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—Amir Ordaçgi Caldeira [11, p. 1]

Author:
Ruward A. Mulder
3704734

Advisors:
Prof. Dr. Cristiane Morais Smith
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Abstract

Brownian motion is the random-walk behavior exhibited by a particle when sub-
jected to a bath composed of smaller particles that constantly undergo collisions with
the Brownian particle. Its trajectory is described by the Langevin equation, which has
several technical problems for constructing a quantum version of the model. Most no-
tably, there is a velocity dependence in the equation of motion, which makes direct
canonical quantization problematic; energy is not conserved due to diffusion. To solve
this problem, Anthony James Leggett and Amir Ordaçgi Caldeira, modeled the bath as
a collection of harmonic oscillators, which allowed them to close the system, derive the
Langevin equation in the appropriate (classical) limit for the ohmic regime, and investi-
gate quantum aspects of Brownian motion.

Building on this Caldeira-Leggett model, this research suggests to change the inter-
action between the Brownian particle and the bath to depend on the velocity of the
particle in a general way. We derive a generalized velocity-dependent Langevin equation
with memory effects and multiplicative noise. First, when we reduce to a coupling linear
in velocity the memory disappears and we find a Langevin-type equation that resem-
bles the equation for the self-interaction of an electron with its own radiation field, i.e.
the Abraham-Lorentz equation, in the superohmic regime. Second, when we make the
approximation that the second derivative of the coupling is negligible, a particular non-
polynomial coupling reproduces a force term that gives rise to Lévy flights as encountered
in ultracold-atoms experiments, e.g. Sisyphus laser cooling.

We also use the path-integral quantization method to construct a quantum version for
our generalized velocity-dependent Caldeira-Leggett model. After tracing out the bath,
it turns out to be possible to find an effective action without a special choice for the form
of the coupling; hence, it remains completely general. Reducing to the linear-velocity
case, we obtain an effective action that can be interpreted as a bath-induced resistance
to a change in velocity of the Brownian system—on top of classical inertia terms. For
the effective action corresponding with the Lévy flight model, further numerical research
is desirable.

Last, we will also discuss future possibilities of engineering environments in such
a way that they are friendly to coherence, which has many applications—for example,
suppressing decoherence for quantum computers.
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1 INTRODUCTION

1 Introduction

1.1 Quantizing dissipative systems:
the problem and the solution(s)

The story of this thesis is a story of dissipation. Dissipative systems are ‘open’, in
the sense that they are in contact with a surrounding environment which it is con-
stantly interacting with. Of course, this is always the case for a realistic system,
since a perfect vacuum will never be achieved; albeit for technologically imperfect vac-
uum pumps, cosmic microwave photons, or, at the very least, spontaneously appearing
particle-antiparticle pairs. But these interactions are usually so small that they are
inconsequential; after all, it is the great merit of science to theoretically isolate certain
parts of the world and give an explanatory theory for such a subsystem on itself. It
is quite a different thing, though, when the mathematical model itself is not ‘closed’.
This happens when one gives a phenomenological description of the observations, while
the assumption cannot be made that the part which is left out of the description is
negligible.

The paradigmatic example of an open system is Brownian motion: the random-walk
behavior of a colloid particle suspended in some medium such as water—as depicted
at the left of Figure 1. The equation that describes the motion of such a ‘Brownian
particle’ is the Langevin equation, written down by Paul Langevin in 1906. This is a
phenomenological model: although the water plays a crucial role in the dynamics of
the system, as water molecules bombard the Brownian particle from all directions and
at all times, the motion of the water molecules themselves is not described.

It has historically proven difficult to successfully construct quantum-mechanical ver-
sions of open systems. The reason for this is twofold. First, since the system is contin-
uously exchanging energy with its environment, energy is not conserved. Therefore, a
Hamiltonian or Lagrangian description with the Langevin equation as its corresponding
dynamics, will have an explicit time-dependence. Second, the dynamics of an open sys-
tem is practically irreversible, because the environmental degrees of freedom are usually
too many to keep track of. Hence, familiar schemes of quantization, canonical or via
the path integral, are not straightforwardly in accord with the uncertainty principle.

Multiple solutions have been proposed to solve this problem. In the seventies, some
proposed to adjust the Schrödinger equation to incorporate dissipative effects, most
prominently by Kostin [40] and Nelson [63]. It was proposed by Dekker to modify
the canonical quantization method to include complex variables. Another promising
method is to use the Lindblad formalism, which is a master equation that preserves
the trace and positivity of the density matrix and reproduces the Schrödinger equation
under certain conditions. These are all demanding paths by themselves; we will consider
a fourth route.

As early as 1959, Magalinskii suggested the elegant solution of including the envi-
ronment itself into the description such that one ends up with a closed system [51]. He
suggested to describe the bath as an infinite set of harmonic oscillators. In 1963, Feyn-
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1.1 Quantizing dissipative systems:
the problem and the solution(s)

Figure 1: Left: The random-walk behavior of a Brownian particle. Right: Lévy mo-
tion; the system performs a random walk most of the time, which is sometimes inter-
rupted by a long Lévy flight. Picture extracted from http://www.crm.umontreal.ca/

~physmath/images/gallery.dir/.

man and Vernon developed a way to quantize such a system using the path-integral
method [19]. Today, this model is often referred to as Caldeira-Leggett model, due to
Caldeira and Leggett’s proof that this model is also applicable to situations where the
dissipation is very strong, which had a large impact on the theory quantum tunneling
and the study of macroscopic quantum phenomena [8] [9]. In addition, at the quantum
level, not only energy leaks into the environment, the coherence of quantum states also
dissipates—a phenomenon known as decoherence, which the model also treats well. In
short, the Caldeira-Leggett model is a successful description of quantum Brownian mo-
tion in a closed formalism.

Many simple physical systems adhere to the random-walk behavior of Brownian mo-
tion. Nevertheless, more complex motions are also found in nature. We will focus on
Lévy motion, which performs the random walk for most of the time, but which has
occasionally large ‘jumps’, which are the so-called ‘Lévy flights’—as depicted at the
right of Figure 1. Lévy distributions are the generalization of the Gaussian distribution
in the sum of large numbers of independent variables in cases where the variances of
the variables diverge. This result is known as the generalized central limit theorem.
Lévy distributions are characterized by power-law tails and divergent moments. Hence,
in contrast to the Gaussian-distributed momentum of Brownian motion, the Lévy dis-
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1 INTRODUCTION

tribution has a much wider support, a property called having ‘heavy tails’. This, then,
corresponds to a much larger probability for making long jumps. Lévy statistics occurs,
for example, on the stock market [55], the migration patterns of the albatross [79], or
in hopping processes in polymer physics [66].

Another area where Lévy flights occur is in laser cooling experiments. Laser cool-
ing of atoms provides an ideal case study for the application of Lévy statistics in a
privileged situation, where statistical models can be derived from first principles. In
an experiment by Sagi, in 2012, anomalous spatial diffusion was directly studied by
imaging the expansion of neutral 87Rb atoms in a one-dimensional optical lattice. The
atomic distributions at different times was given by a Lévy distribution [69].

In a theoretical work of Marksteiner, Ellinger, and Zoller, it is shown that Lévy
flights should occur in Sisyphus laser cooling [56]. This cooling technique aims to cool
an atom cloud down by pointing laser lights at it from all directions. Although the
thermal fluctuations of individual atoms within the cloud are very small, sometimes a
Lévy flight occurs as a result of the spontaneous emission of a photon by an excited
atom [52]; the recoil that results from the emission corresponds, then, to the Lévy flight.

1.2 This Thesis: a velocity-dependent Caldeira-Leggett model

This thesis aims to modify the Caldeira-Leggett model in such a way that it will in-
corporate Lévy behavior. The goal is to find a closed Lagrangian description of Lévy
motion, which would then allow for direct quantization—either canonically or via the
path integral. In other words, we are searching for a closed quantum theory of Lévy
systems.

The original Caldeira-Leggett Lagrangian couples the coordinate of the Brownian
particle linearly to the particle of the bath. The strategy we will follow is to modify this
coupling to one that depends on the velocity of the Brownian particle in a very general
way, while still being coupled to the bath coordinates. With such a closed description
in hand, we will quantize the system using path-integral quantization.

It turns out that in certain limiting cases, and for a specific non-polynomial choice
for the form of the velocity coupling, such a strategy allows one to reproduce the force
term from Marksteiner, Ellinger and Zoller’s research that gives rise to Lévy flights
in Sisyphus cooling. In the low-velocity limit, this result reduces to a linear-velocity
coupling. For this linear-velocity case, we find, for cubically superohmic baths, an
equation that has the same form as the equation of motion of an self-interacting electron
in a cavity, i.e. the Abraham-Lorentz equation. We find this, without assuming an
electron model or other fundamental physics. We also construct an effective action
corresponding to the modified Caldeira-Leggett Lagrangian. That is, we integrate out
the bath coordinates, leaving us only with an effective dynamics for the Brownian
system. It turns out, that such an effective action can be found without considering
specific cases for the velocity coupling, and is, therefore, completely general.

Summarizing, one can distinguish three main results in this thesis. First, the re-
production of Lévy flights in ultracold-atom experiments. Second, the derivation of an
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1.3 Outline of the Thesis

equation similar to the Abraham-Lorentz equation, for linear-velocity coupling and a
superohmic bath. Third, a quantum-mechanical effective action for completely general
coupling forces.

1.3 Outline of the Thesis

This thesis contains four main chapters; respectively, they deal with setting up the
framework for open systems, closing the system via the Caldeira-Leggett approach,
modifying the Caldeira-Leggett model to general velocity-dependent coupling, and
quantizing this modified model.

Specifically, in Chapter 2 we will discuss four subjects. First, we will discuss the
theory of Brownian motion as it was developed by Einstein, Langevin and others. Sec-
ond, we will discuss the phenomenon of decoherence from a very general perspective.
Third, we will derive some results from linear-response theory that will be needed for
the Caldeira-Leggett model. And last, we will discuss the occurrence of Lévy flights
in Sisyphus cooling. In Chapter 3, we thoroughly discuss the Caldeira-Leggett model
and the derivation of the Langevin equation from it. In Chapter 4, we apply the same
methods as in Chapter 3 to the modified Caldeira-Leggett Lagrangian, resulting in a
modified Langevin equation with multiplicative noise and memory effects. In Section
4.2, we discuss a general polynomial approach, the linear-velocity case, and the cou-
pling that gives rise to Lévy flights. In the final chapter, Chapter 5, we derive the
path-integral formalism and discuss the Feynman-Vernon functional integral approach.
Furthermore, we derive the quantization of the free particle and the forced harmonic
oscillator, and we derive the effective action for the modified Caldeira-Leggett model.

A few remarks about notations:

• Throughout the thesis, we will deal with coupling constants denoted by Ck, C
′
k,

C̄k and C̃k. In principle, these distinction are unimportant in the context of a
single section. However, taking the thesis as a whole, the distinction refers to
coordinate-coordinate coupling, general-coordinate coupling, linear-velocity cou-
pling and general-velocity coupling, respectively.

• In other cases, ‘primes’ will indicate partial derivatives with repects to the argu-
ment of the function. Hence, F ′[Q̇] is shothand for ∂F [Q̇]/∂Q̇.

• I will stick to ‘Mermin’s imperative’, i.e. giving every equation a number, such
that it can always be referenced [58].
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2 OPEN DISSIPATIVE SYSTEMS

2 Open Dissipative Systems

“[T]he human mind is built to identify for each event a definite cause and can
therefore have a hard time accepting the influence of unrelated or random
factors.”

—Leonard Mlodinow [59, p. xi]

2.1 The Theory of Brownian Motion

2.1.1 Einstein’s approach: the Diffusion equation

Brownian motion is the behavior of a system undergoing random fluctuations, of which
the paradigmatic example is a particle suspended in a liquid bath. The first scholar
to notice this effect, was the Dutch plant physiologist Jan Ingenhousz in 1785, who
observed the irregular movement of coal dust particles on the surface of an alcohol
suspension under a microscope [34]. Almost half a century later, in 1828, the botanist
Robert Brown observed a very similar effect when observing particles of the pollen of
plants in water; see Figure 2 for a sketch of the observation. In the heydays of vitalism,
this irregular movement was originally ascribed a biological origin, caused by ‘swim-
ming’ living creatures in the fluid. Through further experiments, Brown established
this was a highly problematic explanation of what he saw:

“I was led next to inquire whether this property continued after the death
of the plant [...], the particles [...] were found in motion equally evident with
that observed in the living plant; specimens of several plants, some of which
had been dried and preserved in an herbarium for upwards of twenty years,
and others not less than a century, still exhibited the molecules or smaller
spherical particles in considerable numbers, and in evident motion [...].”[7,
p. 469]

Although the 1860s and ‘70s saw the rise of the kinetic theory of molecules developed
most prominently by Boltzmann, Gibbs and Maxwell, controversy about the ontological
status of molecules reigned. During his annus mirabilis 1905, Einstein hypothesized,
using the kinetic theory, that the physical origin of the by-then called Brownian particles
lay in their continuous interaction with other particles, too small to be seen through
the microscope [16]; see Figure 3.

For Einstein, the framework was mainly based on diffusion: the flow of particles,
e.g. as a result of a density gradient from a high density area to a low density area,
which he described using Fick’s law [24]. In modern notation, Fick’s first law states that
the net particle flux J(x) through a barrier of length L is proportional to the density
gradient due to the difference in particle pressure on either side of that area,

J(x) ≡ dN (x, t)

dt
= −DdN (x, t)

dx
, (2.1)
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2.1 The Theory of Brownian Motion

Figure 2: A sketch of what Robert Brown must have seen under his microscope: the
jiggling around of a Brownian particle from the initial position to the final position.
This movement has become known as the ‘Random walk’.

Figure 3: Einstein’s theoretical explanation of Brownian motion: the Brownian particle
is repeatedly bombarded by smaller particles, unseen through the microscope. These
smaller particles are described by the kinetic theory of Maxwell, Boltzmann, and Gibbs,
serving (historically) as strong empirical indication of the merit of the kinetic theory of
gases.
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2 OPEN DISSIPATIVE SYSTEMS

where N (x, t) = n(x, t)/L is the number of particles n(x, t) per area and D is called
the diffusion constant; see also Figure 4. The minus sign is conventional, due the choice
of the positive x-direction (being to the right in the Figure).

Starting with the particle density N (x, t) at some point in time, we want to predict
the rate of change of this density in terms of the density gradient. Assuming locality
and conservation of the total number of particles leads to the continuity equation: some
particles will enter a certain area (due to the density gradient) and some will leave it,
such that their rate of change is [71, pp. 5–6]

dN (x, t)

dt
= −dJ(x)

dx
. (2.2)

Combined with Eq. (2.1) we arrive at the diffusion equation,1

dN (x, t)

dt
= D

d2N (x, t)

dx2
. (2.4)

Now, taking an initial state for the density of N particles, ρ(x1, ..., xM ; t = 0) = δ(x),
[75, p. 201], where all particle starts out in the origin, the solution of the diffusion
equation (2.4)–as can easily be checked–is the Maxwell-Boltzmann distribution

N (x, t) =
N√

4πDt
exp

[
− x2

4Dt

]
, (2.5)

which describes the spreading of the particle density function, i.e. diffusion, as it be-
comes de-localized as time goes on.

We can reformulate the above approach in terms of a ‘random-walk’ that the Brownian
particle performs, as Figure 2 shows. Every step in time ∆t, the Brownian particle
makes jumps in a random direction with arbitrary distance ∆x. Using Eq. (2.4)–which
can now interpreted as a probability density–one can calculate the expectation values of
the mean distance traveled, and the mean-square displacement of the Brownian particle.
On average, the distance traveled by one (N = 1) particle (or ‘first moment’)

〈x(t)〉 =

∞∫
−∞

dx x N (x, t) =
1√

4πDt

∞∫
−∞

dx x exp

[
− x2

4Dt

]
= 0 (2.6)

vanishes, due to the odd integrand—as it should for random step-direction. The mean

1This is easily generalized to three dimensions, relying on the fundamental assumption of statistical
physics that a particle is equally likely to move in any direction, i.e. isotropy, such that

dN (~x, t)

dt
= D̃~∇2N (~x, t), (2.3)

for D̃ = D/3. This is also known as Fick’s second law.
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2.1 The Theory of Brownian Motion

Figure 4: Fick’s law. The particle flux J(x) is the number of particles per unit time
passing through the area A (in yellow). The subscript ‘+’ indicates particles traveling
to the right, ‘−’ indicates particles traveling to the left. The rate of diffusion is given
by the diffusion constant D.

squared displacement (or ‘second moment’) is

〈
x2(t)

〉
=

1√
4πDt

∞∫
−∞

dx x2 exp

[
− x2

4Dt

]
= 2Dt, (2.7)

where we performed the Gaussian integral. For one step ∆x, the diffusion coefficient is
then given by

D =
〈(∆x)2〉

2∆t
, (2.8)

which is Einstein’s relation. Through the relation (2.8), Einstein’s theory provided a
theoretical expression for the diffusion coefficient in terms of the size of the atoms (as-
suming spherical atoms) [16, p. 17]. Since the diffusion coefficient can be experimentally
measured, Jean Perrin found a way to measure Avogrado’s number [64]. Intuitively,
to find this number one needs to measure the value of a macroscopic quantity (of a
pure material) and the value of this quantity for a single particle. Perrin measured
the charge of a mole of electrons and divided it by the charge on a single electron (us-
ing Millikan’s well-known result [54]), obtaining a value of Avogadro’s number of the
number of particles per mole.2

The diffusion equation (2.4) is an example of the Fokker-Planck equation in the

2Contrary to popular belief, Amadeo Avogadro did not estimate or publish on what is now known
as ‘Avogadro’s number’ (the number of particles of an ideal gas in a given volume). In the early
nineteenth century, Avogadro posed the hypothesis that equal volumes of different gases (at the same
temperature and pressure) contain the same number of particles. It was Josef Loschmidt, using the
kinetic theory of gases, in 1865, who first gave an estimate of the number of particles in a cubic
centimeter of a gas: he estimated the Loschmidt constant at 2.6867773 × 1025m−3 [50]. Jean Perrin,
in his 1908 measurement of this number, coined the term ‘Avogadro’s constant’.
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2 OPEN DISSIPATIVE SYSTEMS

case of Brownian particles in a fluid. The Fokker-Planck equation is a master equation,
which, in general, describes the evolution of a probability function P (x, t), and reads
[75, p. 193–196]

∂P (x, t)

∂t
= − ∂

∂x
A(x)P +

1

2

∂2

∂x2
B(x)P, (2.9)

for real differentiable functions A(x) and B(x) > 0. For Brownian motion, the proba-
bility interpretation comes in by interpreting Eq. (2.4) as an average particle flow in
the diffusion equation—after all, in practice we are wholly ignorant of the precise mi-
crostate of the system and, therefore, retort to the ensemble approach. In this context,
the first term on the right-hand side of Eq. (5.1.1) is called the ‘drift term’ and the
second term is called the ‘fluctuation term’. In the words of Einstein, “[w]e can look
upon the dynamic equilibrium condition considered here as a superposition of two pro-
cesses proceeding in opposite directions.”[16, p. 10]. In equilibrium, hence, when the
left-hand side vanishes, these forces should cancel each other out. These two processes
are the influence of a fluctuation force on the one hand, and a process of diffusion on the
other. This is an example of the fluctuation-dissipation theorem, which we will derive
more generally in the next two sections.

2.1.2 Langevin’s approach: velocity-dependent force balance

In 1906, Paul Langevin provided a mathematical framework for Einstein’s theory of
Brownian motion, using a stochastic differential equation for the motion of the Brownian
particle, subject to a friction force and a fluctuation force [44]. Starting from Newton’s
second law for a system of mass M and position vector ~x(t), he wrote

M
d~v

dt
= ~Ffriction + ~f(t) and ~v =

d~x

dt
, (2.10)

First, there is a friction force (or “viscous drag”), representing the friction that the
Brownian particle will experience and which will be responsible for dissipation; this force
is proportional to the velocity of the particle and its mass, where the proportionality
constant is the friction coefficient η, hence

~Ffriction = −η~v. (2.11)

The second force should represent the influence of the bath on the Brownian particle.
According to Langevin, this force is “rapidly and unpredictably varying” [44]. We will
call it the fluctuation force f(t), since it will give rise to bath-driven fluctuations. It is
then natural to make the step to modeling this force in a stochastically—The function
f(t) itself is now taken from an ensemble of functions each endowed with a certain
probability weight. Although, in reality, f(t) is uniquely defined and deterministic, it
is unattainable regarding the large number of degrees of freedom of the bath. This step
from a unique deterministic force towards an stochastic one is not always apparent in
the literature, due to a loose use of the word ‘random’ [77, cf.]. The task that arises,
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2.1 The Theory of Brownian Motion

then, is determining the distribution of this ensemble.
In principle, the system would also feel external forces, such as gravity. For general-

ity, then, we include an external force ~Fext = −~∇V (x), for V (x) the external potential.
The Langevin equation reads

M
d~v

dt
+ ~∇V (x) + η~v = ~f(t). (2.12)

This is a stochastic differential equation: it can only be solved if we specify a probability
distribution for the different functions f(t). Without this specification, the Langevin
equation is meaningless; hence, we will speak here of the Langevin equations (plural),
to indicate that only the form of Eq. (2.12) is not the end of the story.

First, since the collisions between the Brownian particle and the bath constituents
are supposed to be random both in direction and in strength, the fluctuation force
should vanish on average,3

〈fi(t)〉 = 0, (2.15)

where the index i ∈ {x, y, z} indicates the direction. Second, one must specify the
duration of one collision, say |t− t′|, between the particles meeting each other at time
t and leaving each other at time t′. As long as the relevant times are larger than the
collision time, one can conveniently use the delta distribution. Effectively, one assumes
that all collisions are–for all practical purposes–instantaneous and uncorrelated to each
other. Hence, we postulate the two-point correlation function

〈fi(t)fj(t′)〉 = αδijδ(t− t′), (2.16)

for the Kronecker delta δij, Dirac’s delta distribution δ(t− t′) and α a constant, which
will be determined later. The delta-peaked two-point correlation function of Eq. (2.16)
is usually referred to as ‘white noise’. This assumption, called the relaxation-time
approximation, breaks down at timescales where the microscopics of single collisions
kicks in, i.e. t < τ , for the so-called relaxation time τ the average time between two
collisions.4

3Technically, the ensemble average is taken the initial values with respect to the unperturbed
canonical classical equilibrium state

〈...〉 =

∫
phase space

dα(0) ρ× (...), (2.13)

for the usual probability density of a classical statistical ensemble,

ρ = Z−1 exp

[
− H

kBT

]
, (2.14)

for partition function Z, Hamiltonian H, and dα(0) a volume element of the phase space of initial
conditions. The integral ranges over all possible values.

4Often one encounters another requirement, namely that the mass of the Brownian particle must
be sufficiently high with respect to the other particles of the bath, i.e. M � m. However, this is not

10



2 OPEN DISSIPATIVE SYSTEMS

For more realistic modeling, Eq. (2.16) should be sharply peaked, but with finite
width equal to the duration of a single collision. This is the so-called Itô-Stratonovich
dilemma . The function fi in Eq. (2.16) is singular, while–in reality–it should be a
proper stochastic function (the Stratonovich approach). Hence, the trade-off is prag-
matic: the delta distribution (the Itô approach) is easier to handle, but physically not
well defined. In the words of Nico van Kampen, “[...] whenever the delta function stands
for a sharp, but not infinitely sharp peak the Stratonovich interpretation is appropriate.
The Itô interpretation cannot even be formulated unless τ is strictly zero” [75, Chapter
IX-5, p. 232] There will be two places in which this approximation will play a role,
though. Firstly, it will be consistent with the demand of taking the frequency cut-off
Ω to infinity when treating the Caldeira-Leggett model. Secondly, when absorbing a
‘spurious drift’ term into the ensemble average in Eq. (3.41). We will discuss this then.

In other concerns, this nuance can be overlooked by keeping in mind that we can
safely work within the relaxation-time approximation, τ very small, i.e. as long as other
timescales a much larger than this single collision time, the delta distribution can be
taken for convenience. In other words, after each collision the bath has the time to
recover to equilibrium faster than the Brownian particle can. Therefore, such a system
is called ‘memory-less’.5

Let us simplify to zero external field V (x) = 0 and motion in one dimension.6 For an
initial condition for the velocity of the Brownian particle, say v(0) = v0, the Langevin
equation (2.12) can be solved explicitly. We multiply both sides of the equation by an
integrating factor exp ηt/M , and obtain

d

dt

(
ve

η
M
t
)

=
1

M
f(t)e

η
M
t. (2.17)

By integrating over time, we obtain

v(t) = v0e
− η
M
t +

1

M

t∫
0

dt′f(t′)e−
η
M

(t−t′). (2.18)

Taking the ensemble average, and utilizing Eq. (2.15), we find

〈v(t)〉 = v0e
− η
M
t, (2.19)

a strict theoretical requirement, since one can use the parameter M and work in different high- or
low-mass regimes later. Experimentally, though, to be visible as a Brownian particle in a bath (such
as Brown’s pollen in water) the mass is usually much higher—if this were not the case, the particle
would be indistinguishable from bath constituents.

5The requirement of having ‘no memory’ often coincides with the Markov property that the prob-
ability of a future state does not depend on the current state. Nevertheless, this is not always the
case, and is conceptually very different; see (again) Bacciagaluppi’s [1] and the accurate remarks in
Van Kampen’s seven-paged [76].

6The results are trivially extended to three dimensions.
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2.1 The Theory of Brownian Motion

since the integrating factor is uncorrelated with the force. Hence, as time progresses,
it is likely to find the particle slowing down.

Now, taking the square of of Eq. (2.18), we can calculate the correlation

〈
v2(t)

〉
= v2

0e
−2 η

M
t +

e−2 η
M
t

M2

t∫
0

dt′
t∫

0

dt′′ 〈f(t′)f(t′′)〉 e
η
M

(t′+t′′)

= v2
0e
−2 η

M
t +

α

M2
e−2 η

M
t

t∫
0

dt′e2 η
M
t′

= v2
0e
−2 η

M
t +

α

2Mη
(1− e−2 η

M
t), (2.20)

where we have used Eq. (2.16) in the second line. The cross term vanishes gain by ising
Eq. (2.15).

Now, we can relate the friction force coefficient η to the fluctuation coefficient α
by employing our knowledge about the root-mean-square velocity of any classical sys-
tem, since it must satisfy the equipartition theorem. Every degree of freedom that is
quadratic in the Hamiltonian, will contribute a factor 1/2 kBT to the internal energy,
for Boltzmann’s constant kB and absolute temperature T .〈

v2
〉

=
kBT

M
(2.21)

Thus, after the system has equilibrated for t→∞, we can equate the right-hand sides
of Eqs. (2.20) and (2.21), and find

α = 2ηkBT. (2.22)

This is the simplest form of the fluctuation-dissipation relation. That such a rela-
tion can be obtained by the initial information about the equilibrium system, through
the equipartition theorem, is why the Langevin equations are so successful in making
predictions: it enables for a precise macroscopic description between the fluctuation
term that causes random collisions with the Brownian particle and the friction term
which tries to damp these collisions down exponentially. In equilibrium, these opposing
forces, as Einstein described in the quote above, balance each other out. The white
noise requirement of Eq. (2.16) now reads

〈fi(t)fj(t′)〉 = 2ηkBTδijδ(t− t′), (2.23)

Now that we have seen the framework of the classical system, we will briefly discuss
an example for quantum mechanics. Benguria and Kac [5] discussed generalizing the
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2 OPEN DISSIPATIVE SYSTEMS

Figure 5: Sketch of an experimental set-up of a Josephson Junction apparatus. A cir-
cular current creates an magnetic ring in which individual flux quanta can be confined.
Then, for the right settings, these can escape one by one though the Josephson Junction
(in black). The dissipation of the flux quanta φ is described by Eq. (2.25).

fluctuation force to a quantum force, while maintaining Eq. (2.12). In one dimension,
this reads

〈f q(t)f q(t′)〉 =
η

2π

Ω∫
0

dω exp[−iω(t− t′)]~ω coth

[
~ω

2kBT

]
, (2.24)

below a certain cut-off frequency Ω. This is called coloured noise. Intuitvely, the corre-
lation functions change due to Heisenberg’s principle: 〈x̂p̂〉 = 1/2ı~, see [41, Chapter 8]
for full derivations of quantum noises. The cut-off corresponds to the reciprocal of the
relaxation timescale τ , and therefore only works for long-time behaviour of the system.
For high temperatures kBT � ~ω and the cut-off Ω → ∞, this coincides with the
classical case of Eq. 2.23, while for low temperatures quantum modeling becomes pos-
sible. This approach has been used by Koch, Van Harlingen and Clarke to investigate
Josephson junctions [39].

One of the most remarkable lessons of physics is that often the use of an identi-
cal mathematical description is applicable to widely differing physical systems. The
Langevin equation is one such mathematical description; developed to treat Brownian
motion, it can also be applied to the dynamics of the order parameter in a second-order
phase transition [32], and works well for describing the noise of individual magnetic
flux quanta φ in a non-linear capacitor circuit (an in-parallel-connected RLC-circuit
with resistance R, capacitor C and non-linear part L) [11]. The coordinate of the flux
quanta of the last example obey

Cφ̈+
RC

L
φ̇+

1

L
φ = I(t); 〈I(t)〉 = 0; 〈I(t)I(t′)〉 =

2RCkBT

L
δ(t− t′), (2.25)

where I(t) is a fluctuation current. This model has had great success in the description
of superconducting quantum interference devices (SQUIDs) and their application to
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2.2 Decoherence for general composite systems

quantum computing. As this is a macroscopic system (it is an electrical circuit), a
quantum version of this system will be very interesting, because it will describe quantum
dissipation (i.e. decoherence) for macroscopic degrees of freedom. Hence, quantum
effects are visible at the macroscopic level (as they are in SQUIDs).

2.2 Decoherence for general composite systems

We have seen in Chapter 2 that in open system energy can leak into the environment
(dissipation). For quantum systems, an additional quantity can ‘leak’, namely coher-
ence. This is due to the entanglement of the quantum system with the constituents
of the bath surrounding it. These constituents, in turn, ‘carry away’ the coherence,
which effectively brings about a dynamical localization of the system, see Figure 6;
this phenomenon is called decoherence. For environments which behave ‘ohmically’, i.e.
where diffusion behaves as in the case of Brownian motion, decoherence arises for fairly
general interaction Hamiltonians (written as interaction between particles’ relative po-
sition, which they always are). For non-ohmic baths, where diffusion is ‘anomalous’,
one would intuitively assume that coherence effects will be heavily affected, but this is
not yet fully understood—we will come back to this throughout the thesis.

In the next chapters, we will explore the Caldeira-Leggett Lagrangian, and, in Chap-
ter 5, we will use path-integral quantization with the final goal of tracing out the envi-
ronmental degrees of freedom and investigating decoherence properties. For this reason,
we will discuss the phenomenon of decoherence in a general setting, and in the oper-
ator formalism. This will be necessary to understand the concept of integrating out
the environmental degrees of freedom in the path-integral formalism. Also it will help
understand how general decoherence is.

Let us start with a very general superposition of a quantum state |Ψ〉 =
∑

i ci |ψ〉,
relative to some orthonormal basis set {|ψ〉} and coefficients ci. This will be our system
of interest, which we intend to measure. Say we perform a measurement using (interact
with) a measurement device M with eigenstates {|mi〉} such that this apparatus will
become entangled with the system (subscript 0 will indicate the initial state). Hence,

|Ψ′〉 =
∑
i

ci |ψi〉 |m0〉
H1−→
∑
i

ci |ψi〉 |mi〉 , (2.26)

which is governed by a (general) interaction Hamiltonian H1 (surely, such a Hamilto-
nian must exist for the apparatus to qualify as a measurement device).7

7The measurement problem of quantum mechanics revolves around making empirical sense of Eq.
(2.26), since the right-hand side again describes a superposition, while we do not observe such (possiby
macroscopic) superpositions in everyday life; hence we are faced with an explanatory gap. It will not
help, for eample, to measure this superposition with another measurement deviceM2, because the su-

perposition is contagious:
∑
i

ci |ψi〉 |m1,0〉 |m2,0〉
H1−−→

∑
i

ci |ψi〉 |m1,i〉 |m2,0〉
H2−−→

∑
i

ci |ψi〉 |m1,i〉 |m2,i〉,

ad infinitum. It is this problem, and the empirical indication that quantum theory can be used to
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2 OPEN DISSIPATIVE SYSTEMS

Figure 6: Decoherence, the environmental states (red arrows) continuously bombard
(interact with) the quantum-mechanical system of interest Ψ (the blue ‘ball’), carrying
away the coherence of the system, which in turn loses its off-diagonal terms in the
density matrix. For ohmic environments, this turns out to happen for very general
interaction Hamiltonians (written as interaction between particles’ relative position,
which they always are). For non-ohmic baths, this is not yet fully understood.

A system like this can, in practice, never really be closed—neutrino’s, the cosmic
microwave background, or imperfect vacua, will always interfere; the only closed system
is the entire universe. So, we can choose to take into account all of the environment E ,
with corresponding eigenstates {|εi〉}, in a Hilbert space Htot = HΨ ⊗HM ⊗HE . The
complete state will then evolve as

|Φ〉 =
∑
i

ci |ψi〉 |m0〉 |ε0〉
H1−→
∑
i

ci |ψi〉 |mi〉 |ε0〉
H2−→
∑
i

ci |ψi〉 |mi〉 |εi〉 . (2.27)

Even when its influence of the environment is too large to be safely ignored, these
{|εi〉} are hard to control in an experimental set-up, since we are dealing with an large
ensemble. In this case it is helpful to switch to the density operator formalism, since it
can combine classical statistical ensembles and superpositions.8 For the state |Φ〉 the
total density operator is

ρ̂ΨME =
∑
j,k

cjc
†
k |ψj〉 |mj〉 |εj〉 〈ψk| 〈mk| 〈εk| . (2.28)

describe macroscopic entities such as SQUIDS, that led Amir Caldeira to write his book on dissipation
for macroscopic quantum systems [11, p. 2] and led Anthony Leggett to ask the scientific community
to create larger and larger macroscopic superpositions to test the limits of the theory [46].

8The density operator of a system of quantum states |ψi〉 is defined as ρ̂ =
∑

i wi |ψi〉 〈ψi|, with
weights wi. These weights are the classical probabilities of the ensemble to be in a certain state (they
are not quantum amplitude coefficients). See also Ref. [6, pp. 104-135].
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2.2 Decoherence for general composite systems

besides being uncontrollable, the environment is most often also uninteresting; after
all, we are interested in the system we are measuring. Thus, the strategy is to use
the reduced density matrix of the system by tracing out the environmental degrees of
freedom {|ε〉},9

ρ̂ΨM = TrHE{ρ̂ΨME} =
∑
j,k

cjc
†
k |ψj〉 |mj〉 〈ψk| 〈mk| 〈εj|εk〉 . (2.29)

We can use this density operator to calculate the expectation value of some observable
Ô,10

〈O〉 := Tr{ρ̂ΨMEÔ} = TrHE ρ̂ΨMÔΨM. (2.30)

The crucial assumption is the orthogonality of environmental states, which must depend
on the Hamiltonian of these states. However, usually one appeals to the high dimen-
sionality of HE compared to HS ⊗HM. There is a very large amount of air molecules,
CMB photons, etc.. Many specific models, with corresponding Hamiltonians, have been
worked out and they all show that these states are orthogonal or become so on times
smaller than thermalization times, which are summed up in [37, pp. 64–68]. Thus, we
can set

〈εi|εj〉 ≈ δij. (2.31)

This now leads to the disappearance of interference terms (the cross terms) in the
superposition of the reduced system,

ρ̂SA = TrHE [ ˆρSAE ] =
∑
j

|cj|2
(
|ψj〉 〈ψj| ⊗ |aj〉 〈aj|

)
. (2.32)

This diagonalization of the density operator signals loss of coherence of the combined
‘system plus apparatus’, as phase relations dissipate into the environment due to the
entanglement with the system. Even if the interaction between the system and the
environment is very weak, there will still be a significant effect due to the large number
of particles entangling to the system.11

9Assuming M = MΨM ⊗ 1E , i.e. the apparatus does (effectively) not interact with the
environment—as a proper measurement device should.

10This density operator expectation value is mathematically equivalent with the state operator
expectation, since

〈A〉 :=
∑
i

wi 〈ψ|A|ψ〉 =
∑
i

wi

∑
j,k

〈ψ|νj〉 〈νj |A|µk〉 〈µk|ψ〉

=
∑
j,k

〈µk|
∑
i

wi |ψ〉 〈ψ| |νj〉 〈νj |A|µk〉 =
∑
j,k

〈µk| ρ̂ |νj〉 〈νj |A|µk〉 = Tr{ρ̂A},

where in the second step we have inserted two auxiliary identities.
11Without this result, the idea that superpositions can be confined to the microscopic realm could

have been maintained—for example by assuming a Heisenberg cut. We now realize that also macro-
scopic systems can, if we take macroscopic systems as agglomerates of quantum systems, fall prey to
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2 OPEN DISSIPATIVE SYSTEMS

2.3 Linear Response Theory and Dissipation

For future reference, we derive some important results from linear-response theory. In
particular, two things will be imporant. First, the so-called Kubo formula quantifies
the response of a two-point correlation function to a perturbation. Second, this will
give us a spectral representation of the dynamic susceptibility of a system as it reacts
to an external change, e.g. in the case of placing a Brownian particle into a bath, which
will do in Chapter 3.

In linear response theory, the goal is to understand how correlation functions, such as
Eq. (2.23), change when we apply a fluctuation force f(t) on the system. In general, this
is a very difficult task, but we can make the simplifying assumption that the response
to the disturbances of the bath degrees of freedom qi(t) are linear in the perturbing
force or forces. Hence, let us write

δq(t) =

t∫
0

dt′χ(t− t′)f(t′), (2.33)

where δq(t) is the reaction to f(t); and χ(t − t′) is called the ‘response function’,
which we have assumed to be time-translation invariant. Now, we take the Fourier
transformation12 of both sides of Eq. (2.33),∫

dω

2π
δq(ω)e−iωt =

∫
dω

2π

∫
dω′

2π
χ(ω′)f(ω)

∫
dt′e−i(ω−ω

′)t′e−iωt

=

∫
dω

2π

∫
dω

2π
χ(ω′)f(ω)2πδ(ω − ω′)e−iωt =

∫
dω

2π
χ(ω)f(ω)e−iωt. (2.35)

Therefore, we see that the response and the source decouple in frequency space [49],

δq(ω) = χ(ω)f(ω) (2.36)

Thus, the response is local in frequency: a perturbation at a specific frequency will

the indefiniteness of quantum mechanics [2]. Furthermore, even if the system Ψ is initially in a pure
state, its reduced dynamics (that is, after the environment is integrated out) will be in a mixed state.
Only the combined system of Ψ and the environment behaves as a pure state, satisfying ordinary
Schrödinger dynamics.

12Our conventions for the Fourier transformation of a function of time h(t) and a function of fre-
quency f(ω) are as follows,

h(ω) =

∞∫
−∞

dt h(t)eiωt and h(t) =

∞∫
−∞

dω

2π
h(ω)e−iωt, (2.34)

where the difference between the functions h(t) and h(ω) is solely indicated by their argument (al-
though, in general, they are different).
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2.3 Linear Response Theory and Dissipation

respond with that exact same frequency. Responses at other frequencies lie beyond the
linear-response approximation.

Splitting the response function into its real and imaginary parts, χ(ω) = Re[χ(ω)] +
iIm[χ(ω)], and writing the imaginary part as [80, p. 6]

Im[χ(ω)] =
1

2i
(χ(ω)− χ∗(ω)) =

1

2i

∞∫
−∞

dteiωt (χ(t)− χ(−t)) , (2.37)

where the ‘∗’ denotes the complex conjugate and where we implicitly took the Fourier
transform in for the last equality. We wrote it in this way to show that this part is
not invariant under time-reversal. Hence, the imaginary part of the response function
breaks follows an arrow of time. We will take the presence of such a term as evidence for
an irreversible process, i.e. dissipation. In the quantum case, for entangled composite
systems, the imaginary part of the response function will also include the information
about coherence—as we will discuss in Section 2.2.

The susceptibility χ of a system is defined as the zero-frequency limit of the response
function,

χ = lim
ω→0

χ(ω) (2.38)

as can easily be seen from Eq. (2.33). The often-used magnetic susceptibility is defined
in this way: the response of the magnetization of the groundstate Ising model to turning
on an external field, or χmag = ∂M

∂B
|ω=0. In Chapter 3, we will use the spectral density

J(ω), which is the susceptibility of a bath consisting of harmonic oscillators, responding
to a Brownian particle being place in it. In that case, the coordinates qi of the bath
respond to the perturbation of the coordinate Q of the Brownian particle

J(ω) =
∂q

∂Q

∣∣∣∣
ω=0

. (2.39)

This can be extended to include the response at all frequencies, not just the ground
state. For this, one use the Kramers-Kronig relations, resulting in

χ(ω) =

∞∫
−∞

dω′

π

Im{χ(ω′)}
ω′ − ω − iε

(2.40)

a clear, but rather involved, derivation of this is given in [71, p. 82-85].

In order to derive the Kubo formula [42], we choose to set up linear-response theory in
in a quantum-mechanical framework,13 Eq. (2.33) can be written as the change in the

13 All the results will reduce to the classical ones in the classical regime [71, p. 79], hence it is more
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2 OPEN DISSIPATIVE SYSTEMS

expectation value of a Hermitian operator Ô and sources of disturbance φi(t), in the
Heisenberg picture, is

δ
〈
Ô(t)

〉
=

t∫
0

dt′χ(t− t′)φ(t′). (2.41)

We add a source Hamiltonian,

Hs(t) = φ(t)Ô(t), (2.42)

which is assumed to be a small disturbance. In the interaction picture, the source
Hamiltonian evolves the state as

|Ψ(t)〉I = U(t, t0) |Ψ(t0〉I , (2.43)

for the evolution operator

U(t, t0) = T exp

−i t∫
t0

Hs(t
′)dt′

 , (2.44)

where T is the time-ordering operator. The density matrix of the system then evolves
as ρ(t) = U(t)ρ0U

−1(t), for a density matrix far in the past t0 → −∞.
Now, taking the Hermitean operator O(t) with the source (2.42) turned on, we can

calculate the change in the expectation value of this operator,

〈O(t)〉 |s = Trρ(t)O(t)Trρ0(t)U−1(t)O(t)U(t). (2.45)

Up to linear order, this can be approximated by

〈O(t)〉 |s = Trρ(t)

O(t) + i

t∫
−∞

dt′ [Hs(t
′),O]


= 〈O(t)〉 |s=0 + i

t∫
−∞

dt′ 〈[Hs(t
′),O]〉 . (2.46)

The second term is the linear response δ 〈O(t)〉. Using the expression for the source,
Eq. (2.42), one can write it as

δ 〈O(t)〉 = i

t∫
−∞

dt′ 〈[O(t′),O(t)]〉φ(t′) = i

∞∫
−∞

dt′Θ(t− t′) 〈[O(t′),O(t)]〉φ(t′), (2.47)

general to work in this quantum-mechanical set-up.
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2.3 Linear Response Theory and Dissipation

with the Heaviside step-function Θ(t− t′). From Eq. (2.47), we can read of the general
Kubo formula if we compare this to Eq. (2.41):

χij(t− t′) = −iΘ(t− t′)
〈[
Ôi, Ôj

]〉
, (2.48)

where we have generalized to multiple possible sources instead of one, labeled i and j.
This is a central relation in linear-response theory. We will consider it only for spectral
representation.

Now consider a canonical ensemble of quantum systems in thermal equilibrium, such
that we can write the expectation value in the Kubo formula (2.48) as

χij(t− t′) = −iTr
[
exp (−βH)Θ(t− t′)

[
Ôi, Ôj

]]
, (2.49)

where H is the Hamiltonian of the system. We take the Fourier transform of the
response function (assuming it is invariant under time translations) we obtain[71, p.
94]

χij(ω) = −i
∞∫

0

dt exp(iωt)Tr
{

exp (−βρ)
[
Ôi(t), Ôj(0)

]}
. (2.50)

In the Heisenberg picture we have

O(t) = U−1(t)O(0)U(t) (2.51)

for the unitary evolution operator U = exp(−iHt). With Eq. (2.51), the definition
of the commutator, and, through the completeness relation, we rewrite the response
function as

χ(ω) = −i
∞∫

0

dt exp(iωt)
∑
mn

exp (−βEm){ 〈m| Ô |n〉 〈n| Ô |m〉 exp (i(Em − En)

− 〈m| Ô |n〉 〈n| Ô |m〉 exp [−i(Em − En)]}.
(2.52)

Since the time integral will contain poles on the positive time axis, we include a small
imaginary frequency ε, to ensure analytic continuation[49]

χ(ω + iε) =
∑
mn

exp (−βEm)

[
〈m| Ô |n〉 〈n| Ô |m〉
ω + Em − En + iε

− 〈m| Ô |n〉 〈n| Ô |m〉
ω − Em + En + iε

]
(2.53)

which we can rewrite by renaming the dummy indices n and m for the second term
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2 OPEN DISSIPATIVE SYSTEMS

only:

χ(ω + iε) =
∑
mn

〈m| Ô |n〉 〈n| Ô |m〉
ω + Em − En + iε

[exp (−βEm)− exp (−βEn)] . (2.54)

When we take the limit ε→ 0 the imaginary part remains in the form of delta functions;
hence, there will remain a dissipative part of the response function, since energy is lost
through it [26, for example].

Im[χ(ω)] ∝
∑
mn

ε

(ω + Em − En)2 + ε2
≈
∑
mn

δ(ω − En + Em). (2.55)

Hence, although one might have expected this part to vanish, it leaves delta-contributions.
This is a result that we will also use in Section 3.2.3.

2.4 The Lévy distribution and Sisyphus cooling

In 1937, the French mathematician Paul Lévy tried to find solutions to the question
[48]

When does the probability PN(x) for the sum of N steps x = x1+x2+...+xN
have the same distribution p(x) (up to a normalization) for the individual
steps.

This is basically a question of ‘when does the whole look like its parts’, and hence
closely related to the theory of fractals and emergent behavior. One obvious answer to
the question is the Gaussian probability distribution

P (x) =
1√

2πσ2
exp

[
1

2σ2
x2

]
, (2.56)

for σ the standard deviation, since the sum of N Gaussian distributions is again a
Gaussian. But, Lévy found that there are additional solutions. These are called Lévy
distributions, which–in Fourier space–have the following form

pN(k) = exp(−Na|k|β). (2.57)

For β = 2 and a = σ2/2 we have Gaussian distribution. We calculate its form in x-space
with an inverse Fourier transform, which should return a Gaussian distribution,

pN(x) =
1

2π

∞∫
−∞

dk exp(
−Nσ2

2
|k|2 + ikx) (2.58)

=
1√

2πNσ2
exp(− x2

2Nσ2
),
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2.4 The Lévy distribution and Sisyphus cooling

Figure 7: In blue, the Gaussian distribution. In red, the Lévy distribution. Because
the support of the Lévy distribution is decaying at a much lower rate than that of
the Gaussian curve, a property called ‘heavy tails’, the probability for a step deviating
much from the mean is much higher. Such a highly-deviating step, then, corresponds
to a Lévy flight.

as anticipated. This results in the random-walk behavior characteristic of Brownian
motion.

For β = a = 1, however, we have the Cauchy-Lorentz or Lévy distribution, which,
transformed back to x-space reads

pN(x) =
1

2π

∞∫
−∞

dk exp(−N |k|+ ikx)

=
1

2π

0∫
−∞

dk exp(Nk + ikx) +
1

2π

∞∫
0

dk exp(−Nk + ikx)

=
1

2π

( 1

N + ix
− 1

−N + ix

)
=

1

πN

1

1 + (x/N)2 =
1

N
p1(x/N). (2.59)

See Figure 7 for a plot of this distribution.
Thus, we conclude that Lévy distributions are the generalization of the Gaussian

distribution in the sum of large numbers of independent variables in cases where the
variances of the variables diverge, which is known as the generalized central limit theo-
rem. In contrast to the Gaussian-distributed momentum of Brownian motion, the Lévy
distribution has a much wider support, a property called having ‘heavy tails’. This,
then, corresponds to a much larger probability for making long jumps [38].

In this thesis, we will confine ourselves to a physical intuition of the occurrence of
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2 OPEN DISSIPATIVE SYSTEMS

Figure 8: Laser cooling. An atom cloud is trapped by laser beams from all directions.
Individual atoms inside the cloud still perform Brownian motion, as a result of thermal
fluctuations. In addition, spontaneous emission of photons by excited atoms causes
recoil effects that result in a fluctuation much larger than the a step of Brownian
walk, i.e. the Lévy flight. Picture extracted from https://www.revolvy.com/topic/

Optical%20molasses&uid=1575.

Lévy flights in the specific context of laser cooling experiments. We will discuss the
technique of Sisyphus14 laser cooling (sometimes called polarization gradient cooling),
which is a type of laser cooling which allows atoms to reach temperatures below the
Doppler cooling limit [52]. This is a dissipative optical lattice, where an atom cloud is
subjected to laser beams from every direction. Hence, the atoms cool down, since it is
energetically more favorable to move along with the gradient—see Figure 8.

At the microscopic level the atom-light interaction can be described exactly using
a standard approach of quantum optics [3]. For a low intensity of the laser and in the
semi-classical limit, the master equation for the density operator of the atoms can be
transformed into a Fokker-Planck-type equation for a distribution function W (x; p; t),
as encountered in statistical physics, which can be interpreted as an atomic quasi-
probability density with respect to the position x and the momentum p of the atom.
For very fast atoms, a spatial averaging over the lattice period is allowed. The atomic
momentum distribution W (p; t) satisfies

∂W (p, t)

∂t
= − ∂

∂p
[K(p)W (p, t)] +

∂

∂p

[
D(p)

∂W (p, t)

∂p

]
, (2.60)

where K(p) and D(p) are momentum-dependent drift and diffusion coefficients that
can be expressed in terms of the microscopic parameters of the problem.

14Named after Sisyphus, the king of Korinthe, who cheated death and was punished by Zeus to push
a boulder up a mountain for all eternity.
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2.5 Conclusion

These laser-cooling techniques can, theoretically, be quantitatively understood in
terms of non-ergodic random processes dominated by a few rare events, such as the
recoil after spontaneous emission. Lévy statistics is now recognized as the best tool
for studying many anomalous diffusion problems where standard statistics fail. In the
context of the Lévy flights in Sisyphus cooling, Marksteiner, Ellinger, and Zoller have
[56]

K(p) =
p

1 + p2/p2
c

. (2.61)

This is the force we shall reproduce in Chapter 4.

2.5 Conclusion

In this chapter we discussed the fundamental basis for this thesis. This consisted of
four parts. First, in Section 2.1, we looked at the theory of Brownian motion from the
point of view of Einstein’s diffusion and from the force balance developed by Langevin.
By taking an stochastic function f(t) to represent the bath, one can circumvent the
epistemological problem that one cannot obtain all the microscopic information of the
bath constituents in realistic situations. This fluctuation force is postulated to vanish
on average. In the relaxation time approximation, i.e. when all important timescales
are larger than the collision time τ , we can safely assume that the two-point correlation
function of the fluctuation force is proportional to the delta-distribution of Eq. (2.23),
which makes the calculations easier and avoids the Itô-Stratonovich dilemma. This is
a simple example of a fluctuation-dissipation relation, which we will see more often in
the following two chapters.

The second important subject we have investigated is that of decoherence, which
we treated in Section 2.2. Whereas in classical systems energy for subsystems is not
conserved due to its leakage to the environment, for quantum systems also coherence
can leak. When the environment consists of a very large number of degrees of freedom,
coherence of a subsystem can be carried away by it on timescales much larger than
thermal equilibration. This happens for quite general Hamiltonians, as long as inter-
action depend on the relative position of particles, i.e. if the potential can be written
as V (|x − x′|), the off-diagonal terms of the density matrix obtain a quickly-decaying
exponential, which signals the damping of interference terms.

The third section 2.3, derived some important results for the response function
of a system responding to a perturbation. It must be kept in mind that the re-
sponse is assumed to be small, i.e. perturbations at specific frequencies will–to good
approximation–only give rise to responses at that same frequency. In particular, we will
use two expressions for the response function in the context of the bath susceptibility
in Chapter 3, namely the Kubo formula Eq. (2.48), and the spectral representation of
it in Eq. (2.40).

Last, we discussed the occurrence of Lévy flights in ultracold-atoms experiments.
In particular, we have seen that these Lévy flights occur in Sisyphus laser cooling. The
atoms in the cooling atom cloud perform small thermal fluctuations, i.e. the Brownian
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2 OPEN DISSIPATIVE SYSTEMS

random walk of Section 2.1. In addition to these fluctuations, there are large flights
corresponding to the recoil of an atom undergoing spontaneous photon emission. The
corresponding force that models this behavior, is given by Eq. (2.61); in Section 4.2.3
we will reproduce this force term.

All these for points share a common characteristic: they are open systems dealing with
external influences. As we will see in the next chapter, there are problems with finding a
quantum model from the mathematical framework for open systems we have developed
so far. To solve these problems, we will close the system by also giving an explicit
description of the constituents of the bath: the Caldeira-Leggett model.
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3 The Caldeira-Leggett model

“We will choose a minimal model which, under certain conditions, repro-
duces Brownian motion in the classical regime. Thus, the justification for
the choice of the model will be provided a posteriori. However, it is worth
mentioning that the employment of detailed microscopic models for some en-
vironments may show different quantum mechanical behavior, which turns
out [to] be very important in some cases.”

—Amir Ordaçgi Caldeira [11, p. 104]

3.1 Limitations to the open system approach

We have seen that the theory of Brownian motion revolves around the fluctuation-
dissipation relation, where the existence of an imaginary part of the response function
gives rise to a dissipative part in the two-point correlation function of the fluctuation
force. While it is clear that the bath plays a central role in the dynamics of the Brownian
particle, its constituents do not occur explicitly in the open system models. For our
purposes there are two main shortcomings of the treatment of open systems in the
Einstein or Langevin set-up of the previous chapter:15

1. This framework for Brownian motion makes it hard to find a theory of quan-
tum Brownian motion via conventional quantization techniques. The reason is
that either the Lagrangian (for path-integral quantization) or the Hamiltonian
(for canonical quantization) will have an explicit time-dependence in order to re-
produce the velocity-dependent friction term of the Langevin equation. Hence,
energy is not conserved and, although the non-conservation of energy is natural
for open systems, this makes direct quantization impossible.

2. This framework is a phenomenological one, i.e. the diffusion constant D or the
viscosity η can only be determined experimentally for different materials that the
environment can consist of. This is to be expected, since a microscopic description
of the environment was absent in the first place. In principle, it is desirable to
have a theory where the origin of the viscosity of a particular medium can be
explained theoretically.

These two shortcomings arise from a fundamental shortcoming of the description of
Brownian motion in Section 2.1: there is no action principle that allows for the deriva-

15In addition to this there is also the problem of time-reversibility: due to the friction term in
the Langevin equations, which is proportional to velocity, the dynamics is irreversible, even though
the fundamental laws governing the particle, such as Schrödinger’s or Newton’s equations, are time-
reversible. Hence, there is a permanent loss of information along the evolution of the system. This is a
direct consequence of the the ensemble approach to the bath constituents, as is customary in statistical
physics. However, we will not focus on the reversibility issue here. For a clear explanation, see Van
Kampen’s [76]; for a rigorous discussion of probability and time-reversibilty, see Bacciagaluppi’s [1].
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3 THE CALDEIRA-LEGGETT MODEL

tion of the phenomenological Langevin equation solely in terms of the Brownian par-
ticle. Thus, we will have to address the elephant in the room: we need a microscopic
description of the bath.

We can model the behavior of the environment and assume a specific interaction
between the constituents of the bath and the system itself. As depicted schematically
in Figure 9, we will make a conceptual cut between the system of interest and the
environment.16 The cut between system and environment is made between a particular
set of degrees of freedom {Qi} of which we wish to obtain the dynamics and a set of
(usually many more) degrees of freedom {qi} which we are usually ignorant of or wholly
uninterested in. The strategy, then, is to describe the dynamics of the entire physical
set-up (system of interest plus the environment) and integrate out the environment at a
later time, leaving us only with what we wish to describe: the effective dynamics of the
system of interest. The environment itself is a priori assumed to be in equilibrium with
respect to a heat bath through the usual procedure of the taking canonical ensemble.17

Figure 9: The Feynman-Vernon method is to explicitly make a cut between degrees
of freedom in which we are interested, called the ‘system’, and those in which we are
not, called the ‘environment’. The strategy, then, is to specify a particular system-
environment interaction, calculate the full dynamics of the system and environment
combined, and to integrate out the environmental degrees of freedom at a later stage
of the calculation.

If one follows this strategy by specifying a Lagrangian for the composite model, one
needs to specify how the system and the environment interact (the interaction is called
‘F ’ in the picture). In the late 1950s, both Magalinskii [51] and Senitsky [70] envisioned
the bath as a collection of harmonic oscillators, weakly coupled to the system. This
strategy of ‘closing’ the system by describing the bath itself as a collection of harmonic
oscillators has become known as the Feynman-Vernon method, who, in 1963, formulated

16Pay particular attention to the general formulation: from here on we will frequently call the Brow-
nian particle ‘the system of interest’ or simply the ‘system’, since it does not have to be a particle. For
example, the system of interest can be a particular species of particles, a quantum wavefunction (as we
will see later on), etc.. Also, although we will use the words ‘bath’ and ‘environment’ interchangeably,
‘environment’ is more general, as it can be used to reference to a liquid (e.g. in the case of pollen
particles in water), the air in a laboratory, or even internal degrees of freedom in a molecule.

17If this was not the case, the system and bath would by themselves form a completely integrable
set of equations of motion.
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3.2 Bilinear Coordinate-Coordinate coupling

the quantum version of the theory [19]. It was subsequently worked out by Ford, Kac,
Mazur [25] and Ullersma [73] and culminated in the work of Caldeira and Leggett, who
developed the approach into a full theory for quantum dissipation for harmonic systems
[9], and used it for a succesful description of quantum tunneling [8]. After discussing
this Caldeira-Leggett model in full detail in the current chapter, we will expand on this
by including a coupling to velocity. This task will be taken up in Chapter 4 and its
quantum version will be treated in Chapter 5.

3.2 Bilinear Coordinate-Coordinate coupling

3.2.1 The Caldeira-Leggett Lagrangian

The gap between phenomenological modeling and precise microscopic formulation is
bridged by the Caldeira-Leggett model. It describes both the system and the bath, and
their interaction by one Lagrangian, while the physical origin of this interaction is kept
unspecified for generality. The bath is modeled as a collection of harmonic oscillators,
linearly coupled to the system of interest. Caldeira called this a minimal model, since
every perturbation of the bath can be approximated by a harmonic potential. Hence,
the validity of this model is restricted to weak perturbations of the bath.18 Note that
this does not imply that the induced dissipation is necessarily weak; the large number of
environmental degrees of freedom quarantees that we can describe strongly dissipative
systems. The Lagrangian is as follows,

L = LS + LB + LI + LC.T., (3.1)

where the abbreviations stand for ‘system’, ‘bath’, ‘interaction’ and ‘counterterm’, re-
spectively.

For simplicity, we let the system be described by one generalized coordinate Q. The
Lagrangian, in one dimension, of a particle of mass M , subject to an external potential
V (Q), reads

LS =
1

2
MQ̇2 − V (Q). (3.2)

The bath is modeled as a collection of N harmonic oscillators, labeled by an index k,
with masses mk, coordinates qk(t), and at natural frequencies ωk,

LB =
1

2

N∑
k=1

mkq̇
2
k −

1

2

N∑
k=1

mkω
2
kq

2
k. (3.3)

In principle, the number N of harmonic oscillators19 is very large, such that we can

18We will consider an extension of the coupling, towards more general perturbations, in Section 3.3.
19When we turn to the quantum theory, the harmonic oscillators are automatically identified as

bosonic particles, but fermionic baths can also be modeled in this way, albeit it through the interme-
diate process of bosonization, as explained in Hedeg̊ard and Caldeira’s [31].
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3 THE CALDEIRA-LEGGETT MODEL

Figure 10: The harmonic coupling of the system to the bath; the bath constituents
(the small grey particles) are coupled to the system (in red) by a springlike interaction.
Figure extracted from Ref. [35].

safely work within the thermodynamic limit, i.e. we can let N →∞ at the end of the
calculation.

The interaction is of the coordinate-coordinate type, which means the system coor-
dinate Q is linearly coupled to each oscillator coordinate qk, as if attached to a spring
(cf. Figure 10), with ‘spring constants’ Ck,

20

LI = Q
N∑
k=1

Ckqk. (3.4)

This interaction is the simplest one to write down (remember we are building a minimal
model), but it turns out to be quite general, see Ref. [8, Appendix C]. In principle, the
Ck should be seen as negative constants, since springs tend to restore extensions We
also include a counterterm,

LC.T. = −1

2
Q2

N∑
k=1

C2
k

mkω2
k

. (3.5)

20Also, there are examples of Caldeira-Leggett Lagrangians in terms of fundamental constants, such
as charge, mass and the speed of light in the case of electrons interacting with electromagnetic fields [4],
as we will see in Section 4.1. However, although this is a promising realization of the Caldeira-Leggett
model, this is seldom necessary. Often, the information about coupling constant Ck is given by the
sspectral density, as explained in Section 3.2.3.
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3.2 Bilinear Coordinate-Coordinate coupling

This counterterm depends on the parameters of the environment, but not on its dy-
namical variables. The justification for this term is that if it were absent, the minimum
of the (bare) potential V (Q) of the system would shift to qk = CkQ/mkω

2
k for a given

Q, as can easily be seen by minimizing the action with respect to the bath coordinates,

∂L
∂qi

= −miω
2
i qi + CiQ

!
= 0, (3.6)

such that

qi =
Ci
miω2

i

Q. (3.7)

Then, we see the renormalization of the potential in

∂L
∂Q

= −∂V
∂Q

+
N∑
k=1

Ckqk +Q
N∑
k=1

C2
k

mkω2
k

= −∂V
∂Q

, (3.8)

using Eq. (3.7). Thus, the renormalization term ensures that the minimum remains
centered about the bare potential V (Q).

In practice, however, one does not need to worry much about the counterterm,
since in most cases it is impossible to observe the bare potential V (Q). If one prefers
an approach without the counterterm, one can construct an equivalent Lagrangian
by removing the counterterm via a simple canonical transformation and replace the
interaction term by a coordinate-velocity coupling

L̃I = Q
N∑
k=1

C̃kq̇k; (3.9)

see Appendix A for this procedure. The inclusion of the counterterm is, however, nec-
essary for certain systems, but this depends on the physical model; for a discussion on
various models and the role of the counterterm, see again Ref. [8, Appendix C].

Now that we have discussed the individual components of the Lagrangian, we combine
them together and write the Caldeira-Leggett Lagrangian:

L =
1

2
MQ̇2 − V (Q)︸ ︷︷ ︸

System

+
1

2

N∑
k=1

mk(q̇
2
k − ω2

kq
2
k)︸ ︷︷ ︸

Bath

+ Q
N∑
k=1

Ckqk︸ ︷︷ ︸
System/Bath-INT.

− 1

2
Q2

N∑
k=1

C2
k

mkω2
k︸ ︷︷ ︸

Counterterm

. (3.10)

The justification of the Lagrangian (3.10) will have to be a posteriori, by showing
that the equation of motion for the system reproduces the Langevin equations (2.12),
(2.15), (2.23), after the bath coordinates are eliminated.
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3 THE CALDEIRA-LEGGETT MODEL

3.2.2 Dynamics

The Euler-Lagrange equations for the system and the bath, obtained from Eq. (3.10),
respectively, are

MQ̈ = −∂V (Q)

∂Q
+
∑
k

Ckqk −Q
∑
k

C2
k

mkω2
k

, (3.11)

miq̈i = CiQ−miω
2
i qi, (3.12)

where we have suppressed the limits of the sums for brevity. It is useful to solve this
set of coupled differential equations with a Laplace transformation (see Appendix B).21

Hence, we separately transform both sides of Eq. (3.12); for the left-hand side,

L{miq̈i} = mi
˜̈qi,

= mi[l ˜̇qi − q̇i(0)],

= mi[l
2q̃i − lqi(0)− q̇i(0)],

as well as the right-hand side,

L{CiQ−miω
2
i qi} = CiQ̃(l)−miω

2
i q̃i(l).

for the initial conditions q(0) and q̇i(0).

Solving for the transformed coordinates of the harmonic oscillators gives

q̃i(l) =
1

l2 + ω2
i

[Ci
mi

Q̃(l) + lqi(0) + q̇i(0)
]
. (3.13)

In the second and third term, we can recognize known Laplace transformations, namely
L{cos(at)} = l/(a2 + l2) and L{sin(at)} = a/(a2 + l2).22 This, together with the inverse
transformation of the first term (using the Bromwich inverting integral (B.5)) allows
us to write

qi(t) = L−1{q̃i(l)} =
1

2πi
lim
T→∞

δ−iT∫
δ+iT

dl
[Ci
mi

Q̃(l)

l2 + ω2
i

elt
]

+ f
(0)
i (t), (3.14)

for a small parameter δ. This is the trajectory for a harmonic oscillator of the bath,

21We will use two possible notations for the Laplace transformation of a function f(t); either f̃(l),
where the tilde denotes a function in Laplace space, or L{f(t)}(l), when we need to be more specific.
Both notations are used interchangeably for pragmatic reasons.

22This can be easily shown with the definition of the Laplace transformation Eq. (B.1) and partial
integration. Note that in the derivation of the sine, we use the linearity property: L{a−1 sin(at)} =
a−1L{sin(at)} = 1/(a2 + l2).
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3.2 Bilinear Coordinate-Coordinate coupling

and where we have defined the fluctuation force per bath particle,

f
(0)
k (t) := q

(0)
k cos(ωkt) +

q̇
(0)
k

ωk
sin(ωkt). (3.15)

We also define the (bath-driven) fluctuation force as the sum over all the individual
forces of the bath particles weighted by the coupling constants Ci,

f (0)(t) :=
∑
k

Ckf
(0)
k =

∑
k

Ck

(
q

(0)
k cos(ωkt) +

q̇
(0)
k

ωk
sin(ωkt)

)
. (3.16)

Before focusing on evaluating the integral, we will first plug Eq. (3.14) into the equation
of motion for the system (3.11),

MQ̈+V ′(Q)+
∑
k

{
1

2πi
lim
T→∞

δ−iT∫
δ+iT

dl

[
− C

2
k

mk

Q̃(l)

l2 + ω2
k

elt

]
+

C2
k

mkω2
k

Q(t)

}
= f (0)(t), (3.17)

where we have abbreviated ∂V (Q)/∂Q = V ′(Q). We can simplify this by recognizing
that (ω2

i + l2)−1 = ω−2
i [1− l2/(l2 + ω2

i )], leading to

MQ̈+ V ′(Q) +
∑
k

 1

2πi
lim
T→∞

δ−iT∫
δ+iT

dl

[
− C2

k

mkω2
k

(
Q̃(l)− l2Q̃(l)

l2 + ω2
k

)
elt

]
+

C2
k

mkω2
k

Q(t)

 = f (0)(t).

(3.18)

By observing that the first term within brackets is transformed back to the original
Q(t), we can show the utility of the counterterm,

MQ̈+ V ′(Q) +
∑
k


�
��

�
��
�

− C2
k

mkω2
k

Q(t) +
C2
k

mkω2
k

1

2πi
lim
T→∞

δ−iT∫
δ+iT

dl
l2Q̃(l)

l2 + ω2
k

elt +
��

��
��C2

k

mkω2
k

Q(t)

 = f (0)(t).

(3.19)

This leaves us with only one term to transform back, which we have suggestively
called the ‘friction term’,

MQ̈+ V ′(Q) +
∑
k

C2
k

mkω2
k

1

2πi
lim
T→∞

δ−iT∫
δ+iT

dl
l2Q̃(l)

l2 + ω2
k

elt

︸ ︷︷ ︸
Friction Term

= f (0)(t). (3.20)

Focusing on the friction term, we can rewrite it as a total derivative with respect to
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time: ∑
k

C2
k

mkω2
k

d

dt

 1

2πi
lim
T→∞

δ−iT∫
δ+iT

dl
lQ̃(l)

l2 + ω2
k

elt

 . (3.21)

Next, we rewrite this Bromwich integral back in terms of the inverse Laplace transfor-
mation

d

dt

∑
k

C2
k

mkω2
k

L−1

{(
l

l2 + ω2
k

)(
Q̃(l)

)}
(t) (3.22)

and use the convolution theorem (Eq. (B.8)) to write it as

=
d

dt

∑
k

C2
k

mkω2
k

L−1 {L{cos(ωkt)}(l) ? L{Q(t)}(l)} (t)

=
d

dt

∑
k

C2
k

mkω2
k

t∫
0

dt′ cos [ωk(t− t′)]Q(t′)

 (3.23)

where we used the definition of convolution in the last line.
The auxiliary variable l has now been transformed away from every term, which

means that we have successfully performed the Laplace transformations. What remains
is to evaluate the sum over oscillators k and the integral over auxiliary time t′. We will
start by transforming the sum over oscillators into an integral over frequencies, for
which we need the spectral density.

3.2.3 The Spectral Density

To successfully replace
∑

k →
∫
dω, one needs to specify a continuous frequency density

distribution, instead of the discrete oscillator distribution. This is called the ‘spectral
density’ J(ω), which should arise from the additional information specified by the mi-
croscopics of the bath constituents,

J(ω) =
π

2

∑
k

C2
k

mkωk
δ(ω − ωk), (3.24)

where the factor π/2 is put in for later convenience. This form follows from the Kubo
formula (2.48) of linear response theory, as explained in Section 2.3, with the result given
by Eq. (2.55). It models the linear response of the bath coordinates qi to a perturbation.
From the Kubo formula, one can recognize it as the Fourier transformation of the
retarded dynamical susceptibility of the bath oscillators,

J(ω) = Im F

{
Θ(t− t′)

〈[
N∑
k

Ckqk(t),
N∑
k

Ck′qk′(t
′)

]〉}
, (3.25)
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Figure 11: The ohmic spectral density function. It behaves linearly below a certain
cut-off Ω and vanishes above. It is interpreted as the response at each frequency of the
bath modes due to an external stimulus.

which is found by following the steps Eqs. (2.49)–(2.55), where 〈...〉 is taken over the
equilibrium state of non-interacting oscillators and–if we wish to work in the classical
limit–the commutator should be replaced by the Poisson bracket. Hence, J(ω) is to be
interpreted as the response to an external stimulus of the equilibrated bath–like placing
a pollen particle into it–and limiting oneself to the absorbation at the lowest frequency.
Hence, the expectation value in Eq. (3.25) is taken with respect to the ground state of
the system, i.e. the so-called thermodynamic sum rule (cf. Eq. (2.40)).

The form of the spectral density in Eq. (3.24) allows us to convert discrete sums
over oscillators into continuous integrals over frequency,

∑
k

C2
k

mkω2
k

cos[ωk(t− t′)] =
2

π

∞∫
0

dω
J(ω)

ω
cos[ω(t− t′)]. (3.26)

We now assume a specific form of the spectral density, which falls apart into three
classes, which have been called the ohmic, subohmic, and superohmic cases by Leggett
et al, which are linear, sublinear or higher polynomials in frequency, respectively [45].
Also, the spectral density vanishes for ω > Ω, i.e. a certain high-frequency cut-off Ω,
which fixes the timescale of the problem and is therefore inversely proportional to the
relaxation time τ−1. Hence, we write

J(ω) = ηωs


subohmic, if s < 1
ohmic, if s = 1
superohmic, if s > 1

(3.27)

where η is a proportionality constant, which plays a phenomenological role here. This
phenomenological input is in order to reproduce the (phenomenological) Langevin equa-
tion of the open system approach.
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In most cases, the bath behaves ohmically to good approximation, but for some
baths higher orders will come in to play.23 In reality, almost no process is ever com-
pletely described by normal diffusion, but systematic errors and lack of statistics almost
always obscure the small deviations. Indeed, most of the systems investigated experi-
mentally are ohmic. However, often normal diffusion is assumed by experimentalists for
the interpretation of experimental data, while deviations can be blamed on statistical
errors. On the flip-side of that coin, often the opposite occurs: experimentalists obtain-
ing an anomalous fit due to systematic errors in the experiment or the data analysis,
while the underlying physics is a perfectly ordinary diffusion process with a fashionable
anomalous diffusion theory of choice.24

Therefore, the discussion on anomalous diffusion is an important one, but might need
rephrasing. We should look at at systems where the assumptions of normal diffusion are
invalid a priori, such as in subrecoil cooling or Sisyphus cooled atoms, which we have
been discussed in Section 2.4. Other examples are various, e.g. in the stock market, or
dissipation of systems close to a critical point (although here experimental errors can
also be very large, obscuring anomalous behavior).

Returning to the the theoretical level of this thesis, though, it is important to
realize that even theoretically there are few examples of manisfestly non-ohmic baths.
A prominent example, however, is the superohmic J(ω) ∝ ω3 for an electron interacting
with its own radiation field, as calculated by Barone and Caldeira, where the equation
of motion is the Abraham-Lorentz equation [4]. We will discuss this more thoroughly
in Section 4.2.2.

3.2.4 Classical initial conditions: retrieving the Langevin equations

We have denoted the right-hand side of Eq. (3.19) by f (0). This is suggestive, since
we want to show it is the fluctuation force of the Langevin equation. To show this, we
must make assumptions about the initial positions and velocities of the bath particles,
since these values appear in Eq. (3.16).

A reasonable choice is to assume thermodynamical equilibrium of the unperturbed
bath. Then we can use the equipartition theorem in the classical limit,25 which states
that every quadratic oscillator degree of freedom will contribute 1/2kBT to the total

23In the background of this thesis, there is always the motivation to investigate the effect of non-
ohmic baths on phenomena as decoherence, and we will indicate possibilities for this in the Outlook.
Peter Hänggi has several studies where he shows that coherence might be more easily preserved at high
temperatures when we use subohmic chaotic baths [30]. This could play a crucial role in the search
for preserving coherence in quantum computers. Moreover, this baths might be engineered to have the
correct properties.

24The basis for this claim lies in a private conversation with Prof. dr. Allard Mosk, leader of the
nanoLINX research group at Utrecht University.

25Equipartition fails in quantum mechanics, since some degrees of freedom can be hidden from view
(‘freeze out’) due to the discreteness of energy levels. In the quantum case, we will have to use the
Bose-Einstein distribution to correctly describe equilibrium. This will lead to a quantum Langevin
equation, as can also be seen in Eq. (2.24).
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3.2 Bilinear Coordinate-Coordinate coupling

energy; where T is the temperature of the bath. For the initial conditions in the classical
limit, then,26

〈qi(0)〉 = 〈q̇i(0)〉 = 0 = 〈qi(0)q̇j(0)〉 (3.28)

1

2
mi 〈q̇i(0)q̇j(0)〉 =

1

2
kBTδij (3.29)

1

2
miω

2
i 〈qi(0)qj(0)〉 =

1

2
kBTδij, (3.30)

where the averages are taken over the initial values with respect to the classical equi-
librium density matrix of the unperturbed bath (B)

ρ
(0)
B = Z−1

B exp

[
−β

2

∑
k

mkq̇
(0) 2
k +mkω

2
kq

(0) 2
k

]
, (3.31)

which is Eq. (2.13), for our specific Lagrangian (3.10).

We now have all the ingredients to derive the Langevin equation that describes
classical Brownian Motion. On average, the fluctuation force should vanish, see Eq.
(2.13). Using the initial conditions (3.28), we see that it indeed vanishes:

〈
f (0)(t)

〉
=
∑
k

Ck

(
〈qk(0)〉 cos(ωkt) + 〈q̇k(0)〉 sin(ωkt)

ωk

)
= 0, (3.32)

We should also calculate the two-point force correlation function in order to satisfy
Eq. (2.23),〈

f (0)(t)f (0)(t′)
〉

=∑
kk′

CkCk′

〈(
qk(0) cos(ωkt) +

q̇k(0)

ωk
sin(ωkt)

)(
qk′(0) cos(ωk′t

′) +
q̇k′(0)

ωk′
sin(ωk′t

′)

)〉
=
∑
kk′

CkCk′ 〈qk(0)qk′(0)〉 cos(ωkt) cos(ωk′t
′) +

∑
kk′

CkCk′
〈q̇k(0)q̇k′(0)〉

ωkωk′
sin(ωkt) sin(ωk′t

′)

+
∑
kk′

CkCk′�
���

���:
0

〈qk(0)q̇k′(0)〉
ωk

cos(ωkt) sin(ωk′t
′) +

∑
kk′

CkCk′�
��

���
�: 0

〈q̇k(0)qk′(0)〉
ωk′

sin(ωkt) cos(ωk′t
′).

(3.33)

26Remember that we work in one dimension.
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Using the initial conditions of Eqs. (3.29) and (3.30),

〈
f (0)(t)f (0)(t′)

〉
= kBT

∑
k

C2
k

mkω2
k

[cos(ωkt) cos(ωkt
′) + sin(ωkt) sin(ωkt

′)]

= kBT
∑
k

C2
k

mkω2
k

cos[ωk(t− t′)]

= 2kBT

∞∫
0

d
ω

π

J(ω)

ω
cos[ω(t− t′)], (3.34)

where in the penultimate line we used the sum rule and we used the definition of the
spectral density Eq. (3.26) in the last.

If we choose the spectral density to be ohmic, i.e. when s = 1 in Eq. (3.27), and if
we stay away from the very short timescale regime such that we can safely let Ω→∞
(by which we intend to say that Ω� η) and work in the relaxation time approximation,
we find

〈
f (0)(t)f (0)(t′)

〉
= 2kBTη

Ω∫
0

dω

π
cos [ω(t− t′)] = 2kBTη

∞∫
0

dω

π
cos [ω(t− t′)] . (3.35)

Using the fact that the cosine is an even function, we can extend the boundaries of the
integral to the negative axis. Also, we can freely add a sine, since it is an odd function.
We obtain

〈
f (0)(t)f (0)(t′)

〉
= kBTη

∞∫
−∞

dω

π
{cos [ω(t− t′)] + i sin [ω(t− t′)]} = kBTη

∞∫
−∞

dω

π
exp [iω(t− t′)] ,

(3.36)

using Euler’s relation. Now, we use the definition of the Dirac-delta distribution and
find

〈
f (0)(t)f (0)(t′)

〉
= kBTη

∞∫
−∞

dω

π
exp [iω(t− t′)] = 2kBTηδ(t− t′), (3.37)

which coincides with the white noise characteristic (2.23) of the Langevin equations.
We can also derive the final form of the friction term in Eq. (3.23) and use the
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spectral density Eq. (3.26) to write

d

dt

∑
k

C2
k

mkω2
k

t∫
0

dt′ cos [ωk(t− t′)]Q(t′) = 2
d

dt

t∫
0

dt′
∞∫

0

dω

π

J(ω)

ω
cos [ω(t− t′)]Q(t′),

(3.38)

which simplifies, by assuming ohmic spectral density and performing the same integral
as before, to

2η
d

dt

t∫
0

dt′δ(t− t′)Q(t′) = ηQ̇(t) + 2ηδ(t)Q(0), (3.39)

where the last term is a spurious ‘drift’ term. Physically, it is important, for it will
result in the correct conditions for equilibrium for Stratonovich noise—as explained in
Section 2.1.2. The spurious term shows up because we have assumed Itô noise (2.23),
while in reality the two-point correlation function is supposed to be of finite width equal
to the collision between the system of interest and a bath constituent. Mathematically,
however, this spurious term can be absorbed in the fluctuation force if we redefine the
fluctuation force as27

f̄ (0)(t) =
N∑
k

Ck

{[
qk(0)− Ck

mkω2
k

Q(0)

]
cos(ωkt) +

q̇(0)k
ωk

sin(ωkt)

}
, (3.40)

and if we take the ensemble average (2.13) with respect it to the bath and the coupling,
instead of the bath only (see Peter Hänggi’s [29] for the full calculation of the Gaussian
integrals) 〈

f̄ (0)(t)
〉
B+I

=
TrB

[
f̄ (0)(t) exp (−β(HB +HI))

]
TrB [exp (−β(HB +HI))]

(3.41)

such that it will not change the white noise obtained in Eq. (3.37).

Finally, we can return to Eq. (3.20) and plug in the friction term (3.39) (with the
spurious term absorbed in the fluctuation force). We find

MQ̈+ V ′(Q) + ηQ̇ = f̄ (0)(t). (3.42)

All’s well that ends well: this is the Langevin equation of a classical Brownian particle
in an open system. Nevertheless, it is obtained from a closed composite model of
the system and the environment and evaluating out the environment, which is the a
posteriori justification we were looking for.

27The interpretation is that we have assumed that the equilibrium of the bath is re-centered to
coincide with the origin of the system coordinate Q(0).
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3.3 General-coordinate coupling to the bath

Suppose we wish to expand upon the coordinate-coordinate coupling of the previous
discussion and consider a coupling to the bath that is general in form and depends on
the coordinate of the system Q only. In addition we have assumed the interaction to be
separable, i.e. the coupling constant will not be influenced by the system coordinate Q,
i.e. a completely general Fk[Q] will be assumed to simplify to C ′kF [Q]. This is a con-
straint that enforces strictly linear dissipation, which is the case for state-independent
dissipation [80, p. 20]. Then, we write the Lagrangian

L =
1

2
MQ̇2 − V (Q) +

1

2

N∑
k=1

mk(q̇
2
k − ω2

kq
2
k) + F [Q]

N∑
k=1

C ′kqk︸ ︷︷ ︸
General System/Bath-INT.

− 1

2
F [Q]2

N∑
k=1

C ′2k
mkω2

k︸ ︷︷ ︸
Counterterm

.

(3.43)
The coupling constants C ′k will, in general, be different from the ‘spring constants’ Ck
of the Caldeira-Leggett model; their dimension will depend on the particular realiza-
tion of F [Q]. We have also adjusted the counterterm accordingly, to renormalize the
interaction-induced effects to the bare potential [80] in a way similar to that of Eq.
(3.8):

Veff (Q) = V (Q) +
N∑
k=1

C ′2k
2mkω2

k

F [Q]2. (3.44)

We will see that this new coupling will change the Langevin equation considerably, and
will lead us to a generalized Langevin equation with ‘multiplicative noise’, while staying
true to the Fluctuation-Dissipation theorem, as we will show in Section 3.4.

The equation of motion for the system is

MQ̈+ V ′[Q] = F ′[Q]
∑
k

C ′kqk − F [Q]F ′[Q]
∑
k

C ′2k
mkω2

k

(3.45)

where F ′[Q] = ∂F [Q]/∂Q, and we have again suppressed the limits of the sum for
brevity. The last term is entirely due to the counterterm.

The equation of motion for the harmonic oscillators of the bath is

miq̈i +miω
2
i qi = C ′iF [Q], (3.46)

which is the differential equation of a driven harmonic oscillator for a general fluctua-
tion force. The solution can be found a standard way by Green’s functional method,
although we present an equivalent, but also more tedious, calculation in Appendix C,
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because we think it is more insightful. The result is, Eq. (C.26),

qi(t) = f
(0)
i (t) +

C ′i
miωi

t∫
0

dt′ sin [ωi(t− t′)F [Q(t′)]] , (3.47)

with f
(0)
i (t) is the harmonic force per particle defined in Eq. (3.15).

Now, we can eliminate the bath coordinates by plugging in the solution qi into the
system equation of motion (3.45). We obtain

MQ̈(t) + V ′[Q]− F ′[Q(t)]

t∫
0

dt′
∑
k

C ′2k
mkωk

sin[ωk(t− t′)]F [Q(t′)]

= F ′[Q(t)]f (0)(t)− F [Q]F ′[Q]
∑
k

C ′2k
mkω2

k

, (3.48)

for f (0)(t) the harmonic force defined in Eq. (3.16). We now perform a partial integra-
tion on the third term, such that we can recognize a term proportional to the velocity,
which can then be identified as the friction term

MQ̈(t)+V ′[Q] + F ′[Q(t)]

t∫
0

dt′
∑
k

C ′2k
mkω2

k

cos[ωk(t− t′)]F ′[Q(t′)]Q̇(t′)

︸ ︷︷ ︸
Friction term

= −F ′[Q(t)]F [Q(0)]
∑
k

C ′2k
mkω2

k

cos(ωkt)︸ ︷︷ ︸
spurious initial term

+Ξ(0)(Q(t); t), (3.49)

for the anharmonic fluctuation force

Ξ(0)(Q(t); t) = F ′[Q(t)]f (0)(t). (3.50)

In Eq. (3.49) the counterterm was canceled to the t′ = t-boundary term from the
partial integration, and we have moved the other boundary term (the ‘spurious’ term,
corresponding to t′ = 0) of the partial integration to the right-hand side of the equation.
Completely analogous to the procedure in Eq. (3.39)–(3.41), this spurious term can be
included in the fluctuation force if we redefine it as

Ξ̄(0)(Q(t); t) = F ′[Q(t)]
N∑
k

C ′k

{[
qk(0)− C ′k

mkω2
k

F [Q(0)]

]
cos(ωkt) +

q̇k
ωk

sin(ωkt)

}
,

(3.51)
and take the ensemble average with respect to the bath and the coupling, exactly as in
Eqs. (3.41).
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The generalized Langevin equation, then, becomes,

MQ̈(t) + V ′[Q] + F ′[Q(t)]

t∫
0

dt′
∑
k

C ′2k
mkω2

k

cos[ωk(t− t′)]F ′[Q(t′)]Q̇(t′) = Ξ̄(0)(Q(t); t),

(3.52)

We can proceed by using the spectral density through Eq. (3.26) to eliminate the
sum over oscillators, which turns the generalized Langevin equation into

MQ̈(t) + V ′[Q]+2F ′[Q(t)]

t∫
0

dt′
∞∫

0

dω

π

J(ω)

ω
cos [ω(t− t′)]F ′[Q(t′)]Q̇(t′) = Ξ̄(0)(Q(t); t),

(3.53)

In the case of ohmic dissipation and large cut-off Ω→∞, this reduces to

MQ̈(t) + V ′[Q]+ηF ′[Q(t)]2Q̇(t′) = Ξ̄(0)(Q(t); t). (3.54)

Note that ‘ohmic’ dissipation is interpreted as a spectral density

J ′(ω) =
π

2

∑
k

C ′2k
mkωk

δ(ω − ωk), (3.55)

which only coincides with the spectral density of the previous section if we choose
F [Q] = Q such that C ′k = Ck. In general, the word ‘ohmic’, then, only refers to the
linearity of the bath in terms of the coupling constants. For different coupling constants,
two ‘ohmic’ baths will not have equal properties.
The fluctuation force Ξ̄(0)(Q(t); t) does not lead to white noise, because, apart from the
harmonically oscillating f (0)(t), it has an amplitude F ′[Q], which creates inhomogeni-
eties. This is called multiplicative noise, with its characteristic correlation function〈
Ξ(0)(Q(t); t)Ξ(0)(Q(t′); t′)

〉
= F ′[Q(t)]F ′[Q(t′)]

〈
f (0)(t)f (0)(t′)

〉
= 2ηkBTF

′[Q(t)]2δ(t− t′),
(3.56)

which shows why this noise is called ‘multiplicative’. The F [Q(t)] can be kept outside
of the ensemble average, since it does not depend on the initial values of the bath
coordinates (and the trace in Eq. (3.41) is over the initial bath coordinates alone).

This multiplicative noise can physically be understood by, for example, interpreting
the F ′[Q] as a temperature gradient. In the absence of such a temperature gradient,
the noise does not depend on the position of the Brownian particle. After adding the
temperature gradient, the particle will be more aggressively influenced at positions with
a higher temperature than at positions with a lower temperature.
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3.4 Fluctuation-Dissipation relation for Langevin models

In this section we intend to show that the fluctuation-dissipation relation holds in the
two specific cases above, namely those of coordinate-coordinate coupling and general-
coordinate coupling. In these two cases, it will take the form of a relation between the
fluctuation force correlation and the memory-kernel in the friction term. The memory-
kernel γ(t− t′) is the integrand of the friction term (the term proportional to velocity)
in the generalized Langevin equation

MQ̈+ V ′(Q) +M

t∫
−∞

dt′Θ(t− t′)γ(t− t′)Q̇(t′) = Γ(t), (3.57)

for Γ a general fluctuation force and where the Heaviside step-function Θ(t − t′) has
been put in to ensure causality. It is called the memory kernel, since if the integral over
t′ can not be performed before solving the differential equation, the solution at time
t will depend on all the earlier times t′. This is what one usually calls a system with
‘memory’. For predictive power, it is desirable that a system does not have memory,
since information about a past state is often practically beyond reach. If a conditional
probability distribution of future states of a system -conditional on past and present
states, that is- does not depend on the sequence of events that preceded, it is said to
have the Markov property. Thus, the behavior of the system in the future depends
solely on the present state, independent of its history. In our context, the Markov
property is lost when the results depend on the earlier times t′.28

The fluctuation-dissipation relation from the above Langevin equation is

〈Γ(t)Γ(t′)〉 = 2ηMkBTγ(t− t′). (3.58)

In the case of coordinate-coordinate coupling, we have already implicitly derived the
fluctuation-dissipation theorem in Section 3.2.4. For ohmic dissipation, we saw that the
memory-kernel was simply the delta distribution of white noise. Hence,〈

f̄ (0)(t)f̄ (0)(t′)
〉

= kBTδ(t− t′), (3.59)

which is the simplest example of the fluctuation-dissipation theorem. Note that, since
the integral over the delta distribution is easily performed, the solution to the Langevin
equation does not depend on t′ and is, therefore, memory free.

If we do not assume a specific spectral density for the bath, we find the relation
between the friction term and the fluctuation force correlation in the following way.
Observe the right-hand side Eq. (3.38), perform the derivative with respect to time and
do a partial integration. Two Q(t)-terms cancel, while–as we saw in Eq. (3.51)–the
Q(0)-term can be absorbed into the fluctuation force (without changing the correlation

28This is strictly not true, cf footnote 5.
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function), and the remaining friction term is

2

∞∫
0

dω

π

t∫
0

dt′
J(ω)

ω
cos [ω(t− t′)] Q̇(t′). (3.60)

Hence the memory-kernel takes the form

γ(t− t′) =
1

M
Θ(t− t′) 2

π

∞∫
0

dω
J(ω)

ω
cos [ω(t− t′)] . (3.61)

Comparing with the last line in Eq. (3.34), we observe the fluctuation-dissipation
relation is obeyed

〈
f (0)(t)f (0)(t′)

〉
= 2kBT

∞∫
0

dω

π

J(ω)

ω
cos [ω(t− t′)] = MkBTγ(t− t′). (3.62)

Let us now turn to the generalized Langevin equation (3.53) that we found for the
general coupling with F [Q], and observe that the memory-kernel in the friction term
(the one proportional to velocity) in Eq. (3.53), is

γ(t− t′) = 2F ′[Q(t)]F ′[Q(t′)]

∞∫
0

dω

π

J(ω)

ω
cos [ω(t− t′)] . (3.63)

Turning our attention to the correlation function for multiplicative noise (3.56), and
using Eq. (3.62), we see that the fluctuation-dissipation theorem is again satisfied:

〈Ξ(Q(t), t)Ξ(Q(t′), t′)〉 = 2F ′[Q(t)]F ′[Q(t′)]

∞∫
0

dω

π

J(ω)

ω
cos [ω(t− t′)] = MkBTγ(t− t′).

(3.64)

3.5 Conclusion

In conclusion, we have seen that by solving the coupled equations of motion, obtained
from the Caldeira-Leggett model Eq. (3.10), and by eliminating the bath coordinates,
we reproduce the form of the Langevin equation in the classical limit. We also proved
its internal consistency by showing that it satisfies the fluctuation-dissipation theorem
for all choices of the spectral density J(ω) (as long as the frequency integral does not
diverge). To obtain a system without memory, one will find delta-peaked ‘white’ noise
for ohmic spectral density J(ω) ∝ ω. Hence, this justifies the choice of the Caldeira-
Leggett Lagrangian and proves that we have successfully closed the dissipative system.
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We have also seen that from the dynamics of a general coupling, as defined in Eq.
(3.43), the result is a general Langevin equation Eq. (3.53). This similarly satisfies the
fluctuation-dissipation theorem, but for the multiplicative noise of Eq. (3.56), modeling
spatial inhomogeneity (such as a temperature gradient) of the Brownian system.

As a last remark: With the justification of finding the Langevin equations in the
classical limit through the Caldeira-Leggett Lagrangian (3.10), we know it is a physically
plausible model. One can then use path-integral quantization to find the quantum
dynamics of this model, integrate out the bath, and obtain an effective non-local action,
as is done in [9]. However, we will not pursue this quantization at this stage of the
thesis, since it will involve much of the same derivation as we will do in Chapter 5.
There, we will quantize the model for an entirely general coupling between system and
environment. Then, we can retrieve the effective action for the case of coordinate-
coordinate coupling, as we have seen above. For future reference, we state the result
now. For imaginary time t→ i~β it reads

Seff [Q̄(τ)] =

~β∫
0

dτ

{
1

2
M ˙̄Q2 + V (Q̄)

}
+

η

4π

~β∫
0

dτ

∞∫
−∞

dσ

[
Q̄(τ)− Q̄(σ)

]2
|τ − σ|2

, (3.65)

where the last term is called the Caldeira-Leggett term. This term describes a purely
non-local interaction as a result of the bath medium. Its interpretation is that of fric-
tion: it is energetically more favorable for the particle to remain at the same position,
since the closer they are together at successive times, the smaller the contribution of
the Caldeira-Leggett effective potential is.

The next step we intend to take is to generalize the model even further, namely to
general-velocity coupling.
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4 Extending the classical model

“[...] My view of the matter, for what its worth, is that there is no such
thing as a logical method of having new ideas, or a logical reconstruction of
this process.”

—Karl Popper [65, p. 30]

4.1 General velocity-coupling to the bath

In this chapter, we will generalize the Caldeira-Leggett model from a coordinate-
coordinate couplinf to a coupling thta is a general function of the velocity of the Brown-
ian particle, coupled to the coordinates of the bath oscillators. The original motivation
to choose such a velocity-dependent coupling was to reproduce the force p/(1 + p2) in
the approach to Lévy motion in Sisyphus cooling of Marksteiner, Ellinger and Zoller
[56]—as explained in Section 2.4. Realizing that the general-coordinate coupling would
not give us the desired result, we chose to proceed with a completely general coupling
to velocity. It turns out that such an approach is possible to reproduce the desired
force in terms of velocity by choosing a specific coupling that will give us the intended
result; and, hence, construct a closed effective model exhibiting Lévy behavior.

In Section 4.2.2, we will also reduce to the case where the coupling to the velocity
of the Brownian particle is linear. In the superohmic case (specifically J(ω) ∝ ω3), we
find an equation of motion that is remarkably similar to the Abraham-Lorentz equation,
which describes a self-interacting electron.

For now, we will derive the dynamics for a general velocity coupling much in the same
way as we have derived the equations of motion for the Caldeira-Leggett model in
Chapter 3. The result will again be an adjusted Langevin equation, but with additional
terms, which have to be treated with some care.

Thus, we leave the coordinate-coordinate coupling of the Caldeira-Leggett model be-
hind and replace it with a general-velocity coupling F [Q̇] of the velocity of the Brownian
particle to each of the coordinates of the bath, again assuming a separable interaction
Fi[Q̇] = C̃iF [Q̇]; note that, dimensionally, the coupling constants C̃i are not interpreted
as spring constants, but have a dimension depending on the particular realization of
F [Q̇]. As before, we modify the counterterm accordingly. However, this term will ob-
tain a different physical interpretation. For linear-velocity coupling, for example, it
will renormalize the mass in the kinetic term of the system—as we will see later in the
calculation. Ceteris paribus, we write the Lagrangian

L =
1

2
MQ̇2 − V (Q) +

1

2

N∑
k=1

mk(q̇
2
k − ω2

kq
2
k) + F [Q̇]

N∑
k=1

C̃kqk︸ ︷︷ ︸
General velocity interaction.

−
N∑
k=1

C̃2
k

2mkω2
k

F 2[Q̇]︸ ︷︷ ︸
Counterterm.

.

(4.1)
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Compared to the Caldeira-Leggett model of the last chapter, the equations of motion
change considerably. This is for two reasons. First, due to the time derivative in the
system equation an extra term generated by the chain-rule gives rise to a q̇i term, such
that we must plug in the solution to the equation of motion of the bath twice. Second,
the velocity coupling and the counterterm add to the kinetic part of the dynamics (i.e.
the time derivative in the Euler-Lagrange equations), which, again due to the chain
rule, generate additional terms. The system equation of motion reads29

MQ̈+ V ′(Q) + F ′′[Q̇]Q̈
∑
k

C̃kqk + F ′[Q̇]
∑
k

C̃kq̇k =
∑
k

C̃2
k

mkω2
k

[
F ′[Q̇]2 + F [Q̇]F ′′[Q̇]

]
Q̈,

(4.3)

where the right-hand side is entirely due to the counterterm.
The bath equation of motion is again a driven harmonic oscillator equation,

miq̈i +miω
2
i qi = C̃iF (Q̇), (4.4)

with the same solution as before (Appendix C), which is

qi(t) = f
(0)
i (t) +

C̃i
miωi

t∫
0

dt′ sin[ωi(t− t′)]F [Q̇(t′)], (4.5)

and its time-derivative

q̇i(t) =
df

(0)
i (t)

dt
+
C̃i
mi

t∫
0

dt′ cos[ωi(t− t′)]F [Q̇(t′)], (4.6)

where the differential boundary term vanishes and the fluctuation force is defined in
Eqs. (3.15) and (3.16).

Let us now plug Eqs. (4.5) and (4.6) into the system equation (4.3), such that we
obtain a differential equation analogous to the generalized Langevin equation. Carefully

29As is well known, coupling a system to velocity generates additional terms to the generalized
momentum, such that it differs from the physical momentum. The generalized momentum is

P =
∂L

∂Q̇
= MQ̇+

∑
k

C̃kqkF
′[Q̇]−

∑
k

C̃2
k

mkω2
k

F [Q̇]F ′[Q̇], (4.2)

while pi = miq̇i still holds. Interestingly, this complication stands in the way of constructing a
single-valued Hamiltonian from the Legendre transformation of the Lagrangian (4.1). For couplings
F [Q̇] = Q̇n, for n = 1 and n = even, the momentum is still invertible. For each n that gives an
invertible function, there is a minimal-coupling problem to be solved—as in the Hamiltonian treatment
of electrodynamics. Nevertheless, for n = odd there is an ill-defined Hamiltonian. We will come back
to this in the Outlook.
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4 EXTENDING THE CLASSICAL MODEL

keeping track of all the terms, we obtain

MQ̈+V ′[Q] + F ′′[Q̇(t)]Q̈(t)

t∫
0

dt′
∑
k

C̃2
k

mkωk
sin [ωk(t− t′)]F [Q̇(t′)]

+ F ′[Q̇(t)]

t∫
0

dt′
∑
k

C̃2
k

mk

cos [ωk(t− t′)]F [Q̇(t′)]

= −ξ(0)(Q̇(t); t)Q̈(t)− ζ(0)(Q̇(t); t) +
∑
k

C̃2
k

mkω2
k

[
F ′[Q̇(t)]2 + F [Q̇]F ′′[Q̇(t)]

]
Q̈(t),

(4.7)

for the velocity-dependent, amplitude-driven, fluctuation forces,

ξ(0)(Q̇(t); t) = F ′′[Q̇(t)]f (0)(t), (4.8)

and

ζ(0)(Q̇(t); t) = F ′[Q̇]
df (0)(t)

dt
. (4.9)

Let us now integrate by parts the third30 term on the left-hand side of Eq. (4.7), which
then becomes

−F ′′[Q̇(t)]Q̈(t)

t∫
0

dt′
∑
k

C̃2
k

mkω2
k

cos [ωk(t− t′)]F ′[Q̇(t′)]Q̈(t′)

+
∑
k

C̃2
k

mkω2
k

F ′′[Q̇(t)]Q̈(t)F [Q̇(t)]−
∑
k

C̃2
k

mkω2
k

F ′′[Q̇(t)]Q̈(t)F [Q̇(0)] cos(ωkt)

(4.11)

Note that in the first term three minus signs play a role: one from partial integration
itself, one from the integration of the sine, and one from the sign of t′ within the sine.
Now, the first boundary term will cancel to one of the counterterms (the last term on
the right-hand side of Eq. (4.7)). The other boundary term depends on the initial value
Q̇(0); this term plays the role of the spurious term that we have encountered twice in

30Curiously, at this stage in the calculation it seems to make more sense to actually integrate by parts
the fourth term instead of the third in Eq. (4.7), because this would match the power of the parameter
ωk in both terms and allow us to add them together. However, this will lead us to a memory-kernel
in terms of a sine-function

γ̄(t− t′) =
∑
k

C̃2
k

mkωk
sin [ωk(t− t′)] , (4.10)

which we cannot integrate easily using the spectral density. Even for ohmic baths, this term would
either diverge or be inconsistent with the relaxation-time approximation (physical results will depend
on the cut-off in an unnatural way).
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4.1 General velocity-coupling to the bath

Chapter 3. This time, analogous to Eqs. (3.40) and (3.51) it can be incorporated into
ξ(0)(Q(t); t) in the following way

ξ̄(0)(Q̇(t); t) = F ′′[Q̇]
∑
k

C̃k

{[
qk(0) +

C̃k
mkωk

F [Q̇(0)]

]
cos(ωkt) +

q̇k
ωk

sin(ωkt)

}
,

(4.12)
and taking the ensemble average with respect to the bath and interaction Hamiltonian,
as in Eq. (3.41). This will cause no problems for suitable initial conditions chosen in
this way.

Hence, we can rewrite the adjusted Langevin equation as

MQ̈+V ′[Q]− F ′′[Q̇(t)]Q̈(t)

t∫
0

dt′
∑
k

C̃2
k

mkω2
k

cos [ωk(t− t′)]F ′[Q̇(t′)]Q̈(t′)

+ F ′[Q̇(t)]

t∫
0

dt′
∑
k

C̃2
k

mk

cos [ωk(t− t′)]F [Q̇(t′)]

= −ξ̄(0)(Q̇(t); t)Q̈(t)− ζ(0)(Q̇(t); t) +
∑
k

C̃2
k

mkω2
k

F ′[Q̇(t)]2Q̈(t). (4.13)

We will now use the spectral density of Eq. (3.26). However, this will be with C̃k
instead of Ck, which is physically a different situation. We will discuss this difference
later in the calculation. We will denote the difference in the spectral density in terms
of the new coupling J̃(ω).

We can now write our first general result as

MQ̈+V ′[Q]− 2F ′′[Q̇(t)]Q̈(t)

t∫
0

dt′
∞∫

0

dω

π

J̃(ω)

ω
cos [ω(t− t′)]F ′[Q̇(t′)]Q̈(t′)

+ 2F ′[Q̇(t)]

t∫
0

dt′
∞∫

0

dω

π
ωJ̃(ω) cos [ω(t− t′)]F [Q̇(t′)]

= −ξ̄(0)(Q̇(t); t)Q̈(t)− ζ(0)(Q̇(t); t) + 2

∞∫
0

dω

π

J̃(ω)

ω
F ′[Q̇(t)]2Q̈(t). (4.14)

This is as far as one can go without either specifying a specific coupling or a specific
spectral density. For general coupling, it is clear that this generalized Langevin equation
will definitely depend on the memory of the system. This is not problematic at all, since
many interesting systems, particularly the non-linear dynamics of chaotic systems, have
this feature. Also, it is often possible that, even though a system has memory, it still has
some memoryless subsystems [60, p. 3], [74, good overview for circuits]. Nevertheless,
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4 EXTENDING THE CLASSICAL MODEL

the methods involved to solve such systems, often numeric, fall beyond the scope of this
research. Therefore, we will attempt to simplify Eq. (4.14) for specific cases, making
necessary approximations to obtain analytical results.31

4.2 Specific choices for the velocity coupling

4.2.1 A polynomial coupling

In order to remain as general as we can, let us look at a coupling to a specific power r
of the coupling

C̃
(r)
k F [Q̇] = C̃

(r)
k Q̇r, (4.15)

In principle, if we want to interpret the C̃k’s as spring constants, we should rescale
the coupling with an inverse frequency ωk for every time-derivative that acts on Q.
This is important dimensionally, since every inverse time unit from a time-derivative
is now canceled to an inverse frequency unit. It also makes sense physically, since the
frequency of the bath oscillators defines the physical characteristic timescale of the
model. Nevertheless, we will work with the C̃k (which cannot be interpreted as a spring
constant) until this dimensionality issue becomes important. Following the discussion
around Eq. (3.55), this will become important when we compare the spectral density
of the new model J̃(ω) with the original J(ω)—this is consistent with the definition of
the spectral density,

J̃(ω) =
π

2

∑
k

C̃
(r) 2
k

mkωk
δ(ω − ωk), (4.16)

and hence one only needs to specify the relation between Ck and C̃k when dealing with
a specific coupling.

With the assumption (4.15), the generalized Langevin equation (4.14) becomes

MQ̈+V ′[Q]− 2r2(r − 1)Q̇r−2(t)Q̈(t)

t∫
0

dt′
∞∫

0

dω

π

J̃(ω)

ω
cos [ω(t− t′)] Q̇r−1(t′)Q̈(t′)

+ 2rQ̇r−1(t)

t∫
0

dt′
∞∫

0

dω

π
J̃(ω)ω cos [ω(t− t′)] Q̇r(t′)

= −r(r − 1)Q̇r−2f̄ (0)(t)Q̈(t)− rQ̇rḟ (0)(t) + 2

∞∫
0

dω

π

J̃(ω)

ω
Q̇2r−2(t)Q̈(t). (4.17)

31We will come back to the importance of modeling non-linear behavior in the Outlook.
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4.2 Specific choices for the velocity coupling

For ohmic baths, J̃(ω) = λω, this reduces to

MQ̈+V ′[Q]− 2λr2(r − 1)Q̇2r−3(t)Q̈2(t)− 2λrQ̇r−1(t)

t∫
0

dt′
Ω∫

0

dω

π
ω2 cos [ω(t− t′)] Q̇r(t′)

= −r(r − 1)Q̇r−2f̄ (0)(t)Q̈(t)− rQ̇rḟ (0)(t) +
2λΩ

π
Q̇2r−2(t)Q̈(t). (4.18)

where we have used λ for the proportionality constant of the spectral density such
that it will not be confused with the viscosity η for ohmic baths in terms of coupling
constants Ck. One can now perform two partial integrations in t′, in order to evaluate
the frequency integral,

MQ̈+V ′[Q]− 2λr2(r − 1)Q̇2r−3(t)Q̈2(t) + 2λr2(r − 1)Q̇2r−3(t)

+
2λΩr2

π
Q̇2r−2 +

2λr2

π
Q̇r−1

Ω∫
0

dω cos(ωt)Q̇r−1(0)− 2λr

π
Q̇r−1

Ω∫
0

dω sin(ωt)Q̇r(0)

= −r(r − 1)Q̇r−2f̄ (0)(t)Q̈(t)− rQ̇rḟ (0)(t) +
2λΩ

π
Q̇2r−2(t)Q̈(t). (4.19)

It will depend on the physical circumstances if the cut-off dependent terms are large
or small, since although Ω is very large, λ can often be related to the relaxation time,
which is very small. We will discuss an example of this in the next section.

4.2.2 Linear-velocity coupling for a superohmic bath: Abraham-Lorentz

In the section we will discuss the generalized Langevin equation for a system of linear-
velocity coupling.

C̃
(1)
k F [Q̇] = C̄kQ̇, (4.20)

where we use a ‘bar’ to distinguish between the general-velocity case (where we had a
‘tilde’) and the linear-velocity case we will use now.

If we would not have included a counterterm in this model, we could easily reproduce
the original Caldeira-Leggett model. In principle, in the action for the Lagrangian (4.1)
and for a coupling linear in velocity (4.20), one could transfer the time-derivative in the
interaction term from the particle coordinate Q to the bath coordinates qk, such that
the action reads (again, ignoring the counterterm)

S =

t∫
0

ds

{
LS + LB +Q(s)

N∑
k=1

C̄kq̇k(s)

}
. (4.21)

Then, we could follow the procedure in Appendix A. There, we show the equivalence be-
tween the Lagrangian in the original Caldeira-Leggett model (3.10), which includes
a counterterm proportinal to Q2, and that of the above model (4.1) without that
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4 EXTENDING THE CLASSICAL MODEL

counterterm. Hence,the original Caldeira-Leggett model is identical to Eq. (4.21) for
C̄k = Ck/ωk. In our model, though, we do include a counterterm proportional to F [Q̇]2,
which will alter the results, but will be consist with the quantum-mechanical result of
Chapter 5.

For the coupling (4.20), the generalized Langevin equation (4.14) simplifies considerably,
since the first derivatives of the coupling become unity, whereas the second derivatives
vanish. The result is

MQ̈(t) + V ′[Q] + 2

t∫
0

dt′
∞∫

0

dω

π
ωJ̄(ω) cos [ω(t− t′)] Q̇(t′) = −ζ(0)(t) + 2

∞∫
0

dω

π

J̄(ω)

ω
Q̈(t),

(4.22)

for the force

ζ(0) =
d

dt

∑
k

C̄k

(
q

(0)
k cos(ωkt) +

q̇
(0)
k

ωk
sinωkt

)
. (4.23)

To show that −ζ(0)(t) is really a fluctuation force, one needs to calculate the average of
the fluctuation force and its two-point correlation function. Using the initial conditions
for classical equilibrium of the bath Eqs. (3.28)—(3.30), the average vanishes, since

〈−ζ(0)(t)〉 = − d

dt

∑
k

C̄k


�
�
��>

0〈
q

(0)
k

〉
cos(ωkt) +

�
�
��>

0〈
q̇

(0)
k

〉
sin(ωkt)

 = 0. (4.24)

The two-point correlation function of the force is〈
(−ζ(0)(t))(−ζ(0)(t′))

〉
=

d

dt

d

dt′

∑
k

∑
k′

C̄kC̄k′

〈q(0)
k q

(0)
k′

〉
cos(ωkt) cos(ωk′t

′) +

〈
q

(0)
k q

(0)
k′

〉
ωkωk′

sin(ωkt) sin(ωk′t
′)

 ,
(4.25)

which becomes, after doing the derivatives to t and t′,

∑
k

∑
k′

C̄kC̄k′ωkωk′

〈q(0)
k q

(0)
k′

〉
sin(ωkt) sin(ωk′t

′) +

〈
q

(0)
k q

(0)
k′

〉
ωkωk′

cos(ωkt) cos(ωk′t
′)

 .
(4.26)
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4.2 Specific choices for the velocity coupling

Now, using the initial conditions, and performing the sum over k′, this reduces to

〈
(−ζ(0)(t))(−ζ(0)(t′))

〉
=kBT

∑
k

C̄2
k

mk

[sin(ωkt) sin(ωkt
′) + cos(ωkt) cos(ωkt

′)]

=kBT
∑
k

C̄2
k

mk

cos[ωk(t− t′)]

=2kBT

∞∫
0

dω

π
J̄(ω)ω cos[ω(t− t′)], (4.27)

which indeed coincides with the memory kernel in Eq. (4.22). Thus, the fluctuation-
dissipation theorem holds for linear-velocity coupling.

Coming back to the equation of motion Eq. (4.22), to evaluate the frequency integral
in the friction term (last term on the left-hand side), we first perform two successive
partial time-integrations for the friction term,

2

t∫
0

dt′
∞∫

0

dω

π
ωJ̄(ω) cos [ω(t− t′)] Q̇(t′)

= 2

t∫
0

dt′
∞∫

0

dω

π
J̄(ω) sin [ω(t− t′)] Q̈(t′)−

∞∫
0

dω

π
J̄(ω) sin(ωt)Q̇(0)

=− 2

t∫
0

dt′
∞∫

0

dω

π

J̄(ω)

ω
cos [ω(t− t′)]

...
Q(t′) +

∞∫
0

dω

π

J̄(ω)

ω
Q̈(t)

−
∞∫

0

dω

π

J̄(ω)

ω
cos(ωt)Q̈(0)−

∞∫
0

dω

π
J̄(ω) sin(ωt)Q̇(0). (4.28)

The
...
Q-term, i.e. the change in acceleration, is called the ‘jerk’. We also recognize that

the second term exactly cancels the counterterm in Eq. (4.22). Then, we assume the
superohmic bath

J̄(ω) =

{
λω if ω < Ω
0 if ω > Ω

, (4.29)

where the diffusion coefficient is denoted by λ to avoid confusion with the interpretation
of the viscosity η of a material in terms of spring constants Ck. The generalized Langevin
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equation becomes

MQ̈(t) + V ′[Q]− 2λ

t∫
0

dt′
Ω∫

0

dω

π
cos [ω(t− t′)]

...
Q(t′) = −ζ̄(0)(t), (4.30)

where we included both t = 0 boundary terms, depending on Q̇(0) and Q̈(0) into the
fluctuation force, similar to what we have done before. Analogous to Eq. (3.40), we
have

ζ̄(0)(t) =
d

dt

∑
k

C̄k

([
q

(0)
k −

C̄k
mkωk

Q̇(0)− C̄k
mkω2

k

Q̈(0)

]
cos(ωkt) +

q̇
(0)
k

ωk
sinωkt

)
. (4.31)

which does not alter the fluctuation-dissipation theorem if we take the ensemble average
with respect to bath and interaction, as in Eq. (3.41).

Now, we can use the exact same steps as in Eq. (3.37) to evaluate the integral over
ω and find the Dirac-delta distribution; hence

MQ̈(t) + V ′[Q]− 2λ
...
Q(t) = −ζ̄(0)(t), (4.32)

As we have mentioned before, it is important to note, that the ‘ohmic’ bath we assumed
in Eq. (4.29) does not coincide with the ohmic bath of the original Caldeira-Leggett
model, since the coupling constants are different for these two cases. Indeed, expressed
in terms of the original model it is superohmic. Specifically, using Eq. (A.7) from the
Appendix A.1,

J(ω) = ω2J̄(ω) ∝ ω3, (4.33)

and hence the bath is cubically superohmic.
There is an important analogy here with the research done by Barone and Caldeira,

who use the Caldeira-Leggett model for cubic baths to describe the dissipation of an
electron interacting with its own radiation field [4]. Classically, such an electron is
described by the Abraham-Lorentz equation,

− 2e2

3c3

...
Q+M∗Q̈+ V ′[Q] = f (0), (4.34)

with the fluctuation force given by Eq. (3.16) for ωk = ck, for wavenumber k and speed
of light c—the dispersion relation for the photon. The Abraham-Lorentz equation has
important problems of its own. For example, pre-acceleration, where the acceleration at
time t depends on the value of the radiation force at earlier times t′, which is, therefore,
a memory effect.

Whereas the goal of Section 3 was to reproduce the Langevin equation in the classical
limit using the closed description of the Caldeira-Legett model, Barone and Caldeira
reproduce the Abraham-Lorentz equation from first principles. They start with the
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4.2 Specific choices for the velocity coupling

Lagrangian
L = LS + LB + LI (4.35)

where the system Lagrangian is generic as in (3.2), the bath consists of the electrody-
namic field associated with the self-field of the electron

LB =
1

8π

∫
d~x

[
1

c

∂ ~A

∂t
+ ~∇φ

]2

− (~∇× ~A)2, (4.36)

and the system-bath interaction is given by

LI =

∫
d~x

[
1

c
~J · ~A− ρφ

]
, (4.37)

where ~A and φ are the vector and scalar potentials, and ρ and ~J the charge and current
densities. Note that there is no counterterm explicitly assumed in this model.

By changing to the Hamiltonian formalism, writing the expressions in terms of
conjugated momenta of the coordinates Q and ~A, and assuming a superohmic cubic
spectral density of the form (4.33) they are able to derive the equation of motion

− λ
...
Q+M∗Q̈+ V ′[Q] = f(t), (4.38)

for

λ =
2e2

3c3
(4.39)

and with the renormalized mass32 given by

M∗ = M +
2λΩ

π
, (4.40)

for the bare electron charge e, bare electron mass M , and speed of light c. Here, we
also see the dissipation term in proportional to the jerk, which is a direct consequence
of the low-frequency behavior of the spectral distribution in a cavity [11, p. 109].

The merit of having written down the Lagrangian (4.35) in terms of the fundamental
constants of electrodynamics is that Barone and Caldeira can now estimate how large
the cut-off-dependent terms in the equations of motion are. The cut-off itself is given
by

Ω =
2πc

r0

, (4.41)

where r0 is the characteristic electronic dimension. It is the classical electron radius in
the classical limit, while it is the deBroglie wavelength of the electron in the quantum

32The renormalized mass has the usual interpretation of a mass renormalization in terms of the
screening of the bare electron mass by the one-loop-and-higher Feynman diagrams of the electron
propagator—which is simply what the electron self-interaction in quantum-electrodynamical language
is.
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4 EXTENDING THE CLASSICAL MODEL

case. The effective mass depends on the cut-off Ω, but since the numerical values in
Eq. (4.40) are known, we can conclude M∗ ∼M .

Coming back to our result Eq. (4.32), we see that it has exactly the same form
as the Abraham-Lorentz equation. However, where Caldeira and Barone assumed a
very specific electrodynamical model to derive the Eq. (4.38), for our result we did
not assume any fundamental physics. Hence, in our case, this could be seen as a self-
interaction of quite a general particle—as long as the coupling is not too strong.

Furthermore, Barone and Caldeira note that the “counterterm is not imposed as in
the formulation of the quantum Brownian motion [...]” [4, p. 58], since the counterterm
appears naturally from the microscopic set-up of the model. This remark is important,
since in our model we have also not include a counterterm as in Eq. (3.5) for quantum
Brownian motion. We did included a counterterm to the Lagrangian that, in the
linear-velocity coupling case, is proportional to the square of the velocity. Since this
canceled a term in Eq. (4.28), this gives us an equation of motion (4.32) without mass
renormalization.

4.2.3 Lévy flights: A non-polynomial coupling

Another way to let the terms with direct memory vanish is to assume that the second
derivative of the coupling is very small compared to the other terms in the Langevin
equation 4.14, i.e.

F ′′[Q̇] ∼ 0. (4.42)

This simplifies the generalized Langevin equation (4.14) considerably,

MQ̈+V ′[Q] + 2

t∫
0

dt′
∞∫

0

dω

π
ωJ̃(ω) cos [ω(t− t′)]F ′[Q̇(t)]F [Q̇(t′)]

≈ −ζ(0)(Q̇(t); t) + 2

∞∫
0

dω

π

J̃(ω)

ω
F ′[Q̇(t)]2Q̈(t). (4.43)

Note that Eq. 4.42 does not necessarily imply that we must choose the linear-velocity
case of the previous section, for which it is trivially satisfied. This is where we establish
a connection with Lévy flights in ultracold atoms such as we described in Section 2.4.
To this end we intend to reproduce Marksteiner, Ellinger and Zoller’s friction force that
we saw in Section 2.4:33

Q̇

1 +
(
Q̇
v0

)2 (4.44)

where v0 is a proportionality constant that contains the mass of the Brownian particle

33We do not have to be careful in equating physical momentum and mass×velocity.
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Figure 12: The coupling function of Eq. (4.44).

and the specifics of the physical set-up, e.g. the experimental properties of the laser
during Sisyphus cooling. It turns out that we can choose

F [Q̇] = sgn

(
Q̇

v0

)
v0

√√√√√log

1 +

(
Q̇

v0

)2
, (4.45)

where the sgn-function is defined as

sgn(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

(4.46)

and is put in to ensure both a smooth transition of the first derivative at Q̇ = 0 and a
unique value for F [Q̇] for every value of Q̇. See Figure 12 for a sketch of the coupling
4.45.

To see the connection to the force 4.44, we must calculate the derivative of this
coupling term. It is

F ′[Q̇] = sgn

(
Q̇

v0

)
v0

Q̇√
log

[
1 +

(
Q̇
v0

)2
] [

1 +
(
Q̇
v0

)2
] =

Q̇

F [Q̇]

[
1 +

(
Q̇
v0

)2
] (4.47)

We then obtain for the force term in the Langevin equation (4.43)

F [Q̇]F ′[Q̇] =
Q̇

1 +
(
Q̇
v0

)2 , (4.48)
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4 EXTENDING THE CLASSICAL MODEL

Figure 13: The second derivative of the coupling function as given in Eq. (4.49). One
observes that for both limits, the low-velocity limit Q̇ → 0 and the high-velocity limit
Q̇→∞, this vanishes. Hence, the approximation in Eq. (4.42) is justified.

which coincides with Eq. (4.44).

Of course, we must justify that our approximation Eq. (4.42) is correct. The second
derivative of Eq. (4.45) is

F ′′[Q̇] = sgn

(
Q̇

v0

)
1

v0

1[
1 + ( Q̇

v0
)2
]√

log
[
1 + ( Q̇

v0
)2
]
− Q̇2

v0

[
1 + ( Q̇

v0
)2
]

log
[
1 + ( Q̇

v0
)2
] − 2Q̇2[

1 + ( Q̇
v0

)2
] + 1

 .

(4.49)
In the low-velocity limit, Q̇� v0, this becomes

F ′′[Q̇] ≈ −sgn

(
Q̇

v0

)
3

2

Q̇

v2
0

(4.50)

to leading order in Q̇/v0. In the high-velocity limit, Q̇� v0, we have

F ′′[Q̇] ≈ −sgn

(
Q̇

v0

) [
1 + 2 log( Q̇

v0
)
]

2
√

2
[
log( Q̇

v0
)
]3/2

v0

Q̇2
. (4.51)

to leading order in v0/Q̇. Thus, in both the low-velocity limit and the high-velocity
limit our approximation (4.42) holds. This is also easily seen in the sketch of the second
derivative in Figure 13.
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The generalized Langevin equation (4.43) becomes

MQ̈+V ′[Q] + 2

t∫
0

dt′
∞∫

0

dω

π
J̃(ω)ω cos [ω(t− t′)] Q̇(t′)

1 +
(
Q̇(t′)
v0

)2

≈ −ζ(0)(Q̇(t); t) + 2v2
0

∞∫
0

dω

π

J̃(ω)

ω

Q̇(t)2[
1 +

(
Q̇
v0

)2
]2
√

log

[
1 +

(
Q̇(t)
v0

)2
]Q̈(t).

(4.52)

Assuming J̃(ω) = λω, one has,

MQ̈+V ′[Q] + 2λ

t∫
0

dt′
Ω∫

0

dω

π
ω2 cos [ω(t− t′)] Q̇(t′)

1 +
(
Q̇(t′)
v0

)2

≈ −λv0
Q̇√

log

[
1 +

(
Q̇
v0

)2
] [

1 +
(
Q̇
v0

)2
] ḟ (0)((t); t) +

2v2
0Ω

π

Q̇(t)2[
1 +

(
Q̇
v0

)2
]2
√

log

[
1 +

(
Q̇(t)
v0

)2
]Q̈(t).

(4.53)

Like we have seen before, we can now perform two partial integrations in t′ in order
to perform the frequency integral. Among the many terms that will be generated as
such will be the jerk-terms

...
Q and Q̈2-terms, as we have seen in Eq. (4.14) as well.

In the low-velocity limit the coupling Eq. (4.45) reduces to

F [Q̇] ≈ sgn

(
Q̇

v0

)
v0

√√√√( Q̇
v0

)2

= sgn

(
Q̇

v0

)
|Q̇| = Q̇. (4.54)

Thus, in the low-velocity limit, this coincides with the self-interaction equation (4.34)
we found in Section 4.2.2.

We have also seen that the approximation Eq. (4.42) holds in both limits. Nev-
ertheless, for more moderate velocities, we are not that safe. There, F ′′ cannot be
neglected. Therefore, it will be important to search for a cross-over behavior between
the high-velocity Lévy dynamics and the linear-velocity limit.

As a final remark, it seems to us that the fluctuation-dissipation theorem in the
high-velocity Lévy limit breaks down. Nevertheless, this is to be expected, since for
superdiffusive behavior the central-limit theorem is broken—as we indicated in Section
2.4. An insightful paper by Costa, Morgado, Lima and Oliviera, shows where exactly
the theorem fails for ‘fast’ superdiffusion [12].
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4.3 Conclusion

In this chapter, we modified the original Caldeira-Leggett model as it was build up in
Chapter 3. The change is in the interaction between the system and the bath; whereas
before their coupling was of the coordinate-coordinate type, we choose a coupling gen-
eral in the velocity of the system to the coordinates of the bath particles. The countert-
erm was adjusted accordingly. Employing the knowledge of the Caldeira-Leggett model
of the previous chapter, such as using the spectral density, absorbing the spurious drift
terms, and using the equipartition theorem in the classical limit, we were able to derive
the modified generalized Langevin equation (4.14). Nevertheless, due to terms gener-
ated by the time derivative of the Euler-Lagrange equations, the result is much more
involved than the original generalized Langevin equation (3.53). Most prominently, the
extra terms are due to the existence of the second derivative of the coupling function
F ′′[Q̇]. The system has velocity-dependent multiplicative noise, as well as memory, for
all choices of the spectral density. A numerical investigation of Eq. (4.14) is left for the
Outlook.

Under the approximation F ′′[Q̇] ∼ 0, we find a much more tractable modified
Langevin equation. Two realizations of the coupling were worked out. First, for the
linear-velocity case, the approximation holds trivially, and we derive the equation of
motion Eq. (4.32). Without assuming any fundamental physical picture, this equation
bears exact resemblance–at least in form–to the Abraham-Lorentz equation of an elec-
tron interacting with its own radiation field. In addition, because of the counterterm in
our model, we do not find a mass renormalization. Making the analogy with the work
of Caldeira and Barone, who assumed a fundamental electrodynamical Lagrangian to
derive the Abraham-Lorentz equation. Having expressed their results in terms of fun-
damental constants, they are able to estimate how large the cut-off-dependent terms in
their equation of motion are. For fundamental models, we suggest a similar approach
to deal with the cut-off dependent terms.

The second coupling we looked at as aimed at deriving a force Eq. (2.61) from the
work of Marksteiner, Ellinger and Zoller, which gives rise to Lévy flights in Sisyphus
cooling, as explained in Section 2.4. It turns out that the choice Eq. (4.45) gives exactly
this expression. This was the original motivation of modifying the Caldeira-Leggett
model to velocity-dependent coupling forces in the first place. In the low-velocity limit,
this model reduces to the linear-velocity model and hence returns the Abraham-Lorentz
equation. We have also shown that the approximation F ′′ ∼ 0 holds in the low- and
high-velocity limits. However, further research should be undertaken to interpolate in
between these extremes, where the approximation fails and memory effects start play-
ing a larger role. This will involve a numerical investigation, which we will leave to the
Outlook.

Furthermore, the choice for the spectral density throughout this chapter has been to as-
sume it to be linear in the frequency. However, one must stay vigilant to the ambiguous
term ‘ohmic bath’ in this case, since the spectral density is determined by the coupling
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constants and these coupling constants physically differ for every different choice of
F [Q̇]. In our case, we found, through Eq. (4.33), that the spectral density in terms of
the C̄k constants J̄ ∝ ω corresponds to a cubically superohmic J ∝ ω3 in terms of the
original spring constants Ck.
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5 EXTENDING THE QUANTUM MODEL

5 Extending the quantum model

I was inspired by the remarks in these books [of Heitler and Dirac]; not by
the parts in which everything was proved and demonstrated carefully and
calculated, because I couldn’t understand those very well. At the young
age what I could understand were the remarks about the fact that this
doesn’t make any sense, and the last sentence of the book of Dirac I can
still remember, “it seems that some essentially new physical ideas are here
needed.” So, I had this as a challenge and an inspiration. I also had a
personal feeling, that since they didn’t get a satisfactory answer to the
problem I wanted to solve, I don’t have to pay a lot of attention to what
they did do.

—Richard P. Feynman, Nobel Lecture [22]

5.1 Feynman-Dirac quantization: the sum over all paths

The goal of this chapter is to construct a quantum version of the extended Caldeira-
Leggett Lagrangian in terms of the general velocity coupling that we have used in the
previous chapter. We will use the path-integral to calculate the propagator for the
Lagrangian (4.1). From there, we go to the Euclidean version of the density operator.
Since we are only interested in the particle of interest, we use the reduced density matrix
strategy, by integrating out the bath particles from the full density matrix, leaving us
with an effective dynamics for the system of interest only.

This calculation is a long and tedious one. Instead of starting from the most difficult
path integral, we will work towards the path integral of the Lagrangian (4.1) for the
general-velocity coupling by solving the forced harmonic oscillator problem separately.
Hence, we will start by setting up the path-integral formulation and the evaluation of
the free particle in Section 5.1.1 and derive the result for the driven harmonic oscillator
in Section 5.1.2. In Section 5.1.3, we will employ the Wick-rotated functional-integral
method to evaluate the path integral for our modified Caldeira-Leggett Lagrangian
in terms of the general-velocity coupling. This procedure is analogous to the path
integral of the original Caldeira-Legget model, such that we will not repeat much of
the same steps by deriving the original quantum model explicitly, but we will point
out differences in the derivation along the way. With our result for the general-velocity
coupling Larangian, we will obtain an effective action by tracing out the harmonic
oscillator degrees of freedom of the bath, as we will see in Section 5.2. This effective
action can be seen as one of the original contributions of this thesis.

It turns out that we do not have to assume restictions for the general-velocity cou-
pling all the way through path-integral quantization, leaving us with a equally general
quantum model. From the effective action obtained in this way, we can investigate
particular couplings from the general result, as we will do in Section 5.3; we will con-
fine our scope to discussing the physical interpretations of three specific couplings: the
coordinate-coordinate coupling of the original Caldeira-Leggett model, to compare our
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5.1 Feynman-Dirac quantization: the sum over all paths

results with; the linear-velocity case, which gave us the Abraham-Lorentz equation in
Section 4.2.2; and the coupling of Eq. (4.45), which gave rise to a force responsible for
Lévy flights in Sisyphus cooling in Section 4.2.3.

5.1.1 The free particle

For completeness, we will first formulate the path-integral representation of quantum
mechanics.34 Starting from the Hamiltonian representation, we can derive the path
integral from Schrödinger’s equation

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , (5.1)

for a quantum state |Ψ〉 and Hamiltonian H, with solutions35

|Ψ(t)〉 = exp

(
− i
~
Ĥt
)
|Ψ(0)〉 . (5.3)

Using the completeness relation, we insert a complete set of basis states of position x′,
this reads

〈x |Ψ(t)〉 =

∞∫
−∞

dx′ 〈x| exp

(
− i
~
Ĥt
)
|x′〉 〈x′ |Ψ(0)〉 , (5.4)

which is equivalent to writing (suppressing the boundaries of the integral for brevity)

Ψ(x, t) =

∫
dx′K(x, t;x′, 0)Ψ(x′, 0), (5.5)

with

K(x, t;x′, 0) = 〈x| exp

(
− i
~
Ĥt
)
|x′〉 . (5.6)

This is the so-called ‘kernel’, or ‘propagator’; it encodes the dynamics of the quantum
system. It can be interpreted as evolving the state at position x′ and time t = 0 to
another state at position x and time t.

The idea now, is to break up the time-evolution from the initial state |Ψ(0)〉 to the

34The following derivation is partly based on [68, pp. 109–123], [36] and [11].
35We restrict ourselves to Hamiltonians with no explicit time-dependence. If the Hamiltonian would

be varying in time, the formal time-ordered solution to Eq. (5.1) reads

|Ψ(t)〉 = T exp

− i
~

t∫
0

dt′Ĥ(t′)

 |Ψ(0)〉 , (5.2)

for the time-ordering operator T , which has to be included, since the Hamiltonian does not commute
with itself at different times.
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final state |Ψ(t)〉 into discrete steps. First, if we envision an auxiliary time 0 < t1 < t,
Eq. (5.3) becomes

|Ψ(t)〉 = exp

(
− i
~
Ĥ(t− t1)

)
exp

(
− i
~
Ĥt1

)
|Ψ(0)〉 , (5.7)

which, in the spacetime coordinate representation, is equivalent to

Ψ(x, t) =

∫
dx′
∫
dx′′K(x, t;x′′, t1)K(x′′, t1;x′, 0)Ψ(x′, 0). (5.8)

This shows the semigroup property [36, p. 4] of kernels:

K(x, t;x′, t′) =

∫
dx′′K(x, t;x′′, t′′)K(x′′, t′′;x′, t′). (5.9)

If we now extend this property to decompose the evolution into N time intervals ∆t =
t/N , we can write for a very general Hamiltonian with kinetic part T̂ and potential V̂
that

exp

(
− i
~
Ĥt
)

=

[
exp

(
− i
~

(T̂ + V̂ )∆t

)]N
. (5.10)

Now, using the Baker-Hausdorff approximation formula, this becomesexp

(
− i
~
T̂∆t

)
exp

(
− i
~
V̂∆t

)
+

[
T̂, V̂

]
~2

(∆t)2

N . (5.11)

In the continuum limit ∆t→ 0, or, equivalently, N →∞, we obtain the exact relation

exp

(
− i
~
Ĥt
)

= lim
N→∞

[
Û(∆t)

]N
, (5.12)

for the evolution operator

Û(∆t) = exp

(
− i
~
T̂∆t

)
exp

(
− i
~
V̂∆t

)
. (5.13)

This allows us to write the kernel, using the semi-group property (5.9) for N discrete
steps in time, as

K(xN , t;x0, 0) = lim
N→∞

N−1∏
k=1

∞∫
−∞

dxk

 〈xk+1| exp

(
− i
~
T̂∆t

)
|xk〉 exp

(
− i
~
V (xk)∆t

)
(5.14)

where we have renamed the initial and final coordinates x0 and xN so that we can
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Figure 14: A depiction of multiple paths through spacetime from initial position xi at
time t0 to a final position xf at time t in N steps of discretized time. This is possible
due to the semigroup property of Eq. (5.9). Picture (modified) extracted from [68, p.
117].

include them into the sum. See Figure 14 for a depiction of this procedure. The po-
tential has been taken out of the expectation value as it is diagonal in the coordinate xj.

For future reference (to simplify the calculation for the kernel of the harmonic oscillator),
we need the propagator for the free particle,

HFP =
p̂2

2m
, (5.15)

with momentum eigenstates (with a continuous spectrum for eigenvalues p),

ψp(x) =
1√
2π~

exp

(
i

~
xp

)
. (5.16)

We can use this to evaluate the propagator, which contains all the information about
the eigenstates {|ψn〉} and eigenenergies En, where n counts the energy levels. Using
the completeness of a general set of eigenstates, Eq. (5.6) becomes

K(x, t;x′, 0) =
∑
n

exp

(
− i
~
Ent

)
ψn(x)ψ∗n(x′). (5.17)

In the case of the free particle,

K(x, t;x′, 0) =
1

2π~

∞∫
−∞

dp exp

[
− i
~

(
p2

2m
t+ (x− x′)p

)]
, (5.18)
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which, performing the Gaussian integral,36 becomes

K(x, t;x′, 0) =

√
m

2πi~t
exp

(
im(x− x′)2

2~t

)
, (5.20)

which is the result for the free particle propagator.

Returning to Eq. (5.14) for general potential V̂ , and comparing to the case of the free
particle, we can write for one matrix element

〈xk+1| exp

(
− i
~
T̂∆t

)
|xk〉 exp

(
− i
~
V (xk)∆t

)
=

√
m

2πi~∆t
exp

[
− i
~

((
xk+1 − xk

∆t

)2

− V (xk)

)
∆t

]
(5.21)

This results in the expression for the kernel

K(xN , t;x0, 0) =√
m

2πi~∆t
lim
N→∞

N−1∏
k=1

∞∫
−∞

√
m

2πi~∆t
dxk

 exp

[
− i
~

N−1∑
k=0

(
xk+1 − xk

∆t

)2

− V (xk)∆t

]
.

(5.22)

Eq. (5.22) is nothing else but a discretized version of the action,

S[x] =

t∫
0

dsL(s) =

t∫
0

ds

(
1

2
mẋ2 − V (x)

)
, (5.23)

and, hence, for initial coordinate x0 = xi and final coordinate xN = xf , the kernel can
be written as

K(xf , t;xi, 0) =

xf∫
xi

Dx exp

(
i

~
S[x]

)
, (5.24)

where Dx represents all possible paths x(t) satisfying the boundary conditions.

Eq. 5.24 is the central objects in the so-called spacetime-approach to quantum mechan-

36In principle, we have to address the issue that the exponential is complex valued. Technically,
then, the evaluation of the Gaussian integral should then be written as

∞∫
−∞

dx exp
(
−iαx2

)
=

√
π

iα
=

√
π

α
exp

(
− iπ

4

)
. (5.19)

However, we will ignore this issue, and leave the factor i in the coefficients.
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Figure 15: Perturbation theory around the classical path (here the extremum lies at
(x = 0) is justified, since the leading order of the action in the kernel (5.24) is quadratic.
Hence, higher terms–the quantum fluctuations–will contribute less.

ics, as first formulated by Paul Dirac [14] and interpreted by Richard Feynman [18].
The interpretation is that a quantum state traverses each path satisfying the boundary
conditions xi and xf through space with a weight exp(iS[x]/~) corresponding to that
path. Alternatively, this weight can be interpreted as the probability of finding the
state traversing the corresponding path [21].

The classical path has the largest probability weight, since the action is minimal
when it is evaluated for the classical path. If the potential is not quadratic in the
position coordinate, exact results cannot be obtained. Quantum deviations from the
classical action can then perturbatively found via the stationary phase approximation.
The use of perturbation theory is justified, since the quantum fluctuations will always
be small compared to the classical path, because the action is always quadratic to
leading order—the linear terms vanish due to the equations of motion. Hence, the
largest contribution to the kernel is Gaussian, and the largest contributions to the path
integral come from the region where the coordinate is small—as depicted in Figure 15,
where the real part of the complex Gaussian is plotted.

5.1.2 The driven harmonic oscillator

To expand on the merit of the path-integral method, let us calculate the result for
the driven harmonic oscillator. This result will be necessary to successfully apply to
functional-integral method of the next section. The Lagrangian is

L =
1

2
mẋ2 − 1

2
mω2x2 + xf(t), (5.25)
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for the force f(t), which couples linearly to the coordinate and may be interpreted as
an external field or an internal influence of the system on itself. The equation of motion
is

mẍ+mω2x = f(t). (5.26)

To calculate the propagator (5.24) for the driven harmonic oscillator, we have to cal-
culate the action

S =

t∫
0

[
1

2
mẋ2(s)− 1

2
mω2x2(s) + x(s)f(s)

]
, (5.27)

for every possible path between xi at s = 0 to xf at s = t. We now decompose the
path into a classical path xcl, corresponding to the extremal value of (5.27), and the
quantum fluctuations ξ(s) around this path

x(s) = xcl(s) + ξ(s), (5.28)

satisfying the boundary conditions

xcl(0) = xi, xcl(t) = xf , (5.29)

ξ(0) = 0, ξ(t) = 0. (5.30)

The action is decomposed accordingly,

S =

t∫
0

ds

[
1

2
mẋ2

cl(s)−
1

2
mω2x2

cl(s) + xcl(s)f(s)

]
+

t∫
0

ds

[
1

2
mξ̇2(s)− 1

2
mω2ξ2(s)

]

+

t∫
0

ds

[
1

2
mẋcl(s)ξ̇(s)−

1

2
mω2xcl(s)ξ(s) + ξ(s)f(s)

]
. (5.31)

The third part of this decomposition vanishes due to the equations of motion, which
can be easily seen by partial integration

t∫
0

ds
[
mẋclξ̇ −mω2xclξ + ξf(s)

]
= −

t∫
0

ds
[
mẍcl +mω2xcl − f(s)

]
ξ = 0, (5.32)

due to Eq. (5.26). The second part is independent of the boundary values of the classi-
cal path and therefore encodes the entire quantum-mechanical contribution, while the
first part is purely classical. We will focus on the classical part of the action first.

We have seen the solution to Eq. (5.26) before, as it is the same as the bath equation
of motion (3.46) with solution (3.47), for f(t) =

∑
k CkF [Q]. It was calculated in
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Appendix C, with the general solution given in Eq. (C.25). The classical path, then,
satisfying boundary conditions (5.29) is

xcl(s) = xf
sin(ωs)

sin(ωt)
+ xi

sin[ω(t− s)]
sin(ωt)

+

s∫
0

du
sin[ω(s− u)]

mω
f(u)− sin(ωs)

sin(ωt)

t∫
0

du
sin[ω(t− u)]

mω
f(u).

(5.33)

The classical action Scl can be calculated by plugging in the solution of the classical
equation of motion Eq. (5.33) into the action and evaluating the integral over the
auxiliary time s explicitly. The calculation for the classical action can be found in
Appendix D; the result is

Scl =
mω

2 sin(ωt)

[
(x2

i + x2
f ) cos(ωt)− 2xixf

]
+

xf
sin(ωt)

t∫
0

ds sin(ωs)f(s) +
xi

sin(ωt)

t∫
0

sin[ω(t− s)]f(s)

− 1

mω sin(ωt)

t∫
0

dt

s∫
0

du sin(ωu) sin[ω(t− s)]f(s)f(u). (5.34)

Now, we turn to the quantum fluctuations. After partial integration, the second term
in Eq. (5.31) is

Sq = −1

2
m

t∫
0

ds

[
ξ(s)

(
d2

ds2
− ω2

)
ξ(s)

]
. (5.35)

We then expand the quantum path in terms of the orthogonal37 eigenfunctions of the
operator between brackets in Eq. (5.35),

ξ(s) =
∞∑
n=1

anξn(s), (5.36)

with fixed endpoints ξn(0) = ξn(t) = 0. Solving, for eigenvalues αn, the equation
d2/ds2 + ω2ξn = αnξn gives eigenfunctions

ξn(s) =

√
2

t
sin
(πns

t

)
(5.37)

and

αn = −
(πn
t

)2

+ ω2. (5.38)

37The eigenfunctions form an orthogonal basis, since the operator d2/ds2 + ω2 is selfadjoint.
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The quantum action becomes

Sq =
1

2
m
∑
n

((πn
t

)2

− ω2

)
a2
n. (5.39)

After the expansion Eq. (5.36), the kernel (5.24) becomes

K(xf , t;xi, 0) = J exp

(
i

~
Scl

) ∞∏
n=1

∫ ∞
−∞

dan exp

[
im

2~

(
πn

t

2

− ω2

)
a2
n

]
, (5.40)

where J is the Jacobian for transformation (5.36). We can find the Jacobian explicitly,
but, following the shortcut of Feynman & Hibbs [21], we can also compare with the
result for the free particle by looking at the limit ω → 0, since the Jacobian itself is
independent of ω. Performing the Gaussian integral, keeping track of the ω-dependence,

K(xf , t;xi, 0) ∝
∞∏
n=1

(
1− ω2t2

π2n2

)−1/2

exp

(
i

~
Scl

)
=

√
ωt

sin(ωt)
exp

(
i

~
Scl

)
, (5.41)

where only the proportionality with respect to ω has been taken into account. Now, for
ω = 0 the kernel should coincide with that of the free particle, in Eq. (5.20). Putting
in the right prefactors, the result is

K(xf , t;xi, 0) =

√
mω

2πi~ sin(ωt)
exp

(
i

~
Scl

)
(5.42)

with the classical action given by Eq. (5.34). For ω → 0, this indeed gives Eq. (5.20).

5.1.3 Imaginary-time path integral: equilibrium reduced density matrix

It is possible to equate the equilibrium density matrix to the propagator (5.24) in
imaginary time. The density matrix for a system at temperature T = kB/β is

ρ̂(x, x′) =
1

Z
〈x| exp

(
−βĤ

)
|x′〉 , (5.43)

for the partition function

Z = 〈x| exp
(
−βĤ

)
|x〉 (5.44)

Comparing to the propagator in Eq. (5.6), we see that for t = −i~β they coincide—
aside from the normalization factor. This is called the Wick rotation and we can express
all our ingredients in terms of imaginary time. A general action, for example, after we
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replace the auxiliary time s by −iσ, reads

SE[x] =

~β∫
0

dσ

[
1

2
m

(
dx

dσ

)2

+ V (x)

]
, (5.45)

the so-called Euclidean action.38

We now recognize that the equilibrium density matrix, can be expressed as

ρ̂(x, x′) = 〈x| exp
(
−βĤ

)
|x′〉 =

1

Z

x̄(~β)=x∫
x̄(0)=x′

Dx̄(σ) exp

(
−1

~
SE[x̄(σ)]

)
. (5.46)

We now want to write the full density matrix of a composite model of system of interest
and and bath, such as we have seen throughout Chapters 3 & 4. Schematically, we have
split such Lagrangians into parts of the system S, the environment (or bath) B, their
interaction I and a counterterm C.T., such that

L = LS(Q) + LB(qk) + LI(Q, qk) + LC.T.(Q), (5.47)

for system variable Q and environmental degrees of freedom qk, for k ∈ {1, 2, ..., N}.
The density matrix for such a system, according to Eq. (5.46), reads

ρ̂(Q, qi, Q
′, q′i) =

1

Z

Q∫
Q′

DQ̄(τ)

 N∏
k=1

qk∫
q′k

Dq̄k(τ)

 exp

−1

~

~β∫
0

dτLE(Q̄(τ), q̄i(τ))

 ,
(5.48)

where τ = is an auxiliary Euclidean time variable. The boundaries of the path integrals
run from Q̄(0) = Q′ to Q̄(~β) = Q and q̄k(0) = q′k to q̄k(~β) = qk. Hence, variables
with ‘bars’ denote possible variables of the boundary conditions.

For most practical purposes, we are uninterested in the environmental degrees of free-
dom, or, at least, wholly ignorant about it. Therefore, we perform the trace over the
variable qi, i.e. we integrate over all possible initial conditions of the bath particles,
leaving us with the reduced density matrix ρ̂R. Mathematically,

ρ̂R(Q,Q′) =
1

Z

Q∫
Q′

DQ̄(τ)

 N∏
k=1

∞∫
−∞

dqk(τ)

( N∏
k=1

∮
Dq̄k(τ)

)
exp

−1

~

~β∫
0

dτLE(Q̄(τ), q̄i(τ))

 ,
(5.49)

where the environmental path integral is only over closed paths, since the trace only

38This offers some help for the physical interpretation of dynamics in imaginary time. Effectively,
the Wick rotation simply inverts the potential, which offers some physical intuition.
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picks out the diagonal elements of a matrix, i.e. only the closed paths for which qk :=
q̄k(0) = q̄k(~β) contribute.

We will have to evaluate all these integrals separately. Let us first separate the
Q-dependent parts of the Lagrangian from the qi-dependent parts by using Eq. (5.47)
and writing (dropping the argument τ for brevity)

ρ̂R(Q,Q′) =
1

ZBI

Q∫
Q′

DQ̄F(Q̄) exp

−1

~

~β∫
0

dτ
(
LE
S(Q̄) + LE

C.T (Q̄)
) , (5.50)

for the so-called influence functional

F(Q̄) =
N∏
k=1

Fk(Q̄)

Zk
, (5.51)

where

Fk(Q̄) =

∞∫
−∞

dqk

∮
Dq̄k exp

−1

~

~β∫
0

dτ
(
L(k)
B (q̄k) + L(k)

I (Q̄, q̄k)
) , (5.52)

which contains all contributions of the bath variables. The superscript (k) indicates
this is the Lagrangian per bath constituent, instead of the sum over all. ZBI is the
partition function taking into account only the bath and interaction Lagrangians; Zk
is the partition function of a single bath particle. Keeping track of these normalization
factors, we see that we can relate it to the full partition function Z as

Z = ZBI ×
N∏
k=1

Zk. (5.53)

The influence functional (5.51), as the name might give away, describes the influence
of the bath on the system of interest. First introduced first by Feynman and Vernon
[19], it is possible to separate the Q-dependent part from the qi-dependent part which
is what makes the influence-functional method so successful.

For the time evolution of the composite system, we have assumed that, initially,
the system and the environment are uncorrelated, i.e. their t = 0-density matrices
factorize:

ρ̂(Q, qi; t = 0) = ρ̂S+C.T.(Q; t = 0)× ρ̂B(qi; t = 0) (5.54)

For more general initial conditions, see [28] for the free particle, [62] in the case of the
damped harmonic oscillator, and [27] for a completely general approach.39

39The separability condition for the initial state of the composite system bears significant resemblance
to Boltzmann’s ‘Stoßzahlansatz’ in his ‘derivation’ of the second law of thermodynamics [72].
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5.2 Obtaining the effective action for general-velocity coupling

In this section we will derive the propagator for the modified Caldeira-Leggett La-
grangian in terms of general-velocity coupling, using the functional-integral approach
of the previous section. The goal is to write down the quantum version of the entire
system, after which we extract only the information of the system of interest. Mathe-
matically, this will entail evaluating the path integral and the regular integrals in Eq.
(5.52). For the modified Caldeira-Leggett Lagrangian Eq. (4.1), we have the corre-
sponding Euclidean expressions (replacing t by −i~β),40

SE0 [Q] =

~β∫
0

dτ

(
1

2
MQ̇2 + V (Q) +

N∑
k=1

C̃2
k

2mkω2
k

F [Q̇]2

)
, (5.55)

SEB [qk] =
1

2

~β∫
0

dτ
N∑
k=1

mk

(
q̇2
k + ω2

kq
2
k

)
, (5.56)

SEI [qk, Q] =

~β∫
0

dτ

(
F [Q̇]

N∑
k=1

C̃kqk

)
, (5.57)

where we have combined the action of the system with the counterterm and renamed
it SE

0 , since this only depends on the system of interest. The ‘dots’ denote derivatives
with respect to imaginary time.

Now, we have to evaluate the influence functional per oscillator of Eq. (5.52),

Fk(Q) =

∞∫
−∞

dqk

∮
Dq̄k exp

−1

~

~β∫
0

dτ

(
1

2
mk

(
q̇2
k + ω2

kq
2
k

)
+ F [Q̇]

N∑
k=1

C̃kqk

) . (5.58)

But this is precisely the path-integral calculation of the driven harmonic oscillator as
we have seen in Section 5.1.2; the result was given by Eq. (5.42). We only have to
replace x by qk, give the bath-parameters an index k, and replace the driving force f(t)
by our coupling function C̃kF [Q̇(t)].

Fk(Q) =

√
mkωk

2πi~ sin(ωkt)

∞∫
−∞

dqk exp

(
−1

~
S

(k)
cl

)
(5.59)

The classical action was given in Eq. (5.34); for closed paths qk := qi = qf , it simplifies

40From here on, we will drop the ‘bars’.
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to

S
(k)
cl =

mkωk
sin(ωkt)

q2
k [cos(ωkt)− 1] +

C̃kqk
sin(ωkt)

t∫
0

ds (sin(ωks) + sin[ωk(t− s)])F [Q̇(s)]

− C̃2
k

mkωk sin(ωkt)

t∫
0

ds

s∫
0

du sin(ωku) sin[ωk(t− s)]F [Q̇(s)]F [Q̇(u)]. (5.60)

In Euclidean time, we can make the replacements cos(ωkt) → cosh(~βωk); sin(ωkt) →
−i sinh(~βωk); and, changing the auxiliary time variables and their boundaries (using
Greek letters for imaginary times), the Euclidean classical action per oscillator reads

S
(k)E
cl =

mkωk
sinh(ωkt)

q2
k [cosh(~βωk)− 1] +

C̃kqk
sinh(~βωk)

~β∫
0

dτ (sinh(ωkτ) + sinh[ωk(~β − τ)])F [Q̇(τ)]

− C̃2
k

mkωk sinh(~βωk)

~β∫
0

dτ

τ∫
0

dσ sinh(ωkσ) sinh[ωk(~β − τ)]F [Q̇(τ)]F [Q̇(σ)].

(5.61)

In order to perform the Gaussian integral in Eq. (5.59), we have to complete the square.
This calculation is found in Appendix E. The result is

S
(k)E
cl =

mkωk
sinh(ωkt)

[cosh(~βωk)− 1] [qk − q∗k]
2 − C̃2

k

2mkωk

~β∫
0

dτ

τ∫
0

dσGk(τ − σ)F [Q̇(τ)]F [Q̇(σ)],

(5.62)

for

Gk(τ) =
cosh

[
ωk
(~β

2
− τ
)]

sinh
(~βωk

2

) , (5.63)

which has the important property of being periodic:

Gk(~β − τ) = Gk(τ). (5.64)

We can now do the Gaussian integral in the influence functional per bath constituent
Eq. (5.59)–in Euclidean time–by making a constant shift qn → qn + q∗n, with unit
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Jacobian,

Fk(Q) =

√
mkωk

2π~ sinh(~βωk)

∞∫
−∞

dqk exp
{
−1

~
mkωk

sinh(ωkt)
[cosh(~βωk)− 1] q2

k

+
1

~
C̃2
k

2mkωk

~β∫
0

dτ

τ∫
0

dσGk(τ − σ)F [Q̇(τ)]F [Q̇(σ)]
}
.

(5.65)

Performing the integral,

Fk(Q) =
1√

2(1− cosh(~βωk))
exp

1

~
C̃2
k

2mkωk

~β∫
0

dτ

τ∫
0

dσGk(τ − σ)F [Q̇(τ)]F [Q̇(σ)]

 .
(5.66)

Now, using that
√

2(1− cosh(~βωk)) =
√

2(2 sinh2(~βωk)) = 2 sinh2(~βωk), which is

precisely the inverse partition function for a single harmonic oscillator, as it should be.
Hence,

Fk(Q) = Zk exp

1

~
C̃2
k

2mkωk

~β∫
0

dτ

τ∫
0

dσGk(τ − σ)F [Q̇(τ)]F [Q̇(σ)]

 . (5.67)

The total influence integral is, then,

Fk(Q) =
N∏
k=1

1

Zk
= exp

1

~

N∑
k=1

C̃2
k

2mkωk

~β∫
0

dτ

τ∫
0

dσGk(τ − σ)F [Q̇(τ)]F [Q̇(σ)]

 . (5.68)

The bath particles are now successfully integrated out. Their presence is seen through
the double integral and the occurrence of the forces F . This term contains non-local
interactions. That is to be expected, since the interactions that are mediated by the
bath particles–here seen in the presence of the F -functions–are not explicit anymore,
due to integrating out the bath coordinates. In other words, the dynamics of the bath
is invisible, but its influence on the dynamics of the Brownian system of interest is not.
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Using Eq. (2.32), we can write the reduced matrix,

ρ̂R(Q,Q′) =
1

ZBI

Q∫
Q′

DQ exp

−1

~

SE0 [Q]−
N∑
k=1

C̃2
k

2mkωk

~β∫
0

dτ

τ∫
0

dσGk(τ − σ)F [Q̇(τ)]F [Q̇(σ)]

 ,
(5.69)

where we recognize the effective action

SEeff =

~β∫
0

dτ

(
1

2
MQ̇2 + V (Q)−

N∑
k=1

C̃2
k

2mkω2
k

F [Q̇]2

)
+

N∑
k=1

C̃2
k

2mkωk

~β∫
0

dτ

τ∫
0

dσGk(τ−σ)F [Q̇(τ)]F [Q̇(σ)],

(5.70)
where we have written SE0 in terms of the system action and the counterterm action,
again.
Let us focus on the last term, which is entirely induced by the bath. Following
Feynman’s lectures on statistical mechanics [23, p. 83] in the case of the linear cou-
pling, we will define F [Q̇(σ)] to be a periodic function outside of the integral domain
0 ≤ σ ≤ ~β such that F [Q̇(σ + ~β) = F [Q̇(σ)]. Then, we take the boundaries to

infinity
∫ ~β

0
dσ →

∫∞
−∞ dσ. Using the symmetry property (5.64), we can write for the

bath-induced term

−
N∑
k=1

C̃2
k

2mkωk

~β∫
0

dτ

∞∫
−∞

dσGk(τ − σ)F [Q̇(τ)]F [Q̇(σ)]. (5.71)

Since we work in the relaxation time approximation, we want to use only the dominant
term of the function Gk. For very long times T = tb − ta →∞, we write

lim
T→∞

Gk(τ − σ) = lim
T→∞

e
T
2 e−ωk|τ−σ| + e−

T
2 eωk|τ−σ|

e
T
2 + e−

T
2

= e−ωk|τ−σ|, (5.72)

where we have changed the dependence on the difference τ − σ to a dependence on
the absolute difference |τ − σ|, since this difference is always positive on the interval
0 ≤ σ ≤ ~β and this should not change when extending to an infinite domain.
The bath-induced term in the effective action becomes,

−
N∑
k=1

C̃2
k

2mkωk

~β∫
0

dτ

∞∫
−∞

dσe−ωk|τ−σ|F [Q̇(τ)]F [Q̇(σ)]. (5.73)

Now, to separate local from non-local terms, we complete the square,

− 1

2
[F [Q̇(τ)]− F [Q̇(σ)]]2 = −1

2
F 2[Q̇](τ)− 1

2
F 2[Q̇](σ) + F [Q̇(τ)]F [Q̇(σ)], (5.74)
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such that the bath-induced term can be written as

1

2

N∑
k=1

C̃2
k

4mkωk

~β∫
0

dτ

∞∫
−∞

dσe−ωk|τ−σ|
{[
F [Q̇(τ)]− F [Q̇(σ)]

]2

−
[
F 2[Q̇(τ)] + F 2[Q̇(σ)]

]}
.

(5.75)
Due to the periodic symmetry of the coupling functions and the exponential, by in-
terchanging the integration variables of one of them, the last two terms simply add.
Hence, the second part of Eq. (5.75) becomes

−
N∑
k=1

C̃2
k

4mkωk

~β∫
0

dτ

∞∫
−∞

dσe−ωk|τ−σ|F 2[Q̇(σ)]. (5.76)

To evaluate the integral over σ, we first split the domain into a part where σ < τ and
a part where σ > τ ,

σ∫
−∞

dσe−ωk(τ−σ)F 2[Q̇(σ)] +

∞∫
σ

dσe+ωk(τ−σ)F 2[Q̇(σ)] =
2F 2[Q̇(σ)]

ωk
, (5.77)

which exactly cancels the contribution from the counterterm, as can easily be seen by
consulting Eq. (5.70). Hence, the only contribution from the bath-induced term we are
left with is a purely non-local (it only depends on differences) term

SEnon-local[Q(τ)] =
1

2

N∑
k=1

C̃2
k

4mkωk

~β∫
0

dτ

∞∫
−∞

dσe−ωk|τ−σ|
[
F [Q̇(τ)]− F [Q̇(σ)]

]2

. (5.78)

We now use the (by now) familiar procedure of the spectral density of Eq. (3.24) to
write the discrete sum over the oscillators k into an continuous integral over frequency
ω. Remember, our coupling constants C̃k for the velocity-coupling do not coincide with
the spring constants Ck. Specifically,

N∑
k=1

C̃2
k

4mkωk
e−ωk|τ−σ| =

1

2π

∞∫
0

J̃(ω)e−ω|τ−σ|, (5.79)

such that the effective action (5.70) becomes

SEeff =

~β∫
0

dτ

1

2
MQ̇2 + V (Q) +

1

4π

~β∫
0

dτ

∞∫
−∞

dσ

∞∫
0

dωJ̃(ω)e−ω|τ−σ|
[
F [Q̇(τ)]− F [Q̇(σ)]

]2


(5.80)
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This is one of the main results of this thesis. For ohmic dissipation,41

J̃(ω) = λω, (5.81)

one finds for the bath-induced term, after partial integration in ω,

SEnon-local[Q(τ)] =
λ

4π

~β∫
0

dτ

∞∫
−∞

dσ

Ω∫
0

dωe−ω|τ−σ|

[
F [Q̇(τ)]− FQ̇(σ)]

]2

|τ − σ|
. (5.82)

and, completing the integral over ω for Ω→∞,

SEnon-local[Q(τ)] =
λ

4π

~β∫
0

dτ

∞∫
−∞

dσ

[
F [Q̇(τ)]− FQ̇(σ)]

]2

|τ − σ|2
. (5.83)

This term is entirely induced by the bath. It is analogous to the famous ‘Caldeira-
Leggett’-term, as we have mentioned in Eq. (3.65), but it is much more general. In
our case, the coupling is not linear, but entirely general and in terms of velocity. If we
would have started out with a coordinate-coordinate coupling and counterterm such as
in the original Caldeira-Leggett model, the result would be exactly Eq. (5.80) with F
replaced by Q.

The final result for the Euclidean effective action is

SEeff[Q(τ)] =

~β∫
0

dτ

{
1

2
MQ̇2 + V (Q)

}
+

λ

4π

~β∫
0

dτ

∞∫
−∞

dσ

[
F [Q̇(τ)]− F [Q̇(σ)]

]2

|τ − σ|2
. (5.84)

Eq. (5.80) in general, or Eq. (5.84) for baths with J̃ ∝ ω in particular, can be seen
as a starting point for further research. To indicate some possibilities, we will now look
at several specific choices for this coupling to make a connection to the specific choices
made in Chapter 4, namely the non-polynomial coupling we have used in Section 4.2.3
and its low-velocity limit, the linear-coupling case, as we saw in Section 4.2.2.

5.3 Specific choices for the velocity coupling

In Chapter 4, the most important results were those for a linear-velocity coupling and
a non-polynomial coupling (4.45). The linear-velocity case gave rise to a equation of
motion analogous to the Abraham-Lorentz equation of a self-interacting electron. For
the coupling in Eq. (4.45), we saw that this resulted in an expression equivalent to that
of Lévy flights in ultracold-atom experiments. Since the former is the low-velocity limit
of the latter, we will start with the non-polynomial coupling (4.45) in Section 5.3.1,

41Ohmic dissipation in the sense that the spectral density in terms of C̃k is linear in ω.
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reducing to the linear-velocity case in Section 5.3.2.
The goal of these sections is to mostly to indicate further research. In particular

for the non-polynomial coupling (4.45) through numerical research has to be done, as
we will come back to in the outlook. In the linear-velocity case, we find a result for
the quantum effective action, Although specific calculations can be done using this
effective action (for example, calculating its decoherence properties for two Gaussian
distributed quantum states), we will provide a physical interpretation for this effective
action—corresponding to the physics of the corresponding classical Abraham-Lorentz
equation.

5.3.1 Quantum Lévy flights in ultracold atoms

Combining previous results, namely the general effective action of Eq. (5.84) and the
coupling found in Section 4.2.3 to reproduce to the force term by Marksteiner, Ellinger
and Zoller, Eq. (4.45), we find an effective action that represents the quantum version
of this force,

Seff[Q(τ)] =

~β∫
0

dτ

{
1

2
MQ̇2 + V (Q)

}

+
λ

4π

~β∫
0

dτ

∞∫
−∞

dσ
1

|τ − σ|2


√√√√√log

1 +

(
Q̇(τ)

v0

)2
−

√√√√√log

1 +

(
Q̇(σ)

v0

)2

 ,

(5.85)

Although it is clear that the path integral has to be evaluated numerically, which
can then also be used to calculate decoherence properties, we will leave this as a point
for further research. However, in the low-velocity limit, where the coupling becomes
linear in velocity, the effective action becomes easier to interpret.

5.3.2 The low-velocity limit: resisting acceleration

The result Eq. (5.85) is very similar to the results obtained by Caldeira & Leggett
[11, p. 149–150] for the coordinate-coordinate coupling of Chapter 3. Following the
same steps–using the equilibirum denisty operator, tracing out the bath and writing
the effective action as a local and a non-local part–they find the effective action

Seff[Q(τ)] =

~β∫
0

dτ

{
1

2
MQ̇2 + V (Q)

}
+

η

4π

~β∫
0

dτ

∞∫
−∞

dσ
[Q(τ)−Q(σ)]2

|τ − σ|2
, (5.86)
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as we already mentioned in the conclusion of Chapter 3. Here, the bath is assumed to
be ohmic,

J(ω) =
∑
k

C2
k

mkωk
δ(ωk − ω) = ηω. (5.87)

The last term in Eq. (5.86) is called the Caldeira-Leggett term and it describes a
bath-induced effective potential that is non-local, since it only depends on the relative
position of the Brownian system at different times. It is interpreted as friction, because
for successive times close together, i.e. |τ − σ| ∼ 0, this non-local term diverges unless
the relative distance of the particle at different times, Q(τ)−Q(σ), also tends to zero.
Hence, it is energetically favorable for the particle to resist displacement; which is ex-
actly what friction does.

Turning to our results, in the low-velocity limit, Q̇� v0, using the Taylor expansion of
Eq. (4.54) we find that the non-polynomial coupling of the previous section, Eq. (5.85),
reduces to

Seff [Q̄(τ)] =

~β∫
0

dτ

{
1

2
MQ̇2 + V (Q)

}
+

λ

4π

~β∫
0

dτ

∞∫
−∞

dσ

[
Q̇(τ)− Q̇(σ)

]2

|τ − σ|2
. (5.88)

Again, the second term is non-local, since it exclusively depends on the relative velocity
of the Brownian system at different times. The interpretation of this modified Caldeira-
Leggett term can be made in the same way as for the original term. For successive times
close together, i.e. |τ − σ| ∼ 0, this term diverges unless the relative velocity of the
Brownian system at different times, Q̇(τ) − Q̇(σ), also tends to zero. Hence, it is en-
ergetically much better for the particle to resist acceleration, and we can interpret this
bath-induced effect as that of inertia on top of the massM in the local part of the action.

There are two points to be made about this comparison to the original Caldeira-Leggett
model and the linear-velocity model. First, to derive Eq. (5.88), we assumed an ohmic
bath in terms of the coupling constant C̃k. As we pointed out throughout Chapter 4,
and explicitly in Eq. (4.33), this corresponds to a cubically superohmic spectral density
in terms of the spring constants Ck of the original Caldeira-Leggett model. Second,
the previous point implies that, as we saw in Section 4.2.2, the classical equation of
motion corresponding to Eq. (5.88) is the Abraham-Lorentz equation (4.38) we derived
in Section 4.2.2.

5.4 Conclusion

In this chapter we have discussed the path-integral formulation of quantum mechan-
ics, deriving the well-known propagators for the free particle and the forced harmonic
oscillator. Most of the tedious work went into deriving the classical action for the
forced harmonic oscillator, which we have rearranged to Appendix D. Doing this cal-
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5.4 Conclusion

culation separately, made the evaluation of the influence functional for the modified
Caldeira-Leggett Lagrangian Eq. (4.1) more accessible.

The goal of this chapter was to derive a quantum effective action for a completely
general coupling of the velocity of a Brownian system to the coordinates of the environ-
ment. In Section 5.2, by using the influence-functional method of Feynman and Vernon
in the Euclidean-time path-integral formalism and tracing out the bath coordinates, we
found the effective action we were after. The result, before assuming a specific spectral
density, is Eq. (5.80). For J̃(ω) ∝ ω, gives a final result Eq. (5.84), which seems
to be of the same form as the original Caldeira-Leggett term; this was to be expected,
since the path integral over the system coordinate Q is not performed in this procedure.

The final result can be seen as a starting point for further research. It is a collection
of different models, where each model is specified by a particular coupling. We have
looked at two such models, drawn from Chapter 4, namely the coupling (4.44) that we
used to make a connection with the results of Marksteiner, Ellinger and Zoller in the
case of Lévy flights in Sisyphus cooling, and its low-velocity limit: the linear-velocity
coupling case, which resulted in the Abraham-Lorentz equation. Unfortunately, the
expression (5.85) does not allow for a straightforward analytical evaluation, and hence
the path integral over Q should be performed numerically. In the case of the coupling
linear in velocity, however, a clear physical interpretation is found. Analogous to the
interpretation of friction in the original Caldeira-Leggett term (5.86), the modified
Caldeira-Leggett term in Eq. (5.88) is that of inertia. In other words, the result of the
bath-induced effective dynamics is that the Brownian system resisting acceleration (on
top of Newtonian inertia).

For further calculation, one should specify a particular from for the external poten-
tial V (Q). In that case, one can, in principle, determine the effective dynamics of the
system of interest by performing the path integral over all paths Q(τ). In the original
Caldeira-Leggett model, only the models V (Q) ∝ Qn for which n ∈ {0, 1, 2} result
in expressions that can be analytically evaluated. Especially, for a harmonic potential,
V (Q) ∝ Q2, the original Caldeira-Leggett model results in seminal model to describe de-
coherence (the dissipation of entanglement as described in Section 2.2), where an exact
localization rate can be calculated for two initially Gaussian-distributed wave-packets.
The analysis of the analogous model for the effective action of the general-velocity cou-
pling in Eq. (5.80), will be left to further research, as we will come back to in the
Outlook.
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6 Conclusion & Outlook

The goal of this thesis was twofold. On the one hand, to construct a closed Lagrangian
model that could reproduce Lévy motion. The motivation for this was largely to account
for a closed description of Lévy flights during Sisyphus cooling. On the other hand, to
quantize such a system using path-integral quantization. We choose to search for these
goals by modifying the Caldeira-Leggett model to general velocity-dependent coupling.
With this choice, we left other possibilities behind. For example, trying to construct
a stochastic Schrödinger equation in the style of Kostin [40] and Nelson [63], using a
modified quantization scheme [13], or entering the Lindblad formalism [47].

We discussed the theory of Brownian motion from the point of view of Einstein’s
diffusion and the velocity-dependent Langevin equation. In the relaxation time ap-
proximation, i.e. when all important timescales are larger than the collision time τ , we
could safely assume white noise correlations, avoiding the Itô-Stratonovich dilemma.

In Chapter 3, we have developed the Caldeira-Leggett model, and showed the deriva-
tion of the Langevin equation in the classical limit. We also proved its internal consis-
tency by showing that it satisfies the fluctuation-dissipation theorem for all choices of
the spectral density J(ω). This offered an a posteriori justification of the model.

Chapter 4 contained our first original contributions. By writing the Lagrangian (4.1), we
modified the interaction between the system and the bath. Before, their coupling was of
the coordinate-coordinate type. Now, we choose a coupling general in the velocity of the
system, while still coupled to the coordinates of the bath particles. The counterterm is
adjusted accordingly. The resulting modified generalized Langevin equation was (4.14).
Compared to the generalized Langevin equation (3.53) for general-coordinate coupling,
there are extra terms due to the existence of the second derivative of the coupling
function F ′′[Q̇]. The system has velocity-dependent multiplicative noise, as well as
memory, for all choices of the spectral density.

Under the approximation F ′′[Q̇] ∼ 0, we have worked out two realizations of the
coupling function F [Q̇]. First, for the linear-velocity case, the approximation holds
trivially and we derive the equation of motion Eq. (4.32). Without assuming any
fundamental physical picture, this equation bears exact resemblance–at least in form–
to the Abraham-Lorentz equation of an self-interacting electron. Since we also changed
the counterterm in our model, we do not find a mass renormalization, since the new
counterterm adds precisely that amount of mass to the kinetic part of the system of
interest.

It is important to bear in mind that we found this under the assumption that the
spectral density J̄ is linear in the frequency, and that this corresponds to an ohmic
bath in terms of coupling constants C̄k, but that for coupling constants Ck, the bath
is cubically superohmic, J ∝ ω3. Hence, the term ‘ohmic bath’ is ambiguous when one
does not explicitly specify the dimension of the coupling constants.

For the occurrence of Lévy flights in ultracold-atoms experiments like Sisyphus cooling,
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as was discussed in Section 2.4, we were able to reproduce the force Eq. (4.44) from the
work of Marksteiner, Ellinger and Zoller [56], which gives rise to Lévy flights. Here,
individual atoms in a cooling atom cloud exhibit Lévy flights as a result of the recoil
caused by spontaneous photon emission. It turns out that the choice Eq. (4.45) gives
exactly this expression. This was the original motivation of modifying the Caldeira-
Leggett model to velocity-dependent coupling forces. We also point out that, in the
low-velocity limit, this model reduces to the linear-velocity model and hence returns the
(form of the) Abraham-Lorentz equation. We have also shown that the approximation
F ′′ ∼ 0 holds in the low- and high-velocity limits, but further research should be un-
dertaken to interpolate in between these extremes, where the approximation fails and
memory effects start playing a larger role. This will involve a numerical investigation.

In Chapter 5 we have discussed the path-integral formulation of quantum mechanics and
used the Feynman-Vernon influence-functional method in Euclidean time to integrate
out the bath particles and derive an effective action for our modified Lagrangian (4.1).
The result, for a bath ohmic in terms of coupling constants C̃k, the final result is given
by Eq. (5.84). It has the same form as the original Caldeira-Leggett term.

This final result should be seen as a starting point for further research. It is a collection
of different models, where each model is specified by a particular coupling. We have
looked at the same models as before, the linear-velocity case and the Lévy-flight case.
The expression for the Lévy-flight case, Eq. (5.85), does not allow for a straightfor-
ward analytical evaluation, and hence the path integral over Q should be performed
numerically. In the low-velocity limit, this case reduces to the linear-velocity coupling.
Analogous to the interpretation of friction in the original Caldeira-Leggett term (5.86),
the modified Caldeira-Leggett term in Eq. (5.88) is that of inertia. The classical equa-
tion of motion corresponding to this, is, again, the Abraham-Lorentz equation (4.34).

In addition to the above-mentioned numerical work to be done for several results, one
can also look at the decoherence properties of the Lévy-flight coupling and/or the linear-
velocity coupling case. For further calculation, one should specify a particular form for
the external potential V (Q). In that case, one can, in principle, determine the effective
dynamics of the system of interest by performing the path integral over all paths Q(τ).

One more remark is in place concerning a possible general velocity-coupling Caldeira-
Leggett Hamiltonian and pursue the search for the generalized Langevin equation from
there, as worked out in Appendix F. This approach looks very interesting on account
of the absence of Q̈-terms due the equivalence of time derivatives of momentum Ṗ and
the external potential, as given by Hamilton’s equation (F.2). This is promising, since
the external potential is an experimental handle one can work with in the lab. At
the same time, it reduces the complexity of the generalized Langevin equation of the
velocity-coupling method, as given in Eq. (4.14), by transforming acceleration terms
into derivatives of the external potential, resulting in Eq. (F.10).
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A CANONICAL TRANSFORMATION OF THE
CALDEIRA-LEGGETT LAGRANGIAN

Appendices

A Canonical transformation of the Caldeira-Leggett

Lagrangian

Instead of using the Caldeira-Leggett Lagrangian as in Eq. (3.10) one can write it
without the counterterm and with a coordinate-velocity coupling with strength C̄k
instead of a coordinate-coordinate coupling with strength Ck, like

L =
1

2
MQ̇2 − V (Q) +

1

2

N∑
k=1

mk(q̇
2
k − ω2

kq
2
k) +Q

N∑
k=1

C̄kq̇k, (A.1)

The canonical momenta of the bath particles are

pi =
∂L
∂q̇i

= miq̇i + C̄iQ. (A.2)

The corresponding Hamiltonian, via the well-known Legendre transformation, becomes

H =
P 2

2M
+ V (Q) +

N∑
k

[
(pk − C̄kQ)2

2mk

+
1

2
mkω

2
kq

2
k

]
. (A.3)

Following [61], we perform a canonical transformation to the bath constituents

pi → miωiqi qi → −
pi
miωi

, (A.4)

which is canonical because it preserves the Poisson bracket:

1 = {qi, pi}P.B. → −{pi/���miωi ,���miωiqi}P.B. = 1. (A.5)

The Hamiltonian is transformed to

H =
P 2

2M
+ V (Q) +

N∑
k

[
p2
k

2mk

+
1

2
mkω

2
kq

2
k

]
−Q

N∑
k

C̄kωkqk +
1

2
Q2

N∑
k

C̄2
k

mk

, (A.6)

which coincides, after writing the Lagrangian through the inverse Legendre transfor-
mation, with the original Caldeira-Leggett model (3.10), for

C̄k =
Ck
ωk
, (A.7)

which makes dimensional sense as the time-derivative in the inverse frequency units
cancel each other.
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B Laplace transformations

The Laplace transform is similar to the Fourier transform; the former turns a com-
plex function into a function of a complex variable, while the latter creates a complex
function of a real variable. In physics, the Laplace transformation can be conveniently
employed to switch between the time-domain and the frequency-domain (extended as a
complex variable). The Laplace transformation of a function f(t), in the domain t > 0,
is defined as

f̃(l) = L{f(t)}(l) =

∞∫
0

dt f(t)e−lt, (B.1)

where l is some auxiliary variable, which must be transformed away at the end of a
calculation. As an example, we can take the transform of the function g(t) = e−at,
resulting in

g̃(l) = L{e−at} =

∞∫
0

dt e−(l+a)t =
1

l + a
(B.2)

The Laplace transformation has some important properties, notably for solving partial
differential equations. It is a linear operator: L{af(t)} = aL{f(t)}; and it turns
derivatives into multiplication: L{f ′(t)} = lL{f} − f(0). We can, for instance, solve
the decay equation dN/dt = −λN by using the Laplace transformation on both sides,

L{Ṅ(t)} = L{−λN(t)} (B.3)

lL{N(t)} −N(0) = −λL{N(t)}

→ L{N(t)}(l) =
N(0)

l + λ
.

Then, applying the inverse transformation,

N(t) = L−1{L{N(t)}(l)} (B.4)

= L−1{N(0)

l + λ
}

= N(0)L−1{ 1

l + λ
}

= N(0)e−λt,

where in the last step the Eq. (B.2) is used. It is often the most convenient to recognize
Laplace transformations of standard functions in this way. However, this is not always
possible. In that case, the calculation becomes more involved, and one must invoke the
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C SOLVING THE DRIVEN HARMONIC OSCILLATOR
DIFFERENTIAL EQUATION

inverse transformation via the so-called Fourier-Mellin integral (or Bromwich integral):

f(t) = L−1{F (l)}(t) =
1

2πi
lim
T→∞

δ−iT∫
δ+iT

dlF (l)elt, (B.5)

where δ is a (small) real number that prevents the contour from hitting the poles.
The Laplace transform also satisfies the convolution theorem, i.e. it turns a convo-

lution,

g(t) ? h(t) :=

t∫
0

dτ g(t− τ)g(τ) (B.6)

into a multiplication,

L{g(t) ? h(t)} =

t∫
0

dτ

∞∫
0

dt g(t− τ)h(τ)e−lt (B.7)

=

∞∫
0

dv e−lug(v)

∞∫
0

du e−lvh(u)

= g̃(l)h̃(l),

where in the second line we performed a change of variables t = u + v, τ = v. The
inverse convolution theorem then reads

L−1{g̃(l)h̃(l)} = g(t) ? h(t). (B.8)

C Solving the driven harmonic oscillator differen-

tial equation

The driven harmonic oscillator equation is

mẍ(t) + kx(t) = F (t), (C.1)

where F (t) is a general force function, and m and k are constant. An example of such
a system is the mass-spring system undergoing friction due to its environment. To
solve it, we will need to find the homogeneous solution and a particular solution. The
undriven, or homogeneous, harmonic oscillator equation is

mẍ(t) + kx(t) = 0, (C.2)
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which has solutions
xh(t) = A sin(ωt) +B cos(ωt), (C.3)

for ω2 = k/m and constantsA andB, which can be found by specifying initial conditions
for position and velocity.

The driven harmonic oscillator Eq. (C.1) is harder to solve. If we had a particular
solution xp, we can construct all the other solutions by adding it to the homogeneous
solution (C.3) and then find the constants A and B via the initial conditions,

x(t) = xh(t) + xp(t) = A sin(ωt) +B cos(ωt) + xp(t). (C.4)

However, the force function F (t) has a general form on which the particular solution
heavily depends. To meet ends, we can use the linearity of the left-hand side of Eq.
(C.1) and write down a superposition of simple solutions

m
d2

dt2
[x1(t) + x2(t)] + k [x1(t) + x2(t)] = F̃1(t) + F̃2(t), (C.5)

where each component satisfies the separate differential equations

mẍ1(t) + kx1(t) = F̃1(t) (C.6)

mẍ2(t) + kx2(t) = F̃2(t). (C.7)

Thus, we can choose a simple set of F̃ s and write xp(t) as a (weighted) sum of these
simpler solutions. The simplest F̃ (t), arguably, is a delta distribution

F̃ (t) = δ(t). (C.8)

This means there is no force at t < 0 nor at t > 0; there is only one ‘kick’ at t = 0
after which the system starts to oscillate. Consistent with this, we restrict ourselves to
the retarded Green function, which is equivalent to assuming causality. Since there is
no force after the kick, the solution will again be like the homogeneous solution of Eq.
(C.3); hence

x(t) =

{
0 if t < 0

Ã sin(ωt) + B̃ cos(ωt) if t > 0

}
. (C.9)

This almost solves the problem, it leaves us only with finding the correct ‘junction’
condition to make sure the solution is continuous at t = 0. Looking at the equation

mẍ+ kx = δ(t) (C.10)

and integrating around the point x = 0

t=+ε∫
t=−ε

dt [mẍ(t) + kx(t)] =

t=+ε∫
t=−ε

dtδ(t) (C.11)
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leads to
m [ẋ(ε)− ẋ(−ε)] +O(ε) = 1, (C.12)

Assuming the second term is small because of

‖
t=+ε∫
t=−ε

x(t)‖ ≤ max ‖x(t)‖2ε, (C.13)

we can close the gap from both sides, ε ↓ 0+ and ε ↑ 0−, and obtain, at leading order

mẋ(t = 0+)−mẋ(t = 0−) = 1. (C.14)

According to Eq. (C.9) we have ẋ(t = 0−) = 0 and ẋ(t = 0−) = 1/m. Also, because
Eq. (C.13) ensures that

lim
ε→0

t=+ε∫
t=−ε

dtẋ(t) = 0, (C.15)

we can conclude that

lim
ε→0

t=+ε∫
t=−ε

dtẋ(t) = lim
ε→0

[x(ε)− x(−ε)] = 0, (C.16)

such that
x(t = 0+) = 0 = x(t = 0−). (C.17)

Now, we can determine the Ã and B̃ from (C.9) at t = 0 and find that

B̃ = 0 , Ã =
1

mω
, (C.18)

leading us, finally, to

xp(t) =
sinωt

mω
. (C.19)

From here we can straightforwardly write Eq. (C.1) as a weighted sum of linear dif-
ferential equations. First, it is possible to construct the arbitrary force F (t) using the
simple solution just obtained,42

F (t) =

∞∫
t′=−∞

dt′F (t′)δ(t− t′), (C.20)

where F (t′) plays the role of a weight of the delta distribution around each point t′.

42We can imagine that any bijective function is made of delta functions with appropriate weights.
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Since the delta function at t′ = t has strength F (t′) instead of unity, we simply multiply
the solution Eq. (C.19) with F (t′). Also, we should account for the delta functions at
t < t′, but not for those at t > t′, since due to our causality assumption they have
not yet influenced the system. Thus, for an arbitrary fluctuation force the particular
solution is

xp(t) =

∞∫
t′=−∞

dt′F (t′)
sin [ω(t− t′)]

mω
, (C.21)

We can check this by calculating the first and second derivatives of xp(t),

d

dt

∞∫
t′=−∞

dt′F (t′)
sin [ω(t− t′)]

mω
=

[
F (t′)���

��
���:0sin [ω(t− t′)]

mω

]
t′=t

+

∞∫
t′=−∞

dt′F (t′)
cos [ω(t− t′)]

m

(C.22)

and

m
d2xp(t)

dt2
=

d2

dt2

∞∫
t′=−∞

dt′F (t′)
sin [ω(t− t′)]

ω
=

d

dt

∞∫
t′=−∞

dt′F (t′) cos [ω(t− t′)]

= [F (t′) cos [ω(t− t′)]]t′=t −
∞∫

t′=−∞

dt′F (t′) sin [ω(t− t′)]

= F (t)− ω
∞∫

t′=−∞

dt′F (t′) sin [ω(t− t′)] ,

= F (t)−mω2xp(t), (C.23)

which shows that (C.21) indeed satisfies (C.1)

d2xp(t)

dt2
+ ω2xp(t) =

F (t)

m
. (C.24)

To find all possible solutions, we add the homogeneous solution,

x(t) = A sin(ωt) +B cos(ωt) +
1

mω

t∫
t′=−∞

dt′F (t′) sin [ω(t− t′)] . (C.25)

For general initial conditions x(t = 0) = x0 and ẋ(t = 0) = ẋ0:

x(t) = x0 sin(ωt) +
ẋ0

ω
cos(ωt) +

1

mω

t∫
t′=−∞

dt′F (t′) sin [ω(t− t′)] . (C.26)
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D Classical action of the driven harmonic oscillator

We start with the action for the driven harmonic oscillator of mass m, frequency ω,
and fluctuation force f(t),

S[x] =

t∫
0

ds

[
1

2
mẋ2(s)− 1

2
mω2x2(s) + x(s)f(s)

]
. (D.1)

Here, we will compute its classical result, i.e. the value for the path xcl which extremizes
the numerical value of this functional as given by Hamilton’s principle. This is a
boundary value problem, with boundaries xcl(s = 0) = xi and xcl(s = t) = xf , while
also satisfying the equations of motion

mẍcl +mω2x = f(s). (D.2)

The classical path, using the general solution to the equations of motion Eq. (C.25), is

xcl(s) = xf
sin(ωs)

sin(ωt)
+ xi

sin[ω(t− s)]
sin(ωt)

+

s∫
0

du
sin[ω(s− u)]

mω
f(u)

−sin(ωs)

sin(ωt)

t∫
0

du
sin[ω(t− u)]

mω
f(u). (D.3)

satisfying for the boundary constraints in Eq. (D.2). One can check this by explicit
differentiation

d2xcl(s)

ds2
=− ω2

(
xf

sin(ωs)

sin(ωt)
+ xi

sin[ω(t− s)]
sin(ωt)

)

+
ω

mω

d

ds


��

���
��:0

sin[ω(s− s)] +

s∫
0

du cos[ω(s− u)]f(u)− cos(ωs)

sin(ωt)

t∫
0

du sin[ω(t− u)]f(u)


=(−ω2)

(
xf

sin(ωs)

sin(ωt)
+ xi

sin[ω(t− s)]
sin(ωt)

)
+

(−ω2)

mω

s∫
0

du sin[ω(s− u)]f(u)

− (−ω2)
sin(ωs)

sin(ωt)

t∫
0

du sin[ω(t− u)]f(u) +
f(s)

m

= −ω2xcl(s) +
f(s)

m
, (D.4)

showing that it satisfies Eq. (D.2).
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The classical action Scl can be calculated by plugging in the solution of the classical
equation of motion into the action and evaluating the integral over the auxiliary time
s explicitly. To simplify beforehand, we partially integrate Eq. (D.1) to obtain

Scl =

t∫
0

ds

[
1

2
m

(
ẍ2
cl + ω2xcl −

f(s)

m

)
xcl

]
+

1

2
m [ẋcl(s)xcl(s)]

s=t
s=0

=
1

2
mẋcl(t)xcl(t)−

1

2
mẋcl(0)xcl(0) +

t∫
0

dsxcl(s)f(s), (D.5)

where the equations of motion (D.2) were used to go from the first to the second line.
Explicit calculation leads to

ẋcl(0) =
ωxf

sin(ωt)
− ωxi

cos(ωt)

sin(ωt)
− 1

m sin(ωt)

t∫
0

ds sin[ω(t− s)]f(s) (D.6)

and

ẋcl(t) = ωxf
cos(ωt)

sin(ωt)
− ωxi

sin(ωt)
+

1

m

t∫
0

du cos[ω(t− u)]f(u)− cos(ωt)

m sin(ωt)

t∫
0

du sin[ω(t− u)]f(u)

= ωxf
cos(ωt)

sin(ωt)
− ωxi

sin(ωt)
+

1

m sin(ωt)

t∫
0

ds sin(ωs)f(s), (D.7)

where, in the last line, we changed the auxiliary time variable from u to s and used the
trigonometric relation that

cos[ω(t− u)]− sin[ω(t− u)] cos(ωt) sin(ωt)−1 = sin(ωu) sin(ωt)−1. (D.8)
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Now, we have all the ingredients to evaluate Eq. (D.5)

Scl =
mω

2

xf (xf cos(ωt)−��xi )
sin(ωt)

+
xf

2 sin(ωt)

t∫
0

ds sin(ωs)f(s)− mω

2

xi(��xf − xi cos(ωt))

sin(ωt)

+
xi

2 sin(ωt)

t∫
0

ds sin[ω(t− s)]f(s) +
1

2 sin(ωt)

t∫
0

dsxf sin(ωs)f(s)

+
1

2 sin(ωt)

t∫
0

dsxi sin[ω(t− s)]f(s) +
1

mω

t∫
0

ds

s∫
0

du sin[ω(s− u)]f(u)f(s)

− 1

mω

t∫
0

ds

s∫
0

du
sin(ωs)

sin(ωt)
sin[ω(t− u)]f(u)f(s). (D.9)

Observe that the second term and the fifth term simply add, as do the fourth and sixth
terms. For the final two terms, we can use another (similar) simplifying trigonometric
relation

sin[ω(t− u)]− sin[ω(t− u)] sin(ωt) sin(ωt)−1 = sin(ωu) sin(ωt)−1, (D.10)

which gives us the final result for the classical action of the driven harmonic oscillator:

Scl =
mω

2 sin(ωt)

[
(x2

i + x2
f ) cos(ωt)− 2xixf

]
+

xf
sin(ωt)

t∫
0

ds sin(ωs)f(s) +
xi

sin(ωt)

t∫
0

sin[ω(t− s)]f(s)

− 1

mω sin(ωt)

t∫
0

ds

s∫
0

du sin(ωu) sin[ω(t− s)]f(s)f(u). (D.11)
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E Completing the square for the influence func-

tional

To perform a Gaussian integral, we will need to complete the square for bath variable
qk in Eq.(5.61). We can write the action as

S
(k)E
cl =

mkωk
sinh(ωkt)

[cosh(~βωk)− 1] [qk − q∗k]
2 − mkωk

sinh(~βωk)
1

cosh ~βωk − 1

C2
k

2mkωk

{{
...

...

~β∫
0

dτ

τ∫
0

dσ sinh(ωkτ) sinh [ωk(~β − σ)] + sinh(ωkσ) sinh [ωk(~β − τ)] + ...

...+ sinh(ωkτ) sinh(ωkσ) sinh [ωk(~β − τ)] sinh [ωk(~β − τ)]
}
F [Q̇(τ)]F [Q̇(σ)]

}
− C2

k

mkωk sinh(~βωk)

~β∫
0

dτ

τ∫
0

dσ sinh(ωkσ) sinh[ωk(~β − τ)]F [Q̇(τ)]F [Q̇(σ)],

(E.1)

where

q∗k =
Ck

2mkωk

~β∫
0

dτ

(
sinh(ωkτ) + sinh[ωk(~β − τ)]

cosh(~βωk)

)
F [Q̇(τ)]. (E.2)

The second term in Eq. (E.1) (comprising the two lines in the middle) is q
(0)
n , which

has to be subtracted in order to complete the square; note that a factor 2 results from
adjusting the range of the σ-integral from {0, ~β} to {0, τ}. the last term is unchanged
with respect to Eq. (5.61).

Then, we add the terms appearing under the double integrals in Eq. (E.1). To do
this, we use the following non-trivial trigonometric relation43

1

2 sinh(a) [cosh(a)− 1]

{
[sinh(x) sinh(y) + sinh(a− x) sinh(a− y)] +

[sinh(x) sinh(a− y) + sinh(y) sinh(a− x)]
}

+
sinh(a− x) sinh(y)

sinh(a)
=

cosh [a/2− x+ y]

2 sinh(a/2)
,

(E.3)

for a = ~βωk, x = ωks and y = ωku.

43It seems to me that there should be an elegant way to show why this holds. However, the only
way I have found is by using Euler’s formula and work out the algebra in terms of exponentials, which
is a bit long-winded. In any case, it is easily checked with the aid of a computer program.
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The result, then, is

S
(k)E
cl =

mkωk
sinh(ωkt)

[cosh(~βωk)− 1] [qk − q∗k]
2 − C2

k

2mkωk

~β∫
0

dτ

τ∫
0

dσGk(τ − σ)F [Q̇(τ)]F [Q̇(σ)],

(E.4)

for

Gk(τ − σ) :=
cosh

[
ωk
(~β

2
− (τ − σ)

)]
sinh

(~βωk
2

) . (E.5)

F General momentum-coupling in the Hamiltonian

picture

We write down the Hamiltonian of a closed system of harmonic oscillators coupled to
a generic system through a general momentum-coupling term.

H =
P 2

2M
+ V (Q) +

1

2

N∑
k=1

(
p2
k

mk

+mkω
2
kq

2
k) + F (P )

N∑
k=1

Ckqk. (F.1)

We do not include a counterterm. One can think about the incorporation of a coun-
terterm discussing the physics of the model and possible potential shifts. For the point
we want to make here, we do not need to discuss the difference between models with
or without counterterms.

The Hamilton equations are,

Ṗ = −∂H
∂Q

= −∂V
∂Q

,

(F.2)

Q̇ =
∂H
∂P

=
P

M
− ∂F (P )

∂P

N∑
k

Ckqk,

(F.3)

ṗi = −∂H
∂qi

= −miω
2
i qi + CiF (P ),

(F.4)

q̇i =
∂H
∂pi

=
pi
mi

,

(F.5)

which leads to the following set of second-order differential equations,

MQ̈ = −V ′(Q) +M
∂2F (P )

∂P 2

∂V

∂Q

∑
k

Ckqk −M
∂F (P )

∂P

∑
k

Ckq̇k (F.6)

miq̈i = −miω
2
i qi + CiF (P ) (F.7)
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The (now familiar) driven harmonic oscillator equation for the bath has solution,

qi(t) = f (0)(t) +
Ci
miωi

t∫
0

dt′ sin[ωi(t− t′)]F [P (t′)], (F.8)

and its first derivative,

q̇i(t) = ḟ (0)(t) +
Ci
mi

t∫
0

dt′ cos[ωi(t− t′)]F [P (t′)] +
Ci
miωi

[
���

���
��:0

sin[ωi(t− t′)] F [P (t′)]

]t′=t
.

(F.9)
The generalized Langevin equation becomes,

MQ̈+ V ′(Q) = MV ′(Q)F ′′[P (t)]
∑
k

Ck

f (0)
k (t) +

Ck
mkωk

t∫
0

dt′ sin[ωk(t− t′)]F [P (t′)]


−MF ′[P (t)]

∑
k

Ck

ḟ (0)
k (t) +

Ck
mk

t∫
0

dt′ cos[ωk(t− t′)]F [P (t′)]

 .

(F.10)

Integrating by parts the Sine term (second term on the RHS), we obtain

MQ̈+ V ′(Q) =MV ′[Q(t)]F ′′[P (t)]f (0)(t)−MF ′[P (t)]ḟ (0)(t)

−MV ′[Q(t)]F ′′[P (t)]
∑
k

C2
k

mkω2
k

t∫
0

dt′ cos[ωk(t− t′)]F ′[P (t′)]Ṗ (t′)

+MV ′[Q(t)]F ′′[P (t)]

[∑
k

C2
k

mkω2
k

cos[ωk(t− t′)]F [P (t′)]

]t′=t
t′=0

−MF ′[P (t)]
∑
k

C2
k

mk

t∫
0

dt′ cos[ωk(t− t′)]F [P (t′)], (F.11)

where it is not helpful to add the two cosine terms due their mismatch of the coefficients
of ωi. Evaluating the boundaries, and invoking the equation of motion Ṗ (t) = −V ′[Q(t)]
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we find

MQ̈+ V ′[Q(t)] =MV ′[Q(t)]F ′′[P (t)]f (0)(t)−MF ′[P (t)]ḟ (0)(t)

+MV ′[Q(t)]F ′′[P (t)]
∑
k

C2
k

mkω2
k

{ t∫
0

dt′ cos[ωk(t− t′)]F ′[P (t′)]V ′[Q(t′)]F [P (t)

− cos[ωkt]F [P (0)]
}
−MF ′[P (t)]

∑
k

C2
k

mk

t∫
0

dt′ cos[ωk(t− t′)]F [P (t′)],

(F.12)

which can be written as

MQ̈+ V ′[Q(t)] =Mξ(0)[Q(t), P (t); t]−Mζ(0)[Q(t), P (t); t]

+M

t∫
0

dt′K1[Q(t′), P (t′); t]

+MV ′[Q(t)]F ′′[P (t)]γ(0)F [P (t)]

−MK(0)
2 [Q(t), P (t′); t]

−M
t∫

0

dt′K3[P (t), P (t′)], (F.13)

for the multiplicative fluctuation forces

ξ(0)[Q(t), P (t); t] = V ′[Q(t)]F ′′[P (t)]f (0)(t), (F.14)

and
ζ(0)[Q(t), P (t); t] = F ′[P (t)]ḟ (0)(t), (F.15)

the memory-functions

K1[Q(t), Q(t′), P (t′), P (t′); t] = V ′[Q(t)]F ′′[P (t)]γ1(t− t′)F ′[P (t′)]V ′[Q(t′)], (F.16)

K(0)
2 [Q(t), P (t′); t] = V ′[Q(t)]F ′′[P (t)]γ1(t)F [P (0)], (F.17)

K3[P (t), P (t′)] = F ′[P (t)]γ2(t− t′)F [P (t′)] (F.18)

where, analogous to the original Caldeira-Leggett approach, we have defined

γ1(t− t′) = Θ(t− t′)
∑
k

C2
k

mkω2
k

cos[ωk(t− t′)], (F.19)
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and

γ2(t− t′) = Θ(t− t′)
∑
k

C2
k

mk

cos[ωk(t− t′)], (F.20)

where the Heaviside step-function is put in by hand to ensure causality, i.e. events at
times t′ > t do not influence at earlier times t′ < t. The multiplicative fluctuation force
in Eq. (F.15) satisfies the fluctuation-dissipation theorem in the same way as in Eq.
(4.27).

This approach seems to be very promising on account of the absence of Q̈-terms
due the equivalence of time derivatives on the momentum and the external potential,
ensured by the equation of motion (F.2).

Despite these promising features, however, it is not straightforward to find a suitable
Lagrangian that gives rise to this Hamiltonian. The physical problem is caused by the
fact that when velocity couples to position, the simple relation P = MQ̇ fails and the
canonical momentum differs from the physical momentum of the system.

Mathematically this problem translates in the failure to find a invertible relation
between the coupling function F [P ] in the Hamiltonian picture with its counterpart
F [Q̇] in the Lagrangian picture. Demanding invertibility will put constraints on the
generality of F [Q̇], leaving only even powers for a polynomial representations of it.
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