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Abstract 
 

Biodiversity can be defined in many ways. One of the more common ways of indicating an 
ecosystem’s biodiversity is by measuring species richness; the number of different species that 
inhabit it. However, species richness follows a distinctive global pattern (generally decreasing from 
the tropics towards the poles), and gives only an absolute value for biodiversity. As such, while 
species richness may be useful for studying biogeographical patterns, it is not a particularly useful 
indicator to assess the health of ecosystems, let alone comparing the health of dissimilar 
ecosystems. For conservationists, indicators that measure how species-rich an ecosystem is 
relative to how species-rich it could be may be more useful. In this study, biodiversity patterns of a 
network of mammal assemblages (hexagonal cells of 7500 km2) across extratropical North America 
were analyzed. The distribution patterns of species amongst the cells were used to calculate 
various biodiversity indicators.  

The method of reflections was used to quantify the potential species richness of each cell, which 
was then compared to the observed species richness, yielding an indicator called the anomaly. 
Beal’s probability index, a method that can be used to quantify with what probability a species 
might occur in a particular cell, was used to calculate each cell’s dark diversity; the amount of 
species that are unexpectedly absent. The relationship between dark diversity and species richness 
yields the indicator completeness. Both anomaly and completeness relate to how species-rich a cell 
is relative to the potential that the network co-occurrence patterns of the species within the cell 
suggest; cells with a high anomaly or low completeness are far from their potential species 
richness. Unlike completeness, the anomaly does not require an explicit qualification of a cell’s 
dark diversity and therefore does not need to make assumptions. Here we assess whether the 
indicator anomaly is a suitable substitute for the more established indicator completeness. 

All biodiversity indicators were regressed against one another, and against models containing a 
variety of environmental factors commonly understood to affect biodiversity: precipitation, 
temperature, net primary productivity, elevation range, habitat homogeneity and human 
influence. We found that a combination of elevation range, mean annual precipitation and mean 
annual temperature was generally the most accurate predictor for these biodiversity indicators. 
Also, unlike species richness, which increased from the northeast to the southwest of the 
continent, anomaly and completeness were more closely tied to topographical features such as 
mountains and islands. 

  



Introduction & Theory 
Each species, plant or animal, has its unique distribution across the globe. Some species are 
cosmopolitan, and can be found nearly anywhere where conditions are suitable. Other species are 
more endemic, and occur only in a few particular areas, often despite the existence of other areas 
with similar ecological conditions1. This is not only the case on the global scale, but also on regional 
and local scales, such as continents, lakes, islands or patches of rainforests. Biogeography is the study 
of the distribution of organisms, and biodiversity, across geographic space. Patterns of biodiversity 
are influenced by various factors, such as climate, frequency of disturbance, productivity and 
biogeographic history2. Although it has been observed that, globally, biodiversity tends to follow a 
latitudinal gradient, and is correlated with climate (decreasing from the equator towards the poles)3, 
local drivers of biodiversity are much less well understood. Global biodiversity is the result of the 
Earth’s evolutionary history. Regional diversity is a subset of global diversity, and is shaped by 
migration, as well as speciation and extinction4. Local communities are in turn a subset of regional 
biodiversity filtered by local environmental conditions, and limited by dispersal as well as biotic 
interactions5. 

The distribution of species across a geographical region can be represented by a presence/absence 
matrix, which indicates which species occurs in which (local) area. Species within the region can be 
said to form a network, with each species being connected to the areas in which it occurs, and to the 
species with which it tends to co-occur. When considering such networks of species, ecologists are 
typically interested in what species occur where; that is, they tend to focus on the presences in an 
absence-presence matrix. However, a case can be made for considering absences as well. Not all 
absences are equal, and there are a variety of distinct reasons why a species should not occur in a 
particular area (here area is broadly defined as the smallest scale at which sampling takes place)6. For 
instance, a species can be absent from an area despite its suitable conditions, because it has never 
reached the region in which the area is situated; African rainforest species are not typically found in 
South American rainforests. In this scenario, it is biogeographical history that is the main limiting 
factor on a species’ distribution. Conversely, a species may be present in a region, but absent in a 
given area, because the area does not meet the species’ ecological needs. In such a case, 
environmental and ecological factors play the most important role.  
The most interesting cases, however, are those where species are absent in an area while they do 
belong to the area’s species pool. A species pool is a collection of species that are present in the 
region that, given their ecological requirements, would in theory be able to inhabit a particular area7. 
In other words, the species pool is the total regional (or gamma) diversity, filtered for the 
environmental conditions of the area. Part of the species pool will actually be present in the area; 
this is the area’s observed (or realized) biodiversity. The remaining part of the species pool, which is 
not found in the area, is termed dark diversity8. Dark diversity is similar to, but distinct from, the 
concept of beta diversity, which quantifies the association between local (alpha) and regional 
(gamma) diversity; i.e. how much variation exists between local communities. By considering only 
those species whose ecological requirements are met by the area, dark diversity is more informative 
than beta diversity and can be used to quantify an area’s relative richness8.  

There are various reasons why a species should belong to an area’s dark, rather than observed, 
diversity. Within a given region, dispersal limitation plays an important role. Species with a low 
dispersal ability (e.g. few and/or heavy seeds in case of plants) are more prone to be a component of 
a particular site’s dark diversity, as a result of their limited mobility. In case of plants,  species that 
have low stress-tolerance to abiotic factors are also more likely to be a constituent of a site’s dark 
diversity, as they are sensitive to stressors that can cause them to go extinct locally9. Biotic 



interactions within local communities, such as cooperation and competition, may also play a major 
role10. Finally, human interference such as habitat fragmentation, can cause species to become 
locally extirpated, whilst remaining present in the region 11. 

Dark diversity, together with species richness (i.e. observed diversity), can be used to quantify 
assemblage completeness. Completeness is an indicator of how much of an area’s potential species 
richness is actually realized. It is defined as the natural logarithm of the observed-to-dark diversity 
ratio in the assemblage. Because it is the ratio between these two measures that determines 
completeness, its value is independent of the absolute species richness of the region. As such, this 
concept can be used to compare dissimilar ecosystems that may vary widely in terms of species 
richness (e.g. deserts, rivers and rainforests), and can be applied on any spatial scale12. It should be 
noted that this concept appears in the literature as community completeness13,14. However, as our 
analysis used large grid cells rather than small local communities, we have opted for the term 
assemblage completeness, or simply completeness. 

Low assemblage completeness could indicate that an area has been disturbed, or is currently under 
stress. This allows for the possibility to identify vulnerable areas that could be targeted for 
conservation efforts. Moreover, quantifying dark diversity for a degraded area can also reveal how 
likely conservation efforts are to be successful. If the species that were previously present in the area 
are no longer a component of its dark diversity, it is unlikely they will return unless more drastic 
measures are taken15. Generally, degraded areas that score low on completeness (i.e. have a 
relatively large number of species as dark diversity) can be considered to have a high potential for 
restoration8. In this sense, completeness may be a more valuable metric to determine the success of 
conservation efforts than simply a change in species richness over time. And because it is a relative 
rather than absolute indicator, it may be used to compare patterns of biodiversity on a national and 
even continental scale. 

This project investigates large-scale biodiversity patterns of terrestrial mammal assemblages in 
extratropical North America, and how the patterns for species richness differ from those of 
assemblage completeness. Mammals were selected as a focus group, as vertebrates in general are 
good indicators for the overall health of ecosystems16, and mammals are a particularly well-
documented and common subset of vertebrates. The local disappearance or decline of mammal 
populations may signify the loss of biological capital17, which may have significant long-term 
ecological and economic consequences. By identifying mammal assemblages that are incomplete and 
understanding what they have in common, it may be possible to devise more effective conservation 
strategies than by looking at species richness alone.  

A problematic issue, however, is how dark diversity may best be quantified. Dark diversity, by 
definition, cannot be directly observed. Various methods can be used to estimate it for a given area. 
The most straightforward way of finding out whether a species is able to live in an area would be to 
introduce it there and monitor it throughout its lifecycle. Of course, this method is not feasible for a 
variety of reasons: it  is time-consuming, costly and laborious9; it is not easily applied on animals, 
which can move; and it may disrupt local ecosystems. A more common and feasible way of 
estimating the dark diversity of a large network of areas, is by inferring it from co-occurrence 
patterns of species throughout the network18. Species are not spread at random across the network, 
and similar species tend to occur together. These patterns enable one to calculate the probability of 
a species being able to live in a specific area (which may be accomplished using Beal’s probability 
index), based on the other species that are present there19,20. While this is a useful method, it is 
difficult to precisely characterize an area’s dark diversity, and different methods can yield dissimilar 
results12,18. Hence, a method that could quantify an assemblage’s completeness without first needing 



to qualify its dark diversity might be a real asset to conservation biologists. In this project one such 
method,  the Method of Reflections21, is investigated for its ability to do so. 

The main research questions for this project are the following: 

1. Is the Method of Reflections an appropriate method for yielding an indicator for 
completeness, without the need of explicitly identifying dark diversity size/composition? Are 
its completeness estimates similar to those yielded by Beal’s index? If so, the Method of 
Reflections may be a useful alternative to such established methods, which yield absolute 
numbers for dark diversity that are subsequently used to calculate community 
completeness22. The Method of Reflections avoids the problem that these different methods 
can lead to quite different estimates of dark diversity (and therefore community 
completeness)22. 

2. What is the relationship between environmental factors (i.e. temperature, precipitation, net 
primary productivity, elevation range, habitat homogeneity and human influence index) on 
the one hand, and various biodiversity indices (i.e. observed and generalized species 
richness, the anomaly between the former, and assemblage completeness) on the other?  



Methods 
 

For this project, a large IUCN-dataset containing distribution data of terrestrial mammals across the 
Americas was used. While the dataset spanned all of the Americas, here only a part of North America 
was considered, spanning from the tropic of cancer to 60 °N. The dataset contained an estimated 
range of occurrence for every species23. 

In order to include environmental/climatic conditions and human impact in the analysis, various 
open-source databases and maps were used: 

- The general human impact was quantified using the Last of the Wild Project,v2; a dataset 
produced by Wildlife Conservation Society (WCS) in collaboration with the Columbia 
University Center for International Earth Science Information Network (CIESIN). This dataset 
contains the Human Influence Index (hii), which is a measure of direct human influence on 
terrestrial ecosystems integrating data regarding human settlement (population density, 
urbanization), access (roads, railroads, rivers, coastline etc.), land use change and electric 
power infrastructure, on a 1-km2 resolution24. 

- The EarthEnv project is a collaboration of biodiversity scientists and remote sensing experts, 
which produces various global, 1-km2 resolution maps for monitoring biodiversity, 
ecosystems and climate. These maps were used for obtaining data on elevation range25, 
habitat homogeneity and net primary productivity  (in grams of C fixed/year)26. 

- For climate data, the open-source WorldClim database was utilized. This database also 
contains data for 1-km2 pixels on various climatic variables27. Considered in this project were 
mean annual precipitation and mean annual temperature , two climatic factors that are 
frequently found to be important predictors of richness 28–30 

These data were overlaid on a 
ISEA3H regular grid with hexagonal 
cells with an area of about 7774 
km2 (for complete cells), which 
constituted the analysis units of the 
study. If a species’ range included a 
given cell, the species was then 
counted as occurring within that 
cell. These data were used to 
construct a presence-absence 
matrix, containing the range of 
each species, as well as the species 
composition of every cell in the 
network. This presence-absence 
matrix was used as a basis for 

calculating the following biodiversity indices: 

- observed species richness; quantifies the number of different species within an assemblage, 
the most “basic” measure of biodiversity 

- generalized species richness; an index based on observed species richness that weighs 
species based on how widespread they are in the network. This index takes into account the 
pattern of species occurrences across assemblages throughout the study area.  

Figure 1: Map of grid cells included in the analysis 



- the anomaly, which we define (following 21) as the discrepancy between normalized 
observed and generalized species richness; indicates assemblages that are more or less 
diverse (in terms of species richness) than would be expected based on their constituent 
species 

- assemblage completeness; indicates how complete an assemblage is, i.e., how many of the 
species that could conceivably occur in it, actually do. This index is calculated using observed 
species richness and dark diversity 

Additionally, ArcGis’ zonal statistics tool was used in order to calculate the average value of each of 
the aforementioned environmental variables for each individual cell, except for elevation, for which 
the difference between the lowest and highest value (i.e. elevation range) was calculated.   

Cells that lacked data on any of the environmental factors were excluded, as well as those that 
contained fewer than 10 species. This resulted in a total of 2093 cells. 

 

Beal’s Probability Index 

Beal’s Probability index20 uses co-occurrences within a presence-absence matrix to calculate whether 
a species can be reasonably expected to belong to a cell’s dark diversity or not. It was calculated 
using the following formula20: 

 

 

where: Pij = Beal’s probability index for species j at community i 
              Si = number of species at community i 
 Iij = incidence (0,1) of species j within community i 
 Njk = number of joint occurrences of species j and k throughout the dataset 
 Iik = incidence (0,1) of species k at community i 
 Nk = number of occurrences of species k throughout the dataset 
 
Because the Beal’s probability index for each cell/species combination depends strongly on how 
common the species is in the entire network (i.e. frequent species are systematically assigned higher 
Beal index values than uncommon species), probability attribution was based on the cumulative 
normal distribution of Beal’s indices for all the cells in which a certain species j occurs. Unoccupied 
cells (i.e. cells in which species j was absent) were assigned a probability of occurrence for species j 
based on the cumulative percentile of the Beal’s index value of the cell relative to the Beal’s values of 
the cells in which species j does occur. The lowest Beal index value among the cells in which species j 
occurs is set as the absolute minimum; unoccupied cells that scored a Beal’s index lower than the 
lowest value observed in the occupied cells, were assigned a probability of occurrence of 0%. 
Otherwise, they were assigned a probability of occurrence based on the cumulative percentile of 
Beal’s values of the occupied cells. For example; if an unoccupied cell had a Beal’s index for species j 
that was higher than 10% of the occupied cells, it was assigned a probability of occurrence of 0.1. If 
its Beal’s index was higher than 20% of the occupied cells, it was assigned a probability of 0.2, etc.  

In summary, Beal’s index was calculated for every species/cell-combination. Then, for any given 
species, the cumulative normal distribution of Beal’s indices among the cells in which the species 



occurred, was used to assign a probability of occurrence for that species in any of the cells in which it 
did not. This probability of occurrence was then compared to a threshold value of 0.5. Any absent 
species that had a higher probability of occurrence in a cell than 0.5, was considered as part of that 
cell’s dark diversity. The total number of species compromising a cell’s dark diversity was used to 
calculate that cell’s completeness, using the following relationship: 
Community completeness = ln (observed diversity / dark diversity (+eps)) 
where eps is a small number (0.1 in this case) that prevents infinite values for completeness in cells 
with zero dark diversity. 
 
Method of Reflections 

While the Beal’s probability index depends on estimating the composition of dark diversity for every 
cell, a different method that can be used to estimate how close a community (or in this case, a cell’s 
mammal assemblage) is to its potential richness, the method of reflections21, does not. Rather, the 
method of reflections yields a proxy for the potential richness of each cell by assigning weights to 
species based on how ‘sociable’ they are; that is, how many other species they on average occur with 
throughout the network (or rather: how diverse the cells within which they occur are on average).  

The method of reflections is a network method that takes as its input a presence-absence matrix, and 
produces two sets of values, or reflections, which relate to species richness of the cells and species’ 
range of occurrence. The zeroth order reflections were produced by summing the number of species 
for every cell in the network (ks,0; species richness) and the number of cells inhabited for every 
species (kp,0; species range). Species richness (ks,0) is itself a commonly used measurement of 
biodiversity31, and was also included as a biodiversity index. These zeroth order reflections were used 

to generate higher order 
reflections of the opposite sign 
through averaging. The first order 
cell reflections were calculated by 
averaging the range (i.e. the total 
number of cells inhabited) of all 
the species occurring within each 
particular cell.  The first order 
species reflections are calculated 
by averaging the richness of all 
the cells in which a particular 
species occurs. This process is 
repeated iteratively to produce 
higher-order reflections of site 
diversity and species range. The 
repeated averaging removes 
environmental noise and results 

in a value of generalized species richness for every cell and a value of generalized range of occurrence 
for every species (the latter was not used in this project).  Here, the 18th order reflection, ks,18, was 
used, as higher-order reflections  do not yield significantly different outcomes in terms of the 
generalized species richness ranking of the cells21.  It should be noted that generalized or potential 
richness is not an estimate of how many species might be expected to inhabit the cell under optimal 
circumstances in an absolute sense. Instead, the higher-order reflections of all cells cluster around an 
average value. The small differences in values between the cells reveal the differences in generalized 
species richness between these cells when environmental noise has been largely removed through 

Figure 2: a schematic representation of the method of reflections. Rows 
represent species, columns represent sites. 



averaging. Thus, cells that have a low observed species richness can nevertheless have a high 
generalized richness if the species occurring within them normally tend to occur together with many 
other species. Conversely, cells that are very diverse will score low on generalized richness, if the 
species they contain tend to live in low-diversity cells.  

After applying the method of reflections, the observed and generalized species richness of the cells 
were normalized, such that each cell was assigned a score between 0 and 1 for both of these indices. 
This was done by subtracting the minimum value and dividing by the difference between maximum 
and minimum values. The normalized observed species richness was subtracted from the normalized 
generalized species richness to quantify the discrepancy between the two. This derived variable is 
referred to as the anomaly. High values indicate sites that are anomalous, in the sense that observed 
species richness is lower than generalized species richness would suggest. Conversely, negative 
values indicate sites that have a higher species richness than expected. Thus, the anomaly may be 
used as an indicator for how far removed a cell is from its potential; ostensibly comparable to 
calculating assemblage completeness from dark diversity and species richness21 

Stepwise generalized linear models 

The next step was to quantify to what extent observed/generalized species richness, anomaly and 
community completeness could be explained by the selected explanatory variables. In order to do so, 
stepwise linear regressions were used to formulate models, which were then evaluated. The Akaike 
Information Criterion (AIC) was used in order to rank the quality of each model. The AIC assigns score 
models based on their predictive power (i.e. coefficient of determination; R2) and 
simplicity/parsimony, penalizing overly complex models that use many variables or higher order 
relationships25, .   

For each model containing only a single predictor (either an environmental variable, or another 
biodiversity index), three models were considered:  linear, quadratic or cubic. For multi-variable 
models, only linear (additive) relationships were considered, for the sake of simplicity, thus excluding 
interactions, i.e. the products of independent variables. Independent variables were only included in 
models together if they had a coefficient of variation (R) lower than 0.5 between them.  

For every biodiversity index, models were assigned weights based on their distance from the model 
with the lowest AIC-score (Δ), using the following formula33 

  

where wi = Akaike weight of model i 
  Δ = distance to the lowest AIC-score 
 N = the number of different models considered 
The weights are normalized between 0 and 1 and together sum up to 1. An Akaike weight indicates 
the probability that a given model is the best considered. The higher the score, the higher the 
probability that the model is the best one. 



Results 
Correlations between biodiversity indices 

The following section discusses how the various biodiversity indices correlate with one another. 
Observed species richness increased with generalized species richness (R2 = 0.69; figure 3, upper 
graph). Strong deviations of this relationship indicate anomalous cells, which are either less or more 
species-rich than might be expected from the species that occur there. However, while cells 
containing many species on average tended to have lower anomaly scores, anomaly was not strongly 
dependent on observed species richness (R2 = 0.03; graph not shown). 

Community completeness, on the other hand, strongly correlated with species richness (R2 = 0.39; 
figure 3, lower graph). The distinctive “bands” in the graph represent cells that have the same 
number of missing (dark diversity) species.  Assemblage completeness responded more strongly to 
changes in dark diversity than it did to changes in observed species richness. In theory, an increase in 
species richness will decrease the number of missing species by an equal amount.  

  

 
Figure 3: These graphs display how generalized species richness (ks,18, top) and community completeness (bottom) 
respond to observed species richness (ks,0). 



The anomaly and assemblage completeness showed a cubic relationship (R2 = 0.21; figure 4, upper 
graph). While completeness does, on average, tend to decrease with large anomaly-values, the 
variance explained is quite low. Thus, the latter cannot be used to accurately predict the former.  

Completeness increased linearly with generalized species richness, albeit with a lower coefficient of 
determination (R2 = 0.11; figure 4, lower graph) 

     

 

   

Figure 4: These graphs display how community completeness relate with anomaly (top) and ks,18 (bottom)  

 



Biodiversity indices across extratropical north America 

Strong latitudinal and longitudinal gradients were found for both observed and generalized species 
richness, especially the latter (figure 5). Specifically, both measures of species richness increased 
from north to south, but also from east to west. To an extent, the latter took precedence over the 
former; most of the northwest (e.g. Oregon) was richer in species than the southeast (e.g. Florida). 
For observed species richness, there was a clear and sudden divide separating east and west, 
coinciding roughly with the frontier between the Rocky Mountains and the Great Plains. The anomaly 
and community completeness showed patterns which differentiate them from observed and 
generalized species richness. While the anomaly and community completeness “disagreed” on many 
cells, the cells with the lowest anomalies tended to be the same as those with the highest 
completeness, and vice versa. This pattern was most apparent in major mountain ranges (i.e. the 
Sierra Nevada, Rocky Mountains and Appalachian mountains), and, to a lesser extent, along the Gulf 
Coast and the Great Plains. 

 

Figure 4: These maps indicate the values of the aforementioned biodiversity indices of mammals across North America. From 
top-left going clockwise: species richness (ks0), generalized species richness (ks18), community completeness and anomaly 
between ks18 and ks0. Warmer colors indicate higher values. Note the strong north-east to south-west gradient in observed 
and especially generalized species richness 

 

 

  



Correlations between environmental variables 

Linear regressions were performed on the explanatory variables in order to ascertain their 
independence from one another, as shown in figure 6.  Those variables that had a coefficient of 
correlation above 0.5 (or below -0.5) were not included in models together (following ref 34), namely: 

- Temperature and human influence index 
- Precipitation and net primary productivity 
- Precipitation and habitat homogeneity 
- Net primary productivity and human influence index 

 

  

Figure 5: A correlation matrix showing the relationships between the six environmental variables considered. The diagonal shows 
the distribution of each variable. Temp = mean annual Temperature (°C), prec = mean annual precipitation (mm/y), npp = net 
primary productivity (C/g/year), hmg = habitat homogeneity, elev = elevation range (m), hii = human influence index 



Correlations between environmental variables and biodiversity indices 

The following sections discuss how the various environmental variables relate to each of the 
biodiversity indices. 

Temperature  

 Each of the biodiversity indices increased with temperature (figure 7). Both observed species 
richness and completeness increase steeply with temperature in colder areas, but this effect is less 
marked in temperate zones. Anomaly also generally increases with increasing temperature. 

     Figure 6: biodiversity variables as a function of temperature. From top left going clockwise: species richness (ks,0), 
generalized species richness (ks,18), completeness and anomaly 



Precipitation 

 Precipitation shows a negative relationship with observed and potential species richness as well as 
completeness throughout most of the dataset, and this relationship is strongest in areas that receive 
little precipitation (figure 8). Above 500 mm/year, however, diversity increases slightly with 
precipitation. 

  

Figure 7: biodiversity variables as a function of precipitation. From top left going clockwise: 
species richness (ks,0), generalized species richness (ks,18), completeness and anomaly  



Net Primary Productivity 

No correlation was found between Net Primary Productivity and any of the biodiversity indices (not 
shown). 

Habitat Homogeneity  

Both observed and potential species richness show a positive overall correlation with habitat 
homogeneity, but, especially for potential species richness, parts of the dataset seem to show the 
exact opposite relationship, with diversity decreasing with homogeneity (figure 9). Anomaly and 
completeness were not explained by habitat homogeneity to a large degree (R2 < 0.05; not shown). 

Figure 8: biodiversity variables as a function of habitat homogeneity. Left: observed 
species richness (ks,0), Right: generalized species richness (ks,18) 



Elevation range 

Elevation range showed a strong positive correlation with observed species richness, and to a lesser 
extent with potential species richness as well (figure 10). Cells with a wide range in elevation (i.e. 
variation in altitude), were less anomalous and scored higher on community completeness. 

 

 

  Figure 9:  biodiversity variables as a function of elevation range. From top left going 
clockwise: species richness (ks,0), generalized species richness (ks,18), completeness and 
anomaly  



Human Influence Index 

Observed and potential species richness as well as completeness, showed a parabolic relationship 
with human influence (figure 11); the highest value for each of these indices was at intermediate HII-
values. Moreover, the lowest species richness values were in cells with the lowest HII-scores. The 
anomaly slightly increased with increasing hii-values, but without much variance explained.  

Figure 10: biodiversity variables as a function of human influence index. From top left going 
clockwise: species richness (ks,0), generalized species richness (ks,18), completeness and 
anomaly 



Multivariate regressions  

Table 1 displays the R2-values as well as the AIC-values of generalized linear models for each of the 
explanatory variables. Also included were the 5 combined models with the lowest AIC-values. The 
delta of each model shows the difference in AIC-score with the lowest model (Δ), and the weight 
indicates the odds of it being the best models from amongst the total of 25 models that were 
considered. For model formulae, see appendix 2. 

Table 1: The R2-values, AIC-values, deltas and Akaike weights of all single-variable models and the 5 best multi-variable 
models for the 4 biodiversity indices. Temp = temperature, prec = precipitation, npp = net primary productivity, hmg = 
habitat homogeneity, elev = elevation range, hii = human influence index. 

 R2 AIC Δ weight 

 

Ks0       

Temp 
Precipitation 
NPP 
Homogen 
Elevation 
Hii 
Temp + prec + elev 
Temp + npp + hmg + elev 
Temp + hmg + elev 
Temp + npp + elev 

Temp + elev 

 
0.30 
0.17 
0.00 
0.20 
0.41 
0.27 
0.70 
0.64 
0.64 
0.61 
0.61 

 

 
15341 
15696 
16073 
15623 
14974 
15429 
13538 
13955 
13966 
14116 
14129 

 

 
1803 
2158 
2534 
2084 
1436 
1891 

0 
416 
428 
578 
591 

 

 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 

 

 

Ks18 
Temp 
Precipitation 
NPP 
Homogen 
Elevation 
Hii 
Temp + prec + elev 
Temp + npp + hmg + elev 
Temp + hmg + elev 
Temp  + npp + elev 
Temp + prec 

 
0.64 
0.23 
0.00 
0.26 
0.16 
0.32 
0.85 
0.81 
0.80 
0.79 
0.77 

 

 
-8742 
-7171 
-6626 
-7256 
-6990 
-7417 

-10541 
-10130 

-9964 
-9929 
-9708 

 

 
1799 
3369 
3915 
3285 
3551 
3124 

0 
411 
576 
611 
833 

 

 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 

 

Anomaly 
Temp 
Precipitation 
NPP 
Homogen 
Elevation 
Hii 
Temp + npp + hmg + elev 
Temp + npp + elev 
Temp + hmg + elev 

 
0.45 
0.10 
0.00 
0.04 
0.12 
0.08 
0.60 
0.59 
0.51 

 
-5120 
-4073 
-3859 
-3935 
-4115 
-4028 
-5748 
-5744 
-5335 

 
628 

1675 
1889 
1812 
1633 
1720 

0 
3 

413 

 
0 
0 
0 
0 
0 
0 

0.85 
0.15 

0 



 

Temp + prec + elev 
Temp + elev 

0.49 
0.48 

 

-5263 
-5239 

 

484 
509 

 

0 
0 

 

 

Completeness 
Temp 
Precipitation 
NPP 
Homogen 
Elevation 
Hii 
Temp + prec + elev 
Temp + npp + hmg + elev 
Temp + npp + elev 
Temp + hmg + elev 
Temp + elev 

 
0.11 
0.05 
0.01 
0.05 
0.20 
0.13 
0.26 
0.26 
0.25 
0.25 
0.25 

 

 
4382 
4512 
4601 
4520 
4163 
4328 
3979 
3996 
4016 
4024 
4026 

 

 
404 
533 
622 
541 
185 
349 

0 
18 
38 
45 
47 

 

 
0 
0 
0 
0 
0 
0 

0.998 
0.002 

0 
0 
0 

 

A combination of temperature, elevation range and precipitation appears to yield the model which, 
among the models considered, best explains most of the variation in biodiversity for observed and 
generalized species richness, as well as completeness with very high probability (Akaike weight ≈ 1). 
For the anomaly, this combination of explanatory variables ranked fourth (Akaike weight ≈ 0) and 
was outdone by models that likewise included temperature and elevation, but combined with net 
primary productivity and/or habitat homogeneity. The model combining temperature and elevation 
was the only 2-variable model that was amongst the best 5 models for each biodiversity index except 
for generalized species richness.  None of the five multi-variable models with the lowest AIC-values 
included the human influence index. 

 

  

  



Discussion 
Temperature had a strong influence on each of the biodiversity indices. It is a well-documented 
observation that biodiversity tends to decrease from the equator towards the poles (as does 
temperature). This general pattern seems to hold for mammals as well35. However, the mechanics 
driving this process are still up for debate. One theory is that temperature affects biodiversity mostly 
through its effect on plant productivity36. Our results, however, showed that net primary productivity 
explains only a very small percentage of variance in mammal diversity in North America. This 
decoupling of productivity and species richness may be a result of the relatively recent extinction 
event that occurred in the Americas around 13000 years ago. With the advent of the Holocene, 
global average temperatures suddenly rose steeply, which resulted in the extinction of many 
terrestrial mammal species that were unable to accommodate the rapid rate of change. The decline 
in species richness was probably exacerbated by the arrival of early humans into the Americas37. This 
widespread and relatively sudden dying out of species may have resulted in an under-saturation of 
species from which the Americas have yet to recover36, leaving the current assortment of species 
relatively impoverished. As such, the relationship between plant productivity and mammal species 
richness is less pronounced in the Americas than in other parts of the world, and the strong effect of 
temperature on biodiversity cannot be attributed to plant productivity alone. Another factor, 
strongly correlated with temperature, that may influence mammal diversity, is seasonality. Higher 
latitudes have lower mean annual temperatures, as well as more profound seasonal differences. 
Such conditions require specific adaptations that make higher latitudes increasingly inhospitable for 
generalist species. In addition to this, species inhabiting temperate and polar regions tend to 
have/need larger geographical ranges, such that species turnover (beta diversity) is lower than in 
tropical regions38. Finally, low  (winter) temperatures may to a large extent exclude small mammal 
species, which, due to their high surface-to-volume ratio, need a lot of energy to maintain their body 
heat39. Since small species constitute the majority of mammalian diversity40, colder regions host a 
more modest range of mammal species than warmer ones. 

Like temperature, elevation range also scored high R2-values and low AIC-values when regressed to 
biodiversity indices. Part of the reason that a larger elevation range corresponds to higher species 
richness (and also higher completeness and lower anomaly), may be that cells with a large range in 
elevation on average also included a wider variety of habitat types (e.g. valleys, montane forest, 
mountain peaks), and therefore a larger number of species corresponding to those habitats. 
Moreover, many groups of small non-volant mammals (e.g. rodents, shrews, etc.) actually tend to 
peak in species richness at intermediate altitudes in mountains41,42. For these groups the highest 
levels of species richness consequently correspond to cells with high elevation ranges (because these 
cells tend to contain mountains).  In addition to hosting a variety of habitats, the presence of 
mountains also influences the climate in complex ways, which in turn affects patterns of biodiversity. 
Most obviously, average temperatures are lower in mountainous regions as temperature decreases 
with altitude. High mountains also affect the movement of clouds which can result in more diverse 
precipitation patterns than in flat environments. Models that combined elevation range with climate 
seemed to be most suited for predicting biodiversity (between the models considered). For observed 
species richness, anomaly and community completeness, a combination of temperature and 
elevation yielded the best two-variable model. For generalized species richness, it was a combination 
of temperature and precipitation. This may indicate that of these indices, generalized species 
richness is most sensitive to purely climatic (rather than topographical) factors. Likely, this is because 
the method of reflection detects large-scale patterns in species richness, and climate is the most 
global factor influencing biodiversity. 



Surprisingly, there did not appear to be a strong negative effect of human influence on biodiversity, 
except that anomaly tended to increase slightly (R2 = 0.08) with increasing hii-values. Rather, 
observed/generalized species richness and community completeness tended to peak at hii-values 
between 10 and 20, which corresponds mostly with cells in the western mountain ranges. The cells 
with the lowest hii-values (i.e. lower than 10), were primarily situated in northern cells with low 
average annual temperatures. Since humans tend to favor warm temperatures over cold ones, it is 
difficult to separate actual human impact from temperature. Another issue in ascertaining the effect 
of human influence is the size of the grid cells. As most of the cells were around 7500 km2 in size, 
they are large enough to include areas heavily altered by humans alongside relatively pristine ones. 
For instance, a cell that contains a large city and an adjacent national park, will have a high hii-value 
as well as high species richness. More importantly, the data used in this project was binary: either a 
species occurred in a given cell, or it didn’t. Whether a species was thriving or in steep decline was 
not considered. This means that only the most drastic outcome of human influence, extirpation 
(from a 7500 km-2 area), would be registered as human influence affecting species richness. More 
informative indicators of biodiversity, such as evenness or Simpson’s/Shannon’s index, require 
population data. Unfortunately, this kind of data was not available.  In order to more accurately 
assess the effect that humans have on their environment, much smaller study units are required. 

The large size of the cells may also explain some other unexpected findings. For instance; the spatial 
patterns found for observed species richness and generalized species richness were roughly similar to 
one another. This was not the case when the same method was applied on a smaller scale in a 
preliminary analysis on trees in the eastern United States (see Appendix 3), nor in the study 
introducing the method of reflection21. In both cases, species were coupled to very small local plots 
rather than upscaled to cells. These plots were only a few square meters in area; a scale at which the 
plants may directly influence one another. Such local assemblages are much more sensitive to 
random disturbances, and sampling issues, and as a result observed species richness will vary more 
widely due to a higher level of noise. This is exactly the idea behind the utility of the method of 
reflections; it removes stochasticity through repeated averaging and yields an indicator that shows 
how species-rich an area should be relative to other areas in the network, irrespective of the number 
of species it actually contains. This indicator better represents the biodiversity of the area relative to 
the rest of the network, because it is less subject to random events that temporarily alter species 
richness. However, stochasticity plays only a minor role when study units are very large, as was the 
case in the current study. This could in part explain the similar patterns for observed and generalized 
species richness that were found. Nevertheless, the differences were enough to yield a unique 
pattern for the anomaly, that was distinct from either generalized or observed species richness, but 
that seemed to correlate with topographical features. Peninsulas and islands, for instance, were 
consistently highly anomalous, corresponding to previous studies that found such environments to 
be less diverse than the mainland43,44. In contrast, mountain ranges were consistently the least 
anomalous. Even though the distinction between observed and generalized species richness is less 
informative at this grain of analysis, the anomaly between them still reveals patterns of biodiversity 
that either of these variables by itself cannot. 

The relationship between anomaly and assemblage completeness, both variables that ostensibly 
quantify how close a cell’s species richness is to its potential, was not as straightforward as might 
have been expected given the results of the preliminary analysis shown in Appendix 3. Generally, the 
most complete cells tended to be the least anomalous. This was most obvious in the major mountain 
ranges: the Sierra Nevada, the Rockies and (to a lesser extent) the Appalachians. The reverse pattern 
was also true, and was most evident in the cells along the Gulf Coast as well as on the Great Plains. It 
appears that while observed and especially generalized species richness show the overall general 



pattern of biodiversity in North America (i.e. increasing from the north-east to the south-west), 
anomaly and completeness were both more sensitive to topographical factors. This seems especially 
true of the anomaly, which follows topographical features more accurately than does completeness 
thus suggesting that it may be more appropriate for use at this scale (although this cannot be 
assessed with the data available). Despite both responding to topography, the two indicators were 
often in disagreement.  
In the study of tree assemblages across the eastern United States discussed in Appendix 3, the 
assemblages’ completeness was similarly regressed against their anomaly. Here, the relationship 
between the two indices was much more obvious; completeness decreased as the anomaly 
increased. Again, this could be a result of the fact that in this case sampling units were local plots, 
rather than very large grid cells. Moreover, since all the species sampled were trees, they belonged 
to the same trophic level of primary producers and were stationary. In contrast, our dataset included 
mammals of different trophic levels as well as of widely different home range sizes. Some of the 
species in the same cell might inhabit very different ecosystems and may never meet or interact with 
one another. As such, it might be erroneous to treat an assemblage of mammals in a hexagonal cell 
as if they constituted a single community. What has been treated as a community in this project 
might more accurately be considered gamma diversity for the different ecosystems within each cell. 
Calculating completeness depends on being able to ascertain an area’s species’ pool; the part of 
regional diversity that might be expected to inhabit the area given its environmental attributes. 
Beal’s probability index infers an area’s species pool based on co-occurrence patterns among the 
entire network considered, without having to model which species can inhabit it based on its 
ecological needs18. It is used to define the size and composition of the dark diversity in a cell, which is 
then used to calculate its completeness. However, the size of the cells means that species inhabiting 
dissimilar, separate habitats will nonetheless be marked as co-occurring, and on this bases inferences 
will be made regarding the species pool (and dark diversity, and thereby also community 
completeness). In a broad sense, this might be valid; the presence of desert-adapted species within a 
cell makes it more likely that other desert dwelling species would be present as well. But within 
regions with roughly the same climate, this may lead to spurious associations. For instance, while the 
presence of muskrats might be a realistic indicator of the presence of beavers (since they live in very 
similar environments), it might not be such a realistic predictor of the presence of red squirrels, 
despite often inhabiting the same cells. While the anomaly, through generalized species richness, is 
also based on species occurrence patterns in the network, it does not rely on explicitly defining which 
species occur together. Rather, generalized species richness is based on the ‘sociability’ of species 
occurring within a cell; which is to say whether a species is generally associated with high species 
richness or not. Because the anomaly does not need to explicitly define which species co-occur, it 
may be less prone to spurious associations than completeness, and may be more suitable to be 
applied on larger scales. 

A next step would be to test and compare these methods on a smaller scale, utilizing local, 
unaggregated data. Also, instead of analyzing all mammals, only a subset occupying a similar trophic 
level/niche could be considered. This would be more appropriate in the context of applying the dark 
diversity concept for conservation purposes. However, due to their high mobility, it is difficult to 
“pin” mammal species to specific sites, and some kind of intermediate spatial scale, between local 
site data and upscaled cell data, may be required. 

 

 

 



Conclusion 
- At the scale considered in this project, a combination of elevation range, temperature and 

precipitation was best suited to explain the variance in different measures of biodiversity. 
The effect of human activity, while significant, was very limited.  

- Anomaly and community completeness, the two biodiversity variables that were considered 
here to indicate how close a cell is to its potential (in terms of species richness), showed 
some agreement, particularly in cells that were on the extreme end of either of these 
variables. Variation in these variables corresponded mostly with topographical features. 
While these variables are not similar enough for the anomaly to substitute community 
completeness, they might be used as alternatives.  

  



Appendix 1: map representation of explanatory variables 
 

Appendix 1.1 Mean annual temperatures (°C) in North America 

Appendix 1.2: mean annual precipitation (mm) in North America 

Appendix 1.3: net annual primary productivity (grams of carbon) in North America 



 

Appendix 1.6: Human influence (hii) in North America 

Appendix 1.4: habitat homogeneity in North America 

Appendix 1.5: elevation range (m) in North America 



Appendix 2: model formulae 
The following table shows the full model formulae of the models discussed in the result. For the 
multiple-variable models, the variable listed first is x1, the second x2, etc. 

 Formula 

Ks0       
 

Temp 
Precipitation 
NPP 
Homogen 
Elevation 
Hii 
Temp + prec + elev 
Temp + npp + hmg + elev 
 
Temp + homogen + elev 
Temp + npp + elev 

Temp + elev 

y =29.8948 +1.3419x +-0.073329x2 +0.001721x3 
y =54.2754 +-0.054926x +3.8877e-05x2 +-8.4015e-09x3 
y =33.4021 +3.767e-12x 
y =24.9478 +0.0013722x +3.0433e-07x2 
y =26.1414 +0.010798x +1.0876e-06x2 +-7.2655e-10x3 
y =21.0006 +2.1689x -0.070748x2 +0.00058816x3 
y=29.226 +0.7294x1 -0.0085945x2 +0.0077186x3 
y=15.6992 +0.56344x1 +5.2459e-12x2 +0.0020183x3 
+0.0076944x4 
y=17.6514 +0.61044x1 +0.0017073x2 +0.007659x3 
y=23.7215 +0.70229x1 -4.7808e-12x2 +0.0082053x3 
y=22.7966 +0.66921x1 +0.0083527x2 

 

Ks18 

Temp 
Precipitation 
NPP 
Homogen 
Elevation 
Hii 
Temp + prec + elev 

Temp + npp +  hmg + elev 
Temp + hmg + elev 
Temp  + prec + elev 
Temp + prec 

y =37.8785 +0.0050519x +-0.00012692x2 +5.9645e-06x3 
y =38.0337 +-0.00037717x +2.9948e-07x2 +-6.7334e-11x3 
y =37.9078 +1.4105e-14x 
y =37.873 +2.2905e-06x +2.074e-09x2 
y =37.8861 +4.0191e-05x -1.8721e-09x2 -1.8354e-12x3 
y =37.8437 +0.0099194x -0.00030445x2 +2.4966e-06x3 
y=37.8904 +0.0051144x1 -4.0072e-05x2 +1.7329e-05x3 
y=37.8503 +0.0049977x1 -5.9256e-14x2 +7.1476e-06x3 
+1.5554e-05x4 
y=37.8283 +0.0044667x1 +1.0661e-05x2 +1.5954e-05x3 
y=37.8787 +0.0054894x1 -9.4764e-14x2 +1.7364e-05x3 
y=37.9068 +0.005242x1 -4.4819e-05x2 

 
 
 
 
 
 
 
 
 
 
 
  



Anomaly 
 

Temp 
Precipitation 
NPP 
Homogen 
Elevation 
Hii 
Temp + npp + hmg + elev 
 
Temp + npp + elev 
Temp + hmg + elev 
Temp + prec + elev 
Temp + elev 

y =-0.1153 -0.00094502x +0.00049338x2 
y =0.0785 -0.00053365x +4.8859e-07x2 -1.145e-10x3 
y =-0.065649 
y =-0.067867 -1.0987e-05x +2.903e-09x^2 
y =-0.032757 -4.1155e-05x 
y =-0.11382 +0.0041116x -6.8957e-05x2 +4.5578e-07x3 
y=-0.018545 +0.0093227x1 +-2.7391e-13x2 +-3.2764e-06x3 
-5.2365e-05x4 
y=-0.031568 +0.0090973x1 -2.5763e-13x2 +-5.3195e-05x3 
y=-0.12048 +0.0068684x1 +1.2963e-05x2 -5.0519e-05x3 
y=-0.06727 +0.007447x1 -1.8903e-05x2 - 4.6647e-05x3 
y=-0.081411 +0.0073146x1 +-4.5252e-05x2 

 

Completeness 

Temp 
Precipitation 
NPP 
Homogen 
Elevation 
Hii 
Temp + prec + elev 

Temp + npp + hmg + elev 
Temp + npp + elev 
Temp + hmg + elev 
Temp + elev 

y =2.1458 +0.061753x -0.0036932x2 +7.0598e-05x3 
y =3.0987 -0.0025112x +2.0883e-06x2 -5.1173e-10x3 
y =2.1873 +4.8368e-13x 
y =2.1071 -1.0689e-05x +1.563e-08x2 
y =1.9492 +0.00040347x +1.0051e-07x2 -4.0197e-11x3 
y =1.6871 +0.099372x -0.0032645x2 +2.7556e-05x3 
y=2.0035 +0.024487x1 -0.0002367x2 +0.00036321x3 
y=1.4834 +0.015541x1 +7.1542e-13x2 +6.7903e-05x3 
+0.00037514x4 
y=1.7532 +0.020213x1 +3.7809e-13x2 +0.00039233x3 
y=1.7496 +0.021951x1 +2.5488e-05x2 +0.00037032x3 

y=1.8264 +0.022829x1 +0.00038067x2 
 

 

  



Appendix 3 
In the unpublished study mentioned in the text, a dataset of forest plots sampled by the US Forest 
Inventory and Analysis National Program45,46 was used for a large-scale analysis of tree communities 
in the eastern United States. This dataset listed all the tree species present in the plot, as well as the 
abundance of seedlings and adults of said species. A total of 68290 forest plots of 168.22 m2 were 
analyzed. The study area extended from -95°W to the east coast, and from the Canadian 
border to the south coast, although the southernmost part of Florida was excluded.  The same 
methods as described in the Methods section were used to calculate both the anomaly, and 
community completeness. The results were as follows: 

 

Appendix 3.1: relationship between anomaly and completeness of tree communities in the eastern U.S. 

The relationship between completeness and anomaly is much more obvious here; sites that are 
highly anomalous (i.e. normalized ks,18 >> normalized ks,0) score lower for community completeness. 
As expected, a high anomaly means that there are fewer species in the assembly than would be 
expected based on the distribution of species across the network that do occur in the assembly. A 
low community completeness indicates a high ratio of missing species (dark diversity) versus 
observed species richness. So, while these indicators are different mathematically, they both indicate 
how many species are missing relative to what could be expected. The very different pattern found in 
the current study may be a result of the (much) larger sampling units, the fact that the species 
considered are motile and belong to different trophic levels, or all of the above. 

In addition, the differences between the spatial patterns of observed and generalized species 
richness were much more pronounced than in the current study. A very clear gradual increase in 
generalized species richness was observed, but this was not the case for observed species richness 
(see maps). 



 

 

  

Appendix 3.2: spatial patterns of observed species richness (above) and generalized species richness (below) 
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