelations are cross-correlations in time with intermediate autocorrelations
removed. Based on the autocorrelation function (acf) and partial autocorrelation function (pacf)
repeating time-dependent patterns can be recognized. Koenker (2005, pp.128) stated that the
typical independent and identically distributed errors (IID) condition (i.e. the condition that all
random variables have the same probability distribution as the others and are mutually indepen-
dent) is most of the time influencing the regression error terms for both the mean- and quantile
regression. Therefore, it is important to correct for autocorrelation when applying quantile regres-
sion to detect a trend (Huo et al., 2013). To have a time-independent data set a sampling spacing
larger than the significant lags of these patterns can be chosen.
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2.4.3 Testing of significance

Whether least square or quantile fits on the independent data are significant, has to be tested.
First, we start with an hypothesis of stationarity against a linear trend. In the case of stationarity
the fitted value (f.e. of the quantile of interest) is constant over time, i.e.

H0 : Qi == β (2.4)

with the time step i, or
H0 : α == 0 (2.5)

with α presenting the slope.
This can be tested against the alternative that it is increasing (or decreasing), i.e.

H1 : Qi ≤ Qn (2.6)

or differently formulated as
H1 : Qi = α0 + α1 ∗ i, α1 > 0 (2.7)

with n indicating the nth-time step.
Here, we test whether the slopes of the fitted regression lines are significantly larger than zero.

In a 9999-Monte Carlo permutation test we calculate the slopes of 9999 permuted versions of
one time series, to compare with the observed slope of one single regression. The corresponding

p-value is computed as p =
∑
αobs>αperm

N , with αobs the slope of the observed fitted values, αperm
the slopes of the permuted series and N the number of permutations. By comparing the p-value
to the 95% and 99% confidence levels in the distribution of all slopes, the observed regression fits
can be assigned a significant positive or non-significant trend. Thereby rejecting or accepting the
H0 hypothesis.

The reason why a permutation test is chosen, is that this is a non-parametric test. Para-
metric approaches (f.e. z-, t-, or F-test) assume that the data is normally distributed, while a
non-parametric (f.e permutation test) can be applied without the assumption that the data follow
a normal distribution (Srinivasan (“‘Small Area Estimations’”)). A permutation (randomization)
test is a resampling and exact test, the latter means that it is not defined on basis of parametric
assumptions and does not use approximate algorithms. A basic premise of the permutation test
is that the observations are exchangeable under the null hypothesis (Srinivasan (“‘Small Area Es-
timations’”)), so there should be no difference in location or method of measurement between the
data. Although one data set consists of measurements at only one location, we already discussed
tiny changes in the measurement settings and location in 58 years. These historical changes ap-
peared to be insignificant in Section 2.2.3, so our assumption holds.

A major disadvantage of permutation tests is that they can be very demanding in computa-
tional power, therefore it is worthwhile to use a Monte Carlo permutation test. With this Monte
Carlo approach we mean an N-times repeated random sampling (with an specific order), instead
of calculating the slope of every possible order of a series of almost 10940 observed values, which
would give 10940! outcomes. As the data set consist of so many points, the chance of producing
an identical ordered series in 9999-random sampling is extremely low. So, no significant bias is
expected from randomly generated duplicated series.

2.5 Causes

A comprehensive four-fold study into the causes of the observed trends is carried out in Chapter
6. First, we identify variables related to the production of (extreme) precipitation from theory.
Second, key variables are distinguished based on their correlation matrices and plotting patterns
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(precipitation over key variable x). Third, quantile and linear regression in time is carried out on
variable(s) which are likely to cause changes in precipitation. Finally, changes in the distribution
and in the quantile regression relationship of precipitation over a variable are investigated for each
variable by comparison of two time periods. For this part we binned mean hourly precipitation
intensity with respect to the explanatory variable(s). In this section we describe how we computed
the correlation matrices, and carried out the binning and corresponding analysis.

2.5.1 Pearson and Spearman correlation matrices

The correlations of the key variables are shown in a heat map, which is a correlation matrix in
which the cells are colored from blue to red; from strong negative to strong positive correlation,
with in between white indicating zero correlation. First, we calculated Pearson correlation coef-
ficients. We computed such a Pearson heat map for 5 different sets of data: (i) all wet hours for
precipitation variables (hourly duration, intensity, and sum) and the key variables without CAPE,
(ii) wet 2-day maxima of these variables, (iii) wet 2-day maxima in CAPE, (iv) wet daily maxima
of variables from (i), (v) wet daily maxima in CAPE.

The Pearson correlation coefficient is also known as the product-moment correlation coefficient

and defined as: r =
∑
zxzy
N , where zx and zy are the z scores of variables x and y and N the sample

size (Cohen and Lea, 2004). The z score is a measure of how many standard deviations an element
is from the mean, z = X−µ

σ . The Pearson correlation coefficient is 1.0, the highest magnitude,
when all samples have the same z score for both variables. In the case the formula reduces to

r =
∑
z2

N . This always equals 1.0, as the variance of a set of z scores is
∑
z−z̄2
N and always 1, z̄ is

always 0, so
∑
z2

N = 1.0 (Cohen and Lea, 2004). A Pearson correlation coefficient of -1.0 is reached
when every sample has the same z score, but with opposite sign. When z scores differ between x
and y, the correlation coefficients are of a magnitude between 1.0 and zero.

Pearson correlation assumes normal distributed data and that the data are related to each
other in a linear way (Artusi, Verderio, and Marubini, 2002). A restriction to Pearson correlation
is its sensitivity to outliers (Chok, 2010).

Second, we also calculated Spearman correlation coefficients, which we applied on data sets
(ii), (iii) and (v). Spearman correlation indicates the strength of association between two ranked
variables and can be seen as the non-parametric version of the Pearson product-moment corre-
lation (Cohen and Lea, 2004). In contrast to Pearson correlation, Spearman correlation has no
assumptions about the way in which data are distributed. The assumptions of Spearman correla-
tions are that data must be at least ordinal and that the variables are related in a monotonically
way (Artusi, Verderio, and Marubini, 2002; Cohen and Lea, 2004). A function of a certain rela-
tionship can be called monotonic if it is entirely decreasing or increasing. Comparison of Pearson
and Spearman correlation coefficients for the same variables indicates whether a relation is more
linear or more (monotonically) non-linear.

2.5.2 Binning

Differences in the number of measurements for each unit value of a certain variable can influence
the fit between two variables, therefore we consider the distribution of each variable. To reduce
this influence we apply binning of hourly mean precipitation intensity in unit value for a certain
variable (temperature, dewpoint temperature, CAPE and wind speed). For temperature and dew-
point temperature we use bins of 2 ◦C. For CAPE a bin size of 50 J/kg is applied and for wind
speed a bin size of 2 m/s. The number of observations per bin must be ≥ 200. As we only have
CAPE data from 1993 onward we did not apply time comparison of binned mean and quantile
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lines for this variable, but only considered the seasonal point clouds and distributions. All bins
are differentiated between summer and winter season, and for all variables except CAPE we also
differentiated between the period 1958-1986 and the period 1987-2015.

The resolution is limited greatly to binning of the data and differentiating of the measurements
on season and time period. Therefore, we use daily maxima of mean hourly intensity and daily
maxima of the key variables, instead of 2-day maxima. Wet-only maxima are considered, as we
are solely interested in changes in precipitation, not in dryness. Furthermore, we bundle the daily
maxima of the five stations, in order to increase the resolution. Besides, we want to study the
common relationship, because we observed a robust signal for all stations in increasing precipita-
tion intensity and decreasing frequency of wet hours.

For each bin the mean and the 95,99 %-quantiles are calculated from the binned intensity
maxima and lines are fitted through all the means and quantiles. The two periods have a length
of 29 years. As climate is classically referred to as the weather of 30 years (WMO), the differences
in distribution and binned quantile regression between the two periods can be seen as changes in
the climate state.
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Chapter 3

Theoretical Background

This chapter presents a theoretical overview of cloud processes and types, and of conditions for
precipitation to occur. This will provide the background information needed to interpret the
results, especially those reported in Chapter 4 about spatial and seasonal variability in hourly
precipitation data. The chapter is divided into four parts. The first part describes briefly how
clouds are formed and the second part how precipitation is produced. A description of two cloud
types and associated precipitation characteristics forms the third part. The last part highlights
conditions of extreme precipitation from large- to small-scale, including processes of synoptic, cy-
clonic and locally induced precipitation and internal cloud processes.

3.1 The formation of clouds

Prerequisites for cloud formation are: moisture, cloud condensation nuclei (CCN) and initial
cooling. In the first place, sufficient moisture in the air is needed to condense out and form precip-
itation. Although air can be supersaturated with respect to water, surfaces on which condensation
can take place are also required (Sumner, 1988, p.44-45). Within a cloud the surfaces on which
droplets form are called cloud condensation nuclei (CCNs). If the air contains enough moisture
and CCNs, initial cooling of air below its dew-point temperature will lead to (partial) condensation
of its water content.

By initial cooling we mean the cooling initiated by an external event that triggers droplets
to form, which then may continue to grow despite of the release of heat from condensation of
moisture, as a result of processes that will be discussed in Section 3.2. An important external
event causing this initial cooling is free or forced convection. In the field of meteorology, con-
vection is commonly used as a term for vertical heat transport associated with an updraft. A
more precise definition of convection is: motion or mixing within a fluid, in this case air, thereby
causing mixing of energy (heat), momentum and molecules (i.e. water molecules as water vapor)
(Krennert, 2016). Free convection in the atmosphere is a result of density-driven rise of warm
(light) air currents or thermals (Sumner, 1988, p.44-45). Air can also be forced to rise due to a
topographical or frontal barrier or turbulence (Sumner, 1988, p.45).

3.2 Production of precipitation

The presence of CCNs allows water to condense out in saturated conditions. Water preferentially
condenses on the bigger aerosols, for which the curvature is less. This is called the curvature
or Kelvin effect and can be explained by considering the degree of bonding between the water
molecules (Hobbs, 1993; Shulman et al., 1996). This is higher for a flatter surface and therefore
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the water vapor pressure is lower (i.e. the tendency of particles to escape from the liquid to the
gas phase), compared to a more curved surface. Next to size, an important property of aerosols is
hygroscopicity. Many aerosols are hygroscopic, which means that they are able to attract water
onto their surfaces (Sumner, 1988, p.50). This allows condensation to take place, even in air that
is not completely saturated.

A raindrop has a typical size of about 1000 microns (1.0 mm), while a cloud droplet radius is
generally about 20 microns (Sumner, 1988, p.51). However, the growth of cloud droplets towards
a size big enough to precipitate out is not only determined by the condensation process. All
cloud droplets will be subject to gravity and often collide when moving vertically. Three different
terms are used for the collision process, based on the phase of the two particles: coalescence (for
liquid on liquid), aggregation (for solid on solid) and accretion (for liquid on solid) (Sumner, 1988,
p.109)(Pruppacher, Klett, and Wang, 1998). The mode of collision may determine the form of the
precipitation. In general, coalescence produces rain or drizzle, aggregation produces snow, and
accretion produces ice pellets and ice grains, or hail(Sumner, 1988, p.110).

Another important mechanism behind rapid growth of cloud particles is called the Wegener-
Bergeron-Findeisen process, which is determined by the difference in water vapor pressure above
ice and water surfaces. Ice namely has a lower vapor pressure than liquid water as it costs more
energy to convert water from a solid to a gas than from a liquid to a gas. Since it is harder for
an ice molecule to leave the ice surface as water vapor, the amount of water vapor molecules, and
hence the water vapor pressure, is lower above ice. When a mixture of supercooled liquid droplets
and ice particles is present in the cloud, differences in water vapor pressure lead to fast evaporation
of water and deposition on the ice particles (Sumner, 1988; Hoose et al., 2008). Therefore, ice
particles can grow very efficiently.

Next to the Wegener-Bergeron-Findeisen process, possible pathways of particle growth in
mixed-phase clouds involve (i) simultaneous evaporation and (ii) simultaneous growth of ice par-
ticles and liquid droplets (Korolev, 2007). The pathway of evolution taken by a cloud depends
on the local thermodynamic conditions. Simultaneous evaporation may be caused by entrainment
and mixing of dry air from the clouds surrounding, whereas simultaneous growth of ice particles
and water droplets may result from updrafts or isobaric mixing of saturated with saturated or
unsaturated air (Korolev, 2007). The latter can occur after saturation is achieved in the first
phase of mixing, when there still is a temperature difference between parts of the cloud (based
on the degree of mixing and cloud liquid water content, LWC). This may result in small zones of
supersaturation in the cloud where growth of ice and water particles may take place at the same
time. A description of the full mechanism can be found in Korolev and Isaac (2000).

It should be stressed that not all clouds generate precipitation. They could, for example, be too
short-lived, in which case they are not able to produce large enough particles. It can also be that
clouds are too shallow (small vertical extent), which corresponds to less vertical motions and thus
less cloud-droplet growth by collision (Sumner, 1988). Moreover, they can be situated too high in
the atmosphere, where moisture availability and the degree of vertical motion is small (except for
convectional clouds with enough vertical development in all layers) and there is a longer pathway
for the falling rain droplets (Sumner, 1988). A longer pathway means a larger possibility to fall
through a layer of unsaturated air.

As we only have station data, we can not take into account the changes in CCNs, cloud prop-
erties and dynamics, however from Li et al. (2011) we know that changes in precipitation related
to changes in concentrations of CCNs depend on the cloud’s LWC and on whether the cloud
contains ice particles next to liquid particles or not. For regions with increasing CCNs, precip-
itation frequency increases for deep clouds with high LWC, but decreases for clouds with a low
LWC (Li et al., 2011). Furthermore, positive (mainly summer) trends in cloud-top height are
detected attributable to aerosol-induced strengthening of upward winds for mixed-phase clouds
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with a warm, low base. Please note, monitoring of trends in aerosols, serving as CCNs, are im-
perfect according to the latest IPCC report (IPCC, 2013). However, we can keep these potential
changes in precipitation due to changes in CCNs in mind, when we interpret the results of the
trends in precipitation frequency and intensity (which is influenced by the vertical extent of the
cloud) in Chapter 5. Besides, we are now able to relate cloud conditions to cloud types. This is
relevant because the occurrence of a certain cloud type not only gives a better understanding of
the mechanism behind precipitation, but also links to seasonality.

3.3 Cloud types

The following two types of clouds can be distinguished by the way of formation and morphology:
(i) clouds originating from convectional activity, mostly cumuliform (non-layered, more “puffy”)
clouds , and (ii) clouds originating from slower, more widespread ascent or turbulent flow, con-
sisting of mainly stratiform (layered) clouds (Sumner, 1988, p.74). An illustration of cumuliform
and stratiform cloud types (including the subclasses) is presented by Figure 3.1.

Figure 3.1: A schematic visualization of stratiform (left) and cumuliform clouds and subclasses
in these two main types based on height and appearance. Source: Thomson Higher Education
(2007).

The first type depends on vertical instability (which can be expressed as CAPE) and moisture
availability (which can be expressed as dewpoint temperature). The type of clouds associated with
free convection, cumuliform clouds, is dependent on the environmental lapse rate (ELR) and the
humidity of the air. Sumner (1988, p.62) states: “Where the ELR is such that positive buoyancy
persists through a deep layer of the atmosphere, then convection currents will operate through the
layer with their speed and strength related to the magnitude of buoyancy”. In this case we have
an extremely unstable atmosphere, while the opposite ELR belongs to an extreme stable atmo-
sphere. Convectional precipitation, associated with cumulus and cumulonimbus clouds, operates
at small and medium scale (Rangno and Hobbs, 2005). They typically form cells of more intense
precipitation over areas of about tens to hundreds of square kilometers (Sumner, 1988). These
cells have short lifetimes, as the processes producing them directly (thermal) or indirectly (forced)
are generally restricted to the hours of the day when the isolation is strongest.

According to Sumner (1988), most precipitation from convective clouds is produced by the
Wegener-Bergeron-Findeisen process, because of the considerable vertical development of the
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clouds (therefore exceeding the 0◦C isotherm), resulting in very intense precipitation (sometimes
in the form of hail or ice pellets). These clouds, formed under conditions of high convectional
activity, are characterized by (i) a large vertical extent, (ii) strong differential motion (strong up-
and downdrafts), (iii) an internal environment in which ice and supercooled droplets may exist in
close proximity and where seeding of the lower part of the cloud takes place by ice from above,
and (v) a large potential in producing precipitation of an extremely high intensity at the ground
surface (Sumner, 1988). The majority of severe local storms associated with self-perpetuating
convectional systems are associated with significant hail production (Sumner, 1988). In contrast
to Sumner (1988), Korolev (2007) (as described in Section 3.2) concluded that precipitation forma-
tion is also resultant from simultaneous growth of ice particles and water in (super)cooled clouds
originating from convectional activity.

The second type of clouds are stratiform clouds. An important driver for formation of these
clouds is frontal collision and occlusion. Frontal precipitation is characterized by a meso-scale
band along the front. This band can be distinguished in perpendicular direction with respect to
the front by a narrow updraft zone near the leading edge of the frontal cloud and a broad zone of
stratiform precipitation (Hobbs, Houze Jr, and Matejka, 1975). Frontal clouds can be recognized
by their corresponding synoptic settings of low and high pressure areas, temperature fields and
resultant wind direction (Sumner, 1988).

Cloud micro-physical data indicate a concentration of 50-500 ice particles per dm3 in the
frontal cloud. These concentrations are too large to be completely explained by Wegener-Bergeron-
Findeisen process. From air craft data Hobbs, Houze Jr, and Matejka (1975) found that cloud
particles must have grown due to riming (accretion of supercooled water droplets on an ice crystal)
and aggregation (sticking together of ice crystals) as well.

Cold fronts, in which colder and denser air forces warmer air to move on top of it, tend to have
a much steeper frontal slope. This leads to a more pronounced cumuliform-type of clouds with
resultant heavier precipitation (Sumner, 1988). Squall-lines (organisation of cells into a line orien-
tated approximately normal to the direction of movement) with trailing stratiform precipitation
typically occur in the form of prefrontal troughs ahead of cold fronts at mid-latitudes (Newton,
1950; Schultz, 2005; Morrison, Thompson, and Tatarskii, 2009). Many studies have described
morphological features of squall-lines,which are based on the conceptual model of Biggerstaff and
Houze Jr (1991). As mentioned in Morrison, Thompson, and Tatarskii (2009) these include: “an
upshear-tilted, multicellular convective region with heavy precipitation and active updraft cell
generation along the gust front and a low-level radar reflectivity minimum between the convective
and stratiform regions, followed by a region of moderate precipitation in the trailing stratiform
region.” The region in which the highest intensities in stratiform precipitation are found is down-
wind of the intensive parts of the convective line. Biggerstaff and Houze Jr (1991) demonstrated
that the magnitudes of the relative wind and micro-physical velocity determine the width of the
trailing region of stratiform precipitation. Especially, an occlusion of a cold and a warm front can
lead to extreme precipitation at the northwest of the low center (Schultz and Vaughan, 2011).

Next to frontal precipitation, stratiform clouds can also be formed due to or effected by turbu-
lence, for example when the cloud layer is radiatively destabilized (Houze Jr, 2014). Orographic
barriers may influence more convective, as well as more stratiform precipitation (Sumner, 1988;
Houze, 2012), which can give clouds a more wave-like appearance (Sumner, 1988). A study of
Basist, Bell, and Meentemeyer (1994) demonstrated that topographic predictors correlate strongly
with mean precipitation.

When comparing convective with stratiform precipitation, studies of Berg and Haerter (2013a)
and Berg and Haerter (2013b) show that convective (stratiform) precipitation occurs more dom-
inantly at higher (lower) temperature. Therefore, in summer we have relatively more convective
rain events compared to the winter, when relatively more stratiform rain events occur. Both types
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are also characterized by different spatial scales. The type of large-scale precipitation (>1000 km2)
is more often stratiform than convective, whereas precipitation falling over an area between 20-300
km2 occurs more often for the convective type than for the stratiform type (Berg and Haerter,
2013a). So in general, on the one hand stratiform precipitation has a bigger horizontal scale, on
the other hand convective precipitation has a larger vertical extent (Houze Jr, 1997; Anagnos-
tou, 2004). Another difference between the two precipitation types is the mean intensity, which
is higher for convective rain events than for stratiform rain events (Berg and Haerter, 2013a).
Finally, convective precipitation can be distinguished from stratiform precipitation by a relatively
greater horizontal homogeneity(Anagnostou, 2004). Overall, stratiform precipitation accounts for
less intense and homogeneous precipitation, spread out over a larger area, with a smaller vertical
extent and dominating at lower temperatures, compared to convective precipitation.

3.4 Conditions for extreme rainfall

Now that we know the basic ingredients for cloud formation and precipitation production and the
resultant two main cloud types, we will focus more on the mechanism behind extreme precipita-
tion. As extreme rainfall is caused by processes of different scales, they are listed here from large
to small scale.

3.4.1 Synoptic conditions

Large-scale (Grimm and Silva Dias, 1995; Gandu and Silva Dias, 1998; Aceituno, 1989) and meso-
scale patterns of convection and precipitation (Velasco and Fritsch, 1987) can be determined by
intraseasonal variability and interannual variations such as El Niño Southern Oscillation (ENSO)
and related teleconnections (Hoerling and Kumar, 2000; Carvalho, Jones, and Liebmann, 2002). A
study of Maddox, Chappell, and Hoxit (1979) found characteristics in the meso-α scale (200-2000
km) environment at the time of extreme precipitation. Among these characteristics are a weak
mid-tropospheric, meso-α scale trough, a deep layer of moist tropospheric air, vertical shear of
the horizontal wind through the cloud depth and high potential for convective storms and/or cells
to develop. Next to extreme precipitation, meso-scale convective complexes are associated with
strong winds and large hail (Maddox, Chappell, and Hoxit, 1979). Overall, studying synoptic
conditions in interaction with processes on smaller scales is of highest importance. In this study
we do not use synoptic data, as we consider point measurements at station level.

3.4.2 Extratropical cyclones

In the winter season extreme precipitation and wind speed are related to extremes in cyclone
intensity in subregions of the North Atlantic (Raible et al., 2007). Connections are clearly visible
between large-scale atmospheric patterns and extremes in cyclone intensity (Bosart, Bracken, and
Seimon, 1998; Bracken and Bosart, 2000), although this does not apply for the summer season.
Winter extremes of cyclone intensity are significantly higher in almost all regions, due to a stronger
meridional temperature gradient and an increase in lower tropospheric baroclinicity (Raible et al.,
2007). Baroclinicity is a measure of how misaligned the gradient of constant pressure is from
the gradient of constant density. When the tilt of density surfaces is reduced, potential energy it
released. It thereby feeds the kinetic energy of disturbances (Cushman-Roisin and Beckers, 2011).
Baroclinicity is, thus, a form of instability and it is the dominant driver for cyclogenesis in the
middle latitudes (Cushman-Roisin and Beckers, 2011). As we do not analyse synoptic data the
effect of cyclone intensity or baroclinicity will not be taken into account in this thesis.
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3.4.3 Locally induced precipitation

In general, the following rule holds: the greater the speed of the uplift, the larger the vertical
extent of individual clouds (and the less their horizontal extent), but the heavier the precipita-
tion produced locally. As already mentioned in Section 3.1, free convection occurs when thermals
(hot air) are lifted vertically (Sumner, 1988). Precipitation resulting from a strong updraft will
fall over a relatively small area, compared to precipitation falling along a gently-sloped front. In
general, higher magnitudes of rainfall intensity are maintained over a short duration, while lower
magnitudes of rainfall intensity are associated with longer-lasting and spatially more widespread
precipitation events (Haerter and Berg, 2009). The precipitation intensity at the core of a con-
vective storm is determined by its size (i.e. bigger storm size corresponds to higher precipitation
intensity) (Sumner, 1988).

Favorable conditions for convective storms to occur are (i) conditional or convective instabil-
ity, (ii) low-level air with a high moisture content, (iii) strong wind shear, (iv) instability release
by dynamical processes and (v) dry air above the storm cell(s) (Sumner, 1988). From this we
can deduce that in the development of convective storms local conditions interact with synoptic
conditions.

Next to free convection, forced convection can also produce precipitation on a local level. Fac-
tors regarding forced convection are topography (Basist, Bell, and Meentemeyer, 1994) and local
quasi-permanent areas of surface convergence (e.g. along sea- or land-breeze fronts) (Wapler and
Lane, 2012). These mostly do not generate precipitation extremes of the same magnitude as con-
vective storms (Sumner, 1988). However, as the type of fronts can be slow-moving or stationary,
heavy precipitation can accumulate in a fixed area, but only when there is sufficient uplift or
atmospheric moisture. Organisation of cloud cells into linear bands (e.g. squall lines or sea breeze
fronts) or spiral arms (e.g. in tropical cyclones) is dependent on large-scale dynamic processes or
localized convergence of air near the surface (Sumner, 1988).

3.4.4 Internal dynamic processes in clouds

A single-cell storm is usually short-lived. This is the result of an inbuilt self-destructing mech-
anism in which the thermal or warm updraft is replaced by the cold downdraft (Sumner, 1988,
p.153). A downdraft originates from downward frictional drag imposed on the air by the rain
droplets. It is cold because of rapid evaporation of the falling and already cold precipitation
(Sumner, 1988, p.153). In longer-lived storms, new cells are formed adjacent to thermals, so that
storm-building activity can be transferred from one thermal to the next. Conditional instability
of the second kind (unstable air which has the condition to rise a certain vertical distance) may
serve this self-enhancing and self-perpetuating process in which the short-lived nature of the in-
dividual cumuliform elements or towers contribute to a much longer-lived system (Sumner, 1988,
p.153)(Barry and Carleton, 2001, p.490). This may account for the development of convective
complexes of cumulonimbus clouds, which can form tropical cyclones. These clouds will possess
areas of downdraft and updraft, with similar order of velocities. These areas can be separated
by wind shear, allowing for the inflow of warm, moist air into a cell and outflow of dry, cold air
(Miller, 2015). See Figure 3.2 for an illustration. The contrast in relative velocity greatly con-
tributes to the intensity of the storm and the violence of precipitation it can produce (Sumner,
1988). Although we do not have high-level measurements of wind velocity, we have measurements
of surface wind strength. So, at least the strength of the surface wind speed indicates the potential
of producing a stable storm.
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Figure 3.2: A schematic visualization of up and downdraft area’s in a storm. On the left side
a profile of the horizontal wind, u. Source: http://geog.ucsb.edu/~joel/g110w07/lecture_

notes/thunderstorm/agburt11_13.jpg.

To summarize, clouds are formed when air with sufficient moisture and hygroscopic CCNs is
cooled by an external event, mainly free or forced uplift. Cloud droplets can precipitate out under
gravity, when clouds are sufficiently long-lived for cloud droplet to grow big enough due to collision
processes. Trends in CCNs are not well monitored and are contrasting depending on the LWC
and the homogeneity of the cloud. Although we can not analyse internal cloud processes with our
station data, we can link these processes to the two main cloud types, convective or cumuliform
clouds and stratiform clouds, and corresponding precipitation characteristics.

Whereas cumuliform clouds are produced by a strong vertical ascent, by free convection, strat-
iform clouds originate from a slower, more widespread ascent or turbulent flow. Extreme pre-
cipitation can be produced on the local, small-scale level by (free) convective storms, which are
characterized by vertical instability, low-level moist air, strong wind shear and the cloud dynam-
ics, or to a lesser extent by stationary forced (i.e. frontal and/or topographic) convective systems.
Moreover, we can not investigate causes of changes in extreme precipitation on the large-scale
level. In order to study the effect of the large-scale setting on precipitation extremes (i.e. the
presence of a meso-scale mid-tropospheric trough or extratropical cyclone or the presence of large-
scale wind shear), data of a higher spatial resolution is required. However, as we will focus on
hourly extreme intensities, this might not be a significant problem. In Section 3.3 we pointed
out that stratiform precipitation has a larger scale and is less intense than convective precipita-
tion. In the next chapter (Chapter 4) we will see whether less intense precipitation (dominantly
of the stratiform type) can be distinguished from more intense precipitation (dominantly of the
convective type) by season. In Chapter 6 we will dive further into the causes of changes in extreme
precipitation, in which we will take into account the conditions favorable for extreme precipitation.
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Results

The results are presented in several parts. The first part studies the spatial and seasonal vari-
ability regarding (extreme) precipitation. In the second part trends in extreme precipitation are
investigated. The third part focuses on the causes behind these trends, by studying the relation
with temperature, dewpoint temperature, wind direction and strength, CAPE, and weather con-
ditions. The last part extends the current work to European scale.

27



Chapter 4

Spatial and seasonal variability in
precipitation

Prior to analyzing trends in hourly precipitation sums, it is relevant to investigate the spatial and
seasonal variability in precipitation. This will provide basic knowledge about spatial dependence
of precipitation characteristics. This allows us to determine whether it is relevant to study trends
of individual stations separately or whether we can bundle the data for the Netherlands in Chap-
ter 5. can influence the method of trend analysis. By analyzing the seasonal variability we find
seasonal dependent characteristics, on basis of which we have defined seasons of interest for the
trend analysis.

4.1 Spatial variability

First, the distribution of precipitation data is investigated in three plots, consisting of a proba-
bility density function, a conditional density function and a logarithmic frequency point plot for
the extreme part of the distribution (Figures 4.1,4.2). The first figure is based on histograms of
the different plots, as we use rounded (i.e. not fully continuous) data, and allows us to visualize
all stations. Another way of visualizing spatial differences in the distributions, is shown in Figure
4.2a. The third figure (4.2b) zooms in on the extreme part of the intensity spectrum and demon-
strates the robustness of the spatial differences observed in Figure 4.2a for the extreme part. For
the latter figure we did not choose for a histogram, due to the logarithmic scaling of the x-axis
(intensity), as well as the y-axis (intensity).
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Figure 4.1: The probability density function for all 5 stations: De Kooy (235), De Bilt(260),
Eelde(280), Vlissingen (310) and Maastricht (380).
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Figure 4.2: The conditional density estimate, in other words the estimation of the probability
density function conditional on the intensity, for all 5 stations: De Kooy (235), De Bilt(260),
Eelde(280), Vlissingen (310) and Maastricht (380) is shown in (a). The frequency of extreme
intensities (>5 mm/hr) per year is provided by (b). Both axises of plot (b) are logarithmic, which
give rise to steps in the extreme tail.

Figures 4.1 and 4.2 demonstrate that the closer the precipitation intensity (P) is to 0 mm/hr,
the higher the frequency. The data is bound at 0 and skewed for positive intensities. Dry hours (P
<0.05 mm/hr) are excluded from both figures due to logarithmic conversion, but occur approxi-
mately 88% of the time. Out of all the wet hours 25% has a value of 0.1 mm/hr and 15% a value
of 0.2 mm/hr. As the data is not fully continuous, due to rounding to 0.1 mm, each probability
density function (PDF) in Figure 4.1 is drawn by connecting all bars (mids) of the corresponding
histogram. Therefore, Figure 4.1 provides an estimation of a PDF and not the true density per
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intensity. However, this plot is clearly visualizing the differences between the five stations. In
Figure 4.1 it can be seen that the distributions of the stations are very similar, although there
are some minor differences. For example, Eelde has higher frequencies of wet hours corresponding
to intensities smaller than 1 mm/hr, compared to the other stations. The extreme tail in Figure
4.2a shows that Eelde also has less high extremes (namely < 30 mm/hr) compared to the other
stations. On the contrary, at the station in Maastricht the highest extremes (35-50 mm/hr) in
precipitation intensity are measured. Next to Maastricht, De Kooy has relatively high frequencies
of extreme events (>30-35 mm/hr) compared to other stations. In the same intensity spectrum
Vlissingen also accounts for a large part. These stations are both located at the seaside, so ex-
tremes are assumedly not so much confined by the availability of moisture. De Bilt (and Eelde to
a lesser extent) has relatively many extreme events at a scale of 25-35 mm/hr. For the interval
0.4-1.2 mm/hr De Bilt has relatively less rain events. From the conditional density estimates for
every station in this figure, we can deduced that spatial differences are in general higher for the
extreme tail of the precipitation distribution. It is worth noting, that these spatial differences
might be influenced by the exponential decrease in the number of data points with increasing
intensity (figure 4.2b). Explanations for the spatial differences in extreme precipitation will be
further investigated in Chapter 6.

To study in more detail the extreme part of the precipitation distribution, we plotted the
violin plots of the annual maxima in precipitation in Figure 4.3. The shape and extent of the
violins in this figure clearly shows spatial differences in the distributions of the annual maxima.
The stations De Kooy and Maastricht have a larger extent in annual maxima, ranging from 5-50
mm/hr compared to the other stations. The violins of Eelde and Vlissingen have almost the same
shape, ranging from 7-30 mm/hr (with one outlier of 36.9 mm/hr for Vlissingen) with a thick
“belly” at approximately 12 mm/hr. The red dots, representing all annual maxima, show why
some of the violins have a “cut-off” (flat) top and others a “tail” (long and thin) top. A thick
belly and a flat top is what we expect for data that is skewed for higher intensities. A flat top
is the effect of a lack of outliers (no remarkably high red dots) on the visualization of the violin
plots. Keep into mind that each violin plot is based on only 58 points per station, namely the an-
nual maxima between 1958-2015. This results in some randomness in the shape of the distribution.
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Figure 4.3: Violin plots of annual maximum hourly rainfall

Overall, the distributions of precipitation are skewed for positive intensities and quite similar
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in form. Larger spatial differences exist in the extreme tail due to occurrence or lack of outliers.
Next to intensity, we can also study other precipitation characteristics. In Figure 4.4 we plotted
a pie chart demonstrating the percentage of time that it is raining and a chart diagram showing
the total amount of accumulated precipitation per year and per station.
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Figure 4.4: (a) The fraction of all hours in which precipitation occurs and (b) the annual amount
of precipitation per station.

From Figure 4.4 we can deduce that spatial differences exist for the fraction of hours in which
precipitation occurs and the amount of precipitation. In Eelde wet hours occur 1.7% more often
(∼ 152 hours year−1) compared to Vlissingen, while 11% of precipitation (∼ 81 mm year−1) ac-
cumulates more in De Bilt compared to Vlissingen. In general, we observed that it rains more
frequently in the more northern and inland stations than in the more southern and coastal sta-
tions. In the next section we investigate whether seasonal dependent precipitation characteristics
can be recognized.
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4.2 Seasonal variability

Stratiform rain events, the dominated type in winter, are characterized by relatively weak-sloping
fronts and updrafts and their large scale (Section 3.3). Owing to the large scale of the front, the
precipitation will be spread out over a larger area. Therefore, the intensity of this kind of fronts
is relatively low and the duration relatively long. Due to the long duration of these large-scale
precipitation events, we would expect to observe more hours in winter in which precipitation oc-
curs than in summer. Moreover, temperatures are lower in winter than in summer and cold air
requires a lower pressure to reach the same saturation compared to warm air (Section 6.2.1). This
may also result in a relatively high winter fraction of wet hours. We analyzed the hourly duration,
which is defined as the hourly fraction of time that precipitation occurs, meaned over all wet hours
per month in Figure 4.5.
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Figure 4.5: Mean duration of all wet hours per month and meaned over 5 stations.

From Figure 4.5 can be concluded that the duration of rain within a wet hour is longest in the
months December-March and shortest in July-September. Another characteristic of large-scale
winter depressions is their low intensity, which we study by plotting the mean intensity values per
month in Figure 4.6a. Next to the intensity, the following figure (Figure 4.6b) gives the fraction
of time that precipitation occurs and the monthly precipitation sums in Figure 4.6c. We would
expect that the product of a relatively high monthly intensity and relatively high monthly fraction
of numbers of wet hours results in high accumulation amounts. The intensity and duration to-
gether give indications about the type of precipitation (stratiform versus convective) dominating
a certain season.
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Monthly intensity, duration and amount
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Figure 4.6: (a) The mean intensity, (b) fraction of the time that precipitation occurs and (c) the
annual mean amount of precipitation per month.

From Figure 4.6 we can deduce the relative importance of the mean intensity in wet hours
and the fraction of time that precipitation occurs on the total amount of precipitation accumu-
lating per month. The months July till December account for the highest fractions of the total
rain amount, approximately 10% per month (Figure 4.6c). In these months the intensity is high
(July-September), or the fraction of time that precipitation occurs is high (November-December),
or both are just above the mean (October). Moreover, Figure 4.6a shows that the intensity is
strongly seasonal dependent, and the theory of weak winter precipitation (here December-April)
and intense summer precipitation (June-September) is confirmed by this figure. In November till
January it is raining about 4% of the time more than in the months April-September. Figures
4.6a and 4.6b thus demonstrate that precipitation in the winter is spread out more over multiple
hours. In other words, in winter it is raining more often, but less intense. Most of the precipitation
accumulates in the second half of the year, this arises from a higher mean intensity in autumn than
in spring and a higher fraction of wet time in the months November and December. Further, as
we are especially interested in impacting rain events, we also investigated the seasonal variability
for extreme hourly precipitation, defined as the 95-99.9% quantiles in intensity of wet hours only.

Figure 4.7a shows all monthly maxima in (mean) hourly intensities and how this data is
distributed. From this we can deduce that precipitation extremes are season dependent, with
intensities between 3-20 mm/hr in December-February compared to much higher intensities in
June-August (5-52 mm/hr). So not only the magnitude, but also the variability in magnitude
is higher for the summer season compared to the winter season. What is more striking, is that
the “belly” of the month September has a significantly higher position (around 13 mm/hr) than
the “belly” of May (around 6 mm/hr). The same seasonal pattern is also visible in the monthly
quantiles of precipitation intensities (Figure 4.7b), with quantile peaks in the summer season.
Moreover, the higher the quantile, the larger the monthly or seasonal difference.

In order to investigate the mean duration of extreme events, we plotted the mean monthly
duration (fraction of the hour that precipitation occurs) of all hours with an intensity of > 5
mm/hr (Figure 4.8). A clear seasonal cycle in the mean duration of hourly extremes is visible,
with hourly time fraction of > 0.90 for winter months and of approximately 0.80 for summer
months. Keep into mind that for the months December-March only ∼ 0.1-0.3 % of the wet data
(25-75 points) is higher than 5 mm/hr, while for the months June-September this is ∼ 1-4 %
(250-1000 points)(Figure 4.7b).
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Monthly maxima and quantiles
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(a) Violin monthly maxima
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Figure 4.7: On the left side violin plots constructed from the monthly maximum hourly intensities
(red dots). On the right side the 95%, 99%, 99.9%-quantiles in precipitation intensity of wet hours
only for each month.

The seasonal cycle of the mean duration of extremes (>5 mm hr−1)

0.80

0.85

0.90

0.95

J F M A M J J A S O N D
Month

M
ea

n 
du

ra
tio

n 
(p

ar
t o

f h
r/

hr
)

Season
Winter

Spring

Summer

Autumn

Figure 4.8: The mean monthly duration of precipitation within an hour with an extreme hourly
intensity of >5 mm hr−1.
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Based on the intensity, frequency and duration characteristics of the different months, the two
seasons which differ the most are the winter (consisting of the months December-January) and the
summer (June-August). In the following figure (Figure 4.9) we plot the mean number of wet hours
per day, the distribution of duration (of precipitation) within an hour and the relation between in-
tensity and duration. For all these plots, we show results of the defined winter and summer season.
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Figure 4.9: The mean number of wet hours a day, the distribution of all durations (of wetness
within an hour) and mean intensity of wet hours plotted against duration for summer (red) and
winter (blue) data.

Figure 4.9a confirms what we already deduced from Figure 4.6b, namely that in winter time
(daily) precipitation is spread out over more hours than in summer time. The mean difference
in wet hours a day is ∼ 1.3 hours. The overall shape of the summer distribution of mean du-
rations has a peak at an hourly fraction 0.20 and the overall shape of the winter distribution
at an hourly fraction of 0.25. Both distributions have a positive skew and an outlying density
value for the longest hourly fraction. For approximately 25% of the wet hours it is raining for
the entire hour (Figure 4.9b). This occurs ∼ 4.5% more in winter than in summer (4.9b). How-
ever, the summer has relatively higher frequencies for events with a duration between 0.1-0.4 hour.

Moreover, we investigated whether for the same duration more summer precipitation accumu-
lates or more winter precipitation in Figure 4.9c. Take into account that we plotted the mean
intensity as the hourly precipitation accumulated within an hour. Therefore, the longer the dura-
tion, the higher the accumulation amount of precipitation amount can be. Figure 4.9c shows that
for the same duration more precipitation accumulates within an hour in summer, compared to
winter. What is striking about the winter mean intensity against duration, is the sharp increase
in slope for the longest durations. So, in winter time when it rains for the entire hour, it rains
more intensively. In conclusion, our results confirm theory in that summer precipitation is more
short-lasting and intense than winter precipitation.
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4.3 Combined seasonal and spatial variability

At last, we include figures that combine spatial and seasonal differentiation.
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Figure 4.10: (a) The daily number of wet hours and (b) the amount of annual precipitation (mm)
per season and station. De Kooy has station number 235, De Bilt 260, Eelde 280, Vlissingen 310
and Maastricht 380.

What is interesting in Figure 4.10 is that we can clearly observe that every station has a higher
daily number of wet hours in winter than in summer, and lower annual amounts of precipitation
accumulating in winter than in summer. This difference between summer and winter is larger
for the former than the latter. Moreover, the spatial variation in the summer-winter difference is
larger for precipitation amounts than for frequencies of wet hours. The summer-winter difference
for De Bilt, Eelde and Maastricht in precipitation amount is approximately three times as large
as the summer-winter difference for De Kooy. The summer-winter difference in frequency of wet
hours is in the range of 1.1-1.4 hour a day for all five stations.

Figure 4.11 gives the violin plots for summer and winter for every station, indicating differ-
ences in seasonal extremes. We already concluded that the largest spatial differences exist for
the highest intensities and that the highest intensities correspond to summer events. This figure
confirms that the differences in the thickness and extent of the violins between the stations are the
largest for the summer season. It is worth noting that the spatial difference in extent is mainly
due to a couple of outliers. In summary, spatial differences in the Netherlands are not significantly
large, except for extremes, and the summer season is the most interesting season when considering
extremes.
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Figure 4.11: The violin plots of the summer and winter annual maxima in hourly intensity per
station.
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Chapter 5

Trends in extreme precipitation

5.1 Introduction

This chapter focuses on linear trends in hourly precipitation extremes. Whether the hourly in-
tensity (calculated from the hourly precipitation sum as the mean rate of one hour) of extremes
increases or decreases linearly in time or remains constant, is investigated for the period 1958 to
2015. Next to intensity, trends in the frequency of wet hours are considered. The latter is counted
as the number of wet hours (P > 0.05 mm) for every 2-day period and for every year. Lastly, we
also study trends in the 2-day and yearly precipitation sums. Then we can say something about
the importance of a trend in frequency or in intensity for the trends in the total precipitation
accumulating. Changes in the latter are namely expected to be the result of changes in the former
two. Both types of trends are compared to the regression of the mean in time, thereby studying
the proportional change. In Chapter 4 we concluded that spatial differences are in general not
that high in the Netherlands, however, strong differences exist for extremes. Therefore, it is in-
teresting to consider the trends individual for every station. Moreover, the presence of a signal at
multiple stations, enhances the robustness of the trend observed. Furthermore, all three types of
data are differentiated on summer and winter season, to deduce the seasonal dependence of trends.
Besides, the observed trends are tested on level of significance by a Monte Carlo permutation test.
In addition, we quantified the trends by investigating the rates.

5.2 Intensity

5.2.1 All hours

First, we study the regression of the quantiles for every station in Figure 5.1, based on the intensity
of every hour in the period 1958 to 2015. As the data consist of dry hours (P < 0.05 mm/hr)
for approximately 88% of the time (Chapter 4), the quantile values corresponding to the 50% and
75% fits are always zero, therefore they are excluded from this figure.
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Quantile regression on all hourly intensities
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Figure 5.1: Quantile regression fits with τ = 90, 95, 99, 99.9 % on all hourly precipitation intensities
(mm/hr), for all stations.

From this figure 5.1 we can not clearly observe trends for the different quantiles, except for
the 99.9% fit, corresponding to values higher than 11-27 mm/hr, occurring 0.1% of the time (∼
9 hours per year). In fact, these 99.9%-quantile trends differ highly between the five stations.
As these trends are based on ∼ 510 data points in total, it might be that the trends are not
significant. We will discuss in more detail the significance of the plotted quantile lines at the end
of this paragraph. Next to the amount of data points, trends can be biased. From Section 2.4.2
we know that the assumption of independence of errors may be violated by the autocorrelation
nature of time series. The magnitude of the trend is influenced by serial correlation, when present
in the data set (Yue et al., 2002). Therefore, we now investigate whether there is any significant
autocorrelation and partial autocorrelation present in the hourly intensity values.

Figure 5.2 shows the autocorrelation and partial autocorrelation plot for the hourly data set
of De Bilt. For the other stations we did not include the same figures, because for both functions
there are no large differences between the stations.
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Autocorrelation all hours
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Figure 5.2: Autocorrelation and partial autocorrelation function (ACF and PACF) for all hour
precipitation data of station De Bilt. The dotted purple lines gives levels of 0.05 ACF and 0.01
PACF, and the red lines indicate a lag of 48 hours.

For lags of 1 to 48 hours the autocorrelation and partial autocorrelation values are significant
(> 0.05). Moreover, a winter depression will not last longer than 2 days (and summer rain events
are mainly on the scale of several hours). Therefore, we will now apply quantile regression on the
maximum value for periods of 2 days to remove significant serial correlation.

5.2.2 2-day maxima

Probability density functions of all-2-day and yearly max. hourly intensities
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Figure 5.3: Probability density functions of (a) all-2-day max. and (b) yearly mean 2-day max.
hourly intensities (mm/hr). All stations are combined.

As the probability density function of the 2-day intensity maxima has no Gaussian shape (see
Figure 5.3), it is not right to use linear least-squares regression from a statistical point of view (as
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explained in Chapter 2). However, the probability density function of yearly mean 2-day maxima
has a more normal distribution. Thus, we only use ordinary least squares regression on the yearly
mean 2-day maxima (Figure 5.4). Figure 5.4 also demonstrates the quantile regression fits on
2-day maxima in intensity. Note that all 2-day periods (not only wet 2-day periods) are included
in this trend analysis. In contrast to Figure 5.1, where only regression of the 99.9% quantile lines
was visible, in this plot also the 99% quantile line seems to regress linearly. This arises from the
new time scale, because the 99.9%-quantile line is not the same as in the previous figure s only
the maxima of 2 days are considered.

In Figure 5.4 the 99%- and 99.9%-quantiles are computed from the (quantile regression) min-
imization function to values higher than 9-10 mm/hr and 16-20 mm/hr respectively. We can
already deduce from this figure that spatial differences exist in the magnitude and sign of the
trend and that these differences are higher for the 99.9%-quantile than for the 99%-quantile. The
99.9% quantile lines for 2-day maxima in intensities measured at De Kooy and Eelde decrease
linearly in time with rates of 0.1 and 0.05 mm/hr/yr respectively, while the same quantile lines
increase for De Bilt and Maastricht (at rates of 0.13 and 0.07 mm/hr/yr) and remains almost
constant for Vlissingen (∼ 0.02 mm/hr/yr). No visible trends are observed for the yearly mean
intensity and the 75%, 90%, 95%-quantiles.
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Quantile regression on 2-day max. hourly intensities
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Figure 5.4: For all stations quantile regression fits with τ = 75, 90, 95, 99, 99.9 % on 2-day maxima
in hourly precipitation intensities (I) in mm/hr, given by colored lines. The black lines are the
ordinary least squares regression on the yearly means of 2-day intensity maxima.

Only for De Bilt Figure 5.4 suggests that the 99%- and 99.9%-quantiles increase considerable
in time. Whether the 99 and 99.9%-quantile trends for De Bilt are significant is investigated by
a 9999 Monte Carlo permutation test of the ordinary least squares regression coefficient. The
corresponding probability density functions of the permuted slopes are shown in Figure 5.5.

For De Bilt, both the 99%-quantile, and the 99.9%-quantile are not significant (P=0.8734).
This might be due to the limitation in the number of values higher than the 99%- and 99.9%-
quantile (∼ 106 and 11 data points). If the 99.9% is not significant for all stations, this might
explain the opposing signals.
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Monte Carlo permutation test on 2-day max. hourly intensities
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Figure 5.5: Probability density functions for 9999 Monte Carlo permuted slopes based on τ =
(a)99, and (b) 99.9%-fitted values of 2-day maxima in hourly precipitation intensities (mm/hr)
for De Bilt. The purple (gray) lines give the upper-tail slope at the 95% (99%) confidence level.
The black lines indicate the observed regression coefficients.

Next, to verify whether the (99% and) 99.9% quantile lines are indeed insignificant for the
other stations, we will also study the p-values for the quantile fits of the other stations. In fact,
the significance of all quantile lines and ordinary least square lines is determined for all stations
and displayed in Table 5.1. A green cell indicates a significant positive trend (p ≥ 0.95). A cell in
this table is colored red when the quantile line is significantly not-increasing, so it is constant or
decreasing. (p ≤ 0.05).

Table 5.1: Significance table for all fits on 2-day max. hourly intensity data

Location Quantiles of fit OLS
Station STN 50% 75% 90% 95% Q99% 99.9% Yearly mean
De Kooy 235 0.15 0.06 0.96 1.00 0.84 0.07 0.9435
De Bilt 260 0.05 0.99 1.00 0.95 0.91 0.90 0.9435
Eelde 280 0.01 0.96 0.93 0.92 0.73 0.26 0.9329
Vlissingen 310 0.91 0.07 0.30 0.96 0.82 0.47 0.9235
Maastricht 380 0.25 0.11 0.98 0.95 0.45 0.67 0.7176

All 99.9% quantile regression fits are indeed insignificant (Table 5.1). The surprising opposing
regression lines for this quantile can thus not be detected as true trends, but may be influenced
by the limited amount of data points. All the 99%-quantile fits are also insignificant. Multiple
quantile regression lines are significantly positive for the 2-day intensity maxima; 6 on the 95%
confidence level and 3 on the 99% confidence level. What is striking about the other p-values for
De Bilt, is that it has three quantiles which increase significantly at the 99% or 95% confidence
level, while the 50%-quantile is significantly not-increasing. For all stations large differences exist
in the p-values for the different quantiles. It should be recognized that zero significant increasing
trends are detected for the 50%-quantile fit and the ordinary least squares fits on the yearly means,
whereas a maximum of four significant trends is detected for the 95%-quantile fit. Note that the
p values of the ordinary least squares fits are based on only 58 years. A general disproportional
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increase of relatively high intensities compared to relatively moderate intensities can be recognized
in the amount of significant increasing trends per quantile.

In AR5 of the Intergovernmental Panel on Climate Change ((IPCC, 2013)) a shifting probabil-
ity density function (PDF) for intensity towards higher values as a result of temperature increase
is proposed. However, does our observation of dissimilarity in the presence and magnitude of
significant trends in the quantile fits for a station contradict to the theory of a shifting probability
density function (PDF) for intensity with temperature? Considering the method of quantile re-
gression this does not need to be the case. In quantile regression there are no quantiles calculated
for each time period, which would correspond to the PDF at that time. Quantile regression is
namely a minimization function on the entire data set (Chapter 2). Therefore, the fitted lines are
not a result of a clear step-wise shifts in time of the entire PDF and corresponding quantiles. This
means that comparing the behavior of the different quantile lines for one station is not meaningful,
but comparing a certain quantile between different stations is. Dissimilarity in trends with respect
to the quantiles is also observed in a study of Malik, Bookhagen, and Mucha (2016), which uses
quantile regression as well.

Figure 5.6 demonstrates the change in PDF by plotting the PDF of the 5-year period 1958-
1962 next to the 5-year period 2011-2015. This figure confirms that there are not true changes
for different parts of the intensity spectrum. However, compared to the older period, the newer
period shows a decrease in lower intensities and an increase in higher intensities. Nonetheless,
clear horizontal movement of the PDF is not visible.

In addition, the study of Malik, Bookhagen, and Mucha (2016) detected spatial inhomogeneity
in trends for India. Despite the fact that the Netherlands is a relatively small country compared
to India, spatial differences are present in the magnitude and amount of significant trends.
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Figure 5.6: Probability density functions of all 2-day maxima in intensities for the period 1958-1970
(a) and for the period 2003-2015 (b).

In Chapter 6 we hope to find an explanation for spatial differences in intensity. Although the
trends are characterized by spatial inhomogeneity and dissimilarity with respect to the quantiles,
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it should be stressed that almost all significant trends detected are positive. For the two non-
increasing 50%-quantile lines, we still have to determine whether these are significant constant or
decreasing lines. In general, we can conclude that through a time period of 58 years the precipi-
tation intensity of extreme events increases.

Not only the presence and sign of a trend is important, but also the magnitude of the trend.
Table 5.2 displays the rates of increase in intensity (mm/hr) per year for all significant trends.

Table 5.2: Rates of significant trends of “moderate”-“high” extreme intensities

Location Rates (2-day max mm/hr per year)
Station STN 50% 75% 90% 95%
De Kooy 235 - - 5.4e−3 1.6e−2

De Bilt 260 2.3e−14 4.2e−3 8.5e−3 9.0e−3

Eelde 280 -5.5e−16 2.8e−3 - -
Vlissingen 310 - - - 8.9e−3

Maastricht 380 - - 7.8e−3 9.1e−3

As all the trends for the 99%- and 99.9%-quantile fits are insignificant, their rates are excluded
from Table 5.2. Take into mind, that although no significant trends are found for the highest
quantiles, trends can still exist. A larger data set might give significant trends for the highest
quantiles, which are then assumably positive, as all the other detected trends are positive (except
for the 50%-quantile of De Bilt and Eelde).The computation of the rates of all significant rates,
does not only gives us the magnitude, but also verifies whether a trend is indeed positive, constant
or negative. Table 5.2 shows that the two non-increasing trends are so close to zero that they are
negligible, and can be considered constant in time.

The four highest rates in 2-day intensity maxima, on the order of 0.01 mm/hr/yr, are those
of the highest quantile (95%) for all stations except Eelde. For the entire period of 58 years this
translates to an increase of the intensity of extreme hourly precipitation (for the 5-10% highest
2-day maxima) of 0.5-1 mm/hr. In magnitude this change equals the difference in mean intensity
between summer and winter (Chapter 4). All the other significant increasing trends have rates on
the order of 0.001-0.01 mm/hr/yr. In general, the higher the quantile per station, the higher the
magnitude of the detected trend. The yearly mean of the maxima increases on the order of 0.001
mm/hr/yr.

This disproportional increase of the intensity of “high” extremes (P>90% or 95%) compared
to the mean and “low” extremes(P>50% or 75%), is consistent with the observations of the IPCC
(stated in Chapter 1). Our findings can thus be explained by the theory that low and moderate
intensities correspond more to large-scale precipitation, which is more constrained by the energy
budget of the atmosphere, while the extreme precipitation (and related intensity) has a non-linear
dependency on moisture availability. To investigate what explains the spatial differences in the
detection of significant trends and why intensity maxima in general increase in time, we will dive
deeper into the causes behind these trends in Chapter 6.

In Table 5.3 we provided the relative rates of all significant trends of “low”-“high” extreme
intensities. The rates of trends in “low” extremes (50%-quantiles) are negligible, but the rates of
trends in “moderate”-“high” extremes vary are approximately 0.2-0.4%/yr, which demonstrates
that the disproportionality is less robust. The rates of 95%-quantiles of De Bilt and Maastricht
are lower than expected.
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Table 5.3: Relative rates of significant trends of “moderate”-“high” extreme intensities

Location Rates (% per year)
Station STN 50% 75% 90% 95%
De Kooy 235 - - 0.17 0.38
De Bilt 260 3.9e−12 0.23 0.25 0.19
Eelde 280 -9.2−14 0.16 - -
Vlissingen 310 - - - 0.19
Maastricht 380 - - 0.24 0.19

5.2.3 Summer vs winter

In this paragraph we will distinguish between summer and winter trends in 2-day maxima, as the
type of precipitation (characterized by specific intensity) is season dependent (Chapter 4). For
the summer extremes, we could probably take shorter (independent) periods for sampling maxima
based on the autocorrelation and partial autocorrelation, because of their local, short-lasting char-
acter. This would increase the amount of samples and this might improve the significance of any
trends present. However, as we want to compare the trends between summer and winter season,
we do not want to have 2 different approaches of data selection, as this could induce seasonal
differences without physical basis. Figure 5.7 shows the quantile trends in 2-day maxima of both
seasons. The 99.9%-quantiles are left out of this figure, as this would correspond to only 2.87 data
points respectively (0.1% of the 2-day maxima within 3 winter or summer months for 58 years).

Seasonal quantile regression on 2-day max. hourly intensities
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Figure 5.7: Quantile regression fits with τ = 75, 90, 95 and 99% on 2-day winter (left) and
summer (right) maxima in hourly precipitation intensities (mm/hr), for all stations. The black
line represents the ordinary least squares regression of the yearly means.

What is striking, is the difference between summer and winter in magnitude of the extremes.
Where the highest quantile for winter data represents values higher than 5-6 mm/hr, the highest
quantile for summer data corresponds to extreme intensities higher than 12-20 mm/hr. Both the
magnitude, and the spatial differences (in sign and magnitude) for this quantile is bigger for the
summer season, than for the winter season, which corresponds to our conclusions from Chapter 4.
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Precipitation events are generally more intense in summer. Besides, we find that spatial differences
are also relatively high for more intense precipitation, which could be explained from the proba-
bility density functions shown in Chapter 4. Namely the more intense the hourly precipitation is,
the lower the chance of occurrence, so the higher the effect of outliers. Whether these fits for the
high quantiles with large spatial differences are significant, will be tested in the next part. The
fits for the lower quantiles seem all to be constant or increasing in time for summer intensities, as
well as for winter intensities. Furthermore, the winter 99%-quantile lines are positive for De Kooy,
De Bilt and Eelde and negative for Vlissingen and Maastricht. For summer, this quantile line is
negative for De Kooy, positive for De Bilt, and near constant for Eelde, Vlissingen and Maastricht.

Comparing the summer and winter trends for the 99%-quantile to the observed trends of
all 2-day maxima in Figure 5.4, those of De Kooy and Eelde are recognized as summer trends.
Nonetheless, we expect trends in the upper part of the probability density function of all 2-day
intensity maxima to be based on summer data, as those have the highest values. This also holds
for De Bilt, but not for Maastricht of which the positive trend for all 2-day intensity maxima is
not detected as a summer (or winter) trend. Nevertheless, when considering only summer data
we have a different probability density function than we have for all 2-day data. Therefore, the
99%-quantile for 2-day (all hour) data probably corresponds better to the 95%-quantile for 2-day
summer data. This more or less holds for Maastricht, De Kooy, De Bilt and Vlissingen, but not
for Eelde. Next to studying the plotted regression lines, the significance of all quantile lines is
tested and the corresponding p-values are showed in Table 5.4.

Table 5.4: Significance table for all fits and specified to summer and winter intensity data

Location Quantiles of fit
Summer

Station STN 50% 75% 90% 95%
De Kooy 235 0.90 0.99 0.99 0.94
De Bilt 260 0.28 0.99 0.84 0.86
Eelde 280 0.78 0.99 0.95 0.49
Vlissingen 310 0.86 0.71 0.96 0.97
Maastricht 380 0.53 0.73 0.98 0.86

Winter
De Kooy 235 0.21 0.91 0.97 0.98
De Bilt 260 0.95 0.86 0.97 0.78
Eelde 280 0.26 0.96 0.99 0.88
Vlissingen 310 0.97 0.87 0.29 0.37
Maastricht 380 0.12 0.99 0.92 0.97

No significant trends are detected for the fitted ordinary least squares and 99%- and 99.9%-
quantiles, so they are excluded from Table 5.4. For both seasons multiple significant positive
trends are demonstrated for intensities corresponding to the 50%-95%-quantiles (Table 5.4). Even
for the 50%-quantile no significant non-increasing trends are found. For all stations approximately
two significant trends in 2-day maxima per station and season are detected. For the winter season
there are larger spatial dissimilarity in the type of quantile trends (ranging from 50%-95%) than
for the summer season (concentrated on 75%-90%). In Chapter 6 we hope to discover why the
intensity maxima increase for both seasons and what explains the dissimilarity in quantiles.

Significant summer trends have positive rates ranging between 0.01-0.04 mm/hr in 2-day max-
ima per year and winter trends have positive rates ranging between 0.003-0.01 mm/hr in 2-day
maximum per year. Comparing absolute summer and winter rates, we can conclude that summer
trends resemble better the trends in the highest all-2-day maxima, which confirms our observation
of higher summer intensities compared to winter intensities (Figure 5.7). Over a period of 58 years
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the highest 5-10% 2-day intensity maxima have increased with 1.1-2.3 mm/hr for summer data
only, and with 0.35-0.6 mm/hr for winter data only. Both seasons show a disproportionality in
the growth, with larger rates corresponding to higher quantiles of intensities. The largest summer
rates are those corresponding to the 90%-quantile of De Kooy and the 95%-quantile of Vlissingen.
The largest winter rates correspond to the 95%-quantiles of De Kooy and Maastricht.

When considering the relative rates of significant trends in “high” intensities, rates of 0.1-
0.6%/yr are found for summer, which are stronger than the winter rates (0.1-0.3%/yr) in “high”
intensities. For the lowest quantiles only significant and strong winter trends are found. What
is more striking, is that for winter we observe reversed disproportionality. The highest relative
rates, on the order of 0.5-0.7%yr, namely correspond to the lowest (50%) significant quantile trends.

5.2.4 Summary

To summarize, we found significant increasing trends in the intensity of the 25-5% highest 2-day
maxima (0.2-0.4%/yr). In 58 years the highest maxima have increased with 0.5-1 mm/hr. This
can be compared to a change of at least the total difference in mean intensity between summer
and winter. Besides, similar as to other studies we observed that the “high” extremes increase in a
disproportional way, compared to the mean, “low” and “moderate” extremes. Moreover, positive
trends were present in both winter as summer data for respectively the 50-5% and 25-5% highest
2-day season maxima. However, the trends in “high” extremes are likely to be summer trends.
The summer 2-day intensity maxima are one order stronger (in absolute way) than the winter
trends, but keep into mind that summer intensity maxima are generally one order higher than
winter intensity maxima. Considering relative trends, summer trends in intensity are stronger
(0.1-0.6%/yr) for the “moderate”-“high” extremes than winter trends (0.1-0.3%/yr), while only
significant winter trends are found for “low” extremes (0.5-0.7%yr). For all trends we observe a
spatial dissimilarity in the significance and rate of a trend regarding the type of quantile considered.

5.3 Frequency

Next to changes in intensity of extreme precipitation events, is it also relevant to study whether
precipitation events occur more, equally or less often in time. In this section, analysis of frequency
of wet hours is reported. First, the number of wet hours per 2 days is investigated in Figure 5.8.
Next to trends in intensity, we can then draw conclusions on trends in wetness for the same tem-
poral resolution. Second, the same is repeated for the number of wet hours a year, which is a more
intuitive approach to look at the changes of wetness in time. Furthermore, we have investigated
whether trends in summer and winter wetness differ for the two approaches (but more thoroughly
for yearly resolution).
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5.3.1 2-day frequency

Quantile regression on frequency of 2-day wet hours
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Figure 5.8: (a) Probability density functions of all and yearly mean frequencies of hours in which
precipitation occurs per 2 days. In (b) quantile regression fits with τ = 25, 50, 75 % on all 2-day
frequencies and ordinary least squares regression (black line) on the yearly mean frequency of wet
hours per 2 days for all stations. The coefficients of the ordinary least squares regression lines are
given in the right corner.

The probability density function of the 2-day frequencies of wet hours (Figure 5.8a) looks more
lognormal, than normal, therefore quantile regression is preferred above the ordinary least squares
regression. As the yearly mean 2-day frequencies of wet hours are approximately normal dis-
tributed, we plotted the ordinary least squares regression of these means. In Figure 5.8b the
25%-quantile is excluded, because the 25% driest 2 days have no wet hours at all. In this figure
small negative trends or constant regression lines are visible for the 50%-99%-quantile, except
for the 99%-quantile of De Kooy. Spatial differences can be recognized in the strength of the
negative signal. Where most of the quantile line of De Bilt and Maastricht have a slight negative
slope, most of the quantile lines of De Kooy, Eelde and Vlissingen have no slope. However, all
the ordinary least squares regression of the yearly mean 2-day frequencies of wet hours are negative.

To investigate whether a quantile trend is significant, a 9999 Monte Carlo permutation is ap-
plied. Of every fitted quantile regression line the corresponding p-value is listed in Table 5.5.
From this table we can be deduce that most of the quantile regression lines are significantly non-
increasing (which is indicated by the red marking), except for the 99%- and 99.9%-quantiles. In
fact, the 99.9%-quantile for 2-day frequency data of Vlissingen is significant. Maastricht and Eelde
both have 4 significant non-decreasing trends. Some trends are even below the 1% confidence level,
thus very significantly non-decreasing. To verify whether these trends are significantly increasing,
we reverse the p-test by counting the p value as all permuted slopes lower than the observed
slope. Here, we colored the cells with a significant decreasing trend red and with a significant
non-decreasing trend green.

In Table 5.6 we can deduce which trends are significantly decreasing (colored red). Some of
the trends which were marked red in Table 5.5 are green in this table. As the p-values from these
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Table 5.5: Significance table for all fits on 2-day frequencies of wet hours

Location Quantiles of fit
Station STN 50% 75% 90% 95% Q99% 99.9%
De Kooy 235 0.07 0.0002 0.01 0.03 0.79 0.27
De Bilt 260 0.002 0.01 0.02 0.09 0.28 0.28
Eelde 280 0.0001 0.001 0.01 0.01 0.31 0.73
Vlissingen 310 0.002 0.01 0.07 0.07 0.11 0.02
Maastricht 380 0.0001 0.0001 0.001 0.004 0.19 0.30

Table 5.6: Significance table for all fits on 2-day frequencies of wet hours (reversed p test)

Location Quantiles of fit
Station STN 50% 75% 90% 95% Q99% 99.9%
De Kooy 235 0.93 0.004 0.01 0.03 0.21 0.73
De Bilt 260 1.00 0.99 0.02 0.90 0.73 0.72
Eelde 280 0.0001 0.001 0.99 0.01 0.30 0.26
Vlissingen 310 0.002 0.01 0.08 0.07 0.89 0.98
Maastricht 380 1.00 0.0004 1.00 1.00 0.82 0.70

cells indicate that the fitted quantile values are significantly non-increasing and non-decreasing,
they must be constant. We checked this for the p-values of these specific cells by plotting the
probability density function of all permuted slopes. Those which are indeed zero are excluded
from our computation of the rates of significant trends. Only negative rates remain, which are
shown in Table 5.7. Several trends remain which are significantly negative; two for the lower
quantiles of De Bilt, one for a relatively high quantile of Eelde and of Vlissingen and three for
Maastricht. Moreover, most of these trends are significant at the 99% confidence level, which is
different from the detected trend in 2-day intensity maxima (those were mostly significant at 95%
confidence level).

Table 5.7: Relative rates of significant frequency trends

Location Rates (%/yr)
Station STN 50% 75% 90% 95% 99% 99.9%
De Kooy 235 - - - - - -
De Bilt 260 -0.50 -0.21 - - - -
Eelde 280 - - -0.13 - - -
Vlissingen 310 - - - - - -0.32
Maastricht 380 -0.62 - -0.23 -0.19 - -

All significant trends in counts of wet hours are verified as being negative by Table 5.7. The
relative decreasing rates for the wettest (50-0.1%) 2 days are on the order of 0.1 % per year, while
the trends in the mean 2-day wetness decreases with 0.08-0.29%/yr. The strongest negative trend
(50% of Maastricht) has a negative rate of approximately 36% in 58 years. For frequency data we
do not find the same disproportionality as for intensity data. The mean and the relatively drier
2-days (i.e. lower quantile fits) decrease faster in wetness than the wetter 2-days.

Considering the signal for whole the Netherlands, this corresponds to a reduction of 10.7% in
wetness over 58 years. In absolute terms, this means that we have about 100 wet hours per year
less, which is equal to the effect of moving from the northern part of the Netherlands (De Bilt
or Eelde) to the southern part (Vlissingen or Maastricht) regarding the the spatial difference in
wetness (Section 4.1). Mind that coastal regions also have all lower frequency of wet hours in
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general.

Overall, a negative signal in frequency is found with large dissimilarity in the significance of
trends regarding quantile and station.

5.3.2 Summer vs winter

When frequency data is differentiated on summer and winter season, we only find significant neg-
ative summer trends for the 25-5% wettest (as in most wet hours) 2-days with rates of -0.25 to
-0.33 %/yr. This equals an absolute decrease in 58 years of approximately 2 wet hours/day for the
wettest summer days (i.e. days with a mean of 11 wet hours a day). These trends corresponds to
the 75%, 90%, and 95%-quantiles of Eelde and the 90%-quantile of Maastricht. The two significant
negative trends for all-2-day maxima of De Bilt and Vlissingen are likely either a spring or autumn
trend, or just not detectable as significant because of the fourfolth reduction in data compared to
all-2-day data. Further, we were interested whether stronger signals can be found, when we study
the amount of wet hours a year. In Section 5.3.3 analysis of yearly frequencies of wet hours is
performed.

5.3.3 Yearly frequency

In this section we investigate trends of wetness by counting the number of wet hours a year, a
winter and a summer. First, we study the probability density function of wet hours a year to
determine which kind of regression approach is suitable.

Quantile regression on yearly number of wet hours
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Figure 5.9: (a) Probability density function of the number of wet hours a year. In (b) ordinary
least squares regression (black line) and quantile regression fits with τ = 25, 50, 75 % on the
number of wet hours a year for all stations.
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Figure 5.10: Ordinary least squares regression (black lines) and quantile regression fits with τ =
25, 50, 75 % on the number of wet hours a year, for (a) only winter and (b) only summer data,
for all stations.

The probability density function of the number of wet hours a year approaches a Gaussian
distribution, therefore ordinary least squares regression is valid for this data. All ordinary least
squares regression fits demonstrate a negative trend in the amount of wet hours a year. The mag-
nitude of these trends differ largely between the five stations. The negative trend for Maastricht
is the strongest (coefficient of -3.31 counts/yr), which is twice as much as the one for Vlissingen
(-1.52 counts/yr), and three times as much as the one for De Kooy (-0.87 counts/yr). Moreover,
the quantile regression lines are all negative, but per station and per quantile there are differences
in the steepness.

To investigate whether these trends are also season dependent, we plotted the same kind of
figure for winter and summer (Figure 5.10). All the only ordinary least squares regression trends
are positive, except for the summer trend of De Kooy. The coefficient of the annual trend in the
number of wet hours is the lowest for De Kooy (Figure 5.9b), which is probably due to the partial
compensation of the negative winter trend (Figure 5.10a) by the positive summer trend (Figure
5.10b). However, a negative trend in spring and/or autumn is also required to give us a rate of 0.87
nr/yr for ordinary least squares regression on yearly resolution for De Kooy. Spatial differences
are well visible in the magnitude of the trends, which differs more for summer trends (maximum
variability of 1 count/yr), compared to winter trends (maximum variability of 0.2 count/yr)(Figure
5.10). This difference in spatial variability between summer and winter is well explainable. As
summer (winter) precipitation events have generally a local (large) scale, changes in the amount of
wet hours will be influenced relatively more by local (widespread) processes in summer (winter).
Overall, a robust signal is present of decreasing yearly, winter and summer frequencies of wet
hours, so that underlying cause(s) are expected to play a role for all seasons.

Quantile regression lines are also considered in this figure, allowing us to say something about
the changes in extreme wet summer and winters. Most of the quantile fits show negative trends in
the amount of wet hours a year, except for the 25%-quantile fit of Vlissingen (winter and summer)
and De Bilt (summer). This suggest that the signal of decreasing frequency is stronger for wetter
years, than for drier years. Thus, disproportionality is also recognized in the decreasing trends in
counts of wet hours a year. Although less obvious as for intensity data, the quantile regression lines
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for frequency data differ among the five stations as well. The p-values, expressing the significance
of any decreasing trend, are listed in Table 5.8.

Table 5.8: Significance table for all quantile regression fits on frequency data with yearly resolution

Location Quantiles of fit
All year

Station STN 50% 75% 90% 95% Q99% 99.9%
De Kooy 235 0.66 0.87 0.36 0.59 0.84 0.84
De Bilt 260 0.97 1.00 0.99 0.59 0.60 0.60
Eelde 280 0.93 0.98 0.89 0.67 0.77 0.78
Vlissingen 310 0.79 0.61 0.83 0.94 0.73 0.72
Maastricht 380 0.99 0.96 1.00 0.89 0.90 0.90

Summer
De Kooy 235 0.55 0.41 0.33 0.15 0.35 0.35
De Bilt 260 0.68 0.76 0.95 0.95 0.78 0.78
Eelde 280 0.93 0.89 0.47 0.75 0.79 0.80
Vlissingen 310 0.18 0.91 0.78 0.67 0.15 0.15
Maastricht 380 0.83 0.76 0.92 0.77 0.94 0.94

Winter
De Kooy 235 0.49 0.74 0.94 0.85 0.40 0.40
De Bilt 260 0.62 0.85 0.85 0.80 0.41 0.41
Eelde 280 0.28 0.77 0.91 0.92 0.41 0.41
Vlissingen 310 0.44 0.80 0.58 0.76 0.40 0.40
Maastricht 380 0.81 0.56 0.31 0.67 0.61 0.60

De Bilt and Maastricht have the most (three) significant decreasing trends, whereas De Kooy
and Vlissingen have no significant (decreasing) trends. For summer only two significant negative
trends are found,and for winter none. Large spatial differences exist for the amount of significant
trends found for data on yearly resolution. Although, the negative signal is clearly present in
the slope of the quantile regression lines, the small sample size (58 years) is likely limiting the
detection of significant trends.

Furthermore, the ordinary least squares regression fits are tested on significance with help of
the 9999 Monte Carlo permutation test. Table 5.9 presents the p values for all stations and differ-
entiated on all year, summer and winter yearly frequencies of wet hours. We can deduce from this
table that only the ordinary least squares regression fits based on all-year frequencies are signifi-
cant, namely for De Bilt, Eelde and Maastricht, and none based on summer or winter frequencies.
It is highly likely that the detection of trends based on data of yearly resolution, especially when
only summer or winter data is considered, is limited by its sample size (only 58 yearly values).
Nevertheless, a lot of p values are nearly significant and these values plus the plotted regression
lines all indicate decreases in the frequency of wet hours, similar to the detected trends for data
on a 2-day resolution.

5.3.4 Summary

In short, in this section we found multiple indications of decreasing trends in the number of wet
hours for all station. Next to visible negative slopes in the quantile and linear ordinary least
squares regression, several negative trends in frequency of wet hours were detected being signifi-
cant (even on the 99% confidence level) for frequency data on a 2-day and on a yearly resolution.
The negative trends for the wettest 2 days range between 0.1-0.6 %/yr. The mean wetness de-
creases at a rate of 0.08-0.29 %/yr (depending on the station). For the whole Netherlands the total
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Table 5.9: The p-values of ordinary least squares regression fits, based on yearly frequencies for
all stations and differentiated on all year, summer and winter data

STN All year Summer Winter
1 235 0.80 0.31 0.78
2 260 0.96 0.85 0.70
3 280 0.97 0.93 0.71
4 310 0.93 0.54 0.65
5 380 1.00 0.86 0.76

change in 58 years correspond to 100 wet hours less on average a year, which equals in magnitude
the total spatial difference in mean wetness between northern and southern situated stations. So,
this 58-year change is the same as moving from (more frequently raining) northern part of the
Netherlands to the (less frequently raining) southern part.
However, the negative signal in frequency of wet hours is less robust than the positive signal in
intensity maxima, as for the former larger spatial differences in the number of significant trends
exist than for the latter. Besides, we detect a reverse disproportionality. In other words, the mean
and the drier 2 days show a stronger decrease in the counts of wet hours than the wetter days.

Unlike the analysis of intensities we do not use maxima data in frequencies, as we consider
2-day counts of all wet hours. The lack of significant trends in frequency based on data of a yearly
resolution for the quantile regression approach, as well as for the ordinary least squares regression
approach, is likely due to the limited sample size.

We do not find significant winter trends, but only significant summer trends for the 25-5%
wettest (as in most wet hours) 2-days with negative rates of -0.25 to -0.33 %/yr. This equals an
absolute decrease in 58 years of approximately 2 wet hours/day for the wettest summer days (i.e.
days with a mean of 11 wet hours a day).

5.4 Amount of precipitation

In this chapter we found significant increasing trends in the extreme hourly intensity, while no
trend was detected for the mean hourly intensity. Moreover, we observed evident indications of
decreasing frequency of wet hours. In view of these trends, it is interesting to investigate whether
there are also changes in the total amount of precipitation through the same period. This would
allow us to determine whether the two opposite trends, in 2-day intensity maxima and frequency
of wet hours, cancel each other or whether one trend is more dominantly influencing the total
amount of precipitation than the other. Whereas the 2-day precipitation sums are distributed
non-normal, the yearly mean of 2-day precipitation sums and the yearly precipitation sums are
distributed normal (Figure 5.11. So ordinary least squares regression is only applicable for the
latter two.

5.4.1 2-day and yearly precipitation sums

In Figure 5.12 the quantile regression for both the 2-day, and the yearly precipitation sums is
shown. The 25%-quantile is excluded from Figure 5.12a, as the fitted values are zero for this
quantile on 2-day resolution.
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Probability density functions of 2-day and yearly precipitation sums
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Figure 5.11: Probability density functions of all 2-day (a) and yearly (b) precipitation sums of wet
hour a year (a).
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Figure 5.12: Quantile regression fits of 2-day (a) and yearly (b) precipitation sums for all stations.

For the stations De Kooy, De Bilt and Eelde the quantile lines of the 2-day precipitation sums
increase for the 90%- and 95%-quantiles, whereas the quantile lines of the same quantile are con-
stant for Vlissingen and Maastricht (Figure 5.12a). The 99%-quantile line increases for all stations,
but spatial differences are visible regarding the slope (with largest slopes for De Kooy and Eelde).
Changes in the lower quantiles (50%- and 75%-quantiles) and in the yearly means of 2-day precip-
itation sums are hard to detect. For the yearly data increasing ordinary least squares regression
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lines are visible, except for Maastricht (Figure 5.12b). The ordinary least squares regression coef-
ficient for De Bilt is about twice as high as the coefficient for De Kooy and Vlissingen. In De Bilt
the 75%-quantile seems to increase the most, suggesting that the ordinary least squares regression
trend is mostly due to an increase in moderately high precipitation sums (between the 75%- and
90% quantile). For Maastricht, the 90%-quantile increases, whereas all the other quantile lines
decreases. This would mean that precipitation sums between the 90%- and 95%-quantile increases
significantly. The dissimilarity in quantiles is not fully understood, but might be the result of the
way quantile regression works (similar as described in Section 5.2.2).

More interesting is the deviation for Maastricht in the sign of the trend. In Sections 5.3.1 and
5.3.3 we saw that the negative trends in 2-day and yearly frequency of wet hours are strongest
for Maastricht, while from Section 5.2.2 we know that the 2-day intensity maxima (see Section
5.2.2) does not increase more or less for Maastricht compared to the other stations. Changes in
precipitation sums are expected to be the combined result of changes in intensity and frequency
(Chapter 4). When the yearly trend in in intensity maxima for Maastricht is also approximately
constant, this deviation in trend for the precipitation sum is expected. Whereas the negative
trend in frequency of wet hours dominates the trend in precipitations sums of Maastricht, the
positive trend in intensity of the more extreme events is apparently dominating the trend in the
precipitation sums of the other stations.

The strongest increasing trend regarding ordinary least squares regression in precipitation sums
is the one for De Bilt, which can be easily understood. We namely observed the most significant
positive trends in maxima intensity for De Bilt. Besides, maybe the highest quantiles also have
a positive trend. The latter could be true if the corresponding trends can only not be detected
as significant due to the limited sample size. Although, 2-day trends of decreasing frequencies
of wet hours are found for De Bilt, these only apply on the relatively drier 2-days (50%- and
75%-quantiles) and with less strong absolute rates. However, the yearly trend of frequency of wet
hours is moderately high for De Bilt, but not detected as being significant at the 95% confidence
level.

What is more striking, is that the (moderate) positive yearly trends in precipitation sums for
the two coastal stations, Vlissingen and De Kooy, are quite similar in both the ordinary least
squares regression slope, and the slopes of the quantiles lines. (add explanation or express igno-
rance, but yearly LR of intensity needed).

The significance of the observed 2-day and yearly quantile regression lines is investigated with
a 9999 Monte Carlo permutation test, in which we have tested whether the slopes are significantly
higher than zero. Table 5.10 gives the p-values resultant from this test.

In Table 5.11 we observe significant trends for the 2-day precipitation sums. The p-values point
out significant positive trends for the 95%-quantiles of De Kooy and De Bilt, for the 90%-, and
95%-quantiles of Eelde, and for the 99%-quantile of Vlissingen and Maastricht. All these trends
are significant at the 95% confidence level, except for the 90%-quantile of Eelde, which is signifi-
cant at the 99% confidence level. What is striking is that the trends detected for the 95%-quantile
correspond to the more northern situated stations (De Kooy, De Bilt and Eelde) and those for
the 99%-quantile for the more southern situated stations (Vlissingen and Maastricht). This could
be a temperature related difference, as mean temperature is higher for the northern part of the
Netherlands, than of the southern part of the Netherlands. Moreover, we saw in Chapter 4 that
higher intensities correspond to the summer months, in which the temperature is obviously higher
compared to the winter months. In Chapter 6 we will investigate the precipitation intensity-
temperature relationship in more detail.

Furthermore, we find significant positive trends for the ordinary least squares fit on the yearly
means of all stations, except Maastricht for which we find a significant negative trend. For the
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Table 5.10: Significance table for all fits on 2-day sums of precipitation

Location Quantiles of fit OLS fit
Station STN 50% 75% 90% 95% Q99% 99.9% Yearly means

2-day sums
De Kooy 235 0.21 0.70 0.86 0.97 0.16 0.24 1.00
De Bilt 260 0.26 0.37 0.93 0.97 0.10 0.90 1.00
Eelde 280 0.46 0.64 1.00 0.98 0.93 0.77 1.00
Vlissingen 310 0.73 0.81 0.82 0.39 0.97 0.83 1.00
Maastricht 380 0.06 0.13 0.36 0.78 0.98 0.92 0.0001

Yearly sums
De Kooy 235 0.90 0.49 0.26 0.47 0.40 0.39 0.6937
De Bilt 260 0.93 0.41 0.32 0.36 0.65 0.65 0.8318
Eelde 280 0.58 0.41 0.72 0.80 0.80 0.80 0.7874
Vlissingen 310 0.78 0.45 0.32 0.31 0.25 0.24 0.6937
Maastricht 380 0.83 0.34 0.07 0.20 0.19 0.19 0.6937

yearly precipitation sums, we do not find any significant trends. This might be due to a too small
sample size.

Table 5.11: Relative rates of significant trends in precipitation sums

Location Rates (mm/2 days/yr)
Station STN 50% 75% 90% 95% 99% 99.9% OLS
De Kooy 235 - - - 0.23 - - 0.31
De Bilt 260 - - - 0.22 - - 0.059
Eelde 280 - - 0.24 0.22 - - 0.096
Vlissingen 310 - - - - 0.069 - 0.13
Maastricht 380 - - - - 0.16 - -0.29

Table 5.11 provides the relative rates of the trends in 2-day precipitation sums, which range
between 0.05-0.25%/yr. This can be translated to an increase of approximately 1 mm/day in
58 years for the days (90-99% quantile) with highest accumulation amounts. The ordinary least
squares fits demonstrates a negative change of -0.29%/year for Maastricht (over 58 years a reduc-
tion of 16.8%) and for the other stations positive changes between 0.06-0.31 %/year (over 58 years
increases of 3.5-18%).

The absolute regression coefficients are on the order of 0.01 mm/2 days/yr (more specifically
1.2-2.7 mm/2days in 58 years). This holds only for the precipitation sums higher than the 90%-,
95%- or 99%-quantiles, with spatial differences in the type of quantile for which a trend is sig-
nificant. The highest absolute rate (0.046 mm/2 days/year) corresponds to the 99%-quantile of
precipitation sums for Maastricht, while the lowest rate (0.021 mm/2 days/year) relates to the
same quantile, but then for Vlissingen. The spatial differences in absolute rates are not that high,
as they are all of the same order. Admittedly, the detected trends apply on approximately the
same quantile, so that they are better comparable than the rates for intensity maxima or frequency
of wet hours.

Considering both the signs of the trends in intensity and frequency, and the related dispro-
portionality of the trends, we can explain why only trends for the highest precipitation sums are
significant. The positive trend for the highest intensity maxima is ten times stronger than the
trend for the yearly mean of the intensity maxima. On the contrary, the negative trend for the
yearly mean frequency of wet hours is stronger than the wetter days. On the one hand, the trends
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in the highest precipitation sums are significantly positive, as they are more dominated by the
trends in intensity extremes than by trends in frequency of wet hours. On the other hand, the
trends in the lower or mean precipitation sums are constant to non-significantly positive, as the
trends in frequency and intensity are approximately in balance.

5.4.2 Summer vs winter

In order to investigate whether the increases in 2-day precipitation sums are in fact more summer
than winter trends, vice versa or both, we did the same analysis on summer and winter 2-day pre-
cipitation sums. In Figure 5.13a we plotted the significant summer trends and in Figure 5.13b the
significant winter trends. Note that the y-axis of are differently scaled per station in the summer.
For the winter the fitted quantile values of the significant trends differ less, therefore the same
scale (but lower than for summer) is used.

Quantile regression on 2-day precipitation sums
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Figure 5.13: Quantile regression fits of significant summer (a) and winter trends (b) in 2-day
precipitation sums.

First of all, Figure 5.13 demonstrates that the few significant trends on seasonal level found
are positive. The relative rates of summer trends range between 0.60-2.8 %/yr for the 25-0.1%
highest precipitation sums (with the highest for the 99.9% of Vlissingen). Four out of five of least
squares trends of the summer mean in 2-day precipitation sum are positive, with rates between
-0.43 to 0.78%/yr. Only Maastricht shows a negative signal in the mean. The rates show that
large spatial differences are present. The summer mean precipitation accumulating per year in De
Kooy has increased with 330 mm in 58 years, while for Maastricht this has decreased with 282
mm in 58 years. So, we observe an approximately 300 mm shift in yearly mean accumulated from
the most southern non-coastal station to the most northern coastal station.

The winter quantile regression rates vary between 0.27 to 0.45 %/yr (in 58 years this is an
increase of 1.2-1.5 mm/day) for the highest 10-5% 2-day sums, while the rates of the (OLS) yearly
mean are all negative from -0.19 to -0.56 %/yr (in 58 years a decrease of -0.3 to -0.9 mm/day).
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So, we observe positive trends in the highest and mean summer precipitation sums and highest
winter precipitation sums, but negative trends in the mean winter precipitation sums. The positive
trends in the highest summer precipitation sums are stronger than trends in the mean summer of
highest winter precipitation sums.

De Kooy has the largest number of significant trends, which are all summer trends (for the
75%-,90%- and 95% quantiles). De Bilt has one significant summer and one significant winter
trend. On the one hand Vlissingen only has one significant summer trend, on the other hand
Eelde and Maastricht only have significant winter trends . What is also interesting, is that three
of the significant all-2-day trends, corresponding to the 95%-quantile of De Bilt, the 95%-quantile
of Eelde, and the 99%-quantile of Maastricht, are recognized as winter trends in Figure 5.13. The
significant all-2-day trends of the 95%-quantile of De Kooy and the 99%-quantile of Vlissingen can
be observed as summer trends.

What is striking, is that the summer trends in precipitation sums are only present for coastal
stations, while winter trends in precipitation sums are only present for non-coastal stations (with
the position of De Bilt in between the two types, regarding its distance to the coast). If this not
due to coincidence, it might be due to a different mechanism behind the positive summer and win-
ter trends. Besides, we already observed that ordinary least squares regression of the precipitation
sums for De Kooy and Vlissingen are quite similar, but mind that this accounts for precipitation
sums on yearly resolution. Moreover, we detected only for non-coastal stations (i.e. Eelde and
Maastricht) significant negative trends in summer frequencies of the wettest 2 days (Section 5.3.2).
This corresponds well with the fact that we do not detect significant positive trends in summer
precipitation sums for non-coastal stations In Chapter 6 we hope to learn more about the reason
for changes in precipitation sums and the related spatial differences.

5.4.3 Summary

Overall, we detected multiple significant positive trends in precipitation sums for the 90-99%-
quantile and in the OLS fits of the yearly means. For each station 1 significant quantile trend is
found, except for the station of Eelde (for which 2 trends are found). The detected trends corre-
spond to the 95%-quantile for the more northern situated stations (De Kooy, De Bilt and Eelde)
and to the 99%-quantile for the more southern situated stations (Vlissingen and Maastricht). This
difference in quantile, which means a difference in the degree of extremeness of the intensity, could
be related to temperature. The precipitation intensity-temperature relationship will be studied in
Chapter 6. Although, we only consider maxima intensities in contrast to all-hour frequencies of
wet hours, the trends in precipitation sums seems to be dominated more by the positive trends in
intensity maxima compared to the negative trends in frequency of wet hours. In the last 58 years
the 5% highest 2-day precipitation sums have increased with 1.2-2.7 mm.

When only studying summer and winter trends, we found that trends in all-2-day precipitation
sums of coastal stations are in fact summer trends, while those of non-coastal stations are winter
trends. Moreover, the trends in the highest and mean summer precipitation sums and highest
winter precipitation sums are positive, while the trends in the mean winter precipitation sums are
negative. Besides, the positive trends in the highest summer precipitation sums are stronger (0.60-
2.8 %/yr) than trends in the mean summer (-0.43 to 0.78%/yr) of highest winter precipitation
sums (0.27 to 0.45 %/yr). Negative trends are found for the yearly mean winter precipitation
sums.
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Chapter 6

Causes of changes in hourly
precipitation extremes

6.1 Introduction

In this chapter we attempt to find an explanation for the observed intensification of hourly precip-
itation extremes, and the decrease in the occurrence of wet hours. In order to find a mechanism
we apply a fourfold analysis. Firstly, we identify key variables by describing their relationship to
(extreme) precipitation, as found from theory. Secondly, correlation matrices of these variables
are plotted to provide a first-hand overview of the strength of any possible relationships. Thirdly,
we regress the key variables in time, in order to investigate whether we find changes in time that
might explain the observed changes for precipitation. We bundle the data for all five stations to
improve the detection of relationships, except for CAPE data of which we only have data from
one station, number 260 De Bilt. Moreover, we compare the magnitude and sign of these trends
with the observed trends found in Chapter 5. Lastly, we plot the distribution of the variable
in question and the quantile regression lines for intensity over the remaining variable(s) for two
different time periods. By comparing the two periods for both plots we can validate whether the
distribution of the variable or its relation with precipitation extremes changes in time. In this
part we differentiate between summer and winter season to understand the seasonal dependency
of the causes of increasing intensity of heavy hourly precipitation and decreasing precipitation time.

6.2 Detection of key variables

6.2.1 Theory

In this section we describe the relation of multiple variables to (extreme) precipitation. These are
temperature, relative humidity, dewpoint temperature, convective available potential energy, wind
strength, cloud condensation nuclei, topography, and weather code.

Temperature

Since 1950 many of the observed changes in temperature are unprecedented on a time scale of
decades to millennia. For the period 1880-2012 the IPCC (2013) stated that the linear trend in
temperature shows a warming of 0.85◦C. For more recent data (1951-1989) the relative increase
is higher, with a rate of 0.92◦C/century.
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Temperature at the surface, as well as the gradient of the temperature with height, influences
precipitation intensity and occurrence in many ways. It plays a role into the entire chain, from the
source of moisture, cloud formation and precipitation production up to and including the falling
process (Sumner, 1988).

First, in order to produce precipitation, atmospheric moisture needs to be available. In gen-
eral, the higher the temperature, the more evaporation can take place, and the more moisture is
supplied to the atmosphere. Note that the surface temperature cools, as evaporation consumes
latent heat.

Second, the ability of air to hold water vapor increases with temperature according to the
Clausius-Clapeyron equation. However, air does not absorb water vapor, so this is correctly
phrased as: a higher temperature results in a higher equilibrium vapor pressure (Wallace and
Hobbs, 2006, p.80,81). The effect of this relation is that when temperature increases in a changing
climate, saturation will occur less often (e.g. the saturation level is harder to reach)(Wallace and
Hobbs, 2006, p.80,81), but under extreme conditions more moisture can fall down as precipitation
from an air column (Pall and Stone, 2007; Lenderink and Van Meijgaard, 2010; Hardwick Jones
and Sharma, 2010; Lenderink and Van Oldenborgh, 2011). Further elaboration on air’s ability to
hold moisture linked to (extreme) precipitation will follow in Section 6.2.1.

Third, from Chapter 3 we know that cloud droplet formation depends on the equilibrium va-
por pressure, so indirectly on the internal temperature of the cloud. In short, both the amount of
available atmospheric moisture, and cloud formation depends on the temperature.

Fourth, a strong temperature gradient with warm air at the surface and cold air aloft leads
to buoyant and vertical unstable air. The strength of updrafts is determined by the strength of
instability of the air. A measure of the vertical instability is the Convective Available Potential
Energy (CAPE). As we have data of CAPE, we will further discuss its relation to temperature in
the following paragraph. Lastly, processes within a cloud regarding droplet growth depend on the
internal temperature and temperature differences (Chapter 3).

To summarize, an increase in temperature might cause an increase in extreme precipitation
and a decrease in the amount of wet hours, via changes in the atmospheric temperature gradient,
dewpoint temperature and CAPE.

Relative humidity and Dewpoint temperature

The specific humidity is the ratio between the mass of the water vapor in the sample and the total
mass of the sample. It gives the actual amount of water vapor in an air sample (Sumner, 1988).
The specific humidity gives an indication about the level of saturation for a certain temperature
and pressure.

An increase in water vapor of a saturated air parcel without changing temperature or pressure
will result in oversaturation. Most of the time air must be at least saturated for condensation
to occur, leading to cloud or fog formation (Sumner, 1988). The moment that the water vapor
pressure (e) rises till the point it equals the saturation vapor pressure (e = es), an equilibrium exist
between the rate of condensation and evaporation and air is said to be saturated with respect to
a plane surface of pure water at temperature T, and the pressure es (Markowski and Richardson,
2010, pp. 12-13), (Wallace and Hobbs, 2006, pp. 80-81). The expression of es in T is called the
Clausius-Clapeyron equation,

des
dT

=
Lves
RvT 2

, (6.1)

in which Lv is the specific latent heat of vaporization and Rv the gas constant for water vapor
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(Rv = 461.51Jkg−1K−1) (Bolton, 1980).

This relation is shown in the following figure.

Water vapor and change in water vapor in relation to temperature
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Figure 6.1: Saturation vapor pressure, es
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Figure 6.2: Change in es per δT

We can deduce from Figure 6.1 that the saturation vapor pressure increases rapidly with tem-
perature. This means that more water vapor can be present in warmer air without reaching satu-
ration. Therefore, the Clausius-Clapeyron equation predicts that under the constraint of constant
relative humidity (Ingram, 2002), an increasing temperature leads to an exponential increase in
specific humidity (Trenberth, 1999; Allen and Ingram, 2002; Pall and Stone, 2007; Pierrehumbert
and Roca, 2007). And the heaviest rainfall events are likely to occur when all available moisture
in a volume of air precipitates effectively. Therefore, we might expect the highest quantiles of
the rainfall probability density function to increase in ratio with the Clausius Clapeyron equation
(Pall and Stone, 2007).

To investigate the change of the saturation vapor pressure with increasing temperature we took
the derivative of the Clausius-Clapeyron equation to temperature. Figure 6.2 demonstrates that
a certain increase in temperature has a larger impact on the saturation vapor pressure for colder
temperatures than for warmer temperatures. For T < 0◦C es increases with more than 7%, while
for temperatures higher than 20◦ Celsius it is less than 6%. For this reason we would expect that
any trends in extremes caused by global warming-induced changes in moisture-holding capacity
are stronger visible for winter than for summer.

Dewpoint temperature is a widely used measure for the amount of moisture in the air
(Lawrence, 2005). The dewpoint temperature (Td) is the temperature to which air at initial
temperature and pressure must be cooled isobarically to become saturated, and can be expressed
in terms of the vapor pressure es(Td) = e(t) (Lawrence, 2005). An expression of the dewpoint
temperature in terms of relative humidity is,

Td =
T

1− Tln( RH
100 )

LvRv

(6.2)
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When relative humidity is assumed to be constant in time (Pall and Stone, 2007) and the tem-

perature rises, the numerator will increase, the term
Tln( RH

100 )

LvRv
will increase, so that the denumerator

(1− term ↑) will decrease. As the change in Td is the product of an increase in the numerator and
a decrease in the denumerator, Td will increase. So indeed the atmospheric moisture, indicated
by Td, will rise under constraint of constant relative humidity and rising temperature.

Convective Available Potential Energy

As explained in the theoretical background section (Chapter 3) initial cooling of moist air is a
prerequisite in the formation of clouds. This occurs often in the process of vertical uplift, such
that rising air cools adiabatically with height. Rising of air occurs as a result of density differences.

If we exclude mixing of air with its environment, we can consider the thought experiment of
a rising air parcel. The air parcel will rise as long as the temperature of the surrounding air is
lower than its own. Buoyancy is then given by: a = (Tp−T0)g/T0. With a, the buoyancy, Tp, the
internal temperature of the air parcel, T0, the external temperature and g, the acceleration due to
gravity (Sumner, 1988, pp. 55-56). Thus, for convection to occur an air parcel must have enough
potential energy, which is indicated by the Convective Available Potential Energy (CAPE). CAPE
represents namely the vertically integrated positive buoyancy of a parcel experiencing adiabatic
ascent,

CAPE = g

∫ zLNB

zLCL

Bdz (6.3)

in which g is the acceleration due to gravity (m s−2), zLCL the lifted condensation level, zLNB the
level of no buoyancy and B the buoyancy force. This can also be expressed, similar to Chapter 2,
as:

CAPE = g

∫ z2

z1

T − T̄
T̄

dz (6.4)

with T , the temperature of the air parcel, and T̄ , the temperature of the environment. The units
for CAPE are J/kg.

The LCL is the height till which an air parcel follows a dry adiabat when lifted upwards.
Further lifting leads to condensation of the air parcel, which will then follow the wet adiabat
(Lin, 2007). In other words, condensation releases latent heat, which warms the air parcel, so
that an air parcel will continue to rise further due to its enhanced buoyancy with respect to its
environment. The LCL thus depends on the moisture content of air. The LNB is the height at
which the buoyancy of the air parcel equals the buoyancy of the surrounding air, so that the air
parcel has lost its potential energy to rise further. As CAPE represents the potential energy of an
air parcel, it can be read from a thermodynamic diagram, as proportional to the area between the
LFC and LNB enclosed by the environmental temperature curve and the wet adiabat of the air
parcel. A necessity for convection is that the air parcel is forced to the LCL, for which the amount
of supplied energy is called the convective inhibition (CIN) (Lin, 2007). In summary, CAPE can
be seen as a measure for potentially buoyancy-driven vertical motion.

In pre-thunder conditions CAPE values can range from a few hundreds up to thousands of J
kg ,

with maxima on the order of 5000-7000 J kg−1 (Krennert, 2016). The Storm Prediction Center
of the National Oceanic and Atmospheric Administration (NOAA) divides CAPE values in four
classes: ”weak instability” (CAPE less than 1000 J kg−1), ”moderate instability” (CAPE between
1000-2500 J kg−1), ”strong instability” (CAPE from 2500-4000 J kg−1) and ”extreme instability”
(CAPE greater than 4000 J kg−1)((EXPLANATION OF SPC SEVERE WEATHER PARAME-
TERS )). Studying CAPE is considered as an indicator of the probability of occurrence and the
intensity of deep, moist convection (Krennert, 2016).
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Assuming zero horizontal advection the maximum vertical velocity of an air parcel is reached
when all the potential energy is released into kinetic energy Lin (2007), i.e.

Wmax =
√

2CAPE (6.5)

The definition of CAPE does not include the existence of liquid water loading, entrainment, the
vertical motions in the air or aerodynamic effects, which all decrease the value of CAPE. There-
fore, in the real world CAPE is usually an overestimation of the vertical instability and of updraft
strength (Krennert, 2016; Thompson, 2016). The updrafts of supercells can nonetheless be much
stronger than indicated by CAPE, due to vertical shear effects (McCaul Jr and Weisman, 2001;
Service, 2001).

As already explained in 6.2.1 an increase in the present and/or strength of the updrafts, which
is characterized by the degree of CAPE, can lead to enhanced moisture influx. This leads to more
intense or longer showers depending on the conditions of precipitation production. In Chapter
3 we stated that precipitation associated with convection is relatively intense. In brief, higher
CAPE corresponding to higher probability of occurrence and stronger convection might cause
higher intensity of precipitation and/or higher amount of wet hours.

Wind shear and strength

The strength of wind speed is determined by the horizontal temperature-related pressure gradient
(Bonan, 2015) and CAPE-associated convergence of air (Ahrens, 2012). Smits and Können (2005)
concluded that for the period 1962-2002 the wind speed for the Netherlands has decreased.

Severe local storms are associated with wind shear, pronounced shifts in wind speeds and/or
direction with height (Browning, 1964; Wingo and Cecil, 2010). The four types of storms distin-
guished on the way of development are: supercell, multicell, a collection of numerous individual
precipitation cells as for example squall-line storms and mesoscale convective complexes (Sumner,
1988, p. 156). Some of these storms can develop into larger storms delivering an hour or two
of very intense precipitation at a point. A storm can obtain a self-perpetuating character due to
pronounced wind shear, as this permits the continual introduction of fresh and moist air into the
system at the lower-level developing edge and the venting of used air aloft, while the downdraft
remains separated from the updraft (Sumner, 1988, p. 156). Wind shear is therefore related to
the lifetime of a storm (up to several hours).

Unfortunately we do not have observations of wind speed at higher levels for our time period
of 58 years, so we can analyse changes of the wind shear in time for a certain station. Instead
we can study the horizontal wind speed at 10 m, and use this an indicator of wind shear. Higher
wind speeds also lead to faster propagation of fronts and local showers over a station. Therefore,
we would expect a higher intensity. However, we could also argue the other way around, weak
wind speeds or fast turning of the wind around a location can result in a longer duration of an
intensive precipitation system over a station. In a back-building or occlusion event, high hourly
precipitation sums can accumulate (Schumacher and Johnson, 2005;  Lupikasza, 2016).

In other words, changes in wind speed could influence the intensity of precipitation in two
ways; (i) via the organisation of a storm under restriction of strong wind shear, and (ii) via the
way of propagation of precipitation systems over a station.

Other important variables

Three variables which are further important to explain changes in precipitation extremes, but not
used in this research for different reasons, are (i) the distribution, type and size of cloud conden-
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sation nuclei (CCNs), (ii) the topography and (iii) the weather type. We will briefly describe their
relationships, so we may suggest possible explanations of the spatial differences found in Chapter
4. Moreover, we can keep them in mind in the case we cannot explain changes in (extreme) pre-
cipitation by the changes in the aforementioned variables only.

First, the presence of CCNs is vital to cloud formation, and the concentration of CCNs may
have an impact on the probability of occurrence or intensity of precipitation. Many of the CCNs
are aerosols, very small particles or liquid droplets that are suspended in the air for a long time
and that form nuclei on which condensation can occur. Their size is on the order 0.1 to 1 micron
and they originate from industrial pollution or natural sources as sea salt spraying or dimethyl
sulfide emission from oceans (Sumner, 1988). The bigger the size of an CCN, the lower the satu-
ration vapor pressure above its surface, and the higher the preference for condensation compared
to evaporation. Bonding forces are namely stronger for CCNs that are less curved (Chapter 3).
Whether aerosols are hygroscopic also determines how easily condensation can take place.

The concentration of aerosols over oceans and the coast is small in this comparatively clean
air environment, but their size is often large, so that precipitation-sized droplets may easily form.
In contrary, the air over continental areas contains more nuclei from terrestrial sources, which
differ more in size. This results in a larger minimum cloud thickness for shower development, as
moisture is spread among more and smaller aerosols.

We do not posses data about CCNs distribution and properties. Therefore, in our study of
the causes of changes in precipitation we can not take into account the effect of changes in CCNs.
Overall, the distribution, size and type of CCN is important for cloud formation, and indirectly
for precipitation production.

Second, topography plays an important role in the distribution and intensity of precipitation.
At temperate latitudes warm sectors in frontal depressions or mesoscale systems can be moderately
intensive, when uplifted by relief (Sumner, 1988). Although the enhanced magnitude and extent
of precipitation due to relief is governed by the height and longitudinal extent of the relief barrier,
low hills of only tens of meters in height can lead to notable increases in precipitation (Bergeron,
1968; Sumner, 1988). Even for the Netherlands, where gradients are relatively small, notable
precipitation increases are detected by Ter Maat et al. (2013) for the area of the Veluwe. Despite
the fact that the topography in the Veluwe has an maximum elevation of only just over 100 m
and moderate steepness. The differences in monthly domain-averaged precipitation sums between
the Veluwe and its surroundings, are 17% in winter and 10% in summer. Next to the Veluwe, the
southern part of the country also has a higher elevation with a maximum of approximately 325 m.

In our study the station at Maastricht has the highest elevation (114 m see Chapter 2). This
might explain that the highest precipitation intensities were measured at this station. However,
we do not have enough stations with spatial differences in topography, to analyse the effect of
topography on the intensity and occurrence of precipitation. Moreover, as topographic gradients
are not expected to change significantly in time, this is not an appropriate variable to study trends
in hourly precipitation extremes. In short, even small-elevation differences in the Netherlands can
lead to significant spatial differences in hourly precipitation extremes. On the one hand, we are
interested in trends, and thus, these can not be explained by topographic gradients, which are
constant for the time scale we look at. On the other hand, we can reason why we observed the
highest extreme intensities at Maastricht (Chapter 4).

Third, human-made visual observations indicated by ”present weather” (WW) codes are avail-
able in our data . With help of this code, which is approved by the World Meteorological Organi-
zation, 100 different weather types are distinguished by two-digit numbers (0-99)(see Dai (2001)
for a complete list). Heavy precipitation is related to certain conditions in the cloud and at the
surface. Two weather types, differentiated on WW, often occurring simultaneously with intense
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precipitation are (i) hail, and (ii) thunderstorms.

(i) The majority of severe local storms associated with self-perpetuating convectional systems,
are characterized by significant hail production (Sumner, 1988). For the production of hail deep
and strong convection is required. Convectional precipitation, which is often intense in nature, is
mostly produced by the Bergeron-Findeisen process. This stems from the fact that very intense
precipitation (sometimes in form of hail or ice pellets) is resultant from the considerable vertical
development of the clouds (such that the cloud height exceeds the 0◦C isotherm).

(ii) Lightning occurs in vigorous convective clouds, in which ice particles and hail are thought
be key players in charge generation. The majority of the lightning discharge originates from
thunderstorms extending above the freezing level. However, for all-water clouds there are also
well-documented UK observations of lightning events (Atkinson, 1989; Lee, 1986; Mason, 1972;
Office, 1997).

Although we have hourly measurements of weather codes, we do not use them in this study,
because in the course of time visual measurements of weather codes are automatized, and these are
computed from different variables among which intensity (Rulfová and Kyselỳ, 2013). Differenti-
ation between variables on basis of the automatic WW measurements would not have a physical
meaning when attempting to explain differences in intensity.

Summary theory

To summarize, an increase in temperature leads potentially to more atmosphere moisture via
evaporation, but with a negative feedback on the temperature, and a higher ability of the air to
hold moisture. The latter is expressed in the dewpoint temperature and goes hand in hand with
an expected decrease in the amount of wet hours and a concentration of precipitation in the more
intense wet hours. The influx of moisture may also by enhanced by stronger updrafts, of which
CAPE is a measure, via larger atmospheric temperature gradients. The strength of wind speed,
which is temperature and CAPE related, influences precipitation intensity via the organisation of
storms under condition of strong wind shear and the way precipitation systems propagate over a
station. Stronger wind speeds correspond to higher extreme precipitation, except for situations in
which back-building convection or occlusion occurs. Although, precipitation production depends
on the concentration and size of CCNs, the internal temperature in a cloud, and the topography,
no research is dedicated to these variables due to restriction in the vertical and horizontal extent
of our data.

6.2.2 Identification of relationships

Introduction

In this part we try to identify relationships explaining the trends found in hourly precipitation in
Chapter 5. First, we start with a study of correlations and the type of relationship (e.g. linear
or non-linear) for the variables described as important to precipitation intensity in Section 6.2.1.
Next, we compare trends in the key variable(s) to the observed trends in hourly intensity. Lastly,
we study temporal changes in the seasonal distribution of the key variable(s) and in their relation-
ships with precipitation intensity. Note that in this chapter we include duration data, in which
duration is defined as the hourly fraction of time that precipitation occurs, to find the true pre-
cipitation intensity (PI). This allows us to distinguish between hours with the same precipitation
sum, of which one is very intense and short-lasting, and the other less intense and long-lasting.
Here, P is the hourly precipitation sum.
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Correlation matrices

To have an easy and clear overview of the strength of relationships between multiple variables,
we plotted heatmaps of the Pearson correlation coefficients. The Pearson correlation coefficient
is a widely used statistic giving a measure of the strength of linear relationships (Zou, Tuncali,
and Silverman, 2003). A heatmap shows the strength of all relationships between the following 7
variables: PI, I, DR (duration of precipitation within an hour), T, Td, FH (10m-wind strength,
averaged as last 10 minutes of an hour), RH (relative humidity) and CAPE. For all variables,
except for CAPE, we combined the measurements of the five stations, in order to clarify the re-
lationships. We considered only wet hours, as we are interested in the relationship between the
occurrence or intensity of wet hours and not in the occurrence of dry hours.

For CAPE only measurements of station De Bilt are available (Chapter 2). Next to a dif-
ferent spatial resolution, CAPE measurements also have a different time length (1993-2015) and
temporal resolution. Therefore, we plotted the relationships with CAPE in a separate heatmap
(Figure 6.4d), which of which the correlation coefficients are computed from all days on which
CAPE is measured at least once. We added variable N, the number of CAPE measurements a
day. Observed CAPE values have high daily variability, but CAPE is measured 1-6 times a day,
so that this daily variability is not always captured. Next to the fact that large CAPE can result
in intense precipitation, CAPE also decreases due to cold precipitation (negative feedback). This
is described in Chapter 3 as the interception of updrafts (which need vertical instability) by cold
downdrafts. For these reasons we compared daily CAPE maxima in two different ways with pre-
cipitation; (i) to the cumulative daily precipitation sum, and (ii) to the daily or 2-day maxima in
precipitation sum and intensity. From Section 6.2.1 we expect positive relationships between the
variables T, Td, FH and CAPE with P and I. Next to comparison of all wet hour values, we also
looked at the correlation coefficients for the wet 2-day maxima.

Heat map of Pearson coefficients
all hours
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Figure 6.3: Heatmap consisting of
Pearson correlation coefficients for the
relations between precipitation inten-
sity (PI) and sum (P), duration (DR),
temperature (T), relative humidity
(RH), wind strength (FH) for all wet
hours. Coloring from blue to red gives
the sign and strength of the relation-
ship as is shown in the legend.

Figure 6.3 provides an overview of the Pear-
son correlation coefficients for all variables, ex-
cept CAPE, for all wet hours. The two high-
est coefficients are between T and TD (0.97)
and P and I (0.75). The strong relationship
between T and TD (dewpoint temperature) is
straight forward; following the definition of dew
point temperature itself: the dewpoint tempera-
ture is the temperature till which air has to
be cooled to become saturated. For moist air
(RH> 50%) the following rule of thumbs holds:
the dewpoint temperature decreases with ±1◦C for
every 5% decrease in relative humidity. As
the data considered in this chapter only con-
tains the wet hours, most of them will fulfill
the assumption of a moist air and therefore a
strong linear correlation is present. This corre-
sponds to Pearson correlation coefficient of almost
1.

The hourly precipitation sum (P) is the product of
the hourly duration, DR, and intensity, PI. The rela-
tionship between PI and I is stronger (0.75) than the
relationship between PI and DR (0.35). The third high-
est coefficient is the one between DR and RH (0.38). The
higher the relative humidity, the higher the percentage
of saturation at a certain temperature. Apparently this
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percentage says more about the duration of precipitation
within an hour than about the magnitude of the precipitation sum (or precipitation intensity PI).
Higher RH is partially related to longer durations of precipitation within an hour, which could
mean that with higher saturation it generally takes longer before precipitation stops due to un-
dersaturation. However, there are of course also events where RH is high and the precipitation
intensive, this explains why the coefficient is not super high.

What is more striking from Figure 6.3 is the relatively high negative correlation between RH
and FH. So the lower the wind speed, the high the relative humidity. The reason for this relation
is uncertain, but it could be that low wind speeds at the time and place of a large precipitation
system results in stationarity of moist air.

Four other positive correlation coefficients, which are a bit higher than the rest, are those
between (i) PI and T, (ii) PI and Td, (iii) I and T, and (iv) I and Td. From Section 6.2.1 we
know that temperature can influence precipitation amount (P) and intensity (PI) via enhanced
evaporation and updrafts and higher ability of air to hold moisture. As evaporation is important
at the place and time of moisture influx, it could be that this relation holds a remote and lagged
relationship. Hence, the relation does not have to be strong (coefficient of 0.15) when comparing
temperature and precipitation measured at the same time and only on the location of precipitation
accumulation. However, more and counteracting relationships can play a role. The relationship
between P or I and T via enhanced updrafts should also be present in the relationship between
CAPE and P or I. For De Bilt we plotted the CAPE 2-day maxima in relationship to other 2-day
maxima and the cumulative 2-day precipitation sum (see Figure ??).
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Heat maps of Pearson coefficients of maxima
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(a) Wet 2-day maxima for all variables
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(b) Wet 2-day maxima in CAPE
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(c) Wet daily maxima for all variables, except
CAPE
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(d) CAPE a wet day

Figure 6.4: Heatmap consisting of maxima in Pearson correlation coefficients of the variables:
hourly mean precipitation intensity (P), precipitation intensity (PI), precipitation sum (Psum),
duration at the time of maximum precipitation (DRP ) wind strength (FH), relative humidity
(RH), temperature(T) and dewpoint temperature(TD). The heatmaps are computed from: (a) 2-
day maxima of all variables (averaged over all stations), except CAPE, (b) 2-day CAPE maxima
in relation to other variables for de Bilt, (c) daily maxima of all variables except CAPE, and (d)
daily CAPE maxima in relation to other variables for de Bilt. N (N) is the 2-day (daily) count
of CAPE measurements. Only Psum is not a maxima, but the daily or 2-day precipitation sum.
Coloring from blue to red gives the sign and strength of the relationship as is shown in the legend.

The relationship between maxima in CAPE and T is indeed relatively strong for a time scale
of 2 days and for the Bilt, as can be deduced from the relatively high correlation coefficient (0.35)
in Figure 6.4b. The highest correlation between 2-day CAPE and precipitation variables (Figure
6.4b), is the one between the 2-day maxima in CAPE and precipitation intensity (0.14). N shows
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the effect of the number of CAPE measurements a 2 days on the magnitude of the CAPE 2-day
maxima, which is just as strong as the relation between CAPEmax2d and PImax2d, but weaker
than the relation between 2-day CAPE and temperature or dewpoint temperature.

As we studied the maxima in mean hourly precipitation intensity (P) for independent 2-day
periods in Chapter 5, we included the correlation coefficients for 2-day maxima in P (and in true
precipitation intensity, PI, and the 2-day precipitation sum, Psum) in relation to the 2-day max-
ima in T, Td, FH, and RH (Figure 6.4a). Eventually we want to explain the observed trends
found in Chapter 5. Therefore, it is relevant to investigate the correlation coefficients for the same
temporal resolution. Besides, this approach zooms in more on the precipitation extremes, as 2-day
maxima are considered. Keep into mind that the maxima of the different variables do not have
to be measured at the same moment in time. On the one hand, this can enhance correlations
in a biased way, if the hours are widely spaced in time. On the other hand, lower correlation
coefficients are found when we look at correlation between 2-day maxima in P and the variables
T, TD, and FH, measured at the time of the maximum in P. Negative feedback is then assumed
to play a role, as for example cooling of the air due to precipitation. Analysis of the lags between
the different maxima, showed that the maxima mainly occur at the same time up to 3 hours lags.
Besides, the extremes in precipitation are often of the convective type, which is restricted to the
hours that insolation is strongest.

We observe the same relationships which are relative high as in Figures 6.3 and 6.4d, which are
stronger in Figures ??. This shows that the relationships are stronger for the extremes. Figure 6.4a
shows correlation coefficients of 0.28 and 0.36 for the relations between the 2-day maxima in hourly
precipitation sums (P) and 2-day maxima in T and Td. Hence,the theory in which precipitation
intensity relates to the ability of air to hold moisture, matches with the relatively high correla-
tion coefficient (0.38) between 2-day maxima in PI and TD, with the latter as measure of moisture.

Even higher coefficients (0.32-0.38) are found when the 2-day maxima in precipitation inten-
sities are considered instead of P (Figure 6.4a). The correlation coefficients between precipitation
2-day maxima and CAPE are lower, 0.11-0.14.

In fact, the largest changes in magnitude of the correlation coefficients, when switching from
all-hour to 2-day maxima, are detected for wind speed (FH of 0.01-0.03 to 0.44). Especially the
correlation between the 2-day maxima in FH and the 2-day precipitation sum is high (0.44). 2-
day precipitation sum correspond more to long-lasting precipitation events than maxima in hourly
precipitation sum and intensity. Besides, long-(short)-lasting events are generally characterized
by events of a larger (more local) scale. Therefore, 2-day precipitation sums might depend on the
synoptic settings. When these settings correspond to a large pressure gradient, high wind speeds
are also present. In short, the correlation between 2-day precipitation sums and 2-day maxima in
wind speeds could be explained by the synoptic setting. Except for CAPE, daily maxima give no
higher correlation coefficients than 2-day maxima.

Till now we used Pearson coefficients, which indicate the strength of linear relationships be-
tween variables (Chapter 2). However, what if some or most of the variables depend in a non-linear
way on each other? In order to investigate the type of relationship (i.e. linear or non-linear) we
plotted the point clouds of all possible relations for wet 2-day maxima in T, TD, CAPE, FH and
P (Figure 6.5).
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Figure 6.5: Points clouds showing the the
wet 2-day maxima of the following variables:
hourly mean precipitation intensity (P), temper-
ature(T), dewpoint temperature(TD), convective
available potential energy (CAPE), and wind
strength (FH), measured in De Bilt. Note that
the x- and y-axes differ in scale.

Figure 6.5 confirms the linear relationship
between (maxima in) T and Td, which we al-
ready suggested in this section. Multiple point
clouds indicate semi-exponential and exponen-
tial relationships. With semi-exponential we
mean that both a linear shape, and an expo-
nential shape can be recognized in the point
cloud. This is the case for 2-day maxima in
P in relation tot 2-day maxima in T or Td.
On contrast, the 2-day maxima in CAPE re-
late to all other variables clearly in an expo-
nential way. The 2-day maxima in FH relate
to P and CAPE maxima in a more exponen-
tial way, while the relations with 2-day maxima
in T and Td do not have a distinctive form.
Nonetheless, it is apparent that linearity can
not be assumed for most of the relationships.
Besides, another assumption for Pearson cor-
relation coefficients is normal-distributed vari-
ables (Chapter 2). In Chapter 5 we already
observed non-normal probability density func-
tions for all hours and 2-day maxima in P. In
contrast to the Pearson correlation, the Spear-
man rank correlation does not assume normal-
distributed data or linearity of relationships
(Chapter 2).

Figure 6.6 shows two heatmaps of Spearman rank correlation coefficients, one for all wet 2-day
maxima of all variables, except CAPE, and one for the variables in relation to CAPE for De Bilt
only. As shifting to a daily maxima did not result in improvement for the previous Figure, we do
not include daily figures for this approach.

71



Heat map of Spearman coefficients on 2-day maxima
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Figure 6.6: Heatmap consisting of Spearman correlation coefficients of the maxima of the variables
hourly precipitation sum (P), precipitation intensity (PI), temperature(T), dewpoint tempera-
ture(TD), relative humidity (RH), and wind strength (FH), and of the 2-day precipitation sum
(Psum). The heatmaps are computed from: (a) 2-day maxima of all variables (averaged over all
stations), except CAPE, (b) 2-day CAPE maxima and daily CAPE maxima in relation to other
variables for de Bilt. N is the 2-day count of CAPE measurements. Coloring from blue to red
gives the sign and strength of the relationship as is shown in the legend.

The Spearman correlation coefficients are all lower than the Pearson correlation coefficients for
wet 2-day maxima, except for those corresponding to the possible relations with FH 2-day max-
ima, the relations between the different precipitation maxima (P, PI and Psum) and the linear
relation between T and TD 2-day maxima (Figure 6.6). The wind speed is both for 2-day pre-
cipitation sums, and for 2-day maxima in P and PI the strongest explanatory factor (coefficients
of 0.37-0.47). It can be explained that the Spearman correlation coefficients are not higher in
general than the Pearson correlations, although the relationships mainly seem to be non-linear.
Especially the 2-day maxima in CAPE correlate relatively weakly with precipitation maxima (0.07
and 0.1 with P and PI), However, the Spearman approach is more correct from a statistical point
of view. As we expect Spearman correlation coefficients to be stronger for daily CAPE maxima,
we plotted these also in Figure 6.6b. The correlations are indeed higher for the daily resolution
compared to the 2-day resolution, even 2.5-3 times. Nevertheless, we want to explain changes
in 2-day precipitation maxima, so we can only conclude that the influence of the 2-day CAPE
maxima is likely to be not that high regarding the strength of the relationship.

To summarize, we find relatively high correlation coefficients for the factors T, Td, CAPE and
FH of which we know from theory to have a major influence on precipitation changes. These cor-
relations are stronger for the extremes in these variables than for all-hour values. Different forms
of relationships (linear, exponential, combination of both) are recognized by point clouds. Most of
the relations are not purely linear, so that Spearman rank correlation coefficient is a better corre-
lation statistic than the Pearson correlation coefficient. Following 2-day maxima FH, the order of
strength regarding the Spearman rank correlation with 2-day maxima in P (of which significant
trends are found in Chapter 5) is: TD (cor=0.3), T (cor=0.2), and lastly CAPE (cor=0.07).
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6.3 Trends in key variables

In this section we investigate whether the key variables, wind strength, CAPE, temperature and
dewpoint temperature, regress in time. First, we plot the probability density functions in order
to choose the appropriate method(s) of trend analysis for each variable. Ordinary least squares
is applied on normal distributed data and quantile regression on both normal and non-normal
distributed data. Second, we plot the fitted quantile and ordinary least squares lines. In order
to detect the common trend for these variables, we have averaged the 2-day maxima over the 5
stations. We do not differentiate on summer and winter trend in the trend analysis. However,
in Section 6.4 we will consider seasonal dependency next to time dependency of the different re-
lationships. Note that trend analysis on 2-day CAPE maxima is applied for the time period for
which CAPE data is available (1993-2015) and is not averaged over stations, as only CAPE data
from de Bilt is available. We do not study in depth the historical changes in instrumentation and
measuring sites for the key variables as we did for precipitation, due to the time restriction of this
research. Third, we apply a significance test on the trends.
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Figure 6.7: Probability density functions of 2-day maxima in (a) wind strength, FH, (b) tem-
perature, T, (c) dewpoint temperature, Td, averaged over all 5 stations, and (d) 2-day maxima
in convective available potential energy, CAPE, for only De Bilt. The probability density func-
tion of FH is computed from 2-day FH maxima between 1993-2015, to deal with the difference in
rounding due to automatization around the year 1993. The other probability density functions are
computed from data between 1958-2015. Note that the x- and y-axes differ in scale per variable.
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All the probability density functions shown in Figure 6.7 are computed from the 2-day maxima
between 1958-2015, except for the probability density function of the FH maxima. Before the au-
tomatization of wind speed measurements (in 1993) data was not rounded to 1 m/s. As two types
of data (rounded and non-rounded) give a strange appearance of the probability density function,
we decided to only plot the 2-day FH maxima measured from 1993 onward. However, the form of
this probability density function is not different from the probability density function consisting
of all FH maxima.

The 2-day maxima in FH, T and TD are distributed approximately in a normal way, compared
to the 2-day maxima in CAPE which are distributed in a non-normal way (Figure 6.7). For this
difference in probability density functions, we only apply least squares on the 2-day maxima of
FH, T and TD. Note that the probability density function of wind speed is not entirely symmetric.
For 2-day CAPE maxima we apply ordinary least squares regression on the yearly means 2-day
maxima, which are normal-distributed. For all data we study the quantile regression fits on the
2-day maxima. As precipitation extremes are stronger correlated to the extremes in the explana-
tory factors, the trends in the higher quantiles are the most interesting. The results of the trend
analysis for the 4 variables are listed here.
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Figure 6.8: (a) Quantile regression lines with τ = 75, 90, 95, 99, 99.9 % of 2-day maxima in wind
speed averaged over all stations, and (b) the corresponding legend and yearly rates in FH in
m/s/yr. The black line in (a) provides the ordinary least squares fit of the 2-day FH maxima. In
(b) each black dot is the slope coefficient for the quantile indicated on the x-axis and the gray
band represents the corresponding confidence interval.

First, Figure 6.8 presents quantile and ordinary least squares (OLS) fits for 2-day maxima in
wind speeds and the corresponding rates. A negative signal is detected for the 2-day maxima in
FH. For the period 1958-2015 the OLS fit on the maxima has the exact same negative slope coeffi-
cient, -0.014 m/s/yr, as the 50%-quantile regression line (Figure 6.8b). Additionally, we again find
higher slopes for the higher quantiles and the strongest trend for the 95%-quantile (-0.02 m/s/yr).
It is worth noting that Figure 6.8b shows that the 99% quantile regression fit has a relatively wide
confidence interval, so there is high uncertainty for this fit.
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Although the decreasing of the wind speed for the Netherlands is consistent with the study of
(Smits and Können, 2005), the reason for the negative signal not investigated in this thesis. It
might have to do with changes in the position of the jet stream. A decrease in FH is not expected
to explain the increase in P, as we know from theory that high wind strength (as component of
strong wind shear) favors extreme precipitation via storm development and faster propagation of
frontal systems over a certain site (Section 6.2.1). However, wind shear can also exist when we
have weak surface winds and strong upper-level winds. Besides, back-building or occlusion events
are associated with weak winds and can involve high hourly amounts of accumulated precipita-
tion at a specific location (as described in Section 6.2.1). On the contrary, the correlation of the
precipitation maxima was highest with maxima in FH.
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Figure 6.9: (a) Quantile regression lines with τ = 75, 90, 95, 99, 99.9 % of 2-day maxima in tem-
perature averaged over all stations, and (b) the corresponding legend and yearly rates in T in
◦C/yr. The black line in (a) provides the ordinary least squares fit of the 2-day T maxima. In (b)
each black dot is the slope coefficient for the quantile indicated on the x-axis and the gray band
represents the corresponding confidence interval.

Second, we studied the trends in temperature for the same period, of which the results are
shown in Figure 6.9. In contrast to FH, positive quantile and ordinary least squares (OLS) trends
are found for the 2-day maxima in T (Figure 6.9a). What is more striking, is that for the quantile
lines the general rule, namely that for the higher the quantile we have a stronger trend, is not
applicable here. Figure 6.9b demonstrates that the weakest slope is detected for the 75%-quantile
(0.025 ◦C/yr). Nonetheless, the strongest slope is detected for the highest (99%) quantile (in-
crease in 2-day maxima of 0.06 ◦C/yr), . Besides, not only the 90%- and 95%-quantile lines have
a stronger slope than the OLS line, but also the 25%- and 50%-quantile lines.

The OLS of the 2-day or yearly means T maxima gives an increase of approximately 3.5
◦C/century, which is almost four times as high as the global rate in temperature for this time
period (6.2.1). Note that we only consider temperature extremes (i.e. 2-day maxima) measured
in the Netherlands, and we know from Chapter 1 that local extremes can increase faster than
the global average. The relative rates vary between 0.23-0.30 %/year. Rates are higher for the
northern coastal region compared to the southern inland region of the Netherlands.
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Trends in 2-day TD maxima

9

12

15

18

1960 1980 2000 2015
Time (2 days)

T
D

 m
ax

 (
m

/s
)

TD

(a) Quantile regression

LM

50%

75%

90%

95%

99%

0.4 0.6 0.8 1.0

0.
01

5
0.

02
5

0.
03

5

Year

Quantiles

S
lo

pe
s 

(d
eg

re
e 

T
/y

r)

(b) Legend and yearly rates

Figure 6.10: (a) Quantile regression lines with τ = 75, 90, 95, 99, 99.9 % of 2-day maxima in
dewpoint temperature averaged over all stations, and (b) the corresponding legend and yearly
rates in TD in ◦C/yr. The black line in (a) provides the ordinary least squares fit of the TD
maxima. In (b) each black dot is the slope coefficient for the quantile indicated on the x-axis and
the gray band represents the corresponding confidence interval.

Third, we applied trend analysis on the 2-day maxima in TD (see Figure 6.10). From Figure
6.10a we can deduce that 2-day maxima increase in time for the period 1958-2015. The ordinary
least squares line has a slope coefficient of 0.025 ◦C/yr, which is larger than most of the other fits.
Only two quantiles have stronger slopes, the 25%-quantile and the 95% quantile. Remarkably the
slope of the 25%-quantile is the highest, namely 0.031 ◦C/yr. However, the confidence interval is
relatively wide for the lower quantiles. Nevertheless, the lower boundary of the confidence interval
is always above 0.012, so these trends are significantly positive.
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Trends in 2-day CAPE maxima
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Figure 6.11: (a) Quantile regression lines with τ = 75, 90, 95, 99, 99.9 % of 2-day maxima in
convective available potential energy averaged over all stations, (b) the corresponding legend and
yearly rates in CAPE in J/kg/yr. The black line in (a) provides the ordinary least squares fit of
the 2-day CAPE maxima. In (b) each black dot is the slope coefficient for the quantile indicated
on the x-axis and the gray band represents the corresponding confidence interval.

Finally, we repeat the quantile regression fitting for 2-day CAPE values measured between
1993 and 2015 for station De Bilt. From Figure 6.11a we can deduce that CAPE values in De Bilt
have decreased for this period. The ordinary least squares of the yearly mean in 2-day maxima
has a negative slope of approximately -10 J/kg/yr (Figure 6.11b), which is stronger negative than
the lower (25%- and 50%-) quantiles, but weaker negative than the higher (75%-,90%-,95%,99%)
quantiles. The strongest trend is found for the 5% highest 2-day CAPE maxima with a decreasing
rate of 42 J/kg/yr. The highest quantile lines (90-99%-quantiles) are summer trends, as the winter
CAPE values do not exceed 500 J/kg, this is shown in the next section (Section 6.4).

Furthermore, we can observe that the higher the quantile, the larger the confidence interval.
The reason for this is that a lower samples size belongs to a higher quantile, which enhances the
uncertainty in the regression fit. At the end of this section we will investigate the significance of
all the different quantile regression lines for all variables.

Nonetheless, we want to emphasize that the observed negative trends in CAPE are not able
to explain the observed positive trends in precipitation intensity. From theory we know that high
CAPE values express the potential of strong updrafts, which are required for convective systems
with intensive summer precipitation. On the contrary, we only consider trends in CAPE for the
period 1993-2015 here, which can not be fully compared to trends in precipitation maxima for
the period 1958-2015. Furthermore, the decreasing resolution of CAPE measurements could also
influence a negative signal. All in all, we can not draw conclusions about the validity of the ob-
served negative trend and the likelihood of this trend to be the cause of the trend in P.

In order to investigate the significance of all trends, we conduct a 9999 Monte Carlo permuta-
tion test. For wind speed (FH) and CAPE we tested whether the observed slope is significantly
lower than all randomly permuted slopes in order to detect a negative trend, while for temperature
(T) and dewpoint temperature (Td) we tested it vice versa in order to detect a significant positive
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trend.

Table 6.1 gives an overview of the significance of the trends. A red (green) marking of a
cell indicates a decreasing (increasing) trend significant at the 95% confidence level (CL). All the
linear and quantile regression trends are significant, except for the 99%-quantile of 2-day max-
ima in FH (p=0.94), of which we already discussed the large uncertainty by its confidence interval.

Table 6.1: The p values of the quantile regression trends with Q25-Q99 corresponding to the
τ=25-99%-quantile.

Variable Q25 Q50 Q75 Q90 Q95 Q99 LM
FH 1.00 1.00 1.00 1.00 1.00 0.94 1.00
T 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TD 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CAPE 1.00 1.00 1.00 1.00 1.00 0.98 1.00

In short, in this section we detected significant (99% CL) negative trends in wind speed and
CAPE and significant (99% CL) positive trends in temperature and dewpoint temperature for
the ordinary least squares regression fits and almost all quantiles fits. For wind speed the type of
relation (positive or negative) with precipitation intensity is ambiguous and for CAPE a negative
trend is not expected to explain the trend in P. However, whether this trend is truly negative for
the period 1958-2015 is doubtful regarding the data which is limited in time length and contains
a decrease in resolution in time. The changes in temperature and dewpoint temperature remain
as potential causes of the trends in intensification of precipitation.

6.4 Seasonal and temporal differences in relations

Introduction

In this section we zoom in on seasonal and temporal differences in relationships between maxima
in the key factors (T, Td, FH, and CAPE) by comparing summer and winter season and a begin
(1958-1986) and an end period (1987-2015). For every variable we plot the relations between
the maxima in hourly precipitation sums and other variables as point clouds differentiating on
summer and winter. We also present the summer and winter frequency distributions of the vari-
ables. Furthermore, we plot binned summer and winter quantile regression to express changes
in precipitation maxima as a function of changes in the other maxima. In case of temperature
and dewpoint temperature we compare the quantile regression lines to a Clausius Clapeyron scal-
ing. For each of the three figures per relationship we compare between the first and second time
period, in order to answer the question whether the changes in precipitation are caused by the
changes in statistics of the key variable in question or by a changes in the relationship with that
key variable. As binning and differentiating on period and season lowers the resolution greatly,
we chose to use the daily maxima instead of the 2-day maxima. This section is ordered per variable.
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Temperature

In figure 6.12A the precipitation maxima (of wet days only) increase with maxima in temperature
in a non-linear way. Clear differences are visible between winter and summer. The winter precip-
itation are generally lower and the points slope more gently with respect to temperature maxima.
Both the summer and the winter data resembles a triangle shape, with a monotonic increase till
approximately 25◦C summer temperature and 10◦C winter temperature and a decrease after these
maxima.
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Figure 6.12: (A) The daily maxima in precipitation of wet days are plotted against maxima in
temperature. B shows the distribution of temperature maxima, and C demonstrates the regression
of the mean (solid colored line), the 95% (dashed colored line) and 99% (dotted colored line)-
quantiles in precipitation over temperature. Temperature is binned with steps of 2◦C. The black
lines present the normal (black line) and double (thinner black line) Clausius-Clapeyron scaling
for the mean and quantiles with the same line style (i.e. solid, dashed and dotted). Summer and
winter differences are indicated by the blue (winter) and pink (summer) color. On the left side the
information is provided for the first period (1958-1986), and on the right side the same is provided
for the second period (1987-2015).

For both periods the seasonal characteristics and overall shape are visible, but there are also
differences between the point clouds. On the one hand, the first period has more outliers (> 32
mm/hr for summer data, > 12 mm/hr for winter data), on the other hand the second period has
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more (and higher) summer intensities at temperatures > 30 ◦C and winter intensities at temper-
atures > 10 ◦C.

To investigate the influence of the temperature distributions on the shape of the point clouds,
we plotted the summer and winter distributions of temperature for each period (Figure 6.12B). In
Figure 6.12B for each bin of 2 degrees Celsius the number of wet hours per season per period is
counted. Summer and winter distributions for both periods have similar Gaussian shapes with a
temperature difference of 12◦C between the peaks. More wet hours exist in winter than in summer,
explaining the magnitude difference between the winter and summer distribution.

For the first period the peak in number of winter data per bin is at 6-8 ◦C, while the summer
peak is around 16-18 degrees Celsius. For the second period the winter peak is shifted to a higher
bin (to 8-10 ◦C). Although, the summer peak is not shifted towards a higher bin, the bars after
the peak are relatively higher for the second period compared to the first period.

As the temperature distributions have a Gaussian shape, the chance on an extreme in inten-
sity are highest for the middle bins with the highest numbers of data per bin. However, the point
clouds do not only have a triangle shape, but they are also tilted towards a positive relationship
between P and T. Besides, the maxima in summer and winter precipitation intensity in Figure
6.12A are for higher temperatures than expected from the distributions.

In order to remove any influence of how the temperature is distributed on its relation with
precipitation intensity, we computed the mean summer and winter precipitation maxima for each
temperature bin with more than 200 samples. In Figure 6.12C the solid lines connect these means.
Moreover, the 95% and 99% quantile lines are plotted as dashed and dotted lines to visualize the
temperature relation with “high” extremes in precipitation. Mind the logarithmic scale of the
y-axis. The mean and quantile lines are compared to the Clausius-Clapeyron (CC) scaling, to
find out whether this precipitation-temperature relationship can be deduced directly from the CC
equation, or whether other dynamics are involved.

From Figure 6.12C can be deduced that the mean and quantile lines quite nicely follow the
Clausius-Clapeyron equation (of which the scaling is given by the black lines with the same style
in linetypes). With a thin black lines a super CC-scaling (twice what is expected from the CC
equation) is indicated. Only for some parts, such as the 95% and 99% quantile lines for tempera-
tures higher than 15 degrees, a super CC-scaling is found. What is striking is that this also holds
for the winter mean and quantile lines for temperatures lower than 2 degrees for the first period.
It might be still influenced by the amount of data in a bin. Significant differences between summer
and winter P-T relationships are not found.

When comparing the two periods little differences are present for the upper parts of the winter
and summer mean and quantile lines. The winter lines regress further (in a flat way) with respect
to temperature for the second half compared to the first half. This is explained by the shift in
the temperature distribution to higher winter values. The upper parts of the summer mean is less
deviating from the CC-scaling and the upper parts of the quantile lines are relatively more aligned
with the super CC-scaling. Nevertheless, changes in the distribution are more clearly visible for
this time period comparison than changes in the P-T relationships.

Dewpoint temperature

In this section we investigated changes in the point clouds, distributions and binned mean and
quantile lines for dewpoint temperature (Td) between the two seasons and time periods (Figure
6.13). For increasing dewpoint temperature we observe the same monotonic increase of precip-
itation intensity as for temperature. Besides, more outliers are present in the first half of the
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Figure 6.13: (A) The daily maxima in precipitation of wet days are plotted against maxima
in dewpoint temperature. B shows the distribution of dewpoint temperature maxima, and C
demonstrates the regression of the mean (solid colored line), the 95% (dashed colored line) and
99% (dotted colored line)-quantiles in precipitation over temperature. Dewpoint temperature is
binned with steps of 2◦C. The black lines present the normal (black line) and double (thinner
black line) Clausius-Clapeyron scaling for the mean and quantiles with the same line style (i.e.
solid, dashed and dotted). Summer and winter differences are indicated by the blue (winter) and
pink (summer) color. On the left side the information is provided for the first period (1958-1986),
and on the right side the same is provided for the second period (1987-2015).

time period, while a shift is visible from relatively high counts of low winter and summer in-
tensities in the first half to relatively high counts of high winter and summer intensities in the
second half. As we know from Section 6.2.2 that temperature and dewpoint temperature have
a strong linear relationship, these similar features for T and Td are not unexpected. However,
regarding the binned mean and quantile lines for dewpoint temperature, relatively more parts are
scaled to the super CC-scaling, compared to temperature. Nonetheless, regarding the comparison
of the two time periods, no notable changes in the relationship between P and Td are detected,
while the dewpoint temperature distribution clearly shifts towards higher dew point temperatures.
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Figure 6.14: (A) The daily maxima in precipitation of wet days are plotted against maxima in
wind speed (FH). B shows the distribution of FH maxima, and C demonstrates the regression
of the mean (solid colored line), the 95% (dashed colored line) and 99% (dotted colored line)-
quantiles in precipitation over FH. FH is binned with steps of 1 m/s. The black lines present the
normal (black line) and double (thinner black line) Clausius-Clapeyron scaling for the mean and
quantiles with the same line style (i.e. solid, dashed and dotted). Summer and winter differences
are indicated by the blue (winter) and pink (summer) color. On the left side the information is
provided for the first period (1958-1986), and on the right side the same is provided for the second
period (1987-2015).

Wind strength

Furthermore, we investigated whether the summer and winter point clouds, distributions and
mean and quantile lines of the maxima in wind speed (FH) change in time. Although, we already
know from Section 6.3 that its uncertain whether the general long-term trend in FH maxima can
explain the change in P, it is still interesting to analyse the seasonal and temporal differences.

In Figure 6.14 we plotted the result. Clear differences between summer and winter can be seen
from Figures 6.14A,B; summer is recognized by relatively high precipitation maxima and low wind
speeds, while for winter it is vice versa. This could correspond to a seasonal difference in sign of
the relationship between P and FH. In summer weak surface winds favors intense precipitation via
back-building of convective systems under condition of sufficient wind shear, while in winter strong
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surface winds favors intense precipitation via fast propagation of frontal systems. Additionally
the summer distribution has a more asymmetric shape with a more pronounced peak compared
to the winter distribution. Considering the time-related change in distributions we do observe
small decreases in the frequencies of winter maxima, but we do not for the frequencies of summer
maxima.

Figure 6.14C shows the change in the P-FH relationship. Although, the CC- and super CC-
scaling do not have a physical meaning here, they are plotted so we can better compare the
regression of the mean and quantile lines with the same regression for temperature and dewpoint
temperature. What is striking from this figure, is that we indeed observe a sign difference between
summer and winter in the P-FH relationship. With negative (first period) to constant (second
period) slopes for the summer regression fits of P over FH, and positive slopes for the winter
regression fits.

When considering the transition from the first to the second period we observe in 6.14A,B a
decrease in the FH maxima, which is seen in (1) a reduction of the maxima in number of outliers
in summer precipitation maxima (which was also observed in the T and Td plots), (2) an increase
of the frequencies of relatively weak summer wind speeds and (3) a slight lowering of the summer
bars corresponding to the higher wind speed maxima. From 6.14C we deduce that there are less
summer precipitation maxima for high wind speed maxima (pink lines do not extend further for
temperatures > 11◦C). Moreover, the summer regression provides a less negative P-FH relation-
ship in time. The winter regression lines are for a larger part aligned with the CC scaling in the
second period compared to the first period.

Regarding the decrease in summer precipitation outliers in time, we do not expect that when
the trend in wind speed is leading to higher P, this is a summer trend. Despite of a negative trend
in the overall wind speeds, it could be that an intensification of the winter P-FH relationship ex-
plains the positive trend in P. Although, the latter can be related to faster propagation of frontal
systems with higher wind speeds, we can not draw conclusions whether changes in FH have caused
the intensification of precipitation.

CAPE

Finally, we would like to discuss changes in CAPE maxima and their relationship with precipita-
tion maxima. However, we only have CAPE data from 1993 till 2015. Therefore, time comparison
is not possible. Moreover, we only have data for De Bilt, so the resolution is too low to do the
same binned plotting for precipitation maxima over CAPE maxima.

In Figure 6.15 we have plot the summer and winter point clouds, providing information about
the seasonal P-CAPE relationship, and the distributions of summer and winter CAPE maxima.
The values of CAPE maxima are very seasonal dependent, as can been deduced from Figure 6.15.
Winter data are confined to low CAPE maxima of < 500 J/kg and low precipitation intensity
maxima of < 10 mm/hr, whereas summer data has weak to high CAPE maxima (up to 5000
J/kg). For both seasons a highly asymmetric (lognormal) distribution can be detected, although
the summer distribution is wider in shape than the winter distribution.
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Figure 6.15: (A) The daily maxima in precipitation of wet days are plotted against maxima in
CAPE (FH). B shows the distribution of CAPE maxima. Summer and winter differences are
indicated by the blue (winter) and pink (summer) color. Note that only information is given
about the period 1993-2015.

Summary

To summarize, we found strong seasonal differences in relationships between precipitation and
T, Td, FH en CAPE maxima and in the distributions for each variable. In general, in summer
we have relatively high daily maxima in temperature (mainly between 12-24◦C), dewpoint tem-
perature (most values between 9-20◦C), and CAPE values (mainly between 0-2500 J kg−1) and
relatively low daily maxima in wind speed (2-12 m/s) compared to winter daily maxima (respec-
tively 0-14◦C,-2 - 12◦C, 0-500 J/kg, 2-18 m/s).

Positive exponential relationships, comparable with CC (and partially super CC) scaling, are
found for binned summer and winter P-T and binned winter P-FH mean and quantile lines. Sum-
mer and winter maxima in mean hourly intensity are similarly sensitive for changes in temperature
and dewpoint temperature, except for the highest (summer) intensities which are less sensitive to
increases in (dewpoint) temperature. Winter maxima in wind speed are more aligned to CC scal-
ing than summer maxima.

When comparing the second half of the time period to the first half, the P-T and P-TD rela-
tionships are slightly more aligned to the CC-scaling, while the P-FH quantile lines are less aligned
from the CC-scaling. Moreover, the P-T and P-TD are as strong or stronger for the more extreme
P maxima (95%- and 99%-quantiles), compared to the mean P maxima. This is vice versa for the
P-FH relationship. However, for all three variables the timewise shift in distribution from higher
summer and winter T and TD maxima and lower winter FH maxima is more clearly visible than
changes in their relationships with P. So, changes are more related to changing statistics than to
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changing dynamics.

Due to the ambiguous relation between wind speed and precipitation, we can not draw con-
clusions on whether the negative signal in FH explains the positive signal in P (Section 6.3). If
this would be case, then it might have to do with faster propagation of frontal systems in winter
associated with weak surface winds.

In contrast to FH, we expect that the changes in precipitation are likely influenced by changes
in the distribution of temperature and dewpoint temperature. A shift to higher temperature and
dewpoint temperature is then linked in an exponential way, shown in Figures 6.12,6.13C by the
alignment with CC- to super CC- scaling, to higher precipitation intensities. The increase of
temperature leads to an increase of the moisture holding capacity (expressed in Td), which leads
to an intensification of precipitation extremes. This also holds with the detected negative trend
in the frequency of wet hours. Air is less quickly saturated at higher temperatures, consequently
there are less (2-day) hours in which saturation is reached.
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Chapter 7

Discussion

7.1 Introduction

In this chapter we discuss the results and their implications in four parts. In the first part the
objectives, theory and results are summarized and put into context of the current knowledge of
the research field. The second and third part list respectively the strengths and weaknesses of this
thesis. Further recommendations are provided in the last part.

7.2 Summaries

7.2.1 Summary of objectives

The main objective of the present work is to find out how extreme hourly precipitation in the
Netherlands changes in time and what the causes are behind observed changes (Chapter 1). We
expected that precipitation extremes are related in a non-linear way to the local moisture hold-
ing capacity, while the (global) mean precipitation is constrained by the global energy budget.
Moreover, the heaviest events are thought to occur when all the moisture in a volume of air is
precipitated out. Furthermore, we hypothesized that temperature, dewpoint temperature, verti-
cal instability and wind shear are important factors for the occurrence and magnitude of extreme
precipitation. This research also aimed on verifying the super Clausius-Clapeyron scaling found
by Lenderink (2008,2010,2011). As this is argued to be the result of a shift from stratiform pre-
cipitation (dominating type in winter) to convective precipitation (dominating type in summer)
with temperature, we considered precipitation-(dewpoint)temperature relationships separately for
summer and winter. The main theory and findings of this thesis are summarized here and listed
in order of the chapters.

7.2.2 Summary of theory

In Chapter 3 we brought to the attention the processes of (extreme) precipitation production and
the related cloud types. Factors of importance for precipitation production are the cooling of
air rich in moisture and CCNs by an external event and the potential for droplets to grow to a
sufficient size. Factors of importance for the production of extreme precipitation, which we can
study with help of the station data, are vertical instability (by CAPE and temperature), moisture
(by dewpoint temperature) and wind shear (partially by wind speed). Furthermore, the two main
types, cumuliform and stratiform clouds, are characterized by precipitation intensity.
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7.2.3 Summary of results

In Chapter 4 we attempted to distinguish less intense precipitation (being dominantly of the strat-
iform type, mainly occurring in winter) from the more intense precipitation (being dominantly of
the convective type, mainly occurring in summer) by separately analysing for winter and sum-
mer. As expected from theory, our results show that in summer both precipitation duration and
precipitation intensity are larger than in winter. We define summer as June, July and August,
and winter as December, January and February. Under these definitions the difference in extreme
intensity between summer and winter is largest. In Chapter 4 we also investigated spatial dif-
ferences in (extreme) hourly precipitation, and concluded that these differences are large. In the
more northern and inland stations it rains more frequently than in the more southern and coastal
stations.

In Chapter 5 we analysed trends in 2-day precipitation intensity, frequency and sum, for each
station and for summer and winter. A Monte Carlo test provides a robust significant increase of
the 25-5% highest 2-day maxima in precipitation intensity (0.2-0.4%/yr). In 58 years the highest
maxima have increased with 0.5 mm/hr, which equals in magnitude the total difference in mean
intensity between summer and winter. Besides, for summer and winter season significant positive
trends are detected for respectively the 50-5% and 25-5% highest 2-day maxima. The trends in
“high” extremes are likely to be summer trends. These summer trends are stronger (0.1-0.6%/yr)
for the “moderate”-“high” extremes than winter trends (0.1-0.3%/yr), while only significant winter
trends are found for “low” extremes (0.5-0.7%yr). Our study confirms previous findings (IPCC,
2013) that the relative increase of “high” extremes is larger than those of the yearly mean and
the “low” and “moderate” extremes. In line with the findings of Malik, Bookhagen, and Mucha
(2016), quantile trends and their significance show large spatial differences.

Other than positive trends in hourly precipitation intensity, our findings provide unique evi-
dence of negative trends in frequency of wet hours. For every station significant trends, of which
most on the 99% confidence level, were found for 2-day and yearly frequencies. The negative
trends for the wettest 2 days vary between 0.1-0.6 %/yr and for the mean wetness between 0.08-
0.29 %/yr. For the whole Netherlands the total change in 58 years can be translated to 100 wet
hours less on average a year. This change is of same magnitude as the total spatial difference in
mean wetness between northern and southern situated stations. So, the same change in wetness
could be noticed when moving from the (more frequently raining) northern part of the Netherlands
to the (less frequently raining) southern part.

When considering the seasonal differences in the 2-day and yearly trends in intensity, it is
striking that only significant trends are found for summer frequencies of wet hours. This negative
signal in frequency is, however, less robust than the positive signal in intensity. It is worth noting
that in contrast to intensity trends, frequency trends are not computed from maxima data, which
could explain the lower robustness. Besides, for frequency data on yearly resolution the lack of
significant trends is likely due to the limited sample size. Furthermore, we detect a reverse dispro-
portionality. In other words, the mean and the drier 2 days show a stronger decrease in the counts
of wet hours than the wetter days. Note that insignificance of a trend does not imply that a trend
does not exist. We also want to emphasize that the robustness in sign of the (non-significant and
significant) trends is large for frequency of wet hours.

Moreover, for each station we detected significant positive trend in the yearly mean (OLS)
and 10-1% highest (quantile regression) 2-day precipitation sums. The latter have increased with
1.2-2.7 mm in the last 58 years, however, differences exist between northern and southern stations.
This could be temperature related, as precipitation intensity is temperature dependent (Chapter
6) and the trend in precipitation sum is dominated by the trend in intensity over the trend in
frequency (as found in Chapter 5 ). Furthermore, another striking difference is that significant
summer trends in precipitation sums belong to coastal stations, whereas significant winter trends
belong to non-coastal stations. This might be related to seasonal dependent changes in moisture
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availability (Chapter 6). Additionally, the trends in the highest and mean summer precipitation
sums and highest winter precipitation sums are positive, while the trends in the mean winter
precipitation sums are negative. Besides, the positive trends in the highest summer precipitation
sums are stronger (0.60-2.8 %/yr) than trends in the mean summer (-0.43 to 0.78%/yr) or highest
winter precipitation sums (0.27 to 0.45 %/yr). As the are more and stronger significant positive
trends in precipitation, these trends seem to be dominated more by the positive trends in intensity
maxima compared to the negative trends in frequency of wet hours. Despite the fact, that we only
consider maxima intensities in contrast to all-hour frequencies of wet hours.

The dissimilarity in trends regarding the quantile fits for one station is more likely to be the
result of the way quantile regression works than to be the result of a changing climate (Section
5.2.2). The different quantile fits are namely independent from each other, as the fits are calculated
as a minimization function on the entire data set. Thereby, the fits can not represent a step-wise
shift in time of the probability density distribution.

In Chapter 6 where we investigated the causes behind precipitation changes, we uncovered
four important factors for extreme precipitation, (i) temperature, (ii) dewpoint temperature, (iii)
CAPE and (iv) wind speed. From theory we deduced how these factors relate to extreme pre-
cipitation. (1) Increasing temperature can potentially influence extreme precipitation in three
ways, via more atmosphere moisture generated by evaporation, a higher ability of the air to hold
moisture, and stronger updrafts. (2) Dewpoint temperature is a measure of the air’s humidity,
which will increase with temperature under constraint of constant relative humidity according to
the Clausius-Clapeyron equation. This is expected to result in less frequent, but more intense
precipitation. (3) An increasing atmospheric temperature gradient (i.e. surface air increases more
in temperature than higher-level air) goes hand in hand with increasing CAPE, which can lead to
more influx of moisture. (4) Strong horizontal wind speed can be related to extreme precipitation
via (a) strong wind shear important for convective storms to be self-perpetuating, and (b) via
horizontal advection of frontal systems.

Furthermore, for these key variables we presented the relationships with precipitation intensity
using a bundled data set (all five stations combined).Considering the maxima of the key variables
strong (semi-)exponential relationships are revealed. For maxima of the same resolution (e.g. 2
days) as for the trend analysis, we found Spearman correlation coefficients of 0.4 (wind speed), 0.3
(temperature), 0.2 (dewpoint temperature) and 0.07 (CAPE). Moreover, we investigated whether
similar trends can be detected for the four key variables as for trends in precipitation intensity. We
found positive trends in temperature and dewpoint temperature significant at the 99% confidence
level, which can explain the observed changes in precipitation. However, the significant negative
trends detected in wind speed, for the period 1958-2015, and in CAPE, for the period 1993-2015,
can not explain an intensification of precipitation.

In the last part of Chapter 6 we studied time related changes for summer and winter distribu-
tions of the key variables and in the point clouds and quantile regression fits (plotting precipitation
intensity over the key variable). Strong seasonal differences were found in the point clouds and
distributions. We observe that in summer we have relatively low daily maxima in wind speed
(2-12 m/s), compared to winter daily maxima (2-18 m/s). As summer precipitation intensities are
higher than winter precipitation intensities, the trends in FH maxima probably do not necessarily
match to trends in the most extreme (summer) precipitation. Besides, the explanation of intensifi-
cation of precipitation by decreasing wind speeds is not understood from theory. For temperature,
dewpoint temperature and CAPE we did observe relatively high maxima for summer compared to
winter. The comparison of the first period with the second period clearly shows a shift of the tem-
perature and dewpoint temperature distributions towards higher values. Regarding wind speeds
the winter maxima have decreased in frequency, while the summer maxima have not changed in
frequency in time. Between precipitation and temperature or dewpoint temperature we find pos-
itive exponential relationships comparable with CC- and super CC-scaling for binned winter and
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summer quantiles. For both key variables the timewise shift in the distribution to higher summer
and winter T and TD maxima and lower winter FH maxima is stronger than changes in their
relationships with P. Due to the limited period of CAPE measurements, we have not analysed the
same time related changes for this variable. However, the potential of CAPE trends to explain
the trends in intensification of precipitation is thought to be small, as the correlation for CAPE
maxima with precipitation maxima is the lowest of the four key variables and the sign of the
significant trends in CAPE does not match theory in explaining trends in precipitation intensity.

All in all, it is more likely that the detected trends in precipitation intensity are caused by shift-
ing of (dewpoint) temperature distributions towards higher values, than by an intensification of
the relationship between precipitation and (dewpoint) temperature. Nonetheless, the latter is also
observed for a specific temperature range. For the second half in time the P-T(TD) relationship is
namely more in line with a super Clausius-Clapeyron scaling, compared to the first half in time.
Complementing to the work of Lenderink (2008,2010,2011) we considered summer and winter rela-
tionships separately, which can explain why we did not find the super Clausius-Clapeyron scaling
for the entire temperature distribution. This confirms Berg and Haerter (2013a) and Berg and
Haerter (2013b) as it is likely that the transition from stratiform precipitation (dominated in win-
ter) to convective precipitation (dominated in summer) with temperature accounts for the super
Clausius-Clapeyron scaling between (dewpoint) temperature and precipitation in a significant way.

Moreover, from theory we know that warmer air needs a higher pressure to reach the same
saturation than colder air with the same moisture content Chapter 6.2.1,and therefore we expected
less (2-day) hours in which saturation is reached in a warmer atmosphere. This is in line with our
findings, as we detected negative trends in the frequency of wet hours. Besides, compared to the
past more can currently precipitate out of the warmer air column under extreme conditions due
to the higher moisture-holding capacity, which supports the observed positive trends in the hourly
intensities of heavy precipitation.

7.3 Strengths and relevance

In this part we describe the strengths of this study and how the results attribute to the current
knowledge base (add?: of this field). First of all, the instrument type, setting and associated
historical changes of precipitation measurements are precisely documented.

Complementing research of Buishand and Brandsma (2013), in which analysis of daily pre-
cipitation showed spatial differences, this study provides evidence that precipitation extremes are
strongly spatial dependent on the hourly level.

Moreover, this study has uncovered multiple significant trends in precipitation characteristics,
which could not have been found from the more commonly used daily precipitation data. The
detected positive trends in precipitation intensity and negative trends in frequency of wet hours
confirm theory related to the Clausius-Clapeyron equation (Pall and Stone, 2007; Lenderink and
Van Meijgaard, 2010; Hardwick Jones and Sharma, 2010; Lenderink and Van Oldenborgh, 2011;
IPCC, 2013). As the trend analysis consist of 5 Dutch stations representative for all parts of the
Netherlands, the robustness of the observed trends is large. Besides, due to the use of quantile
regression we could compare the trends of the different stations for the same part (here the ex-
treme part) of the distribution. Unlike the peak-over-threshold approach, the quantile regression
approach provides fits that are independent of spatial differences in probability density functions
of precipitation data, so that we can analyze properly the spatial differences in trends.

Additionally, this study allows to verify whether the scaling beyond Clausius-Clapeyron found
by Lenderink (2008,2010,2011) may be assigned to mixing of winter and summer dominated pro-
cesses or to climate change. The importance of studying winter and summer extremes separately
is revealed in this thesis and by analyzing summer and winter extremes on hourly resolution more
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detail is given on the types of precipitation (local summer precipitation) and how much and why
these types changes. More insight into the mechanisms behind the trends is gained by thoroughly
investigating multiple potential causes from theory, strength of correlations, trend analysis and
timewise comparison of distribution and relationship changes. Several important key variables for
changes in precipitation are discovered and classified on type of relationship and strength.

7.4 Limitations

The major limitations of this research are discussed in this section. Station data is used for this
thesis, which gives spatially limited information. Due to temporal limitation in hourly data, only
one station per part of the country (e.g. northwest, central, southwest, southeast and northeast) is
used. Next to the horizontal point of view, station data is also limited regarding the precipitation
processes. Mainly processes regarding precipitation accumulation are captured, as we solely have
point measurements at the surface. Thus, we do not possess information about the conditions for
precipitation production, which restricts our investigation into the causes of trends in precipitation
characteristics.

Furthermore, we did not homogenize our data set due to multiple reasons described in Chapter
2, which can give an bias regarding the detection of trends. Note, that this bias is assumed to be
negligible, as we did not find jumps in our data related to historical changes (Chapter 2).

The independent (2-day) period we chose can still involve some autocorrelation, although in
magnitude and from physical objective this is expected to be relatively small. However, we did
not investigate the autocorrelation and partial autocorrelation of 2-day precipitation sums, which
might have relatively more autocorrelation as it considers precipitation at a larger temporal scale.

Regarding our method of testing significance, we could doubt whether a random resampling of
9999 times is sufficient to represent well all possible outcomes in slopes. A higher number would,
however, require undesirable amounts of computation power. Moreover, we could question for
which confidence level, a trend is significant. Is a trend significant at the 95% confidence level
trustworthy enough? In this study we do not classify the significance of a trend with respect to
the type of confidence level used. However, according to Huth and Dubrovský (2016) it is often
forgotten in Climate Science that insignificance of trends does not necessarily hold that those
trends are not present. Therefore, we want to stress the importance of considering the general
sign in all the trends, next to detecting significant trends for time series with a sufficient sample
size.

In the analysis of causes behind the observed trends we did not disentangle the (independent)
contribution of every key variable in its relationship with precipitation. Temperature namely
influences dewpoint temperature and CAPE. Besides, wind speed is the result of a horizontal
temperature-related pressure gradient and CAPE-associated convergence of air. Finally, regard-
ing our investigation of the causes behind the detected trends we could argue about whether we
can actually determine causality. However, we do state our explanatory relationships with a like-
lihood. We did not specify the degree of likelihood, as this is a difficult task.
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7.5 Recommendations

In this section recommendations for future research are briefly listed, considering data quality,
type of data, way of analysis and interpretation, and the potential of scaling up the research.

First, we recommend an extension of the data quality study. This would involve a more thor-
ough investigation of homogenization techniques for hourly data. Moreover, a clear overview of
the instrument types, settings and associated historical changes for all measured variables, similar
as has been reported here for precipitation (Chapter 2), would help by analyzing the data quality
more intensively.

Second, by integrating this research with satellite and/or radar observations the influence of
the large-scale settings (i.e. the presence of a meso-scale mid-tropospheric trough or extratropical
cyclone or the presence of large-scale wind shear) on precipitation extremes can be studied. Data
corresponding to the exact (horizontal and vertical) location and time of precipitation production
would complement the data corresponding to the location of precipitation accumulation regarding
processes of precipitation formation. So combining hourly rain gauge data with high-resolution
spatial and temporal data can improve our understanding about the observed changes in precip-
itation characteristics in time. Furthermore, we could then test the effect of the resolution of
these type of observations (f.e. radar observations are on the order of one to tens of km’s) on the
ability to capture local extreme precipitation events. Other opportunities for data with a high
spatial resolution are the monitoring of the concentration (and type) of CCNs and including more
spatial-dependent variables (e.g. soil and altitude) into the analysis of the causes of the detected
trends.

Third, a best fit of predictors could be found with a multiple regression technique that is ad-
justed for multidisciplinary. The found statistics associated with extreme precipitation could be
compared to models to validate whether they are able to model extremes in precipitation. Besides,
more extensive analysis of precipitation production processes could help to improve the physics
within the models. For example, when models are able to simulate the microphysical processes
in clouds better, we would gain understanding regarding the causes behind the observed seasonal
and spatial trends.

A fourth recommendation for future research is to investigate the spatial dependency of the
precipitation trends in more detail for the latest 10-25 years, by adding more stations, as well as
satellite and radar observations.

Fifth, in stead of differentiating trends based on season, we could argue to differentiate trends
based on type of precipitation systems (e.g. convective versus stratiform). This would give more
detailed information about the mechanism behind the observed trends. Including high resolution,
synoptic data would allow for disentangling convective from stratiform precipitation.

Sixth, another possibility to complement on the present work is to classify the significance of a
certain trend to the type of confidence level used. This would allow for specification into likelihood
classes, similar as is carried out in the assessment reports of the IPCC.

Seventh, it would be very interesting to study whether the observed negative signal in frequency
of wet hours corresponds to a general negative trend in the amount of wet events or whether the
events have become shorter in time. This could be studied by classifying of the hourly data into
wet events, which can be deduced from the hourly duration and the sequencing of wet hours in
time. It is likely that the amount of wet events decreases in time, as this would match a Clausius-
Clapeyron scaling with higher pressures needed for saturation to occur at higher temperatures,
resulting in a decreasing possibility of saturation (and thus of wet events).
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Eighth, to enlarge the relevancy of the results, we could also apply trend analysis on impact-
ing events. These events can be selected on basis of thresholds, possibly differentiating between
“threshold” classes of extreme events on the type of damage (e.g. sewage overflow, traffic delay
and agriculture) associated with the intensity of such an event. For trends in hourly intensities
> 10 mm/hr to be detected as significant more data is needed. However, as described in 7.4
the sign and magnitude of this class of trends can give relevant information, without the need
for significance (Huth and Dubrovský, 2016). Especially in this case, where a lack a wet hours
corresponding to the high threshold is likely to be the cause of the insignificance.

Our ninth recommendation for future research is linked to the analysis of CAPE data. A study
into the effect of the resolution decrease in CAPE data (e.g. from a mean of 4 times a day to
1 a day) in the course of time, would give more information about the validity of the detected
negative trends in CAPE for the period 1993-2015. Furthermore, analyzing trends in precipitation
for the same period as trends in CAPE allows for a more correct way of comparison between the
two type of data. Additionally, including data of Convective Inhibition (CIN) and implementing
the restriction that CAPE > CIN for CAPE to be larger than 0, would give a better indication of
the actual potential of vertical motion.

Last but not least, applying similar trend analysis on hourly precipitation data for other Eu-
ropean countries enables validation of the robustness of the detected trends. Besides, spatial
differences in trends could be investigated on a larger scale. As increases in the precipitation
extremes following the Clausius-Clapeyron relationship are limited by moisture, we expect to find
a North-South gradient in the trends for Europe.
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Chapter 8

Conclusions

The main conclusions of this study and their implications for current and future research are listed
in this chapter. This research has revealed large spatial and seasonal differences for hourly pre-
cipitation extremes in the Netherlands. Therefore, we considered trends differentiated on station
and season. In general, in the summer season precipitation is more short-lasting and intensive,
compared to the winter.

Trend analysis performed on the precipitation data for independent 2-day periods has revealed
positive signals for intensity maxima, negative signals for frequency of wet hours and constant to
positive signals for precipitation sums. Multiple trends are significant (p > 0.95 in a permutation
test based on 9999 Monte Carlo resamplings) showing a robust increase of the 25-5% highest in-
tensity maxima (on the order of 0.1-0.6%/yr or in 58 years 0.5-2.3 mm/hr for all to summer-only
maxima), a decrease in the mean frequency of wet hours (-0.08 to -0.29%/yr) and in the frequency
of wet hours of the 25-5% wettest 2-days (-0.1 to -0.6%/yr or in 58 years -0.5-3 hr/day) and a
constant to increasing signal in mean (-0.29 to 0.31%/yr) and highest 10-1% precipitation sums
(0.05-0.25%/yr or in 58 years 1.2-2.7 mm/2 days).

Considering the seasonal dependence of precipitation intensity and the comparison between
all and season-only trends in maxima, we are led to the conclusion that the trends in the “high”
extremes are likely to be summer trends. Despite the robustness in sign of the trends for each
precipitation characteristic, spatial differences exist in the magnitude and number of significant
trends. This is striking for a small country as the Netherlands.

Our study confirms previous findings (IPCC, 2013) that the “high” extremes increase in a
disproportional way (e.g. stronger and more significant trends), compared to the yearly mean and
“low” extremes. All the trends show dissimilarity in the significance of quantiles fits per station
and per season, which is more likely to be the result of the way quantile regression works (e.g.
the quantile fits for one station are independent from each other), than the result of changes in
physical processes.

We are led to the conclusion that the detected trends in precipitation trends are likely caused
by a shift in the (dewpoint) temperature distributions via an increase of the atmospheric mois-
ture holding capacity. This confirms the Clausius-Clapeyron equation and our expectation that
more moisture in a column of air results in more precipitation that rains out in an extreme event
(Chapter 1). So, global warming likely induces the positive trend in the intensity of extreme hourly
precipitation. In Chapter 6.2.1 we stated that warmer air needs a higher pressure to reach the
same saturation than colder air with the same moisture content. This is in line with a negative
trend in the frequency of wet hours (e.g. hours in which saturation is reached) for a warming of
the atmosphere in time.

93



This research could be improved and extended in several ways. By integrating the hourly rain
gauge data with satellite and/or radar observations convective and stratiform precipitation can
be disentangled and other synoptic information will be provided about the spatial-dependent pro-
cesses behind precipitation and the observed changes. Both satellite/radar observations, and model
data can be tested (by comparing to the observed statistics of the in-situ data) on their ability to
capture local extreme precipitation. Promising for future research is the potential to find a more
regional to continental (European) signal, by applying the same kind of trend analysis on hourly
data of other European station, which could reveal a North-South gradient in precipitation trends.
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