MORPHOLOGICAL AND PHYSIOLOGICAL CHANGES IN GRASSES AND HERBACEOUS SPECIES UNDER THE COMBINED EFFECT OF RISING ATMOSPHERIC CO₂ CONCENTRATION AND LIMITED PHOSPHORUS FERTILIZATION

A controlled growth chamber experiment on Holcus lanatus, Solanum dulcamara and Panicum Miliaceum

Giacomo Di Lallo 5507995 Sustainable Development – Global Change and Ecosystems Supervisor: Dr. Hugo de Boer 2_{nd} reader: Dr. Jerry van Dijk June 23rd, 2017

Preface

This thesis was written as part of the MSc. in Environmental Sciences, program Sustainable Development - Global Change and Ecosystems, at Utrecht University. Use was made of the facilities and machines of Utrecht University in collaboration with the Biology Department, TNO and Utrecht Botanical Gardens. I was supervised by Dr. Hugo de Boer who assisted me during the whole process of the thesis. I would like to thank him for his advice, feedback and providing me with the plant seeds and materials making it possible to perform a good experiment. I would also to thank Shuqiong Wang for helping me with the calculation of nutrient concentration and creation of the nutrient solutions, Ineke Roeling and Rémon Saaltink for their help with using the different machines, Charlotte Ballard for proofreading and finally Dr. Jerry van Dijk as second reader for his feedback on the proposal.

Giacomo Di Lallo

Utrecht, June, 23rd, 2017

Summary

Atmospheric CO₂ concentration (Ca) has been continuously rising due to direct and indirect anthropogenic activities since the industrial revolution. Thanks to this Ca rise, photosynthetic rate and net primary productivity (NPP) of plants is increasing. Subsequent ecophysiological changes results in altered biomass allocation and in changes in leaves area (Aleaf) in relation to biomass that in turn can regulate plants growth. Furthermore, changes in the leaf nitrogen (N_{leaf}) and leaf phosphorus (P_{leaf}) content can affect the maximal RuBisCO limited rate of photosynthesis (V_{cmax}) and maximum electron transport (J_{max}), respectively. However, few studies have examined the role of nutrient limitation, especially phosphorus (P), in downregulating plant growth to rising Ca, despite its potential influence on the global carbon cycle. It is likely that fully coupled climatecarbon cycle model projections misrepresent future plant carbon sequestration since they do not integrate low soil phosphorus concentration (P_s) even though soil P is particularly scarce in many ecosystems and expected to decrease in the future. The present study investigated the combined effect of rising Ca and low Ps on the total plant biomass (Bt) and on its allocation to the roots or above ground section, especially to the canopy, on Aleaf in relation to Bt and leaves biomass (Bleaf) and on N_{leaf} and P_{leaf} and on their relationships with V_{cmax} and J_{max}. Three species, Holcus lanatus, Solanum dulcamara and Panicum mileaceum were grown in three phytotrons with 150, 450 and 800 ppm respectively and treated with two nutrient solutions in which P was variated in relation to N (1N:1P, 1N:45P). Results suggest that low P_s could hamper NPP at the end of the century more strongly than at the present. Moreover, above-below biomass ratio (B_a:B_b), leaf mass ratio (LMR), specific leaf area (SLA) and leaf area ratio (LAR) responses showed high variability between the three species, suggesting that plants can adopt very different strategies under the independent and interactive effect of rising Ca and low Ps thanks to their different species physiological characteristics and ontogeny. In addition, the low statistical significance of SLA and LAR responses could suggest that, if well lighted, plants no longer need to invest in Aleaf regardless of variations in Ca and in Ps. Finally, Nleaf and Pleaf decreased similarly with increasing Ca, independently from the P treatment, and further decreased under low Ps. Results of the interactive effect of rising Ca and Ps indicate that plants under low Ps could suffer a milder reduction in Pleaf at present Ca compared with glacial Ca. Moreover, Nleaf and Pleaf showed a positive but not very strong linear relationship with V_{cmax} and J_{max}, respectively. This confirms that N_{leaf} and P_{leaf} concentrations may be able to partially regulate the allocation of N to the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and of P to the electron transport chain (ETC), respectively. However, low P_s weakened these positive relationships.

List of abbreviations often used in the text

A_{leaf} = leaves area.

- $B_a:B_b$ = above-below ground plant biomass.
- B_{leaf} = leaves biomass.
- B_t = total biomass.
- Ca = atmospheric CO₂ concentration.
- ETC = electron transport chain.
- J_{max} = maximum electron transport.
- LAR = leaf area ratio.
- LMR = leaf mass ratio.
- N = nitrogen.
- N_{leaf} = concentration of nitrogen in the leaves.
- NPP = net primary productivity.
- N_s = soil nitrogen concentration.
- P = phosphorus.
- P_{leaf} = concentration of phosphorus in the leaves.
- P_s = soil phosphorus concentration.

RuBisCO = ribulose-1,5-bisphosphate carboxylase/oxygenase.

- SLA = specific leaf area.
- V_{cmax} = maximal RuBisCO-limited rate of photosynthesis.

Table of Contents

1.1 Plant responses to CO2 fertilization 7 1.2 Phosphorus limitation in natural ecosystems 8 1.3 Plant responses to low Ps and to its interactive effect with rising Ca 9 Biomass growth and biomass allocation (Br, Ba:Bb, LMR) 9 Aleaf in relation to biomass (SLA, LAR) 9 Leaf nutrients and their relationships with photosynthetic traits (Nleaf, Pleaf, Vcmax Jmax) 9 1.4 Gap in knowledge and relevance of the research 10 1.5 Research questions and aim of the research 11 1.6 Hypotheses 11 Combined effect of rising Ca and low Ps on biomass growth and biomass allocation 12 Combined effect of rising Ca and low Ps on Aleaf in relation to biomass 12 Combined effect of rising Ca and low Ps on Aleaf in relation to biomass 12 2. Materials and Methods 13 2.1 Plant material 13 2.2 Treatment conditions 13 2.3 Plant functional traits measurements 15 Biomass and leaf traits 15
1.2 Phosphorus limitation in natural ecosystems 8 1.3 Plant responses to low Ps and to its interactive effect with rising Ca 9 Biomass growth and biomass allocation (Bb, Ba;Bb, LMR) 9 Aleaf in relation to biomass (SLA, LAR) 9 Leaf nutrients and their relationships with photosynthetic traits (Nleaf, Pleaf, Vcmox Jmax) 9 1.4 Gap in knowledge and relevance of the research 10 1.5 Research questions and aim of the research 11 1.6 Hypotheses 11 Combined effect of rising Ca and low Ps on biomass growth and biomass allocation 12 Combined effect of rising Ca and low Ps on Aleaf in relation to biomass 12 Combined effect of rising Ca and low Ps on leaf nutrients and on their relationships with photosynthetic traits 12 2. Materials and Methods 13 2.1 Plant material 13 2.2 Treatment conditions 13 2.3 Plant functional traits measurements 15 Biomass and leaf traits 15
1.3 Plant responses to low Ps and to its interactive effect with rising Ca
Biomass growth and biomass allocation (B _b , B _a :B _b , LMR) 9 A _{leaf} in relation to biomass (SLA, LAR) 9 Leaf nutrients and their relationships with photosynthetic traits (N _{leaf} , P _{leaf} , V _{cmax} , J _{max}) 9 1.4 Gap in knowledge and relevance of the research 10 1.5 Research questions and aim of the research 11 1.6 Hypotheses 11 <i>Combined effect of rising Ca and low P_s on biomass growth and biomass allocation</i> 12 <i>Combined effect of rising Ca and low P_s on A_{leaf} in relation to biomass</i> 12 <i>Combined effect of rising Ca and low P_s on leaf nutrients and on their relationships with photosynthetic traits</i> 12 2. Materials and Methods 13 2.1 Plant material 13 2.2 Treatment conditions 13 2.3 Plant functional traits measurements 15 Biomass and leaf traits 15
A _{leaf} in relation to biomass (SLA, LAR) 9 Leaf nutrients and their relationships with photosynthetic traits (N _{leaf} , P _{leaf} , V _{cmax} , J _{max}) 9 1.4 Gap in knowledge and relevance of the research 10 1.5 Research questions and aim of the research 11 1.6 Hypotheses 11 <i>Combined effect of rising Ca and low Ps on biomass growth and biomass allocation</i> 12 Combined effect of rising Ca and low Ps on A _{leaf} in relation to biomass 12 Combined effect of rising Ca and low Ps on leaf nutrients and on their relationships with photosynthetic traits 12 2. Materials and Methods 13 2.1 Plant material 13 2.2 Treatment conditions 13 2.3 Plant functional traits measurements 15 Biomass and leaf traits 15
Leaf nutrients and their relationships with photosynthetic traits (N _{leaf} , P _{leaf} , V _{cmax} , J _{max})
1.4 Gap in knowledge and relevance of the research 10 1.5 Research questions and aim of the research 11 1.6 Hypotheses 11 <i>Combined effect of rising Ca and low Ps on biomass growth and biomass allocation</i> 12 <i>Combined effect of rising Ca and low Ps on Aleaf in relation to biomass</i> 12 <i>Combined effect of rising Ca and low Ps on Aleaf in relation to biomass</i> 12 <i>Combined effect of rising Ca and low Ps on leaf nutrients and on their relationships with photosynthetic traits</i> 12 <i>Q</i> Materials and Methods 13 2.1 Plant material 13 2.2 Treatment conditions 13 2.3 Plant functional traits measurements 15 <i>Biomass and leaf traits</i> 15
1.5 Research questions and aim of the research 11 1.6 Hypotheses 11 <i>Combined effect of rising Ca and low Ps on biomass growth and biomass allocation</i> 12 <i>Combined effect of rising Ca and low Ps on Aleaf in relation to biomass</i> 12 <i>Combined effect of rising Ca and low Ps on Aleaf in relation to biomass</i> 12 <i>Combined effect of rising Ca and low Ps on leaf nutrients and on their relationships with photosynthetic traits</i> 12 2. Materials and Methods 13 2.1 Plant material 13 2.2 Treatment conditions 13 2.3 Plant functional traits measurements 15 <i>Biomass and leaf traits</i> 15
1.6 Hypotheses .11 Combined effect of rising Ca and low Ps on biomass growth and biomass allocation .12 Combined effect of rising Ca and low Ps on Aleaf in relation to biomass .12 Combined effect of rising Ca and low Ps on Aleaf in relation to biomass .12 Combined effect of rising Ca and low Ps on Aleaf nutrients and on their relationships with photosynthetic traits .12 2. Materials and Methods .13 2.1 Plant material .13 2.2 Treatment conditions .13 2.3 Plant functional traits measurements .15 Biomass and leaf traits .15
Combined effect of rising Ca and low Ps on biomass growth and biomass allocation 12 Combined effect of rising Ca and low Ps on Aleaf in relation to biomass 12 Combined effect of rising Ca and low Ps on leaf nutrients and on their relationships with photosynthetic traits 12 2. Materials and Methods 13 2.1 Plant material 13 2.2 Treatment conditions 13 2.3 Plant functional traits measurements 15 Biomass and leaf traits 15
Combined effect of rising Ca and low Ps on Aleaf in relation to biomass 12 Combined effect of rising Ca and low Ps on leaf nutrients and on their relationships with photosynthetic traits 12 2. Materials and Methods 13 2.1 Plant material 13 2.2 Treatment conditions 13 2.3 Plant functional traits measurements 15 Biomass and leaf traits 15
Combined effect of rising Ca and low Ps on leaf nutrients and on their relationships with photosynthetic traits 12 2. Materials and Methods 13 2.1 Plant material 13 2.2 Treatment conditions 13 2.3 Plant functional traits measurements 15 Biomass and leaf traits 15
 2. Materials and Methods
2.1 Plant material 13 2.2 Treatment conditions 13 2.3 Plant functional traits measurements 15 Biomass and leaf traits 15
2.2 Treatment conditions 13 2.3 Plant functional traits measurements 15 Biomass and leaf traits 15
2.3 Plant functional traits measurements 15 Biomass and leaf traits 15
Biomass and leaf traits15
Leaf nutrients16
Photosynthetic traits
2.4 Statistical analysis
3. Results
3.1 Biomass growth and biomass allocation20
Total biomass (B _t)20
Above-below ground biomass ratio (B _a :B _b)21
Leaf mass ratio (LMR)23
3.2 A _{leaf} in relation to biomass
Specific leaf area (SLA)24
Leaf area ratio (LAR)26
3.3 Leaf nutrients27
Concentration of nitrogen in the leaf (N _{leaf})27
Concentration of phosphorus in the leaf (P _{leaf})28
3.4 Leaf nutrients and their relationships with photosynthetic traits

4. Discussion	32
4.1 Response of biomass growth	32
Potential consequences of low P_s in fully coupled climate-carbon cycle models	32
4.2 Response of biomass allocation	33
4.3 Response of A _{leaf} in relation to biomass	33
4.4 Responses of leaf nutrients and their relationships with photosynthetic traits	34
4.5 Limitations and recommendations for future research	35
Limitations	35
Recommendations	36
5. Conclusions	37
References	39
Appendix A: Difference in responses between <i>H.lanatus</i> and <i>S.dulcamara</i>	46
Appendix B: Results per individual	46

1. Introduction

1.1 Plant responses to CO₂ fertilization

Atmospheric CO₂ concentration (*Ca*) has been rising since the industrial revolution because of emissions caused by human-related activities. More specifically, over the last decade *Ca* has been rising at the average rate of 2,2 ppm yr-1, and in May 2017 the estimated globally averaged *Ca* at the surface was 409 ppm (Team,2017). For much of the last million years *Ca* has oscillated between 172 and 300 ppm (Lüthi et al.,2008). The IPCC (Intergovernmental Panel on Climate Change) estimates that *Ca* will have risen to 421-936 ppm by the year 2100 based on four 'Representative Concentration Pathways' (RCPs) (Moss et al.,2010). This projected *Ca* increase may enhance the plant absorption rate of carbon, net primary productivity (NPP), especially in the tropics (Nemani et al.,2003), via a stimulating effect on the increasing photosynthesis rate (Ainsworth & Rogers,2007). For instance, the RCP 8.5 scenario projects an increase of NPP of around $63 \pm 27\%$ by the end of the century (Wieder et al.,2015). By means of this effect, known as CO_2 fertilization, plants could act as a carbon sink. Various simulations of the CMIP5 (Coupled Model Intercomparison Project Phase 5) ensemble show how the biosphere can favourite the terrestrial C uptake (Ahlström et al.,2012).

Global estimates of the biosphere response to elevated Ca rely on a detailed understanding of plant ecophysiological processes. Crucially, an increase in total biomass (Bt), a consequence of the NPP increase (Baker et al., 2004; Bellassen et al., 2011; Cannell et al., 1998; Cole et al., 2009; Graybill & Idso, 1993; Lewis et al., 2009; Martínez-Vilalta et al., 2008; Voelker et al., 2006), is associated with plant physiological responses leading to reallocation of biomass and changes in the ratio between leaves area (Aleaf) and biomass. Indeed, even if the allocation of biomass seems to be dependent on species physiological charateristics, ontogeny and on different environmental conditions experienced by the plant (Poorter & Nagel, 2000), many studies suggest that with rising Ca more biomass is allocated to the roots compared with the above ground section of the plant (Ainsworth & Long, 2005; Ceulemans & Mousseau, 1994; Eamus & Jarvis, 1989) and more specifically to the leaves, causing an above-below ground biomass (B_a:B_b) and leaf mass ratio (LMR) decrease (Centritto & Jarvis, 1999; Hättenschwiler & Körner, 1997). Moreover, Aleaf seems to increase proportionately less in comparison to leaves biomass (B_{leaf}) and B_t, leading to a decrease in specific leaf area (SLA) and leaf area ratio (LAR) (Bazzaz, 1990; Centritto & Jarvis, 1999; Hättenschwiler & Körner, 1997; Hättenschwiler et al., 1997; Rogers et al., 1996; Tissue & Lewis, 2010). Decreases in B_a:B_b, LMR, SLA and LAR in turn seem partially responsible for down regulation of photosynthetic carbon uptake (Callaway et al., 1994; Evans & Poorter, 2001; Hättenschwiler et al., 1997). Finally, rising Ca reduces both the concentration of nitrogen in the leaves (N_{leaf}) (Cotrufo et al.,1998; Tissue & Lewis, 2010) and the concentration of phosphorus in the leaves (P_{leaf}), with a stronger effect on Pleaf (Tissue & Lewis, 2010). A reduction in these leaf nutrients (Nleaf and Pleaf) can affect photosynthetic activity through biochemical down regulation of photosynthetic traits (V_{cmax} and J_{max}) (Domingues et al.,2010; Walker et al.,2014;). Indeed, N_{leaf} seems to regulate the allocation of N to ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) (Ainsworth and Rogers,2007; Griffin et al.,2000; Lewis et al.,2004), a nitrogen-rich carbon-fixing enzyme (ibid), while Pleaf is involved with the allocation of P to the electron transport chain (ETC) (Domingues et al.,2010), where many P-rich molecules (ATP, NADP and sugar-phosphates from the Calvin cycle) are assembled (ibid). More specifically, leaf concentration of orthophosphate (Pi) affects ETC through a feedback mechanism (Woodrow & Berry,1988). However, down regulation of V_{cmax} and J_{max} with rising *Ca* is not connected with a reduction in net photosynthetic activity since there is an improvement in photosynthetic efficiency (Osborne et al.,1997; Rietveld,2016).

Studies have generally observed proportionately stronger plant responses in the transition from glacial (200 ppm) to modern *Ca* (350 ppm) than from modern to future (700 ppm) *Ca* (Baker et al.,1990; Dippery et al.,1995; Gill et al.,2002; Peñuelas & Matamala,1990; Ward et al.,1999). This pattern may reflect several factors, including the adaptation of plants to lower *Ca* than they currently experience (Körner,2006; Sage & Cowling,1999; Saxe et al.,1998), and that the relative effect of short-term increases in *Ca* on photosynthesis in plants is higher at low *Ca*, and subsequently declines when *Ca* rises above modern levels (Farquhar et al. 1980).

1.2 Phosphorus limitation in natural ecosystems

Concurrently to Ca, plants responses are also dependent to soil nutrients availability. A shortage of soil nutrients affects photosynthesis and the physiology of plants and it is a further factor to take into consideration when investigating future plants responses (De Graaff et al., 2006; Goll et al.,2012; Lewis et al.,2010; Lukac et al.,2010). Nitrogen (N) and phosphorus (P) are considered the most important nutrients for plants. On the one hand, N is the major component of chlorophyll, the pigment that allows plants to absorb energy from light. It is also a major component of amino acids, the building blocks of proteins. Furthermore, it is a significant component of nucleic acids such as DNA and enzymes (Mendelu, 2017). On the other hand, P is a constituent of cell membrane, certain proteins, all nucleic acids and nucleotides, and is required for all phosphorylation reactions. It is also a fundamental component of DNA and it holds a "high energy bond" as a part of the chemical structures adenosine diphosphate (ADP) and adenosine triphosphate (ATP), being the source of energy that drives the multitude of chemical reactions within the plant (Anon, 2017). Plants require P for plant growth and development. On average the atomic ratio of N:P in the soil is 13:1 (Cleveland & Liptzin, 2007), since soil phosphorus concentration (P_s) is generally low with respect to soil N concentration (N_s). P is often suboptimal for plant growth, particularly in some natural ecosystems, because of its extreme immobility in the soil and because of its open-ended cycle that drives it toward depletion over time (Nord & Lynch, 2009). Examples include ecosystems with "white sand" soils such as those present in French Guyana (Raaimakers et al., 1995), or temperate forests such as those in New Zealand (Richardson et al., 2004). Natural weathering events are the main cause of soil P loss in many ecosystems, for example the Mendocino marine terrace in California, the Cooloola dune sequence in Australia and the island archipelago of Hawaii (ibid). Even vast geographical regions like south-western Australia and the Cape region in South Africa suffer severe soil P impoverishment (Lambers et al., 2006). Furthermore, rising Ca increases the amount of P required to sustain the increased growth rates (Conroy et al., 1986; Lewis et al., 2010; Vance et al., 2003), although P mineralization rates are likely to remain low and not capable of satisfying this increased demand (Cleveland et al., 2013). Finally, P will become increasingly less available also to crops, since global reserves of rock phosphate are depleted (Cordell et al.,2009; Lambers et al.,2006).

1.3 Plant responses to low Ps and to its interactive effect with rising Ca

Biomass growth and biomass allocation (B_t, B_a:B_b, LMR)

Low P_s results in numerous perturbations to plant growth and development and strongly lowers B_t (Conroy et al., 1988; Curtis & Wang, 1998; Goudriaan & De Ruiter, 1983; Moorby & Besford, 1983; Zangerl & Bazzaz,1984). Despite this, the current literature does not clarify how this effect interacts with rising Ca (Wieder et al., 2015). Generally, plants suffering from a soil mineral shortage tend also to allocate a greater part of their biomass to the roots (Hermans et al., 2006). Low P_s results in a greater decrease in the biomass allocation to the above ground section of the plant than to the roots (Meharg et al., 1994; Hermans et al., 2006). Thus, B_a:B_b, already decreasing with rising Ca, is further reduced under low P_s (Eamus & Jarvis, 1989; Ceulemans & Mousseau, 1994). Similarly, LMR is also reduced, because of a greater decrease in the carbon allocation to the leaves than to the roots (Burslem & Turner, 1996; Knox & Clarke, 2005; Santiago et al.,2012). Generally, plants also seem to have a high capacity for adapting growth and biomass allocation patterns to soil type, P supply and neighbor presence (Sardans et al., 2004). Shifting biomass allocation to the roots might be a common strategy adopted by plants when the competitive pressure for nutrients increases (ibid). However, there are also plants that apply different strategies (ibid) because biomass allocation, as mentioned before, is dependent on many factors such as species physiological characteristics, ontogeny and other environmental growth conditions than only Ca and P_s. Finally, regarding the interactive effect of rising Ca and low P_s on biomass allocation, to the best of my knowledge, no literature exists.

A_{leaf} in relation to biomass (SLA, LAR)

Low P_s lowers A_{leaf} relatively more than B_{leaf}, leading to a decreased SLA (Conroy et al.,1988; Radin & Eidenbock,1984; Tissue & Lewis,2010). However, low P_s seems to have a milder effect on SLA in high light conditions in comparison with low light conditions. Indeed, when light is not limited, plants do not have to invest in A_{leaf} (De Groot et al.,2001). Furthermore, the interaction of rising *Ca* and low P_s does not result in any statistically significant response of SLA (Tissue & Lewis,2010). By contrast, LAR seems affected by the interactive effect of rising *Ca* and low P_s (ibid). Indeed, LAR also decreases under low P_s because of a proportionately greater decrease in A_{leaf} than in B_t (ibid), and suffers a greater reduction in the transition from glacial to modern *Ca* than from modern to future *Ca* (ibid). However, as Feller et al. (2007) demonstrate, LAR under low P_s can also experience the opposite response. Generally, LAR can be partitioned into the product of LMR and SLA, and most of the variation in LAR can be explained by mixed effects from these two parameters (Huxman et al.,1998).

Leaf nutrients and their relationships with photosynthetic traits (N_{leaf}, P_{leaf}, V_{cmax}, J_{max})

Variation in N_{leaf} and P_{leaf} , as already mentioned, can results in major changes in plant photosynthetic activities through the regulation of V_{cmax} and J_{max} . This regulation rule is normally reflected in a positive relationship between N_{leaf} and V_{cmax} (Domingues et al.,2010; Walker et al.,2014) and between P_{leaf} and J_{max} (Domingues et al.,2010). However, the positive relationship between N_{leaf} and V_{cmax} seems partially weakened under low P_s , since N_{leaf} is not affected by low P_s while V_{cmax} decreases under low P_s (Tissue & Lewis,2010). Differently, low P_s leads to a lower concentration of both P_{leaf} , and J_{max} , therefore not affecting the positive relationship and the downregulatory role of P_{leaf} on J_{max} . Under low P_s conditions, differently than with rising *Ca* the down regulation of V_{cmax} and J_{max} is related with a down regulation of the net photosynthetic rates (Rietveld,2016). Despite this, once again, to the best of my knowledge, no current literature addresses the interactive effect of rising *Ca* and low P_s on P_{leaf} and N_{leaf} and therefore on the relationships between leaf nutrients and photosynthetic traits.

1.4 Gap in knowledge and relevance of the research

Accordingly to the aforementioned literature review, it is unlikely that P supply will meet the increased plant nutrients demand generated from projected NPP increases, since soil P is particularly scarce in many ecosystems and P mineralization rates are low. However, until now scientific research on plant responses to rising Ca in combination with limited soil nutrients availability has mainly focused on N (Ainsworth & Long, 2005; Ainsworth & Rogers, 2007; Lewis et al.,2004; Peterson et al.,1999) and to a lesser extent on P (Ainsworth & Rogers,2007; Campbell & Sage, 2006). Therefore, there is lack of studies on the influence of low P_s on plant growth to rising Ca, despite its potential downregulatory effect. As such, most fully coupled climate-carbon cycle models could misrepresent future plant carbon sequestration (Wieder et al., 2015), since low Ps under future Ca could limit NPP and in turn affect the dynamics of the carbon cycle (ibid). At the same time, it could-trigger ecophysiological mechanisms responsible for morphological changes such as biomass reallocation to roots and reduction of Aleaf in relation to biomass. These ecophysiological mechanisms in turn may downregulate the CO₂ fertilization effect. Moreover, resulting modifications in N_{leaf} and P_{leaf} concentrations could directly interfere with photosynthesis when regulating N allocation to RuBisCO and P allocation to ETC, respectively. Decreased N_{leaf} and P_{leaf} and the plausible subsequent reduced nutrient allocation causing down-regulation of V_{cmax} and J_{max} in plants grown under elevated Ca and low Ps could be further potential ecophysiological and biochemical mechanisms limiting the CO₂ fertilization effect. However, low P_s seems to weaken the positive relationship between N_{leaf} and V_{cmax}, suggesting that other mechanisms should prevail in the down regulation of V_{cmax} under this condition. Thus, it is highly relevant to understand whether the relationships between leaf nutrients and photosynthetic traits are further affected by the combined effect of low P_s and rising Ca.

1.5 Research questions and aim of the research

- 1- How does B_t and biomass allocation to the above-below ground sections, and more specifically to the leaves respond to the combined effect of rising *Ca* and low P_s?
- 2- How does A_{leaf} in relation to biomass respond to the combined effect of rising *Ca* and low P_s ?
- 3- How do N_{leaf} and P_{leaf} respond to the combined effect of rising *Ca* and low P_s? And how is their change reflected in the responses of V_{cmax} and J_{max}, respectively?

Based on these research questions the present study aims to find out how two C3 plants, a grass species, *Holcus lanatus* (*H.lanatus*) and a semi-woody herbaceous species, *Solanum dulcamara* (*S.dulcamara*), and a C4 grass, *Panicum mileaceum* (*P.miliaceum*), respond to the combined effect of rising *Ca* and low P_s. Thus, not only *Ca* but also P_s is varied to evaluate the difference in plant responses under low P_s compared with high P_s. High P_s was preferred over normal P_s to better visualize the effect of low P_s. Moreover, it is suggested to the reader of this manuscript, before further continuing the reading, to grasp the meaning of "combined effect", a pivotal step for understanding the aim of the present study. Indeed, a combined effect of *Ca* and P_s can be both the result of the sum of their independent effects or the result of their interaction.

The present study aims to investigate the responses of different plant traits. Firstly, the key aim of this research is to investigate NPP changes through B_t responses. Secondly, biomass allocation to the above-below ground section and to the canopy through Ba:Bb and LMR responses is studied. Thirdly, the changes of A_{leaf} in relation to changes in B_t and in B_{leaf} are investigated, through SLA and LAR responses. Finally, the responses of N_{leaf} and P_{leaf} are investigated and related to the responses of V_{cmax} and J_{max}, respectively, all along the Ca-P_s multi-factor treatment. To better understand the combined effect of the external factors (Ca and P_s) on these relationships, the effect on N_{leaf} is compared with the effect on V_{cmax} and the effect on P_{leaf} is compared with the effect on J_{max}.

1.6 Hypotheses

The present study hypothesizes that plants responses to rising *Ca* are generally stronger in the transition from glacial to modern *Ca* than from modern to future *Ca*. Glacial, modern and future *Ca* levels are comparable to the ones adopted in the present study but still slightly different. Moreover, the low P_s discussed in the literature review are most of the time slightly different between the different literature sources and as well from the one adopted in the present study. Therefore, the accuracy of the hypotheses is not very high.

Most of the following hypotheses are based on the independent effect of rising Ca and low P_s because almost no literature about their interaction effect could be retrieved.

Combined effect of rising Ca and low P_s on biomass growth and biomass allocation

 B_t is expected to increase with rising *Ca* and to decrease under low P_s . However, from the literature it is not clear how biomass reduction under low P_s would vary at the different *Ca*. Therefore, expectations regarding the interactive effect of rising *Ca* and low P_s cannot not be defined. A higher amount of biomass is expected to be allocated to the roots compared with the above ground section with rising *Ca*, while under low P_s it is expected that less biomass is allocated to the above ground section. Therefore, the combined effect of low P_s with rising *Ca* is expected to further reduce $B_a:B_b$ and LMR. However, because the allocation of biomass is also dependent on various environmental growth conditions, not only *Ca* and P_s , on the characteristic physiological mechanisms of species and ontogeny the power of these hypotheses is rather low. Finally, because no literature was found on the interactive effect of rising *Ca* and low P_s on biomass allocation, no expected results can be posited.

Combined effect of rising Ca and low P_s on A_{leaf} in relation to biomass

Generally, SLA and LAR are expected to decrease with both rising *Ca* and low P_s . Indeed, A_{leaf} is expected to increase less compared with B_{leaf} and B_t with rising *Ca*, while it is expected to decrease more than B_{leaf} and B_t under low P_s . Therefore, with rising *Ca* low P_s is expected to further reduce SLA and LAR. Nevertheless, LAR can also show an opposite effect under low P_s and therefore these hypotheses are not expected to always hold true. On the one hand, the interaction of the external factors is not expected to affect SLA. On the other hand, this interaction is expected to affect LAR, since the effect of low P_s is expected to be stronger in the transition from glacial to modern *Ca* than from modern to future *Ca* (ibid). However, under high light conditions, as the ones adopted in the present study, the effect of low P_s on SLA is expected to be mild. This mild effect of LMR and SLA.

Combined effect of rising Ca and low P_s on leaf nutrients and on their relationships with photosynthetic traits

It is expected that N_{leaf} and P_{leaf} are positively related to V_{cmax} and J_{max} , respectively. However, low P_s is expected to weaken the positive relationship between N_{leaf} and V_{cmax} , because the two traits are expected to respond differently under low P_s . N_{leaf} , P_{leaf} , V_{cmax} and J_{max} are all expected to decrease with rising *Ca*. By contrast, N_{leaf} is not expected to show a response under low P_s while P_{leaf} , V_{cmax} and J_{max} are all expected to further decrease. However, no literature was found regarding the interaction of rising *Ca* and low P_s on N_{leaf} and P_{leaf} and so on the relationships between leaf nutrients and photosynthetic traits, thus no expectations can be posited.

2. Materials and Methods

2.1 Plant material

Three species were grown and treated under the same conditions with different levels of *Ca* and P_s. The chosen species were *S.dulcamara* (bittersweet), a semi-woody C3 herbaceous perennial vine, *H.lanatus* (Yorkshire fog), a perennial C3 grass and *P.miliaceum* (Proso millet), an annual C4 grass used as a crop. Seeds of each species were sown in Primasta® potting soil in their respective *Ca* growth chambers. Plants of the same species for each chamber were grown together in the potting soil in one bin. When the seedlings seemed robust enough to withstand transplantation (around six weeks), 24 individuals per species were selected from each bin and repotted to individual pots filled with crystal sand with the size of approximately one liter. Then, they were left one week in the sand to adapt at the new soil before to start the nutrient treatment. The sand had an average diameter of 2,5 mm and had been heated and filtered so as not to contain any seeds or microbes. Nutrients contamination of sand was prevented before the nutrients treatment started.

2.2 Treatment conditions

Three phytotrons with Ca swinging around low (150), ambient (450) and high (800) ppm respectively were used for growing the plants. The temperature was kept constant at 21 °C during the day, and was lowered to 17 °C during the night. Plants were organized in parallel lines over long tables and irradiated homogeneously at around one meter distance from 08:00 to 18:00 by high-intensity discharge lamps with sunlight-similar spectrum and irradiance of around 1000 µmol m⁻² s⁻¹. Relative humidity (RH) was around 70 % during the light period and around 90 % during the dark period. Thijs Rietveld together with Shuqiong Wang prepared the nutrient solutions for H.lanatus and S.dulcamara. Rietveld also took care of these plants all along their growth and treatment. The same nutrient solution preparation and treatments procedures applied by Rietveld were adopted for *P.miliaceum*. Pots were watered every two days in the morning with either 0,3, 0,4 and 0,5 liters of water that corresponded to the three periods of nutrient solution treatment (week 1-5, 6-8 and 9-11 respectively). Plants were observed daily to ensure no stress had occurred. Plants were grown in the sand with a nutrient solution containing a ratio of N:P of either 1:1 (high P) or 45:1 (low P). Only P was varied, N was kept high and K and other micronutrients were not limited and stayed the same level throughout the experiment. In total 12 plants per species were grown at same Ca and under the same nutrient treatment. However, not all individuals could be selected for traits measurements at the end of the nutrient treatment. Plants received sufficient water fed from the bottom of the pots and were treated weekly with the nutrient solution created in the lab. So that the plants were able to adjust to the nutrient solution, the amount of nutrients was built up along the treatment. In the first three weeks plants received 15 ml of solution. The next two weeks this was increased to 50 ml solution. During the following three weeks the solution was twice as concentrated and again 50 ml per week was given to the plants. During the final three weeks the solution was three times as concentrated as the initial solution and again 50 ml was given weekly. The amount of nutrients and the composition of the solutions can be found in tables 1 and 2.

Table 1. Chemicals used to create the two different nutrient solutions with high and low content of P (High P, Low P) given in the concentration of mass per liter and their composition for week 1-5, 6-8 and 9-11. The top four chemicals were used for the macronutrients N, P and K and the rest of the chemicals were used for the several micronutrients (adapted from Thijs,2016).

	High P g/L			Low P g/L		
Chemical	Week 1-5	Week 6-8	Week 9-11	Week 1-5	Week 6-8	Week 9-11
KNO3	0,29	0,57	0,86	0,29	0,57	0,86
Ca(NO3)2	0,51	1,02	1,52	0,51	1,02	1,52
KH2PO4	0,44	0,88	1,32	0,01	0,02	0,03
KCI	1,44	0,60	0,34	1,48	1,26	1,04
Micronutrients	(mg/L)					
CaCl ₂ . 2H ₂ O	378,49	378,49	378,49	378,49	378,49	378,49
MgSO4. 7H2O	237,51	237,51	237,51	237,51	237,51	237,51
FeSO4.7H2O	40,40	40,40	40,40	40,40	40,40	40,40
EDTA-	54,09	54,09	54,09	54,09	54,09	54,09
2Na.2H2O						
CuSO4.5H2O	0,16	0,16	0,16	0,16	0,16	0,16
H3BO3	4,44	4,44	4,44	4,44	4,44	4,44
MnSO4.H2O	1,49	1,49	1,49	1,49	1,49	1,49
Na2MoO4.H2O	0,20	0,20	0,20	0,20	0,20	0,20
ZnSO4.7H2O	0,88	0,88	0,88	0,88	0,88	0,88

Table 2. Concentrations of the macro and micronutrients derived from the chemicals used to create the two different nutrient solutions with high and low content of P (High P, Low P) of table 1 given in the concentration of mass per liter for the different periods of nutrient treatment (week 1-5, week 6-8, week 9-11) and for the total nutrient treatments period (total) (adapted from Thijs,2016).

	High P g/L (1:1)			Total (g)	l (g) Low P g/L (45:1)			Total (g)
Nutrient	Week 1-5	Week 6-8	Week 9- 11		Week 1-5	Week 6-8	Week 9- 11	
Ν	0,10	0,20	0,30	0,60	0,10	0,20	0,30	0,60
Р	0,10	0,20	0,30	0,60	0,002	0,004	0,007	0,013
К	0,99	0,79	0,89	2,67	0,89	0,89	0,89	2,67
Micronutrients in mg/L								
Са	378,49	378,49	378,49	1135,47	378,49	378,49	378,49	1135,47
Mg	237,51	237,51	237,51	712,53	237,51	237,51	237,51	712,53
Fe	94,48	94,48	94,48	283,44	94,48	94 <i>,</i> 48	94 <i>,</i> 48	283,44
Cu	0,16	0,16	0,16	0,48	0,16	0,16	0,16	0,48
В	4,44	4,44	4,44	13,32	4,44	4,44	4,44	13,32
Mn	1,49	1,49	1,49	4,47	1,49	1,49	1,49	4,47
Мо	0,20	0,20	0,20	0,60	0,20	0,20	0,20	0,60
Zn	0,88	0,88	0,88	2,64	0,88	0,88	0,88	2,64

The multi-factor treatment of the present study resulted in the following six treatment combinations:

Table 3. The six treatment combinations adopted in the experiment. Three different *Ca* (150 ppm or low *Ca*, 450 ppm or ambient *Ca*, 800 ppm or high *Ca*) were intertwined with two different N:P solutions (N:P= 1 or low P, N:P= 45 or high P).

N:D treatments	Ca treatments					
N.P treatments	150 ppm	450 ppm	800 ppm			
N:P= 1	Low Ca-low P	Ambient <i>Ca</i> -low P	High <i>Ca</i> -low P			
N:P= 45	Low Ca-high P	Ambient Ca-high P	High <i>Ca</i> -high P			

The two N:P solutions when injected into the sand resulted in two P_s, low P_s and high P_s.

2.3 Plant functional traits measurements

Biomass and leaf traits

Five months after sowing the seeds and 11 weeks since the nutrient treatment had begun the plants had grown enough for measurement. Stems were cut at their base, seeds (present only on *P.miliaceum*) were harvested and leaves were cut at their pistil basis. Simultaneously, pots with roots were refrigerated to block growth. Then leaves were photographed and their area was determined using ImageJ. Once A_{leaf} was measured, roots were extracted from the sand. Thereafter stems, seeds, leaves and roots were dried at 70 °C for 48 hours. Finally, dried stems, seeds, leaves and roots were weighed by means of an analytical balance with digital precision scale. Weights of leaves, stems and seeds, when present, were summed to calculate B_a and measurements of roots were adopted for B_b . To calculate B_t , B_a and B_b were summed:

$$Bt = Ba + Bb$$

To calculate B_a:B_b, B_a was divided by B_b:

Ba: Bb =
$$\frac{Ba}{Bb}$$

To calculate LMR, B_{leaf} was dived by B_t:

$$LMR = \frac{Bleaf}{Bt}$$

To calculate SLA, A_{leaf} was divided by B_{leaf} of the same leaves:

$$SLA = \frac{Aleaf}{Bleaf}$$

Finally, to calculate LAR, LMR was multiplied by SLA:

 $LAR = LMR \times SLA$

In total eight individuals per treatment combination were selected for all species to calculate Bt, B_a and B_b . For A_{leaf} eight leaves per individual were selected in all the species. However, eight individuals per treatment combination were selected in *H.lanatus* and *S.dulcamara* while only six individuals could be selected in *P.miliaceum*. A_{leaf} in *H.lanatus* at low *Ca* and high P_s could not be measured.

Leaf nutrients

To calculate N_{leaf} and P_{leaf}, dried leaves were first ground to a fine powder in a Retsch mm400 mixer mill. For N_{leaf} analysis samples between 1000 and 2000 µg were weighed in tin containers of 8x5 mm using an analytical micro-balance and loaded in a 96-wells plate. Samples were then analyzed using a Carlo Erba NA1500 elemental analyzer (Thermo scientific) with the principle of "flash combustion". The corresponding order end weights of samples were entered in an excel sheet in a computer with dedicated EAGER300 software for further processing of the outputs of the machine. For P_{leaf}, samples between 20 and 35 mg were weighed and diluted in a small volumetric flask with 2,5 ml of 1 % Triton solution and 10 µg of Selenium and Gallium. The final solutions were homogenized by means of a magnetic stirrer and 10 µg of the solutions were pipetted to polished glass carrier disks. The disks with samples were then dried on a heating plate so that the liquid evaporated and the solid content was left. Finally, the disks with the solid samples were inserted in a S2 Picofox machine (Bruker) and analyzed using the principle of total reflection X-ray fluorescence spectroscopy (TXRF). The corresponding order, nutrients and weight characteristics of the sample solutions were entered in a computer with dedicated XRF Software Spectra7 for further processing of the outputs of the machine. To ensure reliability and improve the quality of the results many triplet samples were used. In total for both N_{leaf} and P_{leaf} five individuals per treatment combination were selected in all species.

Photosynthetic traits

V_{cmax} and J_{max} were calculated in H.lanatus and S.dulcamara in the course of the last week of nutrient treatment and the following week, just before the harvest of the plants. Measurements were conducted by Thijs Rietveld using a LI-COR LI6400XT. The block of the device was set at 21 °C, the light value was 1500 μ mol m⁻² s⁻¹ to measure at saturated light, the reference Ca was 150/450/800 ppm depending on the Ca treatment and RH was kept around 70 %. The full area of the 6 cm² LI-COR cuvette was covered with healthy leaves. A/Ci curves was established with the Ca values 50, 100, 200, 300, 400, 600, 800, 1000, 1200, 1600, 2000 ppm. The data collected with the LI-COR were stored in excel files. With the data of the A/Ci curves, V_{cmax}, J_{max} were determined using the program R. A/Ci curves were analyzed in R using the 'plantecophys' package (Duursma, 2015). For S. dulcamara seven individuals in the high Ca phytotron under both the high and low P treatments were measured, while six individuals were measured for the other treatment combinations. Every day, the order of measuring individuals from different treatment combinations was mixed to prevent individuals from the same treatment combination being measured always the same hours, since the photosynthetic responses can vary during the day (Hastings et al., 1961). All measurements were completed between 10:00 and 15:00, since photosynthesis is usually more active in this part of the day (ibid).

2.4 Statistical analysis

Statistical analysis was performed in IBM SPSS Statistics 24.0, boxplots and scatter plots were created using Microsoft Excel 2016, while tables were created using Microsoft Word 2016. ANOVAs were run to check whether there was a statistically significant response of the different traits to the independent and interactive effect of the external factors. Species, P_s and Ca were set as independent variables while the different traits (Bt, Ba:Bb, LMR, SLA, LAR, Nleaf, Pleaf, Jmax and V_{cmax}) were set as dependent variables. A first one-way ANOVA with species set as independent variable was run to investigate whether the dependent variables under the combined effect of rising Ca and low Ps responded differently between species. Since the dependent variables always responded differently between species a two-way ANOVA with Ca and P_s set as independent variables was run to check whether the dependent variables responded differently under the independent or interactive effect of changing Ca (150-450-800 ppm) and changing P_s (high-low) for each species. A second one-way ANOVA with Ca set as independent variable was run to check whether the dependent variables responded differently under the stepwise changes in Ca (150-450 ppm, 450-800 ppm) at a specific P_s (low, high) for each species. A third one-way ANOVA with P_s set as independent variable was run to check whether the dependent variables responded differently under the change in P_s (high-low) at a specific Ca (150,450,800 ppm) for each species. A first post-hoc Tukey HSD test with species set as independent variable was run to check whether the dependent variables responded differently between pairs of species. A second post-hoc Tukey HSD test with Ca set as independent variable was run to check whether the dependent variables responded differently under the stepwise changes in Ca, independently from changes in Ps, for each species.

Linear regressions were also performed to check the relationships of N_{leaf} (independent variable) with V_{cmax} (dependent variable) and of P_{leaf} (independent variable) with J_{max} (dependent variable). However, because V_{cmax} and J_{max} were derived from different leaves than N_{leaf} and P_{leaf} , linear regressions between individuals could not be performed. Although, an ecological linear regression between average of populations of the different treatment combinations could be run, for a total of six average values for each variable per species, one for each treatment combination. To get enough data for the linear regression, the values of different species were grouped together. Because V_{cmax} and J_{max} from *P.miliaceum* were not integrated in the study, only data of *H.lanatus* and *S.dulcamara* were grouped and a total of 12 average values for each variable was therefore obtained. An assumption of similar behavior between these two species was made even if they often showed statistically significant differences in their responses to the combination of rising *Ca* and low P_s (appendix A).

For all statistical tests the following scale for the significance levels was adopted: ns = notsignificant $+ = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$. Test results were considered statistically significant if $P \le 0.05$, while results with $P \le 0.10$ were considered as potentially statistically significant. These results were not considered statistically significant but could indicate that an effect may be present when for example larger test groups are used. The assumption for normality was almost always met when analyzing the distribution for each treatment combination group of the dependent variables. Moreover, the homogeneity of variance in the Two-way ANOVA was always met. Welch results were preferred in the one way-ANOVA when homogeneity of variance was not met. In the linear regression the standard residuals were always between -3 and 3. Cook's distance was always lower than 1. Finally, in all the statistical tests outliers when founded were not discarded due to the limited size of the populations.

The function of the different statistical tests is repeated in paragraph 3 for a better understanding of the results.

3. Results

The responses of the traits were evaluated by means of the one-way ANOVA to check whether they were different between species under the combined effect of Ca and P_s . All traits showed statistically significant differences between the three species as the results of the ANOVA test shows (table 4).

Table 4. Difference in responses of the different traits under the combined treatment of *Ca* and P_s between the three species (*H.lanatus*, *P.miliaceum* and *S.dulcamara*).

Traits	Bt	B _a :B _b	LMR	SLA	LAR	N leaf	Pleaf
Species	***	***	* * *	*	***	*	***

 $ns = not \ significant + = P \le 0,10^{*} = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

More specifically, differences in responses between the three species combinations were investigated by means of the post hoc Tukey's HSD test (table 5).

Table 5. Dfference in responses of the different traits under the combined treatment of *Ca* and P_s between the three species combinations (*H*.lanatus-S.dulcamara, *P.miliaceum* - *H.lanatus*, *S.dulcamara* - *P.miliaceum*).

Traits		Species	
Bt	H.lanatus-S.dulcamara	P.miliaceum-H.lanatus	S.dulcamara-P.miliaceum
	***	***	n.s
D .D	H.lanatus-S.dulcamara	P.miliaceum-H.lanatus	S.dulcamara-P.miliaceum
B _a :B _b	***	***	***
	H.lanatus-S.dulcamara	P.miliaceum-H.lanatus	S.dulcamara-P.miliaceum
LIVIR	**	***	***
SLA	H.lanatus-S.dulcamara	P.miliaceum-H.lanatus	S.dulcamara-P.miliaceum
	**	*	n.s
	H.lanatus-S.dulcamara	P.miliaceum-H.lanatus	S.dulcamara-P.miliaceum
LAR	n.s	***	***
N	H.lanatus-S.dulcamara	P.miliaceum-H.lanatus	S.dulcamara-P.miliaceum
N _{leaf}	*	n.s	n.s
P _{leaf}	H.lanatus-S.dulcamara	P.miliaceum-H.lanatus	S.dulcamara-P.miliaceum
	n.s	***	***

 $ns = not \ significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Because statistically significant differences in all traits responses were found between the three species and often also between pairs of species, species were analyzed independently. The results are displayed using boxplots that show the changing trends along all the six treatment combinations for each trait investigated. Each boxplot is associated with two tables presenting the results of the other two one-way ANOVAs. The tables show the significance level of the responses under stepwise *Ca* increases (150-450 ppm, 450-800 ppm) at the two P_s (low, high) and under changing P_s (high-low) at the three *Ca* (150, 450, 800 ppm). Significance level of the responses to rising *Ca* and low P_s and their interaction, calculated by means of the two-way ANOVA are also presented. In section 3.4, the relationships of N_{leaf} with V_{cmax} and of P_{leaf} with J_{max} of *H.lanatus* and *S.dulcamara* were calculated using an ecological linear regression all along the six treatment

combinations. Moreover, the combined effect of *Ca* and P_s on V_{cmax} and J_{max} was compared to the combined effect on N_{leaf} and P_{leaf} .

In general, the different traits responded more to rising *Ca* in the transition from low to ambient level than from ambient to high level, as the results of the post hoc Tukey's HSD test show (table 6).

Table 6. Effects of the step-wise Ca increases from low to ambient Ca (150-450 ppm) and from ambient to high Ca
(450-800 ppm) on the different traits in the three species (<i>H.lanatus, S.dulcamara</i> and <i>P.miliaceum</i>).

Troite	H.lanatus		S.dulcamara		P.miliaceum	
TIAILS	Са		Са		Са	
Bt	150-450	450-800	150-450	450-800	150-450	450-800
	***	n.s	n.s	*	***	**
D .D	150-450	450-800	150-450	450-800	150-450	450-800
B _a :B _b	***	n.s	***	**	***	***
LMR	150-450	450-800	150-450	450-800	150-450	450-800
	***	n.s	***	n.s	n.s	*
SI A	150-450	450-800	150-450	450-800	150-450	450-800
SLA	n.s	*	* * *	n.s	n.s	n.s
LAR	150-450	450-800	150-450	450-800	150-450	450-800
	**	**	n.s	n.s	n.s	+
N _{leaf}	150-450	450-800	150-450	450-800	150-450	450-800
	**	n.s	***	n.s	***	n.s
D	150-450	450-800	150-450	450-800	150-450	450-800
P _{leaf}	***	n.s	***	n.s	* * *	+

ns = not significant + = P ≤ 0,10 * = P ≤ 0,05 ** = P ≤ 0,01 *** = P ≤ 0,001

The results per individual of all traits in the three species together with the results of V_{cmax} and J_{max} from Rietveld (2016) in *H.lanatus* and *S.dulcamara*, are listed in appendix B.

3.1 Biomass growth and biomass allocation

Total biomass (B_t)

B_t responded similarly to the combined effect of *Ca* and P_s between the three species (Figure 1). The independent and interactive effects of the external factors were always statistically significant in the three species ($P \le 0,001$). B_t showed a statistical significant increase in the transition from low to ambient *Ca* in both P_s levels in all species (table 7; figure 1). It also statistically significantly increased in the transition from ambient to high *Ca* under high P_s (ibid). By contrast, under low P_s it responded differently between the three species; it slightly decreased in *H.lanatus*, it showed no response in *S.dulcamara* and statistically significantly increased in *P.miliaceum* (ibid). B_t was generally higher under high P_s than under low P_s, apart from *H.lanatus* and *P.miliaceum* at low *Ca* where there was no response to P_s (table 8; figure 1). The difference in B_t between P_s levels slightly increased in the transition from low to high *Ca* in both *H.lanatus* and *S.dulcamara* (figure 1). Indeed, B_t increased more under high P_s than under low P_s along the *Ca* transition (ibid).

Figure 1. Boxplots representing the combined effect of *Ca* (150-450-800 ppm) and P_s (LP-HP) on B_t in *H.lanatus* (Hol), *S.dulcamara* (Sol) and *P.miliaceum* (Pan).

Table 7. Effects of the step-wise Ca increases from low to ambient Ca (150-450 ppm) and from ambient to high Ca
(450-800 ppm) on B _t under the two P _s (low, high) in the three species (<i>H.lanatus, S.dulcamara</i> and <i>P.miliaceum</i>).

Species	Ca	Ps		
		low	high	
H. Lanatus	150-450	***	***	
	450-800	+	*	
S. Dulcamara	150-450	***	***	
	450-800	n.s	**	
P. Miliaceum	150-450	**	***	
	450-800	***	*	

 $ns = not \ significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Table 8. Effects of P_s (H-L) on B_t at the three levels of *Ca* (150, 450, 800 ppm) in the three species (*H.lanatus*, *S.dulcamara* and *P.miliaceum*).

Spaciac	Pc	Са			
species	- 3	150	450	800	
H. Lanatus	H-L	n.s	***	***	
S. Dulcamara	H-L	***	***	***	
P. Miliaceum	H-L	n.s	***	* * *	

 $ns = not \ significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Above-below ground biomass ratio (B_a:B_b)

 $B_a:B_b$ responded differently to the combined effect of *Ca* and P_s between the three species (figure 2). The independent effects of these external factors were statistically significant in all species ($P \le 0,01$), while the interactive effect was statistically significant only in *H.lanatus* and *P.miliaceum* ($P \le 0,05$). In *H.lanatus*, $B_a:B_b$ showed a statistically significant decrease in the transition from low to ambient *Ca* under both P_s levels, while showing no response in the transition from ambient to high *Ca* (table 9; figure 2). $B_a:B_b$ was also statistically significantly greater under high P_s than under low

 P_s at low *Ca*, while at ambient and high *Ca* it did not respond to a change in P_s (table 10; figure 2). By contrast, in *S.dulcamara* it did not respond to the transition from low to ambient *Ca* under both P_s levels (table 9; figure 2). Differently, it slightly and statistically significantly increased in the transition from ambient to high *Ca* under high P_s , while it showed no response under low P_s (ibid). It also showed a statistically significant increase under high P_s compared to low P_s at ambient and high *Ca* but it did not show any response to low P_s at low *Ca* (table 10; figure 2). In *P.miliaceum*, it statistically significantly increased in the transition from low to ambient *Ca* under high P_s before to stop responding, while under low P_s it showed a statistically significant increase in the transition from low to ambient *Ca* under high P_s before to stop responding, while under low P_s it showed a statistically significant increase in the transition from low to ambient *Ca* under high P_s before to statistically significantly increased in the transition from low to ambient *Ca* under high P_s before to statistically significantly increase in the transition from ambient to high *Ca* (table 9; figure 2). Finally, it statistically significantly increased under low P_s compared with high P_s at low and ambient *Ca* while it showed no responses at high *Ca* (table 10; figure 2).

Figure 2. Boxplots representing the combined effect of *Ca* (150-450-800 ppm) and P_s (LP-HP) on B_a : B_b in *H.lanatus* (Hol), *S.dulcamara* (Sol) and *P.miliaceum* (Pan).

Table 9- Effects of the step-wise *Ca* increases from low to ambient *Ca* (150-450 ppm) and from ambient to high *Ca* (450-800 ppm) on $B_a:B_b$ under the two P_s (low, high) in the three species (*H.lanatus, S.dulcamara* and *P.miliaceum*).

Creation	Ca	Ps	
species		low	high
H lanatus	150-450	**	*
H. Ianatus	450-800	n.s	n.s
S. dulcamara	150-450	n.s	n.s
	450-800	n.s	+
P. miliaceum	150-450	**	*
	450-800	**	n.s

 $ns = not \ significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Table 10. Effects of P_s (H-L) on $B_a:B_b$ at the three levels of *Ca* (150, 450, 800 ppm) in the three species (*H.lanatus*, *S.dulcamara* and *P.miliaceum*).

Species	Pc		Са	
Species	- 3	150	450	800
H. lanatus	H-L	***	n.s	n.s
S. dulcamara	H-L	n.s	**	**
P. miliaceum	H-L	**	**	n.s

 $ns = not significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Leaf mass ratio (LMR)

LMR also responded differently between the three species to the combined effect of *Ca* and P_s (figure 3). The independent effect of *Ca* was statistically significant in all species ($P \le 0,001$) while the independent effect of P_s and its interactive effect with *Ca* were statistically significant only in *H.lanatus* and *P.miliaceum* ($P \le 0,01$). In *H.lanatus*, LMR showed a statistically significant decrease in the transition from low to ambient *Ca* under both low and high P_s (table 11; figure 3). By contrast, in *S.dulcamara*, it statistically significantly increased in the same *Ca* transition under high P_s (ibid). In *P.miliaceum*, it once again statistically significantly increased in the same *Ca* transition under high P_s (ibid). LMR also significantly changed between P_s levels at low *Ca* in *H.lanatus* and at ambient and high *Ca* in *P.miliaceum*, with values higher under high P_s than under low P_s (table 12; figure 3). LMR showed no other statistically significant responses to the combination of *Ca* and P_s in the three species (table 11; table 12).

Figure 3. Boxplots representing the combined effect of Ca (150-450-800 ppm) and P_s (LP-HP) on LMR in H.lanatus (Hol), S.dulcamara (Sol) and P.miliaceum (Pan). Values of LMR were log10 transformed to better visualize the results of the three species in the same graph.

Species	6~	P	s
species	Ca	low	high
11 Japatus	150-450	***	**
H. Ianatus	450-800	n.s	+
S. dulcamara	150-450	n.s	**
	450-800	n.s	n.s
P. miliaceum	150-450	n.s	**
	450-800	n.s	+

Table 11. Effects of the step-wise *Ca* increases from low to ambient *Ca* (150-450 ppm) and from ambient to high *Ca* (450-800 ppm) on LMR under the two P_s (low, high) in the three species (*H.lanatus, S.dulcamara* and *P.miliaceum*).

 $ns = not significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Table 12. Effects of P_s (H-L) on LMR at the three levels of *Ca* (150, 450, 800 ppm) in the three species (*H.lanatus*, *S.dulcamara* and *P.miliaceum*).

Species	Pc		Са	
species	- 3	150	450	800
H. lanatus	H-L	***	n.s	n.s
S. dulcamara	H-L	n.s	n.s	n.s
P. miliaceum	H-L	n.s	***	**

 $ns = not \ significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

3.2 Aleaf in relation to biomass

Specific leaf area (SLA)

SLA responded differently to the combined effect of *Ca* and P_s between the three species (figure 4). The independent effect of *Ca* was statistically significant only in *H.lanatus* and *S.dulcamara* ($P \le 0,05$) and the independent effect of P_s was statistically significant only in *P.miliaceum* ($P \le 0,05$). Differently, the interactive effect of the external factors was never statistically significant in all species ($P \ge 0,1$). In *H.lanatus*, SLA increased in the transition from ambient to high *Ca* under low P_s, although with a weak significance level, (table 13; figure 4). In *S.dulcamara*, it showed a statistically significant decrease in the transition from low to ambient *Ca* under both P_s levels (ibid). In *P.miliaceum*, it statistically significantly increased under low P_s compared with high P_s, at high *Ca* (table 14; figure 4). SLA showed no other statistically significant responses to the combinations of *Ca* and P_s in the three species (table 13; table 14).

Figure 4. Boxplots representing the combined effect of *Ca* (150-450-800 ppm) and P_s (LP-HP) on SLA in *H.lanatus* (Hol), *S.dulcamara* (Sol) and *P.miliaceum* (Pan).

Table 13. Effects of the step-wise *Ca* increases from low to ambient *Ca* (150-450 ppm) and from ambient to high *Ca* (450-800 ppm) on SLA under the two P_s (low, high) in the three species (*H.lanatus, S.dulcamara* and *P.miliaceum*).

Species	Ca	Ps	
		low	high
11 Japatus	150-450	n.s	-
H. Ianatus	450-800	+	n.s
S. dulcamara	150-450	***	***
	450-800	n.s	n.s
P. miliaceum	150-450	n.s	n.s
	450-800	n.s	n.s

 $ns = not \ significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Table 14. Effects of P_s (H-L) on SLA at the three levels of *Ca* (150, 450, 800 ppm) in the three species (*H.lanatus*, *S.dulcamara* and *P.miliaceum*).

Species	P۹		Са		
	- 3	150	450	800	
H. lanatus	H-L	-	n.s	n.s	
S. dulcamara	H-L	n.s	n.s	n.s	
P. miliaceum	H-L	n.s	n.s	*	

 $ns = not \ significant + = P \le 0,10^{*} = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Leaf area ratio (LAR)

LAR also responded differently to the combined effect of *Ca* and P_s between the three species (figure 5). The independent effect of *Ca* was statistically significant only in *H.lanatus* and *P.miliaceum* ($P \le 0.05$). The independent effect of P_s and its interactive effect with *Ca* was statistically significant only in *P.miliaceum* ($P \le 0.05$). In *H.lanatus* LAR showed a statistically significant decrease in the transition from low to ambient *Ca* under low P_s while, it statistically significantly increased in the same transition under high P_s in *S.dulcamara* (table 15; figure 5). It also showed a statistically significantly changed between P_s levels at both ambient and high *Ca* in *H.lanatus*, (ibid) and statistically significant responses to the combination of *Ca* and P_s in the three species (table 15; table 16).

Figure 5. Boxplots representing the combined effect of *Ca* (150-450-800 ppm) and P_s (LP-HP) on LAR in *H.lanatus* (Hol), *S.dulcamara* (Sol) and *P.miliaceum* (Pan). Values of LAR were log10 transformed to better visualize the results of the three species in the same graph.

Table 15. Effects of the step-wise *Ca* increases from low to ambient *Ca* (150-450 ppm) and from ambient to high *Ca* (450-800 ppm) on LAR under the two P_s (low, high) in the three species (*H.lanatus, S.dulcamara* and *P.miliaceum*).

Species	Ca	Ps		
species		low	high	
11 Japatus	150-450	**	-	
H. Ianatus	450-800	*	n.s	
S. dulcamara	150-450	n.s	**	
	450-800	n.s	n.s	
P. miliaceum	150-450	n.s	n.s	
	450-800	n.s	n.s	

 $ns = not \ significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Species	Pc	Са		
Species	- 3	150	450	800
H. lanatus	H-L	-	n.s	n.s
S. dulcamara	H-L	n.s	n.s	n.s
P. miliaceum	H-L	n.s	*	*

Table 16. Effects of P_s (H-L) on LAR at the three levels of *Ca* (150, 450, 800 ppm) in the three species (*H.lanatus*, *S.dulcamara* and *P.miliaceum*).

 $ns = not \ significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

3.3 Leaf nutrients

Concentration of nitrogen in the leaf (N_{leaf})

 N_{leaf} responded similarly to the combined effect of *Ca* and P_s between the three species (figure 6). The independent effects of *Ca* and P_s were statistically significant in all three species ($P \le 0,05$) while their interactive effect was statistically significant only in *P.miliaceum* ($P \le 0,001$). Under high $P_s N_{leaf}$ showed a statistically significant decrease in the transition from low to ambient *Ca* in all species (table 17; figure 6). By contrast, under low P_s , it decreased in the same *Ca* transition only in *H.lanatus* and *S.dulcamara*, although showing statistical significance only in *S.dulcamara*, while in *P.miliaceum* it showed no response (ibid). N_{leaf} showed no statistically significant responses in the transition from ambient to high *Ca* (ibid). The responses of N_{leaf} under changing P_s were statistically significant in all species at all *Ca* levels, apart from *S.dulcamara* at low *Ca* (table 18; figure 6). N_{leaf} was generally higher under low P_s than under high P_s , apart from *P.miliaceum* at low *Ca* where it experienced the opposite trend (ibid).

Figure 6. Boxplots representing the combined effect of *Ca* (150-450-800 ppm) and P_s (LP-HP) on N_{leaf} I *H.lanatus* (Hol), *S.dulcamara* (Sol) and *P.miliaceum* (Pan).

Species	6~	P	s
species	Ca	low	high
11 Japatus	150-450	n.s	***
H. lanatus	450-800	n.s	n.s
S. dulcamara	150-450	***	***
	450-800	n.s	n.s
P. miliaceum	150-450	n.s	***
	450-800	n.s	n.s

Table 17. Effects of the step-wise *Ca* increases from low to ambient *Ca* (150-450 ppm) and from ambient to high *Ca* (450-800 ppm) on N_{leaf} under the two P_s (low, high) in the three species (*H.lanatus, S.dulcamara* and *P.miliaceum*).

ns = not significant + = P ≤ 0,10 * = P ≤ 0,05 ** = P ≤ 0,01 *** = P ≤ 0,001

Table 18. Effects of P_s (H-L) on N_{leaf} at the three levels of *Ca* (150, 450, 800 ppm) in the three species (*H.lanatus*, *S.dulcamara* and *P.miliaceum*).

Spacias	P	Са		
species	- 3	150	450	800
H. lanatus	H-L	***	+	**
S. dulcamara	H-L	n.s	**	***
P. miliaceum	H-L	***	*	**

 $ns = not \ significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Concentration of phosphorus in the leaf (Pleaf)

 P_{leaf} responded similarly to the combined effect of *Ca* and P_s between the three species (figure 7). The independent effects of both *Ca* and P_s were statistically significant in all species ($P \le 0,001$), while their interactive effects were statistically significant only in *H.lanatus* and *P.miliaceum* ($P \le 0,001$). P_{leaf} showed a statistically significant decrease in the transition from low to ambient *Ca*, similarly to N_{leaf} , under both P_s levels (table 19; figure 7). The only exception was in *P.miliaceum*, where under low P_s no responses could be detected (ibid). By contrast, there was no statistically significant change in P_{leaf} in the transition from ambient to high *Ca* (ibid). The P_{leaf} responses under changing P_s were always statistically significant in the three species, with values higher under high P_s than under low P_s (table 20; figure 7).

Figure 7. Boxplots representing the combined effect of *Ca* **(150-450-800 ppm) and** P_s **(LP-HP) on** P_{leaf} **in** *H.lanatus* **(Hol)**, *S.dulcamara* **(Sol) and** *P.miliaceum* **(Pan).** Values of LMR were log10 transformed to better visualize the results of the three species in the same graph.

Table 19. Effects of the step-wise Ca increases from low to ambient Ca (150-450 ppm) and from ambient to high Ca
(450-800 ppm) on P _{leaf} under the two P _s (low, high) in the three species (<i>H.lanatus, S.dulcamara</i> and <i>P.miliaceum</i>).

Species	Ca	P	s
species		low	High
11 Japatus	150-450	*	***
H. Ianatus	450-800	n.s	n.s
S. dulcamara	150-450	*	**
	450-800	n.s	n.s
P. miliaceum	150-450	n.s	***
	450-800	n.s	n.s

 $ns = not \ significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Table 20. Effects of P_s (H-L) on P_{leaf} at the three levels of *Ca* (150, 450, 800 ppm) in the three species (*H.lanatus*, *S.dulcamara* and *P.miliaceum*).

Spacias	Pc	Са							
species	- 3	150	450	800					
H. lanatus	H-L	* * *	**	***					
S. dulcamara	H-L	**	*	***					
P. miliaceum	H-L	***	***	***					

ns = not significant + = P ≤ 0,10 * = P ≤ 0,05 ** = P ≤ 0,01 *** = P ≤ 0,001

3.4 Leaf nutrients and their relationships with photosynthetic traits

 V_{cmax} and J_{max} were positively and statistically significantly related with N_{leaf} and P_{leaf} , respectively, since the p-value of their linear regressions was statistically significant and the data well fitted the regression line (figure 8). However, a change in P_{leaf} resulted in a larger change in J_{max} (slope = 0,006) than a change in N_{leaf} in V_{cmax} (slope = 0,001).

Figure 8. Linear regression lines between N_{leaf} and V_{cmax} (left graph) and P_{leaf} and J_{max} (right graph) using averages of populations for each treatment combination of *H.lanatus* and *S.dulcamara*. Graphs display relative adjusted R², slope and p-value with ** = $P \le 0,01$.

 P_{leaf} and J_{max} responded similarly between each other under the combined effect of *Ca* and P_s while N_{leaf} and V_{cmax} responded differently between each other (figure 9). The independent effects of *Ca* and P_s were statistically significant in all traits (N_{leaf} , P_{leaf} , V_{cmax} and J_{max}) ($P \le 0.05$) while their interactive effect was statistically significant only in P_{leaf} ($P \le 0.01$). Both N_{leaf} and V_{cmax} showed a statistically significant decrease in the transition from low to ambient *Ca*, while there was no statistically significant response in the transition from ambient to high *Ca* (table 21; figure 9). Similarly, both P_{leaf} and J_{max} decreased in the transition from low to ambient *Ca* and did not responded in the transition from ambient to high *Ca*, apart from J_{max} under high P_s , which statistically significant further decrease under low P_s compared with high P_s (table 22; figure 9). Differently, N_{leaf} and V_{cmax} responded oppositely between each other, with N_{leaf} increasing and V_{cmax} decreasing under low P_s at ambient and high *Ca* (ibid). However, both showed no response under low P_s at low *Ca* (ibid). Finally, the effect of low P_s on P_{leaf} was reduced in the transition from low to ambient *Ca* transition (figure 9).

Figure 9. Boxplots representing the combined effect of *Ca* (150-450-800 ppm) and P_s (LP-HP) on N_{leaf} (top left graph), *V_{cmax}* (top right graph), P_{leaf} (bottom left graph) and *J_{max}* (bottom right graph) using averages of populations for each treatment combination of *H.lanatus* and *S.dulcamara*.

Table 21. Effects of the step-wise *Ca* increases from low to ambient *Ca* (150-450 ppm) and from ambient to high *Ca* (450-800 ppm) on N_{leaf} , P_{leaf} , V_{cmax} and J_{max} under the two P_s (low, high) for grouped *H.lanatus* and *S.dulcamara* data.

Troite	C.	l l			
Traits	Ca	low *** 0.S *** 0.S *** 0.S *** 0.S * *	high		
N	150-450	***	***		
INleaf	450-800	n.s	n.s		
M	150-450	***	***		
vcmax	450-800	n.s	n.s		
I	150-450	***	***		
Jmax	450-800	n.s	**		
P _{leaf}	150-450	*	***		
	450-800	n.s	n.s		

 $ns = not \ significant + = P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Traite	P.	Са							
Traits	• 5	150	450	800					
N _{leaf}	H-L	n.s	***	***					
Vcmax	H-L	n.s	**	**					
Jmax	H-L	*	***	**					
Pleaf	H-L	***	***	***					

Table 22. Effects of P_s (H-L) on N_{leaf} , P_{leaf} , V_{cmax} and J_{max} at the three levels of *Ca* (150, 450, 800 ppm) for grouped *H.lanatus* and *S.dulcamara* data.

 $ns = not \ significant + = P \le 0,10^{*} = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

4. Discussion

4.1 Response of biomass growth

The first and key aim of the present study was to investigate how NPP and therefore B_t responded to the combined effect of rising *Ca* and low P_s . Low P_s was expected to reduce the increasing B_t to rising *Ca* (Conroy et al.,1988; Curtis & Wang,1998; Goudriaan & De Ruiter,1983; Moorby & Besford,1983; Zangerl & Bazzaz,1984). This hypothesis was confirmed, since the same general trend was observed in all species. Moreover, there was a stronger effect of rising *Ca* on B_t in *H.lanatus* in the transition from low to ambient *Ca* than from ambient to future *Ca* supporting the results from Baker et al. (1990), Dippery et al. (1995) and Ward et al. (1999). This pattern may indicate that photosynthetic plants responses are better adapted to low rather than high *Ca* (Körner,2006; Sage & Cowling,1999; Saxe et al.,1998). In addition, my results show an interactive effect of rising *Ca* and low P_s on B_t and a common response for this effect was found in *H.lanatus* and *S.dulcamara*. Indeed, in these species B_t increasingly and statistically significantly reduced B_t with rising *Ca*, suggesting that P_s scarcity can hamper NPP at the end of the century more strongly than at the present. Apparently, no previous studies reported an interactive effect of rising *Ca* and low P_s on NPP (Wieder et al.,2015).

Potential consequences of low Ps in fully coupled climate-carbon cycle models

Biomass growth responses to rising *Ca* and low P_s shown in the present study are extremely relevant for fully coupled climate-carbon cycle models. Indeed, current C cycle projections are likely to overstimate the ability of land surface to absorb atmospheric CO₂, since low P_s is not integrated in such models (Wieder et. al, 2015) although it can limit plant growth and it is particularly low in many natural ecosystems. Moreover, low P rates of mineralization are not fast enough to meet the increased nutrient demand generated from projected NPP increases (Cleveland et al., 2013). My analysis not only confirms that NPP is statistically significantly reduced by low P_s, as many studies have already reported (Conroy et al., 1988; Curtis & Wang, 1998; Goudriaan & De Ruiter, 1983; Moorby & Besford, 1983; Zangerl & Bazzaz, 1984), but it also indicates that this effect can be stronger at rising *Ca*, further reducing NPP. Strong limitation on NPP could results in net terrestrial C losses to the atmosphere, especially in the tropics, contrary to the terrestrial C storage projected in many fully coupled climate-carbon cycle models (Wieder et. al, 2015).

4.2 Response of biomass allocation

The present study also shows that plants reallocate biomass between aboveground and below ground tissue depending on Ca-P_s conditions. These reallocation responses may be an ecophysiological-induced mechanism intended to affect plant carbon assimilation (Callaway et al.,1994). Biomass was expected to be allocated more to the roots than to the above ground section with rising *Ca* (Ainsworth & Long,2005; Ceulemans & Mousseau,1994; Eamus & Jarvis,1989), once again with a stronger effect in the transition from low to ambient *Ca* than from ambient to high *Ca* (Baker et al.,1990), and under low P_s (Burslem & Turner,1996; Ceulemans & Mousseau,1994; Eamus & Jarvis,1989; Knox & Clarke,2005; Santiago et al.,2012), potentially offsetting carbon photosynthetic gains (Callaway et al.,1994). Thus, low P_s was expected to further lower both B_a:B_b and LAR, already decreasing with rising *Ca*. However, in the present study different effects of rising *Ca* and low P_s were found between the three species. Indeed, rising *Ca* either did not show any effect or in few cases statistically significantly increased both B_a:B_b and LMR. By contrast, P_s statistically significantly lowered B_a:B_b only in *S.dulcamara*, independently from *Ca*, and statistically significantly lowered LMR only in *H.lanatus* at low *Ca* and in *P.miliaceum* at ambient and high *Ca*.

The differing responses of the three species and inconsistency between results and expectations support the study of Poorter and Nagel (2000) which found a high variability in biomass allocation based on various environmental growing conditions, species physiological characteristics and ontogeny. Therefore, it is not possible to draw any general conclusions regarding shifts in plant biomass allocation at the future *Ca* increase under low P_s. Nonetheless, the effect of low P_s, when present, always lowered LMR, suggesting that, independently from *Ca*, less biomass is invested in the leaves under shortage of soil P. Finally, the present study found that a statistically significant interactive effect of *Ca* and P_s was present in *H.lanatus* and *P.miliaceum* on both B_a:B_b and LMR but no common trends of this effect can be highlighted due to high variability in responses between species. This result cannot again be compared with the literature as no information regarding the interactive effect of the external factors on biomass allocation were found.

4.3 Response of Aleaf in relation to biomass

The third aim of the present study was to investigate if and how A_{leaf} changed in relation to B_t and B_{leaf} due to the combined effect of rising *Ca* and low P_s . Once again, these morphological changes may be a result of ecophysiological mechanisms affecting carbon assimilation (Evans & Poorter,2001; Hättenschwiler et al.,1997). The present study found a very low statistical significance of SLA and LAR responses. Moreover, as seen for biomass allocation, species adopted very different strategies under the combined effect of low P_s and rising *Ca*, something that was expected for LAR, even if only under low P_s (Feller et al.,2007) but not for SLA. Nevertheless, several studies reported that A_{leaf} increases relatively less than B_{leaf} and than B_t with rising *Ca* (Bazzaz,1990; Centritto & Jarvis,1999; Hättenschwiler & Körner,1997; Hättenschwiler et al.,1997; Rogers et al.,1996; Tissue & Lewis,2010), and that it decreases relatively more than B_{leaf} and than B_t under low P_s (Conroy et al.,1988; Radin & Eidenbock,1984; Tissue & Lewis,2010). Therefore, low

 P_s was hypothesized to further reduce SLA and LAR already decreasing with rising *Ca*, potentially limiting photosynthetic carbon uptake (Evans & Poorter,2001; Hättenschwiler et al.,1997). In support of these hypotheses, the present study found a statistically significant decrease in SLA but only with rising *Ca*, and only in *S.dulcamara*, and a decrease in LAR but only under low P_s at ambient and high *Ca*, and only in *P.miliaceum*. Moreover, a statistically significant interactive effect of rising *Ca* and low P_s was found on LAR, but only once again in *P.miliaceum*, while no statistically significant interactive effect was found on SLA. Similarly, Tissue and Lewis (2010) reported an interactive effect of rising *Ca* and low P_s on LAR and as well no interactive effect of Low P_s on LAR with rising Ca from low to ambient level was found.

SLA and LAR responses show general inconsistency with the hypotheses, low statistical significance and a high variability between species. As such, as seen for biomass allocation, it is not possible to draw general conclusions on the adaptation of SLA and LAR to a future *Ca* increase under low P_s. However, the low statistical significance of changes in SLA and LAR could mean that plants, when well lighted, do not have to invest in A_{leaf} (De Groot et al.,2001) regardless of *Ca* and P_s.

4.4 Responses of leaf nutrients and their relationships with photosynthetic traits

The final aim of the present study was to investigate how N_{leaf} and P_{leaf} responded to the combined effect of rising *Ca* and low P_s , and how their changes were related to changes in V_{cmax} and J_{max} , respectively. My results show that N_{leaf} and P_{leaf} responses with rising *Ca* were similar between each other, contradicting the results of Tissue and Lewis (2010) which found a stronger *Ca* effect on P_{leaf} , while they were opposite under low P_s . Moreover, leaf nutrients responses under rising *Ca* and low P_s were rather comparable between species. The only anomaly was presented on N_{leaf} in *P.miliaceum* at low *Ca*, where low P_s showed an opposite effect in comparison to the general trend. However, the present study analyzed only three species, and as such it is difficult to assess whether or not this was indeed an anomaly.

Both N_{leaf} and P_{leaf} were expected to have a positive relationship with V_{cmax} and J_{max}, respectively (Domingues et al.,2010; Walker et al.,2014), directly regulating photosynthesis through the allocation of N to RuBisCO (Ainsworth & Rogers,2007; Griffin et al.,2000; Lewis et al.,2004) and P to the ETC (Domingues et al.,2010). My results support these hypotheses, since these positive relationships were found. V_{cmax} and J_{max} showed a statistically significant decrease with rising *Ca*, more steep in the transition from low to ambient *Ca* than from ambient to future *Ca*, similarly to N_{leaf} and P_{leaf}. Comparable results were reported by Tissue and Lewis (2010). The stronger effect of rising *Ca* in the low-ambient *Ca* transition may suggest that some ecophysiological plants responses could be better adapted to low rather than high *Ca* (Körner,2006; Sage & Cowling,1999; Saxe et al.,1998). Moreover, J_{max} further statistically significantly decreased under low P_s, similarly to P_{leaf}. Differently, V_{cmax} showed a statistically significant decrease under low P_s even if only at ambient and high *Ca*, while N_{leaf} statistically significantly increased under the same conditions. Low P_s was expected to weaken the positive relationship between N_{leaf} and V_{cmax} since the two traits were expected to respond differently under low P_s (Tissue & Lewis,2010) and therefore the

hypothesis can be confirmed. My results could also support the conclusions of Griffin et al. (2000) which indicate that N_{leaf} can be reallocated to other photosynthetic or no photosynthetic systems more N limited than RuBisCO. This can be also ascertained from the lack of strength of linear regression (Adj. R²= 0,56) found in the present study. Comparable conclusions can be made on the relationship between P_{leaf} and J_{max}, since their Adj. R² was equal to 0,51. However, P_{leaf} seemed to have stronger effect on J_{max} (slope = 0,006) than N_{leaf} on V_{cmax} (slope = 0,001). Finally, there was an interactive effect of rising Ca and low Ps on the relationship between Pleaf and Jmax. Indeed, Pleaf, in contrast to N_{leaf}, experienced a statistically significant response under the interaction of the external factors. The effect of low P_s on P_{leaf} was milder in the transition from low to ambient Ca and was related to a larger effect on J_{max} in the same Ca transition. Therefore, plants under low P_s could suffer a milder reduction in Pleaf at present Ca compared with glacial Ca. As the reduced response of P_{leaf} related with larger response of J_{max}, the effect of low P_s seems to weaken also the positive relationship between P_{leaf} and J_{max} , even if interactively with Ca and with a milder effect than on the relationship between N_{leaf} and V_{cmax}. Once again, no comparisons with expectations regarding the interactive effect of rising Ca and low Ps on the relationships between leaf nutrients and photosynthetic traits can be made, since, to the best of my knowledge, no previous studies investigated on this.

4.5 Limitations and recommendations for future research

Limitations

This study suffered some limitations that could be improved in future research, beginning with nutrient solution preparation, continuing with samples size and finishing with data grouping.

The nutrient solution had rather extreme ratios of N:P (45N:1P and 1N:1P) (Cleveland & Liptzin,2007). More specifically, 1N:1P is a very utmost and very rare condition in natural ecosystems (ibid). A solution containing 1N:1P was erroneously prepared in the experiment of Rietveld (2016). Because the present study was intended to be a continuation of Rietveld's work, no changes to the nutrient solutions were made. Despite the very extreme ratios being good benchmarks for visualizing the effect of low P_s on plants, it is plausible that the results of this study should be to some extent resized if intended to represent plant responses in common natural ecosystems suffering soil P limitation. Moreover, only P was decreased in the solution, although N could also have been simultaneously increased to consider the ongoing modification of the N cycle. Indeed, nitrogen is well known for affecting NPP and associated photosynthetic and physiological plant responses (LeBauer & Treseder,2008; McGuire et al.,1995) and its biologically available form in the soil have almost doubled since the industrial revolution because of an anthropogenic alteration of the N cycle (Vitousek et al., 1997).

The samples used were very small, reducing the power of the statistical analysis to detect significance. Indeed, sample populations swung from a minimum of five to a maximum of eight individuals per treatment combination. The decision to consider this small sample sizes was unavoidable since the number of individuals of *H.lanatus* and *S.dulcamara* was already set before the current experiment started; Rietveld grew these species populations and had started

measuring photosynthetic responses of above sample sizes. In addition, the decision for the particularly low number of individuals for N_{leaf} and P_{leaf} (only five) was a result of the limited budget of the present study which could not cover the running cost of more measurements using the Carlo Erba NA1500 elemental analyzer and the S2 Picofox machine. Moreover, V_{cmax} , J_{max} , SLA and LAR sample sizes swung between species because some individuals dried out during the photosynthetic measurements and many leaves were wrinkled at the harvest. For the same latter reason no A_{leaf} measurements could be taken for *H.lanatus* in one treatment combination (low *Ca*-High P_s).

Finally, in the linear regression *H.lanatus* and *S.dulcamara* were grouped together in the same data set even if they showed rather different responses to the combination of rising *Ca* and low P_s. This decision was forced by the fact that the precise leaves used to measure photosynthetic traits were not recorded by Rietveld and therefore it was not possible to continue measuring leaf nutrients on the same leaves. If measurements had been done on the same individuals, a linear regression could have been carried out at individual level and it would have been possible to compare six different linear regressions in each species, one per each treatment combination. Thus, it would have been easier to understand the influence of the external factors on the relationships between leaf nutrients and photosynthetic traits.

Recommendations

Because of the aforementioned limitations, future studies could adopt less extreme nutrient ratios in the solution than the ones adopted in the present study, especially for 1N:1P, to better represent plant responses under soil P limitation in natural ecosystems. In addition, to fully understand the variation in NPP and plants responses to future *Ca*, P and N could be simultaneously varied in the solution. Further research could also use a larger sample size of individuals to improve the power of the statistical analysis and make sure to have the same sample size per treatment combination between different species and traits. Finally, linear regressions could be carried out at individual level to better understand the combined effect of the external factors on the relationships between leaf nutrients and photosynthetic traits.

The present study also paves the way for new research directions. First, because the ecophysiological mechanisms underlying altered biomass allocation, A_{leaf} in relation to biomass and leaf nutrients remain unknown. Second, because my results only suggest that N_{leaf} could be reallocated to other photosynthetic or no photosynthetic systems more N limited than RuBisCO under low P_s , further studies could investigate the biochemical relationship between N_{leaf} and N concentrations in RuBisCO to further support my hypothesis.

5. Conclusions

Results of the present study indicate that with rising Ca, regardless of P nutrition, NPP could increase at a lower pace in the transition to future Ca compared with how it did in the past, as the responses of H.lanatus suggest, presumably indicating that photosynthetic responses are better adapted to low rather than high Ca. Moreover, as a result of the interactive effect of Ca and Ps, low P_s could hamper NPP at the end of the century more strongly than at the present, accordingly to the responses of H.lanatus and S.dulcamara. Soil P is already scarce in many ecosystems and due to the low rate of P mineralization it will not meet the increased nutrient demand required by increased photosynthetic rates. Therefore, it is likely that fully coupled climate-carbon cycle model projections misrepresent future plant carbon sequestration since they do not integrate low P_s. At the same time, in order to adapt to rising Ca and low Ps conditions plants applied different ecophysiological mechanisms that in turn can affect photosynthetic carbon gains. Increased biomass allocation to the roots, reduced Aleaf in relation to biomass and reduced Nleaf and Pleaf are often indicated in the literature as some of the results of these ecophysiological mechanisms responsible of the down regulation of NPP. My results showed a high variability in biomass allocation, SLA and LAR responses between species, suggesting that species can adopt very different ecophysiological strategies under the independent and interactive effect of low Ps and rising Ca, and therefore no general conclusions can be drawn. However, the effect of low Ps, independently from Ca, always lowered LMR, suggesting that less biomass is invested in the leaves under shortage of soil P. Moreover, the low statistical significance of SLA and LAR responses suggests that, if sufficiently lighted, plants no longer need to invest in Aleaf regardless of variations in Ca and in Ps. Differently, the present study demonstrated that under the combined effect of rising Ca and low Ps Nleaf and Pleaf had similar responses between species. Leaf nutrients decreased similarly with rising Ca, more strongly in the transition from low to ambient than from ambient to high Ca, independently from the nutrient addition regime, while under low P_s N_{leaf} increased and P_{leaf} further decreased. The effect of Ca may again indicate that also some ecophysiological plant responses may be better adapted to low than to high Ca. Moreover, because of a statistically significant interactive effect of the external factors Pleaf seems to be reduced to a lesser extent by low P_s at present Ca compared with glacial Ca. My results also support the existence of positive relationships of N_{leaf} and P_{leaf} with with V_{cmax} and J_{max}, respectively, suggesting, according to the literature, a plausible regulation of N_{leaf} on the allocation of N to RuBisCO and of P_{leaf} on the allocation of P to ETC. However, both the positive relationships lacked of strength. Moreover, low P_s weakened these positive relationships, with a stronger effect on the relationship between N_{leaf} and V_{cmax}. These results may indicate that N_{leaf} could be reallocated to other photosynthetic or no photosynthetic systems more N limited than RuBisCO. Further research could better investigate the biochemical relationship between changes in N_{leaf} and changes of N concentrations in RuBisCO to confirm the hypothesis raised in the present study. Nevertheless, the present study adopted extreme N:P ratios, particularly unrealistic in the high P solution. Therefore, further studies could select more reasonable nutrient ratios to better represent plant responses in natural ecosystems suffering soil P limitation. Moreover, the present study did not consider the ongoing anthropogenic alteration of the N cycle, although N has a strong influence on NPP and plants photosynthetic and physiological responses and it is likely that its biologically available form has been increasing since the industrial revolution because of human activity. As such, future studies could investigate plant responses to rising *Ca* while simultaneously decreasing P_s and increasing N_s .

References

Ahlström, A., Schurgers, G., Arneth, A., & Smith, B. (2012). Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. *Environmental Research Letters*, 7(4), 044008.

Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO_2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO_2 . *New Phytologist*, *165*(2), 351-372.

Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO₂]: mechanisms and environmental interactions. *Plant, Cell & Environment, 30*(3), 258-270.

Anon (2017). Retrieved 23_{th} May 2017, from https://www.ipni.net/ppiweb/bcrops.nsf/%24webindex/ECBABED567ABDCDD852568EF0063C9F4 /%24file/99-1p06.pdf.

Baker, J. T., Allen, L. H., & Boote, K. J. (1990). Growth and yield responses of rice to carbon dioxide concentration. *The Journal of Agricultural Science*, *115*(03), 313-320.

Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S. et.al (2004). Increasing biomass in Amazonian forest plots. *Philosophical Transactions of Royal Society of London*, *359*(1443), 353–365.

Bazzaz, F. A. (1990). The response of natural ecosystems to the rising global CO_2 levels. Annual Review of Ecology and Systematics, 21(1), 167-196.

Bellassen, V., Viovy, N., Luyssaert, S., Maire, G. et. al (2011). Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. *Global Change Biology*, *17*(11), 3274–3292.

Burslem, D. F. R. P., Grubb, P. J., & Turner, I. M. (1996). Responses to simulated drought and elevated nutrient supply among shade-tolerant tree seedlings of lowland tropical forest in Singapore. *Biotropica*, 636-648.

Callaway, R. M., DeLucia, E. H., Thomas, E. M., & Schlesinger, W. H. (1994). Compensatory responses of CO_2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO_2 and temperature regimes. *Oecologia*, *98*(2), 159-166.

Campbell, C. D., & Sage, R. F. (2006). Interactions between the effects of atmospheric CO_2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.). *Plant, Cell & Environment, 29*(5), 844-853.

Cannell, M. G. R., Thornley, J. H. M., Mobbs, D. C., & Friend, A. D. (1998). UK conifer forests may be growing faster in response to increased N deposition, atmospheric CO_2 and temperature. *Forestry*, 71(4), 277–296.

Centritto, M., Lee, H. S., & Jarvis, P. (1999). Increased growth in elevated [CO₂]: an early, short-term response? *Global Change Biology*, *5*(6), 623-633.

Ceulemans, R., & Mousseau, M. (1994). Tansley Review No. 71 Effects of elevated atmospheric CO_2 on woody plants. *New Phytologist*, *127*(3), 425-446.

Cleveland, C. C., & Liptzin, D. (2007). C: N: P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass? *Biogeochemistry*, *85*(3), 235-252.

Cleveland, C. C., Houlton, B. Z., Smith, W. K., Marklein, A. R., Reed, S. C., Parton, W., ... & Running, S. W. (2013). Patterns of new versus recycled primary production in the terrestrial biosphere. *Proceedings of the National Academy of Sciences*, *110*(31), 12733-12737.

Cole, C. T., Anderson, J. E., Lindroth, R. L., & Waller, D. M. (2009). Rising concentrations of atmospheric CO_2 have increased growth in natural stands of quaking aspen (Populus tremuloides). *Global Change Biology*, *16*(8), 2186–2197.

Conroy, J. P., Smillie, R. M., Küppers, M., Bevege, D. I., & Barlow, E. W. (1986). Chlorophyll a fluorescence and photosynthetic and growth responses of Pinus radiata to phosphorus deficiency, drought stress, and high CO₂. *Plant Physiology*, *81*(2), 423-429.

Conroy, J. P., Küppers, M., Küppers, B., Virgona, J., & Barlow, E. W. R. (1988). The influence of CO₂ enrichment, phosphorus deficiency and water stress on the growth, conductance and water use of Pinus radiata D. Don. *Plant, Cell & Environment*, *11*(2), 91-98.

Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: global food security and food for thought. *Global Environmental Change*, *19*(2), 292-305.

Cotrufo, M. F., Ineson, P., & Scott, A. (1998). Elevated CO_2 reduces the nitrogen concentration of plant tissues. *Global Change Biology*, 4(1), 43-54.).

Curtis, P. S., & Wang, X. (1998). A meta-analysis of elevated CO_2 effects on woody plant mass, form, and physiology. *Oecologia*, 113(3), 299-313.

De Graaff, M. A., Van Groeningen, K. J., Six, J., Hungate, B., & van Kessel, C. (2006). Interactions between plant growth and soil nutrient cycling under elevated CO₂: A meta-analysis. *Global Change Biology*, *12*(11), 2077-2091.

De Groot, C. C., Marcelis, L. F., Van Den Boogaard, R., & Lambers, H. (2001). Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. *Plant, Cell & Environment, 24*(12), 1309-1317.

Dippery, J. K., Tissue, D. T., Thomas, R. B., & Strain, B. R. (1995). Effects of low and elevated CO₂ on C 3 and C 4 annuals. *Oecologia*, *101*(1), 13-20.

Domingues, T. F., Meir, P., Feldpausch, T. R., Saiz, G., Veenendaal, E. M., Schrodt, F., ... & Diallo, A. (2010). Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. *Plant, Cell & Environment*, *33*(6), 959-980.

Duursma, R.A., 2015. Plantecophys - An R Package for Analysing and Modelling Leaf Gas Exchange Data. *PLOS one*, *10*(11), e0143346.

Eamus, D., & Jarvis, P. G. (1989). The direct effects of increase in the global atmospheric CO₂ concentration on natural and commercial temperate trees and forests. *Advances in Ecological Research*, *19*, 1-55.

Evans, J., & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. *Plant, Cell & Environment, 24*(8), 755-767.

Farquhar, G. V., Caemmerer, S. V., & Berry, J. A. (1980). A biochemical model of photosynthetic CO_2 assimilation in leaves of C 3 species. *Planta*, 149(1), 78-90.

Feller, I. C., Lovelock, C. E., & McKee, K. L. (2007). Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems. *Ecosystems*, *10*(3), 347-359.

Gill, R. A., Polley, H. W., Johnson, H. B., Anderson, L. J., Maherali, H., & Jackson, R. B. (2002). Nonlinear grassland responses to past and future atmospheric CO₂. *Nature*, *417*(6886), 279-282.

Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P. B., ... & Niinemets, Ü. (2012). Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. *Biogeosciences*, *9*, 3547-3569.

Goudriaan, J., & De Ruiter, H. E. (1983). Plants growth in response to CO_2 enrichment, at two levels of nitrogen and phosphorus supply. 1. Dry matter, leaf area and development. *Netherlands Journal of Agricultural Science*, *31*(2), 157-169.

Graybill, D. A., & Idso, S. B. (1993). Detecting the aerial fertilization effect of atmospheric CO_2 enrichment in tree-ring chronologies. *Global Biogeochemical Cycles*, 7(1), 81–95.

Griffin, K. L., Tissue, D. T., Turnbull, M. H., & Whitehead, D. (2000). The onset of photosynthetic acclimation to elevated CO_2 partial pressure in field-grown Pinus radiata D. Don. after 4 years. *Plant, Cell & Environment*, 23(10), 1089-1098.

Hastings, J. W., Astrachan, L., & Sweeney, B. M. (1961). A persistent daily rhythm in photosynthesis. *The Journal of General Physiology*, *45*(1), 69-76.

Hättenschwiler, S., & Körner, C. (1997). Biomass allocation and canopy development in spruce model ecosystems under elevated CO_2 and increased N deposition. *Oecologia*, 113(1), 104-114.

Hättenschwiler, s., Miglietta, F., Raschi, A., & KÖRNER, C. (1997). Thirty years of in situ tree growth under elevated CO₂: a model for future forest responses? *Global Change Biology*, *3*(5), 463-471.

Hermans, C., Hammond, J. P., White, P. J., & Verbruggen, N. (2006). How do plants respond to nutrient shortage by biomass allocation? *Trends in Plant Science*, *11*(12), 610-617.

Huxman, T. E., Hamerlynck, E. P., Jordan, D. N., Salsman, K. J., & Smith, S. D. (1998). The effects of parental CO₂ environment on seed quality and subsequent seedling performance in Bromusrubens. *Oecologia*, *114*(2), 202-208.

Knox, K. J. E., & Clarke, P. J. (2005). Nutrient availability induces contrasting allocation and starch formation in resprouting and obligate seeding shrubs. *Functional Ecology*, *19*(4), 690-698.

Körner, C. (2006). Plant CO₂ responses: an issue of definition, time and resource supply. *New Phytologist*, *172*(3), 393-411.

Lambers, H., Shane, M. W., Cramer, M. D., Pearse, S. J., & Veneklaas, E. J. (2006). Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. *Annals of Botany*, *98*(4), 693-713.

LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. *Ecology*, *89*(2), 371-379.

Lewis, J.D, Lucash, M., Olszky, D.M., & Tingey, D.T. (2004). Relationships between needle nitrogen concentration and photosynthetic responses of Douglas-fir seedlings to elevated CO₂ and temperature. *New Phytologist*, 162(2), 355-364.

Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K. et.al (2009). Increasing carbon storage in intact African tropical forests. *Nature*, *457*(7232), 1003–1006.

Lewis, J. D., Ward, J. K., & Tissue, D. T. (2010). Phosphorus supply drives nonlinear responses of cottonwood (Populus deltoides) to increases in CO₂ concentration from glacial to future concentrations. *New Phytologist*, *187*(2), 438-448.

Lukac, M., Calfapietra, C., Lagomarsino, A., & Loreto, F. (2010). Global climate change and tree nutrition: effects of elevated CO_2 and temperature. *Tree Physiology*, *30*(9), 1209-1220.

Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M., Siegenthaler, U., ... & Stocker, T. F. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453(7193), 379-382.

Martínez-Vilalta, J., López, B. C., Adell, N., & Badiella, L. (2008). Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. *Global Change Biology*, *14*(12), 2868–2881.

McGuire, A. D., Melillo, J. M., & Joyce, L. A. (1995). The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide. *Annual Review of Ecology and Systematics*, *26*(1), 473-503.

Meharg, A. A., Bailey, J., Breadmore, K., & Macnair, M. R. (1994). Biomass allocation, phosphorus nutrition and vesicular-arbuscular mycorrhizal infection in clones of Yorkshire Fog, Holcus lanatus L.(Poaceae) that differ in their phosphate uptake kinetics and tolerance to arsenate. *Plant and Soil*, *160*(1), 11-20.

Mendelu (2017). Retrieved 23_{th} May 2017, from https://is.mendelu.cz/eknihovna/opory/zobraz_cast.pl?cast=71707

Moorby, J., & Besford, R. T. (1983). Mineral nutrition and growth. *Encyclopedia of Plant Physiology New Series*, *15*, 481-515.

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R. et.al (2010). The next generation of scenarios for climate change research and assessment. Nature. *Nature*, *463*(7282), 747–756.

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., ... & Running, S. W. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. *Science*, *300*(5625), 1560-1563.

Nord, E. A., & Lynch, J. P. (2009). Plant phenology: a critical controller of soil resource acquisition. *Journal of Experimental Botany*, *60*(7), 1927-1937.

Osborne, C. P., Drake, B. C., & LaRoche, J. (1997). Does Long-Term Elevation of CO₂ Concentration Increase Photosynthesis in Forest Floor Vegetation?'. *Plant Physiology*, *114*, 1571.

Peñuelas, J., & Matamala, R. (1990). Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO₂ increase. *Journal of Experimental Botany*, *41*(9), 1119-1124.

Peterson, A. G., Ball, J. T., Luo, Y., Field, C. B., Reich, P. B., Curtis, P. S., ... & Forstreuter, M. (1999). The photosynthesis–leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis. *Global Change Biology*, *5*(3), 331-346.

Poorter, H., & Nagel, O. (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO₂, nutrients and water: a quantitative review. *Functional Plant Biology*, *27*(12), 1191-1191.

Raaimakers, D., Boot, R. G. A., Dijkstra, P., & Pot, S. (1995). Photosynthetic rates in relation to leaf phosphorus content in pioneer versus climax tropical rainforest trees. *Oecologia*, *102*(1), 120-125.

Radin, J. W., & Eidenbock, M. P. (1984). Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. *Plant Physiology*, *75*(2), 372-377.

Richardson, S. J., Peltzer, D. A., Allen, R. B., McGlone, M. S., & Parfitt, R. L. (2004). Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. *Oecologia*, *139*(2), 267-276.

Rietveld, T. (2016). The effects of CO_2 fertilization and phosphorous availability on the photosynthesis of plants. Unpublished master's thesis, Utrecht university, Utrecht, The Netherlands.

Rogers, G. S., Milham, P. J., Thibaud, M. C., & Conroy, J. P. (1996). Interactions between rising CO₂ concentration and nitrogen supply in cotton. I. Growth and leaf nitrogen concentration. *Functional Plant Biology*, *23*(2), 119-125.

Sage, R. F., & Cowling, S. A. (1999). Implications of stress in low CO_2 atmospheres of the past: are today's plants too conservative for a high CO_2 world. *Carbon Dioxide and Environmental Stress*, 289-308.

Santiago, L. S., Wright, S. J., Harms, K. E., Yavitt, J. B., Korine, C., Garcia, M. N., & Turner, B. L. (2012). Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. *Journal of Ecology*, *100*(2), 309-316.

Sardans, J., Rodà, F., & Peñuelas, J. (2004). Phosphorus limitation and competitive capacities of Pinus halepensis and Quercus ilex subsp. rotundifolia on different soils. *Plant Ecology*, *174*(2), 307-319.

Saxe, H., Ellsworth, D. S., & Heath, J. (1998). Tree and forest functioning in an enriched CO₂ atmosphere. *New Phytologist*, *139*(3), 395-436.

Team, E. (2017). ESRL *Global Monitoring Division – Global Greenhouse Gas Reference Network. Esrl.noaa.gov.* Retrieved 12_{th} June 2017, from https://www.esrl.noaa.gov/gmd/ccgg/trends/.

Tissue, D. T., & Lewis, J. D. (2010). Photosynthetic responses of cottonwood seedlings grown in glacial through future atmospheric $[CO_2]$ vary with phosphorus supply. *Tree Physiology*, *30*(11), 1361–1372.

Vance, C., Uhde-Stone, C., & Allan, D. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. *New Phytologist*, *157*(3), 423-447.

Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., ... & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. *Ecological Applications*, 7(3), 737-750.

Voelker, S. L., Muzika, R.-M., Guyette, R. P., & Stambaugh, M. C. (2006). Historical CO_2 growth enhancement declines with age in quercus and pinus. *Ecological Monographs*, 76(4), 549–564.

Zangerl, A. R., & Bazzaz, F. A. (1984). The response of plants to elevated CO₂. *Oecologia*, 62(3), 412-417.

Walker, A. P., Beckerman, A. P., Gu, L., Kattge, J., Cernusak, L. A., Domingues, T. F., ... & Woodward, F. I. (2014). The relationship of leaf photosynthetic traits–Vcmax and Jmax–to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. *Ecology and Evolution*, *4*(16), 3218-3235.

Ward, J., Tissue, D. T., Thomas, R. B., & Strain, B. (1999). Comparative responses of model C3 and C4 plants to drought in low and elevated CO₂. *Global Change Biology*, *5*(8), 857-867.

Wieder, W. R., C. C. Cleveland, W. K. Smith, & K. Todd-Brown (2015). Future productivity and carbon storage limited by terrestrial nutrient availability. *Nature Geoscience*, *8*(6), 441–444.

Woodrow I.E. & Berry J.A. (1988) Enzymatic regulation of photosynthetic CO₂, fixation in C3 plants. *Annual Review of Plant Physiology and Plant Molecular Biology*, 39(1), 533–594.

Appendix A: Difference in responses between *H.lanatus* and *S.dulcamara*

Table 1A. Differences in N_{leaf} , P_{leaf} , V_{cmax} and J_{max} responses between *H.lanatus* and *S.dulcamara* to the combined treatment of rising *Ca* and low P_s .

Traits	Difference between H.lanatus and S.dulcamara
N _{leaf}	*
P _{leaf}	n.s
V _{cmax}	***
J _{max}	***

ns = not significant + = $P \le 0,10^* = P \le 0,05^{**} = P \le 0,01^{***} = P \le 0,001$

Appendix B: Results per individual

Table 1B. List of the results per individuals for all the traits analyzed in the study in the three species (*H.lanatus*, *S.dulcamara* and *P.miliaceum*). Units are the following: For B_t (g) for SLA and LAR ($\frac{cm^2}{g}$), for N_{leaf} and P_{leaf} ($\frac{mg}{Kg}$), for V_{cmax} and J_{max} (µmol m⁻² s⁻¹). B_t, B_a:B_b and LMR of *P.miliaceum* are often nine even if only eight out of them were selected.

Species	Treatment (Ca_P _s)	Individual	B _t	B _a :B _b	LMR	SLA	LAR	N _{leaf}	P_{leaf}	V _{cmax}	J _{max}
H.lanatus	Low <i>Ca</i> _lowP _s	green1l	3,62	0,88	0,47	181	84	-	-	39	79
H.lanatus	Low <i>Ca</i> _lowP _s	green5l	3,91	1,03	0,51	204	104	28024	853	28	55
H.lanatus	Low <i>Ca</i> _lowP _s	green9l	3,89	0,68	0,41	161	65	-	-	39	57
H.lanatus	Low <i>Ca</i> _lowP _s	grey10l	-	-	-	-	-	-	-	49	66
H.lanatus	Low <i>Ca</i> _lowP _s	grey2l	-	-	-	-	-	-	-	53	80
H.lanatus	Low <i>Ca</i> _lowP _s	grey4l	2,62	0,95	0,49	201	98	-	-	59	80
H.lanatus	Low <i>Ca</i> _lowP _s	grey6l	4,95	1,02	0,51	220	111	34058	658	48	71
H.lanatus	Low <i>Ca</i> _lowP _s	green3l	4,17	0,85	0,46	193	89	36058	1439	-	-
H.lanatus	Low <i>Ca</i> _lowP _s	green11l	3,67	0,84	0,46	224	102	33952	867	-	-
H.lanatus	Low <i>Ca</i> _lowP _s	green7l	3,18	0,68	0,40	189	76	36089	775	-	-
H.lanatus	Low <i>Ca</i> _highP _s	green12l	3,99	1,17	0,54	Missing	Missing	19890	10824	59	91
H.lanatus	Low <i>Ca</i> _highP _s	green4l	4,15	1,44	0,59	Missing	Missing	-	-	57	83
H.lanatus	Low <i>Ca</i> _highP _s	green6l	-	-	-	-	-	-	-	42	89
H.lanatus	Low <i>Ca</i> _highP _s	green8l	3,94	1,89	0,65	Missing	Missing	19091	7777	51	81
H.lanatus	Low <i>Ca</i> _highP _s	grey1l	-	-	-	-	-	-	-	49	92
H.lanatus	Low <i>Ca</i> _highP _s	grey3l	3,88	1,46	0,59	Missing	Missing	23041	9373	43	83
H.lanatus	Low <i>Ca</i> _highP _s	grey5l	-	-	-	-	-	-	-	56	78
H.lanatus	Low <i>Ca</i> _highP _s	#9 gray	3,94	1,55	0,61	Missing	Missing	-	-	-	-
H.lanatus	Low <i>Ca</i> _highP _s	#2 green	5,17	1,07	0,52	Missing	Missing	-	-	-	-
H.lanatus	Low <i>Ca</i> _highP _s	#10 green	4,70	1,49	0,60	Missing	Missing	24618	7442	-	-
H.lanatus	Low <i>Ca</i> _highP _s	#11 gray	3,47	1,85	0,65	Missing	Missing	28401	9128	-	-
H.lanatus	Ambient <i>Ca</i> _lowP _s	green10a	-	-	-	-	-	-	-	11	29

H.lanatus	Ambient <i>Ca</i> _lowP _s	green12a	10,02	0,50	0,33	171	57	13418	344	29	60
H.lanatus	Ambient <i>Ca</i> _lowP _s	green2a	6,65	0,65	0,39	200	79	16440	302	23	53
H.lanatus	Ambient <i>Ca</i> _lowP _s	green4a	5,21	0,48	0,33	227	74	30912	746	16	40
H.lanatus	Ambient <i>Ca</i> _lowP _s	grey12a	-	-	-	-	-	-	-	23	38
H.lanatus	Ambient <i>Ca</i> _lowP _s	grey2a	7,13	0,37	0,27	178	48	-	-	17	43
H.lanatus	Ambient <i>Ca</i> _lowP _s	grey6a	-	-	-	-	-	-	-	22	50
H.lanatus	Ambient <i>Ca</i> _lowP _s	#8 gray	4,43	0,59	0,37	211	78	31443	542	-	-
H.lanatus	Ambient <i>Ca</i> _lowP _s	#4 gray	5,21	0,43	0,30	199	59	32220	446	-	-
H.lanatus	Ambient <i>Ca</i> _lowP _s	#6 green	7,80	0,48	0,32	144	47	-	-	-	-
H.lanatus	Ambient <i>Ca</i> _lowP _s	#8 green	7,02	0,71	0,42	170	70	-	-	-	-
H.lanatus	AmbientCa_highPs	green11a	12,60	0,69	0,41	182	75	10711	3653	37	71
H.lanatus	Ambient <i>Ca</i> _highP _s	green3a	12,11	0,61	0,38	180	69	-	-	35	79
H.lanatus	Ambient <i>Ca</i> _highP _s	green7a	12,21	0,44	0,30	219	67	12507	4260	34	77
H.lanatus	Ambient <i>Ca</i> _highP _s	green9a	10,97	0,46	0,32	289	92	22352	4946	36	67
H.lanatus	Ambient <i>Ca</i> _highP _s	grey1a	12,23	0,48	0,32	177	57	-	-	26	92
H.lanatus	AmbientCa_highPs	grey3a	-	-	-	-	-	-	-	42	77
H.lanatus	Ambient <i>Ca</i> _highP _s	grey7a	11,82	0,49	0,33	186	62	-	-	40	82
H.lanatus	Ambient <i>Ca</i> _highP _s	#5 gray	12,31	0,42	0,30	180	54	13737	7454	-	-
H.lanatus	Ambient <i>Ca</i> _highP _s	#5 green	12,62	0,45	0,31	194	60	18976	5958	-	-
H.lanatus	High <i>Ca</i> _lowP _s	green1h	-	-	-	-	-	-	-	10	27
H.lanatus	High <i>Ca</i> _lowP _s	green3h	7,51	0,70	0,41	195	80	17971	320	19	46
H.lanatus	High <i>Ca</i> _lowP _s	green7h	7,31	0,73	0,42	194	82	16466	884	24	49
H.lanatus	High <i>Ca</i> _lowP _s	grey10h	5,56	0,41	0,29	278	81	33967	622	18	32
H.lanatus	High <i>Ca</i> _lowP _s	grey12h	-	-	-	-	-	-	-	16	38
H.lanatus	High <i>Ca</i> _lowP _s	grey6h	4,60	0,67	0,40	235	94	28222	425	14	36
H.lanatus	High <i>Ca</i> _lowP _s	grey8h	3,81	0,50	0,33	263	87	-	-	12	31
H.lanatus	High <i>Ca</i> _lowP _s	#4 gray	5,06	0,60	0,38	214	80	19126	456	-	-
H.lanatus	High <i>Ca</i> _lowP _s	#5 green	5,50	0,57	0,36	267	97	-	-	-	-
H.lanatus	High <i>Ca</i> _lowP _s	#9 green	5,72	0,50	0,33	277	92	-	-	-	-
H.lanatus	High <i>Ca</i> _highP _s	green10h	-	-	-	-	-	-	-	29	67
H.lanatus	High <i>Ca</i> _highP _s	green2h	14,04	0,50	0,34	159	53	-	-	32	65
H.lanatus	High <i>Ca</i> _highP _s	green4h	13,21	0,52	0,34	279	95	9998	4043	29	72
H.lanatus	High <i>Ca</i> _highP _s	green6h	10,60	0,53	0,35	171	59	8154	3817	21	37
H.lanatus	High <i>Ca</i> _highP _s	grey11h	-	-	-	-	-	-	-	32	65
H.lanatus	High <i>Ca</i> _highP _s	grey1h	12,32	0,64	0,39	218	85	8176	2590	32	67
H.lanatus	High <i>Ca</i> _highP _s	grey7h	12,37	0,47	0,32	325	104	-	-	25	61
H.lanatus	High <i>Ca</i> _highP _s	#5 green	14,27	0,40	0,29	176	50	9931	6473	-	-
H.lanatus	High <i>Ca</i> _highP _s	# 8 green	9,78	0,78	0,44	282	123	-	-	-	-

H.lanatus	High <i>Ca</i> _highP _s	#3 gray	12,24	0,86	0,46	186	86	12462	3061	-	-
S.dulcamara	Low <i>Ca</i> _lowP _s	purple12l	-	-	-	-	-	-	-	62	104
S.dulcamara	Low <i>Ca</i> _lowP _s	purple2l	0,97	1,16	0,03	282	9	51411	2105	61	96
S.dulcamara	Low <i>Ca</i> _lowP _s	purple9l	0,64	0,93	0,04	377	16	58372	2581	61	90
S.dulcamara	Low <i>Ca</i> _lowP _s	white3l	-	-	-	-	-	-	-	63	90
S.dulcamara	Low <i>Ca</i> _lowP _s	white6l	0,30	0,80	0,13	388	51	58930	7472	93	103
S.dulcamara	Low <i>Ca</i> _lowP _s	white8l	0,36	1,43	0,08	367	29	51957	2715	67	99
S.dulcamara	Low <i>Ca</i> _lowP _s	#8 purple	0,70	1,32	0,02	304	5	-	-	-	-
S.dulcamara	Low <i>Ca</i> _lowP _s	#10 white	0,67	1,44	0,01	298	4	-	-	-	-
S.dulcamara	Low <i>Ca</i> _lowP _s	#11 white	0,34	0,61	0,08	412	31	-	-	-	-
S.dulcamara	Low <i>Ca</i> _lowP _s	#1 white	0,64	1,56	0,05	221	11	47384	2417	-	-
S.dulcamara	Low <i>Ca</i> _highP _s	purple1l	1,66	1,29	0,03	350	12	-	-	100	125
S.dulcamara	Low <i>Ca</i> _highP _s	purple4l	-	-	-	-	-	-	-	94	113
S.dulcamara	Low <i>Ca</i> _highP _s	purple7l	-	-	-	-	-	-	-	89	134
S.dulcamara	Low <i>Ca</i> _highP _s	white2l	2,00	1,29	0,06	344	21	56643	5851	92	116
S.dulcamara	Low <i>Ca</i> _highP _s	white4l	-	-	-	-	-	-	-	43	82
S.dulcamara	Low <i>Ca</i> _highP _s	white5l	1,55	1,23	0,04	208	8	-	-	91	121
S.dulcamara	Low <i>Ca</i> _highP _s	#9white	2,61	1,21	0,03	328	9	-	-	-	-
S.dulcamara	Low <i>Ca</i> _highP _s	#7 white	1,80	1,53	0,04	376	13	48448	7785	-	-
S.dulcamara	Low <i>Ca</i> _highP _s	#10 purple	2,76	1,92	0,12	410	50	31669	5625	-	-
S.dulcamara	Low <i>Ca</i> _highP _s	#3 purple	1,86	1,17	0,03	354	12	48327	7680	-	-
S.dulcamara	Low <i>Ca</i> _highP _s	#12 white	2,14	1,27	0,03	338	10	49499	9797	-	-
S.dulcamara	Ambient <i>Ca</i> _lowP _s	purple10a	1,89	0,98	0,09	128	11	-	-	30	59
S.dulcamara	Ambient <i>Ca</i> _lowP _s	purple11a	2,35	1,31	0,06	183	11	20128	781	48	79
S.dulcamara	Ambient <i>Ca</i> _lowP _s	purple2a	1,92	1,11	0,07	200	14	19926	792	34	63
S.dulcamara	Ambient <i>Ca</i> _lowP _s	purple8a	2,00	1,00	0,12	155	18	12922	674	22	52
S.dulcamara	Ambient <i>Ca</i> _lowP _s	white12a	2,46	1,09	0,14	208	30	15510	820	34	64
S.dulcamara	Ambient <i>Ca</i> _lowP _s	white8a	-	-	-	-	-	-	-	31	65
S.dulcamara	Ambient <i>Ca</i> _lowP _s	#4 purple	0,72	1,34	0,15	259	39	-	-	-	-
S.dulcamara	Ambient <i>Ca</i> _lowP _s	#11 white	1,21	1,42	0,07	158	11	-	-	-	-
S.dulcamara	Ambient <i>Ca</i> _lowP _s	#6 purple	1,78	1,03	0,06	220	13	18843	1001	-	-
S.dulcamara	Ambient <i>Ca</i> _highP _s	purple12a	4,50	1,63	0,16	180	29	-	-	35	74
S.dulcamara	Ambient <i>Ca</i> _highP _s	purple1a	-	-	-	-	-	-	-	44	87
S.dulcamara	Ambient <i>Ca</i> _highP _s	white1a	3,80	1,76	0,08	229	17	-	-	44	83
S.dulcamara	Ambient <i>Ca</i> _highP _s	white3a	-	-	-	-	-	-	-	39	78
S.dulcamara	AmbientCa_highP _s	white5a	6,17	1,58	0,18	231	41	7867	7777	35	63
S.dulcamara	Ambient <i>Ca</i> _highP _s	white9a	-	-	-	-	-	-	-	33	67
S.dulcamara	Ambient <i>Ca</i> _highP _s	#7 white	4,25	1,82	0,13	192	26	-	-	-	-
S.dulcamara	Ambient <i>Ca</i> _highP _s	#5 purple	3,64	1,16	0,07	174	12	10602	2151	-	-

S.dulcamara	Ambient <i>Ca</i> _highP _s	#7 purple	4,69	1,58	0,13	247	32	8258	2906	-	-
S.dulcamara	Ambient <i>Ca</i> _highP _s	#3 purple	3,57	1,11	0,08	222	17	10631	823	-	-
S.dulcamara	Ambient <i>Ca</i> _highP _s	#10 white	3,21	1,83	0,13	224	29	13517	2447	-	-
S.dulcamara	High <i>Ca</i> _lowP _s	purple12h	-	-	-	-	-	-	-	21	52
S.dulcamara	High <i>Ca</i> _lowP _s	purple12h1	-	-	-	-	-	-	-	25	59
S.dulcamara	High <i>Ca</i> _lowP _s	purple1h	1,95	1,38	0,04	156	7	15988	822	9	23
S.dulcamara	High <i>Ca</i> _lowP _s	purple5h	2,00	1,80	0,10	196	20	-	-	24	49
S.dulcamara	High <i>Ca</i> _lowP _s	purple9h	2,55	1,54	0,09	209	20	14377	1158	30	58
S.dulcamara	High <i>Ca</i> _lowP _s	white1h	2,58	1,27	0,12	175	21	-	-	24	49
S.dulcamara	High <i>Ca</i> _lowP _s	white5h	0,85	0,86	0,20	138	27	13267	926	31	73
S.dulcamara	High <i>Ca</i> _lowP _s	#3 purple	1,49	1,55	0,07	195	14	-	-	-	-
S.dulcamara	High <i>Ca</i> _lowP _s	#7 purple	2,06	1,27	0,06	196	12	18194	682	-	-
S.dulcamara	High <i>Ca</i> _lowP _s	#7 white	1,47	1,11	0,15	183	27	13939	615	-	-
S.dulcamara	High <i>Ca</i> _highP _s	purple10h	-	-	-	-	-	-	-	32	58
S.dulcamara	High <i>Ca</i> _highP _s	purple6h	-	-	-	-	-	-	-	20	38
S.dulcamara	High <i>Ca</i> _highP _s	purple8h	-	-	-	-	-	-	-	20	44
S.dulcamara	High <i>Ca</i> _highP _s	white12h	5,95	1,61	0,14	167	23	7011	3138	30	61
S.dulcamara	High <i>Ca</i> _highP _s	white6h	6,03	2,21	0,10	195	19	-	-	29	71
S.dulcamara	High <i>Ca</i> _highP _s	white8h	7,25	1,78	0,17	166	29	7076	2295	23	56
S.dulcamara	High <i>Ca</i> _highP _s	white8h1	-	-	-	-	-	-	-	27	60
S.dulcamara	High <i>Ca</i> _highP _s	#2 purple	4,57	2,14	0,11	285	30	-	-	-	-
S.dulcamara	High <i>Ca</i> _highP _s	#4 white	5,31	1,61	0,15	162	24	7264	2907	-	-
S.dulcamara	High <i>Ca</i> _highP _s	#2 white	5,41	1,67	0,10	214	21	-	-	-	-
S.dulcamara	High <i>Ca</i> _highP _s	#11 purple	4,38	1,78	0,07	273	20	8634	3219	-	-
S.dulcamara	High <i>Ca</i> _highP _s	#11 white	6,35	2,09	0,13	170	22	6872	2472	-	-
P.miliaceum	Low <i>Ca</i> _lowP _s	1	1,50	4,71	7,04	293	2064	15270	462	-	-
P.miliaceum	Low <i>Ca</i> _lowP _s	2	1,81	3,58	5,12	264	1352	23820	835	-	-
P.miliaceum	Low <i>Ca</i> _lowP _s	3	2,05	5,29	3,20	188	603	20230	1454	-	-
P.miliaceum	Low <i>Ca</i> _lowP _s	4	1,45	3,83	2,36	-	-	-	-	-	-
P.miliaceum	Low <i>Ca</i> _lowP _s	5	1,47	3,33	4,35	260	1131	14760	471	-	-
P.miliaceum	Low <i>Ca</i> _lowP _s	6	1,53	4,59	3,70	215	793	33140	2022	-	-
P.miliaceum	Low <i>Ca</i> _lowP _s	7	1,44	6,21	2,91	260	756	-	-	-	-
P.miliaceum	Low <i>Ca</i> _lowP _s	8	1,46	20,81	1,91	-	-	-	-	-	-
P.miliaceum	Low <i>Ca</i> _lowP _s	9	1,71	3,64	2,58	-	-	-	-	-	-
P.miliaceum	Low <i>Ca</i> _highP _s	1	1,61	3,71	3,31	211	698	40330	23954	-	-
P.miliaceum	Low <i>Ca</i> _highP _s	2	2,06	3,67	3,78	167	630	47440	22046	-	-
P.miliaceum	Low <i>Ca</i> _highP _s	3	1,56	3,69	4,70	332	1559	-	-	-	-
P.miliaceum	Low <i>Ca</i> _highP _s	4	1,35	3,67	3,61	210	757	51910	28001	-	-
P.miliaceum	Low <i>Ca</i> _highP _s	5	1,46	4,26	2,37	-	-	-	-	-	-

P.miliaceum	Low <i>Ca</i> _highP _s	6	1,52	3,14	2,36	-	-	-	-	-	-
P.miliaceum	Low <i>Ca</i> _highP _s	7	1,35	2,19	2,24	-	-	-	-	-	-
P.miliaceum	Low <i>Ca</i> _highP _s	8	1,52	2,01	4,02	158	633	42240	27966	-	-
P.miliaceum	Low <i>Ca</i> _highP _s	9	1,73	1,36	4,74	219	1036	42920	33113	-	-
P.miliaceum	Ambient <i>Ca</i> _lowP _s	1	2,26	4,17	3,14	211	663	20760	1024	-	-
P.miliaceum	Ambient <i>Ca</i> _lowP _s	2	2,16	8,94	3,01	-	-	-	-	-	-
P.miliaceum	Ambient <i>Ca</i> _lowP _s	3	1,70	6,40	2,58	-	-	-	-	-	-
P.miliaceum	Ambient <i>Ca</i> _lowP _s	4	2,34	7,29	3,34	248	828	24210	683	-	-
P.miliaceum	Ambient <i>Ca</i> _lowP _s	5	2,43	5,48	3,54	239	845	15590	543	-	-
P.miliaceum	Ambient <i>Ca</i> _lowP _s	6	1,86	10,61	3,06	239	729	-	-	-	-
P.miliaceum	Ambient <i>Ca</i> _lowP _s	7	1,75	7,15	3,14	239	750	20403	753	-	-
P.miliaceum	Ambient <i>Ca</i> _lowP _s	8	2,06	6,66	3,17	244	772	20980	942	-	-
P.miliaceum	Ambient <i>Ca</i> _highP _s	1	4,04	2,46	4,81	-	-	-	-	-	-
P.miliaceum	Ambient <i>Ca</i> _highP _s	2	3,99	5,67	5,27	261	1374	12700	14953	-	-
P.miliaceum	Ambient <i>Ca</i> _highP _s	3	3,28	4,25	4,78	212	1012	16680	15349	-	-
P.miliaceum	Ambient <i>Ca</i> _highP _s	4	3,22	4,86	4,82	225	1087	18360	19580	-	-
P.miliaceum	Ambient <i>Ca</i> _highP _s	5	3,19	4,60	5,69	260	1481	15510	15701	-	-
P.miliaceum	Ambient <i>Ca</i> _highP _s	6	3,14	4,71	3,89	-	-	-	-	-	-
P.miliaceum	Ambient <i>Ca</i> _highP _s	7	2,99	5,09	3,81	-	-	-	-	-	-
P.miliaceum	Ambient <i>Ca</i> _highP _s	8	4,15	2,64	6,37	229	1457	13760	19756	-	-
P.miliaceum	Ambient <i>Ca</i> _highP _s	9	4,06	3,81	5,13	138	705	-	-	-	-
P.miliaceum	High <i>Ca</i> _lowP _s	1	2,76	4,19	4,94	297	1470	-	-	-	-
P.miliaceum	High <i>Ca</i> _lowP _s	2	2,48	3,60	3,74	301	1128	23890	653	-	-
P.miliaceum	High <i>Ca</i> _lowP _s	3	2,50	5,54	3,31	-	-	-	-	-	-
P.miliaceum	High <i>Ca</i> _lowP _s	4	2,86	3,02	4,14	247	1025	22620	570	-	-
P.miliaceum	High <i>Ca</i> _lowP _s	5	2,72	4,04	3,83	215	823	27010	972	-	-
P.miliaceum	High <i>Ca</i> _lowP _s	6	2,64	4,36	4,36	242	1056	20890	503	-	-
P.miliaceum	High <i>Ca</i> _lowP _s	7	2,87	6,45	3,68	-	-	-	-	-	-
P.miliaceum	High <i>Ca</i> _lowP _s	8	2,72	3,88	3,55	-	-	-	-	-	-
P.miliaceum	High <i>Ca</i> _lowP _s	9	2,34	5,10	4,50	294	1324	22420	354	-	-
P.miliaceum	High <i>Ca</i> _highP _s	1	4,16	3,59	6,16	228	1406	-	-	-	-
P.miliaceum	High <i>Ca</i> _highP _s	2	3,75	3,66	5,39	260	1401	11700	13640	-	-
P.miliaceum	High <i>Ca</i> _highP _s	3	3,03	5,69	3,75	-	-	-	-	-	-
P.miliaceum	High <i>Ca</i> _highP _s	4	4,24	3,85	6,07	205	1242	12890	15408	-	-
P.miliaceum	High <i>Ca</i> _highP _s	5	3,42	7,03	4,15	-	-	-	-	-	-
P.miliaceum	High <i>Ca</i> _highP _s	6	3,58	2,66	4,26	-	-	-	-	-	-
P.miliaceum	High <i>Ca</i> _highP _s	7	4,18	5,17	7,34	231	1696	15550	13465	-	-
P.miliaceum	High <i>Ca</i> _highP _s	8	4,30	3,66	6,43	177	1141	22160	10795	-	-
P.miliaceum	High <i>Ca</i> _highP _s	10	3,86	4,39	7,18	221	1586	19260	10898	-	-