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A B S T R A C T

Lumbar foraminal stenosis is the diseases of compressed nerve roots in
the lumbar foramina and can cause great pain with the patient. Tradi-
tionally, this disease is diagnosed by a radiologist on lumbar MRI scans.
In the past decade computer aided diagnosis (CAD) has made its rise due
to the recent successes of deep neural networks. Especially in the do-
main of automatic medial image analyses CAD has seen a tremendous
growth of interest among researchers. This work presents a deep neu-
ral network that automatically localizes the lumbar foramina from MRI
scans. The pipeline consists of two stages, first a semantic segmenta-
tion on a MRI volume is performed, and secondly the coordinates of
the foramina are determined. Contrary to past research, our network
makes no use of data driven postprocessing techniques or hand-crafted
features.
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1
I N T R O D U C T I O N

The branch of medical science that uses medical imaging techniques to
diagnose diseases is called radiology. Interpreting such images is a hard
task that is usually not carried out by the treating physician, but by a
specialized radiologist. A radiologist interprets the image and consults
the physician on further proceedings and possible treatments. The ad-
vances in various science fields have been very beneficial to radiology.
Based on methods from computer science, physics, and engineering nu-
merous modalities for medical imaging have been developed over the
years. Currently, radiologists have a large number of modalities at their
disposal. Among the common modalities used in hospitals are magnetic
resonance imaging (MRI), computed tomography (CT), ultrasound, and
positron emission tomography (PET).

Radiologists process a large number of scans. Due to the advance-
ment of technology the amount of data per scan is increasing [1]. For
example, MRI scans are performed with less spacing between the slices.
Therefore, the workload of radiologists has steadily been increasing [2].
Despite the fact that the prediction for a radiologist shortage [3] has not
come true [4], this trend still continues.

Increased computational power has made computer-aided diagnoses
(CAD) possible and in the past decades CAD has seen a tremendous
growth. Presently, CAD has evolved to one of the major research sub-
jects in medical imaging [5, 6]. CAD is especially suitable for radiolo-
gists since they mostly analyze images, thus there are no additional fac-
tors that complicate the process. It has the potential to both reduce the
number of errors and speed up the diagnosis by localizing objects, seg-
menting images, or even diagnosing diseases. Particularly the potential
speedup is much needed due to the increasing workload of radiologists
[2]. In some areas CAD already rivals the performance of trained radiol-
ogists [6]. Governments also seem to have picked up on the importance
of CAD. The Japanese Ministry of Economy, Trade and Industry pro-
claimed in their Technology Strategy Map 2010 that the development of
CAD is an important issue [7].

The need for after-hour radiologists has spurred the appearance of
teleradiology [8]. Teleradiology is radiology done by a radiologist at a dif-
ferent site than where the image was taken. Companies who offer telera-
diology as a service are relatively new, but their use has been increasing
rapidly [7, 9]. Additionally, such companies can offer their service using
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2 introduction

a pay-per-scan business model causing the costs for hospitals that have
a low volume of scans to be lower than when an in-house radiologist
is hired. Furthermore, not every hospital can have an in-house special-
ized radiologist for all fields. With the aid of teleradiology hospitals can
offer health care with better quality by letting specialized radiologists
diagnose complicated cases. Teleradiology is an excellent candidate for
integrated CAD systems, since their success already depends on solid
technological foundations.

CAD makes extensive use of machine learning [10]. Machine learning
algorithms detect regularities from data and use those to make predic-
tions on new data. Data driven predictions are useful for tasks where
there is no clear cut method by means of traditional algorithms. One
might say these are problems that require human intuition. For exam-
ple, there is no way to determine how to predict the price of a house
other than learning it from available data. Machine learning algorithms
automate this process.

Machine learning algorithms rely heavily on the representation of the
data. This representation usually consists of derived properties from the
data. When predicting whether a customer will buy a certain product
or not from its purchase history, the raw data is hard to interpret. The
algorithm does detect regularities from the purchase history directly,
but rather via features engineered by humans, often domain experts.
A good feature for example, is whether the customer has previously
bought a product from the same brand. The hardest part of applying ma-
chine learning to real problems (provided academia already designed
good machine learning algorithms) is the design of successful features
[11]. However, for some data it is hard to define features. In these cases
even the crafting of features requires human intuition and cannot be
programed directly. This is for instance the case with image classifica-
tion. A human has no problem recognizing a wheel (the presence of
a wheel is a very useful feature for image recognition), yet to define a
wheel in terms of pixels is nearly impossible.

There are machine learning algorithms with a layered approach, that
allows them to iteratively modify the input before performing the final
task. Recently, this kind of machine learning has regain traction in the
community. Deep learning [12] uses many hierarchical layers. It concerns
the training of deep neural networks (DNN). Each layer in a DNN trans-
forms the data from the previous layers. This way high-level features are
generated from lower-level features. In the case of image classification a
network first detects edges based on the pixel values, from these edges
corners and contours are generated, which in turn are used to detect ob-
ject parts. Finally, based on the highest level of features a classification
is made. Real world DNNs have many more layers, ranging from 12 to
1000.
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Deep learning achieved great successes in many tasks, in particular
tasks that require the interpretation of images. This is due to the fact
that it is hard to express image features in terms of numbers (pixel
values), and therefore a difficult problem for non-hierarchical machine
learning algorithms. Medical imaging is concerned with generating and
analyzing medical images. Evidently, deep learning has lots of potential
in the field of medical imaging and radiology. In fact, many medical
imaging groups are urging to implement deep learning in their models,
with promising results [13].

In collaboration with Aidence1 we aim to design a deep neural net-
work that can localize lumbar foramina from MRI scans. Current ap-
proaches use machine learning based postprocessing techniques. Our
intent is to design a network that can do without complex postprocess-
ing. This will make the network more robust to changes in the require-
ments and more broadly applicable. The question we will answer in this
study is as follows: Is it possible to design and train a deep neural network
that has viable performance on the task of lumbar foramina localization on MRI
scans without using data driven postprocessing techniques or hand-crafted fea-
tures? We consider what is means to be viable in the task description
(Ch. 5).

1.1 structure
In order to understand the usefulness of localizing foramina in MRI
scans, the reader is required to have a basic understanding of the lum-
bar spine. Moreover, to interpret the dataset the reader is has to be
familiar with the DICOM format. A short overview of these subjects is
given in Ch. 2. In Ch. 3 techniques that are commonly used in DNNs
are introduced. This includes how to train, regularize, and optimize
DNNs in general. Regarding image processing, a specific type of DNN
has proven to be effective. This so called convolutional neural network
(CNN) is described in Ch. 4. The literature on CNNs is extensive. There
are many architectures published for classification [14] and segmenta-
tion [15] among other tasks. A selection of noteworthy architectures is
included in Ch. 4.

After a comprehensive overview of the required knowledge, we ex-
plain the task and research question in more detail in Ch. 5. Further-
more, we show the role of this project in the big picture. There have
been works published over the last few year that have overlap with our
task or approach, a short overview of these works are described in Ch. 6.
In Ch. 7 we present our methodologies, experiments and results. Finally,

1 http://www.aidence.com/

http://www.aidence.com/


4 introduction

we conclude and provide a discussion with issues that arise from our
results in Ch. 8.



2
M E D I C A L B A C KG R O U N D

To understand the methods and techniques in this thesis, the reader is
required to be familiar with some medical concepts. This chapter brings
the reader up to speed in this regard. In Sec. 2.1 lumbar foraminal steno-
sis and a grading system are introduced. Lumbar foraminal stenosis is
diagnosed by radiologists using MRI scans [16]. How MRI scans work
and what they show, together with the structure and a few relevant
meta tags of DICOM files, is explained in Sec. 2.2.

Figure 2.1: A close-up of the L3, L4, and L5 vertebrae.
Image taken with permission from http://www.orthoinfo.org/.
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6 medical background

2.1 lumbar foraminal stenosis
The spine connects the brain to the nerves in the rest of the body. A
spine consists of vertebrae that are separated by intervertebral discs and
connected towards the back by facet joints (Fig. 2.1). The five lowest ver-
tebrae form the lumbar spine, more commonly known as the lower back.
They are top-down labeled as L1-5. Below the lumbar spine starts the
sacrum. The sacrum also consists of vertebrae, the top vertebral is la-
beled as S1.

In the vertical direction, the spinal cord runs through a hole between
the vertebral body and the facet joint, the spinal canal (Fig. 2.2). At each
level the nerves split of the spinal cord and travel trough a hole in the
horizontal direction, the intervertebral- or neural foramen. There are two
intervertebral foramina per vertebral, one on the left and one on the
right. Nerves that exit from the lumbar spine innervate the lower limbs.

Figure 2.2: The axial and sagittal view of a lumbar vertebral.

Two adjacent lumbar vertebrae together with their intermediate inter-
vertebral disc form a motion segment. For example the motion segment at
L4/L5 consists of the L4 vertebral, the L4 intervertebral disc, and the L5

vertebral. A foramina is indicated by the top vertebral of its motion seg-
ments. So, left and right foramina that are formed by the L4/L5 motion
segment, are indicated as the left and right L4 foramina.

The nerves in the spinal cord (traversing nerves) split off around the
height of the upper vertebral body center in the segment. Subsequently,
they (exiting nerves) travel in a downward and sideways motion towards
and trough the foramen. Exiting nerves pass trough three zones (Fig.
2.3). After they split of they enter the lateral recess or nerve root canal
(Fig. 2.3a), the area between the spinal canal and intervertebral foramen.
The zone between the two facet joints is the foramen or vertical interpedic-
ular zone (Fig. 2.3b). Finally, the area after exiting the foramen is the
extraforaminal zone.

By compression or even contact with other tissue, nerves can become
irritated. Irritated nerves cause pain to the patient. When a nerve root
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(a) (b)

Figure 2.3: Coronal view of the zones that an exiting nerve passes trough [17].

in the lumbar spine is irritated, the effect (e.g. pain) is felt in the area
that is innervated by the respective nerve [18]. Usually the nerves at
level L5/S1 or L4/L5, which innervate the tissue below the knee, get
irritated. But is it not uncommon for nerves to be irritated at the three
higher levels, which innervate the knee and upper leg [19–21].

As said above, nerves become irritated when they are compressed
or touched. This happens when the space in which they are located, is
severely narrowed and therefore the nerves have no perineural fat (the
layer of fat around the nerve) left. This disease is called lumbar spinal
stenosis. There are three primary forms of stenosis. Central, lateral, and
foraminal stenosis indicate stenosis in the spinal canal, lateral recess, and
intervertebral foramen, respectively. There are multiple causes for steno-
sis.

First of all facet arthrosis [22], as humans get older the facet joint carti-
lage deteriorates. Cartilage is soft tissue that protects the facet joint on
places where it touches other bone. Facets depend on the cartilage to
stay flexible and mobile. To counter the deterioration of cartilage and
relief pressure the facet joint creates a bigger surface by growing more
bone. This extra bone can travel into the intervertebral foramen or the
lateral recess, reducing its size.

Secondly, two possible diseases that affect the intervertebral disk can
cause stenosis. A intervertebral disc consist of an inner and outer sub-
stance, the nucleus pulposus and annulus fibrosus respectively. The annu-
lus can ‘bulge’ into the spinal canal and intervertebral foramen, possibly
causing stenosis. If the annulus has a tear it is a hernia [23]. This allows
for the softer inner portion to prolapse out of the disk. A propulsion
could cause stenosis depending on where the tear is located.

Finally, spondylolisthesis [24, 25] and scoliosis [26] can both deform
the spine in such a way that the intervertebral foramina get narrowed.
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Spondylolisthesis is the situation where a vertebral slips forward over
the vertebral below. This reduces the size of the foramina both sides,
depending on how far the vertebral slipped. Scoliosis is the condition
where the spine is deformed with a sideways curve. Again depending
on the severity, this could cause stenosis.

(a) Grade 0

(b) Grade 1 (c) Grade 1

(d) Grade 2 (e) Grade 3

Figure 2.4: Schematic overview of the grading system from Lee et al. [27] for
foraminal stenosis.

V: Vertebral body. D: Intervertebral disk. NR: Nerve root. LF: Ligamentum flavum. FJ: Facet joint.

2.1.1 Grading system

Since there are a multitude of possible causes, it is ambiguous how to
grade the amount of stenosis that occurs [27–29]. Lee et al. [27] recently
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designed a grading system that can be applied to the results of the
classic MRI protocol for the lumbar spine, i.e. it does not require altering
the MRI protocol. Furthermore, it has a higher interobserver agreement
value than other grading systems [30]. The system consist of four grades
(Fig. 2.4).

Grade 0 indicates that no lumbar foraminal stenosis occurs. Grade
1 indicates mild foraminal stenosis. The perineural fat is obliterated in
either the vertical (Fig. 2.4b) or transverse (Fig. 2.4c) direction. When
the perineural fat is obliterated in both directions the grade indication
is 2, referring to moderate foraminal stenosis. Finally, grade 3 indicates
severe foraminal stenosis where the nerve root shows morphological
changes.

(a) Sagittal MRI slice (b) Axial MRI slice (c) Coronal MRI slice

(d) Sagittal plane (e) Axial plane (f ) Coronal plane

Figure 2.5: A T2 weighted MRI slice and plane visualization for each of the
three body axes (sagittal, axial, and coronal).
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2.2 magnetic resonance imaging
Magnetic resonance imaging (MRI) is one of the most commonly ap-
plied techniques to map the human body in hospitals. It requires no
radiation, is able to visualize all three planes (Fig. 2.5), and provides
sufficient details of the anatomy. To achieve this a MRI scanner utilizes
a very powerful magnet and the properties of atomic nuclei. Normally,
the orientation of atomic nuclei is random. But within a strong uniform
magnetic field the protons in water atoms align with the magnetic field,
this is called magnetization. By sending radio frequency (RF) signals, the
magnetization gets disrupted. Subsequently, by realigning with the mag-
netic field, the protons send out the received radio frequency signals
(echoes). The echoes are captured and analyzed, from the analysis an
image is formed. Usually multiple RF’s are applied, the time between
these pulses is the repetition time (TR). The time between sending the RF
and capturing the echo is the time to echo (TE).

By altering the TR and TE parameters the echoes change, thereby
changing the difference that can be seen between tissues (Tab. 2.1, 2.2).
There are two typical parameter settings; T1- and T2-weighted scans. T1-
and T2-weighted scans use short and long TR and TE times, respectively.
As a consequent, tissues that might be hard to distinguish in T1-, can be
easy to distinguish in T2-weighted scans and vice versa.

time t1-weighted t2-weighted

Repetition time 500 4000

Time to echo 14 90

Table 2.1: The TR and TE in miliseconds for T1- and T2-weighted scans.

tissue t1-weighted t2-weighted

Cerebrospinal fluid Dark Bright
Muscle Gray Dark gray
Spinal cord Gray Light gray
Fat Bright Light
Intervertebral disc Gray Bright
Air Very dark Very dark

Table 2.2: The tissue colors for T1- and T2-weighted scans.
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D E E P N E U R A L N E T W O R K S

Machine learning is a set of automated techniques that can recognize
patterns from data and make predictions about new data. In other words,
machine learning algorithms are able to learn from data. Their perfor-
mance at a certain task increases the more experience they have. In the
case of machine learning algorithms, experience means processing an
example. The techniques used in machine learning are closely related
to statistics, but have more emphasis on using computations (i.e. with
computers) to estimate complicated functions.

Traditional machine learning techniques require a human (often a do-
main expert) to carefully engineer relevant features. The raw data is
transformed into a internal feature space from which the machine learn-
ing algorithm can learn patterns. In some cases it is hard for humans to
hand-craft features and at the same time traditional machine learning
algorithms lack the ability to extract patterns from the raw data directly.

The approach to let an algorithm learn to map the data to an inter-
nal feature space by itself, is called representation learning. Deep learning
uses multiple layers of representations2 where each layers builds on the
previous one. By stacking multiple layers complex functions are approxi-
mated. Ideally, each layer learns features that are from a high abstraction
level than the previous layer. For example, given a network that has to
classify images, the first layer could learn basic geometric shapes such
as edges and curves. The second layer uses such shapes learn more com-
plex shapes such as circles and squares. The main idea of deep learning
is that the all layers will learn these features by itself from the raw data.

While training a deep neural network, several steps are executed:

1. Process a mini-batch with a forward pass.

2. Calculate the loss.

3. Calculate the gradient with backpropagation in a backward
pass.

4. Update the weights with the gradient.

We will call an execution of these four steps an iteration. Deep neural
networks require many iterations to perform well. In this chapter each

2 It is undefined what number of layers is required for a network to be called deep. Let
us assume that a network is deep if it has more than 3 layers.

11



12 deep neural networks

of these steps is explained. Furthermore, the problems that arise are
pointed out, together with their corresponding solutions.

To understand why a mini-batch instead of a full batch is processed,
we first provide a short introduction to gradient descent, the most com-
mon machine learning optimization technique. Subsequently, the three
variants of gradient descent are explained.

The core of the problems that arise specifically in deep neural net-
works, comes from the way neural networks determine their gradient.
This algorithm is called backpropagation and is explained in Sec. 3.2. The
problem that stems directly from the backpropagation is called the un-
stable gradient problem. Which is, together with possible solutions, dis-
cussed in Sec. 3.3.

Since the rise of deep learning, more sophisticated weight update al-
gorithm have been developed. In Sec. 3.4 we give an overview of rele-
vant algorithms. To prevent overfitting of the network, a few common
regularization techniques can be applied. Two of these techniques are
described in the final section of this chapter.

3.1 gradient descent
Training deep neural networks involves optimization. In this context
optimization refers to the task of minimizing of maximizing a function
f(w) by modifyingw. One of the most common optimization techniques
for machine learning is gradient descent. In most implementations gradi-
ent descent is designed to minimize f(w), for maximization one can
minimize −f(w).

The derivative of f(w) = y, denoted as f′(x) or dy
dw , is useful for mini-

mizing f(w) because it gives information on how to changew for a small
reduction in y. If many small changes are made to w successively, a (lo-
cal) minimum for y will be reached. For function f(x) = y with more
than one input variable, we take the partial derivative with respect to
each input variable wi, ∂

∂wi
f(w). The vector of partial derivatives for

each variable is called the gradient and is denoted as ∇f(x).
We denote the loss function for data x, function f, and targets y as

L(f(x),y). Alternatively, we use denote the loss as a function of the
weights w at step t; L(wt) where the function, data, and target values
are left out for simplicity. Each time the weights are updated, only a
small step is taken into the direction of the gradient. The step size is
called the learning rate and denoted as η. An update of the weights is
now defined as follows:

wt+1 = wt − η · ∇L(wt) (3.1)
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There are three variants of gradient descent, they differ in the num-
ber of samples used to determine the gradient. Batch gradient descent
uses all available (trainings) samples from x. Stochastic gradient descent,
on the other hand, determines the gradient based on only one sam-
ple xi ∈ x. As a result the gradients are based on less accurate infor-
mation and will be more noisy overall. Even though the gradients are
more noisy, on average they will ‘point’ in the right direction. Addi-
tionally, the calculation of the gradients will be a lot faster. A trade
off between speed and noisiness is made by increasing the number of
samples. When more than one, but not all, samples are used we call it
mini-batch gradient descent3.

Since the loss function is non-convex, we would normally worry about
local minima and take precautions to prevent trapping the network.
However, as empirical evidence suggest, for high-dimensional functions
local minima are not as big of a problem as they are for lower dimen-
sional functions [31]. That is not to say there are no local minima in high
dimensional non-convex functions, but rather that all minima will have
more or less the same value.

3.2 backpropagation
Directly applied, gradient descent is not feasible for deep neural net-
works. This is is due to the fact that the gradient is computed by taking
the partial derivative of the loss function with respect to a single weight
∇wi

L = ∂L/∂wi(W), for all weights wi ∈ W. Deep neural networks
can have up to millions of weights, it is intractable to compute a partial
derivative for each weight every iteration. Multilayer networks can com-
pute the gradient for each weight by recursively backpropagating the
error signal trough the network. This algorithm is called backpropagation
[32]. The key insight to backpropagation is that a derivative of the error
signal can flow back trough the network by means of the chain rule.
This requires less computations and therefore faster.

During the forward pass we do a weighted sum over the connections
to a node i to compute its pre-activation zi. Its output is the activation
function ϕ applied to the pre-activation, yi = ϕ(zi). In this manner
we pass over the whole network and calculate the predictions ŷ in the
output nodes. The gradient of output node l is the loss of the prediction
∂L/∂ŷl = L(ŷl,yl). The gradient indicates what the slope of the loss
given w.r.t the weights is. Following the slope would increase the loss,
thus we following the opposite direction of the slope. In other words,

3 In most literature mini-batch gradient descent is refered to as stochastic gradient de-
scent.
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Figure 3.1: Equations of the for- and backward pass of a multilayer neural
network.

the gradient gives information whether the output should be higher or
lower than the current prediction value. To compute the gradient of the
other nodes in the network we use the chain rule. The gradient of a
node on the loss is the weighted sum of the gradients of its outgoing
connections ∂L/∂yi =

∑
wij∂L/∂zj. To compute the gradient of each

weight we first compute the influence of each connection to the output
∂yi/∂zi = φ′(zi). With the gradient of its outgoing connection, its own
influence on the output, and the chain rule at hand, the gradient of
a weight is computed as ∂L/∂zi = ∂L/∂yi · ∂yi/∂zi. The weights are
updated with the gradient from there receiving node, i.e. all weights to
node k are updated with the error signal ∂L/∂zk. How the gradient is
used to update the weights is discussed in Sec. 3.4.

3.3 unstable gradients
Deep neural networks have more layers than shallow neural networks.
As a results numerous computations transform the activation and gradi-
ent during the forward and backward pass respectively. Historically, the
sigmoid function is commonly used as activation function in the hidden
layer. However, for deep neural networks the sigmoid function causes a
problem.
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Consider a deep neural network, the weights are initialized randomly
from a Gaussian distribution4, and the activation function for nodes
is the sigmoid function. During backpropagation the gradient flows
back trough all nodes. The derivative of the sigmoid function, sig′(x) =
sig(x)(1− sig(x)), has a maximum value of 0.25 (Fig. 3.3). Consequently,
the gradient will at least decrease with 75% at each sigmoid it passes.
After multiple layers the gradient is so small, that learning is no longer
feasible. This is problem is commonly known as the vanishing gradient
problem [33].

The vanishing gradient problem is not the only difficulty with the sig-
moid function. Given that the weights are initialized from a Gaussian
distribution with mean 0, the activations during the forward pass will
either explode or vanish depending on the standard deviation and the
number of nodes in the previous layer. The derivative of a sigmoid func-
tion with a low or high (saturated) input, has a low derivative value. We
will this problem combined with the vanishing gradients, the unstable
gradient problem.

There have been attempts to prevent unstable gradients by unsuper-
vised pre-training [34, 35]. However, better methods to stabilize the
learning process have been developed since. The first is to carefully ini-
tialize the weights such that the activations do not saturate. Secondly,
numerous activation functions are designed to avert the problems of
the sigmoid function. Finally, an extra type of layer is introduced, the
batch normalization layer.

3.3.1 Weight initialization

Early deep neural networks had a hard time converging. Partially, this
was due to uncareful initialization of the weights. If the weights are
too small, the activations will decrease after each passing layer. Given
a network with the sigmoid function, decreasing activations results in
saturated activations. If there is little variance in the activations, they
are basically linear. A similar situation appears when the weights are
too big. The activations saturate to 1, with little variance and gradients
close to zero.

3.3.1.1 Xavier & He initialization

Too avoid saturated activations, Xavier initialization [36] sets the weights
in such a way that the variance before and after a sigmoid layer is
the same. Weights are randomly sampled from a Gaussian distribution
N(0, Var), the variance Var differs per layer and is determined by its

4 Sampling from a Gaussian distribution is the commonly accepted way of initializing
weights [12]
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number of inputs nl,in. We denote the initialization variance for the
weights from layer l as Var(Wl).

Var(Wl) =
1

nl,in
(3.2)

Xavier initialization (Eq. 3.2) is designed with a sigmoid function in
mind. More recently, the ReLU activation function (Sec. 3.3.2.3) have be-
come common in networks. Since a ReLU function returns 0 for roughly
half its input space, He initialization [37] (Eq. 3.3) doubles the variance
of the output to keep the variance of the activations before and after the
ReLU layer the same.

Var(Wl) =
2

nl,in
(3.3)

The crucial observation made by Glorot and Bengio [36] is that whether
the activations, amplify or dampen can be controlled with the variance
of the distribution from which the weights are randomly sampled.

3.3.2 Activation functions

Activation functions add nonlinearity to neural networks. Since a combi-
nation of linear transformations (pre-activations) can be expressed as a
single linear transformation, without the nonlinearities neural networks
would have the same capacity as a linear classifier.

Choosing effective activation functions has proven to be difficult. At
this moment, designing activation function that perform well is an ac-
tive field of research.

3.3.2.1 Sigmoid

In addition to the problems of saturation, the sigmoid function operates
only in the positive real number space R>0. This means that the weights
will only be updated with a positive value. Although this isn’t a problem
for learning theoretically, it is a problem in practice since the learning
will take longer [12].

sig(x) =
1

1+ e−x
(3.4)

3.3.2.2 Softmax

Contrary to the sigmoid, the softmax considers the whole vector. The
values of the resulting vector will sum to 1, thus the softmax can be
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Figure 3.2: Several activation functions. ELU: a = 0.5

Figure 3.3: The derivatives of several activation functions. ELU: a = 0.5
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interpreted as a probability distributor. Assigning probabilities propor-
tional to the corresponding input value.

softmax(x)i =
exi∑n
j=0 e

xj
(3.5)

The softmax function is usually not used as activation in the network,
but rather as an output activation. It converts the unscaled logits to a
probability per class.

3.3.2.3 Rectified linear unit

One the big breakthroughs in making deep neural networks viable was
the rectified linear unit (ReLU) [38]. The ReLU is a simple, yet effective
and computationally efficient function. Intuitively, one might say that
disallowing negative values hinders learning. However, empirical evi-
dence shows that learning with ReLU activations can improve the con-
verge time with a factor of 6 [39]. For positive values the gradient flows
trough a ReLU node unchanged and does not vanish.

relu(x) = max(0, x) (3.6)

For all that, ReLUs are not zero centered and kill the gradient com-
pletely if the pre-activation of the node is lower than zero. As a conse-
quence, if a ReLU node does not activate, it will not update its weights.
It is possible that a ReLU is ‘pushed’ out of the range where it will ever
activate, effectively killing the node.

3.3.2.4 Parametric rectified linear unit

To prevent ReLUs from dying one can use a leaky ReLU (LReLU) [40].
LReLUs do not cap negative values to zero, but multiple them with 0.01.
This greatly reduces the influence of negative values, but allows for gra-
dients to flow through and revive inactive nodes. The generalization of
the LReLU is the parametric ReLU (PReLU) [37]. Instead of multiplying
negative values with a constant, the PReLU uses a parameter a. This is
differentiable, so the network can learn what is the best value to use. It
does however, introduce an extra learnable parameter per node, making
the network bigger.

prelu(x) =

x, if x > 0

ax, if x 6 0
(3.7)

3.3.2.5 Exponential linear unit

Rather than multiplying the negative values with a constant as in PRe-
Lus, the exponential linear units (ELU) [41] saturates negative pre-activations
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at a learnable value a. The network can learn to set a at a high value,
pushing the mean activation closer to zero. Additionally, for pre-activations
lower than a a (small) gradient is propagated back, therefore giving the
network the opportunity to revive the node if necessary. A disadvantage
of ELUs compared to ReLUs, is the use of ex, which is computationally
expensive.

elu(x) =

x, if x > 0

a(ex − 1), if x 6 0
(3.8)

3.3.2.6 Concatenated rectified linear unit

Another way of maintaining variance, yet keeping the activation non-
linear, is to concatenate the positive and negative information from
the pre-activation. The concatenated ReLU (CReLU) [42] does two ReLU
computations; on the ‘standard’ pre-activation and on the negated pre-
activation. In other words, it selects both the information from positive
and the negative values. A major difference with other activation func-
tions is that the CReLU gives two outputs. Thus, the number of activa-
tions doubles at each CReLU layer.

crelu(x) = [relu(x), relu(−x)] (3.9)

3.3.3 Other strategies

3.3.3.1 Batch normalization

A more radical approach to make activations follow a useful gaussian
distribution, is to simply normalize the activations. Batch normalization
[43] calculates the mean µB and variance σ2B for activations x ∈ Rm and
normalizes them. Ideally, we want to let the network decide if batch
normalization will help performance. Therefore, batch normalization
introduces two learnable variables β and γ, which control the scale and
variation of the output respectively. This means that the network has
the ability to ‘turn off’ batch normalization in a certain layer or learn a
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better distribution. A fixed small variable ε = 1e−6 is used to prevent
division by 0.

µB ←
1

m

m∑
i=1

xi

σ2B ←
1

m

m∑
i=1

(xi − µB)
2

bntrain(xi) = γ

 xi − µB√
σ2B + ε

+β

(3.10)

With batch normalization as defined in Eq. (3.10) the output depends
on the batch that is processed. During inference however, the network
should be deterministic. Without a deterministic network it is hard to
measure its performance accurately. Besides, it is also desirable from
an intuitive perspective that a network during inference gives the same
output no matter what the other samples in the batch are. So, during
training we keep track of a running average of µB and σ2B, denoted as
E[xi] and Var[xi] respectively, and use those values during inference.

bntest(xi) = γ

(
xi − E[xi]√
Var[xi] + ε

)
+β (3.11)

Batch normalization has made learning more stable. As a result, weight
initialization techniques and activation functions require less careful
consideration. Furthermore, the learning rate can be set higher since the
gradient is more likely to point to the ‘correct’ direction. Because the ac-
tivations are normalized (based on a randomly constructed batch), the
network can no longer ‘remember’ the values, thus is less likely to over-
fit. This reduces the need for regularization. The disadvantage of batch
normalization lies in the computational cost to normalize activations.
However, the advantages typically outweigh the extra computational
cost because of the faster convergence, resulting in less computation
time overall.

3.4 optimization
The learning rate is a very important hyperparameter. If the learning
rate is too small it will take a long time before the network converges,
making training it infeasible. Too high, makes learning unstable because
it cannot make fine-grained modifications to the weights. Usually the
approach take is to set a quite high learning rate in the beginning and
when learning stops (due to overshooting in the surface loss), lower the
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learning rate. Recently, more sophisticated weight update algorithms
have been developed that increase convergence speed.

3.4.1 Momentum

The optimization problem can be seen from a physical perspective. Imag-
ine the loss surface as a landscape and the loss as a ball in that landscape.
In this metaphor the gradient is the slope of the surface. Momentum [44]
accelerates learning by giving the gradient a velocity v as if it rolls down.
Every time step a velocity is computed by adding a fraction γ (usually
set to 0.9) from the previous velocity to current gradient. For dimensions
where the gradient is going downward the velocity will increase, and
the velocity will decrease for dimension where the gradient is going up.

vt = γvt−1 + η∇L(Wt)

Wt+1 = Wt − vt
(3.12)

3.4.2 Nesterov momentum

To further increase convergence rate Nesterov momentum [45] looks ahead.
Instead of slowing down when the ball (loss) is actually going up, Nes-
terov momentum approximates the next weight variables by subtracting
the previous velocity from the weights. It can not accurately predict the
weights because for that it needs the next gradient. Now the ball slows
down when approaching a hill and speeds up when approaching a cliff.

vt = γvt−1 + η∇L(Wt − γvt−1)

Wt+1 = Wt − vt
(3.13)

3.4.3 Adaptive gradient algorithm

Deep neural networks have multiple layers and a huge number of pa-
rameters in total. Adaptive gradient algorithm (Adagrad) [46] tries to make
better updates by giving each parameter a individual learning rate. It
keeps track of all past gradients per weight and updates this ‘cache‘
gt,i ∈ Gt (the cache for weight i at step t as element from the vector
of Gt) by adding the square of the current gradient to it. Subsequently,
the learning rate is divided by this cache. As a results, parameters that
get small or infrequent gradients will have their gradient scaled up, and
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parameters that get big or frequent gradients will have their gradient
scaled down.

Gt = Gt + (∇L(Wt))
2

Wt+1 = Wt −
η√

Gt + ε
�∇L(Wt)

(3.14)

Adagrad requires more memory than optimization algorithms that do
not fine tune the learning rate per parameter, but when Adagrad is
applied it tremendously increase the rate of converge [47]. However,
for deeper neural network that have to train for a long time, Adagrad
is too aggressive. Eventually every parameter has accumulated a big
cache, effectively dispersing the learning rate for each parameter and
stop learning.

3.4.4 Root mean square propagation

An unpublished method by Geoff Hinton from his Coursera course on
neural networks, reduces the aggressiveness of Adagrad by making the
cache leaky. Root mean square propagation (RMSprop) [48] only retains a
portion γ (usually 0.9) of the previous cache value. Leaking the cache
prevents the algorithm from stopping learning too early.

Gt = γGt + (1− γ)(∇L(Wt))
2

Wt+1 = Wt −
η√

Gt + ε
�∇L(Wt)

(3.15)

3.4.5 Adaptive moment estimation

Adaptive moment estimation (Adam) [49] combines the ideas above into
one algorithm. It keeps track of the exponentially decaying average of
the past gradients mt,i ∈mt (the mean) and the exponentially decaying
average of the squared gradients vt,i ∈ vt (the variance), both in a leaky
manner with β1 and β2 respectively.

mt = β1mt−1 + (1−β1)∇L(Wt)

vt = β2vt−1 + (1−β2)(∇L(Wt))
2

(3.16)

The authors notice that after initialization both m and v are biased to-
wards zero. This is especially true when the decay rates are low (i.e. β1
and β2 are close to 1). Therefore, m and v are normalized. The normal-
ized values are used to update the weights. Since β1 and β2 are smaller



3.5 regularization 23

than 1 and taken to the power of t this will only have (significant) influ-
ence when t is small, as intended.

m̂t =
mt

1−βt1

v̂t =
vt

1−βt2

Wt+1 = Wt −
η√

v̂t + ε
m̂t

(3.17)

3.5 regularization

3.5.1 Data augmentation

Ultimately, the best way to generalize better is to train on more data.
Obviously, this is in practice never the solution, since we are most likely
already using all the data we have. To still increase the training set data
augmentation can be performed. The idea is simple, we consider all the
variations that our network has to be robust against and apply such
variations at random to our trainings samples.

3.5.2 Dropout

A dropout layer [50] sets the output of its nodes with a probability p to
zero (i.e. it drops several nodes). Dropped nodes do not contribute to
training during the forward and backward pass (Fig. 3.4). In a network
without dropout layers the gradient tells how a node should change
to decrease the loss given what all the other nodes are doing. This may
lead to what Srivastava et al. [50] call co-adaptations. Nodes could learn to
fix the mistake made by other nodes. Co-adaptations do not generalize
well to unseen data. By dropping nodes at random, mistakes can not
be fixed in a reliable way. Thus, nodes are not given the opportunity
to let other nodes make up for their mistakes and will have to change
themselves. At the same time it reduces the capacity of the network
during training. Since networks with more parameters are more likely
to overfit, reducing the capacity also reduces the chance of overfitting.

Using dropout in a single network is more or less the same as training
several smaller networks (with shared parameters) and ensemble them
during test time. Because during training nodes are dropped with prob-
ability p, nodes have less incoming connections than during test time.
This skews the activation values. Therefore, the activations during test
time should be scaled to simulate the activation size during training
time. To that end, the output of a node is multiplied with q = 1 − p.
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Scaling the activations during test time works well, but imposes a prob-
lem. The probability p is a hyper parameter and can be changed. Each
time we change p the network at test time changes. An alternative is
too scale the activations down during training with 1/q. This way the
difference in activation size is accounted for during training and elim-
inates the need to change the network at test time depending on how
the network is trained.

(a) Before

(b) After

Figure 3.4: Possible effect of dropout with a probability of 0.5.
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C O N V O L U T I O N A L N E U R A L N E T W O R K S

A human eye catches incoming light on its retina. The brain processes
this raw information and creates an interpretation of the image. By mea-
suring the activity of a single neuron in the brain of a cat, Hubel and
Wiesel [51] showed that neurons respond to contours with a specific ori-
entation. This was one of the first steps towards an understanding of
how the brain processes raw visual information. The authors hypothe-
sized that the visual system of cats and primates is hierarchical [52, 53].
That is, complex neurons transform and depend on the output of simple
cells. DNNs resemble such a hierarchy. However, in traditional DNNs
layers are fully connected. For visual systems the spatial information is
important and neurons in the brain seem to retain this information [51].
The part of the incoming image (light caught on the retina) that excites
a neuron is called its receptive field.

The earliest attempt to model a hierarchical visual system in the form
of a neural network was as early as 1982, called the neocognitron [54].
Even tough the findings of Hubel and Wiesel [51] inspired the mod-
elling of the neocognitron, neuroscience provides little guidance on how
to train such a model. As a result, training a neocognitron proved to be
difficult and made the neocognitron as a whole ineffective. The first
network that was trainable (with the, by then discovered, backpropaga-
tion algorithm [Sec. 3.2]) was LeNet [55] which is commonly accepted
as the first convolutional neural network (CNN). However, for reasons
now known (unstable gradients [Sec. 3.3]) LeNet was not more success-
ful than traditional computer vision techniques. The uprise of CNNs
started with AlexNet [39]. It was the first truly successful CNN ap-
plied to image classification and object localization. Its success relied
upon techniques to overcome the unstable gradient problem and the
utilization of GPUs, yet is similar in architecture to LeNet.

In this chapter the core of a CNN; the convolution and its correspond-
ing layer are analyzed. First we analyse the convolution as standalone
operation and then how CNNs use convolutions in layers. In addition
to the convolutional layer, the pooling and fully connected layers are com-
monly used in CNNs. These will also be explained. Furthermore, we
have a closer look at two tasks that can be solved with CNNs; image clas-
sification and segmentation. Classification networks should learn a func-
tion that maps the input (pixels) to one of k possible categories, that

25
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Figure 4.1: A 3×3 convolution on a 4×4 input with ‘valid’ padding and stride
1.

is f : Rn×Rm → {1, ...,k}. A few key architectures for classification are
described.

Segmentation does something similar, but instead of classifying the
whole image to one of k categories, it classifies each pixel to one of k
categories, i.e. f : Rn×Rm → {1, ...,k}n×{1, ...,k}m. Segmentation archi-
tectures make use of supplementary layers that are used for upscaling
an input. These so-called unpool and transposed convolutional layers are
first described before delving deeper into key architectures for segmen-
tation.

4.1 the convolution operation
In its essence a convolution operation is a linear transformation. It takes
an input and a kernel matrix, and slides (convolves) the kernel over
the input (Fig. 4.1). For each position is output one value y. This is
calculated by taking the sum over the element wise multiplication of
the kernel and the input window. Or in other words, the dot product of
the vectorized kernel W and vectorized input window X:

y = vec(X) · vec(W) = vec(X)>vec(W) (4.1)

We can modify two parameters that determine how a kernel convolves
over the input. First is the amount of padding of the input. If we do no
padding (p = 0) and the kernel has size greater than 1, then the output
will not have the same size as the input (Fig. 4.1). No padding is also
called valid padding. Given a kernel of size 3, the output will have the
same size as the input if we pad the input with 1 in each axis (Fig. 4.2).
If the padding is set in such a way that the input and output are the
same, it is called same padding. Secondly, we can determine how big
the steps are. This is called the stride. If one uses same padding and sets
the stride to 2, the output will roughly shrink in half (Fig. 4.3).

A convolution in the semantical sense is a feature extractor. What fea-
ture is extracted depends on the definition of the kernel. Since a convo-
lution filters out everything except the extracted features, the kernel is
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Figure 4.2: A 3×3 convolution on a 5×5 input with ‘same’ padding and stride
1.

Figure 4.3: A 3×3 convolution on a 5×5 input with ‘same’ padding and stride
2.

also called a filter. What makes the convolution useful is that it respects
the spatial information that the input contains because it operates on
small spatially connected portions of the input.

Let us consider Fig. 4.4. All convolutions from Fig. 4.4 are performed
with a 3×3 filter, same padding and stride 1. The bottom sobel filter (Fig.
4.4a) ignores the middle row and has the same weights for the top and
bottom row, although the top row is negated. When the bottom row has
higher values than the bottom row, thereby not allowing the top row to
undo the contribution of the bottom row, the output will be positive. In
other words, the output is positive if there is some horizontal contrast
with an emphasis to the bottom. Finally, the edge filter strengthens the
center pixel and weakens surrounding pixels. Consequently, if a pixel
has a high value and is not countered by high surrounding pixels that
undo its contributions completely, it will have a positive output value.
Edges are exactly that, bright pixels that are (in most directions) sur-
rounded by dark(er) pixels.

4.2 convolutional neural network layers
The convolution has 3 properties that can make it beneficial for DNNs:
sparse connectivity, parameter sharing, and equivariant representation. First
we will explain each of these properties and why they can be helpful.
Next we show what a convolutional layer looks like in a CNN. Finally,
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Figure 4.4: The bottom sobel and edge convolutions applied to an image of a
bonobo.

we describe the other 2 common layers in CNNs; the pooling and fully
connected layer.

4.2.1 Convolutional layer

Traditional DNN layers have a connection between every input-output
pair. Given that the kernel size of a convolution is smaller than the
input size (which is practically always the case), a convolution has sparse
connections. Not all input-output pairs have a connection. This reduces
the number of weights and computations. For example, consider a layer
with an input of 100×100 and an equal size output. A traditional DNN
requires 1002 · 1002 = 108 weights and an equal number of computations
for such a layer. A convolutional layer with a kernel size of 3×3 on
the other hand, only requires 3 · 3 = 9 weights and 1002 · 9 = 9 · 104
computations.

As stated above, the number of weights and computations in a tradi-
tional DNN is equal. But in a CNN the number of weights is smaller.
This is because the same kernel is used to calculate every output node.
Consequently, CNNs are more efficient in terms of memory require-
ments. This means that bigger inputs can be processed. Also, it makes
them less likely to overfit.

As a result of the sparse connectivity and parameter sharing, a con-
volutional layer is equivariant to translation. It does not matter where a
feature is located, the output will be the same. For example, consider
a convolution that detects edges. An edge in the upper left corner of
the input will produce a high value in the upper left output. Likewise,
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a edge in the lower right corner produces a high value in the lower
right output. This is desirable because we do not want to differentiate
between edges based on their location. A convolution is not equivariant
to other transformations, such as rotation and scale5.

A convolutional layer is similar to a traditional layer, but sparsely con-
nected and with weight sharing. Thus, the backpropagation algorithm
can be applied to learn the kernel weights. Just as with regular DNNs,
at each layer representations are learned that depend on the representa-
tion of the previous layer. A convolutional layer can be seen as a feature
extractor. However, we would like to learn multiple features per level
in the hierarchy. For instance, as a first layer a CNN usually learn lines
and edges.

Furthermore, higher in the hierarchy more complex features emerge,
these features are composed of multiple lower features. In other words,
each layer has a certain number of features that are composed from the
features of the previous layer. This adds an extra dimension to the input.
The extra dimension is the channel or feature map dimension. As said
before, each channel is composed of channels from the previous layer.
Consequently, the number of weights for a convolution layer increases
with the input and output channels, i.e. the number of weights is Cin ·
s ·Cout where Cin is the number of input channels, Cout is the number
of output channels, and s is the kernel size6.

4.2.2 Pooling & fully connected layers

Early architectures often made use of pooling layers. Pooling layers are
very simple layers to downscale the input. Pooling is similar to con-
volutions in that they both slide a window over the input and output
1 value for each position. Two main pooling variations exist. First max
pooling, the output is the maximum value of the window. Intuitively, this
works because when looking for features we care for the highest value
because that apparently is present in the input. For instance, assume we
max pool a feature map that has high values at positions with dog tails7.
A max pool will produce a smaller output size that contains the same
highest indication for dog tails, but with less spatial information. Aver-
age pool takes, as the name suggests, the average of the window. This
approach is less common. In fact, pooling altogether is disappearing
from network architectures as it turns out that changing the convolu-
tion in front of the pooling layer to have a stride of 2 and removing the
pooling layer results in a network with less weights and an equivalent
performance [56].

5 Data augmentation is needed to account for rotation and scale.
6 A 3×3 kernel has a size of 9 and a 3×3×3 kernel has a size of 27.
7 Actual CNNs are learned and therefore never have such clearly defined feature maps.
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Architectures may also have fully connected final layers. The main
part of a CNN learns the features with convolution layers (and option-
ally pooling layers). The final layers act as a traditional neural network
that classifies based on the learned features.

4.3 classification architectures
In this section we cover some key architectures for image classification
with CNNs. The classification task lies at the foundation of other, more
complex tasks.

4.3.1 VGG

VGG [57], by the Visual Geometry Group from the University of Ox-
ford, is designed for image classification, i.e. it has a single output
node8. textscVGG gradually decreases the resolution while increasing
the depth (Tab. 4.5). As a result, there are less ‘simple’ features than
‘complex’ features. Simple features have less previous layers that in-
creases complexity, at the same time their receptive field is small. Com-
plex features have more previous layers to build on and simultaneously
a bigger receptive field.It makes sense to dedicate more channels to com-
plex and high level features such as faces, and less to simple low level
features such as lines.

The downscaling is done with a max pool layer. Only 3×3 convo-
lutions are used. The reason for using only 3×3 convolutions is that
stacking smaller convolutional layers gives the same receptive field as a
single bigger convolution, for less parameters (Fig. 4.1) and more non-
linearities in between. Due to the intuitive architecture of VGG, it has
become one of the default architectures for CNNs.

filter receptive field weights

7×7 7×7 C·(7·7·C) = 49C2

3×3 3×3 C·(3·3·C) = 9C2

3 · 3×3 7×7 3 · (C·(3·3·C)) = 27C2

Table 4.1: The receptive field per output neuron and number of weights for
convolutions on a layer with Cin = Cout = C channels.

8 The single output node has multiple channels, namely the number of classes.
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Figure 4.5: The VGG architecture. Figure extracted from Matthieu Cord’s talk.

4.3.2 GoogleNet

An insight that lead to Network-in-Network [58] was that an efficient
way to create more complex features is by using 1×1 convolutions. A
1×1 convolution is similar to a fully connected layer from traditional
DNNs, but applied to each neuron. GoogLeNet [59] uses 1×1 convolu-
tions to achieve high accuracy without the burden of too many weights.
The foundation of the architecture is the inception module (Fig. 4.6). Be-
fore applying the expensive 3×3 and 5×5 convolutional layers, the num-
bers of channels are reduced with cheap 1×1 convolutions. The results
are concatenated.

Additionally, to reduce the number of parameters GoogLeNet does
not use fully connected layers as final layers. Instead, it uses a average
pooling at the end.

Figure 4.6: Inception module from GoogLeNet. Image by [59].
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4.3.3 ResNet

Due to the unstable gradient problem, it is hard to stabilize learning
with deep neural networks. To overcome this problem architecturally
ResNet [14, 60] uses residual skips (Fig. 4.7). Instead of applying op-
erations and send the results to the next layer, the input is added to
the output. Recall that a gradient flows back trough the network by re-
cursively multiplying the derivative of the operation with the gradient.
The derivative of an addition is 1. In other words, the gradient flows
unchanged trough the addition operation. Consequently, the gradient
does not vanish no matter how deep the network is.

With residual skips, networks that have more than 1000 layers have
been trained successfully.

(a) Original (b) Im-
proved

Figure 4.7: The original [14] and improved [60] residual block from ResNet.

4.4 upscaling layers
Classification networks do no require upscaling layers, but networks
designed for segmentation often do. The two key upscaling layers are
the unpool and transposed convolutional layers.

4.4.1 Unpooling

The most straightforward way to upscale the input, is by doing a re-
verse pooling operation. The so-called unpool operation. Two variations
are possible. First, every output gets the same value as the input. This
creates a dense, but coarse output. Alternatively, if the network stores
the index that had the max value (the switch variable), the same index
can be filled during unpooling (Fig. 4.8). Other pixels are set to zero,
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(a) Pool (b) Unpool

Figure 4.8: A pool and corresponding unpool operation with switch variables.
Images by Noh et al. [61].

(a) Convolution (b) Transposed convolution

Figure 4.9: A convolution and transposed convolution with the same kernel.
Images by Noh et al. [61].

resulting in a sparse matrix. For average pooling the contribution per
index is stored and during unpooling the input is divided accordingly.

4.4.2 Transposed convolution

Sometimes called a deconvolution9, the transposed convolution performs a
convolution with the weight matrix transposed. In other words, nor-
mally a n×n matrix from the input is multiplied with a filter and
summed to 1 value (Fig. 4.9). But a transposed convolution takes 1 value
and maps it to a n×n matrix. To do so, first the kernel W is vectorized
and transposed. This is mulitplied with the input value x. The result is
a 1×n2 vector. Devectorizing this gives the final window. Consequently,
the stride and padding parameters concern the output rather than the
input. Naturally, transposed convolutions are suitable for upscaling. It

9 The name was introduced by Zeiler et al. [62]. It is an unfortunate name because it
implies that a deconvolution undoes a convolution, which is not the case.
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is possible that the output windows Y overlap, the overlapping values
are summed together.

Y = devec(x · vec(W)>) (4.2)

4.5 segmentation architectures
A (very) naive approach to segmentation would be to extract patches
around each pixel that fit into state-of-the-art classification networks
and use the result as label for the pixel. However, this is extremely in-
efficient. In this section we describe two key architectures for semantic
segmentation.

4.5.1 Fully convolutional networks

The fully convolutional network (FCN) [63] tries to optimize segmentation
by mimicking the final fully connected layers with 1×1 convolutions. In
this manner, the network can be scaled to bigger inputs. As a result, the
output is no longer a single value, but multiple values (Fig. 4.10). Note
that prediction on a bigger image with a FCN requires less computation
than doing the same with multiple independent patches.

Figure 4.10: Convolutionalization of a classification network enables a efficient
pixel-wise prediction, i.e. segmentation. Image by Shelhamer et al.
[63].

The output resolution is smaller than the input resolution; how much
smaller depends on what the network architecture is. To scale the smaller
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output up to the original size, a transposed convolution is used. How-
ever, it is likely that the filter size of the transposed convolution is very
big. Or in other words, the transposed convolution has to create a seg-
mentation from a neuron with a large receptive field. This will not result
in fine-grained segmentations. To counter this, FCNs upscale to the size
of an earlier feature map and sum them together (Fig. 4.11). Earlier neu-
rons have a smaller receptive field and thus the information is spatially
more constricted. After the summations a final transposed convolution
upscales the activations back to the original size. There is a trade off to
be made about how much layers one considers during upscaling. Fewer
layers give a better semantic understanding of the pixel and emphasize
features with large receptive fields more (useful for segmenting large
objects). More layers have more emphasis on the fine-grained spatial
boundaries of objects (useful for small objects and object borders).

Figure 4.11: A VGG FCN that includes two extra layers in upscaling. Image
by Tai et al. [64].

4.5.2 Decoder networks

Instead of applying transposed convolutions with large filter sizes, De-
convNet [61] and SegNet [65] gradually increase the size10. This gives
the networks a structure similar to stacked auto-encoders (Fig. 4.12). Both
networks use an unpool layer (with remembered pooling indices from
the pool layer) for upscaling. After an unpooling layer the resulting
feature map is sparse. To make a dense feature map a transposed con-
volution is used.

10 DeconvNet and SegNet are very similar, they have been published around the same
time.
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Figure 4.12: The DeconvNet architecture. Image by Noh et al. [61].



5
TA S K A N D DATA S E T

5.1 the task in context
The ultimate goal of the project is to diagnose whether a foramen ex-
hibits signs of stenosis based on a MRI scan. To train a network that
does this with complete MRI scans as input would require enormous
amounts of data. To avoid this we decided to split the problem into two
subtasks. The first to localize the ten foramina of the lumbar spine with
a network. The volume around each foramina is to be extracted and fed
to the second network that classifies the amount of stenosis for each fora-
men. The localization network is trained with the complete MRI scans
and requires the coordinates of foramina as target values. The classifica-
tion network is trained with the extracted volumes around the foramina
and requires the degree of stenosis as target value. The reports written
by radiologists are available, but these are written in natural language.
In order to use them as target values, the relevant information needs to
be extracted. In summary, there are three subtasks to be performed;

1. Localize the 10 foramina of the lumbar spine.

2. Determine the presence of stenosis for each foramen as diagnosed
by a radiologist from the corresponding report.

3. Classify the presence of stenosis for each foramen.

Given the time-constraint of the project, the focus of this thesis is on the
first task: localizing the foramina from the MRI scan. We aim to answer
the following question:

Is it possible to design and train a deep neural network that has
viable performance on the task of lumbar foramina localization on
MRI scans without using data driven postprocessing techniques or
hand-crafted features?

No target values (i.e. the foramina 3D coordinates) for this are avail-
able, thus, manual annotation is unavoidable. With manually annotated
target values, there are two options for training the network. Either seg-
ment the MRI scan to a probability map and derive the coordinates with
a (non data driven) postprocessing step, or train a network that directly
outputs the coordinates or bounding boxes around the foramina. State
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of the art localization networks require complicated trainings and test
pipelines [66]. To avoid this, we opt for a semantic segmentation of the
volume to accomplish the first subtask.

5.2 the dataset
The dataset consists of MRI scans with corresponding reports that con-
tain the findings of a radiologist. The MRI scans come from a picture
archiving and communication system (PACS) in the digital imaging and com-
munications in medicine (DICOM) format [67] (Fig. 5.1). When a patient
undergoes an examination it is possible that multiple tests are performed.
For example, the MRI technician could scan on multiple planes or with
different weightings. A complete examination is called a study. Each
scan is a series11. An MRI scan returns volumetric data, the DICOM
format stores each slice from the volume as an instance.

Patient Study Series Instance
1:n 1:n 1:n

Figure 5.1: A simplified view of the DICOM data model.

DICOM files are instance-based. In other words, each DICOM file is
an instance that contains meta data (Tab. 5.1). By examining the meta
data, other instance from the same series, study or patient can be deter-
mined. E.g. a series is constructed by combining all instances that share
the same SeriesUID tag. In a similar manner the same can be done for
patient and study. As a consequence, we are dependent on the meta
data to reconstruct complete MRI scans.

In addition to the SeriesUID tag, more tags are needed to construct
a complete MRI scan. The Plane (sagittal, axial (traverse), or coronal)
and Weight (T1 or T2) are derived from the SeriesDescription. Pixel-
Data contains a 2D array with gray scale values of the slice. From the
PixelData resolution we can derive the Shape of the image. To create
a 3D array the PixelData arrays are concatenated. To concatenate the
PixelData correctly, we order them based on the x, y or z value from
ImagePositionPatient. Which axis to order depends on the Plane, i.e.
given planes sagittal, axial, or coronal we order x, z, or y, respectively.
The arrays are ordered from low to high. The DICOM standard dictates
that the coordinates increase in value in the x-axis from right to left,
in the y-axis from front to back, and in the z-axis from feet to head
(Fig. 5.2). We only consider scans that have PatientPosition Head First-
Supine (HFS) or Feet First-Supine (FFS), i.e. patients laying on their back
with either head or feet first.

11 We use the terms scan and series interchangeably.
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tag name description

0010|0020 PatientUID The UID of the patient.
0020|000d StudyUID The UID of the study.
0020|000e SeriesUID The UID of the series.
0008|0018 InstanceUID The UID of the instance (slice).

0008|103e SeriesDescription Describes the series plane and
weight.

0018|5100 PatientPosition The position of the patient rela-
tive to the scanner.

0018|0050 SliceThickness The thickness in mm of each
slice.

0018|0088 SpacingBetweenSlices The space in mm between
slices.

0028|0030 PixelSpacing The space in mm that is repre-
sented between pixels.

0020|0032 ImagePositionPatient The x, y and z coordinates of
the instance image (slice).

Table 5.1: Selected meta tags (attributes) of DICOM images.

Figure 5.2: The DICOM reference coordinates system.

In total the dataset consists of 291.776 series, that is, there are 291.776

unique SeriesUIDs present in the meta data. Of those, 40.572 are so
called localizers. Localizers are coarse scans used to establish where to
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aim the scanner12. Such scans are not usable for us. Moreover, for 59.900

scans the meta data is not complete. This leaves us with 24i5.304 com-
plete and precise scans.

Discussions with radiologists revealed that sagittal T1-weighted scans
are most suitable to detect foraminal stenosis. Of the complete scans,
40.064 are sagittal T1-weighted. Not all sagittal T1-weighted scans are
suitable. All scans that have no value for SliceThinkness, Spacing-

BetweenSlices or PixelSpacing are discarded. To remove outliers and
corruptions in the meta data (e.g. a negative SliceThinkess is theoret-
ically not possible) we specify restrictions on these attributes that de-
scribe around 99% of the data. More specifically, 3 6 SliceThinkness

6 4 and 3 6 SpacingBetweenSlices 6 5.
For the Shape (resolution) we choose values that are more strict than

the values that describe 99% of the data. Since the PixelSpacing differs
per scan, a network has to learn to compensate for this variation. To
avoid this extra learning, we normalize the PixelSpacing. Based on the
original and normalized distribution we choose a minimal resolution of
500×500. All normalized images that grow more than 20% during the
normalization are discarded.

Keeping the future tasks in mind, only scans that have a correspond-
ing report from a radiologist are used. In the end we have a dataset with
29.309 MRI scans that are uncorrupt, satisfy the restrictions, and have a
corresponding report.

instances series studies patients

All 5.831.211 291.776 42.655 37.293

Suitable - 29.309 28.825 26.660

Table 5.2: Statistics of the complete data set.

5.3 creation of the manual annotations
The dataset does not contain the target values that are needed for train-
ing the localization network13. Therefore, we have to create our own
target labels. To that end, we build an annotation tool (Fig. 5.3). Each
lumbar spine has 10 foramina, with the annotation tools someone can
scroll trough the slices and annotate relevant points. More than 1 slice
per foramen might contain information that a radiologist uses to deter-

12 The time it takes to complete an MRI scan increases with more precise settings.
13 From here on when we refer to our ‘localization’ network, we refer to our network

that does segmentation for the purpose of localization.



5.3 creation of the manual annotations 41

mine the presence of stenosis. Thus, per foramen an annotator can mark
multiple points. Since the MRI scans are ordered during the preprocess-
ing, we can derive the corresponding foramina for each coordinate in
an annotation.

To ensure the trustworthiness of the annotations, a radiologists per-
formed an independent trial of 50 scans. The annotations of the radiol-
ogist have been compared with our annotations. Since it is a subjective
matter which slices should or should not be included, some difference
between two annotators is inevitable. However, we found that in all
cases there was at least 1 marker that overlapped between the anno-
tations of the radiologist and our own for all foramina. Additionally,
the differences have been evaluated together with the radiologist. The
radiologist in question deems the differences negligible14.

A total of 500 scans have been manually annotated with the locations
of the 10 lumbar foramina.

14 An endorsement of our annotation skills by a certified radiologist is necessary for a
CE certificate
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6
R E L AT E D W O R K S

As mentioned before in Chap. 1 radiologists interpret medical images.
Radiology is a part of medical image analysis. The advances in computer
vision (Chap. 4) due to deep learning have not gone unnoticed in au-
tomatic medical image analysis groups. The number of published pa-
pers concerning automatic medical image analysis with deep neural
networks has exploded in the recent past (Fig. 6.1).

Figure 6.1: Number of papers about deep learning for automatic medical im-
age analysis15. Image by Litjens et al. [68] from (February 19, 2017).

Typically, biomedical data is 3D since it represents parts of the human
body (which a 3D object). However, computer vision mostly focuses on
2D data (images). Although 2D CNNs are applicable to volumes by
applying them to 2D images along the depth axis, this approach does
not take the spacial information along the depth axis into consideration.
For CAD systems that analyze MRI scans, it is crucial to be applicable
to volumetric data.

6.1 segmentation of biomedical volumes
Segmentation is an important task for CAD systems. It helps radiolo-
gists to make a better diagnosis and often is a first step in the pipeline
for other tasks. In this project we also use segmentation as a first step
for our localization task. Consequently, is the most common task in
published papers concerning deep learning in automatic medical image
analysis [68].

15 Papers were looked for on Pubmed, arXiv, and the conferences proceedings of MICCAI
(including workshops), SPIE, ISBI, and EMBC.
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The best-known network for biomedical segmentation is U-Net [69]
which combines the architectures of the FCN [63] and DeconvNet [61].
Its main contribution, the long skip between the down- and upscaling
branches, has since been adopted among CNNs for natural image seg-
mentation [15].

6.1.1 U-Nets

Even though its network is designed for biomedical data, U-Net [69]
works well for segmentation in general. It combines the ideas of a auto-
encoder CNN and taking into account information from multiple layers
for fine-grained spatial information. This leads to an architecture that
uses skip connections16 between the down- and upscaling branches. Max
pooling is used to downscale the input, to upscale U-Net first upsam-
ples the image and then performs a 2×2 convolution.

Drozdzal et al. [70] investigated the importance of the long skip con-
nections and residual skips (that were not invented when the original U-
Net was published) for the performance of U-Nets. The authors stress
the importance of such connections and note that without them the net-
works perform worse.

The architecture of the U-Net can easily be extended to support vol-
umetric data. V-Net [71] (Fig. 6.2) and 3D U-Net [72] do not offer
any substantial contributions besides making the architecture U-Net

3D compatible and implementing techniques that have been discovered
after the U-Net paper was published, such as batch normalization [43]
and residual skips [60].

U-Networks (denoting all networks that are variations of U-Net) share
some limitations: class imbalance and data scarcity. Both are caused by
the fact that U-Networks segment large patches and segmentation typi-
cally has an imbalanced distribution [73]. Moreover, manual segmenta-
tion is a time consuming task that most of the time require an expert,
this holds especially for biomedical data. As a result, there are not many
large biomedical segmentation datasets. A natural solution is to apply
heavy data augmentation.

When segmentation output volumes are sparse (which is often the
case when segmentation is used as a first step in a detection pipeline),
there is class imbalance. There will be many more negative than positive
pixels to classify. Typically, cross entropy [74] is used as a measure of per-
formance for image classification. It is possible to use cross entropy for
segmentation, since it is a pixel-wise classification. But a network that is
trained on a dataset with a class imbalance and a cross entropy loss will

16 Sometimes residual skips are also referred to as skip connections. In this study a skip
connection refers to the long skip connections as in U-Net.
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Figure 6.2: V-Net architecture. Image by Milletari et al. [71]

be biased towards the dominant class. The authors of the U-Net and
3D U-Net solved this by using a weight map in combination with cross
entropy. A simpler approach that does not require any hyperparameters
or weight maps is to use the Dice coefficient [75] (Sec. 7.1).

6.1.2 Deep supervision

Another approach to segmentation is to dispose of the expanding branch,
i.e. no gradual expansion of a gradually compressed input. VoxResNet

[76] and 3D DSN [77] gradually compress the input. But instead of a
gradual expansion, they upscale different layers to the original size, sim-
ilar to FCN. VoxResNet consists of stacked VoxRes modules (which are
basically 3D residual blocks [60]), alternating strided convolutions to
decrease the size (Fig. 6.3). The output of four layers is unscaled to the
original size and summed together for the final output. In addition to
the final classifier, the authors opted to use auxiliary classifiers [59] to
ensure that the intermediate layers produce features that are directly
useful for the segmentation. This has the disadvantage of introducing
an extra hyperparameter that specifies the weight of each classifier. The
authors argue that this approach is more efficient while maintaining the
fine-grained spatial information from the lower features because of the
auxiliary classifiers.



46 related works

Figure 6.3: VoxResNet architecture. Image by Chen et al. [76].

6.1.3 U-Nets with deep supervision

More recently two architectures attempted to combine the ideas of U-
Net and deep supervision. Cumed [78] (Fig. 6.4) uses direct deep super-
vision with auxiliary classifiers. Alternatively, the network by Kayalibay
et al. [73] interpolate and sum layers together, similar to FCN (Fig. 4.11).

Figure 6.4: Cumed architecture. Image by Yu et al. [78]

6.2 vertebrae detection
Localization of the foramina is an uncommon task that has barely been
studied. Vertebrae detection however, is much more common. It aids
radiologists with diagnosing and planning treatments for spinal disor-
ders. As showed before in Fig. 6.1 the deep learning revolution for auto-
matic medical image analysis started in the year 2015, before that data
driven approaches with traditional computer vision techniques were
much more common. Examples are multi-based atlas registration [79],
conditional random fields [80], and regression forests [81].
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The similarity in morphological appearance makes it hard to distin-
guish the vertebrae from each other. This is due to the repetitive nature
of a spine. Additionally, diseases that cause abnormalities in the spine
are rare, making it hard for techniques to correctly label the vertebrae
in such cases. We humans can take in the context to infer which verte-
brae we are dealing with, e.g. we know that L1 is positioned above L2.
State-of-the-art vertebrae detection networks all use multiple stages to
somehow utilize this prior information.

One of the first convolutional neural networks for vertebrae detection
is DeepSeg [82]. The authors of DeepSeg developed a two-stage pipeline.
First they make rough estimations of the localization and segmentation.
Secondly, they use the localizations to define a region of interest (ROI)
and improve the segmentation in the ROI.

The output of DeepSeg’s localization network is a coordinate per ver-
tebrae, i.e. DeepSeg is a regression network. During inference multiple
random patches are sampled and the results are aggregated into a prob-
ability map per vertebrae. The probability maps are refined with a hid-
den Markov model (HMM) that connects them all.

Chen et al. [83] do not train their network directly on the raw medical
image. First HOG features are extracted and a binary random forest is
trained to classify each voxel as part of a vertebral. The output is a bi-
nary volume, this volume is feeded trough their CNN, J-CNN. J-CNN
outputs a probability per level for each candidate from the coarse loca-
tions. To improve the identification rate, the neighboring dependencies
are taken into consideration while refining the probabilities.

Yang et al. [84] propose a 3-stage approach. The first stage is a CNN
that predicts a probability map per level foramen. To avoid false posi-
tives the authors make use of a message passing scheme that leverages
the mutual relations between the vertebrae. In its essence the message
passing scheme is a graphical model that is also trained on the train-
ing set. This graphical model takes the prior information about how the
vertebrae are structured into account.

A similar approach is taken by Forsberg et al. [85]. However, they
use two CNNs; one for the general foramina and one for the deviant
S1 vertebrae17. Again a graphical model is trained on probability maps
during training, allowing to taking into account the prior information
about mutual dependencies between the vertebrae. In other words, the
graphical model assigns labels to the candidates that best resemble the
spines seen during training.

17 The S1 vertebrae is morphological very different from the L1-5 vertebrae, the same
holds for the corresponding foramina.
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E X P E R I M E N T S

In this chapter we describe the performed experiments and their results.
All experiments follow the same outline:

1. Train a network with 400 trainings volumes on a segmentation loss.

2. Perform inference on the resulting 100 test volumes with the trained
network.

3. Determine the 10 coordinates from the each of inferred volumes,
for a total of 1000 coordinate predictions.

4. Measure the performance of the network with a localization metric.

5. Test the localization performance for statistical significance
against other networks.

As said before, our approach consists of two stages, segmentation and
localization. The segmentation task is not our ultimate goal, yet we re-
quire a proxy loss function to train the network. Subsequently, we need
to evaluate how well the segmentation of the network is suitable for the
localization stage. The metrics used for segmentation and localization
are described in Sec. 7.1. Additionally, we want to compare models and
check if their difference is statistically significant. Our test for this is
explained in Sec. 7.1.3.

Before segmenting the volumes, we first preprocess them. In Sec. 7.2
a walk trough of the preprocessing pipeline is given. Note that even
though we describe the pipeline as if every step is mandatory, they are
all optional.

We experimented with two different approaches to segmentation, a
single-channel and multi-channel output. The corresponding networks
SingleNet and MultiNet are explained in Sec. 7.4 and 7.5, respectively.
Both sections follow the same outline. First a general overview of the
base network is given. Next we list all variations we made of the net-
work to improve it or test the influence of an architectural choice. As
both approaches require slightly different methods of foramina localiza-
tion from the segmented volumes, both sections contain a short explana-
tion about how to do the localization. We compare the models on how
well the localization is done and test for statistical significance.

For pre- and postprocessing we made extensive use of NumPy [86],
SciPy [87], and Pandas [88] which are all libraries for scientific comput-
ing in Python. The neural networks are implemented in TensorFlow [89],
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an interface by Google that let us express and compute machine learn-
ing algorithms as a graph, and trained on a NVIDIA GeForce GTX 1080
Ti GPU.

7.1 evaluation metrics
We opted for a localization by segmentation network, therefore we have
to measure the performance of two tasks. First, we require a metric that
measures the correctness of the segmentation and secondly a metric that
measures how good the actual predicted coordinates for the foramina
are.

7.1.1 Segmentation metrics

For the segmentation we use the Dice coefficient [75]. The Dice coeffi-
cient measures the overlap between two sets A and B:

D(A,B) =
2|A∩B|
|A|+ |B|

=
2|A∩B|

(|A∩B|+ |A\B|) + (|A∩B|+ |B\A|)

=
|A∩B|

|A∩B|+ 1
2 |A\B|+

1
2 |B\A|)

(7.1)

It divides two times number of elements in the intersection of A and
B by the total number of elements in A and B combined. It is easy to
see that when the sets are the identical, the Dice coefficient is maximal
D(A,B) = 1. For every element that A misses with respect to B, the
numerator will shrink. For every element that A has extra with respect
to B, the denominator will grow. Both will result in a lower score. We
can see that the Dice coefficient is the same as the F1 score:

F1(A,B) =
2

1
Precision + 1

Recall

=
2

1
|A∩B|
|A|

+ 1
|A∩B|
|B|

=
2

|A|
|A∩B| +

|B|
|A∩B|

=
2|A∩B|
|A|+ |B|

(7.2)
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Some literature [73] suggests using the Jaccard coefficient [90]. However,
since the Jaccard coefficient is monotonic to the Dice coefficient this will
only result in a different optimal learning rate.

J(A,B) =
|A∩B|
|A∪B|

=
|A∩B|

|A∩B|+ |A\B|+ |B\A|)

(7.3)

The Dice coefficient as defined in Eq. 7.1 requires a discrete number
of elements in both sets. Our results however, are probabilities. The
TensorFlow library requires all operations to be differentiable. There-
fore, it is not possible to round the probabilities to binary set. Thus, we
have to modify the Dice coefficient to be compatible with probabilities.

Dfuzzy(p, t) =
2
∑n
i piti∑n

i pi +
∑n
i ti

(7.4)

The fuzzy Dice coefficient Dfuzzy takes two vectors18 of length n; the
prediction p and target t. Note that this definition only works because
target t is, in contrast to prediction p, binary.

7.1.2 Localization metrics

A straightforward metric for the localization performance is the mean
error distance from the predicted coordinates to the target coordinates.
However, the end goal is too extract a subvolume around the foramen.
As we will extract from multiple slices in the x-axis (from right to left
on the patient) and the distance between slices is bigger than 3 and
less than 5 millimeters, we can miss the foramen with approximately 10
millimeters in the x-axis and still correctly extract a subvolume.

For the other two axes however, this does not hold. The y and z-
axis (from front to back and feet to head, respectively) are the axes that
define the 2D space of a slice. The accuracy on the slice itself is required
to be more precise because a predication that is 10millimeters off in this
space might very well be the coordinate of another foramen.

Therefore, we measure the distance of a prediction to the real center
in two ways. The distance in the x-axis, which conveys how many slices
the prediction is off. And the euclidean distance in the yz-axes space,
which conveys how far the prediction is off on the slice itself. The latter
is most important and is the subject of the reported mean error distance.

Disx(px, tx) =
√

(tx − px)2

Disyz(py, ty,pz, tz) =
√

(ty − py)2 + (tz − pz)2
(7.5)

18 The vectorized volumes.
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It might occur that a network makes no prediction at all for a particu-
lar foramen. Obviously, this is wrong. Yet, this is hard to include such
predictions in the mean error distance. For our purpose it is preferable
if a model makes no prediction, rather than a wrong prediction. Thus,
we ignore these ‘missed’ foramina in the mean error distance. In the ap-
pendix we will present the number of missed foramina for all networks
(Tab. B.1 and ??). As a result, the models can not be compared fairly
by means of mean error distance, because a different set of foramina is
considered for different models.

In addition to the mean error distance and number of missed foram-
ina, we also calculate the recall of the model. Since recall considers bi-
nary classification we have too set a threshold that defines when a pre-
diction is considered positive or negative. We decided that 5 millimeters
is a fair threshold. The recall includes missed foramina as negatives. The
recall takes all 1000 predictions into account, thus the models can fairly
be compared with this metric.

7.1.3 Model comparison

To compare two models MA and MB for a significant difference, we
consider them as binary classifiers. The same threshold of 5 millime-
ter is used, as for the recall. With both models we make a prediction
on each foramen in the test set. This results in the 2×2 contingency ta-
ble as shown in Tab. 7.1. We are interested in whether the difference
is significant, thus we do not consider a and d. The null hypothesis is
H0 : pa = pb. Normally we would use the McNemar’s test [91], however,
the McNemar’s test depends on the χ21 distribution which is an approx-
imation that breaks down for a low b+ c. Therefore, we use the exact
binomial test. The binomial test gives us a p-value, which is the chance
of observing these values (b and c) given that H0 is true. A low p-value
suggest that H0 is not true.

MA+ MA−

MB+ a b

MB− c d

Table 7.1: A 2×2 contingency table between 2 binary classifiers.

7.2 preprocessing
We perform several steps of preprocessing before a volume is fed to the
network. First we discard corrupted samples and outliers as described
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in Sec. 5.2. Accepted volumes go through the pipeline described below.
For many machine learning applications sophisticated preprocessing
techniques are absolutely necessary. However, computer vision usually
requires very little preprocessing [12]. Every stage of the pipeline can
be disabled if necessary. For simplicity we consider the full pipeline in
this section.

First the PixelSpacing is normalized to a NormSpacing defined by us.
We choose a NormSpacing of 0.7 millimeters because that was close to
the average. Even though we are normalizing all scans, we would like to
minimize the modification. The ScaleFactor is calculated with Pixel-

Spacing /NormSpacing. To get the new size we multiply the ScaleFactor

with the original size. Each slice is resized with bilinear interpolation.
Next, for each scan a corresponding target volume is generated with

the manually annotated foramina markers. A volume, with an identical
shape to the scan, is initialized with zeros. On the slices with markers
a circle with radius LabelRadius (the default is 7 millimeters) is set to
ones. The marker coordinates are multiplied with the previously deter-
mined ScaleFactor to account for the resize. Note that these are circles
and not spheres, they extend in the y and z dimension. The result is a
sparse 3D tensor with roughly the voxels that are part of a foramina set
to 1.

As is conventional in machine learning the features (in our case the
voxels) are standardized, i.e. for each voxel vi = (vi−µ)/σ where µ and
σ are the mean and standard deviation of all voxels respectively.

The preprocessing pipeline also includes data augmentation. A vol-
ume is warped with random nonlinear deformations. This results in
strange looking lumbar spines that cannot possibly exist. But even unre-
alistic data augmentation can improve performance [69]. Secondly, vol-
umes are rotated around the x-axis with a random angle between −45◦

and 45◦. Finally, noise sampled from N(0, 0.25) is added to the volume.
Due to this randomized augmentation, the network will never process
two identical inputs during training.

A patch with size PatchSize is randomly extracted from the aug-
mented volume. The compatible PatchSizes depend on the network
architecture. An examples is shown in Fig. 7.1. Testing and inference
is done on unaugmented volumes, and training is done on (partially)
augmented volumes.

7.3 networks
For both approaches to segmentation (single-channel and multi-channel
output), we first design a base version. We make modifications to this
base version to either try and improve it, or test the influence of a tech-
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(a) Unaugmented input (b) Unaugmented target

(c) Augmented input (d) Augmented target

Figure 7.1: A slice from a prepreprocessed volume, both un- and augmented.

nique. The base versions are trained for 20 hours to see how many steps
it takes for the the Dice coefficient to converge. The variants of the net-
work are trained for that many steps19 (a single step is a single batch
processed).

As will become clear in Sec. 7.4, it is important to find a balance
between the network’s size, BatchSize, and PatchSize. For this reason,
it is desirable that the number of slices per trainings sample is kept
low. However, we still want to utilize the 3D spatial information. We
discarded the idea of 3 slices in and 3 slices out, because that means that
the output of the 1st and 3rd sliced are based on the extra context from
only 1 other slice, i.e. the 2nd slice. The 2nd slice however, has extra
context from both the first and third. Therefore, we choose to design
networks that take 3 slices in, and output only 1. We are using 3 slices

19 For a fair comparison we kept the weights from the base version at the same number
of steps.



7.4 singlenet 55

as input and not 5 or more, because our annotator has sufficient extra
context with 3 slices. If a human can do with 3 slices, so can a neural
network given enough training20.

7.4 singlenet
Our base architecture for the single-channel approach is a 3D U-Net

based on V-Net [71], let us call it SingleNet (Fig. 7.2). Just as V-Net,
SingleNet consists of a compressing and expanding branch with long
skips connecting them. Furthermore, SingleNet also has residual blocks
after each compression and before each expansion. First we explain the
difference between SingleNet and V-Net, next the process of deter-
mining the hyperparameters is explained. After that we describe the
modifications we made leading to the variations of SingleNet. Finally,
the results and some examples are examined.

7.4.1 Architecture

Whereas V-Net uses 4 levels (4 compression and expanding blocks),
SingleNet only uses 2. Also, we start with half the channels. Therefore,
at each level in the rest of the network SingleNet also has half the
channels as we double the channels per level. We choose to use only
3×3×3 instead of 5×5×5 convolutions and ReLU instead of PReLU as
activation function. Furthermore, we added batch normalization and
dropout.

In the final prediction block we use a 3×1×1 valid convolution with 1
output channel. As a result the output has a dimension of
1×481×481×1, i.e. a single slice with height and width 481 and a single
channel. The sigmoid operation converts this to a probability. The val-
ues should be interpret as the probability that a voxel is part of one the
10 lumbar foramina.

The total number of parameters for SingleNet is 179, 115. With re-
spect to state-of-the art natural image networks, this is not a lot. Espe-
cially considering that the input is 3D.

The network is trained with the Adam optimization algorithm.

7.4.2 Random hyperparameter search

To get a sense of what set of hyperparameters are reasonable, we used
random search [92]. The ranges for each hyperparameter explored can be

20 Assuming the network is able to perform the task at all.
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Figure 7.2: The SingleNet architecture.

name weight p-value singlenet

PatchSize 14.869 0.0 481

BatchSize 9.171 0.0 4

Blocks −4.456 0.061 2

Channels 4.146 0.096 8

LearningRate −3.926 0.106 0.001
KeepProbability −2.226 0.345 0.9

Table 7.2: The weights and p-values from the fitted linear regression model
per hyperparameter and the final value for SingleNet.

seen in Tab. A.1 and are based on the values from similar networks. We
trained 51 networks with random hyperparameters each for 3 hours.

To aid us with the interpretation of the random hyperparameter search
results, we fitted a linear regression model on the hyperparameter search
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(a) Compress (b) Expand

(c) Residual Block (d) Predict

Figure 7.3: The modules used in the SingleNet architecture.

results with Dice coefficient as target value (Tab. A.1). This gave us guid-
ance on whether certain hyperparameters should be low or high (nega-
tive or positive weight) and how important they are (the p-value). Note
that this is only used as a rough guideline and does not lead to the
direct specification of SingleNet.

As expected, the results indicate that some hyperparameters are more
important than others. It is important to keep PatchSize and BatchSize

as high as possible. Thus, processing more voxels per iteration increases
performance. At the same time more channels (i.e. more parameters and
activations) also increases performance. These two findings both require
more memory. A balance between the two is necessary. In any case,
the GPU’s memory should be as full as possible. The random search
suggests a PatchSize of 481×481 (the highest), a BatchSize of 4, and 8
initial channels.

Surprisingly, the number of levels is to be kept low. This is surprising
because the long skips between down- and upscaling branches are the
theoretical reason U-Nets perform well. However, for SingleNet more
than 2 blocks does not yield better performance. According to the data,
a better approach to increase the model size is to keep the number of
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Figure 7.4: The Dice coefficients of SingleNet while training the network.

blocks low and increase the number of channels. We speculate that this
is because the network does not require a large receptive field to deter-
mine whether a voxels is part of a foramina. SingleNet has a receptive
field of 42×42×3 voxels. Adding more blocks would only increase the
complexity, a better use for more parameters is to increase the number
of channels.

The learning rate has little influence. This is because Adam uses adap-
tive strategies to optimize the weight update procedure. Therefore, it
works with a wide range of (sensible) learning rates.

7.4.3 Variations

We experimented with numerous changes to the architecture that might
increase its performance. The activation function might have significant
impact on the performance on the model, so we trained models with
the ELU and CReLU. Also, we increased the capacity of the network
by defining a bigger network with Channels increased to 12 and at the
same time KeepProbability decreased to 0.7. The Dice coefficient of the
test batches while training these ‘improved’ networks are shown in Fig.
B.1.

Too gain insight in the added value of batch normalization and the
He initialization scheme, we trained the network without these methods
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(Fig. B.2). To approximate how much more annotated data was needed,
we also trained the network with subsets of the trainings set of different
sizes (Fig. B.3).

The Dice coefficient can show how well the network learns. But since
it is a proxy loss, it does not give a complete representation for how well
the network performs on the final task. Nonetheless, the ability to learn
is a crucial component of DNNs. Changing the activation function had
no influence on the Dice coefficient curve. increasing the capacity even
made it worse. Although this could also be caused by decreasing the
KeepProbability too much. We can clearly see in Fig. B.2 that both He
initialization and batch normalization have a positive effect on the curve.
The theoretical explanations for this effect are given in Chap. 3. Surpris-
ingly, the network seems to benefit little from more data. A trainings set
size of 50 and more yields a similar Dice coefficient curve.

7.4.4 Single-channel localization

As mentioned before, SingleNet takes 3 slices as input and gives 1

slice as output, to create a full probability volume we pad the original
volume with two empty (all zero) slices at the x-axis (a slice appended
to the right and left side of the volume). Subsequently, we divide the
volume into overlapping subvolumes of 3 slices, such that each slice of
the original volume is the middle slice of a subvolume.

Recall that the SingleNets take a fixed input21 which is likely not
the same as the slice. Therefore, we divide the subvolume into 4 even
smaller subvolumes with the same depth (3 slices) and compatible width
and height. We do inference on each of these 4 subvolumes and merge
them together for a probability map of the slice. Next we concatenate
the probability maps together for the probability volume.

As said before, the segmentation is a proxy task that provides an
easier way of determining the coordinates. The next task is to actually
localize the 10 foramina from the probability volumes.

First we round the probabilities to either 1 or 0, as a result we a have
binary volume that we will use to extract coordinates from. To do that,
we detect all clusters22. These are the candidates. For each candidate

we determine the center and size (the number of 1s in the cluster).
Because we want to predict the foramina L1-5 for both the left and

right side, it is useful to split the volume into two sides. But it might
be possible that the middle of the spine does not align with the middle
of the volume. Therefore we take the x value of each candidate center

21 It is not required for the network to take the same input as the trainings patch, however,
SingleNets (and U-Nets by extension) have a limited range of compatible input sizes
depending on their architecture.

22 A contiguous shape of 1s in the 3D volume, our networks output cilinder shapes.
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and cluster them into 2 clusters with the k-means algorithm [93]. We
consider the slice in between the two clusters as the middle slice. Note
that this approach requires that candidates (i.e. the predictions made by
the network) have to be of a certain quality for it to work. If there are
5 or less candidates (poor quality prediction) or the spread among the
candidates’ x values is less than 4 (all candidates come from one side),
we take the middle slice of the volume.

For each side we take the 5 candidates with the highest size, as this is
an indication of the network confidence in the candidate. The 5 biggest
candidates are sorted in the z-axis and labeled from top to down as L1

to L5.

7.4.5 Evaluation

The next stage is do inference on the resulting 100 test volumes and
determine the predicted coordinates. A scatter plot of the distances of
predictions made by SingleNet is shown in Fig. 7.5. A clear pattern
is visible. Most predictions are close to the actual coordinate (within 5

millimeters), but then we see a jump to around 17 millimeter error dis-
tance. This is the approximately the distance to a neighboring foramen.
The mean error distance, recall, and skipped foramen metrics, for all
SingleNet variations can be found in Tab. 7.3, 7.4, and B.1, respectively.
With a binary classification at hand, we can compare the models for sig-
nificant differences. The p-value for all SingleNet variations pairs are
displayed in Tab. B.2.

The ELU and CReLU networks perform better both in terms of mean
error distance and number of foramina locations correctly predicted.
Furthermore, this performance gain is statistically significant23. Among
the ELU and CReLU networks themselves a weak difference is found
(p = 0.10), they most likely produce a similar network. This make the
ELU network favorable, because CReLU increases the number of param-
eters and memory requirements.

Interestingly, the networks that are trained with 150 and 250 trainings
samples perform worse, yet the difference is not significant.

7.4.5.1 Examples

In Tab. 7.3 and 7.4 can be seen that SingleNet has more difficulties
with L1 than the other foramina. Upon inspection of the cases that went
wrong we saw that this was due to over generalization by the network.
SingleNet has a small receptive field, it only has limited context around
the foramen to determine if it is a (lumbar) foramen. As it turns out
this makes it difficult to distinguish between the lumbar foramina and

23 Assuming the commonly used p < 0.05 threshold.
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Figure 7.5: The distance from the predicted foramina centers to the real centers
in the x and yz axises by the ELU variant of SingleNet.

thoracic foramina that reside above them. This is problematic as shown
in Fig. 7.6 where the L5 candidate is not included the top 5 biggest
candidates.

Although it makes the labeling of foramina more difficult for us, it
is encouraging to see how the network generalizes from only lumbar
foramina as positive samples, to the thoracic foramina. Arguably, this
means that the network truly generalizes.

Another more disastrous flaw of single-channel output, is that the
labeling of the foramina happens after prediction. As a result, we have
no way of knowing whether the network missed a foramen. This has
more far-reaching implications than might seem at first. An example
is given in Fig. 7.7. Even though the network correctly distinguishes
the T12 foramen from the lumbar foramina, as can be derived from
the small size of the T12 candidate, it will miss label all foramen. By
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network mean error distance in mm
all l1 l2 l3 l4 l5

Base 5.78 10.04 5.08 4.78 4.36 4.70

CReLU 5.07 7.80 4.42 4.46 4.08 4.68
ELU 5.20 10.35 4.05 3.78 3.87 3.99
More capacity 9.79 17.51 8.19 6.25 5.91 11.11

No He Initialization 18.83 30.69 19.39 14.99 13.05 16.33
No Batch Normalization 11.17 21.42 10.83 7.89 6.66 9.04

Trainings Set Size 250 6.42 10.35 6.26 5.64 5.02 5.05
Trainings Set Size 150 7.40 13.69 6.43 5.02 4.02 7.86
Trainings Set Size 50 7.70 12.86 7.01 6.15 6.18 6.36
Trainings Set Size 5 16.78 25.47 17.41 13.50 12.11 16.29
Trainings Set Size 1 71.79 68.58 72.98 75.22 72.42 69.65

Table 7.3: The mean error distance for the SingleNet variations.

network percentage below 5 mm
all l1 l2 l3 l4 l5

Base 85.4 73.0 89.0 89.5 89.0 86.5

CReLU 87.5 79.5 89.5 90.0 90.0 88.5
ELU 89.2 75.5 92.5 93.0 93.0 92.0
More capacity 79.7 60.0 83.0 86.0 86.5 83.0

No He Initialization 62.3 42.0 58.5 65.5 70.5 75.0
No Batch Normalization 75.6 52.5 76.5 82.0 84.0 83.0

Trainings Set Size 250 84.1 73.0 86.0 87.5 87.5 86.5
Trainings Set Size 150 84.3 68.0 85.5 89.0 91.0 88.0
Trainings Set Size 50 82.3 69.5 84.5 85.5 86.0 86.0
Trainings Set Size 5 59.9 37.5 57.0 66.0 70.0 69.0
Trainings Set Size 1 6.3 3.0 4.0 9.5 7.5 7.5

Table 7.4: The percentage of coordinate predictions that were within 5 millime-
ter of the target coordinate for the SingleNet variations.

missing the L5 foramen it will label L4 as L5, L3 as L4, etc. Making
every prediction wrong.
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(a) Input (b) Target

(c) Output (d) Combination

Figure 7.6: An example of overgeneralization to the T12 and T11 foramina by
SingleNet.

The target and prediction colors are chosen such that when they overlap they
become white.

7.5 multinet
To prevent the problem that arises with a single-channel output, we cre-
ate a network that outputs the probabilities whether a voxel belongs to
one of the foramina at each level (i.e. a multi-channel output). With a
multi-channel output we create a candidate per level. As a result, when
L5 is not recognized, only L5 will have no candidate and have a wrong
prediction. The rest of the levels still get a correct prediction. In other
words, the labeling of the foramina is incorporated in the network archi-
tecture.

In the rest of the section we will first describe the architectural differ-
ences of MultiNet with SingleNet. Subsequently, we explain the need
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(a) Input (b) Target

(c) Output (d) Combination

Figure 7.7: An example of a missed L5 foramen by SingleNet.

for a modification to the Dice coefficient. Next, we enumerate all varia-
tions of MultiNet (Sec. 7.5.2). A multi-channel output requires a small
modification to the coordinate extraction from the probability volume
with respect to a single-channel output, which we will clarify in Sec.
7.5.3. Finally in Sec. 7.5.4 we will evaluate the results and give some
examples of predications made by MultiNet.

7.5.1 Architecture

This network requires a bigger receptive field because it needs more
context to determine to which level the foramina belongs. We increased
the number of blocks the network has to 5, as this effectively increases
the receptive field for each output node. To restrain the size of the net-
work we introduce a new hyperparameter called MaxChannels and set
it to 16. The layers that control the number of channels (i.e. the com-
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press and expand layer) are capped in the number of output channels
by MaxChannels. We call the new network MultiNet. The number of
parameters is 397, 371. Even though we put a constraint on the size by
using MaxChannels, the network is too big for a BatchSize of 4. Thus,
we lower the batch size to 2. Lastly, we added supervision. Instead of
extending the loss to take the auxillary classifiers from the lower levels
into account, we iteratively interpolate the output to the size of the level
above and add them together in similar fashion to Kayalibay et al. [73].

One of the first things that immediately becomes clear is that Multi-
Net has trouble learning. In Tab. (C.1) is shown how many foramina
the MultiNet base version misses. It misses all L1, L2, and L3 foramina.
We hypothesized that this was due to the fact that the lower foramina
are deeper24 than the higher foramina. As a result, the lower foramina
are on average marked on more slices. In other words, we are dealing
with a class imbalance problem. SingleNet did not have this problem
because it had only 1 class to predict, i.e. foramen or non-foramen. To
compensate for the class imbalance we normalize the Dice coefficient.
For a correct normalization we counted how many markers each level
has (Tab. 7.5). Instead of vectorizing the full output and calculating the
Dice coefficient, we determine the Dice coefficient per channel and sub-
sequently do a weighted sum. This normalized Dice coefficient deals
with the class imbalance improving recall from 38.5% to 96.5% (Tab.
7.7). All variations made on MultiNet make use of the normalized
Dice coefficient.

l1 l2 l3 l4 l5

Count 1154 1274 1582 2060 2267

Weight 1.00 0.91 0.73 0.56 0.51

Table 7.5: The marker counts and weights for normalization per level.

7.5.2 Variations

To start, we trained a network without supervision to acquire insight
into the influence of supervision.

As the normalization of the Dice coefficient had such a big impact,
we explored the use of other loss functions. One of the most common
is cross entropy. However, cross entropy is very susceptible to class bias
with imbalanced data. Similar to the normalized Dice coefficient, we
normalize the cross entropy loss. A positive and negative weight is de-
termined, such that they each can contribute half of the total loss. Sub-

24 Pysically deeper and therefore visible on more slices.
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sequently, we construct a weight map of the same size as the target seg-
mentation, that has the positive weight at the corresponding positive
voxels and the negative weight at the corresponding negative voxels.
Next we multiply the cross entropy loss with this weight map. Both the
sigmoid and softmax cross entropy loss are trained.

To improve the model we trained a networks with more capacity
(Channels increased to 12, MaxChannels to 32, and KeepProbability

decreased to 0.75), the ELU and CReLU activation functions — since
CReLUs increased the number of parameters by a lot we had to lower
the batch size to 1, therefore we also trained ‘CReLU Less’ which has
slightly less channels (MaxChannels set to 14 instead of 16) and can pro-
cess batch of size 2 — and a softmax activation as output layer.

By reducing the capacity of the network, we can train networks that
are able to process bigger batches. The network ‘Less capacity’ has 6
channels at the first level and 8 in the rest of the network. This allows
for training with batch size 4.

Another approach to reducing the memory requirements is by reduc-
ing the input. However, we know from the SingleNet random hyperpa-
rameter search that a big PatchSize is essential for good performance.
This is even more so for MultiNet, which requires more context to
determine the foramen level. For that reason we reduced the input by
doubling the NormSpacing to 1.4 millimeters. As a result the volumes
shrink half in size, yet are still complete volumes. The PatchSize for
this network is set to 225×225. This allows for training with a batch size
of 8. Additionally, a combination of less capacity and a lower resolution
with a batch size of 16 was trained.

Finally, we experimented with the varying number of trainings set
samples.

7.5.3 Multi-channel localization

As mentioned before, MultiNet has 5 output channels. This makes the
extraction easier since the network tells us how to label the candidates.
Similar to SingleNet the output is 1 slice and does (usually) not cover
the entire slice as the network only takes limited set of PatchSizes. So
again, we pad the original volume with two empty (all zero) slices at
the x-axis (a slice appended to the right and left side) and divide the
volume into overlapping subvolumes of 3 slices, such that each slice of
the original volume is the middle slice of a subvolume. Subsequently,
we divide the subvolume into 4 even smaller subvolumes with the same
depth (3 slices) and compatible width and height. We do inference on
each of these 4 subvolumes and merge them together for a probability
map of the slice. Finally, we concatenate the probability maps together
for the probability volume.
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network mean error distance in mm
all l1 l2 l3 l4 l5

Base 2.36 — — — 2.18 2.54
Normalized 2.83 5.28 2.42 2.21 1.87 2.38

Unsupervised 2.98 4.93 2.72 2.59 2.23 2.48

ELU 2.48 3.07 2.22 2.21 2.20 2.69
CReLU 7.33 11.09 7.72 7.21 4.23 4.81
CReLU Less 2.52 3.64 2.31 2.24 1.92 2.47
More capacity 2.58 3.45 2.21 2.74 1.91 2.58
Softmax 3.12 5.74 2.90 2.32 2.37 2.30

Sigmoid Cross Entropy 13.61 9.08 6.21 3.44 10.23 41.46
Softmax Cross Entropy 14.58 14.91 5.04 5.76 11.1 35.62

Lower res. 2.08 2.17 1.97 1.94 1.89 2.45
Lower res. 60k 1.97 1.87 1.72 1.99 1.83 2.43
Lower res. 120k 2.44 3.01 2.44 2.34 2.01 2.39

Less capacity 2.32 3.62 1.93 1.89 1.78 2.39
Less capacity + lower res. 2.43 2.56 2.51 2.50 2.17 2.41

Training Set Size 10 4.91 10.75 6.68 3.47 2.13 2.46
Training Set Size 25 2.82 4.21 2.55 2.93 1.95 2.49
Training Set Size 50 3.27 5.05 3.50 3.04 2.41 2.41
Training Set Size 100 3.44 6.21 3.24 2.56 2.45 2.80
Training Set Size 200 3.46 5.44 3.33 3.39 2.38 2.75

Table 7.6: The mean error distance for the MultiNet variations.

As with SingleNet we split the volume into two sides with the k-
means algorithm [93]. Instead of taking the 5 highest count candidates
from the single-channel, we take the highest count candidate per chan-
nel as final coordinate prediction.

7.5.4 Evaluation

Supervision has no significance influence on the performance of the
network.

The CReLU network performs significantly worse. Because the CReLU
network with less capacity and a batch size of 2 performs on par with



68 experiments

network percentage below 5 mm
all l1 l2 l3 l4 l5

Base 38.5 0.0 0.0 0.0 97.0 95.5
Normalized 94.5 87.0 96.0 96.5 98.0 95.0

Unsupervised 93.8 85.5 95.5 96.0 96.5 95.5

ELU 95.6 94.5 96.0 96.5 97.0 94.0
CReLU 62.0 67.5 64.0 59.0 63.5 56.0
CReLU Less 95.7 92.5 97.0 97.0 97.5 94.5
More capacity 95.9 93.0 97.0 96.5 98.0 95.0
Softmax 93.7 84.5 95.0 96.5 97.5 95.0

Sigmoid Cross Entropy 67.3 77.0 76.5 82.5 56.5 44.0
Softmax Cross Entropy 58.2 52.5 79.0 68.5 48.5 42.5

Lower res. 97.3 97.0 98.0 98.0 98.0 95.5
Lower res. 60k 97.5 98.0 98.5 97.5 98.0 95.5
Lower res. 120k 96.1 94.5 96.5 96.5 97.5 95.5

Less capacity 95.8 90.5 98.0 97.5 98.0 95.0
Less capacity + lower
res.

96.2 95.5 96.5 96.5 96.5 96.0

Training Set Size 10 83.9 57.0 79.5 91.5 97.0 94.5
Training Set Size 25 93.2 85.5 95.0 95.0 97.5 93.0
Training Set Size 50 92.6 86.0 93.5 94.0 96.0 93.5
Training Set Size 100 91.9 83.0 91.5 95.0 96.0 94.0
Training Set Size 200 92.9 87.5 94.0 94.0 96.0 93.0

Table 7.7: The percentage of coordinate predictions that were within 5 millime-
ter of the target coordinate for the MultiNet variations.

other networks, we have to conclude that a batch size of 1 is not enough
for stable training. The softmax activation as output layer prevents the
network from labeling a foramen as two level simultaneously, however,
this seems to have no influence on the performance. Suggesting that
this is no problem. The networks with more capacity, ELU activations
and CReLU with less capacity are all better than the base variant with a
statistical significant difference. Interestingly, among themselves there is
no significant difference. It seems that the base variant can be improved
and that the improved variants all compensate for the same flaws.
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Figure 7.8: The distances of the predicted foramina centers to the target centers
in the x and yz axises by the lower resolution variant of MultiNet.

Cross entropy punishes more severely if the predicted value is more
wrong. For instance, assume that y = 1 and we make 3 different predic-
tion ŷ ∈ {0.2, 0.4, 0.6}. The losses are − ln(0.2) ≈ 1.61, − ln(0.4) ≈ 0.92,
and − ln(0.6) ≈ 0.51, respectively. Even though the difference between
0.2 and 0.4 is the same as the difference between 0.4 and 0.6, the differ-
ence in loss is bigger because it is further away from 1. This is not alike
to Dfuzzy. A cross entropy loss makes the network perform significantly
worse.

Remarkably, the network with less capacity manages to reach the
same performance as the base network and networks with variations
aimed at improving the performance. The smaller network has less
memory requirements, making it faster to train and performance in-
ference with. Overall the smaller network is favorable over the base
version.
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(a) Input (b) Target

(c) Output (d) Combination

Figure 7.9: A slice that is predicted a full shift up by the lower resolution vari-
ant of MultiNet.

For each level the prediction and target color pairs are chosen such that when
they overlap they become white.

When the input is normalized to a PixelSpacing of 1.4 millimeters,
more samples can be processed per trainings iteration. Perhaps more
importantly, the receptive field of nodes in the network effectively cover
a bigger area of the scan25. With more context available the network can
make a better prediction about the foramen’s level. A network trained
with lower resolution scans perform best of all variants. Moreover, the
difference is significant. We wanted to create the best network possible
and trained the network for 60,000 and 120,000 steps. These have little
and insignificant difference in results. Confirming that after 30,000 steps
the network is converged.

25 A bigger receptive field in terms of millimeters, not in terms of voxels.



7.5 multinet 71

(a) Input (b) Target

(c) Output (d) Combination

Figure 7.10: An example of a missed L5 foramen by MultiNet.

A network with less capacity performs equally well as the base vari-
ant. But, when we apply this strategy to a network that trains on scans
with a lower resolution, this effect is not visible. In fact, lowering the
resolution of patches for the smaller network does not improve perfor-
mance. Or from an alternative perspective, reducing the network size of
the ‘lower resolution’ network hurts performance.

As with SingleNet, we trained the (normalized) base variant of Multi-
Net using various number of trainings samples. Whereas the results in-
dicated that SingleNet managed to reach a similar network with 150

samples, MultiNet requires at least more than 200.

7.5.4.1 Examples

Let us analyze some of the cases where MultiNet is inaccurate. Earlier
is mentioned that SingleNet has trouble correctly labeling foramina
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candidates when one is missing, such as in the case of Fig. 7.7. In Fig.
7.10 the same slice is shown but the predication is made by MultiNet.
As can be seen, MultiNet classifies all correctly, except for L5. Sin-
gleNet makes a similar prediction, but since we label after we created
the segmentation, SingleNet misses all. This is an example where Sin-
gleNet is outperformed by MultiNet.

There is 1 case where even the best variant of MultiNet is completely
wrong. As can be seen in Fig. 7.9, not a single foramen is correctly pre-
dicted. MultiNet predicted the labels one level too high, i.e. L1 as T12,
L2 as L1, etc. All variants of MultiNet have make the same mistake in
this case.

Strangely enough, there are 2 cases where MultiNet has no trouble
with 1 side, but does a full shift upwards for the other side. In both
cases the L4 disc is degenerated (Fig. C.7).

The rest of the mistakes come from 3 volumes and are all cases as
Fig. 7.10 and C.6. These patient all have a disease such as spondylosis
or heavy foraminal stenosis.



8
C O N C L U S I O N A N D D I S C U S S I O N

8.1 conclusion
First and foremost, we succeeded in our goal to design a deep neural
network to segment a lumbar spine from a MRI scan for the purpose
of localizing the lumbar foramina. The best network — a MultiNet

trained on volume normalized with a NormSpacing of 1.4 millimeter —
makes a prediction for all foramina, has a mean error distance of 1.97
millimeter, and 97.5% of all predictions are below 5 millimeter. We set
out to answer to the following question: Is it possible to design and train a
deep neural network that has viable performance on the task of lumbar foramina
localization on MRI scans without using data driven postprocessing techniques
or hand-crafted features? It is ambiguous to set a threshold for when the
performance is viable. It is safe to say however, that 97.5% is viable.

Our first approach was to create a binary segmentation network, called
SingleNet, that distinguishes between lumbar foramina and other vox-
els. SingleNet has difficulties distinguishing the lumbar foramina from
non-lumbar (most notably, thoracic) foramina. Furthermore, labeling
proved to be troublesome when one of the foramina is not recognized
by the network.

To overcome these flaws we built a network with a bigger receptive
field and 5 output channels, called MultiNet. After normalizing the
Dice coefficient to account for the class imbalance among foramina lev-
els, this improved performance by a lot. Surprisingly, we found that
most architectural modifications made little difference or made it worse.
Most performance gain was achieved by lowering the resolution of the
input.

Our approach makes use of deep neural networks, that have the ad-
vantage over other techniques that we are not required to manually en-
gineer features. Nor do we use data driven postprocessing techniques.
Our network learns all it needs from the data itself. This makes our
approach more robust to chances in the task requirements and more
widely applicable than models designed in past research.

73
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8.2 discussion
Although our best network — MultiNet trained on lower resolution
inputs — performs excellent, it still makes wrong predictions. Mostly
when dealing with rare cases such as spondylosis. An interesting fol-
low up research question is to examine whether there is a correlation
between the certainty of the network and the chance that the prediction
is wrong. As for our goal it is worse to make a wrong prediction in-
stead of no prediction, we could abstain from making a prediction if the
network is not entirely certain.

Deep neural networks are inherently good at interpolating patterns
from the trainings data rather than extrapolating. In other words, for
a network to recognize rare cases it requires to have seen plenty of
such cases. Our network might not have had favorable circumstances.
To ensure that the network has seen all diseases one could create a
separate trainings set filled with such cases and feed them, according to
some ratio, interspersed with the ‘common’ trainings samples.

As stenosed foramina look different from common ‘normal’ foramina
by definition, it is important that the localization network can deal with
abnormal looking foramina. Otherwise it might do inaccurate predic-
tions for stenosed foramina defeating its purpose.

This study shows that deep convolutional neural networks that seg-
ment with the purpose of localization can benefit from lowering the
resolution of the input. This is plausible, as the ultimate goal is not to
create an accurate segmentation that requires precise information from
the input, but to create a probability volume for localization which re-
quires less fine-grained information and more surrounding context.

Further research is needed to establish the optimal NormSpacing. The
network benefits from the extra context, but must still be able to recog-
nize foramina. Especially when dealing with infrequent diseases such
as spondylosis, it might be even harder to recognize foramen at low
resolutions.

Alternatively, an architecture that combines both the approaches of
SingleNet and MultiNet can be designed. If SingleNet is trained to
recognize all foramina with high resolution inputs and MultiNet is
trained to label both recognize and label the foramina at low resolution,
we could somehow combine the network for better performance. Where
MultiNet expects a foramen but does not recognizes one, the output
of SingleNet might be of aid.

Finally, the data validity can be questioned. A radiologist vowed for
our foramina localization competency, yet in the end it would be ideal
if a radiologist does all marker annotations or verifies all annotations
done by us.
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A
H Y P E R PA R A M E T E R S E A R C H

name possible values description

PatchSize {33, 65, 97, 129, 161, 193,
225, 257, 289, 321, 353,
385, 417, 449, 481}

The size of the patch ex-
tracted from a scan.

BatchSize {2, ..., 6} Number of patches in a
batch.

Block {2, ..., 5} How many times
BaseNet compresses
and expands.

Channels {2, ..., 16} The number of chan-
nels at the highest level.

LearningRate {0.01, 0.004, 0.001, 0.0004} The initial learning
rate.

KeepProbability {0.4, 0.45, ..., 1} The probability a neu-
ron is not dropped.

Table A.1: The hyperparameter ranges search for the base version of Sin-
gleNet.
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B
S I N G L E N E T

Figure B.1: The test Dice coefficients of the SingleNet ‘ELU’, ‘CReLU’, and
‘more capacity’ variations while training the network.
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Figure B.2: The test Dice coefficients of the SingleNet ‘no He Initialization’
and ‘no batch normalization’ variations while training the net-
work.

network missed foramina
all l1 l2 l3 l4 l5

Base 3 3 0 0 0 0

CReLU 10 9 1 0 0 0

ELU 1 1 0 0 0 0

More capacity 0 0 0 0 0 0

No He Initialization 11 6 3 2 0 0

No Batch Normalization 0 0 0 0 0 0

Trainings Set Size 250 10 10 0 0 0 0

Trainings Set Size 150 0 0 0 0 0 0

Trainings Set Size 50 3 2 1 0 0 0

Trainings Set Size 5 28 20 6 2 0 0

Trainings Set Size 1 83 33 25 15 8 2

Table B.1: The number of foramina that the variants of SingleNet made no
predication for.
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Figure B.3: The test Dice coefficients of SingleNet with various number of
trainings samples while training the network.

model a model b p-value

Trainings Set Size 150 Trainings Set Size 250 0.94
Trainings Set Size 150 Base 0.44
Trainings Set Size 250 Base 0.28
No He Initialization Trainings Set Size 5 0.20
Trainings Set Size 50 Trainings Set Size 150 0.14
Trainings Set Size 50 Trainings Set Size 250 0.14
ELU CReLU 0.10
Trainings Set Size 50 More capacity 0.05
Base CReLU 0.04
Trainings Set Size 50 Base 0.01
Trainings Set Size 150 CReLU 0.01

...

Table B.2: The p-value for the SingleNet variation pairs. Only non-zero val-
ues are shown.
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Figure B.4: The distance from the predicted foramina centers to the real cen-
ters in the x and yz axises by the base variant of SingleNet.
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(a) Input (b) Target

(c) Output (d) Combination

Figure B.5: A complete slice correctly predicted by SingleNet.





C
M U LT I N E T

Figure C.1: The test Dice coefficients of the MultiNet ‘CReLU’, ‘CReLU Less’,
‘ELU’, and ‘more capacity’ variations while training the network.
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Figure C.2: The test Dice coefficients of the MultiNet ‘softmax’, ‘sigmoid
cross entropy’, and ‘softmax cross entropy’ variations while train-
ing the network.
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Figure C.3: The test Dice coefficients of the MultiNet ‘less capacity’, ‘lower
resolution’, and ‘less capacity + lower resolution’ variations while
training the network.

Figure C.4: The test Dice coefficients of MultiNet with various number of
trainings samples while training the network.
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Figure C.5: The distance from the predicted foramina centers to the real cen-
ters in the x and yz axises by the (normalized) base variant of
MultiNet.
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network missed foramina
all l1 l2 l3 l4 l5

Base 600 200 200 200 0 0

Normalized 5 2 1 1 0 1

Unsupervised 7 6 1 0 0 0

ELU 4 0 3 1 0 0

CReLU 219 5 38 51 57 68

CReLU Less 4 2 1 1 0 0

More capacity 4 1 1 1 0 1

Softmax 6 3 1 1 0 1

Sigmoid Cross Entropy 90 0 0 18 43 29

Softmax Cross Entropy 61 0 0 6 49 6

Lower res. 1 1 0 0 0 0

Lower res. 60k 0 0 0 0 0 0

Lower res. 120k 2 1 1 0 0 0

Less capacity 5 4 0 0 0 1

Less capacity + lower res. 0 0 0 0 0 0

Training Set Size 10 44 32 7 3 1 1

Training Set Size 25 12 8 2 1 0 1

Training Set Size 50 9 6 0 1 0 2

Training Set Size 100 12 6 4 2 0 0

Training Set Size 200 1 0 1 0 0 0

Table C.1: The number of foramina that the variants of MultiNet made no
predication for.
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model a model b p-value

Lower res. 120k Less capacity + lower res. 1.00
CReLU Less Less capacity 1.00
Unsupervised Softmax 1.00
ELU CReLU Less 1.00
More capacity Less capacity 1.00
ELU Less capacity 0.85
More capacity Lower res. 120k 0.82
Lower res. Lower res. 60k 0.82
CReLU Less More capacity 0.81
Training Set Size 25 Training Set Size 200 0.80
Training Set Size 50 Training Set Size 200 0.78
Lower res. 120k Less capacity 0.71
More capacity Less capacity + lower res. 0.70
ELU More capacity 0.65
Softmax Training Set Size 25 0.60
Less capacity Less capacity + lower res. 0.58
CReLU Less Lower res. 120k 0.52
Unsupervised Training Set Size 25 0.50
Training Set Size 25 Training Set Size 50 0.49
ELU Lower res. 120k 0.44
CReLU Less Less capacity + lower res. 0.40
Training Set Size 50 Training Set Size 100 0.39
Normalized Unsupervised 0.36
ELU Less capacity + lower res. 0.36
Softmax Training Set Size 200 0.33
Unsupervised Training Set Size 200 0.31

Table C.2: The p-value for the MultiNet variation pairs. Only non-zero values
are shown. First half.
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model a model b p-value

Normalized Softmax 0.31
Training Set Size 100 Training Set Size 200 0.23
Unsupervised Training Set Size 50 0.14
Softmax Training Set Size 50 0.14
Training Set Size 25 Training Set Size 100 0.12
Lower res. Less capacity + lower res. 0.09
Normalized Training Set Size 25 0.07
Normalized ELU 0.07
CReLU Softmax Cross Entropy 0.06
Lower res. Lower res. 120k 0.05
Normalized Training Set Size 200 0.04
Normalized CReLU Less 0.04
Softmax Training Set Size 100 0.02
Normalized Less capacity 0.02
ELU Lower res. 0.01
Unsupervised ELU 0.01
Normalized Training Set Size 50 0.01
More capacity Lower res. 0.01
CReLU Less Softmax 0.01
CReLU Less Lower res. 0.01
Normalized Less capacity + lower res. 0.01
Lower res. Less capacity 0.01
ELU Softmax 0.01
Unsupervised Training Set Size 100 0.01
Normalized Lower res. 120k 0.01
Normalized More capacity 0.01

...

Table C.3: The p-value for the MultiNet variation pairs. Only non-zero values
are shown. Second half.
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(a) Input (b) Target

(c) Output (d) Combination

Figure C.6: An example of a missed L5 foramen by MultiNet due to an un-
recognizable foramen because of heavy spondylosis.
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(a) Input (b) Target

(c) Output (d) Combination

Figure C.7: An example of prediction made by MultiNet that is a shift up-
wards w.r.t. the target. The L4 disc is degenerated.
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