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Introduction

The main objects of study in this thesis are the so called Whittaker vectors of the principal series repre-
sentation and two transformation operators called the Whittaker–Fourier transformation and the Harish-
Chandra transformation which are intimately related to these Whittaker vectors. Whittaker vectors were
first introduced by Jacquet in [Jac67] and have been studied extensively. The two transformations both
find there use in the proof of the so called Whittaker–Plancherel theorem. The proof of this result was
originally obtained by Harish-Chandra. Unfortunately the result has only been communicated by Harish-
Chandra in private correspondence and the proof has never been published. An independent proof of
this theorem is given by Wallach in his book [Wal92]. However the proof presented there is not quite
complete. It was pointed out by Van den Ban and Kuit in [vdBK] that a certain lemma ([Wal92, Section
15.3.2]), pertaining to the Harish-Chandra transformation, could not be true in the generality stated in
the book, as this would lead to contradictory results. For a more precise account of the statement of the
lemma we refer to Section 3.9.

It was the question whether the result stated in this lemma does hold if we impose additional as-
sumptions that led to the subject of this thesis. In this text we give a partial answer to this question in
the special case of SL(2,R). For a precise statement of what we prove we refer to Proposition 3.11. The
author would like to point the reader’s attention to a recent preprint by Wallach ([Wal]) in which a full
proof of the Whittaker–Plancherel Theorem, circumventing the faulty lemma, is given (and it is shown
that the lemma holds true when extra conditions are imposed). It should be noted that this preprint was
published only recently and after the writing of this thesis had already begun.

We give a quick summary of the structure of this thesis. The text is divided into three chapters. The
first of these is dedicated to introducing several concepts and notational conventions that will be used
throughout the rest of the text. In this chapter we only give a very brief account of the facts we will need
and most proofs will be omitted.

In the second chapter we introduce the notion of Whittaker vectors and we spend the first part of this
chapter studying the space of these Whittaker vectors. The main result of this section will be Theorem
2.10 which gives a full description of this space of Whittaker vectors. In the second part of this chapter
we introduce, using our results of the first part, the concept of the Whittaker coefficient. We spend the
rest of the chapter on studying this Whittaker coefficient.

In final chapter we study the aforementioned Whittaker–Fourier transformation and Harish-Chandra
transformation. Our analysis of the Whittaker–Fourier transformation will rely on the result on the Whit-
taker coefficient obtained in the previous chapter. The main focus of the third chapter will be to prove
Proposition 3.11 which will provide a partial answer to the question asked in the above introduction.

All proofs presented in this text are by the author unless otherwise stated. The author would like
to note however that many proofs presented here, some more than others, as based on the countless
suggestions communicated to him by E.P. van den Ban.
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Chapter 1

Preliminaries

In this chapter we introduce several concepts that will be used in later chapters. We also fix several
pieces of notation that will be used throughout the text. Most of the topics in this chapter are part of the
structure theory and the representation theory of semisimple Lie groups. The discussion of the topics
will be quite brief and most proofs are omitted. The reader is assumed to be familiar with the theory of
Lie groups and Lie algebras and with the basics of geometric analysis. Most of this chapter is based on
the book ‘Lie Groups Beyond an Introduction’ by A.W. Knapp ([Kna96]) and lecture notes on Harmonic
Analysis written by E.P. van den Ban ([vdB]).

1.1 Cartan decomposition

Let g be a real semisimple Lie algebra and denote by B : g× g→ R its Killing form.

Definition 1.1. An involution of g is a Lie algebra automorphism θ of g that satisfies θ2 = id.

If g is equipped with such an involution it decomposes as a direct sum of the +1-eigenspace and
−1-eigenspace of θ which we will denote by g+ and g− respectively. Because θ is an automorphism of
g we have that B(θX, θY ) = B(X,Y ) holds for all X,Y ∈ g. It follows that g+ ⊥ g− with respect to
B. Using that θ preserves the Lie brackets it is easy to check that

[g+, g+] ⊂ g+, [g+, g−] ⊂ g− and [g−, g−] ⊂ g+.

In particular we see that g+ is a subalgebra of g.

Definition 1.2. A Cartan involution of g is an involution θ of g such that the Killing form is negative
definite on g+ and positive definite on g−.

An equivalent definition is to require θ to be such that 〈X,Y 〉 := −B(X, θY ) defines a positive
definite innner product on g (see [vdB, Lemma 15.5]). This inner product is called the Cartan inner
product on g. If θ is a Cartan involution we denote k := g+ and p := g−. It is easy to check that for
X ∈ g we have ad(X)> = − ad(θX) with respect to the Cartan inner product. In particular we have
that ad(X) is anti-symmetric for X ∈ k and is symmetric for X ∈ p. We will make use of the following
fact.

Proposition 1.3. Every real semisimple Lie algebra can be equipped with a Cartan involution.
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CHAPTER 1. PRELIMINARIES

For a proof see [Kna96, Corollary 6.18].
We now assume that g is the Lie algebra of a connected semisimple Lie group G. For our discussion

we fix a Cartan involution θ on g. We denote by K the analytic subgroup K := 〈exp k〉. It turns out that
as a manifold G can be decomposed into a product of this subgroup K and the vector space p.

Proposition 1.4. The map K × p→ G : (k,X) 7→ k exp(X) is a diffeomorphism.

For a proof see [Kna96, Theorem 6.31]. Using this decomposition we can define a lift of θ to G,
also denoted by θ, by setting θ(k exp(X)) = k exp(−X).

Proposition 1.5. The map θ : G → G as defined above is the unique involution of G such that
dθ(e) = θ : g→ g.

For a proof see [Kna96, Theorem 6.31]. It is readily verified thatK equalsGθ, the set of fixed points
of θ. As a consequence we see that K is a closed subgroup of G.

Proposition 1.6. The subgroup K is compact if and only if the center of G is finite. If this is the case
then K is a maximal compact subgroup of G.

For a proof see [Kna96, Theorem 6.31].

1.2 Restricted root system

We let a ⊂ p be a maximal abelian subalgebra of p. Such a subalgebra exists by finite dimensionality. It
is a fact that any two such maximal abelian subalgebras have the same dimension (see [Kna96, Theorem
6.51]). So the value of dim a is independent of the precise choice of a. Keeping this in mind we can
give the following definition.

Definition 1.7. The split rank of a semisimple Lie group is defined as

split rankG := dim a.

Here a is any choice of maximal abelian subalgebra of p.

For any H ∈ a we have that ad(H) is symmetric with respect to the Cartan inner product hence
ad(H) is diagonalizable with real eigenvalues. Since a is abelian all maps {ad(H) | H ∈ a} are
simultaneously diagonalizable. As a result g decomposes into a direct sum of simultaneous eigenspaces
of these maps. For λ ∈ a∗ we define

gλ := {X ∈ g | ad(H)X = λ(H)X for all H ∈ a}.

Definition 1.8. An element α ∈ a∗ is called a (restricted) root if α 6= 0 and gα 6= 0. In this case gλ is
called a (restricted) root space. We denote the set of roots by Σ = Σ(g; a).

It is easy to check that θgλ = g−λ and [gλ, gµ] ⊂ gλ+µ for λ, µ ∈ a∗. The decomposition of g as a
direct sum of these simultaneous eigenspaces is called the restricted root space decomposition.

Proposition 1.9. As a vector space g decomposes as

g = g0 ⊕
⊕
α∈Σ

gα.

This sum is orthogonal with respect to the Cartan inner product.
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For a proof see [Kna96, Proposition 6.40]. Since a is abelian we have a ⊂ g0. The maximality of a
in p implies that a = g0 ∩ p. We define m ⊂ k to be m := g0 ∩ k = Zk(a). By using that g0 is θ-stable
we see that g0 = m⊕ a

Definition 1.10. A choice of positive roots in Σ is a subset Σ+ ⊂ Σ such that:

1. Σ = Σ+ ∪ (−Σ+)

2. Σ+ is contained in an open half space in a∗, i.e. Σ+ ⊂ {λ ∈ a∗ | λ(H) > 0} for suitable H ∈ a.

For any α ∈ Σ the set kerα is a hyperplane in a. Hence the set areg := a \ ∪α∈Σ kerα consists of a
disjoint union of open convex sets. These connected components of areg are called the Weyl chambers in
a. Let C ⊂ areg be such a Weyl chamber. If we define Σ+ := {α ∈ Σ | α(H) > 0 for all H ∈ C} then
this set is a choice of positive roots in Σ. This construction yields a one-to-one correspondence between
Weyl chambers and choices of positive roots. For a certain choice of positive roots Σ+ we will denote the
corresponding Weyl chamber by a+ (this set is given by a+ = {H ∈ a | α(H) > 0 for all α ∈ Σ+}).

We fix a choice of positive roots Σ+ ⊂ Σ and define the subspaces

n :=
⊕
α∈Σ+

gα and n :=
⊕
α∈Σ+

g−α.

We observe that θn = n. Since [gα, gβ] ⊂ gα+β and α + β ∈ Σ+ for any α, β ∈ Σ+ it follows that
both n and n are nilpotent subalgebras of g. We see that g decomposes as the following direct sum of
subalgebras

g = n⊕m⊕ a⊕ n.

Definition 1.11. A positive root is called simple if it can not be written as the sum of two positive roots.
We denote the set of simple roots by ∆ = ∆(Σ+).

The set ∆ is a basis of a∗ and and we have Σ+ = N∆ ∩ Σ.

1.3 Iwasawa decomposition

The following result is known as the infinitesimal Iwasawa decomposition of the Lie algebra g.

Proposition 1.12. The space g decomposes as the following direct sum of vector spaces

g = k⊕ a⊕ n.

For a proof see [Kna96, Proposition 6.43].
We define the following two subgroups of G

A := 〈exp a〉 and N := 〈exp n〉.

The subgroup A is abelian and the subgroup N is nilpotent. The infinitesimal Iwasawa decomposition
of g has the following counterpart on G.

Proposition 1.13. The multiplication map K ×A×N → G : (k, a, n) 7→ kan is a diffeomorphism.

For a proof see [Kna96, Proposition 6.46].
In general exp: g→ G is only a local diffeomorphism but for both A and N we have the following.
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Proposition 1.14. Both A and N are closed subgroups of G. The restrictions of the exponential map
exp |a : a→ A and exp |n : n→ N are both diffeomorphisms. Furthermore, if we view the vector space
a as a Lie group (a,+, 0) then exp a→ A is an isomorphism of Lie groups.

For a proof of the first part see [vdB, Lemma 17.5 and Lemma 17.13]. For the fact that exp: a→ A
is actually an isomorphism we remember a is abelian and that exp(X + Y ) = exp(X) exp(Y ) for all
X,Y ∈ g with [X,Y ] = 0.

For the inverse of the map exp: a → A we will use the notation log : A → a. Now we define for
λ ∈ a∗ the notation

aλ := eλ(log a) for a ∈ A.

Proposition 1.15. Let a ∈ A then each root space gα is stable under the action of Ad(a). Furthermore,
for α ∈ Σ ∪ {0} we have that Ad(a) acts on gα as Ad(a)|gα = aα · I .

For a proof see [vdB, Lemma 17.5].
We will denote by N the analytic subgroup N := 〈expn〉. We observe that θN = N . Furthermore,

we define M := ZK(a) which is a closed subgroup of G. Its Lie algebra equals m = Zk(a). Since M
centralizes A we have that MA is a subgroup of G. It is not difficult to see that MA in turn normalizes
N hence the set P := MAN is a subgroup of G. This is a closed subgroup of G since M × A ×N is
closed in K ×A×N ∼= G. This subgroup P is called a minimal parabolic subgroup of G.

We define the Iwasawa projection maps k : G → K, a : G → A,n : G → N to be the composition
of the diffeomorphism G → K × A × N and the projections onto K, A and N respectively. For
any g ∈ G we have g = k(g)a(g)n(g). We also introduce the map H : G → a which is defined as
H := log ◦a.

For α ∈ Σ we denote by Hα ∈ a the unique element that satisfies B(·, Hα) = α on a.

Proposition 1.16. The map H : G → a maps N into the space
∑

α∈Σ+ R≥0 ·Hα. The restricted map
H|N : N →

∑
α∈Σ+ R≥0 ·Hα is proper and surjective.

For a proof of this see either [HC58, Lemma 43] or [vdB86, Theorem A.I.]
We consider the inclusion map K ↪→ G which induces a smooth map K/M → G/P . It is easily

seen that G/P → K/M : gP 7→ k(g)M is an inverse to this map hence we obtain the following.

Proposition 1.17. The inclusion map K ↪→ G induces a diffeomorphism K/M → G/P . This diffeo-
morphism is equivariant under the left actions of K on K/M and G/P .

1.4 SL(n,R)

The Lie group SL(2,R) will be of special interest throughout this text. In this section we explicitly cal-
culate the subgroups and Lie subalgebras introduced in the previous section in the case ofG = SL(n,R).

The Lie group SL(n,R) is defined as the subgroup of matrices in GL(n,R) of determinant one, i.e.

SL(n,R) := {A ∈ GL(n,R) | detA = 1}.

The Lie algebra of this group is sl(n,R) = {X ∈ gl(n,R) | trX = 0}. The map θ ∈ Aut(sl(n,R))
defined by θX = −X> provides a Cartan involution on this Lie algebra. The map θ ∈ Aut(SL(n,R))
defined by θA = (A−1)> is the unique lift of this Cartan involution to SL(n,R).

For convenience we denote in this section g := sl(n,R). We immediately see that

K = SL(n,R)θ = SO(n) = {A ∈ GL(n,R) | AA> = I}

8
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and
k = g+ = so(n) = {X ∈ sl(n,R) | X = −X>}.

The algebra p = g− is given by

p = {X ∈ gl(n,R) | X = X>}.

It is easily checked that the subalgebra of diagonal matrices is a maximal abelian subalgeba of p. We
will fix this as our choice for a, i.e.

a := {H ∈ sl(n,R) | H is diagonal} ⊂ p.

We denote by Eij an n × n matrix with the (i, j) entry equal to one and all other entries equal to zero.
For i 6= j we have Eij ∈ sl(2,R). Then we see for H ∈ a that [H,Eij ] = (Hii −Hjj)Eij . So if we set
αij ∈ a∗ to be αij(H) = Hii −Hjj then we see that gαij = REij . We have that

sl(n,R) = a⊕
⊕
i 6=j

gαij

and Σ = {αij = ei− ej | i 6= j}. We see that g0 = a hence we must have m = 0. For i 6= j we see that
kerαij consists of elements H ∈ a with Hii = Hjj hence

areg = {H ∈ a | Hii 6= Hjj for all i 6= j}.

We fix the following choice of positive Weyl chamber

a+ := {H ∈ a | Hnn > · · · > H22 > H11}.

The positive roots are now given by Σ+ = {αij | i < j}. We see that n = ⊕i<jgαij = ⊕i<jR · Eij con-
sists of the strictly upper triangular matrices and n of the strictly lower triangular matrices. In conclusion
we find

k = so(n)

a = {H ∈ sl(n,R) | H is diagonal}
m = 0

n = {X ∈ sl(n,R) | X is strictly upper triangular}
n = {X ∈ sl(n,R) | X is strictly lower triangular}.

The analytic subgroups in G corresponding to these Lie algebras are give by

K = SO(n)

M = {m ∈ SO(n) | m is diagonal with entries ±1}
A = {a ∈ SL(n,R) | a is diagonal with positive entries}
N = {n ∈ SL(n,R) | n is upper triangular with 1’s along the diagonal}
N = {n ∈ SL(n,R) | n is lower triangular with 1’s along the diagonal}
P = MAN = {p ∈ SL(n,R) | p is upper triangular}.

9
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1.4.1 SL(2,R)

In the case of SL(2,R) we have the standard sl(2,R)-triple H,X, Y defined by

H :=

(
1 0
0 −1

)
, X :=

(
0 1
0 0

)
and Y :=

(
0 0
1 0

)
.

These elements satisfy the commutation relations [H,X] = 2X, [H,Y ] = −2Y and [X,Y ] = H . In
terms of this basis we have a = RH , a+ = R>0H , n = RX and n = RY .

For x ∈ R and λ > 0 we define

aλ =

(
λ 0
0 1/λ

)
, nx := exp(x ·X) =

(
1 x
0 1

)
and nx := exp(x · Y ) =

(
1 0
x 1

)
.

We can now describe the subgroups A,N and N as

A := {aλ | λ > 0}, N := {nx | x ∈ R} and N = {nx | x ∈ R}.

We note that for x, y ∈ R we have nx · ny = nx+y hence the map exp: n → N (and similarly
exp: n → N ) is in fact a group isomorphism. This is a special feature of the group SL(2,R). Finally
we have that K = SO(1) ∼= S1.

The space of roots is given by Σ = {−α, α} with α ∈ a∗ determined by α(H) = 2. Our choice of
positive roots is such that α is positive so Σ+ = {α}.

The Iwasawa projection H : G → a is such that g = k(g) expH(g)n(g) for every g ∈ SL(2,R).
For SL(2,R) we can find the following explicit formula for H .

Proposition 1.18. Assume G = SL(2,R). Let g =
(
a b
c d

)
∈ SL(2,R) then

H(g) =
1

2
log(a2 + b2) ·H.

Proof. Let k ∈ K,λ > 0 and x ∈ R such that g = kaλnx. Then (gn−x)>(gn−x) = a2
λ. An easy

calculation yields

(gn−x)>(gn−x) =

(
a2 + b2 ab+ cd− x(a2 + c2)

ab+ cd− x(a2 + c2) (b− xa)2 + (c− xd)2

)
= a2

λ =

(
λ2 0
0 1/λ2

)
.

This implies that we must have λ =
√
a2 + b2 hence H(g) = 1

2 log(a2 + b2) ·H .

1.5 Bruhat decomposition

For an element α ∈ a∗ a reflection in α is a map s ∈ GL(a∗) such that s(α) = −α and a∗ = Rα ⊕
ker(I − s). For every root α ∈ Σ there exists a unique reflection sα such that sα(α) = −α and
sα(Σ) = Σ. We denote by W (g; a) = 〈sα | α ∈ Σ〉 the Weyl group which is the subgroup of GL(a∗)
generated by the reflections sα. To give an alternative description of the Weyl group we note that the
group NK(a) acts on a∗ via the co-adjoint action Ad∨. The kernel of the map Ad∨ : NK(a)→ GL(a∗)
is ZK(a).

Proposition 1.19. The map Ad∨ : NK(a) → GL(a∗) maps into W (g; a) and induces an isomorphism
NK(a)/ZK(a) ∼= W (g; a).

10



CHAPTER 1. PRELIMINARIES

For a proof see [Kna96, Theorem 6.57].
The following result is known as the Bruhat decomposition of G.

Proposition 1.20. Let G be a connected semisimple Lie group with finite center. The
map NK(a)→ P \G/P : w 7→ PwP induces a bijection between the Weyl group W (g; a) ∼=
NK(a)/ZK(a) and the double coset space P \G/P .

A consequence of this result is that we can decompose G as the following disjoint union

G =
⊔

w∈W (g;a)

Pw̃P =
⊔

w∈W (g;a)

Nw̃P,

were w̃ ∈ NK(a) is a representative of w ∈W (g; a) under the identificationW (g; a) ∼= NK(a)/ZK(a).
The sets Bw := Nw̃P are called the Bruhat cells of G. These cells are orbits of the Lie group action
L × R of N × P on G. It is readily verified that the subgroup (N ∩ w̃Nw̃−1) × P of N × P acts
transitively on Bw. Furthermore, in light of Lemma 1.21 we see that the action of this subgroup on Bw
is free. It follows that

φw : (N ∩ w̃Nw̃−1)× P → Bw : (n, p) 7→ nw̃p−1

is a bijective map. This map is of constant rank because it is equivariant for the action of
(N ∩ w̃Nw̃−1)× P . Since a map that is both injective and of constant rank is an immersion we con-
clude that Bw is an immersed submanifold of G that is diffeomorphic to (N ∩ w̃Nw̃−1) × P . We see
that the dimension of Bw equals dim(N ∩ w̃Nw̃−1) + dimP .

Lemma 1.21. We have N ∩ P = {e}.
For a proof see [Kna96, Lemma 7.64]. The above discussion has the following consequence.

Proposition 1.22. The set NP is an open submanifold of G. Its complement in G consists of subman-
ifolds of codimension at least one.

Proof. Let w̃ ∈ NK(a) be a representative of w ∈ W (g; a) the longest element in the Weyl-group.
This is the element in W (g; a) that is uniquely characterized by w(Σ+) = −Σ+. Then w̃Nw̃−1 = N
hence dimBw = dim(N) + dimP = dimG. We conclude that Bw is a codimension 0 immersed
submanifold of G hence is an open submanifold of G. For every w′ ∈ W (g; a) with w′ 6= w we have
dimBw′ < dimG. From the Bruhat decomposition of G as G = Bw t tw′ 6=wBw′ we see that the
complement of Bw does indeed consists of lower dimensional manifolds. The statements in the lemma
for the set NP follow from the fact that w̃−1Bw = w̃−1Nw̃P = NP .

1.6 Induced representations

Let G be a Lie group and H be a closed subgroup of G. Let (σ, Vσ) be a representation of H on a
finite-dimensional Hilbert space Vσ. In this section we define the induced representation indGH(σ) which
is a representation of G constructed from the representation (σ, Vσ) of H . The discussion in this section
follows [vdB, Section 19].

If M is a manifold and E is a vector bundle then we denote by Γ0(M ;E) the space of continuous
sections of E over M . We equip this space with the topology of uniform convergence on compact sets
so that Γ0(M ;E) becomes a Fréchet space. By Γ∞(M ;E) we denote the space of smooth sections of
E over M . This space we equip with the topology of uniform convergence of all derivatives on compact
sets. The space Γ∞(M ;E) is also a Fréchet space. If E is trivial, i.e. E = M × V for some finite-
dimensional vector space V , then we denote these spaces by C0(M ;V ) and C∞(M ;V ) respectively.
Furthermore, the bundle of densities on M is denoted by DM .

11
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Definition 1.23. The representation space of the induced representation indGP (σ) is defined as

C(G : H : σ) := {f ∈ C0(G;Vσ) | f(gh) = σ(h)−1f(g) for all g ∈ G, h ∈ H}.

We let G act on this space via the representation πσ = indGH(σ) which is defined to be the left regular
representation, i.e. [πσ(g)f ](x) = f(g−1x).

The space C(G : H : σ) is a closed subspace of the Fréchet space C(G;Vσ) hence it is itself a
Fréchet space. The action ofG onC(G : H : σ) is continuous with respect to this topology. The space of
smooth vectors of this representation is denoted byC∞(G : H : σ) := C(G : H : σ)∩C∞(G;Vσ). This
space is closed in C∞(G;Vσ) hence is itself a Fréchet space. Furthermore, we denote by Cc(G : H : σ)
the subspace of functions φ ∈ C(G : H : σ) such that the image of suppφ underG→ G/H is compact
in G/H .

1.6.1 Normalized induced representation

The induced representation as defined above does not come with a natural inner product. So if σ is
unitary the induced representation does not inherit this property. We introduce the normalized induced
representation to remedy this.

Let g and h ⊂ g be the Lie algebras of G and H respectively. For h ∈ H the map Ad(h) descends
to a map Ad(h) : g/h→ g/h. We define the character ∆: H → R as

∆(h) :=
∣∣detg/h Ad(h)

∣∣−1
=
|deth Ad(h)|h|
|detg Ad(h)|

.

We denote the natural left action ofG onG/H by l, i.e. lg : G/H → G/H : xH 7→ gxH . The character
∆ is defined precisely such that (dlh(eH))−1∗ |ω| = ∆(h) · |ω| for any ω ∈ ∧top(g/h) and h ∈ H .

The conjugate adjoint of the representation σ is the representation (σ∗, Vσ) of H given by

σ∗(h) = σ(h−1)∗ for h ∈ H.

The representation σ is unitary if and only if σ = σ∗. We denote by Vσ⊗∆1/2 the space Vσ equipped
with the representation σ ⊗∆1/2 of H which is given by (σ ⊗∆1/2)(h) = ∆1/2(h) · σ(h) for h ∈ H .
Similarly we denote by Vσ∗⊗∆1/2 the space Vσ equipped with the representation σ∗ ⊗∆1/2. We denote
by C∆ the space C equipped with the H-module structure h · z = ∆(h)z. The inner product on Vσ
gives an H-equivariant pairing Vσ⊗∆1/2 × Vσ∗⊗∆1/2 → C∆. From this pairing we obtain an induced
sesquilinear pairing

C(G : H : σ ⊗∆1/2)× Cc(G : H : σ∗ ⊗∆1/2)→ Cc(G : H : ∆).

The spaceCc(G : H : ∆) can be identified with Γ0
c(G/H;DG/H), the space of compactly supported and

continuous densities onG/H . For this we pick an element ω ∈ ∧top(g/h)\{0}. Let f ∈ Cc(G : H : ∆)
and define φ̃f : G → DG/H : x 7→ f(x)(dlx(eH))−1∗ |ω|. Because f(xh) = ∆(h)−1f(x) and
(dlh(eH))−1∗ |ω| = ∆(h) |ω| for h ∈ H this map is right H-invariant. Hence it descends to a
map on G/H and we obtain a section φf ∈ Γ0

c(G/H;DG/H). The map Cc(G : H : ∆) →
Γ0
c(G/H;DG/H) : f 7→ φf is a bijection. Using this identification we can view the above pairing

as a map into Γ0
c(G/H;DG/H). Elements of this space can be integrated hence we obtain the following

sesquilinear pairing

C(G : H : σ ⊗∆1/2)× Cc(G : H : σ∗ ⊗∆1/2)→ C : (φ, ψ) 7→
∫
G/H
〈φ, ψ〉ω . (1.1)

12
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Here 〈φ, ψ〉ω ∈ Γ0
c(G/H;DG/H) is defined as xH 7→ 〈φ(x), ψ(x)〉σ dlx(eH)−1∗ |ω|. Up to a positive

factor this pairing is independent of the choice of ω ∈ ∧top(g/h).

Definition 1.24. The normalized induced representation is defined as IndGH(σ) := indGH(σ ⊗∆1/2).

Proposition 1.25. The pairing defined by (1.1) is equivariant, i.e.

(πσ⊗∆1/2(g)φ, πσ∗⊗∆1/2(g)ψ) = (φ, ψ) for all g ∈ G

with φ ∈ C(G : H : σ ⊗∆1/2) and ψ ∈ C(G : H : σ∗ ⊗∆1/2).

For a proof see [vdB, Lemma 19.11].
If we assume that σ is unitary then σ∗ = σ. For such σ we have the following.

Proposition 1.26. If σ is unitary then the sesquilinear pairing in (1.1) defines a pre-Hilbert structure on
the space Cc(G : H : σ ⊗∆1/2). There exists a unique unitary representation on the completion of this
space that extends the representation of G.

We will denote this completion by L2(G : H : σ ⊗∆1/2).

1.6.2 Principal series

In this section we return to the case of G a semisimple Lie group with finite center and use the no-
tation of Section 1.3. Let (ξ,Hξ) be finite-dimensional unitary representation of M . Let λ ∈ a∗C.
Then σ(man) := aλξ(m) defines a representation of P on Hξ. We will denote this representation by
ξ ⊗ eλ ⊗ 1.

Definition 1.27. The principal series is the series of representations IndGP (ξ⊗eλ⊗1) depending on the
parameters ξ ∈ M̂ (irreducible) and λ ∈ a∗C . We refer to the series IndGP (1 ⊗ eλ ⊗ 1) depending only
on λ ∈ a∗C as the spherical principal series.

Definition 1.28. The element ρ ∈ a∗ is defined as the following weighted sum of the positive roots

ρ :=
1

2

∑
α∈Σ+

dim(gα)α.

or equivalently ρ(H) = 1
2 tr(ad(H)|n) for all H ∈ a.

Lemma 1.29. The character ∆ of P , as defined in the previous section, is given by ∆(man) = a−2ρ

for man ∈MAN .

For a proof see [vdB, Lemma 20.3]. We see that passing from the induced representa-
tion to the normalized induced representation corresponds to a shift in the parameter λ since
(ξ ⊗ eλ ⊗ 1)⊗∆1/2 = ξ ⊗ eλ+ρ ⊗ 1. We introduce the following shorthand for the representation
space C(G : P : (ξ ⊗ eλ ⊗ 1)⊗∆1/2) of the principal series representation

C(P : ξ : λ) := {φ ∈ C(G;Hξ) | φ(gman) = a−λ−ρξ(m)−1φ(g) for all g ∈ G,man ∈MAN}.

We denote
πξ,λ := IndGP (ξ ⊗ eλ ⊗ 1),

which is the left regular representation of G on this space. Similarly the space of smooth vectors of this
representation is denoted by C∞(P : ξ : λ) := C(P : ξ : λ) ∩ C∞(G;Hξ). It is easy to see that
(ξ ⊗ eλ ⊗ 1)∗ = ξ ⊗−λ⊗ 1 hence this representation is unitary if and only if λ ∈ ia∗.

13
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1.6.3 Compact picture

From the result of Proposition 1.17 we know that G/P ∼= K/M . Since we assumed G to have finite
center we have that K is compact hence we see that G/P is compact. In this section we will realise the
principal series representation IndGP (ξ ⊗ eλ ⊗ 1) as a space of functions on K. This will be called the
compact picture of the principal series representation. This compact picture has the advantage that the
representation space is independent of the parameter λ.

Given (ξ,Hξ) as in the previous section we can consider the induced representation IndKM (ξ). Both
K and M are compact hence unimodular which implies that the character of M satisfies ∆ ≡ 1. This
means that IndKM (ξ) = indKM (ξ). The corresponding representation space is denoted by

C(K : M : ξ) := {φ ∈ C0(K;Hξ) | φ(km) = ξ(m)−1φ(k) for all k ∈ K,m ∈M}.

Proposition 1.30. The restriction map rλ : C(P : ξ : λ)→ C(K : M : ξ) is a topological isomorphism
of K-modules. Its inverse is given by

iλ : C(K : M : ξ)→ C(P : ξ : λ), iλ(φ)(kan) = a−λ−ρφ(k)

for k ∈ K, a ∈ A and n ∈ N .

For a proof see [vdB, Lemma 20.6]. Using this isomorphism the representation πξ,λ on C(P : ξ : λ)
can be transferred to a representation of G on C(K : M : ξ) that extends the left regular representation
of K on this space. We will denote this representation also by πξ,λ and it is given by

[πξ,λ(g)φ](k) = e−(λ+ρ)H(g−1k)φ(k(g−1k)) for g ∈ G and k ∈ K.

The pairing C(P : ξ : λ) × C(P : ξ : −λ) → C as given in (1.1) corresponds under this isomorphism
to the pairing

C(K : M : ξ)× C(K : M : ξ)→ C : (φ, ψ) 7→
∫
K
〈φ(k), ψ(k)〉ξ dk.

1.7 Integration

We will denote by dg,dk,dm,da,dn and dn choices of left Haar measures on G, K, M , A, N and
N respectively. We choose to normalize dk and dm such that

∫
K dk = 1 and

∫
M dm = 1. Taking into

account the proposition below we see that all these measures are in fact also right Haar measures.

Proposition 1.31. A Lie group is unimodular if it is either

1. an abelian Lie group

2. a compact Lie group

3. a semisimple Lie group

4. or a nilpotent Lie group.

For a proof see [Kna96, Corollary 8.31].
The below propositions are a collection of facts that will be used throughout the proofs in this text.

Proposition 1.32. The measures da dn and a2ρ da dn define a left invariant Haar measure and a right
invariant Haar measure on the group AN respectively.

14
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Proposition 1.33. The measures dm dadn and a2ρ dmda dn define a left invariant Haar measure and
a right invariant Haar measure on the group MAN respectively.

Proposition 1.34. The Haar measures dg,da and dn can be normalized such that dg = a2ρ dk da dn.
So for any f ∈ L1(G) we have∫

G
f(g) dg =

∫
K×A×N

f(kan) · a2ρ dk da dn.

Proposition 1.35. The Haar measures dg,dn, da and dn can be normalized such that on NMAN we
have dg = a2ρ dn dmda dn. Since the complement ofNMAN inG has measure zero (see Proposition
1.22) this means that for all f ∈ L1(G) we have∫

G
f(g) dg =

∫
N×MAN

f(nman) · a2ρ dn dmda dn.

Proposition 1.36. If dn is normalized as in Proposition 1.35 then we have for all f ∈ L1(K) that∫
K
f(k) dk =

∫
N

∫
M
f(k(n)m) · e−2ρ(H(n)) dmdn.

A proof for all these propositions can be found in [Kna96, Chapter 8.4].
The groups G and N are both unimodular hence the quotient G/N admits a left G-invariant mea-

sure d(gN). The Iwasawa decomposition of G yields a diffeomorphism G/N ∼= K × A. Using this
diffeomorphism we can express the integral over G/N as an integral over K ×A.

Proposition 1.37. Let dg,da and dn be normalized as in Proposition 1.34. Then d(gN) can be nor-
malized such that for all f ∈ L1(G/N) we have∫

G/N
f(g) d(gN) =

∫
K×A

f(ka) · a2ρ dk da.

Proof. Let ψ ∈ C0(N) be such that
∫
N ψ(gn) dn = 1 for all g ∈ G. Then we have, using Theorem

8.34 of [Kna96], that∫
G/N

f(g) d(gN) =

∫
G/N

∫
N
f(gn)ψ(gn) dn d(gN) =

∫
G
f(g)ψ(g) dg.

Applying Proposition 1.34 yields that the right hand side of this equation equals∫
K×A×N

f(kan)ψ(kan) · a2ρ dk dadn =

∫
K×A

f(ka)

[∫
N
ψ(kan) dn

]
· a2ρ dk da

=

∫
K×A

f(ka) · a2ρ dk da.

Proposition 1.38. The measures da,dn and d(gN) can be normalized such that for all f ∈ L1(MAN)
we have ∫

MAN
f(man) dmdadn =

∫
G/N

f(g) d(gN).
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Proof. We let ψ ∈ C0(G) such that
∫
N ψ(gn) dn = 1 for all g ∈ G. Applying Theorem 8.34 of

[Kna96] yields∫
G/N

f(g) d(gN) =

∫
G/N

∫
N
f(gn)ψ(gn) dn d(gN) =

∫
G
f(g)ψ(g) dg.

In the notation of [Kna96] we have dg = d l(man) drn = dmdadn dn on MANN . Using that the
complement of MANN has measure zero in G yields∫

G
f(g)ψ(g) dg =

∫
MAN×N

f(mann)ψ(mann) dm da dn dn =

∫
MAN

f(man) dmdadn.

Since A normalizes N we have that the conjugation map Ca : N → N : n 7→ ana−1 is an automor-
phism of N for every a ∈ A. Using this we find the following ‘substitution of variables’ result.

Proposition 1.39. Let a ∈ A. The measure C∗a dn is a left and right Haar measure on N . Furthermore,
we have C∗a dn = a2ρ dn hence ∫

N
f(ana−1) dn = a−2ρ

∫
N
f(n) dn

for all f ∈ L1(N).

Proof. The fact that C∗a dn is a Haar measure follows directly from the fact that Ca is an automorphism
and dn is both a left and a right Haar measure. Since both measures are Haar measures it is enough to
show C∗a dn = a2ρ dn holds at n = e. We observe

(C∗a dn)(e) = dCa(e)
∗ dn(e) = Ad(a)∗ dn(e) = |det Ad(a)|n|dn(e) = a2ρ dn(e).

1.8 Generalized sections

In this section we introduce the notion of a generalized vector of the principal series representation.

Definition 1.40. We define the set of generalized vectors of the principal series representation as the
topological antilinear dual of the Fréchet space C∞(G : P : ξ : −λ), i.e.

C−∞(G : P : ξ : λ) := C∞(G : P : ξ : −λ)∗.

We equip this space with the strong dual topology.

If we consider the sesquilinear pairing C∞(P : ξ : −λ) × C(P : ξ : λ) → C as in (1.1) then we
see that the map φ 7→ (·, φ) continuously embeds C(P : ξ : λ) into C−∞(P : ξ : λ) (remember that the
latter space is defined as the antilinear dual hence the given map is linear). We define a representation
of G on the space C−∞(P : ξ : λ) by πξ,λ(g)φ := φ ◦ πξ,−λ(g−1). Using this definition we see that

(πξ,λ(g) 〈·, φ〉)(ψ) =
〈
πξ,−λ(g−1)ψ, φ

〉
= 〈ψ, πξ,λ(g)φ〉 = 〈·, πξ,λ(g)φ〉 (ψ)

for φ ∈ C(P : ξ : λ) and ψ ∈ C∞(P : ξ : −λ). We conclude that this representation of G on
C−∞(P : ξ : λ) extends the representation on C(P : ξ : λ). Furthermore, the space C−∞(P : ξ : λ)
can be equipped with the structure of a g-module by setting πξ,λ(X)φ := −φ ◦ πξ,−λ(X) for X ∈ g. In
this way we uniquely extend the g-module structure πξ,λ on the space C∞(P : ξ : λ).

For the compact picture we define the space of generalized vectors in a similar way.
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Definition 1.41. The set of generalized vectors in the compact picture of the principal series represen-
tation is defined as the topological antilinear dual of C∞(K : M : ξ), i.e.

C−∞(K : M : ξ) := C∞(K : M : ξ)∗. (1.2)

We equip this space with the strong dual topology.

Taking the dual of the isomorphism iλ of Proposition 1.30 yields an isomorphism
C−∞(P : ξ : λ)→ C−∞(K : M : ξ).

Following our convention of denoting the space of smooth sections of the trivial bundle G × Hξ

as C∞(G;Hξ) we denote by C−∞(G;Hξ) the space of generalized sections of this bundle, i.e.
C−∞(G;Hξ) := Γ−∞(G;G × Hξ). The space C∞(G;Hξ) can be equipped with the left and right
regular representation of G and the representation ξ of M . These three representations can be ex-
tended uniquely to representations on C−∞(G;Hξ) in a straightforward manner. Per definition the
space C∞(P : ξ : λ) is a subspace of C∞(G;Hξ). This embedding can be extended to the generalized
vectors in the following way.

Proposition 1.42. The embedding C∞(P : ξ : λ) ↪→ C∞(G;Hξ) can uniquely be extended to a
continuous embedding C−∞(P : ξ : λ) ↪→ C−∞(G;Hξ). The image of this embedding is contained in
the closed subspace

{φ ∈ C−∞(G;Hξ) | Rmanφ = a−λ−ρξ(m)−1φ for all man ∈MAN}.

If we equip C−∞(G;Hξ) with the left regular representation this embedding map is G-equivariant.

Proof. We will define a map Tλ : Γ∞c (G; (G×Hξ)⊗DG)→ C∞(P : ξ : −λ) such that the following
diagram commutes

C∞(P : ξ : −λ) × C∞(P : ξ : λ) C

Γ∞c (G; (G×Hξ)⊗DG) × C∞(G;Hξ) C

Tλ (1.3)

Here we define the lower sesquilinear pairing as follows; Let φ̃ ∈ Γc(G; (G × Hξ) ⊗ DG) then for
suitable φ ∈ C∞c (G;Hξ) we can write φ̃ = φ⊗ dg. For ψ ∈ C∞(G;Hξ) we now set

(φ̃, ψ) :=

∫
G
〈φ(g), ψ(g)〉ξ dg.

Taking the dual of the map φ ⊗ dg 7→ 〈·, φ〉ξ ⊗ dg provides an isomorphism between
Γ∞c (G; (G×Hξ)⊗DG)∗ and Γ∞c (G; (G×H∗ξ )⊗DG)∗ = C−∞(G;Hξ). It is easily verified that under
this isomorphism the embedding ofC∞(G;Hξ) into Γ∞c (G; (G×Hξ)⊗DG)∗ via the map ψ 7→ ( · , ψ)
corresponds to the natural embedding of C∞(G;Hξ) into C−∞(G;Hξ).

Now we define the map Tλ : Γ∞c (G; (G × Hξ) ⊗ DG) → C∞(P : ξ : −λ). Let φ̃ = φ ⊗ dg ∈
Γ∞c (G; (G×Hξ)⊗DG). We set

Tλ(φ̃)(x) :=

∫
MAN

a−λ+ρξ(m)φ(xman) dmda dn for x ∈ G.

Since P is closed the set xP ∩ suppφ is compact hence the above integral expression is finite for every
x ∈ G. It is not difficult to check that the above expression defines a smooth function on G and that Tλ
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is continuous as a map into C∞(G;Hξ). We now check that Tλ does indeed land in C∞(P : ξ : −λ).
For this we recall from Proposition 1.33 that dm da dn defines a left invariant measure on P . We let
x ∈ G,m′ ∈M,a′ ∈ A and n′ ∈ N . For φ̃ = φ⊗ dg as above we have

Tλ(φ̃)(xm′a′n′) =

∫
MAN

a−λ+ρξ(m)φ(xm′a′n′man) dmda dn

=

∫
MAN

(a′−1a)−λ+ρξ(m′−1m)φ(xman) dmda dn

= aλ−ρξ(m′)−1

∫
MAN

a−λ+ρξ(m)φ(xman) dm da dn

= aλ−ρξ(m′)−1Tλ(φ̃)(x).

So we indeed have that Tλ(φ̃) ∈ C∞(P : ξ : −λ).
Now we prove the diagram in (1.3) is commutative. We let φ̃ = φ ⊗ dg be as above and let

ψ ∈ C∞(P : ξ : λ). We observe

(Tλ(φ̃), ψ) =

∫
K

〈
Tλ(φ̃)(k), ψ(k)

〉
ξ

=

∫
K

∫
MAN

〈
a−λ+ρξ(m)φ(kman), ψ(k)

〉
ξ

dm da dn dk

=

∫
K×MAN

〈φ(kman), ψ(kman)〉ξ · a
2ρ dk dmda dn.

The result of Proposition 1.34 yields that this equals∫
G
〈φ(g), ψ(g)〉ξ dg = (φ̃, ψ).

We conclude that the diagram in (1.3) is indeed commutative. Taking the dual of Tλ yields a continuous
linear map C−∞(P : ξ : λ) → Γ∞c (G; (G×Hξ)⊗DG)∗ ∼= C−∞(G;Hξ). This map we define to
be the embedding of C−∞(P : ξ : λ) into C−∞(G;Hξ). The fact that this map is an extension of
C∞(P : ξ : λ) ↪→ C∞(G;Hξ) follows directly from the fact that the diagram in (1.3) commutes.

What remains to be proved is that the extended map is injective. For this it is enough to prove
that Tλ is surjective. Let ψ ∈ C∞(P : ξ : −λ) be arbitrary. Let χ ∈ C∞c (AN) be such that∫
AN χ(an) da dn = 1. We define φ ∈ C∞c (G;Hξ) as φ(kan) = ψ(kan)χ(an). We claim that
Tλ(φ ⊗ dg) = ψ. Since both these functions have the same AN -transformations behaviour on the
right it is enough to show these functions coincide on K. We observe, for k ∈ K, that

Tλ(φ⊗ dg)(k) =

∫
MAN

aλ+ρξ(m)φ(kman) dmdadn

=

∫
MAN

aλ+ρξ(m)ψ(kman) · χ(an) dmda dn

=

∫
MAN

ψ(k) · χ(an) dmda dn

= ψ(k)

∫
AN

χ(an) da dn = ψ(k).

We conclude that Tλ is indeed surjective.

18



CHAPTER 1. PRELIMINARIES

The fact that the defined embedding is G-equivariant follows directly from the fact that
C∞(P : ξ : λ) ↪→ C∞(G;Hξ) is G-equivariant and that the fact C∞(P : ξ : λ) lies dense in
C−∞(P : ξ : λ). To see that the image of C−∞(P : ξ : λ) ↪→ C−∞(G;Hξ) is contained in the
subspace

{φ ∈ C−∞(G;Hξ) | Rmanφ = a−λ−ρξ(m)−1φ for all man ∈MAN}.

we observe that this subspace is closed in C−∞(G;Hξ) and that C∞(P : ξ : λ) is mapped into this
subspace. The statement now follows from again using the fact that C∞(P : ξ : λ) lies dense in
C−∞(P : ξ : λ). This completes the proof.

1.9 Infinitesimal Characters

In this section we briefly describe the infinitesimal character of a representation and in particular the in-
finitesimal character of the principal series representation. For this we consider g a complex semisimple
Lie algebra and h ⊂ g a Cartan subalgebra of g. We denote by Z(g) the center of U(g) which is defined
as Z(g) := {Z ∈ U(g) | [Z,X] = 0 for all X ∈ g}. A character of Z(g) is a homomorphism of unital
algebras Z(g)→ C.

Definition 1.43. Let (π, V ) be a Lie algebra representation of g. Suppose that Z(g) acts on V (viewed
as a U(g)-module) by scalars, i.e. there exists a character χ of Z(g) such that π(Z) = χ(Z) · I for all
Z ∈ Z(g). If this is the case we say the representation π has infinitesimal character χ.

It is a consequence of Dixmier’s Lemma that every irreducible representation of g has an infinitesi-
mal character (see [Kna96, Section V.4]).

We denote by R = R(g; a) the set of roots of g with respect to the Cartan subalgebra h. The
corresponding Weyl-group is denoted by W . We denote by R+ a choice of positive roots. We write
g+ for the sum of the positive root spaces and g− for the sum of negative root spaces. The root space
decomposition of g gives that

g = g− ⊕ h⊕ g+.

Using the Poincaré–Birkhoff–Witt Theorem (see [Kna96, Theorem 3.8]) we see that

U(g) = U(h)⊕ (g−U(g) + U(g)g+).

We denote by ′γ : Z(g) → U(h) the projection along this decomposition. Since h is abelian we can
canonically identify U(h) with S(h) so we can view this projection as a map ′γ : Z(g)→ S(h).

We denote by δ := 1
2

∑
α∈R+ α the half sum of all positive roots. The map τ : h→ S(h) defined by

τ(H) = H − δ(H) · 1 uniquely extends to a homomorphism τ : S(h)→ S(h). We define what is called
the Harish-Chandra map as follows

γ = τ ◦ ′γ : Z(g)→ S(h).

Although it is not strictly necessary for our current exposition we mention the following important result
by Harish-Chandra.

Theorem 1.44. The map γ maps Z(g) into S(h)W , the subspace of elements in S(h) fixed by Weyl-
group. As a map γ : Z(g)→ S(h)W the Harish-Chandra map is an algebra isomorphism. Furthermore,
this map is independent of our choice of positive rootsR+.
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For a proof see [Kna96, Theorem 5.44]. The space S(h) can be naturally identified with P (h∗),
the space of polynomials on h∗. For Z ∈ Z(g) and Λ ∈ h∗ we write γ(Z)(Λ) for the evalua-
tion of γ(Z), seen as an element in P (h∗), in the element Λ. For such an element Λ ∈ h∗ we set
χΛ : Z(g)→ C : Z 7→ γ(Z)(Λ) which defines a character of Z(g). The above theorem has the follow-
ing corollary.

Proposition 1.45. Every character of Z(g) is of the form χΛ for some Λ ∈ h∗.

For a proof see [Kna96, Theorem 5.62]. From this result it follows that if a g-representation (π, V )
has a infinitesimal character it is given by χΛ for a suitable Λ ∈ h∗. We will refer to this element Λ also
as the infinitesimal character of the representation.

It turns out that principal series representation has an infinitesimal character and this character can
be calculated from the representation ξ of M . Let G be a connected semisimple Lie group with finite
center and Lie algebra g. Let P = MAN be a minimal parabolic subgroup as introduced in Section 1.3
and let t ⊂ m be a θ-stable Cartan subalgebra of m. Then h = (t⊕ a)C is a Cartan subalgebra of gC.

First we consider the following lemma.

Lemma 1.46. Suppose (ξ,Hξ) is a finite-dimensional and irreducible representation of M . Then the
associated representation (ξ∗, Hξ) of m is also irreducible.

Proof. Denote by ZM the center of M . We begin by proving that M = ZMMe. We denote by ZG the
center of G. By [Kna96, Theorem 6.31] we have that ZG ⊂ K hence ZG ⊂ ZM . The adjoint map
yields an isomorphism Ad: G/ZG → Ad(G). It is readily checked that M/ZM ∼= Ad(M)/Ad(ZM )
hence we can pass to the adjoint group and it suffices prove that Ad(M)/Ad(ZM ) is connected. This
means that we can assume that G has trivial center in which case we have G ∼= Ad(G). The latter group
is the real form of the complex connected group Int(gC). From [Kna96, Theorem 7.53] it now follows
that a subgroup F ⊂ Ad(M) exists with F ⊂ Ad(ZM ) and Ad(M) = F Ad(Me). In particular we
find that Ad(M)/Ad(ZM ) is connected. We conclude that M = ZMMe.

Now we assume Hξ is irreducible as an M -module. Let V ⊂ Hξ be a subspace invariant under
ξ∗(m). Then V is also invariant under Me. Let m ∈ M arbitrary and write m = zm′ with z ∈ ZM and
m′ ∈Me. Because z ∈ ZM we have that ξ(z) is M -intertwining. Schur’s lemma now implies that ξ(z)
acts as a scalar on V . Hence V is invariant for both ξ(z) and ξ(m′). We conclude that V is invariant for
all ξ(m) with m ∈ M . Because Hξ was irreducible as an M -module we conclude V is either 0 or Hξ.
This proves that Hξ is irreducible as m-module.

Combined with the remark made after Definition 1.43 this lemma has as a consequence that if (ξ,Hξ)
is an irreducible representation ofM then the representation (ξ∗, Hξ) of m has an infinitesimal character
with respect to t.

Proposition 1.47. Suppose ξ is a finite-dimensional, unitary and irreducible representation of M . Let
Λ ∈ t∗C be the infinitesimal character of the representation ξ∗ of m with respect to t. Then for all λ ∈ a∗C
the representation IndGP (ξ ⊗ eλ ⊗ 1) has infinitesimal character Λ + λ with respect to (t⊕ a)C.

For a proof see [Kna86, Proposition 8.22].
In the case that G = SL(n,R) we have m = 0 so we have Λ = 0 for all ξ ∈ M̂ . The previous result

shows that in this case the infinitesimal character of IndGP (ξ ⊗ eλ ⊗ 1) is simply λ for all λ ∈ a∗C.
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1.9.1 Casimir element

Using the Killing form B of g we can identify a special element in Z(g) called the Casimir element. Let
(Xi)i be a basis of g. Denote by (X̃j)j the dual basis with respect to B, i.e. B(Xi, X̃j) = δij for all i, j.
Then the Casimir element is defined as

Ω =
∑
i,j

XiX̃j .

The Casimir element is contained in Z(g) and independent of the basis chosen (see [Kna96, Proposition
5.24]).

For sl(2,R) some straightforward computations yield that B is given by

B =

H X Y( )8 0 0 H
0 0 4 X
0 4 0 Y.

It now follows easily that the Casimir element of sl(2,R) is given by

1

8
H2 +

1

4
XY +

1

4
Y X.

For computational convenience later on we will work with a rescaled Casimir element (this corresponds
to a rescaling of the Killing form). For sl(2,R) we define Ω := H2 + 2XY + 2Y X and we will
refer to this element of Z(sl(2,R)) as the Casimir element of sl(2,R). For sl(2,R) we have that
Z(sl(2,R)) = C[Ω] (see [Kna96, p.249]). This means that a character of Z(sl(2,R)) is completely
determined by its value on Ω.

As remarked above in the case G = SL(2,R) the infinitesimal character of the principal series
representation IndGP (ξ ⊗ λ⊗ 1) is given by λ. We will now determine χλ(Ω). We observe that

Ω = H2 + 2XY + 2Y X = H2 + 2H + 4Y X.

Since Y X ∈ U(g)g+ we see that ′γ(Ω) = H2 + 2H . We haveR+(g;m⊕ a) = Σ+(g; a) = {α} hence
δ = 1

2α = ρ. Using this we see

γ(Ω) = (H − ρ(H))2 + 2(H − ρ(H)) = (H − 1)2 + 2(H − 1) = H2 − 1.

As a summary of the above discussion we have the following result.

Proposition 1.48. IfG = SL(2,R) the Casimir element Ω = H2+2XY +2Y X acts onC∞(P : ξ : λ)
by the scalar λ(H)2 − 1.
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Chapter 2

Whittaker vectors

In this chapter we begin our study of the so called Whittaker vectors and the Whittaker coefficient. In
Section 2.1 we define the concept of Whittaker vectors and we will dedicate the four following sections
to studying the space of Whittaker vectors. The space of Whittaker vectors is completely understood
and can be given a explicit parametrization. This will be the main result of the first part of this chapter.
The results in this first part will be proved for connected semisimple Lie groups with finite center.
In the second part of this chapter, beginning with Section 2.6, we start the study of the Whittaker coeffi-
cient. This function on G, defined as a matrix coefficient of the principal series representation, will play
a vital role in Chapter 3 when we introduce the Whittaker–Fourier transformation. The definition of the
Whittaker coefficient will make use of the description of the space of Whittaker vectors we obtain in the
first part of this chapter. Our main objective in the second part of this chapter is to derive several esti-
mates on this function that will be vital in our discussion in Chapter 3. Our discussion of the Whittaker
coefficient will be focussed on the case of G = SL(2,R).

Throughout this chapterGwill be be a connected semisimple Lie group with finite center and denote
by g its Lie algebra. We retain the notation introduced in the previous chapter.

2.1 Whittaker vectors

In this section we introduce the concept of Whittaker vectors in a principal series representation. These
are elements of this representation that transform according to a unitary character of N . We begin by
specifying what a character on N is.

Definition 2.1. A unitary character on N is a group homomorphism N → S1.

We let (ξ,Hξ) be a unitary representation of M and let λ ∈ a∗C. Denote by χ a choice of unitary
character on N . Whittaker vectors are elements of the principal series representation, IndGP (ξ⊗ eλ⊗ 1),
that transform according to the character χ when acted on by element of N , i.e.

πξ,λ(n)φ = χ(n)φ for all n ∈ N. (2.1)

It turns out however that the representation space C(P : ξ : λ) of continuous functions is, in general, not
‘rich’ enough and that only for specific choices of λ nonzero elements satisfying (2.1) exist (see Remark
2.12). This is why we turn to generalized sections as described in 1.8.

Definition 2.2. A Whittaker vector is an element φ ∈ C−∞(P : ξ : λ) that transforms under N as in
(2.1). The space of Whittaker vectors is denoted by

C−∞(P : ξ : λ)N,χ = {φ ∈ C−∞(P : ξ : λ) | πξ,λ(n)φ = χ(n)φ for all n ∈ N}.
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Remark 2.3: These Whittaker vectors are named after the mathematician E. T. Whittaker. In the early
1900s he studied functions on R satisfying a certain differential equation. The reason for naming these
elements after him is that when G = SL(2,R) several functions related to Whittaker vectors (more
specifically the Whittaker coefficient) satisfy this Whittaker differential equation. In Section 2.8 we will
study the relation between Whittaker vectors and the Whittaker differential equation.

Remark 2.4: The notation we introduced for the space of Whittaker vectors is an example of a more
general piece of notation that we will use. If (π, V ) is a representation of G (or possibly only a repre-
sentation of N ) then we denote

V N,χ := {v ∈ V | π(n)v = χ(n)v for all n ∈ N}.

As we will see later the space of Whittaker vectors is very well-behaved whenever the unitary char-
acter χ is sufficiently non-trivial. To make this precise we introduce the notion of a regular character.

Definition 2.5. We call a unitary character χ : N → S1 regular if for all α ∈ ∆ we have dχ(g−α) 6= 0.

When χ is regular the space of Whittaker vectors is very well-behaved and well understood. In fact
we have that when χ is regular the space of Whittaker vectors is, in a natural way, isomorphic to Hξ,
the representation space of ξ. For a precise statement of this result we must defer to Section 2.4 (see
Theorem 2.10) because we have not introduced the necessary notation yet.

We have split up the proof of this result into several pieces and we will dedicate the next four
sections to it. For the benefit of the reader we will first give a quick overview of the process. First we
prove that when restricted to the the set NP , the big Bruhat cell, in G the Whittaker vectors are in fact
smooth functions (see Section 2.2). As a consequence the Whittaker vectors are on the big Bruhat cell
completely determined by their value in the point e. The second step will be proving that the values of
a Whittaker vector on this big Bruhat cell in fact determine the vector on the whole of G. This is done
by showing that Whittaker vectors supported in the complement of the big Bruhat cell must vanish (see
Section 2.3). As a result we have that the Whittaker vectors are completely determined by their value at
the point e. This implies that the evaluation map eve : C−∞(P : ξ : λ)N,χ → Hξ is injective. The proof
is concluded by showing that a family of maps j(P : ξ : λ) : Hξ → C−∞(P : ξ : λ)N,χ exists which
provides an inverse to eve. A special feature of this family of maps is that it depends holomorphically
on λ. This gives us a way to holomorphically parametrize the space of Whittaker vectors.

2.2 Whittaker vectors on the big Bruhat cell

In this section we let χ be a, not necessarily regular, character of N . We consider the set B := NP
which is, by Proposition 1.22, an open and dense set in G. As discussed in the proof of Proposition 1.22
the set B is a translate of the Bruhat cell that corresponds to the longest element of the Weyl group. We
will call B the big Bruhat cell of G (although, as we remarked, it is actually a translate of a Bruhat cell).

We note that B is both a left N -invariant and a right P -invariant set. The right P -invariance means
that we can consider the space C∞(B : P : ξ : λ) of functions φ ∈ C∞(B;Hξ) transforming as

φ(xman) = a−λ−ρξ(m)−1φ(x) for all x ∈ B and man ∈MAN. (2.2)

The restriction map to B yields a continuous linear map r : C∞(P : ξ : λ)→ C∞(B : P : ξ : λ). This
map is N -intertwining.

We define the generalized vectors on B, analogues to the definitions of Section 1.8, as

C−∞(B : P : ξ : λ) := C∞c (B : P : ξ : −λ)∗.
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Restricting to B gives a continuous linear map r : C−∞(P : ξ : λ)→ C−∞(B : P : ξ : λ). This map
extends r : C∞(P : ξ : λ) → C∞(B : P : ξ : λ) so in particular is also N -intertwining. Be-
cause B is left N -invariant we can consider the space Whittaker vectors on B which we denote by
C−∞(B : P : ξ : λ)N,χ. Since the map r is N intertwining it sends Whittaker vectors to Whittaker
vectors.

A Whittaker vector φ on B satisfies two transformation properties, namely (2.1) and (2.2). Taking
derivatives on both sides of these identities yields that φ satisfies

πξ,λ(Y )φ = dχ(Y )φ for all Y ∈ n

and
RW+H+Xφ = −[dξ(W ) + (λ+ ρ)(H)]φ for all W ∈ m, H ∈ a, X ∈ n.

We see that φ is a solution to a certain system of differential equations. The form of this system of
differential equations suggests that it might be elliptic and this, by elliptic regularity, suggests that φ is
in fact smooth on B. This indeed turns out to be the case.

Proposition 2.6. On the big Bruhat cell Whittaker vectors are smooth, i.e. we have
C−∞(B : P : ξ : λ)N,χ ⊂ C∞(B : P : ξ : λ).

As discussed above the smoothness of these vectors will follow from elliptic regularity. For the proof
of this proposition we recall the following result.

Theorem 2.7. Let E be a complex vector bundle over a manifold M . Assume that P : Γ∞(E) →
Γ∞(E) is an elliptic differential operator. Then for any u ∈ Γ−∞(E) we have

sing suppu = sing suppPu.

The proof of this theorem can be found in [Tay81, Theorem 1.4, p.61]. Here we note that an elliptic
differential operator is in fact a properly supported elliptic pseudo-differential operator.

Using this we can give a proof of Proposition 2.6.

Proof of Proposition 2.6. In this proof we use the notation σ(man) = aλ+ρξ(m) for the representation
of P on Hξ as introduced in Section 1.6.2.

Using the same arguments as in the proof of Proposition 1.42 we see that C−∞(B : P : ξ : λ)
embeds G-equivariantly into C−∞(B;Hξ). The image of this embedding is contained in the subspace
of elements φ ∈ C−∞(B;Hξ) that satisfy

Rmanφ = σ(man)−1φ for all man ∈MAN. (2.3)

Using that the embedding is N -equivariant we see that the image of the space C−∞(B : P : ξ : λ)N,χ

is contained in C−∞(B;Hξ)
N,χ. Hence we see that it is enough to show that any φ ∈ C−∞(B;Hξ)

satisfying both (2.3) and
Lnφ = χ(n)φ for all n ∈ N (2.4)

is in fact smooth.
Let Y1, ..., Ys be a basis of n and let X1, ..., Xr be a basis of m⊕ a⊕n. On B we define the operator

P =
s∑
i=1

(LYi − dχ(Yi))
2 +

r∑
j=1

(RXj + dσ(Xj))
2.
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Here L and R denote the left and right regular representation of G on C∞(G;Hξ) respectively. This P
is in fact a differential operator onB. A straightforward calculation reveals that at the point e the symbol
of P is given by, for η ∈ T ∗eG and v ∈ Hξ,

σ2(P)(η, v) = −

 s∑
i=1

η(Yi)
2 +

r∑
j=1

η(Xj)
2

 · v.
Since (Y1, ..., Ys, X1, ..., Xr) is a basis of g = TeG we see that T ∗eG 3 η 6= 0 implies σ2(P)(η, ·) 6= 0.
Since ellipticity is an open condition we conclude thatP is an elliptic operator on an open neighbourhood
U of e.

Now we let φ ∈ C−∞(G;Hξ) be an element that satisfies both (2.3) and (2.4). Taking derivatives
on both sides of these equations yields that φ satisfies [LY − dχ(Y )]φ = 0 and [RX + dσ(X)]φ = 0
for all Y ∈ n and X ∈ m ⊕ a ⊕ n. Hence we have, looking at the definition of P , that φ ∈ kerP .
Invoking Theorem 2.7 we see that on U the distribution φ is smooth. To see φ is actually smooth on
the whole of B we let nman ∈ B = NMAN arbitrary. The transformation properties of φ imply that
φ = χ(n)σ(man)−1Ln−1Rmanφ. Using this we observe that

φ|nUman = χ(n)σ(man)−1φ|U ◦R(man)−1 ◦ Ln.

From the above discussion we know that the right hand side of this expression is a distribution that is
smooth on nUman. We conclude that φ is smooth on the whole of B.

2.2.1 Evaluation map

From Proposition 2.6 we conclude that if we let φ ∈ C−∞(P : ξ : λ)N,χ and restrict to B then
φ|B ∈ C∞(B : P : ξ : λ). In particular this means that the expression φ(e) has a well-defined value
(since e ∈ B). Hence

eve : C−∞(P : ξ : λ)N,χ → Hξ : φ 7→ φ(e)

is a well-defined continuous linear map. The aim of the next section is to show that this map is in fact
injective if χ is regular. In preparation for this we note that the smoothness of the Whittaker vectors on
the big Bruhat cell implies that a Whittaker vector is completely determined on B by its value at the
point e. To make this precise we observe that for φ ∈ C∞(B : P : ξ : λ)N,χ we have

φ(nman) = (πξ,λ(n−1)φ)(man) = χ(n)−1a−λ−ρξ(m)−1φ(e) for all nman ∈ B

We conclude that the evaluation map φ 7→ φ(e) is injective as a map from C−∞(B : P : ξ : λ)N,χ to
Hξ.

2.3 Whittaker vectors vanishing on the big Bruhat cell

In this section we show that the evaluation map eve, introduced in the previous section, is in fact injec-
tive. More precisely we will show that the following holds.

Proposition 2.8. If χ is regular then the evaluation map eve : C−∞(P : ξ : λ)N,χ → Hξ is injective.

This evaluation map can be seen as a composition of the restriction map C−∞(P : ξ : λ)N,χ →
C−∞(B : P : ξ : λ)N,χ and the evaluation map C−∞(B : P : ξ : λ)N,χ → Hξ. From our discussion in
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the previous section we know that this second map is in fact injective. Hence the kernel of the evaluation
map eve is equal to kernel of the restriction map, i.e.

ker eve = {φ ∈ C−∞(P : ξ : λ)N,χ | φ|B = 0}.

The following remarkable result, originally obtained by Harish-Chandra, implies immediately that this
kernel equals {0}. Hence it immediately implies the result of Proposition 2.8.

Theorem 2.9. Assume that χ is regular. A Whittaker vector that vanishes on the big Bruhat cell van-
ishes identically on the whole of G.

Proof. For the proof of this theorem we refer to the work of Kolk and Varadarajan (see [KV96]). What
they prove in the cited reference is the following. Suppose T ∈ C−∞(G) satisfies

RnT = T (n ∈ N) and LnT = χ(n)T (n ∈ N). (2.5)

Then if T |B = 0 we have T = 0. Note that their formulation of the result the roles of N and N are
reversed.

In order to use this result in our set up we use Proposition 1.42 to see that any φ ∈ C−∞(P : ξ :

λ)N,χ can be seen as an element of C−∞(G;Hξ). Using the isomorphism C−∞(G;Hξ) ∼= C−∞(G)⊗
Hξ we can write φ = T1 ⊗ v1 + · · · + Tn ⊗ vn with Ti ∈ C−∞(G) and (vi)

n
i=1 a basis of Hξ. The

fact that φ satisfies (2.5) implies that every Ti also satisfies (2.5). Furthermore, the assumption φ|B = 0
implies that Ti|B = 0 for every i = 1, ..., n. Now the result of Kolk and Varadarajan implies that all Ti’s
vanish. From this we conclude that φ vanishes. This proves the result.

2.4 The j(P : ξ : λ) function

In this section we introduce the family of functions j(P : ξ : λ) : Hξ → C−∞(P : ξ : λ)N,χ, depending
on ξ and λ, which will provide an inverse to eve. Initially j(P : ξ : λ) will be defined only for λ in a
particular subset of a∗C. We will use that on this subset the family of maps depends on λ in a holomorphic
fashion to obtain a holomorphic extension of this family to the whole of a∗C. The notion of holomorphic
dependence on λ will be made precise later in this section. As a consequence of the existence of this
family of maps and the results of the previous sections we will have the following result.

Theorem 2.10. Suppose χ is regular. The map eve : C−∞(P : ξ : λ)N,χ → Hξ is a linear isomorphism
for every ξ ∈ M̂ and λ ∈ a∗C.

For v ∈ Hξ we denote, if it exists, by j(P : ξ : λ : v) the element in C−∞(P : ξ : λ)N,χ satisfying
j(P : ξ : λ : v)(e) = v. We should note that as of yet the existence of this object has not been
established. We aim to show that this element exists for all choices of v and λ so that we obtain a map
j(P : ξ : λ) : v 7→ j(P : ξ : λ : v) which satisfies eve ◦j(P : ξ : λ) = idHξ . It is clear from our
discussion in Section 2.2.1 that when restricted to B the function j(P : ξ : λ : v) must satisfy

j(P : ξ : λ : v)(nman) = χ(n)−1a−λ−ρξ(m)−1v (2.6)

for all n ∈ N and man ∈MAN .
For a moment we fix ξ ∈ M̂ , λ ∈ a∗C. Guided by the above observation we define for v ∈ Hξ the

function j̃v : G→ Hξ as

j̃v(x) =

{
χ(n)−1a−λ−ρξ(m)−1v if x = nman ∈ B

0 if x ∈ G \B.
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Looking at this definition we easily see that Lnj̃v = χ(n)j̃v holds for all n ∈ N . So if j̃v is a continuous
function on G then we have j̃v ∈ C(P : ξ : λ)N,χ. The next proposition shows this happens only for
certain λ ∈ a∗C. The proof given here is inspired by the proof of a similar result in [vdB88, Proposition
5.6].

Proposition 2.11. Define the open subset A of a∗C as

A := {λ ∈ a∗C | 〈Reλ+ ρ, α〉 < 0 for all α ∈ ∆}.

We have that j̃v, as defined above, is a continuous function on G if and only if λ ∈ A.

Proof. First we assume λ ∈ A. We fix a v ∈ Hξ. It suffices to show that limi→∞ j̃v(xi) = 0 for
every sequence (xi)i in B converging to a point x ∈ ∂B = G \ B. Let (xi)i in B be such a sequence
converging to x ∈ G \ B. Then for certain ni ∈ N,mi ∈ M,ai ∈ A,ni ∈ N we have xi = nimiaini.
Looking at the definition of j̃v we see that∥∥∥j̃v(xi)∥∥∥ =

∥∥∥χ(ni)
−1a−λ−ρi ξ(mi)

−1v
∥∥∥ = a−Reλ−ρ

i ‖v‖ .

We claim that a−Reλ−ρ
i → 0 for i → ∞. The sequence (m−1

i nimi)i is contained in N because M
normalizes N . This sequence is not contained in any compact subset of N . To see this we suppose
the contrary is true, so let C ⊂ N compact such that (m−1

i nimi)i ⊂ C. Then ni ∈ MCM for all i.
Since M is compact the set MCM is also compact. Hence by passing to a subsequence we can assume
ni converges to an n ∈ N . Then we have limi→∞miaini = n−1x. Since P = MAN is a closed
subgroup of G this yields n−1x ∈ P , however this is in contradiction with x 6∈ B = NP . We conclude
that indeed m−1

i nimi is not contained in any compact subset of N . From this and Proposition 1.16 it
follows that H(m−1

i nimi) ∈
∑

α∈Σ+ R≥0 · Hα for all i and
∥∥H(m−1

i nimi)
∥∥ → ∞ for i → ∞. We

observe that
H(xi) = H(nimiaini) = H(nimi) + log(ai).

Hence log(ai) = H(xi) − H(nimi). By continuity of H we have limi→∞H(xi) = H(x). So if we
combine this with the above we find that an elementR ∈ R exists such that log(ai) ∈

∑
α∈Σ+(−∞, R) ·

Hα for all i and ‖log(ai)‖ → ∞ for i → ∞. Per assumption we have (−Reλ − ρ)(Hα) > 0 for all
α ∈ ∆ which implies that (−Reλ − ρ) log(ai) → −∞ for i → ∞. This proves that our claim is true
and as a result we have

∥∥∥j̃v(xi)∥∥∥→ 0 for i→∞.

To show that the converse holds we assume j̃v is continuous. We fix an α ∈ ∆ and consider a
sequence (ti)i ⊂ [0,∞) with ti → ∞ for i → ∞. Define the sequence ai := exp(−tiHα) in A.
Because H maps N surjectively onto

∑
α∈Σ+ R≥0 ·Hα (see Proposition 1.16) we can find a sequence

(ni)i in N with H(ni) = tiHα hence H(niai) = 0 for all i ∈ N. We set ni := n(niai) ∈ N for i ∈ N .
We now consider the sequence (xi)i in B defined by xi := niain

−1
i . We observe that

a(xi) = expH(niai) = e and n(xi) = n(niai)n
−1
i = nin

−1
i = e

for all i ∈ N. From this it follows that the sequence (xi)i is contained in K. Hence by passing to a
subsequence we can assume this sequence converges to an element x ∈ K. Is is clear that the sequence
(xi)i is not contained in any compact subset of B hence we must have x ∈ G \ B. Since we assumed
j̃v to be continuous we must have limi→∞ j̃v(xi) = j̃v(x) = 0. Per construction we have

∥∥∥j̃v(xi)∥∥∥ =

eti(Reλ+ρ)(Hα). We see that we must have eti(Reλ+ρ)(Hα) → 0 for i → ∞ hence 〈Reλ+ ρ, α〉 =
(Reλ+ ρ)(Hα) < 0 must hold. Since α ∈ ∆ was arbitrary we conclude that λ ∈ A.
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As a result of the above proposition we have that for λ ∈ A and all v ∈ Hξ the element
j(P : ξ : λ : v) exists and is equal to j̃v. This means in particular that on A we can view the family
of maps j(P : ξ : λ) as functions into C(P : ξ : λ).

Remark 2.12: The result of this proposition confirms our earlier claim that the space C(P : ξ : λ) of
continuous functions is not rich enough to contain Whittaker vectors for every λ ∈ a∗C. We know that
for any λ ∈ a∗C a Whittaker vector restricted to B is given by the expression in (2.6). The argument in
the proof of Proposition 2.11 now shows that a Whittaker vector is continuous on the whole of G if and
only if λ ∈ A.

We will now argue that on A the family of functions j(P : ξ : λ) depends in a holomorphic fashion
on λ. First we make precise what we mean by a vector-valued holomorphic function.

Definition 2.13. Let Ω ⊂ Cn be an open subset and let V be a complex Banach space. A func-
tion f : Ω → V is called holomorphic if it is continuously differentiable and its derivatives satisfy the
Cauchy–Riemann equations, i.e. if (x1, y1, ..., xn, yn) is the standard real basis of Cn we have

∂f

∂xj
= −i ∂f

∂yj
for all j = 1, ..., n.

Suppose W is a finite-dimensional complex vector space and φ : Cn →W a choice of basis. If Ω′ ⊂W
is open we say f : Ω′ → V is a holomorphic map if φ∗f is holomorphic as a map from φ−1(Ω′) ⊂ Cn
to V .

It is easily seen that this definition is independent of the choice of basis for W .

Lemma 2.14. Let V, V ′ be complex Banach spaces and W a finite-dimensional complex vector space.
Let A : V → V ′ be a continuous linear map. If f : W → V is holomorphic then A ◦ f : W → V is also
holomorphic.

Proof. This is a direct consequence of the fact that D(A ◦ f) = A ◦Df .

Before we can prove that j(P : ξ : λ) depends holomorphically on λ we first prove a more general
lemma. If M is a manifold then we denote by Cb(M) the space consisting of all bounded continuous
functions on M . We equip this space with the supremum norm.

Lemma 2.15. LetM be a manifold and let Ω ⊂ Cn be an open subset. Furthermore, let f : M×Ω→ C
be a bounded and continuous function. If f(m, z) is holomorphic in z for every fixed m ∈ M then the
map F : Ω→ Cb(M) : z 7→ f(·, z) is holomorphic.

The proof of this lemma was communicated to me by E.P. van den Ban.

Proof. We can, without loss of generality, assume that Ω is equal to the open polydisk D(0; 1)n. Fur-
thermore it suffices to show that F is holomorphic on the polydisk D(0; r)n for some r ∈ (0, 1). We
pick an R satisfying r < R < 1. Since f is holomorphic in the second variable we have by the Cauchy
integral formula that

F (z)(m) =
1

(2πi)n

∫
|ζ1|=R

· · ·
∫
|ζn|=R

f(m, ζ)

(ζ1 − z1) · · · (ζn − zn)
dζ1 · · · dζn.

for z ∈ D(0; r)n and m ∈ M . Since f is bounded on M × Ω we see that this integral converges
as a Cb(M)-valued integral and defines a continuous function D(0; r)n → Cb(M). We denote by
(x1, y1, ..., xn, yn) the standard real basis of Cn. By differentiating under the integral sign we see that
the partial derivatives ∂xiF and ∂yiF exist and are continuous. Furthermore, we see that they satisfy the
Cauchy–Riemann equations. We conclude that F : Ω→ Cb(M) is indeed holomorphic.
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We now apply this lemma to show that j(P : ξ : λ) depends on λ in a holomorphic fashion on A.
We should note that we use Proposition 1.30 to identity C(P : ξ : λ) and C(K : M : ξ) in order to view
j(P : ξ : λ) as a map into the latter space. This is necessary because the space C(K : M : ξ) does not
depend on λ whereas C(P : ξ : λ) does.

Proposition 2.16. For v ∈ Hξ fixed the function λ 7→ j(P : ξ : λ : v) is holomorphic as a map
A → C(K : M : ξ).

Proof. We denote U = K ∩B. We leave it to the reader to verify that U = k(N)M and that N ×M →
U : (n,m) 7→ k(n)m is a diffeomorphism. Let λ ∈ A and v ∈ Hξ. Using the transformation properties
of j(P : ξ : λ : v) we have for k(n)m ∈ U that

j(P : ξ : λ : v)(k(n)m) = j(P : ξ : λ : v)(n(a(n)n(n))−1m)

= j(P : ξ : λ : v)(nma(n)−1n)

= χ(n)−1e(λ+ρ)H(n)ξ(m)−1v.

Here n is some element in N of which the precise value is not important. For k ∈ K \ U we have
j(P : ξ : λ : v)(k) = 0. We first study the λ dependent part of this expression, i.e. e(λ+ρ)H(n),
separately.

We define f : K ×A → C as

f(k, λ) =

{
e(λ+ρ)H(n) if k = k(n)m ∈ U

0 if k ∈ K \ U.

We will show that λ 7→ f(·, λ) is a holomorphic map from A into C(K). For this we will apply the
result of Lemma 2.15. The simple roots ∆ = {α1, ..., αn} form a basis of a∗C. Let (β1, ..., βn) be the
basis of a∗C dual to the former basis with respect to 〈·, ·〉. We denote by z = (z1, ..., zn) the coordinates
on a∗C with respect to this latter basis. Let (cj)j be such that ρ = c1β1 + · · ·+ cnβn. In these coordinates
f is given by

f(k(n)m, z) = e[(z1+c1)β1+···+(zn+cn)βn]H(n) =
n∏
j=1

e(zj+cj)βj(H(n))

for k(n)m ∈ U . We see from this expression that z 7→ f(k, z) is holomorphic for fixed k ∈ K. It is
straightforward to check that in these coordinates on a∗C the set A corresponds to

Ã := {z ∈ Cn | zj + cj < 0 for all j = 1, ..., n}.

By Proposition 1.16 we have that βj(H(n)) ≥ 0 for every n ∈ N and j = 1, ..., n (here we use that if
H ∈ a thenH = β1(H)Hα1 +· · ·+βn(H)Hαn). We conclude that e(zj+cj)βj(H(n)) ≤ 1 for j = 1, ..., n
if n ∈ N and z ∈ Ã. Hence the function f is uniformly bounded on K × Ã. It remains to check that f
defines a continuous function on K × Ã. From the above expression it is clear that f is continuous on
U × Ã. So in order to prove that f is continuous on the whole space it is enough to show that if (ki, zi)i
is a sequence in U × Ã converging to a point in (K \ U)× Ã then limi→∞ f(ki, zi) = 0. This follows
from similar arguments as used in the proof of Proposition 2.11. We leave it to the reader to verify this.
We are now able to apply Lemma 2.15 and we obtain that z 7→ f(·, z) is a holomorphic map from Ã
into C(K). From this we conclude that λ 7→ f(·, λ) is a holomorphic map from A to C(K).

We now consider the space F := {g ∈ C(K) | g|K\U ≡ 0} which is a closed subspace of C(K).
We see from the above discussion that λ 7→ f(·, λ) maps into F . Since F is a closed subspace this means
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that we can view this function as a holomorphic map into F . Consider the map Φ: F → C(K : M : ξ)
defined as

Φ(g)(k) =

{
g(k) · χ(n)−1ξ(m)−1v if k = k(n)m ∈ U

0 if k ∈ K \ U.

It is easy to check that Φ defines a continuous map. From the expression for j(P : ξ : λ : v) derived
above we see that the map λ 7→ j(P : ξ : λ : v) coincides with the map λ 7→ f(·, λ) composed with the
linear map Φ. Lemma 2.14 now implies that λ 7→ j(P : ξ : λ : v) is indeed a holomorphic map from A
to C(K : M : ξ).

2.5 Holomorphic continuation of j(P : ξ : λ)

In the previous section we constructed a holomorphic family of functions j(P : ξ : λ), for λ ∈ A, that
is inverse to eve. In order to obtain such a family for all λ ∈ a∗C we extend the domain of definition by
constructing a holomorphic extension.

As observed in Remark 2.12 it is not possible to extend j(P : ξ : λ) to the whole of a∗C as a map
into C(P : ξ : λ). Instead we view j(P : ξ : λ) as a map into C−∞(P : ξ : λ) by using the natural
embedding of C(P : ξ : λ) into this space. Because the space of generalized sections is not a Banach
space we first need to define what we mean by a holomorphic map into C−∞(P : ξ : λ).

For k ∈ N we denote by C−∞k (K : M : ξ) the space of generalized vectors on K of order at
most k. This space can be realised as the dual of the Banach space Ck(K : M : ξ) (which equals, as
one would expect, C(K : M : ξ) ∩ Ck(K;Hξ)). Hence C−∞k (K : M : ξ) is also a Banach space.
We have C−∞(K : M : ξ) = ∪k∈NC−∞k (K : M : ξ). It turns out that the inductive limit topology
on C−∞(K : M : ξ) obtained from this decomposition coincides with the strong dual topology. This
follows from [Kom67, Theorem 11] and the observation that the embeddings Ck+1(K : M : ξ) ↪→
Ck(K : M : ξ) are compact.

Definition 2.17. Let W be a finite-dimensional complex vector space and Ω ⊂ W an open subset. We
say f : Ω→ C−∞(K : M : ξ) is a holomorphic function if for every z ∈ Ω a neighbourhood U ⊂ Ω of
z and a k ≥ 0 exists such that f maps U into C−∞k (K : M : ξ) and as a map f : U → C−∞k (K : M : ξ)
is holomorphic in the sense of Definition 2.13.

We now say a map into C−∞(P : ξ : λ) is holomorphic if it is holomorphic viewed as a map into
C−∞(K : M : ξ) (see remark made after Definition 1.41).

In this section we will prove the following result.

Proposition 2.18. Assume χ is regular and let v ∈ Hξ. As a map into C−∞(K : M : ξ) the function
λ 7→ j(P : ξ : λ : v), initially defined on A, can be extended holomorphically to the whole of a∗C. For
every λ ∈ a∗C the map j(P : ξ : λ) maps Hξ bijectively into C−∞(P : ξ : λ)N,χ. Furthermore, the
identity

eve ◦j(P : ξ : λ) = idHξ

holds for every λ ∈ a∗C.

We should note that this proposition immediately implies the result of Theorem 2.10. Our approach
for the proof of this result was suggested by E.P. van den Ban. We mimic the strategy used in the proof
of a very similar result in the context of H-fixed vectors as presented in [vdB88]. The proof will make
use of a technical tool called the standard intertwining operator which we will introduce first.
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2.5.1 The standard intertwining operator

In this section we introduce the (standard) intertwining operator. We cannot treat the theory of this
operator in full detail in the scope of this text. We will give a brief statement of the facts needed for the
proof of Proposition 2.18 and refer to the literature (more specifically [VW90]) for the proofs and full
details.

We formally define the intertwining operator A(P : P : ξ : λ) : C∞(P : ξ : λ)→ C∞(P : ξ : λ) as

[A(P : P : ξ : λ)f ](x) :=

∫
N
f(xn) dn for x ∈ G. (2.7)

A priori it is not clear whether this integral is finite for all f ∈ C(P : ξ : λ). The next proposition shows
that this is only the case on a particular region in a∗C.

Proposition 2.19. There exists a c ∈ R such that for λ ∈ {λ ∈ a∗C | 〈Reλ, α〉 > R for all α ∈ Σ+}
the integral in (2.7) converges absolutely for any f ∈ C∞(P : ξ : λ). For fixed λ in this region the map
A(P : P : ξ : λ) : C∞(P : ξ : λ) → C∞(P : ξ : λ) is continuous. For fixed f ∈ C∞(P : ξ : λ) the
function λ 7→ A(P : P : ξ : λ)f is holomorphic as a map into C∞(K : M : ξ).

Proof. For the proof of this result we refer to [VW90, Lemma 1.2] and [VW90, Lemma 1.3]. The
results in this paper are formulated for real reductive groups with the additional property that Ad(G)
maps into the identity component of Aut(gC). We refer to [Wal88, Lemma 2.1.3] for a proof that a
connected semisimple Lie group with finite center is in fact a real reductive group. Since G is assumed
to be connected we immediately have that Ad(G) is contained in the identity component of Aut(gC).
We conclude that we are indeed free to use the results of [VW90].

What remains to be checked is that A(P : P : ξ : λ) maps into C∞(P : ξ : λ). Suppose λ ∈ a∗C
satisfies 〈Reλ, α〉 > 0 for all α ∈ Σ+. For f ∈ C∞(P : ξ : λ), x ∈ G and man ∈MAN we observe

[A(P : P : ξ : λ)f ](xman) =

∫
N
f(xmann′) dn′

=

∫
N
f(xman′) dn′

=

∫
N
f(x(ma)n′(ma)−1ma) dn′

= a−λ−ρξ(m)−1

∫
N
f(x(ma)n′(ma)−1) dn′

By our above discussion we know these integrals are absolutely convergent. By similar arguments as
used in the proof of Proposition 1.39 we have C∗m dn = |det Ad(m)|n|dn. Because M is compact the
character m 7→ |det Ad(m)|n| is equal to 1 for all m ∈ M . Hence C∗m dn = dn. We use this and the
result of Proposition 1.39 to make the substitution of variables (ma)n′(ma)−1 7→ n′. We find

[A(P : P : ξ : λ)f ](x) = a−λ−ρa2ρξ(m)−1

∫
N
f(xn′) dn′

= a−λ−ρP ξ(m)−1

∫
N
f(xn′) dn′.

Here used the notation ρP =
∑

α∈−Σ+ dim(gα)α for the element as in Definition 1.28 associated to the
choice of positive roots −Σ+. We conclude that indeed A(P : P : ξ : λ)f ∈ C∞(P : ξ : λ).
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For λ ∈ a∗C in the region where the integral expression for the intertwining operator converges we
clearly have

πP ,ξ,λ(g) ◦A(P : P : ξ : λ) = A(P : P : ξ : λ) ◦ πP,ξ,λ(g) for all g ∈ G. (2.8)

Here we denoted πP,ξ,λ and πP ,ξ,λ the principal series representations for P and P respectively.
As announced earlier we will extend the domain of definition for the intertwining operator to the

whole of a∗C. However it turns out that this can not be done holomorphically but only meromorphically.

Definition 2.20. Suppose W is a finite-dimensional complex vector space and V is either a complex
Banach space or the space of generalized vectors C−∞(K : M : ξ). Let Ω ⊂W be an open subset. We
say that a (densely defined) function f : Ω → V is meromorphic if for every z ∈ Ω a neighbourhood
U ⊂ Ω of z and a nonzero holomorphic function φ : U → C exists such that φf : U → V is holomorphic
in the sense of Definition 2.13 or Definition 2.17.

Proposition 2.21. Let f ∈ C∞(P : ξ : λ). As a mapping into C∞(K : M : ξ) the function λ 7→
A(P : P : ξ : λ)f , initially defined on {λ ∈ a∗C | 〈Reλ, α〉 > c for all α ∈ Σ+}, can be extended
meromorphically to the whole of a∗C.

For the proof of this proposition we refer to [VW90, Theorem 1.6].
We observe that both sides of the identity in (2.8) depend meromorphically on λ. Since we know this

identity holds on an open subset of a∗C we conclude that it must hold for all λ such that A(P : P : ξ : λ)
is defined.

If V and W are Banach spaces then we denote by B(V,W ) the Banach space of bounded linear
maps from V to W .

Proposition 2.22. Let R ∈ R and denote AR := {λ ∈ a∗C | 〈Reλ, α〉 > R for all α ∈ Σ+}. There
exist constants k and N in N and a polynomial q : a∗C → C such that

(1) For every f ∈ C∞(K : M : ξ) the map λ 7→ q(λ)A(P : P : ξ : λ)(f) is holomorphic on AR as a
map into C∞(K : M : ξ).

(2) For every l ∈ N there exists a C > 0 such that the following holds for all λ ∈ AR and f ∈
C∞(K : M : ξ), ∥∥q(λ)A(P : P : ξ : λ)f

∥∥
Cl(K)

≤ C(1 + ‖λ‖)N ‖f‖Cl+k(K) .

As a consequence the map q(λ)A(P : P : ξ : λ) extends uniquely to a continuous map
C l(K : M : ξ) → C l+k(K : M : ξ) for all λ ∈ AR. For f ∈ C l(K : M : ξ) fixed the function
λ 7→ q(λ)A(P : P : ξ : λ)f maps holomorphically into C l+k(K : M : ξ). The induced map into
B(C l(K : M : ξ), C l+k(K : M : ξ)) is also holomorphic on AR.

Proof. Statements (1) and (2) are proved in [vdBS12, Corollary 1.4]. What remains to be checked are
the last assertions. For this we follow the arguments outlined in [vdB88, Corollary 4.3].

From (2) it follows that if we fix λ ∈ AR then q(λ)A(P : P : ξ : λ) is a bounded map from
C∞(K : M : ξ) to C∞(K : M : ξ) equipped with the C l(K) and C l+k(K) topology respectively.
Since C∞(K : M : ξ) lies dense in C l(K : M : ξ) we see that q(λ)A(P : P : ξ : λ) uniquely extends
to a continuous map C l(K : M : ξ)→ C l+k(K : M : ξ). We obtain a map Ψ: AR×C l(K : M : ξ)→
C l+k(K : M : ξ) : (λ, f) 7→ q(λ)A(P : P : ξ : λ)f . We prove that for f fixed λ 7→ Ψ(λ, f) is
holomorphic. Let λ0 ∈ AR arbitrary and let (z1, ..., zn) be coordinates on a∗C centred around λ0. The
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polydisk D(λ0; ε)n is contained in AR for some ε > 0. For f ∈ C∞(K : M : ξ) we know that
λ 7→ Ψ(λ, f) is holomorphic hence on D(λ0; ε) it is given by a absolutely convergent power series∑

α∈Nn
zαcα(f)

with coefficients cα(f) ∈ C∞(K : M : ξ). An application of the Cauchy integral formula yields that
these coefficients are given by

cα(f) =
1

(2πi)n

∫
|z1|=ε

· · ·
∫
|zn|=ε

ψ(z, f)

zα1+1
1 · · · zαn+1

n

dz1 · · · dzn.

From this expression we conclude that the coefficients cα are linear maps cα : C∞(K : M : ξ) →
C∞(K : M : ξ). Furthermore, taking into account that (2) holds, we find that there exists a C > 0 such
that

‖cα(f)‖Cl(K) ≤ Cε
−|α| ‖cα(f)‖Cl+k(K) (∗)

for all α ∈ Nn and f ∈ C∞(K : M : ξ). Hence these coefficients can be uniquely extended to
continuous maps cα : C l+k(K : M : ξ) → C l(K : M : ξ). For these extended maps (∗) holds for
all f ∈ C l+k(K : M : ξ). We conclude that if f ∈ Ck+l(K : M : ξ) then on D(λ0; ε) the function
Ψ(λ, f) is given by the absolutely convergent power series∑

α∈Nn
zαcα(f).

Since λ0 ∈ AR was arbitrary we conclude that λ 7→ Ψ(λ, f) is indeed holomorphic as
a map into C l(K : M : ξ). Finally we observe that for every α we have cα ∈
B(C l(K : M : ξ), C l+k(K : M : ξ)) and ‖cα‖op ≤ Cε−|α|. From this it now follows that the induced
map into B(C l(K : M : ξ), C l+k(K : M : ξ)) is given around λ0 by the absolutely convergent power
series

∑
α∈Nn z

αcα. We conclude that this induced map is also holomorphic on AR.

Proposition 2.23. There exists a closed and nowhere dense subset S ⊂ a∗C such that A(P : P : ξ : λ)
is a bijection between C∞(P : ξ : λ) and C∞(P : ξ : λ) for all λ ∈ a∗C \ S.

Proof. In [VW90, Lemma 5.4 and Lemma 5.5] it is proved that a meromorphic function φ on a∗C exists
such that

A(P : P : ξ : λ) ◦A(P : P : ξ : λ) = φ(λ) · I
A(P : P : ξ : λ) ◦A(P : P : ξ : λ) = φ(λ) · I

whenever the left hand sides are defined. We let S be the union of the singular locus ofA(P : P : ξ : λ),
the singular locus of A(P : P : ξ : λ) and the zero set of φ. Then for any λ ∈ a∗C \ S we have that
A(P : P : ξ : λ) has an inverse hence is bijective. It is easily seen that S is closed and nowhere
dense.

Proposition 2.24. The transpose of A(P : P : ξ : λ) with respect to the pairing C∞(P : ξ : −λ) ×
C∞(P : ξ : λ)→ C equals A(P : P : ξ : −λ).

For a proof see [VW90, Lemma 5.7] (recall that we assumed ξ = ξ∗).
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Definition 2.25. We define the unique extension of the intertwining operator to the generalized
vectors, A(P : P : ξ : λ) : C−∞(P : ξ : λ) → C−∞(P : ξ : λ), to be the dual of
A(P : P : ξ : −λ) : C∞(P : ξ : −λ)→ C∞(P : ξ : −λ).

It is a consequence of Proposition 2.24 that this definition of the intertwining operator indeed extends
our previous definition on the continuous sections. For the extended intertwining operator (2.8) also
holds.

The following result is a direct consequence of Proposition 2.22.

Corollary 2.26. For every λ0 ∈ a∗C there exists a neighbourhood Ω ⊂ a∗C of λ0, a nonzero holomorphic
map q : Ω→ C and a k ∈ N such that

(1) For φ ∈ C−∞(K : M : ξ) the map λ 7→ q(λ)A(P : P : ξ : λ)φ is holomorphic on Ω as a map into
C−∞(K : M : ξ).

(2) For λ ∈ Ω the map q(λ)A(P : P : ξ : λ) continuously maps C−∞l (K : M : ξ) into
C−∞l+k (K : M : ξ) for all l ∈ N

Furthermore, the induced map into B(C−∞l (K : M : ξ), C−∞l+k (K : M : ξ)) is holomorphic on Ω.

Proof. We first recall that C−∞l (K : M : ξ) in C−∞(K : M : ξ) can be realised as the dual of
C l(K : M : ξ) for all l ∈ N. By Proposition 2.22 we have that on some neighbourhood Ω of λ0 a
nonzero holomorphic function q exists such that (λ, f) 7→ q(λ)A(P : P : ξ : −λ) is regular in λ
for f fixed. Furthermore, some k ∈ N exists such that this functions maps Ck+l(K : M : ξ) into
C l(K : M : ξ) for all l ∈ N. The map q(λ)A(P : P : ξ : λ) restricted to C−∞l (K : M : ξ) can be
realised as the dual of the map q(λ)A(P : P : ξ : −λ) : Ck+l(K : M : ξ)→ C l(K : M : ξ). From this
the corollary now follows.

2.5.2 Proof of holomorphic continuation

Before we can give the proof of Proposition 2.18 we need a couple of auxiliary lemmas.

Lemma 2.27. Let µ ∈ a∗ such that

〈µ, α〉
〈α, α〉

∈ Z>0 for all α ∈ Σ+

Then there exists a nonzero element of C∞(P : 1 : −µ− ρ)N,1, i.e. a function ψ : G→ C satisfying

ψ(nxman) = aµψ(x) for all x ∈ G,man ∈MAN and n ∈ N.

Furthermore, ψ can be chosen such that ψ(e) = 1.

Proof. We pick a Cartan subalgebra t of m. Then h := t ⊕ a is a Cartan subalgebra of g. We denote
by R = R(g; h) the set of roots of gC with respect to this Cartan subalgebra. It is easily seen that
Σ = {α|a | α ∈ R, α|a 6= 0}. It is now possible to make a choice of positive roots R+ extending the
choice of positive reduced roots Σ+, i.e. Σ+ = {α|a | α ∈ R+, α|α 6= 0}. On the strength of Helgason’s
result on the classification of spherical representations (see [Hel84, Theorem 4.1]) we conclude that a
spherical representation (δ, V ) of G (this is a representation with a K-fixed vector) exists with highest
weight µ (seen as an element of (t⊕ a)∗ by extending by zero). Furthermore, any highest weight vector
of this representation is M -fixed.
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We chose eµ a nonzero highest weight vector. We know that eµ isM -fixed and δ(H)e = µ(H)eµ for
H ∈ a implies that δ(a)eµ = aµeµ for a ∈ A. Since our choice of positive rootsR+ extends the choice
Σ+ we have that n ⊂ g+. Because eµ is a highest weight vector it follows that δ(n)eµ = 0. Hence eµ
is N -fixed. In conclusion we have δ(man)eµ = aµeµ for man ∈ MAN . We now consider the dual
representation (δ∨, V ∗) of G. The lowest weight of this representation is −µ. It is easily checked that
the pairing Vµ × (V ∗)−µ → C is non-degenerate. Hence we can fix an element ε ∈ (V ∗)−µ such that
ε(e) = 1. Since ε is a lowest weight vector it follows that δ(n)ε = 0 hence ε is N -fixed.

We now define ψ : G → C as ψ(x) = ε(δ(x)eµ). Since a matrix coefficient of a finite-dimensional
representation is smooth we have ψ ∈ C∞(G). By our choice of ε we have ψ(e) = ε(eµ) = 1. From
the transformation properties of e and ε it follows that for x ∈ G, man ∈MAN and n ∈ N we have

ψ(nxman) = ε(δ(nxman)eµ) = (δ∨(n−1)ε)(δ(x)(δ(man)eµ)) = aµε(δ(x)eµ) = aµψ(x).

This proves the lemma.

Suppose we have a µ ∈ a∗ and ψ ∈ C∞(P : 1 : −µ− ρ)N,1 as in the lemma above. For any λ ∈ a∗

we define the mapping Mψ : C∞(P : ξ : λ) → C∞(P : ξ : λ − µ) : f 7→ ψ · f . It is easily seen that
this is a continuous map and since ψ is left N -invariant that it is N -intertwining.

Lemma 2.28. The map Mψ : C∞(P : ξ : λ) → C∞(P : ξ : λ − µ) can be uniquely extended
to a continuous map Mψ : C−∞(P : ξ : λ) → C−∞(P : ξ : λ − µ). This extended map is also
N -intertwining. Furthermore, if χ is regular then the restricted map Mψ : C−∞(P : ξ : λ)N,χ →
C−∞(P : ξ : λ− µ)N,χ is injective.

Proof. As discussed above the map Mψ : C∞(P : ξ : −(λ− µ)) → C∞(P : ξ : −λ) is continuous
linear and N -intertwining. We define the extended map Mψ : C−∞(P : ξ : λ)→ C−∞(P : ξ : λ− µ)
as the dual of this map. It is straightforward to check this map satisfied the requirements.

For the injectivity we note that that ψ(e) = 1 implies that the following diagram is commutative

C−∞(P : ξ : λ)N,χ C−∞(P : ξ : λ− µ)N,χ

Hξ Hξ.

Mψ

eve eve

The injectivity of Mψ is now a direct consequence of the fact that eve is injective when χ is regular (see
Proposition 2.8).

Let w ∈ W (g; a) be an element of the Weyl group. With a slight abuse of notation we denote by w
also a representative of this element in NK(a). We introduce the notation

wξ = C∗w−1ξ and wλ = λ ◦Ad(w−1)

for λ ∈ a∗C. We denote by Rw the action of w on the space C∞(G;Hξ) via the right regular representa-
tion.

Lemma 2.29. Suppose w ∈ W (g; a) is the longest Weyl group element. Then the map Rw restricts to
a topological isomorphism of G-modules Rw : C∞(P : ξ : λ)→ C∞(P : wξ : wλ).
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Proof. We first prove that Rw maps C∞(P : ξ : λ) into C∞(P : wξ : wλ). Let f ∈ C∞(P : ξ : λ),
x ∈ G and man ∈MAN . We observe

(Rwf)(xman) = f(xmanw) = f(xwCw−1(man))

= (Cw−1a)−λ−ρ ξ(Cw−1m)−1f(xw)

= (Cw−1a)−λ−ρ (wξ)(m)−1(Rwf)(x).

Here we used that Cw−1(n) ∈ N which follows because w is the longest Weyl group element. Further-
more, we have

(Cw−1a)−λ−ρ = e(−λ−ρ) logCw−1a = e(−λ−ρ) Ad(w−1) log a = e(−wλ−wρ) log a = a−wλ−wρ.

We use the notation ρP =
∑

α∈−Σ+ dim(gα)α for the element as in Definition 1.28 associated to the
choice of positive roots −Σ+. Because w is the longest Weyl group element we have w(Σ+) = −Σ+

hence wρ = ρP . We conclude that

(Rwf)(xman) = a−wλ−ρP (wξ)(m)−1(Rwf)(x)

so we indeed have Rwf ∈ C∞(P : wξ : wλ).
The map Rw is G-intertwining because the left and right regular representations commute. Further-

more, the element w satisfies w−1 = w so the inverse to Rw : C∞(P : ξ : λ) → C∞(P : wξ : wλ) is
readily seen to be Rw : C∞(P : wξ : wλ)→ C∞(P : ξ : λ).

Lemma 2.30. Again suppose w ∈ W (g; a) is the longest Weyl group element. The map
Rw : C∞(P : ξ : λ)→ C∞(P : wξ : wλ) extends uniquely to a topological isomorphism ofG-modules
Rw : C−∞(P : ξ : λ)→ C−∞(P : wξ : wλ)

Proof. As discussed in Section 1.6.3 the pairing C∞(P : ξ : λ) × C∞(P : ξ : −λ) → C is given
by (f, g) 7→

∫
K 〈f, g〉ξ dk. Because w ∈ K and dk is a right Haar measure we have (Rw−1f, g) =

(f,Rwg). This means we can define the extension of Rw to the generalized vectors as the dual of the
map Rw : C∞(P : wξ : −wλ) → C∞(P : ξ : −λ). The latter map is an topological isomorphism of
G-modules hence the extended map Rw : C−∞(P : ξ : λ) → C−∞(P : wξ : wλ) is also a topological
isomorphism of G-modules.

In order to prove Proposition 2.18 we first prove that around every point in a∗C locally a meromorphic
parametrization of C−∞(P : ξ : λ)N,χ exists. We will then use this parametrization to construct the
holomorphic extension of j(P : ξ : λ).

Lemma 2.31. For every λ0 ∈ a∗C there exists a neighbourhood Ω ⊂ a∗C of λ0, a family of maps
Jλ : Hξ → C−∞(P : ξ : λ)N,χ for λ ∈ Ω and a closed and nowhere dense set S ⊂ Ω such that

1. If v ∈ Hξ is fixed then λ 7→ Jλ(v) is meromorphic on Ω and is holomorphic on Ω \ S as a map
into C−∞(K : M : ξ).

2. The map Jλ is bijective for all λ ∈ Ω \ S.

Proof. For any µ ∈ a∗C with 〈µ,α〉
〈α,α〉 ∈ Z>0 we clearly have 〈Reµ, α〉 > 0 for all α ∈ Σ+.

We denote by w ∈ W (g; a) the longest Weyl group element. Then for all α ∈ Σ+ we have
〈Rewµ, α〉 =

〈
Reµ,w−1α

〉
< 0 because w−1α = wα ∈ −Σ+. Hence for such µ large enough
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we have wλ0 + wµ ∈ A. Let Ω ⊂ a∗C be a neighbourhood of λ0 that satisfies wΩ + wµ ⊂ A. We
consider the operators

Rw : C−∞(P : wξ : wλ+ wµ)→ C−∞(P : ξ : λ+ µ) and

Mψ : C−∞(P : ξ : λ+ µ)→ C−∞(P : ξ : λ)

as introduced in Lemmas 2.28 and 2.30. For λ ∈ Ω we now consider the family of maps

Jλ : Hξ → C−∞(P : ξ : λ)N,χ,

Jλ = Mψ ◦Rw ◦A(P : P : wξ : wλ+ wµ) ◦ j(P : wξ : wλ+ wµ).

Per definition we have that j(P : wξ : wλ + wµ) maps Hξ into C−∞(P : wξ : wλ + wµ) which is
mapped into C−∞(P : wξ : wλ+ wµ) by A(P : P : wξ : wλ+ wµ). We see that this space in turn is
mapped into C−∞(P : ξ : λ) by Mψ ◦ Rw. Since the latter three maps are all N -intertwining we find
that Jλ indeed maps Hξ into C−∞(P : ξ : λ)N,χ.

By Corollary 2.26 we know that a neighbourhood Ω̃ of wλ0 + wµ exists and a constant k ∈ N such
that A(P : P : ξ : λ) induces a meromorphic map Ω̃ → B(C−∞0 (K : M : ξ), C−∞k (K : M : ξ)).
We shrink Ω such that wΩ + wµ ⊂ Ω̃ and fix a v ∈ Hξ. The function λ 7→ j(P : wξ : wλ + wµ : v)
maps holomorphically into C(K : M : ξ) which embeds continuously into C−∞0 (K : M : ξ). We
see that the composition A(P : P : wξ : wλ + wµ) ◦ j(P : wξ : wλ + wµ) maps meromorphically
into C−∞k (K : M : ξ) ⊂ C−∞(K : M : ξ). We leave it to the reader to check that both Mψ and Rw
seen as maps C−∞(K : M : ξ) → C−∞(K : M : ξ) are independent of λ. From this it follows that
λ 7→ Jλ(v) is indeed meromorphic on Ω as a map into C−∞(K : M : ξ).

We denote by S̃ the set that is denoted by S in Proposition 2.23. We define S as the set of all
λ ∈ Ω such that wλ + wµ ∈ S̃. The set S̃ contains the singular locus of A(P : P : ξ : λ) hence
we have that Jλ(v) is indeed holomorphic on Ω \ S. Now let λ ∈ Ω \ S. Then wλ + wµ 6∈ S̃ hence
A(P : P : wξ : wλ + wµ) is injective. Since wλ + wµ ∈ A we know that j(P : wξ : wλ + wµ) is
also injective. From Lemma 2.28 and Lemma 2.30 it follows that Mψ ◦ Rw is injective. We conclude
that Jλ maps Hξ injectively into C−∞(P : ξ : λ)N,χ. Because dimC−∞(P : ξ : λ)N,χ ≤ dimHξ (see
Proposition 2.8) we conclude that Jλ is in fact a bijection.

Armed with this lemma we can now prove Proposition 2.18.

Proof of Proposition 2.18. We first construct an extension of the family j(P : ξ : λ) that is, a priori, only
meromorphic in λ. We will then use a uniqueness argument to show that it in fact must be holomorphic.

Per assumption we have that χ is regular. Hence by Proposition 2.8 the map eve is injective. Using
this we observe the following; A family of maps fλ : Hξ → C−∞(P : ξ : λ)N,χ is uniquely determined
by the requirement that it satisfies eve ◦fλ = idHξ .

Let λ0 ∈ a∗C be arbitrary and let Ω, S ⊂ Ω and J be as in Lemma 2.31. We now consider the family
of maps uλ := eve ◦Jλ : Hξ → Hξ. Since Hξ is finite-dimensional we can view uλ as a matrix with
coefficients depending meromorphically on λ. On the open and dense set Ω \S we have that this matrix
is invertible. Hence we can consider the family of maps (uλ)−1, which also depends meromorphically
on λ by Cramer’s rule. On the set Ω we declare the family Jλ◦(uλ)−1 : Hξ → C−∞(P : ξ : λ)N,χ to be
the extension of j(P : ξ : λ). We have per construction that eve ◦(Jλ ◦ (uλ)−1) = idHξ whenever this
expression is defined. Our observation on the uniqueness of families of maps satisfying this requirement
show that this is indeed an extension of j(P : ξ : λ). It also shows that the extensions of j(P : ξ : λ) on
different opens patch together. Hence we obtain a meromorphic extension of j(P : ξ : λ) to the whole
of a∗C.
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We now argue that the family of maps j(P : ξ : λ) is actually holomorphic in λ. Let v ∈ Hξ. What
we will show is that all singularities of j(P : ξ : λ : v) are in fact removable. Suppose λ0 ∈ a∗C is a
singularity of this function. We consider a one-dimensional slice S of a∗C containing λ0. We can pick S
such that, when restricted to S, the function λ 7→ j(P : ξ : λ : v) has an isolated singularity at λ0. We
denote the restriction of j(P : ξ : λ : v) to S simply by j : S → C−∞(K : M : ξ). If the singularity
around λ0 is a pole of positive order then there exists a nonzero holomorphic map φ : S → C which
vanishes at λ0 such that j0 := φ · j is holomorphic on an open neighbourhood around λ0 and such that
j0 is nonzero at λ0. For n ∈ N we have

πξ,λ(n)j0(λ) = χ(n)j0(λ)

for λ 6= λ0 in a neighbourhood around λ0. Because both sides of this identity are continuous in λ
we conclude the identity also holds for λ = λ0. Hence j0(λ0) is a nonzero Whittaker vector in
C−∞(P : ξ : λ0). We recall the notation B = NP for the big Bruhat cell and U = B ∩ K. By
restricting to B we obtain a map λ 7→ j(λ)|B from S into C−∞(B : P : ξ : λ)N,χ. In light of Propo-
sition 2.6 we see that this function actually maps into C∞(B : P : ξ : λ)N,χ. From this it follows
that for any λ ∈ S the function j(λ)|B : B → Hξ must be given by (2.6). So in particular the map
λ 7→ j(λ)|B , seen as a map into C−∞(U : M : ξ), is holomorphic. This means that at λ0 we have
j0(λ0)|B = φ(λ0) · j(λ0)|B = 0 because φ(λ0) = 0. So the Whittaker vector j0(λ0) vanishes on B.
Now Theorem 2.9 yields that j0(λ0) must vanish on the whole of G. This however is in contradiction
with the assumption j0(λ0) 6= 0. We conclude that j cannot have a pole of positive order around λ0

hence the singularity is removable.
For v ∈ Hξ we have per construction that eve ◦j(P : ξ : λ : v) = v holds outside the removed

singularities of this expression. By continuity we conclude eve ◦j(P : ξ : λ) = idHξ holds for all λ ∈
a∗C. Since eve is injective we conclude that j(P : ξ : λ) maps Hξ bijectively into C−∞(P : ξ : λ)N,χ.
This concludes the proof.

Remark 2.32: Before we finish this section we take some time to point out the correspondence between
what we called the j(P : ξ : λ) function and the Jacquet integral, which is how Whittaker vectors were
originally introduced by Jacquet. In our notation the Jacquet integral is defined for λ ∈ a∗C, µ ∈ (Hξ)

∗

and f ∈ C∞(P : ξ : −λ) as

Jξ,λ(µ)(f) :=

∫
N
χ(n)−1µ(f(n)) dn.

See for example [Wal92, 15.4.1] where we take (P0, A0) = (P ,A). This integral converges if
〈Reλ, α〉 < 0 for all α ∈ Σ+. An analytic continuation argument is then used to define the expression
Jξ,λ(µ)(f) for all λ ∈ a∗C. The expression Jξ,λ(µ)(·) then defines an element in C−∞(P : ξ : λ)N,χ for
all µ ∈ (Hξ)

∗. All this is proved in [Wal92, Section 15.4].
In order to show the correspondence we first let λ ∈ A and let v ∈ Hξ be such that µ = 〈·, v〉.

We denote for simplicity j := j(P : ξ : λ : v), which is a continuous function on G since λ ∈ A, we
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observe, using Proposition 1.36, that

j(P : ξ : λ : v)(f) = (f, j) =

∫
K
〈f(k), j(k)〉 dk

=

∫
N
〈f(k(n)), j(k(n))〉 · e−2ρ(H(n)) dn

=

∫
N

〈
e(−λ+ρ)H(n)f(n), e(λ+ρ)H(n)j(n)

〉
· e−2ρ(H(n)) dn

=

∫
N
〈f(n), j(n)〉dn

=

∫
N
χ(n)−1 〈f(n), v〉 dn = Jξ,λ(µ)(f)

We conclude that the element in C−∞(P : ξ : λ)N,χ defined by Jξ,λ(η)(·) coincides with the element
j(P : ξ : λ : v). Since both are holomorphic in λ we conclude this holds for all λ ∈ a∗C. We conclude
that j(P : ξ : λ) and the Jacquet integral yield the same parametrization of the Whittaker vectors.

2.6 Whittaker matrix coefficient

In this section we introduce what is called the Whittaker matrix coefficient or Whittaker coefficient for
short. We will define the Whittaker coefficient as a matrix coefficient of the principal series represen-
tation. In Chapter 3 it will play an important role in the definition of the so called Whittaker–Fourier
transformation. In the further sections of this chapter we will study the Whittaker coefficient (with
focus on the case G = SL(2,R)) and lay the groundwork for the analysis of the Whittaker–Fourier
transformation in Chapter 3.

Let χ be a regular unitary character of N . For a semisimple Lie group G with finite center we look
at the space of Whittaker vectors for the spherical principal representation, i.e. C−∞(P : 1 : λ)N,χ. We
know that this space is one dimensional and that j(P : 1 : λ)(1) provides a holomorphic parametrization
of this space. We denote by 1λ the element in C∞(P : 1 : λ) that is uniquely determined by 1λ|K ≡ 1.

We now define the Whittaker (matrix) coefficient of the spherical principal series representation. For
convenience we denote jλ := j(P : 1 : −λ)(1).

Definition 2.33. For λ ∈ a∗C we define the Whittaker matrix coefficient Wλ ∈ C∞(G) as

Wλ(x) :=
〈
π1,λ(x)−1

1λ, jλ
〉
.

Since the map λ 7→ j(P : ξ : λ)(1) is holomorphic and the pairing C∞(P : ξ : λ) ×
C−∞(P : ξ : −λ) → C is sesquilinear we see that for x ∈ G fixed the function λ 7→ Wλ(x) is a
holomorphic.

Using the N -transformation behaviour of jλ and the fact that 1λ is K-fixed we see that for any
x ∈ G, k ∈ K,n ∈ N we have

Wλ(kxn) =
〈
π1,λ(kxn)−1

1λ, j1,λ
〉

=

=
〈
π1,λ(x)−1π1,λ(k−1)1λ, π1,−λ(n)j1,λ

〉
= χ(n)−1Wλ(x).

Taking into account the Iwasawa decomposition G = KAN we see that the Whittaker coefficient is
completely determined by its restriction to A.
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As discussed in Section 2.4 we have for λ ∈ a∗C satisfying 〈Reλ− ρ, α〉 > 0 for all α ∈ ∆ that
jλ = j(P : 1 : −λ)(1) is simply a continuous function. Using this we can, for such λ, give a more
explicit integral expression for the function Wλ. For a ∈ A we have

Wλ(a) =
〈
π1,λ(a−1)1λ, jλ

〉
=
〈
1λ, π1,−λ(a)jλ

〉
=

∫
K
1λ(k) · jλ(a−1k) dk =

∫
K
jλ(a−1k) dk.

Applying Proposition 1.36 we see that Wλ is given by

Wλ(a) =

∫
N
jλ(a−1k(n)) · e−2ρH(n) dn.

The transformation properties of the function jλ = j(P : 1 : −λ) imply that for a ∈ A and n ∈ N we
have

jλ(a−1k(n)) = jλ(a−1n(a(n)n(n))−1)

= jλ(Ca−1(n)a−1a(n)−1n)

= χ(Ca−1(n))−1 · a−λ+ρ · e(−λ+ρ)H(n)

Here n is some element in N of which the precise value is not important. By substituting this in the
above expression for Wλ(a) we find

Wλ(a) = a−λ+ρ ·
∫
N
χ(a−1na) · e−(λ+ρ)H(n) dn. (2.9)

2.6.1 The case of G = SL(2,R)

We will be particularly interested in the Whittaker coefficient when G = SL(2,R). Therefore, we first
spend some time on finding an explicit integral expression for Wλ in this case.

We use the notation as introduced in Section 1.4.1. From the discussion in this section we know that
for G = SL(2,R) we have dim n = 1. Hence if χ is a (not necessarily unitary) character its derivative
dχ : n → C is uniquely determined by the number γ ∈ C such that dχ(Y ) = iγ. The corresponding
character is then given by χ(nx) = eiγx. We see that is χ unitary if and only if γ ∈ R and is regular if
and only if γ 6= 0. We assumed χ to be regular so we fix a γ ∈ R \ {0}.

In order to give an explicit expression for Wλ is this case we consider the expression given in (2.9).
This expression holds for λ ∈ a∗C with 〈Reλ− ρ, α〉 > 0 (or equivalently λ(H) > 1). As observed
in 1.4.1 we have that R ∼= n

exp−−→ N is a group isomorphism. This means in particular that, up to
normalization, we have exp∗ dn = dx, with dx the Lebesque measure on R. Using this to perform a
substitution of variables for the integral in (2.9) yields

Wλ(a) = a−λ+ρ

∫
R
χ(Ca−1(nx))e−(λ+ρ)H(nx) dx.

By Proposition 1.18 we have H(nx) = 1
2 log(1 + x2) ·H . From this we see that

e−(λ+ρ)H(nx) = (1 + x2)−λ(H)/2−1/2.

Furthermore, we observe that, in view of Proposition 1.15,

Ca−1(nx) = a−1 exp(x · Y )a = exp(x ·Ad(a−1)Y ) = exp(xaα · Y ) = naαx.
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By substituting this we now obtain the following expression for the Whittaker coefficient

Wλ(a) = a−λ+ρ

∫
R
eiγa

αx · (1 + x2)−λ(H)/2−1/2 dx. (2.10)

We note that the Whittaker coefficients of the characters determined by γ and −γ coincide. So without
loss of generality we can assume that γ > 0. Furthermore, if we pick a′ ∈ A such that (a′)α = 1/γ then
we see that

Wλ(aa′) = (a′)−λ+ρa−λ+ρ

∫
R
eiγ(a′)αaαx(1 + x2)−λ(H)/2−1/2 dx

= (a′)−λ+ρ

[
a−λ+ρ

∫
R
eia

αx(1 + x2)−λ(H)/2−1/2 dx

]
The factor in the brackets is precisely the Whittaker coefficient for γ = 1. We see that by shifting the
Whittaker coefficient on the right we obtain a multiple of the Whittaker coefficient for the case of γ = 1.
For simplicity we will from now on assume γ = 1 with the knowledge that our results transfer to the
general case by reversing the above shifting procedure.

As remarked at the start of the calculation this expression holds for all λ ∈ a∗C with Reλ(H) > 1.
However we observe that the integral in (2.10) converges for all λ ∈ a∗C with Reλ(H) > 0. A standard
application of the Dominated convergence theorem also yields that for a ∈ A fixed the expression in
(2.10) is holomorphic in λ on this region. Since Wλ(a) is holomorphic in λ we see that the expression
for Wλ(a) in (2.10) is valid for all λ with Reλ(H) > 0.

Using a partial integration procedure we can find an integral expression for Wλ(a) for all λ ∈ a∗C.
In order to reduce the amount of notation when carrying out this process we introduce the following
auxiliary function.

Definition 2.34. We define w : {z ∈ C | Re z > 0} × R>0 → C as

w(z, t) :=

∫
R
eitx(1 + x2)−z−1/2 dx.

On {z ∈ C | Re z > 0} this integral is finite and a standard argument shows that for t ∈ R>0 fixed
the function z 7→ w(z, t) is holomorphic on this domain. Looking at the expression in Equation (2.10)
we see that Wλ(a) = a−λ+ρ · w(λ(H)/2, aα) holds for all λ ∈ a∗C with Re(H) > 0.

The next two lemmas will establish that the function w can be holomorphically extended to the
whole of C× R>0.

Lemma 2.35. For every k ∈ N and r ∈ R there exists a c = ck,r > 0 such that∣∣∣∂kx(1 + x2)−z−1/2
∣∣∣ ≤ c · (1 + |x|)−2z−k−1

for all x ∈ R and z ∈ C with Re z ≤ r.

Proof. A straightforward proof using induction on k shows that for every k ∈ N

∂k

∂xk
(1 + x2)−z−1/2 = pk(x) · (1 + x2)−z−1/2−k

with pk a polynomial of degree at most k. The stated estimate now follows directly from this.

Lemma 2.36. The function w can be uniquely extended to the whole of C × R>0 such that for fixed
t ∈ R>0 the map z 7→ w(z, t) is a holomorphic function on C.
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Proof. We let z ∈ C with Re z > 0 and t ∈ R>0. We observe, for k ∈ N, using partial integration that

w(z, t) =

∫
R
eitx · (1 + x2)−z−1/2 dx = (−i)kt−k

∫
R

(
∂kxe

itx
)

(1 + x2)−z−1/2 dx

= ikt−k
∫
R
eitx · ∂kx

(
(1 + x2)−z−1/2

)
dx

This expression for w(z, t) is valid for z ∈ C with Re z > 0. However if we take into account the result
of Lemma 2.35 we see that this integral converges when Re z > −1

2k. A standard argument using the
dominated convergence theorem shows that on this domain the expression is holomorphic in z. Since
this expression is holomorphic in z and coincides with w for Re z > 0 we can define the holomorphic
extension of w on {z ∈ C | Re z > −1

2k} to be given by this expression.

A direct consequence of this lemma is the following.

Corollary 2.37. Suppose G = SL(2,R) and χ(nx) = eix. For every λ ∈ a∗C and a ∈ A the identity

Wλ(a) = a−λ+ρ · w(λ(H)/2, aα) (2.11)

holds.

In the next section we will utilize this expression to find several estimates on the Whittaker coeffi-
cient.

In Chapter 3 we will be mainly concerned with the Whittaker coefficient for the unitary principal
series, i.e. λ ∈ ia∗. Looking at the proof of the previous lemma we see that on the imaginary axis the
simplest expression for w is given by

w(z, t) = −(2z + 1) · i
t

∫
R
eitx · x(1 + x2)−z−3/2 dx (2.12)

for t ∈ R>0 and z ∈ C with Re z ≥ −1/2.

Remark 2.38: In Section 2.5 we assumed that χ is regular in order to prove that j(P : ξ : λ) can
be holomorphically extended. By considering the expression for the Whittaker coefficient we derived
in this section we see this assumption is vital. If we take χ to be the non-regular character on N , i.e.
χ ≡ 1, then the Whittaker coefficient, if we were to define it for this case, would for λ(H) > 0 be given
by

Wλ(a) = a−λ+ρ

∫
R

(1 + x2)−λ(H)/2−1/2 dx

(take (2.10) with γ = 0). It is clear that this expression can not be extended holomorphically to the
whole of a∗C since Wλ(a)→∞ for λ→ 0.

2.7 Estimates on the Whittaker matrix coefficient

In this section we will study the behaviour of the Whittaker matrix coefficient Wλ(a) and its derivatives
∂kλWλ(a) as functions of a. We will derive several estimates that will be important in our discussion in
Section 3.2 when we introduce the Whittaker–Fourier transformation.

Throughout this section we retain our assumption that G = SL(2,R) and χ(nx) = eix.
It turns out that there is a great difference in the behaviour of Wλ on A+ := exp(R≥0 · H), the

‘positive Weyl chamber’ of A, and A− := exp(R≤0 · H), the ‘negative Weyl chamber’ of A. We first
investigate the behaviour on A+.
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Proposition 2.39. Suppose G = SL(2,R) and χ(nx) = eix. Let s < r ∈ R and k ∈ N. Then there
exists a C = Ck,s,r > 0 such that

|Wλ(a)| ≤ C · aReλ−kρ

holds for all a ∈ A+ and λ ∈ a∗C satisfying s ≤ Reλ(H) ≤ r.

Proof. We fix an l ∈ N satisfying −l < s and 2l − 1 > k. For all z ∈ C with Re z > −1
2 l we have, see

the proof of Lemma 2.36, the following expression for w(z, t)

w(z, t) = ilt−l
∫
R
eitx · ∂lx

(
(1 + x2)−z−1/2

)
dx.

On the strength of Lemma 2.35 there exists a constant c > 0 such that for 1
2s ≤ z ≤ 1

2r we have the
estimate

|w(z, t)| ≤ t−l
∫
R

∣∣∣∂lx ((1 + x2)−z−1/2
)∣∣∣ dx ≤ c · t−l ∫

R
(1 + |x|)−2 Re z−l−1 dx.

For z ∈ C with Re z ≥ 1
2s we have, keeping in mind that −l < s holds, that −2 Re z − 1 − l ≤

−s− l − 1 < −1. If we set C = c ·
∫
R(1 + |x|)−s−l−1 dx <∞ we see that we obtain the estimate

|w(z, t)| ≤ C · t−k

for all z ∈ C with 1
2s ≤ Re z ≤ 1

2r.
We use this estimate on w to obtain the stated estimates on Wλ. Let λ ∈ a∗C with s ≤ Reλ(H) ≤ r.

Then using the expression in (2.11) and the above estimate yields for all a ∈ A

|Wλ(a)| = aReλ+ρ |w(λ(H)/2, aα)| ≤ C · aReλ+ρa−lα = C · aReλ−(2l−1)ρ.

Our assumption that 2l− 1 > k implies Reλ(H)− (2l− 1) < Reλ(H)− k. For any a ∈ A+ we have
log a ∈ R≥0 ·H hence we have (Reλ− (2l − 1)ρ) log a < (Reλ− kρ) log a. From this we conclude
that

|Wλ(a)| ≤ C · aReλ−(2l−1)ρ ≤ C · aReλ−kρ

holds.

We see from this result that Wλ vanishes to any order a−kρ when a→∞ in A+ (i.e. a = exp(tH)
with t→∞). In Section 2.8 we will improve this estimate and show that actually Wλ goes to zero at a
double exponential rate more specifically for some c = cλ ∈ C we have Wλ ∼ c · e−aα for a → ∞ in
A+.

Now we investigate the behaviour of Wλ(a) on A−. This case is somewhat more complicated hence
we split up the work. We first derive an estimate on the function w.

Lemma 2.40. For every ε > 0 there exists a C = Cε > 0 such that∣∣t−zw(z, t)
∣∣ ≤ C(1 + |z|)(1 + |log t|) · t−|Re z|

holds for all z ∈ C with Re z ≥ −1
2 + ε and t ∈ (0, 1].
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Proof. From (2.12) we know that for all z with Re z > −1
2 that w(z, t) is given by

w(z, t) = −(2z + 1) · i
t

∫
R
eitx · x(1 + x2)−z−3/2 dx

= (2z + 1) · 2

t

∫ ∞
0

sin(tx) · x(1 + x2)−z−3/2 dx

We fix a z ∈ C with Re z ≥ −1
2 +ε and a t ∈ (0, 1]. Using the above expression we obtain the following

estimate ∣∣t−zw(z, t)
∣∣ ≤ 4(1 + |z|) · t−Re z−1

∫ ∞
0
|sin(tx)|x(1 + x2)−Re z−3/2 dx.

For simplicity we denote s = −Re z, so s satisfies s ≤ 1
2 − ε. We observe

ts−1

∫ ∞
0
|sin(tx)|x(1 + x2)s−3/2 dx

= ts
∫ 1

0

∣∣∣∣sin(xt)

xt

∣∣∣∣x2(1 + x2)s−3/2 dx+ ts−1

∫ ∞
1
|sin(tx)|x(1 + x2)s−3/2 dx

= A1 +A2.

In order to estimate the first term, A1, we use that |sin(y)/y| ≤ 1 for all y ∈ R to find

A1 ≤ ts
∫ 1

0
x2(1 + x2)s−3/2 dx = C1 · ts ≤ C1 · t−|s|

Here we set C1 =
∫ 1

0 x
2(1 + x2)s−3/2 dx which is clearly finite.

Now we estimate the second term A2. Since 1 + x2 ≥ x2 and s − 3/2 < 0 we can estimate
x(1 + x2)s−3/2 ≤ x2x−2 for all x ≥ 1. We find

A2 ≤ ts−1

∫ ∞
1
|sin(tx)|x2s−2 dx (substituting y = tx)

= t−s
∫ ∞
t
|sin(y)| y2s−2 dy

= t−s
∫ 1

t
|sin(y)| y2s−2 dy + t−s

∫ ∞
1
|sin(y)| y2s−2 dy

= B1 +B2.

To estimate the second term, B2, we use that s ≤ 1
2 − ε hence

B2 ≤ t−s
∫ ∞

1
y−1−2ε dy = C2 · t−s ≤ C2 · t−|s|

were we defined C2 =
∫∞

1 y−1−2ε dy < ∞. In order to estimate the first term, B1, we again use that
|sin(y)/y| ≤ 1 for all y ∈ R to find

B1 = t−s
∫ 1

t

∣∣∣∣sin(y)

y

∣∣∣∣ y2s−1 dy ≤ t−s
∫ 1

t
y2s−1 dy =

{
t−s−ts

2s s 6= 0
−t−s log(t) s = 0
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We claim that B1 ≤ |log t| t−|s| holds for all s. For s = 0 this is immediate from the above expression.
For s 6= 0 we observe that ∣∣∣∣ t−s − ts2s · log(t)

∣∣∣∣ =
t−|s|

2 |s|

∣∣∣∣∣ t2|s| − 1

log t

∣∣∣∣∣ .
If we write τ = t2|s| then τ ∈ (0, 1] and the above expression equals

t−|s|

2 |s|

∣∣∣∣ τ − 1

log τ1/(2|s|)

∣∣∣∣ =
t−|s|

2 |s|
· 2 |s| ·

∣∣∣∣τ − 1

log τ

∣∣∣∣ ≤ t−|s|.
We leave it to the reader to check that indeed |(τ − 1)/ log τ | ≤ 1 for τ ∈ (0, 1]. Taking the factor |log t|
to the other side yields the desired estimate for B2 in the case s 6= 0.

Now combining all these estimates and substituting back s = −Re z we obtain∣∣t−zw(z, t)
∣∣ ≤ 4(1 + |z|)(A1 +B1 +B2) ≤ 4(1 + |z|)

[
(C1 + C2)t−|Re z| + |log t| t−|Re z|

]
≤ 4(C1 + C2 + 1)(1 + |z|)(1 + |log t|)t−|Re z|.

This concludes the proof.

Using this we obtain the following estimate for Wλ on A−.

Proposition 2.41. SupposeG = SL(2,R) and χ(nx) = eix. For every ε > 0 there exists aC = Cε > 0
such that for all λ ∈ a∗C with Reλ(H) ≥ −1 + ε and a ∈ A− the following estimate holds

|Wλ(a)| ≤ Caρ(1 + ‖λ‖)(1 + ‖log a‖)e‖Reλ‖‖log a‖.

Here we use the normalized norms on aC and a∗C as introduced in Section 1.4.1.

Proof. We fix a λ ∈ a∗C with λ(H) ≥ −1 + ε and let a ∈ A−. We observe that since λ = 1
2λ(H) ·α we

have
a−λ = a−λ(H)/2·α = (aα)−λ(H)/2.

Furthermore, since a is such that log a ∈ R≤0 · H we have aα ∈ (0, 1]. Applying Lemma 2.40 with
z = 1

2λ(H) and t = aα yields that a C > 0 exists such the following holds

|Wλ(a)| =
∣∣∣a−λ+ρw(λ(H)/2, aα)

∣∣∣ = aρ ·
∣∣∣(aα)−λ(H)/2w(λ(H)/2, aα)

∣∣∣
≤ C · aρ(1 +

1

2
|λ(H)|)(1 + |log aα|)(aα)−|Reλ(H)|/2.

By our chosen normalization of the norms on aC and a∗C we have |λ(H)| = ‖λ‖. Furthermore, we have
α(log a) < 0 hence

−α(log a) = |α(log a)| ≤ ‖α‖ ‖log a‖ = 2 ‖log a‖ .

From this it follows that |log aα| = |α(log a)| ≤ 2 ‖log a‖ and

(aα)−|Reλ(H)|/2 = e−α(log a)·|Reλ(H)|/2 ≤ e‖Reλ‖‖log a‖.

Combining all this yields

|Wλ(a)| ≤ 2Caρ(1 + ‖λ‖)(1 + ‖log a‖)e‖Reλ‖‖log a‖
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We conclude that on A+ the Whittaker coefficient Wλ is bounded and rapidly decreases to zero for
a → ∞ in A+. On A− the behaviour is completely different and Wλ does not go to zero for a → ∞
in A−. We summarize these two results in the following proposition. The estimate in this proposition is
stated such that it holds on the whole of A. It should be noted that the estimate is very bad on A+ but it
has the advantage that we do not need to distinguish between A+ and A− in future proofs. Furthermore,
we also return to the case of arbitrary unitary character χ of N .

Proposition 2.42. Suppose G = SL(2,R). There exists C > 0 such that for all λ ∈ a∗C with −1
2 ≤

Reλ(H) ≤ 1
2 and a ∈ A the following estimate is valid

|Wλ(a)| ≤ Caρ(1 + ‖λ‖)(1 + ‖log a‖)e‖Reλ‖‖log a‖.

Proof. We let γ ∈ R \ {0} be such that χ(nx) = eiγx. In order to avoid confusion we write in this proof
W γ
λ for the Whittaker coefficient associated to this character χ.

We first prove this statement for the case χ(nx) = eix, i.e. γ = 1. For a ∈ A− this result is a
restatement of Proposition 2.41. On A+ this estimate follows easily from Proposition 2.39. By this
proposition there exists a C > 0 such that |Wλ(a)| ≤ CaReλ for all a ∈ A+ and λ ∈ a∗C satisfying
−1

2 ≤ Reλ(H) ≤ 1
2 . So for a ∈ A+ we have∣∣W 1

λ (a)
∣∣ ≤ CeReλ(log a) ≤ Ce|Reλ(log a)| ≤ Ce‖Reλ‖‖log a‖

Since aρ ≥ 1 on A+ the estimate follows.
We will infer from this special case the statement for arbitrary γ. From our discussion in Section

2.6.1 we know W γ
λ = W−γλ so we can, without loss of generality, assume γ > 0. We fix a′ ∈ A such

that (a′)α = 1/γ. As shown in Section 2.6.1 we have W γ
λ (aa′) = (a′)−λ+ρW 1

λ (a) for all λ ∈ a∗C
with Reλ(H) > 0. Since both sides of this expression are holomorphic we conclude this holds for all
λ ∈ a∗C. We can now apply the above estimate for W 1

λ to find∣∣W γ
λ (a)

∣∣ =
∣∣W γ

λ ((aa′−1)a′)
∣∣ = (a′)−Reλ+ρ

∣∣W 1
λ (aa′−1)

∣∣
≤ C(a′)−Reλ+ρ(aa′−1)ρ(1 + ‖λ‖)(1 +

∥∥log(aa′−1)
∥∥)e‖Reλ‖‖log a‖

≤ C(a′)−Reλaρ(1 + ‖λ‖)(1 + ‖log a‖+
∥∥log a′

∥∥)e‖Reλ‖‖log a‖

≤ C ′aρ(1 + ‖λ‖)(1 + ‖log a‖)e‖Reλ‖‖log a‖.

Here C ′ > 0 is a constant large enough such that C(a′)−Reλ ≤ C ′ for all −1
2 ≤ Reλ(H) ≤ 1

2 .

Finally we exploit the fact that Wλ(a) depends holomorphically on λ to show, using the Cauchy
integral formula, that the derivatives of the Whittaker coefficient ∂kλWλ satisfy similar estimates on A.

Proposition 2.43. Suppose G = SL(2,R). For every k ∈ N there exists a Ck > 0 such that∣∣∣∂kλWλ(a)
∣∣∣ ≤ Ckaρ(1 + ‖λ‖)(1 + ‖log a‖)k+1

for all λ ∈ ia∗ and a ∈ A.

Proof. We fix an a ∈ A and λ0 ∈ ia∗. We know that the map λ 7→ Wλ(a) is holomorphic on a∗C hence
its derivative ∂kλWλ(a)

∣∣
λ=λ0

can be expressed using the Cauchy formula as

∂kλWλ(a)
∣∣
λ=λ0

=
1

2πi

∫
‖λ−λ0‖=r

Wλ(a)(λ− λ0)−k−1dλ

46



CHAPTER 2. WHITTAKER VECTORS

for all r > 0. If we impose that r ≤ 1
2 we can make, using the result of Proposition 2.42, the following

estimate for all a ∈ A∣∣∣∂kλWλ(a)
∣∣
λ=λ0

∣∣∣ ≤ 1

2π

∫
‖λ−λ0‖=r

|Wλ(a)| ‖λ− λ0‖−k−1 dλ

≤ 1

2π
· Length(‖λ− λ0‖ = r) · r−k−1 sup

|λ−λ0|=r
|Wλ(a)|

≤ C · r−kaρ(1 + ‖log a‖) sup
|λ−λ0|=r

(1 + ‖λ‖)e‖Reλ‖‖log a‖

with C > 0 a suitable constant independent of λ0.
We now select a particular value for r namely r = 1

2(1 + ‖log a‖)−1. Then we have 0 < r ≤ 1
2 .

Keeping in mind that λ0 ∈ ia∗ we have for all λwith ‖λ− λ0‖ = r that ‖Reλ‖ ≤ 1
2(1+‖log a‖)−1. So

for all such λ the inequality ‖Reλ‖ ‖log a‖ ≤ 1 holds. Furthermore, we have 1+‖λ‖ ≤ 1+‖λ0‖+r ≤
2(1 + ‖λ0‖). Using this the estimate∣∣∣∂kλWλ(a)

∣∣
λ0

∣∣∣ ≤ 2C · e · aρ(1 + ‖λ0‖)(1 + ‖log a‖)k+1

follows.

2.8 Whittaker functions

We begin this section by showing that the Whittaker coefficient satisfies a certain differential equation
on G. This will follow from the fact that we know precisely how the Casimir element acts on C∞(P :
ξ : λ), namely by a scalar. The fact that Wλ satisfies this differential equation will be used in several
proofs in Chapter 3. In this section however we use it to investigate the relationship between Wλ and
the classical notion of Whittaker functions.

In this section we again assume that G = SL(2,R) and χ(nx) = eix.

Proposition 2.44. The Whittaker coefficient satisfies the following differential equation on G

LΩWλ = (λ(H)2 − 1)Wλ.

Here Ω = H2 + 2XY + 2Y X is the Casimir element of sl(2,R) (see Section 1.9.1).

Proof. First, for any Z ∈ g, we observe

(LZWλ)(x) =
d

dt

∣∣∣
t=0

Wλ(exp(−tZ)x)

=
d

dt

∣∣∣
t=0

〈
π(x−1)π(exp(tZ))1λ, jλ

〉
=

〈
π(x−1)

d

dt

∣∣∣
t=0

π(exp(tZ))1λ, jλ

〉
=
〈
π(x−1)(π(Z)1λ), jλ

〉
.

By repeated application of this calculation we find

(LΩWλ)(x) =
〈
π(x−1)(π(Ω)1λ), jλ

〉
.

From Proposition 1.48 we know that the Casimir element Ω acts on C∞(P : 1 : λ) by the scalar
λ(H)2 − 1. We conclude that

(LΩWλ)(x) =
〈
π(x−1)(π(Ω)1λ), jλ

〉
= (λ(H)2 − 1)Wλ(x).
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2.8.1 Relation between Wλ and Whittaker functions.

We now make a brief digression to investigate the relation between the Whittaker coefficient and what
are called Whittaker functions on R. As a result we will derive an interesting result about the asymptotic
behaviour of Wλ on A+. It should be noted that this result is not required for our future proofs so in
principle this section may be safely skipped.

On R a Whittaker function is a function F : R→ R satisfying the Whittaker differential equation:

F ′′(x) +

(
1/4− ν2

x2
+
µ

x
− 1

4

)
F (x) = 0. (2.13)

Here ν, µ are parameters in C. These functions where first introduced by E.T. Whittaker and are studied
in detail in the classic text Whittaker and Whatson, “A course of modern analysis” ([WW27]). In this
section we will show that the Whittaker coefficient Wλ satisfies this differential equation if we make the
identification A ∼= (0,∞).

By the previous proposition we know that Wλ satisfies

LΩWλ = (λ(H)2 − 1)Wλ

with Ω = H2 + 2XY + 2Y X . As noted in Section 2.6 the Whittaker coefficient is determined by its
values on A hence it suffices to only consider the radial part of this differential equation. We introduce
the following notation

Z := Y −X =

(
0 −1
1 0

)
.

It is easily seen that Z ∈ k and in fact spans this subspace. As discussed in Section 2.6 we have that Wλ

is left K-invariant and on the right transforms as Wλ(xn) = χ(n)−1Wλ(x) for x ∈ G,n ∈ N . The left
K-invariance of Wλ immediately yields LWWλ = 0. For any a ∈ A we observe using transformation
behaviour on the right that

(LYWλ)(a) = (La−1LYWλ)(e) = (LAd(a−1)Y La−1Wλ)(e),

which equals, applying the result of Proposition 1.15,

= aα(LY La−1Wλ)(e) = −aα(RY La−1Wλ)(e)

= −aα d
dt

∣∣∣
t=0

(La−1Wλ)(exp(tY )) = −aα d
dt

∣∣∣
t=0

χ(exp(tY ))−1(La−1Wλ)(e)

= aαdχ(Y )Wλ(a).

We made the assumption that χ is given by χ(nx) = eix hence

(LYWλ)(a) = iaαWλ(a).

In order to make use of the fact that we know the action of LY and LZ on Wλ we rewrite Ω as

Ω = H2 + 2XY + 2Y X = H2 + 2H + 4Y X = H2 + 2H + 4Y 2 − 4Y Z.

We apply this to find that LΩ acts on Wλ as

(LΩWλ)(a) = (L2
H + 2LH + 4L2

Y − 4LY LZ)Wλ(a)

= (L2
H + 2LH)Wλ(a) + 4(iaα)2Wλ(a)

= (L2
H + 2LH)Wλ(a)− 4a2αWλ(a)
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We conclude that on A the Whittaker coefficient satisfies

[L2
H + 2LH − 4a2α]Wλ = (λ(H)2 − 1)Wλ.

We recall thatA ∼= a via the map exp: a→ A and that dim a = 1. Hence we have that a ∈ A is uniquely
determined by the value of aα ∈ (0,∞). So on A we can introduce the coordinate system x = 2aα.
A straightforward calculation reveals that in this coordinate system LH corresponds to −2x d

dx . We see
that in this coordinate system Wλ satisfies the differential equation

0 =

[
2x

(
d

dx

)2

− 2x
d

dx
− x2 + (1− λ(H)2)

]
Wλ(x)

=

[
4x2 d

2

dx2
− x2 + (1− λ(H)2)

]
Wλ(x)

We conclude, after dividing by 4x2, thatWλ satisfies the Whittaker differential equation with parameters
ν = λ(H)/2 and µ = 0, i.e.

d2Wλ(x)

dx2
+

[
1/4− (λ(H)/2)2

x2
− 1

4

]
Wλ(x) = 0.

The Whittaker differential equation has been well studied. We will take some of the results on Whittaker
functions for granted and use them to derive a result on the asymptotic behaviour of Wλ on A+. The
Whittaker differential equation has two singularities, one at x = 0 and one at x = ∞. The former is a
regular singularity and the latter is an irregular singularity. The solution space for the Whittaker differen-
tial equations is two dimensional. On (0,∞) there exists a basis {W+

µ,ν ,W
−
µ,ν} of this solution space of

which the asymptotic behaviour at the irregular singularity is particularly nice. In [WW27, Chapter XVI,
Section 16.4] the function Wµ,ν(z), which is a solution to the Whittaker equation, is defined as a multi-
valued function on C for |arg z| < 3

2π. We set W−µ,ν(x) := Wµ,ν(x) for x ∈ (0,∞). The function W+
µ,ν

we define as W+
µ,ν(x) := W−µ,ν(−x) for x ∈ (0,∞). Here we make the choice arg(−x) = π. These

functions both satisfy the Whittaker differential equation and are linearly independent. Furthermore, for
x→∞ we have

W−µ,ν(x) ∼ e−x/2xν and W+
µ,ν(x) ∼ ex/2x−ν

See for more details [WW27, Chapter XVI].
By making use of these facts we make the following interesting observation.

Proposition 2.45. Suppose G = SL(2,R) and χ(nx) = eix. For every λ ∈ a∗C there exists a c = cλ ∈
C such that

Wλ(a) ∼ c · e−aαaλ

for a→∞ in A+ (i.e. a = exp(tH) for t→∞).

Proof. The function Wλ(x) satisfies (2.13) with ν = λ(H)/2 and µ = 0. Since {W+
0,ν ,W

−
0,ν} is a basis

of solutions for this differential equation there exist constants c and c′ such that

Wλ(x) = c ·W−0,ν + c′ ·W+
0,ν .

From Proposition 2.39 we know that Wλ(x) → 0 for x → ∞. This implies that we must have c′ = 0
since W+

0,ν(x) ∼ ex/2xλ which clearly does not go to zero. We conclude that Wλ = c′ · W+
0,ν . By

substituting back x = 2aα we find Wλ(a) ∼ c · e−aα(aα)ν = c · e−aαaλ.
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Chapter 3

Transformations

In this chapter we introduce and study the Whittaker-Fourier transformation and the Harish-Chandra
transformation. First, in Section 3.1, we introduce two notions of Schwartz spaces on Lie groups that
are analogous to the familiar notion of Schwartz functions on Rn. These Schwartz spaces will be the
function spaces on which both the Whittaker–Fourier and the Harish-Chandra transformation are de-
fined. In Section 3.2 we introduce the Whittaker–Fourier transformation. In this section we will prove
some properties of this transformation. For this we make critical use of the estimates on the Whittaker
coefficient we derived in the previous chapter. In Section 3.3 we introduce the Harish-Chandra trans-
formation. The main question we study in this chapter is under what assumptions this Harish-Chandra
transformation maps into the space of Schwartz functions. Our main result is Proposition 3.11 which
shows that under suitable conditions the Harish-Chandra transformation does map into the space of
Schwartz functions when G = SL(2,R).

As in the previous chapter we let G be a connected semisimple Lie group with finite center. When-
ever necessary we will specialize to the case G = SL(2,R).

3.1 Schwartz spaces

In this section we introduce the notion of Schwartz functions on A and the notion of Schwartz functions
on G that transform on the right according to a unitary character of N .

On Rn we have the familiar Schwartz seminorms

pN,k(f) = max
|α|≤k

sup
x∈Rn

(1 + ‖x‖)N |∂αf(x)| for N, k ∈ N

and the Schwartz space

S(Rn) := {f ∈ C∞(Rn) | pN,k(f) <∞ for all N, k ∈ N}

which is equipped with the locally convex topology induced by the these seminorms.
If we pick a basis of a, i.e. an isomorphism φ : Rn → a, then we can transport the notion of Schwartz

functions to a. Keeping with the standard notation for Schwartz spaces on Lie groups and Lie algebras
we denote this Schwartz space by C (a). This space consists of functions f on a such that φ∗f ∈ S(Rn)
and is equipped with the topology induced by the seminorms pN,k ◦ φ∗. It is easily checked that this
space is defined independently of the basis chosen.

In light of Proposition 1.14 we see that exp: a → A is an isomorphism. We introduce a notion of
Schwartz space on A that corresponds to the Schwartz space C (a) under this isomorphism.
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Definition 3.1. We define the following collection of seminorms

pN,X(f) := sup
a∈A

(1 + ‖log a‖)N |(LXf)(a)| for N ∈ N, X ∈ U(a), f ∈ C∞(A).

Then the space of Schwartz functions on A is defined as

C (A) := {f ∈ C∞(A) | pN,X(f) <∞ for all N ∈ N, X ∈ U(a)}.

We equip this space with the locally convex topology induced by the seminorms pN,X .

It is a matter of routine verification to see that this space is a Fréchet space. It is also easily verified
that exp∗ : C (A)→ C (a) is an isomorphism.

Let χ be a unitary character of N . In this section we introduce, following [Wal92, Section 15.3], the
notion of a Schwartz space for functions f ∈ C∞(G) that transform according to χ when acted on from
the right by N . We denote

C∞(G/N ;χ) := {f ∈ C∞(G) | f(xn) = χ(n)f(x) for all x ∈ G,n ∈ N}.

Furthermore, we denote by aP : G→ A the Iwasawa projection with respect to the decomposition G =
KAN . We added the subscript in order to avoid confusion with the Iwasawa projection a = aP : G→ A
associated to the decomposition G = KAN .

Definition 3.2. We define the following collection of seminorms

qN,X(f) := sup
g∈G

aP (g)−ρ(1+
∥∥log aP (g)

∥∥)N |(LXf)(g)| forN ∈ N, X ∈ U(g), f ∈ C∞(G/N ;χ).

The corresponding Schwartz space is defined as

C (G/N ;χ) := {f ∈ C∞(G/N ;χ) | qN,X(f) <∞ for all N ∈ N, X ∈ U(g)}.

We equip this space with the locally convex topology induced by the seminorms qN,X .

Again it is a routine verification that the topology on C (G/N ;χ) is complete so this space is in fact
a Fréchet space.

Remark 3.3: For f ∈ C (G/N ;χ) and X ∈ U(g) we see that |LXf(xn)| = |LXf(x)| for x ∈ G
and n ∈ N . Using this and the Iwasawa decomposition G = KAN we observe that the Schwartz
seminorms on C (G/N ;χ) can alternatively be written as

qN,X(f) = sup
(k,a)∈K×A

a−ρ(1 + ‖log a‖)N |(LXf)(ka)| .

We denote byL2(G/N ;χ) the space of measurable functions f onG that satisfy f(xn) = χ(n)f(x)
for all x ∈ G,n ∈ N and |f | ∈ L2(G/N). This space we equip with the obvious L2-norm.

Proposition 3.4. The space C (G/N ;χ) is continuously included in L2(G/N ;χ).

Proof. Let N ∈ N be large enough such that∫
A

(1 + ‖log a‖)−2N da = C <∞.
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We let f ∈ C (G/N ;χ) and observe, using Proposition 1.37, that∫
G/N
|f(g)|2 d(gN) =

∫
K×A

|f(ka)|2 · a−2ρ dk da

≤ qN,1(f)2

∫
K×A

(1 + ‖log a‖)−2N dk da ≤ C · qN,1(f)2.

We conclude that f ∈ L2(G/N ;χ) and that C (G/N ;χ) ↪→ L2(G/N ;χ) is continuous.

We denote by C∞c (G/N ;χ) the space of functions f ∈ C∞(G/N ;χ) that satisfy |f | ∈ Cc(G/N).
If C ⊂ G/N is compact we denote by C∞C (G/N ;χ) the subspace of functions that satisfy supp |f | ⊂
C.

Proposition 3.5. The setC∞c (G/N ;χ) is a dense subset of C (G/N ;χ). Furthermore, for the subspace
of left K-invariant functions, we have that C∞c (G/N ;χ)K is dense in C (G/N ;χ)K .

Proof. For f ∈ C∞c (G/N ;χ) we have, by Remark 3.3, that

qN,X(f) = sup
(k,a)∈K×A

a−ρ(1 + ‖log a‖)N |(Xf)(ka)| .

This expression is finite for all N ∈ N and X ∈ U(g) since f is compactly supported in K × A. We
conclude that C∞c (G/N ;χ) ⊂ C (G/N ;χ).

We now prove the density assertion. Let f ∈ C (G/N ;χ) be arbitrary. In this proof we let ψ̃ be a
smooth bump function in C∞c (a) such that ψ̃|Ba(0;1) ≡ 1 and supp ψ̃ ⊂ Ba(0; 2). Define ψj ∈ C∞(G)

as ψj(kan) = ψ̃(1
j log a) for j ∈ N. By the rightN -invariance of ψj we see that ψj ·f ∈ C∞(G/N ;χ).

Per construction we have that supp |ψi| is compact in G/N . Hence we find ψj · f ∈ C∞c (G/N ;χ). We
now prove that ψj · f → f in C (G/N ;χ).

Consider X ∈ U(g) of the form X = X1 · · ·Xn with Xi ∈ g. Since any element in U(g) is a finite
linear combination of such terms it is enough to consider the seminorms qN,X with X of this form. For
any subset I ⊂ {1, ..., n} we write XI = Xi1 · · ·Xik where I = {i1 < · · · < ik}. Repeated use of the
Leibniz rule gives that for any f, g ∈ C∞(G) we have

LX(f · g) = LX1···Xn(f · g) =
∑

I⊂{1,...,n}

LXIf · LXIcg.

Using this we find

qN,X(f − ψjf) = sup
(k,a)∈K×A

a−ρ(1 + ‖log a‖)N |LX((1− ψj)f)(ka)|

≤
∑

I⊂{1,...,n}

sup
(k,a)∈K×A

a−ρ(1 + ‖log a‖)N |LXI (1− ψj)(ka)| |LXIcf(ka)|

≤
∑

I⊂{1,...,n}

[
sup

(k,a)∈K×A
(1 + ‖log a‖)−1 |LXI (1− ψj)(ka)|

]

·

[
sup

(k,a)∈K×A
a−ρ(1 + ‖log a‖)N+1 |LXIcf(ka)|

]

We observe that for a ∈ A such that ‖log a‖ < j we have ψj ≡ 1 on a neighbourhood around
kan (for any k ∈ K,n ∈ N ) this gives that LY (1 − ψj)(ka) = 0 for any Y ∈ U(g), k ∈ K
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and a ∈ A with ‖log a‖ < j. Hence the first factor in the above estimate can be estimated by
(1 + j)−1 sup(k,a)∈K×A |LXI (1− ψj)(ka)|. We obtain the estimate

qN,X(f − ψjf) ≤ (1 + j)−1
∑

I⊂{1,...,n}

[
sup

(k,a)∈K×A
|LXI (1− ψj)(ka)|

]
· qN+1,LXIc

(f).

To finish the proof we need to show that for any Y ∈ U(g) the value of sup(k,a)∈K×A ‖LY (1− ψj)(ka)‖
is uniformly bounded in j.

Let Y ∈ U(g). For any (k, a) ∈ K ×A we have, using that ψj is left K-invariant, that

LY ψj(ka) = Lk−1(LY ψj)(a) = LAd(k)−1X(Lk−1ψj)(a) = LAd(k)−1Xψj(a).

From the infinitesimal Iwasawa decomposition g = a ⊕ (k ⊕ n) and by the Poincaré–Birkhoff–Witt
theorem we know that we can decompose U(g) as U(g) = U(a) ⊕ U(g)(k ⊕ n). We denote by
P : U(g) → U(a) the projection along this decomposition. We observe that for any W ∈ k we have
(LWψj)(a) = 0 since ψj is left K-invariant. Furthermore, we have for any Y ∈ n that

(LY ψj)(a) = La−1LY ψj(e) = R(Ad(a)−1Y )∨(La−1ψj)(e) = 0

since Ad(a)−1Y ∈ n and La−1ψj is right N -invariant. Here we denote by U 7→ U∨ the canoni-
cal anti-automorphism of U(g). From this it follows that for any Z ∈ U(g) we have (LZψj)(a) =
(LP (Z)ψj)(a). Hence for Y ∈ U(g) we have

sup
(k,a)∈K×A

|LY ψj(ka)| = sup
(k,a)∈K×A

∣∣LAd(k)−1Y ψj(a)
∣∣ = sup

(k,a)∈K×A

∣∣LP (Ad(k)−1Y )ψj(a)
∣∣ .

Looking at the definition of ψj it is clear that for H ∈ a nonzero we have (LHψj)(expx) =
1
j (LHψ1)(exp(x/j)) for all x ∈ a and j ∈ N. Hence supa∈A |LHψj(a)| = 1

j supa∈A |LHψ1(a)|. From
this observation it follows that for any W ∈ U(a) we have supa∈A |LWψj(a)| ≤ supa∈A |LWψ1(a)|.
Applying this observation for W = P (Ad(k)−1Y ) we obtain the estimate

sup
(k,a)∈K×A

∣∣LP (Ad(k)−1Y )ψj(a)
∣∣ ≤ sup

(k,a)∈K×A

∣∣LP (Ad(k)−1)Y ψ1(a)
∣∣ = sup

(k,a)∈K×A
|LY ψ1(ka)| .

Finally we observe that because ψ1 is compactly supported inK×A the right hand side of this inequality
is finite for all Y ∈ U(g). This proves that sup(k,a)∈K×A |LY (1− ψj)(ka)| can be bounded uniformly
in j. We conclude that indeed ψj · f → f in C (G/N ;χ).

Since ψj is left K-invariant we see for every j ∈ N that ψj · f ∈ C∞c (G/N ;χ)K if f ∈
C (G/N ;χ)K . From this the second statement of the proposition follows. This concludes the proof.

3.2 Whittaker–Fourier transformation

Let χ be a regular unitary character of N . We define the Whittaker–Fourier transformation of a function
f ∈ C (G/N ;χ) as a function on ia∗ given by

(Fwhf)(λ) =

∫
G/N

f(g) ·Wλ(g) d(gN) for λ ∈ ia∗.

Here Wλ denotes the Whittaker coefficient associated to χ as introduced in Section 2.6. The transfor-
mation behaviour of both f and Wλ imply that f ·Wλ is right N -invariant so we can indeed consider
the integral of this quantity over G/N .
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A priori it is not clear whether this integral is convergent. In the next two propositions we will show
that the Whittaker–Fourier transformation is well-defined for f ∈ C (G/N ;χ) and actually defines
a continuous map Fwh : C (G/N ;χ) → C (ia∗). In this section we again restrict to the case G =
SL(2,R).

Proposition 3.6. SupposeG = SL(2,R). The map Fwh maps C (G/N ;χ) continuously into C∞(ia∗).

We equip C∞(ia∗) with the topology of uniform convergence of all derivatives on compact sets.

Proof. Let f ∈ C (G/N ;χ). We consider the integral∫
G/N
|f(g)|

∣∣∣∂kλWλ(g)
∣∣∣ d(gN).

We apply Proposition 1.37 but with the subgroup N replaced by N . This corresponds to replacing Σ+

by −Σ+ as choice of positive roots hence we find that ρ is replaced by ρP = −ρ. We obtain∫
G/N
|f(g)|

∣∣∣∂kλWλ(g)
∣∣∣ d(gN) =

∫
K×A

|f(ka)|
∣∣∣∂kλWλ(a)

∣∣∣ · a−2ρ dk da.

Using the results of Proposition 2.43 we see that for all N ∈ N this can be estimated by

≤ qN,1(f) ·
∫
K×A

[aρ(1 + ‖log a‖)−N ][aρ(1 + ‖log a‖)k+1(1 + ‖λ‖)] · a−2ρ dk da

≤ qN,1(f)(1 + ‖λ‖)
∫
A

(1 + ‖log a‖)−N+k+1 da = C · qN,1(f)(1 + ‖λ‖). (3.1)

Here C =
∫
A(1+‖log a‖)−N+k+1 da which is finite forN large enough. From this we conclude, using

that the dominated convergence theorem, that Fwh ∈ C∞(ia∗) and that for k ∈ N we have

∂kλ(Fwhf)(λ) =

∫
G/N

f(g) · ∂kλWλ(g) d(gN).

From the estimate it also follows that on any compact in ia∗ the expression
∣∣∂kλFwhf(λ)

∣∣ is bounded
by C ′qN,1(f) for some C ′ > 0 and N ∈ N. We conclude that Fwh does indeed map C (G/N ;χ)
continuously into C∞(ia∗).

Proposition 3.7. Suppose G = SL(2,R). The map Fwh maps C (G/N ;χ) continuously into C (ia∗).

For the proof of this proposition we need the following observation.

Lemma 3.8. For φ ∈ C∞(G/N) and ψ ∈ C∞c (G/N) the following ‘partial integration rule’ holds∫
G/N

(LXφ)(g) · ψ(g) d(gN) =

∫
G/N

φ(g) · (LX∨ψ(g)) d(gN).

Proof. Because the measure d(gN) is left G-invariant we have∫
G/N

(Lxφ)(g) · (Lxψ)(g) d(gN) =

∫
G/N

φ(g) · ψ(g) d(gN)
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for all x ∈ G. The function ψ is compactly supported in G/N hence we can differentiate with respect
to x under the integral sign. If we set x = exp(tX), for X ∈ g, and take the derivative with respect to t
we obtain ∫

G/N
(LXφ)(g) · ψ(g) d(gN) = −

∫
G/N

φ(g) · (LXψ(g)) d(gN).

From this the lemma follows.

Proof of Proposition 3.7. For this proof we will make use of the fact that the function Wλ satisfies the
differential equation LΩWλ = (λ(H)2 − 1)Wλ (see Proposition 2.44). For simplicity we will denote
sλ := λ(H)2 − 1.

For λ ∈ ia∗ we have λ(H) ∈ iR and using this we observe

|sλ| =
∣∣λ(H)2 − 1

∣∣ = 1− λ(H)2 = 1 + |λ(H)|2 = 1 + ‖λ‖2 .

From this it follows that |sλ| ≥ 1 and a constant c > 0 exists such that (1 + ‖λ‖) ≤ c |sλ| holds for all
λ ∈ ia∗. We conclude that for any k,N ∈ N and φ ∈ C∞(ia∗) we have

sup
λ∈ia∗

(1 + ‖λ‖)N
∣∣∣∂kλφ(λ)

∣∣∣ ≤ cN sup
λ∈ia∗

∣∣∣sNλ · ∂kλφ(λ)
∣∣∣ .

So in order to prove the result it suffices to show that for f ∈ C (G/N ;χ) the expression
supλ∈ia∗

∣∣sNλ ∂kλ(Fwhf)(λ)
∣∣ is bounded for all k,N ∈ N.

First we make the following observation. Suppose f ∈ C∞c (G/N ;χ). For k,N ∈ N we have, using
LΩWλ = sλWλ, that

∂kλ(sNλ Fwhf)(λ) =

∫
G/N

f(g) · ∂kλ(sNλ Wλ(g)) d(gN)

=

∫
G/N

f(g) · ∂kλ(LNΩWλ(g)) d(gN)

=

∫
G/N

f(g) · LNΩ (∂kλWλ(g)) d(gN).

Because f is compactly supported we can apply the ‘partial integration rule’ of Lemma 3.8. Using that
Ω∨ = Ω we obtain

∂kλ(sNλ Fwhf)(λ) =

∫
G/N

(LNΩ f)(g) · ∂kλWλ(g) d(gN).

By applying the estimate in (3.1), that was obtained in the proof of Proposition 3.6, to the above integral
we obtain the following∣∣∣∂kλ(sNλ Fwhf)(λ)

∣∣∣ ≤ C · qM,1(LNΩ f)(1 + ‖λ‖) = C · qM,ΩN (f)(1 + ‖λ‖). (∗)

With constants C > 0 and M ∈ N depending only on k and N . For λ ∈ ia∗ fixed both sides of this in-
equality depend continuously on f with respect to the Schwartz topology (see Proposition 3.6). Because
C∞c (G/N ;χ) lies dense in C (G/N ;χ) we conclude that this estimate holds for all f ∈ C (G/N ;χ).

We now make the following claim.
Claim: For every k,N ∈ N there exists a continuous seminorm p on C (G/N ;χ) such that

sup
λ∈ia∗

∣∣∣sNλ ∂kλ(Fwhf)(λ)
∣∣∣ ≤ p(f)
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for all f ∈ C (G/N ;χ).
From the above discussion it follows that this claim immediately implies the statement of the propo-

sition. In order to prove this claim we proceed by induction on k. For k = 0 we obtain from the above
estimate (∗) that for any N ∈ N∣∣∣sN+1

λ Fwhf(λ)
∣∣∣ ≤ C · qM,ΩN+1(f) · (1 + ‖λ‖)

Dividing by sλ and using that (1 + ‖λ‖)/ |sλ| ≤ c shows that the claim indeed holds for k = 0. Now let
k > 0 and assume our claim holds for all k′ < k. We let N ∈ N arbitrary. We observe that

∂kλ(sN+1
λ Fwhf)(λ) = sN+1

λ · ∂kλ(Fwhf)(λ) +
k∑
i=1

∂iλ(sN+1
λ ) · ∂k−iλ (Fwhf)(λ).

From this we obtain the following estimate

∣∣∣sN+1
λ ∂kλ(Fwhf)(λ)

∣∣∣ ≤ ∣∣∣∂kλ(sN+1
λ Fwhf)(λ)

∣∣∣+
k∑
i=1

∣∣∣∂iλ(sN+1
λ ) · ∂k−iλ (Fwhf)(λ)

∣∣∣ .
For the first term on the right hand side we see from the estimate (∗) with k = 0 that a continuous
seminorm p on C (G/N ;χ), depending N , exists such that∣∣∣∂kλ(sN+1

λ Fwhf)(λ)
∣∣∣ ≤ p(f) · (1 + ‖λ‖).

In order to estimate the second term we observe, recalling that sλ = λ(H)2 − 1, that for i = 1, ..., k
the expression ∂iλ(sN+1

λ ) is a polynomial in λ(H) of degree at most 2N + 1. From this it follows that

a C ′ > 0 exists such that
∣∣∣∂iλ(sN+1

λ )
∣∣∣ ≤ C ′(1 + ‖λ‖2)N+1 = C ′

∣∣∣sN+1
λ

∣∣∣ for all λ ∈ ia∗. We obtain the
bound

k∑
i=1

∣∣∣∂iλ(sN+1
λ ) · ∂k−iλ (Fwhf)(λ)

∣∣∣ ≤ C ′ k∑
i=1

∣∣∣sN+1
λ ∂k−iλ (Fwhf)(λ)

∣∣∣
Applying the induction hypothesis to the terms

∣∣∣sN+1
λ ∂k−iλ (Fwhf)(λ)

∣∣∣ yields that a continuous semi-

norm p′ of C (G/N ;χ) exist such that

C ′
k∑
i=1

∣∣∣sN+1
λ ∂k−iλ (Fwhf)(λ)

∣∣∣ ≤ p′(f)

for all f ∈ C (G/N ;χ). Combining the estimates for both terms yields∣∣∣sN+1
λ ∂kλ(Fwhf)(λ)

∣∣∣ ≤ p(f) · (1 + ‖λ‖) + p′(f) = [p(f) + p′(f)](1 + ‖λ‖).

Dividing by |sλ| and again using that (1 + ‖λ‖)/ |sλ| ≤ c show that the claim holds true for k. We
conclude that the claim holds for all k ∈ N. This finishes the proof.
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3.3 Harish-Chandra transformation

In this section we introduce what is called the Harish-Chandra transformation. We return to the general
case thatG is a connected semisimple Lie group with finite center. We let χ be a, not necessarily regular,
character of N . For f ∈ C (G/N ;χ) we define the Harish-Chandra transformation of f as a function
on MA given by

(Hf)(ma) := aρ
∫
N
f(man) dn for ma ∈MA.

A priori it is not clear that this integral converges for all ma ∈ MA. Our first objective is to show that
this is the case and that the function defined in this way is in fact smooth on MA. The proofs presented
for the following two lemmas are based on [Wal92, Section 15.3.2].

Lemma 3.9. The mapH maps C (G/N ;χ) continuously into C∞(MA).

Proof. Again we denote aP : G → A the Iwasawa projection associated to the decomposition G =
KAN . We let f ∈ C (G/N ;χ) and X ∈ U(m ⊕ a) arbitrary. We observe that for ma ∈ MA and
N ∈ N we have

aρ
∫
N
|LXf(man)|dn ≤ qN,X(f)aρ

∫
N

(aP (man))ρ(1 +
∥∥log aP (man)

∥∥)−N dn.

Since m ∈ K we have aP (man) = aP (an). Furthermore, we have aP (an) = aP (Ca(n))a. Substitut-
ing this yields that the the above integral equals

qN,X(f) · a2ρ

∫
N
aP (Ca(n))ρ(1 +

∥∥log aP (Ca(n)) + log a
∥∥)−N dn.

By applying the substitution of variables ana−1 7→ n (see Proposition 1.39) we see this equals

qN,X(f)

∫
N
aP (n)ρ(1 +

∥∥log aP (n) + log a
∥∥)−N dn

≤qN,X(f)(1 + ‖log a‖)N
∫
N
aP (n)ρ(1 +

∥∥log aP
∥∥)−N dn.

Here we used the inequality (1 + ‖x+ y‖)−N ≤ (1 + ‖x‖)N (1 + ‖y‖)−N for all x, y ∈ a to obtain the
estimate. In Lemma 3.10 below we prove that the integral under consideration∫

N
aP (n)ρ(1 +

∥∥log aP (n)
∥∥)−N dn

is finite for N large enough. We conclude that a constant C > 0 exists such that∫
N
|LXf(man)| dn ≤ C(1 + ‖log a‖)NqN,X(f). (3.2)

Since X ∈ U(m ⊕ a) was arbitrary it follows from the dominated convergence theorem that ma 7→∫
N f(man) defines a smooth function on MA. The factor aρ(1 + ‖log a‖))N is bounded on com-

pacts subsets of MA. Hence for each compact subset a C ′ > 0 exists such that on this compact
set |(LXHf)(ma)| ≤ C ′qN,X(f) for all f ∈ C (G/N ;χ). We conclude that H : C (G/N ;χ) →
C∞(MA) is indeed continuous.
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Lemma 3.10. For d > 0 sufficiently large the integral∫
N
aP (n)ρ(1 +

∥∥log aP (n)
∥∥)−d dn

is finite.

Proof. We derive this fact from a result that was originally obtained by Harish-Chandra. In [HC58] it is
proved that the integral ∫

N
e−ρ(H(n))(1 + ρ(H(n)))−d dn

is finite for d > 0 sufficiently large. A straightforward computation reveals that aP (g) = aP (θg)−1 for
g ∈ G. Using this we can write the above integral as∫

N
e−ρ(H(n))(1 + ρ(H(n)))−d dn =

∫
N

(aP (θn))ρ(1− ρ(log aP (θn)))−d dn.

The Cartan involution θ is an isomorphism between N and N hence θ∗ dn = dn. Using this we make
the substitution of variables θn 7→ n and obtain that the above integral equals∫

N
(aP (n))ρ(1− ρ(log aP (n)))−d dn.

On a we define the norm
‖H‖ρ :=

1

2

∑
α∈Σ+

dim(gα) |α(H)| .

For n ∈ N and α ∈ Σ+ we have α(log aP (n)) = −α(H(θn)) < 0 (the inequality follows from Lemma
1.16). Per definition of the norm ‖·‖ρ we now have

−ρ(log aP (n)) =
1

2

∑
α∈Σ+

dim(gα)[−α(log aP (n))] =
∥∥log aP (n)

∥∥
ρ
.

Since a is finite-dimensional the norms ‖·‖ and ‖·‖ρ are equivalent. We conclude that a constant c > 0
exists such that

aP (n)ρ(1+
∥∥log aP (n)

∥∥)−d ≤ c ·(aP (n))ρ(1+
∥∥log aP (n)

∥∥
ρ
)−d = c ·(aP (n))ρ(1−ρ(log aP (n)))−d.

Integrating both sides over N yields∫
N
aP (n)ρ(1 +

∥∥log aP (n)
∥∥)−d dn ≤

∫
N

(aP (n))ρ(1− ρ(log aP (n)))−d dn <∞.

We have now established that H maps C (G/N ;χ) into C∞(MA). As a result f 7→ Hf |A maps
into C∞(A). We may ask ourselves whether the Harish-Chandra transformation actually maps into
C (A). It is claimed in Lemma 15.3.2 of [Wal92] that this is indeed the case. However it turns out that
an amendment must be made to the statement of this lemma. For the result to hold we must assume χ to
be regular. The fact that this lemma did not hold for χ non-regular was first pointed out in [vdBK]. In
Remark 3.3.1 we confirm that this is the case by constructing a counterexample. Recently it was shown
in a preprint by Wallach (see [Wal]) that the lemma, with the amendment that χ is regular, does hold.
It must be noted that this thesis project was started before the publication of this preprint. By different
means than used by Wallach we will prove the following partial result for SL(2,R).

Proposition 3.11. Suppose G = SL(2,R) and that χ is regular. The Harish-Chandra transformationH
maps C (G/N ;χ)K , the left K-invariant elements of C (G/N ;χ), continuously into C (A).
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3.3.1 Counterexample

In this section we illustrate that the Harish-Chandra transformation does not necessarily map C (G/N ;χ)
into C (A) if the character χ is not regular.

We consider the case G = SL(2,R) and chose χ to be the only non-regular character of N , i.e.
χ ≡ 1. We let ψ be a compactly supported smooth function on a such that ψ ≥ 0 and ψ ≡ 1 on the subset
[−1, 1]·H ⊂ a. Then if we set f(kan) = ψ(log a) we easily see that f ∈ C∞c (G/N ;χ) ⊂ C (G/N ;χ).
For a ∈ A we observe, using Proposition 1.39, that

(Hf)(a) = aρ
∫
N
f(an) dn = aρ

∫
N
f((ana−1)a) dn

= a−ρ
∫
N
f(na) dn = a−ρ

∫
N
ψ(log aP (n) + log a) dn.

Since ψ ≥ 0 and ψ|[−1,1]·H ≡ 1 we see that this expression can be bounded from below as follows

(Hf)(a) ≥ a−ρ
∫
N
1[−1,1]·H(log aP (n) + log a) dn = a−ρ · Vol(Ra)

with Ra := {n ∈ N | −1 ≤ ρ(log aP (n) + log a) ≤ 1}. If we write a = exp(tH) and n = nx for
t, x ∈ R we see

− 1 ≤ ρ(log aP (n) + log a) ≤ 1⇐⇒ −1 ≤ −1

2
log(1 + x2) + t ≤ 1

⇐⇒− 2(1 + t) ≤ log(1 + x2) ≤ 2(1 + t)⇐⇒ e−2(1+t) − 1 ≤ x2 ≤ e2(1+t) − 1.

For t ≥ 1 we have e−2(1+t) − 1 ≤ 0 and e2(1+t) − 1 ≥ 0 hence Ra = {nx | 0 ≤ x ≤ (e2(1+t) − 1)1/2}
for a = exp(tH) with t ≥ 1. We see that Vol(Ra) = (e2(1+t) − 1)1/2 for such a. It now follows that

Hf(a) ≥ a−ρ · Vol(Ra) = e−t(e2(1+t) − 1)1/2 t→∞−−−→ e.

From this we conclude that lima→∞,A+(Hf)(a) 6= 0 so we have in particular thatHf 6∈ C (A).
We note that in the construction of this counterexample the assumption that χ = 1 was vital. In

order to obtain a lower bound for the expressionHf we used that χ does not oscillate and is everywhere
positive. This also sheds some light on why H might map into C (A) if χ is regular, since in this case
oscillating behaviour of χ will average out contributions from different parts of the integral resulting in
better behaviour ofHf(a) in the variable a.

3.3.2 Proof of Proposition 3.11

In this section we will show that if G = SL(2,R) and χ is regular then the Harish-Chandra transforma-
tion maps C (G/N ;χ)K into C (A). We will do this by exhibiting the map H as a composition of the
Fourier transformation and the Whittaker–Fourier transformation. From our knowledge that both these
functions do map Schwartz functions to Schwartz functions we will be able to conclude our result.

In this section we assume that χ is regular. Our first step will be to investigate the behaviour of the
function Hf when f ∈ C∞c (G/N ;χ). For this discussion the assumption G = SL(2,R) is not yet
necessary so for the sake of generality we assume thatG is a connected semisimple Lie group with finite
center. We will specialize to SL(2,R) later. We do however assume that χ is a regular unitary character.

The set ∆ = {α1, ..., αn} of simple roots is a basis of a∗. In this section we denote by (β1, ..., βn)
the dual basis of a∗ relative to 〈·, ·〉. Furthermore, we denote for r ∈ R,

Ar := {a ∈ A | βi(log a) ≥ r for all i = 1, ..., n}.
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Lemma 3.12. Suppose C ⊂ G/N is compact. Then there exists a constant r ∈ R such that all
f ∈ C∞C (G/N ;χ) satisfy suppHf ⊂MAr.

Proof. Since |f | ∈ C∞(G/N) is supported in C there exists a number R > 0 (depending only on C)
such that supp f ⊂ K × exp(Ba(0;R)) × N . Here Ba(0;R) denotes the open ball in a of radius R
with respect to the norm induced by the Cartan inner product. Hence log aP (g) 6∈ Ba(0;R) implies
f(g) = 0. Because the set Ba(0;R) is bounded there exists a constant r ∈ R such that r < βi(H) for
all H ∈ Ba(0;R) and i = 1, ..., n.

Now if ma ∈ MA \ MAr then βi(log a) < r for some i ∈ {1, ..., n}. From the identity
log aP (n) = −H(θn) for n ∈ N and Lemma 1.16 it follows that

log aP (N) ⊂ −
∑
α∈Σ+

R≥0Hα.

The element βi ∈ a∗ is such that βi(Hαj ) = 〈βi, αj〉 = δij for j = 1, ..., n hence βi(log aP (n)) ≤ 0
for all n ∈ N . Now we observe that for any n ∈ N ,

log aP (man) = log aP (Ca(n)a) = log aP (Ca(n)) + log a.

Because Ca(n) ∈ N we have βi(log aP (Ca(n))) ≤ 0. Combining this with βi(log a) < r gives

βi(log aP (man)) = βi(log a) + βi(log aP (Ca(n))) < r.

Since every H ∈ Ba(0;R) satisfies βi(H) > r we conclude log aP (man) 6∈ Ba(0;R). From this it
follows that if ma ∈MA \MAr then f(man) = 0 for all n ∈ N hence

Hf(man) = aρ
∫
N
f(man) dn = 0.

We conclude that indeed suppHf ⊂MAr.

Lemma 3.13. Suppose λ ∈ a∗C is such that 〈Reλ, α〉 > 0 for all α ∈ Σ+. Then for f ∈ C∞c (G/N ;χ)
we have a−λHf ∈ C (A).

Here we used the shorthand a−λ for the function a 7→ a−λ on A.

Proof. We fix an f ∈ C∞c (G/N ;χ). We want to show that for every X ∈ U(a) and N ∈ N we have
qN,X(a−λHf) < ∞. Using the Leibniz rule and the fact that LHa−λ = −λ(H)a−λ for all H ∈ a we
see that LX(a−λHf) is a finite linear combination of terms of the form a−λLY (Hf) with Y ∈ U(a).
Hence we find it suffices to show that supa∈A(1 + ‖log a‖)N

∣∣a−λLY (Hf)
∣∣ <∞ for all N ∈ N.

From the estimate in (3.2), which was obtained in the proof of Lemma 3.9, we see that constants
C > 0 and N ∈ N exists such that

|LYHf(a)| = |(HLY f)(a)| ≤ C(1 + ‖log a‖)N .

From Lemma 3.12 we know that a constant r ∈ R exists such that suppHf ⊂ Ar. Combining this we
see that

sup
a∈A

(1 + ‖log a‖)N
∣∣∣a−λLY (Hf)

∣∣∣ ≤ C sup
a∈Ar

(1 + ‖log a‖)N+da−Reλ.

We will prove that the expression on the right hand side is finite. For convenience we set M = N + d
and ar := {H ∈ a | βi(H) ≥ r for all i = 1, ..., n} (so that Ar = exp ar).
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We retain the enumeration ∆ = {α1, ..., αn} of simple roots introduced in the above discussion. If
we set Hi := Hαi then the set (H1, ...,Hn) is a basis of a. We denote by (x1, ..., xn) the coordinates on
a induced by this basis. It is readily verified that if H = x1H1 + · · ·+ xnHn then βi(H) = xi for i =
1, ..., n. From this it follows that if H ∈ ar then xi ≥ r for all i = 1, ..., n. We set ci := 〈Reλ, αi〉 > 0.
Using this notation we have Reλ(H) =

∑
i xi Reλ(Hi) =

∑
i xi 〈Reλ, αi〉 =

∑
i ci · xi.

For x ∈ R with x ≥ r we have

x = (x− r) + r = |x− r|+ r ≥ |x| − |r|+ r ≥ |x| − 2 |r| .

Now for H =
∑

i x
iHi ∈ ar (hence xi ≥ r) we find the following

Reλ(H) = c1x
1 + · · ·+ cnx

n ≥ c1

∣∣x1
∣∣+ · · ·+ cn |xn| − 2(c1 + · · ·+ cn) |r| .

Setting C = 2(c1 + · · ·+ cn) |r| gives

Reλ(H) ≥ (min
i
ci)(
∣∣x1
∣∣+ · · ·+ |xn|)− C.

On a we define the norm
∥∥∑

i y
iHi

∥∥
1

:=
∑

i

∣∣yi∣∣, so we have

Reλ(H) ≥ (min
i
ci) ‖H‖1 − C.

Since a is finite-dimensional the norms ‖·‖1 and ‖·‖ are equivalent. Hence there exists a δ > 0 such that

Reλ(H) ≥ δ ‖H‖ − C.

Using this estimate we now find

sup
a∈Ar

(1 + ‖log a‖)Ma−Reλ = sup
H∈ar

(1 + ‖H‖)Me−Reλ(H)

≤ sup
H∈ar

(1 + ‖H‖)Me−δ‖H‖+C

= eC sup
H∈ar

(1 + ‖H‖)Me−δ‖H‖ <∞.

This concludes the proof.

In Section 3.2 we showed that for f ∈ C (G/N ;χ) the Whittaker–Fourier transformation Fwhf is
defined on ia∗ and is of Schwartz type as a function on ia∗. For this we used various estimates on the
growth behaviour of Wλ on A. If we instead take f to be compactly supported, i.e. f ∈ C∞c (G/N ;χ)
then it turns out that the expression Fwhf can be interpreted on the whole of a∗C. Furthermore, by
exploiting that the support of f ·Wλ is compact in G/N no assumptions on the behaviour of Wλ are
needed.

Lemma 3.14. The Whittaker–Fourier transformation Fwh maps C∞c (G/N ;χ) into O(a∗C), the space
of holomorphic functions on a∗C.

Proof. Let f ∈ C∞c (G/N ;χ). For λ ∈ a∗C we consider the expression

(Fwhf)(λ) =

∫
G/N

f(g)Wλ(g) d(gN).

Because |f | is compactly supported in G/N this integral is absolutely convergent for all λ ∈ a∗C. Fur-
thermore, we can differentiate with respect to λ under the integral sign. Because, for g ∈ G fixed,
Wλ(g) depends on λ in a holomorphic fashion we conclude that Fwhf defines a holomorphic function
on a∗C.
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We define F : L1(A)→ C0(ia∗), an analogue of the classical Fourier transformation, as follows

(Ff)(λ) =

∫
A
a−λf(a) da.

Identifying A ∼= a ∼= Rn and ia∗ ∼= Rn we see that this map corresponds to the familiar Fourier
transformation map F : L1(Rn)→ C0(Rn). Keeping this in mind we easily see that F as defined above
restricts to an isomorphism F : C (A)→ C (ia∗). Its inverse is given by

(F−1f)(a) =

∫
ia∗
aλf(a) dλ.

The next step toward the proof of Proposition 3.11 is to show the following identity

(FHf)(λ) = (Fwhf)(λ) (3.3)

holds for f ∈ C∞c (G/N ;χ)K and λ ∈ a∗C satisfying 〈Reλ, α〉 > 0 for all α ∈ Σ+.
From now on we must again assume that G = SL(2,R). The reader should take note however

that throughout the following arguments this assumption is only used when properties of the Whittaker
coefficient (and by extension, properties of Fwh) are used. Most calculations however go through (at
least formally) for general G.

Lemma 3.15. Suppose G = SL(2,R). For all λ ∈ a∗C with 〈Reλ, α〉 > 0 and f ∈ C∞c (G/N ;χ)K the
identity (3.3) holds.

Proof. We fix λ and f as in the statement of the lemma. From Lemma 3.13 we know that a−λHf ∈
C (A). So in particular we have a−λHf ∈ L1(A). Using that f is left K-invariant we see that
a−λH(ma) = a−λH(a) so the expression

ma 7→ a−λ+ρ

∫
N
f(man) dn

defines an element of L1(MA). From Fubini’s theorem it now follows that a−λ+ρf ∈ L1(MAN).
Now we observe, using the left K-invariance of f , that

(FHf)(λ) =

∫
A
a−λ(Hf)(a) da =

∫
AN

a−λ+ρf(an) da dn

=

∫
MAN

a−λ+ρf(man) dm dadn.

We note that this integral converges absolutely since a−λ+ρf ∈ L1(MAN). We define the measureable
function ψ : G → C as ψ(mann) = a−λ+ρχ(n)−1 on the big Bruhat cell MANN and set it zero
outside (recall that the complement of MANN is of measure zero in G). We define Φ, a measurable
function on G, as Φ = ψ ·f . We observe that Φ(man) = ψ(man)f(man) = a−λ+ρf(man) on MAN
so we can write

(FHf)(λ) =

∫
MAN

Φ(man) dm da dn.

We have Φ(gn) = Φ(g) for all g ∈ G and n ∈ N . So applying Proposition 1.38 and then Proposition
1.37 yields

(FHf)(λ) =

∫
G/N

Φ(g) d(gN) =

∫
K×A

a−2ρΦ(ka) dk da.
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Per assumption we have that f is left K-invariant hence

(FHf)(λ) =

∫
K×A

ψ(ka)f(ka) · a−2ρ dk da =

∫
A

[∫
K
ψ(ka) dk

]
f(a) · a−2ρ da

We now investigate the integral
∫
K ψ(ka) dk. We temporarily make the assumption that 〈Reλ− ρ, α〉 >

0. In this case the function jλ = j(P : 1 : −λ)(1) is given by jλ(nman) = χ(n)−1aλ−ρ on NMAN
(see Section 2.4). For any x = mann in MANN we observe

ψ(x) = ψ(mann) = a−λ+ρχ(n)−1 = jλ(n−1m−1a−1n−1) = jλ(x−1).

Since the complement of NP in G has measure zero we conclude that ψ(x) = jλ(x−1) holds almost
everywhere. Substituting this yields∫

K
ψ(ka) dk =

∫
K
jλ(a−1k−1) dk.

We note that K is unimodular so d(k−1) = dk. The substitution of variables k 7→ k−1 yields that this
integral is equal to ∫

K
jλ(a−1k) dk =

〈
1λ, π1,−λ(a)jλ

〉
= Wλ(a).

We conclude that
∫
K ψ(ka) dk equals the integral expression for Wλ as derived in Section 2.6.1. In

the discussion in this section it is observed that this integral expression for Wλ, although initially only
defined for 〈Reλ− ρ, α〉 > 0, actually holds for all λ ∈ a∗C with 〈Reλ, α〉 > 0. From this we conclude
that ∫

K
ψ(ka) dk = Wλ(a)

holds for all λ ∈ a∗C with 〈Reλ, α〉 > 0.
We now substitute this in our expression for FHf . We use that both Wλ and f are left K-invariant

to find ∫
A

[∫
K
ψ(ka) dk

]
f(a) · a−2ρ da =

∫
A
Wλ(a)f(a) · a−2ρ da

=

∫
K×A

Wλ(ka)f(ka) · a−2ρ dk da =

∫
G/N

Wλ(g)f(g) d(gN) = (Fwhf)(λ).

The assumption that 〈Reλ, α〉 > 0 for all α ∈ Σ+ is crucially used in the proof of this lemma to
ensure that a−λ+ρf ∈ L1(MAN). Hence we can not use the techniques used in this proof to show
that the identity (3.3) holds for λ ∈ ia∗. We can however, using an approximation argument, show that
Hf = F−1Fwhf holds.

Lemma 3.16. Suppose G = SL(2,R). The identity

Hf = F−1Fwhf

holds for all f ∈ C∞c (G/N ;χ)K .
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Proof. We let f ∈ C∞c (G/N ;χ) and let 0 < ε < 1/2 arbitrary. Then by Lemma 3.15 we have for all
λ ∈ ia∗ that

(FHf)(λ+ ερ) = (Fwhf)(λ+ ερ). (∗)

In light of Lemma 3.13 we have that a−ερHf ∈ C (A). Using this it is readily seen that

(FHf)(λ+ ερ) = F(a−ερHf)(λ).

If we set φε : ia∗ → C : λ 7→ (Fwhf)(λ + ερ) then (∗) implies that φε = F(a−ερFf) on ia∗. Because
F maps C (A) into C (ia∗) we find φε = F(a−ερHf) ∈ C (ia∗). We can now apply the Fourier inverse
to this to find

a−ερHf(a) = (F−1φε)(a) for all a ∈ A.

We now fix an a ∈ A. It is clear that a−ερHf(a)
ε↓0−−→ Hf(a). So in order to finish the proof it is enough

to show (F−1φε)(a)
ε↓0−−→ (F−1Fwhf)(a).

We observe that

(F−1φε)(a) =

∫
ia∗
aλφε(λ) dλ =

∫
ia∗
aλ(Fwhf)(λ+ ερ) dλ = a−ερ

∫
ia∗
aλ+ερ(Fwhf)(λ+ ερ) dλ

We consider the integral∫
ia∗
aλ+ερ(Fwhf)(λ+ ερ) dλ =

∫
ia∗+ερ

aµ(Fwhf)(µ) dµ.

We will show that the above integral is independent of ε using the Cauchy integral formula. For this we
note that because G = SL(2,R) we have that a∗C is of complex dimension one. We consider the closed
rectangular path γR in a∗C going from (ε − iR)ρ to (ε + iR)ρ, to iRρ, to −iRρ and back to (ε − iR)ρ.
We observe that aµ(Fwhf)(µ) is holomorphic in µ so

∫
γR
aµ(Fwhf)(µ) dµ = 0 by the Cauchy integral

formula. From the estimate we obtain in Lemma 3.17 (see below, recall ε < 1/2) we get that on the
smaller sides of this rectangle (those are the segments from (ε + iR)ρ to iRρ and −iRρ to (ε − iR)ρ)
the integrand aµ(Fwhf)(µ) can be estimated by

|aµ(Fwhf)(µ)| ≤ aερ |Fwhf(µ)| ≤ C(1 + ‖Imµ‖)−1 = C(1 +R)−1

for some C > 0. Since the length of these sides equals ε (and as a result is independent of R) we find
that the contributions of these sides to the integral

∫
γR
aµ(Fwhf)(µ) dµ vanishes for R → ∞. Hence

taking the limit R→∞ yields∫
ia∗
aµ(Fwh)(µ) dµ =

∫
ερ+ia∗

aµ(Fwh)(µ) dµ.

From this it now follows that

(F−1φε)(a) = a−ερ
∫
ia∗
aµ(Fwh)(µ) dµ = a−ερ(F−1Fwhf)(a)

ε↓0−−→ (F−1Fwhf)(a).

This proves the lemma.

Lemma 3.17. Suppose G = SL(2,R). For every f ∈ C∞c (G/N ;χ) there exists a C > 0 such that

|Fwhf(λ)| ≤ C(1 + ‖Imλ‖)−1

holds for all λ ∈ a∗C satisfying ‖Reλ‖ ≤ 1/2.
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Proof. For the proof of this lemma we will adapt some techniques used in the proof of Proposition 3.7
to our current situation. We know that Wλ satisfies LΩWλ = (λ(H)2 − 1)Wλ (see Proposition 2.44).
Using this we observe

(λ(H)2 − 1)(Fwhf)(λ) =

∫
G/N

[(λ(H)2 − 1)Wλ(g)]f(g) d(gN)

=

∫
G/N

(LΩWλ)(g) · f(g) d(gN).

Because |f | is compactly supported in G/N we can appply the ‘partial integration rule’ of Lemma 3.8.
Hence the above integral can be written as∫

G/N
Wλ(g) · (LΩf)(g) d(gN)

=

∫
K×A

Wλ(ka) · (LΩf)(ka) · a−2ρ dk da.

Her we used the result of Proposition 1.37. Using this expression and the estimate of Proposition 2.42
(here the assumption ‖Reλ‖ ≤ 1/2 is needed) we find∣∣λ(H)2 − 1

∣∣ |Fwhf(λ)| ≤
∫
K×A

|Wλ(ka)| |(LΩf)(ka)| · a−2ρ dk da

≤ C(1 + ‖λ‖)
∫
K×A

a−ρ(1 + ‖log a‖)e‖Reλ‖‖log a‖ |(LΩf)(ka)| dk da

for some constant C > 0 large enough. Since per assumption ‖Reλ‖ ≤ 1/2 and f is compactly
supported in K ×A this integral is finite and can be bounded independently of λ. We conclude∣∣λ(H)2 − 1

∣∣ |Fwhf(λ)| ≤ C ′(1 + ‖λ‖)

for some constant C ′ > 0. We observe that the real part of λ(H)2−1 is given by (Imλ(H))2−1 hence∣∣λ(H)2 − 1
∣∣ ≥ ∣∣(Imλ(H))2 − 1

∣∣ = 1 + ‖Imλ‖2. Furthermore, 1 + ‖λ‖ ≤ 1 + ‖Reλ‖ + ‖Imλ‖ ≤
2(1 + ‖Imλ‖) since ‖Reλ‖ ≤ 1/2. Using these observations we find

|Fwhf(λ)| ≤ C ′ 1 + ‖λ‖
|λ(H)2 − 1|

≤ 2C ′
1 + ‖Imλ‖
1 + ‖Imλ‖2

≤ 4C ′(1 + ‖Imλ‖)−1.

This proves the lemma.

The proof of Proposition 3.11 now is a simple corollary of this identity.

Proof of Proposition 3.11. On the subspace C∞c (G/N ;χ)K of C (G/N ;χ)K we have the equality

H = F−1Fwh.

Let f ∈ C (G/N ;χ)K and (fn)n a sequence in C∞c (G/N ;χ)K converging to f (see Proposition 3.5).
Then using thatH is a continuous map C (G/N ;χ)→ C∞(A) we find, for any a ∈ A that

(Hf)(a) = lim
n→∞

(Hfn)(a) = lim
n→∞

(F−1Fwhfn)(a) = (F−1Fwhf)(a).

Since a was arbitrary we conclude that Hf = F−1Fwhf holds for all f ∈ C (G/N ;χ). Of the right
hand side we know that it is a continuous map from C (G/N ;χ) to C (A) so we find that the same holds
forH.

65



CHAPTER 3. TRANSFORMATIONS

Remark 3.18: We would like to end this section by taking a step back and point out how the assumption
that χ is regular was used in the proof of Proposition 3.11. For this we recall that all properties of the
Whittaker–Fourier transformation Fwh used in the above proof depend vitally on the assumption that
χ is regular. In fact the Whittaker coefficient (and by extension Fwh) can only be defined under the
assumption that χ is regular. So by exploiting the identity H = F−1Fwh and the fact that Fwh is a
continuous map into C (ia∗) we make use of the assumption that χ is regular.

3.4 Further questions

We have given a partial answer to the question whether H maps C (G/N ;χ) into C (A) when χ is
regular. It is of course interesting to see whether the techniques we used can be extended to answer this
question in more cases.

The first natural place for extension is to look at elements in C (G/N ;χ) that have K-type other
than the trivial one. For G = SL(2,R) we have K ∼= SO(1) and we set

φl : K → C : φl(kθ) = eilθ.

The subspace of elements in C (G/N ;χ) of K-type φl is then given by

C (G/N ;χ)K,φl = {f ∈ C (G/N ;χ) | f(kg) = φl(k)f(g) for all g ∈ G, k ∈ K}

The questions we can now ask is whether H maps C (G/N ;χ)K,φl into C (A) for all l ∈ Z. Our proof
of this result for l = 0 hinged on showing that the identity H = F−1Fwh holds on C (G/N ;χ)K .
In the proof of this identity, more specifically in the proof of Lemma 3.15, it was used that both f ∈
C∞(G/N ;χ)K and Wλ are both left K-fixed (so in particular have the same K-type). So a logical way
to approach the other K-types in C (G/N ;χ) is to introduce a family of Whittaker coefficients Wλ,l

which have left K-type φl. For l ∈ Z we set

Wλ,l(x) :=
〈
π1,λ(x)−1φl, j(P : 1 : −λ)(1)

〉
if l even (in this case φl ∈ C(K : M : 1)) or

Wλ,l :=
〈
πε,λ(x)−1φl, j(P : ε : −λ)(1)

〉
if l odd (in this case φl ∈ C(K : M : ε)). Here ε is the non-trivial element of M̂ , i.e. ε(±I) = ±1.
These Whittaker coefficients satisfy Wλ,l(kx) = φl(k)Wλ,l(x) for k ∈ K. To this family of Whittaker
coefficients corresponds a family of transformations defined as

Fwh,lf(λ) :=

∫
G/N

Wλ,l(g) · f(g) d(gN).

The reader is invited to check that the arguments used in the proof of Lemma 3.15 can be used, with
minor adjustments, to show that (FHf)(λ) = (Fwh,−lf)(λ) for all f ∈ C∞c (G/N ;χ)K,φl and λ ∈ a∗C
with 〈Reλ, α〉 > 0 for all α ∈ Σ+. Then one could hope to show that H = F−1Fwh,−l holds on
C (G/N ;χ)K,φl using the techniques as used in the proof of Lemma 3.16. If it is then possible to prove
that Fwh,−l is a continuous map C (G/N ;χ) → C (A) (as Proposition 3.7 states for l = 0) then we
could extend the result of Proposition 3.11 to all K-types. It must be noted however that the proofs of
these two last steps for the case l = 0 (i.e. Proposition 3.7 and Proposition 3.11) depend heavily on the
estimates derived onWλ in Section 2.7. Hence the above proof strategy is only viable if similar estimates
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for Wλ,l on A can be found. Unfortunately the techniques employed in Section 2.7 do not carry over in
a straightforward manner to the general case of Wλ,l for l 6= 0. It is therefore an interesting question
whether such estimates for Wλ,l can perhaps be derived by different means. The author would like to
point out that the difficulties in applying the techniques of Section 2.7 to Wλ,l lie mostly in adapting the
result of Proposition 2.41 (estimates on A−) because its proof relies on the specific form of the integral
expression for Wλ. On A+ however an analogue of Proposition 2.39 is easily seen to be true also for
Wλ,l.

Another possible avenue for extending our result is to move away from our assumption G =
SL(2,R) and consider all semisimple Lie groups of split rank one. As pointed out throughout the
text the precise structure of G = SL(2,R) is not used in the proofs of our results. The assumption
G = SL(2,R) only comes into play when the properties of Wλ (and by extension Fwh) are used. There-
fore it follows that if estimates on Wλ similar to the estimates in Proposition 2.42 can be found in the
general case of groups of split rank one then our arguments are easily adapted to show an analogue of
holds for such groups. The author is hopeful that this should be possible.
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