

Methodological Support for Task Coordination

in Global Software Engineering Projects

at Product Software Companies

Master Thesis

Author:

Carolus Borromeus Widiyatmoko

5590329

Supervisors:

Dr. Sietse J. Overbeek

Prof. dr. Sjaak Brinkkemper

Department of Informatics and Computing Science

Faculty of Science

July 14, 2017

ii

iii

Abstract

Demand in performing software engineering projects globally by software companies

continuously grow. Companies start to acquire other companies, build remote offices, or create

partnerships with other companies from other countries. By distributing their software

development activities such as development and testing processes to dispersed locations, these

companies aim to reduce development costs, get closer to market proximity, or recruit young

talented resources. However, they also face some challenges where cultural, knowledge, and

technology diversities become the barriers in coordinating tasks among distributed resources.

Consequently, a well-managed coordination mechanism is required to build productive

communication, better work synchronization, a same level of understanding in customer

requirements and system design, which eventually, enhance project performance.

This research project proposes a method that aims to support product software companies

in coordinating tasks among globally dispersed teams in software engineering projects. This is

done by answering the main research question: "How can we provide methodological support

for the improvement of task coordination in global software engineering projects in a product

software organization?”

Following the design science framework by beginning with a problem investigation

throughout a literature study and various semi-structured interviews, the "GSE Task

Coordination Method" is developed through the Method Association approach. The heart of

this method is the task coordination mechanism itself supported by the organizational support,

and the tools support that should anticipate the organizational aspects and the GSE challenges,

allowing each company to make decisions to determine different mechanisms according to its

situational factors.

Five iterative in-depth expert interview sessions involving both scientific and practicing

experts demonstrated that the GSE Task Coordination Method embraces both theoretical and

practical aspects, which can be simply utilized by product software companies. Throughout the

validation phase, some improvements were suggested and applied shown by the evolution of

the method.

As the conclusion, it can be affirmed that the GSE Task Coordination Method can support

management board, line managers, and team members in coordinating between the teams in

globally distributed locations. However, the effectiveness of the method to support team

performance enhancements in a measured way has not been fulfilled due to time constraints.

Keywords: Task coordination, Task dependencies, Global software engineering, Product

software organization, Software process improvement

v

ACKNOWLEDGEMENT

This thesis is the final result of my study in Business Informatics at Utrecht University which

would not be completed without the help of many people and organizations throughout the

process. I want to take this opportunity to thank them for their assistance and support.

First of all, I would like to thank Him who always stands by me and guides me with His light.

I would like to thank everyone who helped me during my research. In particular, my supervisors

who have supported me, and provided plenty of details and high-quality feedback: Dr. Sietse

Overbeek and Prof. Dr. Sjaak Brinkkemper. I also would like to thank my colleagues, the

students at Master in Business Informatics for their friendliness. A special thanks goes to

Telkom Indonesia for the financial support. Also, a special gratitude I give to the participants

and the companies who have contributed to this research by giving their time for interviews,

providing feedback and critics, or have helped in any other way.

Last but not least, I would like to thank for the abundantly support, love, love, and love from

my beloved one, Yunita Anastasia, and our "schatjes", Hayden and Nathan.

Thank you all.

vii

TABLE OF CONTENTS

Abstract .. iii

Acknowledgement .. v

Table of Contents .. vii

Table of Figures .. ix

Table of Tables ... xi

Part One: Research Outline ... 1

 Introduction ... 3

1.1 Research Background .. 3

1.2 Problem Statement ... 4

1.3 Research Objectives .. 5

1.4 Research Questions ... 5

1.5 Research Contribution .. 6

1.6 Report Outline .. 7

 Research Method ... 9

2.1 Design Cycle: Research Framework .. 9

2.2 Research Approaches... 10

2.3 Plan Validity ... 16

2.4 Research Execution ... 18

Part Two State of The Art .. 19

 Literature Study .. 21

3.1 Global Software Engineering ... 21

3.2 Benefits and Risks of GSE .. 22

3.3 Task Coordination Approaches to Overcome GSE Challenges............................. 24

3.4 The Literature Study’s Summary .. 38

 Coordination Practices at Product Software Companies 39

4.1 Product Software Company .. 39

4.2 Challenges and Practices at Product Software Companies 43

4.3 The Interviews’ Summary ... 61

 Summary of State of the Art .. 63

viii

5.1 Interdependencies in GSE ... 63

5.2 Situational Factors of Task Coordination ... 64

5.3 Task Coordination Approaches: Communication, Control,
and Knowledge Sharing ... 69

5.4 Involved Tools in Task Coordination .. 75

5.5 Organizational Support for Task Coordination ... 76

Part Three Solution Design and Validation .. 79

 Method Design: Towards Methodological Support for Task Coordination ... 81

6.1 Method Construction Preparation... 81

6.2 Constructing Task Coordination Methodological Support 84

6.3 Primary Conclusion ... 91

 Method Validation: Evaluation and Evolution ... 93

7.1 Global Task Coordination Method Evaluation Scenario....................................... 93

7.2 Evaluation Results ... 95

Part Four Closing.. 105

 Discussion .. 107

8.1 Evaluation Summary: The Synthesized Findings.. 107

8.2 The Final Global Task Coordination Method ... 110

8.3 Limitations .. 110

 Conclusions .. 113

9.1 Results 113

9.2 Future Research .. 115

References ... 117

Appendices ... 124

Appendix A. Interview Protocol ... 124

Appendix B. Systematic Literature Review ... 128

Appendix C. Company Profiles .. 131

Appendix D. Appendix ICoding scheme .. 133

Appendix E. Method Association ... 134

Appendix F. Method Base ... 137

Appendix G. PDD Documentation ... 141

Appendix H. PDD Notation ... 151

Appendix I. Expert Opinion Interview Protocol ... 152

ix

TABLE OF FIGURES

Figure 1-1 Examples of Collaboration Model (Šmite, 2007, pp.57-68) 3

Figure 2-1. Design science in engineering cycle (Wieringa, 2014) 9

Figure 2-2 Design cycle adaptation .. 10

Figure 2-3 Number of articles found in DBLP .. 12

Figure 2-4 An example of a process delivery diagram ... 16

Figure 2-5 Method comparison approach in PDD ... 17

Figure 2-6 Project phasing in PDD ... 18

Figure 3-1 Concepts found during problem investigation .. 21

Figure 3-2 PDD of Scrum process model ... 28

Figure 3-3 PDD of Scrum product backlog grooming session ... 29

Figure 3-4 PDD of Sprint planning meeting .. 29

Figure 3-5 PDD of daily stand-up meeting .. 30

Figure 3-6 Process mapping of PMBOK® Guide and GSD practices 31

Figure 3-7 Knowledge process model to support task coordination 32

Figure 3-8 Global Teaming process area (Richardson et al., 2012, p.1184) 35

Figure 3-9 Global Canvas (Smirnova et al., 2014, p.88) ... 37

Figure 3-10 PDD of Global Canvas processes ... 37

Figure 4-1. Software classification (Xu & Brinkkemper, 2007) ... 40

Figure 4-2. Reference framework for software product management 41

Figure 4-3 PDD of task coordination approach by AlphaSoft .. 46

Figure 4-4 AlphaSoft's Scrum Board ... 47

Figure 4-5 AlphaSoft's burn down chart ... 48

Figure 4-6 PDD of product engineering processes at BetaSoft .. 49

Figure 4-7 Functional diagram of two coordination areas in BetaSoft 51

Figure 4-8 Coordination practices in GammaSoft ... 52

Figure 4-9 Segregation of tasks in GammaSoft ... 54

Figure 4-10 Service Coordinator as a communication broker .. 55

Figure 4-11 Team allocation in DeltaSoft .. 56

Figure 4-12 Task allocation for the Scrum Team ... 57

Figure 4-13 PDD of software engineering processes at DeltaSoft 57

Figure 4-14 PDD of designing realization plan at DeltaSoft ... 58

Figure 5-1 Organization distribution and their temporal dispersion distance 66

Figure 5-2 GSE challenges causal model ... 69

Figure 5-3 Organization design in communication .. 70

Figure 5-4 Knowledge coordination mechanisms ... 75

Figure 6-1 Framework for coordination mechanisms in GSE .. 85

Figure 6-2 Picture Diagram of Task Coordination Method .. 86

x

Figure 6-3 High-level PDD of GSE Task Coordination Method 86

Figure 6-4 Activity Group 1: Identify enterprise strategy ... 86

Figure 6-5 Activity Group 2: Recognizing organization profile ... 87

Figure 6-6 Activity group 3: Identifying task coordination support 88

Figure 6-7 Activity group 4: Determining appropriate coordination mechanisms 88

Figure 6-8 Select communication mechanism .. 89

Figure 6-9 Select control mechanism ... 90

Figure 6-10 Select knowledge sharing mechanism.. 90

Figure 6-11 Activity Group 5: Continuous improvement .. 91

Figure 7-1 Method acceptance variables .. 95

Figure 7-2 Merging “Knowledge Sharing” concept to “Communication” 96

Figure 7-3 Adjusting communication mechanisms ... 97

Figure 7-4 Elaborate other stakeholders .. 97

Figure 7-5 Reducing "perceived distance" ... 97

Figure 7-6 Adjustment for the vertical and horizontal cultural issues 98

Figure 7-7 Adjusting control mechanisms .. 99

Figure 7-8 Improving task coordination preparation step ... 101

Figure 8-1 The Final Global Task Coordination Framework .. 108

Figure 9-1 PDD of the high level GTC Task Coordination Method 137

Figure 9-2 PDD of "Perform Routine Activities" .. 138

Figure 9-3 PDD of "Determine Control Mechanism" .. 138

Figure 9-4 PDD of "Determine communication mechanism" ... 139

Figure 9-5 PDD of GSE task coordination Method (Main Method’s Final Version) 140

xi

TABLE OF TABLES

Table 2-1. Literature Sources ... 13

Table 2-2 Concepts and authors mapping ... 13

Table 2-3 An illustration of a concepts matrix .. 14

Table 3-1. Dispersion factors in Global Software Engineering .. 22

Table 3-2 Risks in global software engineering projects .. 23

Table 3-3 Task coordination approaches ... 24

Table 3-4 Practices in Distributed XP .. 31

Table 3-5 Best practices ... 34

Table 3-6 Global Canvas Elements .. 36

Table 4-1 Types of deliverables of Scrum processes in BetaSoft 50

Table 4-2 Task Coordination Practices by the Participating Companies 62

Table 5-1 Knowledge coordination mechanisms by Kotlarsky et al. (2008)...................... 73

Table 5-2 Tools adopted to support coordination in GSE .. 76

Table 5-3 Roles and their job functions related to task coordination in GSE 77

Table 6-1 Organization of the Situational Factors .. 82

Table 6-2 Coordination Mechanisms Profiles .. 83

Table 6-3 Task Coordination Experience Level ... 83

Table 6-4 Activity Group .. 84

Table 6-5 Method Association (Example) ... 85

Table 7-1 Participating experts ... 93

Table 7-2 Evaluation Cycles .. 94

Table 8-1 Method Evolution Summary .. 110

Table 9-1. Selected papers .. 128

Table 9-2 Task Coordination Concept Matrix ... 130

Table 9-3 Association Matrix for the Activities ... 134

 1

PART ONE: RESEARCH OUTLINE

Chapter 1. Introduction

Chapter 2. Research Method

 3

 INTRODUCTION

This chapter presents the problems, goals, research questions, the expected scientific

contributions, and the structure of this document.

1.1 Research Background

In the last decade, global software engineering (GSE) has become a common practice in

software development projects in many companies. Many organizations modularize software

development projects and locate work packages to remote development facilities (e.g. creating

development business units or acquiring software companies in other countries) or with

outsourcing (Carmel & Agarwal, 2001; Herbsleb & Moitra, 2001). Engineers from other

countries which have different cultures, geographic locations and time zones are involved in

various stages of the software development life cycle (Olsson, Conchúir, Ågerfalk, & Fitzgerald,

2006). Šmite (2007) finds different variants of collaboration in global software engineering in

which organizations share part of the product development life cycle among partners that are

off-shored (Figure 1-1). As a consequence of this work division, well-managed coordination is

needed.

HOST COMPANY

PARTNER

SYSTEM ANALYSIS DESIGN CODING TESTING

HOST COMPANY

PARTNER

SYSTEM ANALYSIS DESIGN

CODING

TESTING

HOST COMPANY

PARTNER

SYSTEM ANALYSIS DESIGN

CODING

TESTING

HOST COMPANY

PARTNER

SYSTEM ANALYSIS

DESIGN CODING TESTING

Figure 1-1 Examples of Collaboration Model (Šmite, 2007, pp.57-68)

There is an increasing amount of research in product software organizations where the

software market is shifting from customized (customer-based request) software into standard

software. A product software organization develops and sells mainly software as their products

for a target market without customer specific modifications (Vähäniitty, 2006). Product

software has a larger scale and broader target market compared to customer-based request

Introduction

4

software. These characteristics need more complicated, expensive and slow development process

to build product software. Thus, the more work units need to be done, the more resources and

skills required. The lower salary scale for engineers in developing countries such as India,

Malaysia, China, and Eastern Europe which offer large and highly-skilled resource pools will

significantly reduce development costs (Ågerfalk, Fitzgerald, Olsson, & Conchúir, 2008). The

availability of a competitive and talented resource pool becomes the main benefit for product

software companies in building large scale products. For that reason, many software companies

start to engage strategic partnerships with other companies (Arora & Gambardella, 2004; Bosch

& Bosch-Sijtsema, 2010b). Recently, 82% of US companies employed offshore vendors to reduce

their development cost (Klubnikin, 2016). Other concerns such as reduction of time-to-market,

cheaper development costs, investment requirements by stakeholders, 24/7 development

process, and business-to-customer proximity are the benefits that companies want to gain

(Conchúir, Ågerfalk, Olsson, & Fitzgerald, 2009; Herbsleb, 2007; Setamanit, Wakeland, & Raffo,

2006).

As the software production activities are intensively interactive and complicated, the ability

to communicate purposes and manage task dependencies is determinant for the organization

performance. Furthermore, when the tasks become extensive and scattered, the

interdependencies among tasks and teams become more complex that grows more difficulties

and importance in the coordination practices compared to organizing tasks in collocated

environment (Nguyen-Duc, Cruzes, & Conradi, 2012). Coordination is defined as “integration

or linking together different parts of an organization to accomplish a collective set of tasks”

(Van De Ven, Delbecq, & Koenig Jr., 1976, p.322). In software engineering, it can be perceived

as an effort of integrating resources who are working on different tasks in a software

development project. The resources should have a shared vision and agreement to a common

definition of what they are building. The effort also covers managing task dependencies, to

make sure that the tasks fit together and task hand-off is done without a hitch (Kraut &

Streeter, 1995). Better task coordination is required to build productive communication, better

work synchronization, a same level of understanding in customer requirements and system

design, which are in the end, enhancing project performance (Ancona & Caldwell, 1992;

Espinosa, Nan, & Carmel, 2007; Jain & Suman, 2015).

1.2 Problem Statement

As mentioned before, due to the increase in the intensity of product software development

activities, companies are encouraged to partake the process of development to remote sites or

other companies in different countries. The vast amount of related research demonstrates that

task coordination in distributed collaborative software engineering is of interest for the last

decades (Espinosa & Carmel, 2004; Espinosa, Slaughter, Kraut, & Herbsleb, 2007; Mak &

Kruchten, 2006; Nguyen-Duc, Cruzes, & Conradi, 2015). These authors have aimed to detect

challenges and risks in global software development and approaches to address distributed

collaboration issues by focusing on particular aspects such as enhancing communication in

distributed teams to reduce organizational silos (Olsson, Fitzgerald, Ågerfalk, & Conchúir,

2006). On the other hand, each global software engineering technique and framework has its

situational demands such as the application of particular software development practices,

cultural differences, fear and distrust between employees at remote sites, and the needs of

knowledge development throughout the project (Jalali & Wohlin, 2010; Kotlarsky, van Fenema,

& Willcocks, 2008; Piri, Niinimäki, & Lassenius, 2012; van Marrewijk, 2010). To the best of

Introduction

5

our knowledge, there is no research which proposes methodological support that integrates both

processes and artifacts to assist product software companies in understanding the situations

and criteria in coordinating tasks among software development units.

Therefore, instead of competing with those existing approaches, this Master’s thesis will

present a methodological support to complement those studies. This raises a question on how

to provide this methodological support by considering best practices and situational factors

identified from what have been studied and current practices by product software companies.

The purpose of this methodological support is to harmonize the current approach, provide the

abstract level of definition, and help product software companies in applying the method based

on their specific needs of situations (Pardo, Pino, García, Piattini, & Baldassarre, 2012).

1.3 Research Objectives

Two aspects of task coordination are at the core of this research, which are: the knowledge and

practical aspects. So, the targeted objectives of this thesis are defined as below:

To present methodological support for task coordination in product software companies in a

global software engineering context:

RO1. Knowledge aspect: to assist organizations in understanding the specific situation and

criteria that affect task coordination among development units,

RO2. Practical aspect: can contribute to the improvement of software development projects

execution by improving task coordination among development units.

1.4 Research Questions

Consequently, to achieve these goals, we state our main research question (MRQ) as follows:

MRQ: “How can we provide methodological support for the improvement of task coordination

in global software engineering projects in a product software organization?”

To address the main research question, we also consider several sub-questions (SQ) as our

guidelines.

SQ1: What are the current task coordination challenges in global software engineering?

The first phase of this thesis is framed to the current issues and practices of task

coordination in global software engineering to answer our first SQ. Through this question, we

provide the foundation of knowledge on the current problems and the approaches performed

by organizations in synchronizing tasks among dispersed resources. We will conduct a

systematic literature review to identify key factors and research artifacts of task coordination

in global software engineering projects which have been studied and proposed by researchers

(Section 2.2.1). Nonetheless, we will also look at some evidence or artifacts from a practical

point of view. We plan to conduct interviews to elicit the challenges and approaches emerge in

daily practices at several product software organizations (Section 2.2.2).

Introduction

6

SQ2: What are the current practices performed by product software companies in executing

global software engineering projects?

After understanding task coordination challenges and practices, we can move on to

identifying the method fragments and the situational background of the existing approaches

found in the literature and interviews. We use a meta-modelling technique to specify and

visualize the processes, deliverables, and tool (Section 2.2.4). Meta-modelling technique is

essential in a comparative review of methods and a development of situational methods

(Brinkkemper, 1996). Further, the SQ2’s answer will be used in the development and

enrichment of our task coordination reference method.

SQ3: What method can be designed to facilitate companies for coordinating tasks in global

software engineering projects?

To answer SQ3, we aim to develop a method based on the foundation of knowledge we

gained from SQ1 and the approaches represented in SQ2. We will use method engineering

approach to build a situational method that can be used by companies as a reference in

coordinating task when performing software engineering globally (Section 2.2.4). We use this

approach based on the understanding that no method can fit all the existing problems and

engineering contexts. The complexity of each project, as well as the situational factors, brings

the variabilities in the way of a project should be accomplished (van de Weerd & Brinkkemper,

2009). In the end, our reference method will be built as an optimized method which is

constructed from the fragments of existing established approaches or practices. To build a

reference method, identical processes and deliverables should be identified to create a specific

route based on activity group that reflect their commonalities (Luinenburg, Jansen, Souer, van

de Weerd, & Brinkkemper, 2008; van de Weerd, Brinkkemper, Souer, & Versendaal, 2006).

Thus, to build our reference method, we need to expose and materialize the activities which

specify what work to be done, deliverables or work units related to the activities, and the

contexts on what these activities are performed from the information gathered in SQ1 and SQ2.

SQ4: How to improve the developed method in task coordination after validation by

considering its benefits and drawbacks?

To validate our proposed method, we will conduct case studies to gather experts’ opinions

through interviews (Section 2.2.3). The experts are practitioners from product software

companies who are experienced in performing software engineering projects globally. The

feedback from the experts is used to assess the applicability, benefits, and drawbacks of our

proposed method. Afterward, their feedback will be adopted to refine our method.

1.5 Research Contribution

The proposed methodological support in task allocation is expected to have the following

implications:

1. Scientific contribution

a. Develop a comprehensive understanding of existing knowledge base of task

coordination methods by elaborating and connecting methods which have been

Introduction

7

studied and approaches by organizations on how tasks are allocated in global

software engineering projects.

b. Enhance the theoretical base in the software engineering domain by adding

sources of knowledge in task coordination regarding project planning and

execution management.

2. Business in practice contribution

a. Provide organizations a reference method for coordinating tasks that can be

used in specific situational projects.

b. Guide organizations to coordinate tasks effectively by maintaining well-

managed global software development projects.

1.6 Report Outline

To present how this research is operationalized, results produced, and discussion as well as

rationale derived from the obtained results, the chapters are organized into three main parts

as follows:

Part 1. Research Outline. The first part contains two chapters that provide the project

management and the method of this thesis. Four approaches used in research are a

systematic literature review, situational method engineering approach, semi-structured

interviews, and expert validation.

Part 2. State of the Art. The second part of this thesis report gives the results of systematic

literature review and preliminary interviews. This chapter examines the state of the art

of task coordination approaches based on the literature and practical approaches based

on the interviews.

Part 3. Solution Design and Validation. The last part of this document consists of three main

elements: The design solution, the solution validation, and the summary of what have

been resulted. The design solution chapter elaborates the process of method design.

The concepts, framework, and processes of task coordination are presented based on

the findings based on the information in practice and from the literature by using

method engineering principles.

Following the design solution, the validation step explains how the proposed method

was validated by elaborating several interviews with experts. The findings of the

validation process (e.g. benefits, drawbacks, and trade-off) are also presented. In the

end, the improvement of the framework is discussed and applied based on the findings

from the interviews.

Finally, this report is ended up with the conclusions and limitations of this thesis. Some

future work opportunities are presented as the suggestions for research continuation in this

software process improvement and product software management topics.

 9

 RESEARCH METHOD

This section describes the research methods that are used in this project. We are following

design science as our research framework. Systematic literature review, interviews, case studies,

comparison analysis, and situational method engineering approaches are used to support our

research in performing several research tasks such as problem investigation, gaining

fundamental knowledge, developing artifacts and validating our proposed solution. Following

the design science framework, the research tasks are broken down into a set of practical tasks

which will be explained in the research planning section at the end of this chapter.

2.1 Design Cycle: Research Framework

This research will be undertaken by adopting the iterative problem-solving method proposed

by Wieringa (2014). Design cycle is a subset of engineering cycle which is a continuous

investigation and design processes to solve a problem by creating an artifact with the structure

shown in Figure 2-1.

Figure 2-1. Design science in engineering cycle (Wieringa, 2014)

The engineering cycle consists of four main phases:

1. Problem investigation: investigates the stakeholders, desired goals, problems,

phenomena and effects which are contributing to the goals.

2. Treatment design: specifies the requirements, identify the available treatments and

design the new artifacts for the treatment.

3. Treatment validation: determines the effects, trade-offs, and requirements satisfied by

the artifacts.

4. Treatment implementation: applies the artifacts in the real situation.

Research Method

10

An artifact is something created for practical purposes. Artifacts in software engineering can

be algorithms, notations, techniques, or methods. Meanwhile, the context in which the artifacts

are applied can be a software engineering projects, organizations, customers, or resources

(Wieringa, 2014). Therefore, the artifact produced in this thesis is a methodological support

for coordinating tasks for situational purposes. Meanwhile, the project’s context is product

software organizations who distribute their software project development tasks to remote sites

or partner companies globally.

2.2 Research Approaches

In conducting our design science project, several approaches are selected and performed as can

be seen in Figure 2-1. In design science, only the first three tasks of the engineering cycle are

performed (Wieringa, 2014). In addition, since the engineering cycle is usually carried out in

long-term research projects, our research will adapt three main parts of the engineering cycle.

They are:

1. Problem
Investigation

2. Method
development

3. Method
validation

Solution
Implementation

[SQ1, SQ2] Systematic literature

review (Chapter 3), Semi Structured

Interview (Chapter 4); Both results

are summarized in Chapter 5

[SQ3] Method association (Chapter 6)

[SQ4] Expert opinion (Chapter 7)

Figure 2-2 Design cycle adaptation

1. Problem investigation

Problem investigation is used to characterize the problem to solve. Exploratory work

by conducting a backward literature review to examine on what has already researched

on task coordination challenges and approaches in global software engineering (Budgen

& Brereton, 2006; Webster & Watson, 2002). Semi-structured interviews with the

company will also be used to get the understanding of task coordination problems and

approaches in practice (Cohen & Crabtree, 2006).

A concept matrix literature review is used to examine the current task coordination

approaches and propose a compilation which consists of the best fragments of existing

methods to a general model of task coordination. Firstly, this framework needs a

backward and forward literature approach to collect and select the source materials for

the review. Secondly, concepts are determined from the literature and compiled in a

concept matrix. This concept matrix will help researchers in discovering and

synthesizing the key concepts of the topics (Webster & Watson, 2002).

Research Method

11

2. Method design

Situational method assembly will be used for analyzing, extracting, and classifying the

common fragments of the processes and concepts from established methods

(Brinkkemper, Saeki, & Harmsen, 1999). This step aims to build an optimized method

which can be utilized in different situations of various projects from established

methods' fragments (Deneckère, Hug, Onderstal, & Brinkkemper, 2015; van de Weerd

& Brinkkemper, 2009). In section 2.2.4, we will elaborate the approach in developing

the task coordination reference method by using method engineering principles.

3. Method validation

Interviews with experts to obtain experts’ opinion are conducted to validate the model

to assess the benefits and drawbacks of the developed model. The feedback is used

further to improve the developed model (Wieringa, 2014).

2.2.1 Systematic Literature Review

There were extensive studies previously performed in global software engineering, task

coordination in software development, and the growth of product software development. Some

previous researchers have independent topics, and some of them intersect one another. We

investigated the artifacts by reviewing this contemporary literature to build a solid

understanding of approaches, frameworks, or tools for task distribution in global software

engineering.

Systematic Literature Searching

It is interesting to get a literature review that not only focus on top-rated literature only. Since

we want to develop a methodological support, we need to get an overview of what has been

previously studied by observing the literature from a higher standpoint. For that reason, we

combine database searching and snowballing approaches. First, to find the primary articles,

specific keywords and years limitation are used to get journals and conference proceedings on

the topic of this thesis. To perform a database searching, we utilize the Computer Science

Bibliography (dblp.org), Google Scholar, and ResearchGate as our search engines. Articles

displayed by the search engines were selected with due regard to their scope, objectives,

methods, and conclusions subjectively (Budgen & Brereton, 2006). Then, the selected articles

are labeled into three main groups: global software engineering, task coordination in software

engineering and software product organization.

First, to identify such studies, digital libraries such as Elsevier (ScienceDirect), ACM

Digital Library and IEEE Computer Society (computer.org) and digital search engines such as

DBLP are employed. Initial keywords were established, and the listed terms do not limit them

since different terms with same meanings were discovered during the searching processes. The

year of publications is limited from 2010 to 2016 to get a better overview of the latest researched

topics.

Keywords: {coordination, task coordination} + {software engineering, software development,

software project}, {global software engineering, global software development,

distributed software engineering, distributed software development}, {software

product, product software} + {company, organization}

Year: between 2010 to 2016

Types: Conferences proceedings, journals, books and book sections

Research Method

12

As can be seen in Figure 2-3, many studies in global software engineering started to increase

in the last decade (since 2006) and the figure shows that GSE is still a popular topic in this

year. Based on that fact, we set 2006 as the lower limit of the searching criteria in the search

engines. We only select journals, conference proceedings, theses and books from relevant areas

such as Management Information Systems, Systems and Software, Information and Software

Technology, Global Software Engineering, Software Product Management. We preferred

articles published by ACM, Elsevier, Springer, and IEEE since they are typically publishing

state-of-the-art research articles in Computer and Information Sciences and Engineering. The

citations number possessed by research can be a consideration in the paper selection to be

initial articles. The following criteria for initial sources were used:

 It should be a journal article, conference proceedings paper, book, or a thesis

 The paper should be written in English

 The paper should be available in digital format.

Figure 2-3 Number of articles found in DBLP

By using the search engines, we found a pile of articles which are related to coordination in

software engineering, global software engineering, and product software organizations. Roughly,

there are 73 articles found. The exact number of articles cannot be justified since there are

some various results as well as some intersections among the search engines. We picked six

articles as the starting point for the snowballing processes (Table 9-1). The remaining articles

are still considered useful and were kept to be added to the references during the research

progress.

The next step is searching related literature by iterating backward and forward snowballing

to find more literature (Webster & Watson, 2002). Backward snowballing is performed by

identifying interesting concepts and reviewing the reference lists from articles to find the

meaningful discussion or other related concepts from the first step to finding prior articles. If

needed, we go forward to find the more elaborate discussion by finding articles citing the articles

recognized in the previous steps. This systematic search is used to ensure that we

accumulatively complete census of relevant literature. These two approaches are repeated until

there are no new concepts are found. After the snowball searching, we found that there are

several publication sources which contribute more to our literature research (Table 2-1).

Concept Matrix

We elicit the foundation of knowledge from systematic literature review where the authors are

having different needs and background contexts. Hence, there can be widely varying jargons

and terminologies for the same subject matters. The way to address this problem is by reducing

and eliminating conceptual and terminological confusion and come to a shared understanding

(Glaser, 1965).

0

5

10

15

0

50

100

150

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

Global Software Engineering

Task Coordination

Product Software Organization

Research Method

13

Table 2-1. Literature Sources

Journals / Conference Proceedings / Books
Number

of Results

ACM/IEEE International Conference on Global Software

Engineering (ICGSE)
11

Information and Software Technology 7

Communications in Computer and Information Science 6

Lecture Notes in Computer Sciences 6

ACM/IEEE International Conference on Software Engineering

(ICSE)
4

IEEE Software 3

Communications of the ACM 3

Journal of Software: Evolution and Process 3

Systems and Software Journal 3

Information Systems Management Journal 2

Management Information Systems Quarterly (MISQ) 2

ACM Evaluation and Assessment in Software Engineering (EASE) 2

ACM Empirical Software Engineering and Measurement (ESEM) 2

Ergonomics Journal 2

Software Quality Journal 2

Lecture Notes in Business Information Processing (LNBIP) 2

Collaborative Software Engineering 2

Management Science Journal 2

Advances in Intelligent Systems and Computing (AISC) 2

IEEE Requirements Engineering 2

Brazilian Computer Society 2

Information Systems Journal 2

Others 76

Total 151

From the selected articles, we use matrix analysis to structuring the review and

summarizing the complex aspects from a higher perspective. A concept matrix can be

characterized as a conceptual framework in a rectangular array of concepts. Researchers should

construct the matrix based on their personal proficiency and originality to enable them to find

the relationships between entries (Klopper, Lubbe, & Rugbeer, 2007). A guideline presented by

Webster and Watson (2002) presents an author-to-concept-centric matrix as can be seen in

Table 2-2 and Table 2-3.

Table 2-2 Concepts and authors mapping

Concept-centric Author-centric

Concept C1 … [Author A2, …] Author A1 … [Concept C2, C3, … Cn]

Concept C2 … [Author A1, A2, …] Author A2 … [Concept C1, C2]

Table 2-3 is depicting the relationship between articles and concepts which are built by

compiling the matrix after the literature is synthesized to identify the analysed concepts a

proposed by the authors. The concept-centric and author-centric relationships can be presented

as a matrix as can be seen in Table 2-2. All the concepts found during the literature review are

inserted into this concept matrix.

Research Method

14

Table 2-3 An illustration of a concepts matrix

Articles
Concepts

C1 C2 C3 … Cn

A1 √ √ √

A2 √ √

…

Am √ √

2.2.2 Semi-structured Interviews

In addition to using literature review as a method for data collection, interviews are used to

elicit information from the participant companies. An interview is a data gathering technique

commonly used in qualitative research (Myers & Newman, 2007). There are various types of

qualitative interviews which are grouped into three categories: structured interview,

unstructured or semi-structured interview, and group interview. Structured interview uses a

complete script that is prepared beforehand, and all questions are asked in the same order as

in the pan. As well as a structured interview, the semi-structured interview also requires a list

of questions before performing the interviews. The interviewer uses an incomplete script which

is formulated as a general concern and interest from the interviewer to bring a room for

improvisation during the interview (Myers & Newman, 2007; Runeson & Höst, 2009).

Meanwhile, group interview is the interviewer where two or more people are interviewed at

once by using a structured or unstructured list of questions.

In this research, we perform a semi-structured interview. A semi-structured interview is

challenging because it requires openness, flexibility, and improvisation. Unlike a structured

interview where there is no room for improvisation, a semi-structured interview does leave room

for improvisation, which results in obtaining different results from each interviewee. Thus, the

interviewer should manage the time by ensuring that there are no long pauses during the

performance, but still able to cover all the questions that should be asked to the interviewees

(Myers & Newman, 2007).

There are five companies which were participating in our research. One of the companies

is not a product software company performing software engineering globally which helps us to

contrast the findings. There are two respondents from each of the companies from various job

positions who have experiences in global software engineering. The company’s names are

changed with AlphaSoft, BetaSoft, GammaSoft, DeltaSoft, and ZetaSoft for the reason of

confidentiality. The interviews were performed from December 2016 until February 2017.

The interviews attempted to capture several topics: company background, job roles and

functions, partners or remote offices profiles, product profiles, company’s vision in GSE,

challenges in performing GSE, approaches in GSE practices, and stakeholders involved in GSE

projects. Each interview was performed between 45-60 minutes. The interview protocol is

provided in Appendix A.

2.2.3 Expert Opinion

Design science allows many methods to validate design science’s artifacts, such as single-case

mechanism experiments, technical action research, and expert opinion (Wieringa, 2014). Single-

case mechanism experiment is a test where researchers apply stimuli to a model and explain

the response regarding mechanism internal to the model. Technical action research (TAR) is

Research Method

15

the use of an artifact prototype in a real-world problem to heal a client and to learn from this

which is usually the last stages in scaling up technology from the laboratory to the real world.

The difference between TAR and single-case mechanism experiment is the validation artifact

in TAR is tested in a real situation with a client where the researcher also uses the artifact to

help the client. The other validation method, expert opinion, is the simplest way to validate a

research artifact. The proposed artifact is submitted to the experts who imagine how such an

artifact will interact with problem contexts and then predict what effects that they think the

artifact would have. Validation of the proposed method by expert opinion will work if the

experts understand the artifacts which enables them to imagine problem contexts and predict

the effects of the artifacts in the contexts. Unlike single-case mechanism experiment, TAR and

expert opinion closely conform to conditions of practice because of the involvement of experts

or clients from the real situations.

Since expert opinion is an effective way to validate new artifact designs, we decide to use

this method to validate our proposed artifacts. We will present our artifacts to business

practitioners in global software engineering from products software companies as our experts

and ask them to give feedback to our framework and reference method. Thereafter, we improve

our artifacts based on the feedback. The improvement of the framework will also lead to the

enhancement of the reference method because the framework is utilized by the reference

method. Critical feedback is useful than a positive one because it gives indications of

improvement opportunities for the artifact. Negative feedback can indicate situations in real

practices which are not thought of by the researcher. Therefore, expert opinion is useful to

weed out bad design ideas early. The expert opinion interview protocol is provided in Appendix

I.

2.2.4 Situational Method Engineering

For the analysis of the existing frameworks, techniques, and methods in global software

engineering, we use the method engineering approach proposed by Brinkkemper (1996). Where

software engineering pays attention to all aspects pertained to software production, method

engineering focuses on the construction of method that fall into software engineering domain.

Therefore, Brinkkemper (1996) defined method engineering as “the engineering discipline to

design, construct and adapt methods, techniques, and tools”.

It is obvious that task coordination practices found in the literature and companies are

diverse because of the complexity in which the approaches and tools are utilized as well as the

situational factors that can influence a project (Kraut & Streeter, 1995; Li & Maedche, 2012;

van de Weerd, Brinkkemper, & Versendaal, 2010). The variations are found because of the

need to achieve better software engineering’ productivity and quality. For that reason, we need

to construct a reference method that can be derived to adapt methods to the project situation

at hand to support task coordination. The reference method is constructed from the fragments

of the existing approaches. It can be a combination of methods with route maps or a high-level

method scenario.

Metamodeling Techniques

To support our method engineering approach, we use Process Delivery Diagram (PDD) as our

meta-modeling technique. From the example of PDD in Figure 2-4 , PDD consists of two main

parts: process view and deliverable view. The description of the PDD notations is available in

Appendix H.

Research Method

16

Activity

Activity

Closed Activity

Sub Activity

Activity

Activity

Activity

Open Activity

[condition][else]

CLOSED CONCEPT

STANDARD CONCEPT OPEN CONCEPT

Attribute 1

Attribute 2

…

Attribute N

STANDARD CONCEPT

STANDARD CONCEPT STANDARD CONCEPT

OPEN CONCEPT
is associated to

Figure 2-4 An example of a process delivery diagram

Process view adopts UML activity diagram to depict the activities and the transitions that

show the control flow from activity to the next activities. Meanwhile, the deliverable view

adopts the UML class diagram to depict the concepts which are involved, in, or created, or

used by the activities or by other concepts (van de Weerd & Brinkkemper, 2009).

To build a task coordination reference method, we adopt the situational method engineering

approach which is used by van de Weerd, Brinkkemper, Souer, et al., (2006) and method

association approach by Luinenburg et al. (2008). The approach as can be seen in Figure 2-5

can be followed as below:

1. Perform preliminary study by conducting scientific literature review to identify

established methods for this research.

2. Identify situational factors in established task coordination approaches

3. Identify activity groups from the preliminary study.

4. Choose a candidate method from established method.

5. Model method fragments of the chosen method.

6. Associate the method fragments to the activity groups.

7. Assemble situational task coordination method

8. Validate situational task coordination method

2.3 Plan Validity

As this research involves contemplating the developed method in an exploratory research, Yin

(2013) suggests to take into account three types of validity: construct validity, external validity,

and reliability. Internal validity is establishing a causal relationship which does not become the

concern of our relationship.

1. Construct validity

This validity test is establishing correct operational measures for the concepts being

studied. We use multiple sources of data such as literature and interviews. We will also

perform several follow-up interviews with our key respondents to validate our solution.

Research Method

17

Perform preliminary

study

Identify current approaches
APPROACH

ACTIVITY

Conduct systematic literature review

SCIENTIFIC LITERATURE CONFERENCE

PROCEEDING

1..n

1..1

1..n

1..n

derived

from
INTERVIEW RESULT

Interviewee

Date & time

Transcript

derived

from

1..n

1..n

1..n 1..n

JOURNAL

THESIS

Conduct interview with company

1..n

1..n

Identify situational factors SITUATIONAL FACTOR

Identify act ivity groups
ACTIVITY GROUP

Identify an activity from the current approach as

candidate method fragment

Associate candidate method fragments to the

appropriate activity groups

Assemble situational method

Validate designed method

METHOD

METHOD FRAGMENT

1..n

1..1

ASSOCIATION TABLE

1..n

derived from

1..n

Figure 2-5 Method comparison approach in PDD

Both of these approaches are used to avoid subjectivity and bias of data (Yin, 2013,

p.34).

2. External validity

The second test deals with the problem of knowing whether our findings can be

generalized. We would not say that our finding and solution are applicable to our

research contexts. Moreover, we argue that the external validity test is satisfied to a

sufficient extent in this research by covering broader issues and through validating our

model across different organizations (Lee, Baskerville, Lee, & Baskerville, 2017; Yin,

2013).

3. Reliability

The last test is to ensure that if later researchers followed the same procedures as

described by an earlier researcher, they could replicate the same findings and

conclusions. The common way of approaching the reliability issue, we develop and

maintain our case study protocol to be followed and all data during this research (Yin,

2013, p.36).

Research Method

18

2.4 Research Execution

This research is stipulated to be conducted within 8 (eight) months. To scale and manage the

research, each task are grouped into the following main phases (Figure 2-6):

1. First Phase.

During this phase, we planned the research management and built the understanding

of the topic. This phase is ended up in a milestone where the first colloquium is

presented.

2. Second Phase.

This phase concerned on the research operationalization and finalization based on the

planned schedule in First Phase. Two milestones of this phase are the 2nd colloquium

presentation and the thesis defense. If possible, a scientific research report is produced

to be submitted to a scientific conference in software engineering or IT project

management domains.

3. Report Writing

Since this research topic is selected, documentation process is performed throughout

the planning and execution phases.

Perform research preparation

and problem investigation

Get short proposal signed

Perform problem

investigation through

literature review and

interviews

Finalize long proposal

Present research plan

(1
st
 Colloquium)

Perform method development

and validation

Apply feedback from case

studies

Finalize scientific paper

Finalize thesis report

Defense thesis project

Present research progress

(2
nd

 Colloquium)

Develop task coordination

framework

Develop task coordination

method

Perform exploratory case

studies

KEY CONCEPT

CURRENT APPROACH

COORDINATION

MECHANISM

TASK COORDINATION

FRAMEWORK

TASK COORDINATION

METHOD

CASE STUDY RESULT

SHORT PROPOSAL

Title

Author

Supervisor

Project Summary

Approval

LONG PROPOSAL

Introduction

Problem Statement

Research Approach

Project Phasing

References

THESIS REPORT

Introduction

Research Method

State of The Art

Proposed Solution

Results and Discussion

Conclusion and Future

Work

References

Appendices

SCIENTIFIC PAPER

Introduction

Research Method

State of The Art

Proposed Solution

Results and Discussion

Conclusion and Future

Work

References

Appendices

PROBLEM INVESTIGATION

RESULTS

DRAFT THESIS REPORT

Introduction

Research Method

State of The Art

Proposed Solution

elaborates

synthesized from

utilize

improves
improves

elaborates

refers to

elaborates

finalized as

refers to

elaborates

elaborates

1..1

1..1

1..1

1..n

1..n

1..n

1..1

1..n

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..n

1..n

1..n

1..1

1..11..1

1..1

1..1

1..1

1..1

1..1

Figure 2-6 Project phasing in PDD

 19

PART TWO STATE OF THE ART

Chapter 3. Literature Study

Chapter 4. Coordination Practices at Product Software Companies: The

Interviews

Chapter 5. Summary of State of the Art

 21

 LITERATURE STUDY

Reviewing relevant studies which are previously researched is a starting point for a design

science project. This chapter presents the results of problem investigation phase of our design

science project which completed by performing a systematic literature review.

From the literature review phase, we identified several concepts related to task coordination in

global software engineering projects at product software companies as can be seen in Figure

3-1 which are: Communication, control, knowledge, stakeholder, and tool.

Coordination

Mechanism

Communication

Control

Challenge

Benefit

Project

Engineering

Process

Stakeholder

Performance

Knowledge

ToolOrganization

Dependency

Remote

office

handle

find

create

involve

establish

adopt

has

Task

create

has

monitor
perform

need

manage

improve

use, standardizeutilize

distribute

support

involve

monitor

tackle

enhance

has

Team

assigned to

allocate

Roles

part of

has

offer

Product

create

monitor

align

need, share

perform

has

Figure 3-1 Concepts found during problem investigation

The literature that represents the evidence of the concepts can be seen in Table 9-2.

3.1 Global Software Engineering

As software engineering is defined as “an engineering discipline that is concerned with all aspects

of software production” (Sommerville, 2010, p.7), it includes software project management and

development tools, methods, and theories to support software production. To produce software,

engineers should take into account practical cost, schedule, dependency issues, and the needs

of software customers and producers. Software engineering uses software process as a systematic

approach which leads to the production of a software product. Software process consists of four

primary activities which are:

1. Software specification: customers and engineers define the scope of the software

that will be developed and its features and limitations of its operations

Literature Study

22

2. Software development: the software is designed and developed

3. Software validation: the software is evaluated to ensure that it conforms to software

requirements

4. Software evolution: the software is modified to adopt the changes required by

customers or markets

Due to some reasons such as the increase in development costs and to get closer to market

and customers, many companies practice global software development by carrying out parts of

their engineering and development processes in various countries (Ågerfalk et al., 2008;

Conchúir et al., 2009).

Niazi et al. (2016, p.1) defined global software development (GSD) as “the process whereby

software is developed in different teams located in various parts of the globe”. Hence, global

software engineering (GSE) can be discerned as an engineering discipline of software production

where parts of the engineering process are dispersed in various locations. Ramasubbu et al.

(2011) and Šmite (2007) propose numerous major distinguishing factors that describe dispersion

characteristics in global software engineering as listed in Table 3-1.

Table 3-1. Dispersion factors in Global Software Engineering

Factors Description Sources*)

Configurational There is unevenness in distribution across sites.

Multiple distributed member participation in a

virtual team that develops software by joint effort

is characterized by the number of collaborating

partners.

R, S

Spatial / geographical

distribution.

The geographical distance between the team

members involved in the project.

R, S

Time-zone / temporal

diversity

It is characterized by the level of working hours

overlay, which most frequently differs from time

zone differences.

R, S

Socio-cultural

diversity

The level of social, ethnic, and cultural fit can

differ even between the teams from one national

location. Difference in mother tongue language

that characterize the level of the common

language skill (such as English) of the distributed

team members also part of the socio-cultural

diversity.

S

Knowledge Gap The difference level of knowledge and expertise as

well as the availability of the access to the

required knowledge

K

Contextual diversity The level of organizational fit or heterogeneity are

characterized by diversity in experiences, process

maturity, and inconsistency in work practices

R, S

*)R : Ramasubbu et al. (2011); S : Šmite (2007); K: Kotlarsky, van Fenema, and

Willcocks (2008)

3.2 Benefits and Risks of GSE

There are enormous potential benefits in distributing the engineering process globally. Cost

savings is perceived as the most sought-after benefit of distributing software process across

Literature Study

23

countries (Ågerfalk et al., 2008). Companies share their development activities to leverage

development costs from other countries such as India and China. Besides providing engineers

with lower salaries, these countries also offer another benefit which is a larger developer pool

with highly-skilled engineers (Conchúir et al., 2009). By acquiring subsidiaries or developing

remote sites in other countries where the companies’ clients are located, expanding markets

and achieving customers closeness becomes possible (Herbsleb & Moitra, 2001; Jain & Suman,

2015). Performing software engineering globally also reduces time to market which is still a

controversial benefit. The time zone differences are the degree to which companies can

maximize productivity. Companies are managing resources in multiple time-zones by reducing

the hand-over process to increase the number of hours in the 24-hour day during the

development activities (Carmel, Espinosa, & Dubinsky, 2010; Herbsleb & Moitra, 2001).

In addition to the provided benefits, companies also face challenges because of the dispersed

resources. The diversities as described in Table 3-1 implicitly imply that organizations that are

performing GSE could face numerous problems in coordinating tasks among team members

(Table 3-2).

Table 3-2 Risks in global software engineering projects

Risks Description

Insufficient

direct

communication

Spatial distribution complicates team members’ ability in having face-to-

face communication with their colleagues when they need to discuss

problems that eventually could extend the problem-solving time (Nguyen-

Duc & Cruzes, 2013)

Process

dependency

problem

Ineffective handover when a team or individuals in should delay in

performing their tasks because they use the same resources or need the

result of tasks undertaken by the others can slow the project (Jain &

Suman, 2015).

Inadequate

collaboration

A lack of overlapping working hours limits coworkers in collaborative

activities can cause the development process less efficient and delays in the

project (Ågerfalk et al., 2008).

Distorted

information

The development team at the remote office can obtain incomplete or

distorted information about product requirements from product

management team. The difference in knowledge also can cause information

misinterpretation (Jain & Suman, 2015; Nguyen-Duc et al., 2012).

Traveling cost To recover from insufficient face-to-face communication, maintain social

contacts, and to build more trust, managers from host office need to do

regular site visits which increase the travel budgets (Ågerfalk et al., 2008;

Jain & Suman, 2015).

Lack of common

understanding

The lack of knowledge sharing due to technological differences (such as

different collaboration tool) can lead to an imbalance of common

understanding among team members which leads to misunderstandings

during discussions(Jain & Suman, 2015; Schneider, Torkar, & Gorschek,

2013)

Weak control in

project

management

Obviously, it is harder to manage interdependencies among tasks that are

performed in different sites compared to collocated ones. Geographical

differences complicates the managers’ ability to monitor team members and

task progress (Jain & Suman, 2015; Verner, Brereton, Kitchenham, Turner,

& Niazi, 2014)

Literature Study

24

3.3 Task Coordination Approaches to Overcome GSE Challenges

Malone and Crowston (1994, p.90) define coordination as “managing dependencies among

activities”. To face challenges and to achieve a desirable level of coordination effectiveness,

many researchers have been formulated coordination strategies to coordinate tasks which can

be grouped into two types of approaches: principles and framework. Principles is a basic idea

or rule that explains or controls how something happens or works1. Meanwhile, the framework

is a structure to make the conceptual distinction and organize idea by providing a network of

concepts that together provide a comprehensive understanding of a system (George et al.,

2011). The approaches identified during the systematic literature review are summarized in

Table 3-3.

Table 3-3 Task coordination approaches

Researchers
Type of

Artifacts
Proposed Approaches

(Olsson, Conchúir, et al., 2006) Principles Best practices such as buddy system,

regular traveling, providing norms of

messaging and optimizing asynchronous

communication

Kircher, Jain, Levine, and

Corsaro (2001); Li and Maedche

(2012); Strode, Huff, Hope, and

Link (2012)

Principles Adopting agile practices (Scrum and XP

process model) can optimize direct

communication and build teams.

Kotlarsky, van Fenema, and

Willcocks (2008)

Framework Knowledge-based coordination

mechanisms

Deshpande et al. (2011) Principles PMBOK® guidelines in GSE

Richardson, Casey, Burton, and

McCaffery (2010); Richardson,

Casey, McCaffery, Burton, and

Beecham (2012)

Framework Global Teaming provides two major key

areas in starting and operating global

software engineering.

Smirnova, Münch, and Stupperich

(2014)

Framework Global Canvas defines the roadmap of

global collaboration projects

Wen (2016) Principles Providing a liaison officer or a broker to

bridge the communication and knowledge

transfer

3.3.1 Overcoming Challenges Through Best Practices [L1]

Olsson et al. (2006) conducted an empirical investigation by performing interviews at three

global software development companies. They classify issues related to work dispersion into

three constraints: temporal distance, geographical distance, and socio-cultural distance. For

each constraint, they distinguished several approaches performed by the companies in

addressing those challenges from interviews and concluded recommendation actions.

Temporal distance challenge. Temporal distance is very close related to overlapping working

hour management. When the time-zone becomes the biggest problem to organize the

different teams in projects, it is necessary to consider moving remote teams to the

1 Principles [Def. 1]. (n.d.). Cambridge Dictionary. Retrieved March 7, 2017, from

http://dictionary.cambridge.org/dictionary/english/principle.

Literature Study

25

possible nearest area. Companies must avoid offshoring and choose nearshoring if they

could not manage small overlapping or even no overlapping working hours. The

temporal distance affects to daily communication within and between teams. Delay or

responses is a frustrating situation for both sides especially when the coordination is

related to time-critical tasks. This challenge impacts companies which have non-native

English speakers at the remote office. Even though asynchronous tools are valuable to

facilitate coordination, team members who are not native English speakers usually need

more time to reflect before answering a question which then increases the time for the

sender to receive a response.

Based on the best practices from other companies such as HP and Fidelity, ‘follow-

the-sun’ approach is a solution for companies that support other teams at later time-

zone. Another mechanism chosen by Intel entails considering the number of locations

involved in the project. They decide to divide and distribute tasks only to two sites to

make time-zone differences manageable. These mechanisms should be enabled by the

use of technologies to support asynchronous communication and work collaboration

(Sarker & Sahay, 2004). Companies also need to develop norms of messaging to avoid

concurrent discussion of several topics where questions, responses, and comments can

be directed and produced serially. Collaboration through technology still must be based

on strong social relationships to help in tolerating the coordination complexity and

increase the ability to handle multiple jumbled threads of conversations simultaneously.

Geographical Distance. A major challenge caused by physical distance is how to create a feeling

of ‘teamness’ among distributed team members. The physical meeting is believed to

establish a sense of trust and belonging. However, it is a common situation that cross-

site relationships mostly exist at higher levels. Other research also found that employees

at different sites sometimes do not feel like being part of the same team (Herbsleb &

Mockus, 2003). To create a higher level of teamness, some managers consider having

developers from remote locations meet each other to establish face-to-face contact.

To overcome the challenges caused by geographical distance, building team

cohesion through periodical site-visit, co-located team building activities, and

additional physical meeting especially during project definition session. Sharing team

members’ profiles through the online portal is also can be used that makes each of the

team members can know each other and know to whom they should talk to for specific

questions. Nearshoring also can be assumed as a better choice instead of offshoring to

minimize communication issues associated with undertaking IT work at a distance.

Also, a “bridgehead” or “liaison” officer can act as a mediator between sites to help in

connecting the boundaries encountered in daily work.

Socio-cultural Distance. Socio-cultural difference is a complex dimension where language

fluentness, work ethic, process maturity, and culture at the level of national and

organizational as well as political and legal aspects are involved (Šmite, 2007). This

dimension is experienced by organizations which consist of heterogeneous team

members from multiple countries. The team members who are not native English

speakers found difficulties in understanding and interpreting requirements or

assignments. Especially, conversations that focus on technical issues and involve rigor

vocabulary are found to be hard to understand by all team members, which leads to

misunderstandings.

Literature Study

26

In many cases, the language capability is not the biggest problem. Since

asynchronous communication does not deliver the emotion and expression, team

members at different countries have different assumptions regarding what to say, how

to say it and when to say it. Team members from different countries also have different

cultures in giving responses. Japanese developers need more time to provide the

responses because they want to give complete information. On the contrary, Indian

developers usually reply immediately with less information because their colleagues at

the head office prefer some acknowledgment of their questions.

Some companies use asynchronous communication to overcome the language

problem to adhere socio-cultural challenges. This solution lets team members take the

time to rethink and evaluate the assignments or questions. However, they also must

consider providing immediate acknowledgment as soon as possible when they need time

to accomplish the task or to provide the complete answers.

Companies also can use ‘buddy system’ where team members at remote sites are

buddied up with team members from the head office as their mentors. Occasional

traveling and face-to-face meeting to the remote office are necessary to share

information, build trust, and influence team members at the remote office with people

at the host office’s way of working.

3.3.2 Adopting Agile in GSE [L2]

Agile software engineering (Agile) is not a methodology. Agile combines a philosophy and a set

of development guidelines to encourage customer satisfaction by providing early and

incremental delivery of software. In Agile, software stakeholders work together as a self-

organized team and control the project by themselves, so they have the same view. An agile

team is characterized by its intensive communication and collaboration among all team

members to provide an operational and incremental software on the appropriate commitment

date (Pressman, 2010).

Agile philosophy is perceived as a revolutionary change to overcome the limitations of plan-

driven and traditional heavyweight approaches, such as difficulties to predict requirements in

advance, the needs of providing proven design before the construction phase, and challenges in

predicting the ideal engineering processes from a planning point of view. Engineering processes

are designed incrementally to adapt changes and uncertainties. Hence, Agile development

brings the following values (Pressman, 2010) :

 Individuals and interactions over processes and tools,

 Working software over comprehensive documentation,

 Customer collaboration over contract negotiation,

 Responding to change over following a plan.

These items are elaborated by the following 12 principles (Pressman, 2010):

1. Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

Literature Study

27

5. Build projects around motivated individuals. Give them the environment and support

they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity, the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self–organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.

Many Agile process models are developed, such as Scrum, Extreme Programming (XP),

Adaptive Software Development, Dynamic System Development Method (DSDM), Crystal

Programming, Feature Drive Development (FDD), Lean Software Development, Agile

Modelling, and Agile Unified Process. In a global software engineering context, XP and Scrum

are the two widely process models practiced by companies (Strode et al., 2012). As discussed

in a study performed by Paasivaara and Lassenius (2006), Agile methods and GSE could seem

incompatible because many studies report communication as the biggest problem of distributed

software engineering. However, by extending the process models, such as distributed XP and

distributed Scrum, Agile might help to resolve this issue by suggesting communication practices

that could be used to satisfy the communication needs of distributed engineering situation.

Scrum in Global Software Engineering

Scrum focuses on managing iterative and incremental development approach that moves

project control from a central scheduling to dispatching authority and responsibility to the

team members working on the tasks (Schwaber, 2004). Scrum provides the management

framework for software engineering projects that consists of three main stages (Schwaber, 1997,

2004; Sommerville, 2010):

1. Outline planning. Product Owner leads a team of customers or business users from

various disciplines such as marketing and product management to initiate a list of

features. Then, the Product Owner should prioritize features list of the product and

document the results into the product backlog.

2. Sprint cycles. These cycles are the innovative part of Scrum that consists of several

activities, which are:

a. Planning Meeting

b. Daily Stand-up

c. Review meeting

d. Retrospective meeting

At the end of the iteration, the deliverables can be released as a new incremental

release.

Scrum process model in step by step activities as depicted by using Process Delivery

Diagram (PDD) in Figure 3-2 consists of two main phases: Developing product backlog phase

and Scrum iteration phase. The developing product backlog phase is used to manage the

requirements and to design product features. Meanwhile, the scrum iteration phase is the

product realization process through iterative sprint activities (Schwaber, 1997, 2004;

Sommerville, 2010).

Literature Study

28

Developing
Product Backlog

Scrum Iteration

Story Writing Session

Sprint Planning Meeting

Daily Scrum

Backlog Grooming

Release incremental software

extend iteration,
another iteration Software is

fully released

PRODUCT BACKLOG

USER STORY

US Name
US Description
Acceptance Criteria
UX
Priority

SPRINT GOAL SPRINT BACKLOG

SOFTWARE

Review Meeting

Retrospective Meeting

realize

derived from

realize

realize

1..n

1..1 1..1

1..1

1..1

1..n

1..n

1..n

1..n

1..n

TASK

Backlog Item
User Story
Task Description
Schedule

SCRUM BOARD

Task
PIC
Status

monitor

1..1

1..n

PIC

Name
Expertise

1..n

execute

1..n

Product Owner, Scrum
Master, Development

Team

Product Owner,
Scrum Master

Figure 3-2 PDD of Scrum process model

Based on the Agile principles and the process depicted in Figure 3-2, it is obvious that

Scrum is well suited when stakeholders are collocated, and there is an intensive and frequent

interaction among them. In the real situation, many projects require more effort and involve

multiple scrum teams which are possibly located in distributed locations. The teams work in

parallel through a variety of coordination mechanisms. An appropriate infrastructure such as

high-bandwidth technology for source code sharing and synchronized builds, and alternative

communications such as instant messaging should be put in place to implement frequent work

synchronization and coordination among distributed scrum teams (Paasivaara & Lassenius,

2006; Schwaber, 2004). Therefore, Schwaber (2004) suggested adding a staging phase, where

non-functional requirements are defined and prioritized to Product Backlog to support the

collaboration, which are:

1. Decompose business architecture to support clean-interface multi-team development.

2. Decompose system architecture to support clean-interface multi-team development.

3. If necessary, define and implement a development environment to help multi-team

collocated or distributed environments.

To facilitate the staging step mentioned by Schwaber (2004) are added as non-functional

requirements in the product backlog grooming session as depicted in Figure 3-3.

Literature Study

29

Add collaboration requirements as
non functional requirements

Estimating effort for stories

Set prioritization

Refine list of backlog
PRODUCT BACKLOG

USER STORY

US Name

US Description

Acceptance Criteria

UX

Priority

Figure 3-3 PDD of Scrum product backlog grooming session

Sprint Planning Meeting (Figure 3-4) is a meeting that initiates an iteration in Scrum where

Product Owner and team members get together to collaborate about what will be done for the

next Sprint iteration (Schwaber, 2004). In this meeting, the knowledge of how to do the tasks

should be already explicit, or at least all team members know where the expertise is located

and know where the expertise is needed. It becomes necessary for an effective coordination

during sprint execution where entire team members have a comprehensive understanding of

the goal as well as the tasks priorities, and how each team members work fits in with other

team members’ work (Strode, Hope, Huff, & Link, 2011). Coordination effectiveness will be

achieved when the entire agile software development team has a comprehensive understanding

of, project goal, project priorities, what is going on and when, what they as individuals need to

do and when, who is doing what, and how each team member work fits in with other team

members work (Strode et al., 2011, p.15).

Describe priority

Define sprint goal

Define tasks

PRODUCT BACKLOG

Allocate tasks to PIC

SPRINT GOAL

SPRINT BACKLOGTASK

Backlog Item

User Story

Task Description

Schedule

Set up commitment

PIC

Name

Expertise
SCRUM TEAM

execute

derived from
realize

1..n 1..n

1..1

1..1
1..n

1..n

realize

1..n

1..1

1..n

1..n

1..11..n

Figure 3-4 PDD of Sprint planning meeting

During the iteration, all team members get into a 15 minutes’ stand-up meeting namely

Daily Scrum Meeting which is led by a scrum master (Figure 3-5). The stand-up meeting can

Literature Study

30

be perceived as a synchronization activity where each team member being better informed

about who is performing what task on the project on that day, this contributes to the implicit

component of coordination effectiveness (Strode et al., 2012). The use of sprint backlog and

scrum board as project monitoring tools in daily meetings helps team members to express and

visualize what value has been delivered and where all attendees can quickly see whether the

project is on track. The daily stand-up meeting also can be considered as a control mechanism

that serves common milestones to team members, provides quick feedback, and updates

progress reports (Pries-Heje & Pries-Heje, 2011).

Daily stand up

Review progress

Share today s tasks

Discuss impediments

Update backlog items

Perform Test Driven Development SOFTWARE

TASK

Backlog Item
User Story
Task Description
Schedule

SCRUM BOARD

Task
PIC
Status

SPRINT BACKLOG

1..n

1..1

1..11..n

1..n

1..1

monitor

realize

Scrum Master

Figure 3-5 PDD of daily stand-up meeting

XP in Global Software Engineering

Similar with Scrum, in Extreme Programming (XP), requirements are developed incrementally

by breaking down the requirements (user stories) into several tasks. Two main differences

between Scrum and XP are: XP has shorter iteration (XP has 1-2 weeks, Scrum has 2 or more

weeks), and task prioritization in XP is done by the Product Owner (customer) where the

teams are required to work on the tasks in that prioritization order. In the meantime in Scrum,

the tasks prioritization is done by the Scrum team (Cohn, 2007).

There are important things which become the characteristics of XP: Planning game, pair

programming, collective ownership, and continuous integration. Pair programming means

developers work in pairs and check each other’s work. Collective ownership allows the pairs of

developers work on all areas of the systems and all the developers take responsibility for all the

code. Meanwhile, continuous integration means all the new finished deliverables should be

integrated as soon as possible to the whole system and continued by testing the system

(Sommerville, 2010, p.66). Those practices need an intensive communication and expertise to

coordinate the tasks among the engineers. Since the developers take the same responsibility for

the code, they must have an equal level of knowledge about the code. However, in a

circumstance where projects with teams residing in other locations, the projects cannot be done

as in a colocated location. Thus, XP should be improved to address the challenges in

coordination caused by the team distribution such as communication and availability. For that

reason, Kircher, Jain, Levine, and Corsaro (2001) suggested Distributed eXtreme Programming

(DXP) to address this problem (Table 3-4).

Literature Study

31

Table 3-4 Practices in Distributed XP

Processes Practices

Planning game For release planning and iteration planning with customers being

remote, video sharing with application sharing support can be

utilized.

Pair programming Developers can use IDE that supports remote pair programming.

Continuous integration There should be at least a team or individual who becomes central

role. A central role can invite other team members to do common

integration on the development machine.

On-site customers Again, with the use of video conference system, remote customers

can be treated as “virtual on-site customers”

3.3.3 Adopting PMBOK® in GSE [L3]

Project Management Body of Knowledge (PMBOK®) is a project management standard from

a managerial perspective (PMI, 2000). Project management is defined as the application of

knowledge, skills, tools, and techniques to projects activities to meet project requirement (PMI,

2000, p.6). PMBOK® can be used in many types of projects including software engineering

projects. As a body of knowledge, PMBOK® covers several areas of processes, such as

communication management, integration management, and human resource management.

Deshpande et al. (2011) identified that GSD practices in coordinating tasks from literature

and performed an empirical research study to investigate GSD practices with vendor companies

in India. They compared the results with PMBOK® Guide processes as the basis and

established both common and the unique processes to both GSD and PMBOK® Guide. The

result is a set of GSD coordination processes which support project managers in overcoming

GSD coordination challenges and issues.

Team Building

Training

Cultural Differences

Team performance

assessment

Recognition and

reward

Organizational chart

Staff acquisition and

management plan

Resource Calendar

Roles and

responsibilities

Onsite coordinators

Bridging

Management of

attrition

Task allocation

PMBOK® GSE

Networking

Figure 3-6 Process mapping of PMBOK® Guide and GSD practices

They identified 14 processes in GSE practices from the literature and interviews and Project

Human Resources Management chapter in PMBOK® Guide by performing a comparative

analysis of coordination processes. From this map, PMBOK® Guide can be used as a starting

point for companies to identify and prepare the processes that should be performed on global

Literature Study

32

software engineering projects. Nonetheless, there are additional processes which are not covered

by PMBOK® Guide. On-site coordinators, bridging, management of attrition and task

allocation are essentials since they are found from the previous studies and experienced by the

interviewees. On-site coordinators are the ones that can facilitate communication better

between sites by bridging the sites to manage cultural, linguistic and knowledge differences.

Companies and they remote sites or global partners should understand the triggers that

can cause attrition so that they can take necessary steps to overcome it. Companies also should

consider the strengths, weaknesses, and interests of their resources or global partners to be able

to allocate tasks to the best resources. Thus, these processes should be acknowledged by

companies and included to be the part of common practices for a successful global software

engineering projects. Unfortunately, no stepwise guidelines provided on how to apply the

process mapping in daily practices.

3.3.4 Managing Knowledge Processes in GSE [L4]

Kotlarsky et al. (2008) see that coordination as the achievement of concerted actions.

Organizations should arrange activities across dispersed units to facilitate knowledge flows by

providing a structure through which expertise and information can be interchanged. The goal

of coordination mechanisms is to build the coherence of knowledge processes in achieving a

coordinated outcome. Therefore, they developed a knowledge-based perspective on coordination

and demonstrated its applicability in the context of globally distributed software projects. They

suggest that categories of coordination mechanisms should facilitate knowledge processes. For

example, work-based mechanisms make knowledge explicit and accessible, while social

mechanisms are needed to build social capital and to exchange knowledge and ideas.

Bu
Coordinated

Output

Bui lding

social

capital

Facilitating knowledge

flows

Making

knowledge

explicit

Amplifying knowledge

Organizat ion design

mechanisms

Work-based

mechanisms

Technology-based

mechanism

Social

mechanisms

Coordination

Mechanisms

Knowledge

Processes

Figure 3-7 Knowledge process model to support task coordination

They performed interviews with successful and unsuccessful global software engineering

projects from two companies. By using the framework, they identified some best practices from

Literature Study

33

global software organizations as can be seen in Table 3-5. By referring to the knowledge process

model as depicted in Figure 3-7, there are several steps that should be considered by

organizations to achieve a coordinated knowledge:

1. Identify situational factors from the organization artifacts such as processes, structure,

technology, and social activities. Organizations could recognize one or more factors that

usually occur in their information processing properties, by:

a. Probing on how organization design defines the roles and the cooperation

practice that constitute learning and value creating processes.

b. Observing on how tasks are structured that encourage individuals coordinate

activities

c. Finding tools or platforms that support individuals in managing resources and

interacting with their environment synchronously or asynchronously.

d. Investigating working relationships and social cognition among individuals in

the organization where they try to build a shared understanding of new

circumstances or to adapt one to another.

2. Define knowledge processes based on the situational factors found in the organization.

The chosen mechanisms should be aimed to encourage organizations in coordinating

knowledge and optimizing sharing to manage dependencies and produce effective team

operations (Table 3-5).

3.3.5 Managing Virtual Teaming [L5]

Another research by Richardson et al. (2010) found that many companies are struggling with

the successful implementation of GSE because of temporal, cultural, and geographical distance.

They proposed Global Teaming (GT), a software process model which includes specific

practices to ensure that requirements for successful GSE are stipulated.

Global Teams have the same goals and objectives with traditional teams. Traditional team can

be described as a social group of individuals who are collocated and interdependent in their

tasks. The main difference point is that Global Teams operate across time, geographical

locations and organizational boundaries. The main objective of Global Teams is to function as

a single team with the same goals as if they are localized in one place. Global Teaming focuses

on two goals:

 defining a well-managed global project management (more related to the project

management perspective), and

 defining management between locations (more specific in communication and

collaboration strategies).

Global Teams Process Area Framework is built by reflecting CMMI® structure and

identifying explicit and implicit GSE factors in CMMI® (Figure 3-8).

Literature Study

34

Table 3-5 Best practices

Coordination Mechanisms Approaches or Best Practices

Organizational design

mechanisms: facilitate

knowledge flows to reduce

existing gaps and prevent

knowledge and information

gaps in the future.

 Creating cross-continental mini-teams was helpful in
shaping communication patterns, providing clarity and
thus facilitating knowledge-sharing processes between
organizations and their remote sites.

 A clear division between technical and social supervision
(management of local teams) in which local development
manager is responsible for ensuring the quality of the
product and effective team operations.

 Direct communications were encouraged in the
knowledge collaboration group to facilitate knowledge
sharing.

Work-based mechanisms:

capture knowledge and make it

explicit and accessible to all

team members despite their

geographical location.

 Dividing works by feature provides dispersed teams with
full ownership of and responsibility for the entire block
of functionalities to reduce knowledge dependencies
which eventually reduce misunderstandings and conflicts

 Standardize tools and methods used by dispersed teams
will ensure consistency and facilitate a common
understanding of the products. A sharing of knowledge
embedded in the standards aided coordination across the
locations, as people performed interrelated tasks
coherently.

Technology-based mechanism:

amplifying knowledge sharing

of the team by using

technologies to communicate,

coordinate and share

knowledge will allow remote

team members to share

explicit knowledge resources

and increase the speed and

flexibility of knowledge sharing

independent of place and time.

 Facilitating the reuse of knowledge and software
components across locations will reduce time-to-market
of new product version.

 Centralizing technologies by utilizing Internet and web
technology under a single environment accessible from all
remote locations is important to ensure everybody works
on most up-to-date versions and at the same time and
allow remote counterparts to update his or her
knowledge about on the situation, including plans and
the progress.

 The use of application sharing and video conference tools
can help counterparts from dispersed locations learn to
know the composition of a remote team and knew whom
to contact. These tools also can be prioritized to be used
in high priority and urgent situations. Meanwhile, email
can be used for low priority tasks and issues, and tasks
that could not be completed in real-time because of time-
zone differences.

Social mechanism: create social

capital for the global team by

building up shared experiences,

team building, and creating

memory transactions among

team members to reduce

knowledge gaps, build

relationships and maintain

team atmosphere are

considered important to ensure

effective coordination over

distance.

 The transactive memory in the group started with the
project initiation can influence the information that had
to be shared will bring an impact on the efficiency of
communication.

 Organizing a team-building exercise bridges the
knowledge gap and facilitate knowledge sharing between
the teams in the early stages of the project and gives an
opportunity for major members to meet, learn about
areas of expertise and cultural differences of remote
counterparts, and create space for social interaction.

 Mutual adjustment included setting up rules of
communications helps people adjust to communication
styles and reduces the misunderstandings and confusions
that typically happened as a result of different cultural
backgrounds.

 Organizing frequent distant interactions through regular
teleconferences and face-to-face interactions facilitates
interactions between remote counterparts which
eventually helps to keep the knowledge of all parties up
to date.

Literature Study

35

 Specific Goal 1:
Define GSE Management

Specific Goal 2:
Define management
between locations

Practice 1.1
Global Task Management

Determine team and
organisation structure

between locations

Determine the
approaches to task
allocation between

locations

Practice 1.2
Knowledge and Skill Management

Practice 1.3
Global Project Management

Identify business
competencies required

by team members in
each location

Identify cultural
requirements of each

local sub-team

Identify communication
skills in GSE

Establish relevant
criteria for training

Identify GSE project
management tasks

Assign tasks to
approriate team

members

Establish cooperation
and coordination

procedures between
locations

Ensure awareness of
cultural profiles by
project managers

Establish reporting
procedures between

locations

Establish risk
management strategy

GLOBAL TEAMING

Practice 2.1
Operating Procedure

Practice 2.2
Collaboration Between Locations

Define how conflicts
and differences of
opinion between

locations are addressed
and resolved

Implement a
communication

strategy for the team

Establish
communication
interface points
between team

members

Implement strategy for
conducting meeting
between locations

Identify common goals,
objectives and rewards

Collaboratively
establish and maintain

work product
ownership boundaries

Collaboratively
establish and maintain

interfaces and
processes

Collaboratively develop,
communicate and

distribute work plan

Figure 3-8 Global Teaming process area (Richardson et al., 2012, p.1184)

3.3.6 GSE Canvas Model [L6]

A canvas model usually is used to describe process chain, the interaction between functions

and information transferred in a layered design. Smirnova et al. (2014) utilize canvas model to

provide a holistic approach that synthesizes knowledge and guide companies to set up global

collaborations for software-based products and services in a systematic way. They investigated

important aspects and practices which are needed when starting global collaborations in

software development from literature study and advice taken from industrial partners. Then,

they prioritized and aggregated the aspects and practices to provide credible and helpful

activity roadmap for practitioners. They propose Global Canvas as a model that visualize the

structure of activity roadmaps for organizations intending to establish global development

collaborations. The activity roadmap incorporates nine elements (Table 3-6). Because the

canvas aggregates all the main necessary aspects and presents the activities as feasible

roadmaps, it also can be used as an assessment scheme .

The proposed activity roadmaps for organizations who want to establish global software

development collaborations are described as in Figure 3-9 that shows that there are five stages

that must be passed so that organizations can embrace the ninth element. Organizations can

follow four main phases as shown in the diagram in Figure 3-10.

Literature Study

36

Table 3-6 Global Canvas Elements

Element Description

Strategy Organizations should ask themselves the reasons behind on why they

collaborate globally to identify their current situations, what is the expected

situation, and how are they going to do to achieve their goals.

Collaboration

Structure

Collaboration Structure is aimed at determining the approach of

development task allocation between locations based on collaboration goals,

creating roles and responsibilities along with the way of distributing them,

and defining an organizational structure and peer-to-peer connections

between sites.

Product

Structure

Product structure addresses how product architecture could be adapted for

global software engineering compared to centralized development where the

Product ownership boundaries between locations, and how modifications to

the product part at one location can affect work at other locations.

Coordination Coordination holds an important role where the resources availability and

capabilities need to be effectively managed for the collaboration goals.

Development

Process

Development process aims at defining the model for software development

activities between the collaboration sites by defining the processes at the

interfaces between the collaborating sites without aiming at the unification

of all processes at all sites, especially when the sites belong to different

organizations.

Communication Communication addresses all kinds of communication activities between the

different development sites. It becomes crucial and needs to be considered

early on because global collaboration is a large degree human-based

interactions.

Social Aspects Social aspects refer to the process through which team members gain the

knowledge on behavioral and communication norms, attitudes, cultural and

social patterns of each other to work together in cooperation.

Infrastructure Infrastructure refers here to all tools, platforms, and other technical means

that support technical, organizational, and managerial activities in the

context of distributed software development, maintenance, and operation.

Organizational

Change Process

There is typically a period when team members learn to know each other

and better understand the ways of working together at the first stages of a

global collaboration. In this phase, the software development efficiency is

usually recovering gradually. By a change management process, global

collaborations will perform scaling effects gradually on efficiency that goes

beyond the efficiency of centralized development.

Literature Study

37

Strategy

Collaboration goals

Collaboration model

Foreign legal system

Vendors

Budget plan

Collaboration structure

Product structure

2a

2b

2c

2d

2e

2e

2e

CoordinationDevelopment Process

General task distribution

Organizational structure and peer-
to-peer links

Product ownership
and architecture

Product-based work distribution

Project management

Project control
Development process model

Infrastructure
Compatibility

Tools

Communication Organizational
Change Process

Social Aspects
Trust

Cultural
understanding

Communication tools

Relationships

Communication
protocol

Team awareness

Common
knowledge base

Improvement cycles

Standardization

3a

3b

3c

3d

3e

3f

3g

3h

3i

4a

4b

1a

1b

1c

1d

1e

Figure 3-9 Global Canvas (Smirnova et al., 2014, p.88)

Define global collaborations initiative

Establish collaboration foundations

OOperate collaboration projects

Detect collaboration problems

STRATEGY

ORGANIZATION

STRUCTURE

PROUCT

STRUCTURE

COORDINATION

PROCESS

DEVELOPMENT

PROCESS MODEL

INFRASTRUCTURE

SOCIAL ASPECT

COMMUNICATION

CHANGE PROCESS

MANAGEMENT

Figure 3-10 PDD of Global Canvas processes

3.3.7 Assigning Liaison Officer as Broker [L7]

Wen (2016) identified that many GSD projects suffer from a communication barrier which is

caused by language, cultural, and time-zone differences between the stakeholders. To deal with

the barrier, Wen proposed a new role called Global Software Development Broker (GSDB). A

GSDB should possess several requirements such as having excellent communications skills and

good knowledge of commercial law systems for multiple served countries. The requirements are

needed to help GSDB to perform several functions, which are:

1. Identify suitable partners, either a host company to global partners and global vendors

to find a project from prospective host companies.

2. Provide legal service by helping companies negotiating and developing a mutually

beneficial contract regarding the different commercial laws at different countries.

Literature Study

38

3. Communication service to reduce communication cost, to improve communication

quality between different stakeholders, and to help communication flow among team

members in global projects.

Regarding task coordination, a GSDB should be able to help the company to simplify the

communication network structure. Assigning or recruiting someone as GSDB may increase the

total communication amount. However, if the GSDB can streamline the communication

structure and overall communication quality, it will reduce the complexity and manage the

communication traffic which at the end will reduce the communication cost. That is why, a

GSDB should be able to profound the communication skills with the local cultures of both

locations to facilitate information exchange, identify expertise, and mediate cultural differences

(Verner et al., 2014).

In coordinating knowledge, it is also important to assign communication brokers depends

on the needs of knowledge. Kristjánsson, Helms, and Brinkkemper (2014) distinguished two

main types of knowledge: Functional and technical. Functional knowledge is associated with

the desired or implemented functionalities of the product. Meanwhile, technical knowledge is

associated with the implementation of the functionalities. They found that a boundary-

spanning knowledge broker who is the expert from the customer side can supports knowledge

development at the vendor side and transfers new knowledge back to the organization. This

role is responsible for the technical liaison and cultural liaison to reduce the knowledge

imbalance and cultural difference. The liaison officer can also be an engineer from the remote

office or vendor side who is temporarily assigned to the host office to facilitate communication

between sites. He/she is also assigned in gathering knowledge from head office, responsible for

transferring and creating knowledge shared space at his/her organization through

internalization or socialization (Espinosa, Slaughter, et al., 2007).

3.4 The Literature Study’s Summary

From the literature, we summarize the dimensions that describe how the teams are distributed

in product software companies into five basic measurements: spatial, temporal, knowledge,

socio-cultural and contextual. We found several best practices for task coordination adapted

from GSE guidelines such as the Global Teaming, the GSE Canvas Model, and Kotlarsky's

Knowledge Process Model that report coordination approaches as communication, project

management, and knowledge sharing practices.

In the next chapter, we try to dig deeper into the findings we get in this chapter more in

depth on the product software companies that participated in the research. Through interviews,

we will confirm the latest issues and best practices of these companies as updates and

complement of our literature study results..

 39

 COORDINATION

PRACTICES AT PRODUCT

SOFTWARE COMPANIES

In this chapter, we present the results of our preliminary case studies in GSE projects at

product software companies. The goal of this study is two-fold: (1) to capture the state of the

art of the challenges and companies’ best practices in performing GSE, and (2) to clarify the

of the theories with the current practices. There are several primary concepts we identified in

the literature study as presented in Table 9-2: control, communication, stakeholder,

dependency, knowledge, tool, and project performance. Due to this exploratory nature, we held

semi-structured interviews to allow participants to discuss the key topics freely to clarify these

concepts such as "How do you manage communication among distributed teams" and "What

are the problems in controlling dependencies?”. The five participating companies are

headquartered in the Netherlands, but their experience in performing GSE, the size of

distributed teams, and the way of the participating units are distributed differentiate to ensure

some degree of heterogeneity in the results.

4.1 Product Software Company

Further to our introduction section, the software market is shifting from tailor-made

software into product software. Xu and Brinkkemper (2007) classified software into four

categories (Figure 4-1). They defined product software as “a packaged configuration of software

components or a software-based service, with auxiliary materials, which is released for and

traded in a specific market.” Hence, a product software organization can be described as a

company that develops and sells mainly software as its products for a target market without

customer-specific modifications (Vähäniitty, 2006).

Bekkers, van de Weerd, Spruit, and Brinkkemper (2010) present a software product

management (SPM) competence model as a comprehensive overview of all important areas of

software product management (Figure 4-2). The model was developed from an SPM reference

framework by van de Weerd, Brinkkemper, Nieuwenhuis, Versendaal, and Bijlsma, 2006. The

competence model depicts the interaction and information flows among stakeholders through

four business functions: requirements management, release planning, product road mapping,

and portfolio management. Each business function is elaborated with several focus areas, which.

Coordination Practices at Product Software Companies

40

Tailor-made
software

Product Software

Micro-program
Embedded
software

One Many

Software

Appliance

Number of copies

W
h

a
t

is

so
ld

?

Figure 4-1. Software classification (Xu & Brinkkemper, 2007)

represent a coherent group of capabilities within a business function. Overall, the model

explains the key competencies that should be fulfilled by stakeholders in software product

management

Bekkers, van de Weerd, Spruit, and Brinkkemper (2010) present a software product

management (SPM) competence model as a comprehensive overview of all important areas of

software product management (Figure 4-2). The model was developed from an SPM reference

framework by van de Weerd, Brinkkemper, Nieuwenhuis, Versendaal, and Bijlsma, 2006. The

competence model depicts the interaction and information flows among stakeholders through

four business functions: requirements management, release planning, product road mapping,

and portfolio management. Each business function is elaborated with several focus areas, which

represent a coherent group of capabilities within a business function. Overall, the model

explains the key competencies that should be fulfilled by stakeholders in software product

management.

In this research, we used the SPM competence model to help us identify the situational

factors (SFs) in global software engineering, which could influence product management focus

areas and stakeholders in a product software organization seen in the key concepts found during

the literature review. A situational factor is “any factor relevant to product development and

product services” (Bekkers, Spruit, Van de Weerd, Van Vliet, & Mahieu, 2010, p.43). A

situational factor can be a particular method fragment that is not based on an established

software engineering approach. We explore the situational factors that affect task coordination

in global software engineering processes performed by software companies within the framework

of software product management.

There are several characteristics of product software based on the definition provided by

Xu and Brinkkemper (2007).

Packaged Components. “Packaged components” denotes software code, binaries, and

executables. Product software, as the integration of modules and components, can also

be perceived as a packaged set of standard components that can be configured to satisfy

particular needs of customers without having to change the line of codes (Bertram,

Schaarschmidt, & Von Kortzfleisch, 2012; Mantyla & Vanhanen, 2011).

Coordination Practices at Product Software Companies

41

Portfolio Management

Market analysis
Product life cycle

management
Partnering &
contracting

Product planning

Roadmap
intelligence

Product
roadmapping

Core asset
roadmapping

Release planning

Requirement
prioritization

Scope change
management

Build validation

Requirements management

Requirements
gathering

Requirements
identification

Requirements
organizing

Release definition
Release definition

validation
Launch

preparation

Company board

Sales

Marketing

Research &
innovation

Development

Support

Services

Market

Customers

Partners

Software Product Management
Internal

Stakeholders
External

Stakeholders

Figure 4-2. Reference framework for software product management (Bekkers et al., 2010, p.4)

Auxiliary materials. Auxiliary materials refer to product documentation, web pages, user

manuals, training materials, and brochures in which they are owned, managed,

updated, and released by the vendors together with product updates (Xu &

Brinkkemper, 2007).

Software-based services. As software that is created for a market, product software can be on-

premises software or software as a service (SaaS). On-premises software is installed and

run on the premises (building or hardware) of the customers who are using the software,

which refers to software as packaged components. Meanwhile, SaaS, or what was earlier

known as an application service provider (ASP), is “s time and location independent

online access to a remotely managed server application, that permits concurrent

utilization of the same application installation by a large number of independent users

(customers), offers attractive payment logic compared to the customer value received,

and makes a continuous flow of new and innovative software possible” (Sääksjärvi,

Lassila, & Nordström, 2005).

The key element of SaaS is the online characteristic, which enables consumers of

the service to use the software application anytime and anywhere around the world, as

long as they have a computer with a web browser and Internet access. This

characteristic is revolutionizing many aspects of product software, such as business

models, deployment models, cost structures, revenue logic and licensing schemes, the

focus of clients as well as service providers, architecture, and competencies. It does not

require complicated hardware or software on the customers’ side. As a service, software

is used on demand through a time subscription or a pay-as-you-go model. Service

providers are also challenged to provide secure and reliable architecture because they

provide only one instance to be accessed by many customers concurrently. Software

can also be updated and upgraded at the same time, which reduces the time to release,

Coordination Practices at Product Software Companies

42

deliver, and deploy patches or updates (D’souza, Kabbedijk, Seo, Jansen, &

Brinkkemper, 2012; Reuwer, Jansen, & Brinkkemper, 2013; Sääksjärvi et al., 2005).

Product line and release management. “Product line and release” is related to a product

software’s commercial value. It encompasses the activities of product release to the

market, deployment activities (including integration with other applications and

customizations), and routine maintenance services. The origins of requirements clearly

become the differences between tailor-made software and product software.

Requirements for the first release of product software are usually not as clear as tailor-

made software since the requirements are derived from perceived deficiencies in the

marketplace, market trends, or potential customer interviews. Thus, product software

requires careful release planning and prioritization of requirements (van de Weerd,

Brinkkemper, Nieuwenhuis, et al., 2006; Xu & Brinkkemper, 2007).

Market driven. Vähäniitty (2006), as well as Xu and Brinkkemper (2007), mentioned that

product software is a market-driven project undertaken to produce standardized

software. To make a successful product, delivering the right product at the right time

to the right market is essential (Artz, van de Weerd, Brinkkemper, & Fieggen, 2010).

Product software can be an evolution of tailor-made software. When companies

consider entering broader markets by transforming their tailor-made software into

product software, specific activities should be performed. They should elicit and analyze

the broader requirements information by monitoring the market trends, deploying a

product management strategy, defining the product lifecycle and release planning, and

establishing partnerships and contracts (van de Weerd et al., 2006). Small to medium-

sized companies should be grateful for the presence of the Internet, which makes it

possible for them to enter broader markets by exporting their products as Software as

a Service (SaaS).

The study performed by Reuwer et al. (2013) showed that even though internationalization

brings greater opportunities, companies should establish a strong domestic market position as

a solid base. They also should consider that physical and cultural differences should be

accommodated for internationalization processes such as understanding targeted countries’

behavior, providing multi-language packs, and ensuring legal compliance in targeted countries.

Companies can engage in partnerships with local companies or build remote offices as their

organizational strategies to perform these activities (Bosch & Bosch-Sijtsema, 2010b; Reuwer

et al., 2013).

1. Platform. As already mentioned, product software can be either on-premises software

or SaaS, which extends the capabilities of product software and allows companies to

provide services not only as ready-to-use software such as Microsoft Office. SaaS can

also be used to provide infrastructure that, in turn, provides computing resources like

Amazon Web Services. In addition, SaaS can also be used to provide an application

platform to serve specific business processes that can be configured to accommodate

particular business processes, such as Salesforce.com (D’souza et al., 2012; Kang et al.,

2010).

2. A software platform and its architecture should be defined in its software product line

(SPL). Software product line engineering defines the software core, reusable assets, and

the development process of software as the actual products. The reusable assets can be

modeled as a set of features that represent the commonalities and variabilities of the

products to satisfy stakeholders’ technical and non-technical requirements alike.

Coordination Practices at Product Software Companies

43

Therefore, software variability management should be established to maintain product

platform features, product functional and technological architectures, and product line

configuration and its derivation processes (Brisaboa, Cortiñas, Luaces, & Pol’la, 2015).

3. Business model. The last concept that we found during the literature review is “business

model and licencing.” D’souza et al. (2012) revealed that on-premises and SaaS

products need different kinds of partnerships. On-premises products need partnerships

for distribution channels, including consultancy, sales extensions, and training services.

Meanwhile, SaaS products need partners as their co-creators who can add value to the

products, such as add-ons and third party connectors, or provide them with

infrastructure as a service (IaaS).

For customers, there are also different types of licensing. In on-premises licensing, software

companies usually sell their products with a pay-per-user licensing mode, which can also be per

instance, such as for database products, or per CPU core in appliances software. In SaaS,

software companies can provide licenses in more different ways, such as pay-per-user, pay-per-

use, or pay-per-feature. In terms of software and data ownership, in on-premises software,

customers are the owners of the software and the data. Meanwhile, in SaaS, companies, as the

service providers, are responsible for the software reliability and data security (D’souza et al.,

2012). These situations imply that different competencies for the software companies and their

vendors are needed, based on the choices of product software technology and business models.

Thus, communication between software companies and their vendors is expected to encourage

more peer-to-peer and partnership-oriented collaborations, which can bring a shared, collective

understanding of the domain knowledge, technology, and business needs (Smirnova et al.,

2014).

Based on those characteristics, compared to tailor-made software, product software

development processes become more complicated, need more competencies, have a larger

development scale and a broader target market. Thus, many companies consider acquiring

more resources and competencies by using global software engineering (Ågerfalk et al., 2008).

4.2 Challenges and Practices at Product Software Companies

In this section, we present the results of case study interviews at five product software

companies in the Netherlands. Four of them are performing global software engineering by

having remote offices or partners in other countries; one of them is not, due to several reasons.

The company profiles are introduced in Appendix B and reference for the coding scheme is

provided in Appendix D.

4.2.1 AlphaSoft [CA]

The interviews at AlphaSoft were conducted with two different roles, which are the Scrum

Master and the Unit Manager. A scrum master and a unit manager in AlphaSoft are organized

to be responsible for only specific types of products, such as retail and wholesale software as

well as point of sales software.

AlphaSoft has been performing global software engineering for around six years. The remote

office is responsible for development and testing. They started their first nearshoring by

acquiring a company in Belgium. They started to build an office in Romania under the Belgium

office’ s management when they found that Romania offered a large number of high-tech savvy

and enthusiastic fresh graduates with lower salary grades compared to Belgium and the

Netherlands. This country was selected because people in Romania also have good English

Coordination Practices at Product Software Companies

44

skills and a similar working culture. Now, the remote offices have around 40 engineers who are

responsible for development and testing. Related to software production, the Netherlands office

oversees the product design, project management, and legacy DevOps activities. The needs of

young engineers are also considered by the fact that software technology changes rapidly. That

is why AlphaSoft has a clear segregation of expertise for the remote offices. The engineers in

the Netherlands have the skills and knowledge for the maintenance and continuing development

of the core modules, which are built with old technology. Meanwhile, engineers in Romania

work with the latest technology to adopt the changes among the clients, such as enhancing the

UI/UX, applying a new platform, providing the mobile capabilities, and expanding the product

as a service.

Challenges

Having the benefits of only one hour of time difference and the ease of communicating where

the English proficiency and the dialect are similar does not mean that this company is not

facing any coordination challenges, as expressed by the Scrum Master in the interview data

(iv-a-1):

“…every distributed work—this is the challenge; you don’t see each other in person

often, so you hardly know each other. The language is not a native language for both

sides, the Romanians talk English and the Dutch talk English as well but it’s not

native, so that’s always a challenge (iv-a-1).”

Another challenge occurred when the Romania office was opened. Some doubts and distrust in

terms of the ability of new employees appeared. Employees in Belgium also felt their positions

threatened by the presence of new, younger employees. With the passage of time, team cohesion

began to emerge by itself.

Between Romanian and Dutch employees, there are slight cultural differences. Dutch people

are mostly more outspoken, Belgians are not very talkative, and Romanians are somewhere in

between. The historical background of Romania as a country also affects the behavior, where

employees in Romania have more respect for organizational hierarchy, while the Dutch have

more open and horizontal communication to anyone beyond the organizational hierarchy,

whatever the level of their position as can be inferred from the comment from the Scrum Master

as below:

“Then, we have a cultural problem. Maybe you have seen it well. Maybe the

Netherlands is more outspoken, bolder, more aggressive, and other countries are more

teammates and respect the hierarchy more (iv-a-1).”

In addition to the cultural differences, the Scrum Master still feels that the distance becomes

another challenge since she prefers a direct and intensive communication. The sense of not

working in the same location and the inability to see people’ s expressions directly during

communication is perceived as a less convenient situation for team members.

Before the remote office in Romania was built, AlphaSoft also established a partnership

with a company from India to share the development and testing phases. Unfortunately, the

partnership did not work well. The language problems, working culture, and especially the huge

time difference (five hours) raised concerns at AlphaSoft that could not be compensated by the

cheaper labor supplied by the company from India.

Coordination Practices at Product Software Companies

45

Coordination Practices

Regarding the product software engineering processes, as can be seen by the existence of the

Scrum Master role, AlphaSoft adopted scrum methodology to oversee the software development

process. Obviously, as stated by the Scrum Master, the scrum process model helps the company

address communication problems by making the communication chain more concise.

“…normally, we waited for the development after the design was finished as a whole,

but the design never finished. So, now, because we have everybody in the team, the

communication is shorter (iv-a-1)."

The Scrum Master can work with more than one scrum team. There are no specific

additional processes in the scrum experienced by this company related to working with

distributed teams. Since the distributed tasks occur in the development and the testing stages,

the daily stand-up meeting becomes the most important event where the coordination activities

occur. The daily stand-up is arranged to be done in 15 minutes and should be attended by all

development team members and led by the Scrum Master. The daily stand-up starts with a

check of the progress of tasks. A scrum board and a burn down chart are presented so that all

the attendees have the same view of the current state of each of the tasks. Each team member

explains their progress and reports if any impediments occurred. Other team members can give

feedback or share their thoughts to help other members. After the stand-up meeting, the sprint

backlog should be updated by the team, including the product owner. The product owner is

responsible for ensuring that the information in the product backlog is up to date. The product

backlog centralizes all the project information and task statuses, which all the team members

should review regularly (iv-a-1). The Scrum Master elaborates her experience as below:

“This is done by the team including product owners through Skype or Lync. Product

Owners need to have the backlog up to date, so, therefore, they’ll walk through the

list regularly. After the planning meeting, preferably, the sprint backlog items do not

change. The Scrum Master will see to this. In TFS (Microsoft Team Foundation

Server), the team provides tasks per product backlog item. We use SharePoint to save

our documentation. In the PBI, we make sure the link to SharePoint is saved in the

PBI (iv-a-1).”

Other mandatory meetings, such as the sprint review meeting and retrospective meeting,

are also used to discuss any issues raised during the current iteration process. For example,

people might discuss the needs of specific knowledge, skills, or training sessions for the team

members to work on their tasks; or, they might talk about the needs of mentoring or knowledge

elicitation. The product owner leads these meetings with the help of the Scrum Master.

As the Unit Manager has mentioned in the interview, the position of unit managers becomes

important since they should bridge the gap between the head office and the remote offices.

“I bridge the gap with more senior management to the team to make sure the teams

who are working at NL, Belgium, or Romania should have the same information.

That’s why I should travel a lot to Romania to get some information from them and

share some information so they get the same information equally (iv-a-2).”

To build team cohesion, the Unit Manager also travels (from Belgium) to and stays in Romania

for a week every month. The purposes of this proactive site visit are (iv-a-2):

Coordination Practices at Product Software Companies

46

1. improving team cohesion by increasing informal communication with the remote team

members,

2. revealing and solving untold issues in the daily stand-up or retrospective meeting,

3. reviewing remote office situations to be reported to the head office,

4. updating information and knowledge from the head office,

5. bridging communication between remote offices and the head office, and

6. influencing the team members at remote offices with the working culture and behavior

of the head office.

This mechanism is proven to blend the interaction between the head office and remote offices

over the cultural and behavior issues, expand boundaries, and accelerate the communication

and information transactions between remote locations. The coordination practices by the

Scrum Master and the Unit Manager is then depicted in Figure 4-3.

Perform coordination
meeting

Obtain impediments

[reactive]

[through site visit]

Perform site visit

Present each tasks status

[through routine meeting]

[active]

Identify impediments

Analyze impediments

Distribute updates

[unsolved,
need other stakeholder]

[solved]

Resolve impediments

Identify impediments

Resolve impediments

Define commitment

Wrap up and distribute updates

DAILY (VIRTUAL)

MEETING

SITE VISIT

IMPEDIMENT

SOLUTION

COMMITMENT

PROJECT

INFORMATION

TEAM MEMBER

TASK

Status

DIRECT

COMMUNICATION

1..n

1..n

is in

discuss

identify

1..n

1..n

1..n

1..n

1..n

slow down

resolve

own

own

1..n

1..n 1..1

1..n

1..n

1..n

1..n

1..n

1..n provide, involved in

Note:
The Perform coordination meeting is performed
daily as a stand up meeting, and also weekly
among cross-functional team (Scrum of Scrum)

Figure 4-3 PDD of task coordination approach by AlphaSoft

Based on the coordination mechanism by Mintzberg (1980), AlphaSoft uses a mutual

adjustment mechanism where the product owner and scrum master facilitate the team members

with information and intensive meetings to facilitate communication between team members.

As expressed by the Scrum Master, each team member should self-organize him or herself when

discussing topics with others, including with the Scrum Master (iv-a-1).

1. “Scrum has mandatory meetings like sprint review, sprint retrospective, sprint

planning, sprint refinement and daily scrum every day for a maximum of 15

minutes. Furthermore, the team has the ability to use Skype or Lync for

further communication if needed. The team is responsible for talk to each

other if functionality needs to be discussed.”

2. “The Scrum Master is the office manager or team leader. If team members

don’t attend, this will be discussed either during the retrospective or

personally.”

Coordination Practices at Product Software Companies

47

Since they are not experiencing challenges in terms of time differences, communication is done

mostly in a direct way, which helps them avoid misunderstandings and delays in

communication. It is not clear how knowledge is transferred among team members during

project execution. Considering that they have smooth and direct communication, it is believed

that tacit knowledge is exchanged by means of socialization. Team members can learn by

practicing, or they become “socialized” into a specific way of doing things from peers (Smith,

2001). The stored knowledge is information that is explicitly formalized as project

documentation and stored in TFS and SharePoint, which is accessible by all team members.

Supporting Infrastructure and Tools

AlphaSoft did not have to prepare the specific infrastructure because the existing infrastructure

has already been supporting the communication and collaboration among team members. The

communication mostly is done through a synchronous mechanism. They use Lync (Skype for

Business) for direct communication, SharePoint to save and share project documentation, and

TFS to support collaboration and project management. These tools are able to be integrated

each other.

Status : TO DO, IN PROGRESS (DOING), DONE

TASK

B
A

C
K

LO
G

Figure 4-4 AlphaSoft's Scrum Board

They use product backlog, a burn down chart (Figure 4-4) and scrum board (Figure 4-5)

to provide a single view of project status. As already mentioned before, the product owner is

the one who has the responsibility to make sure that the information provided is up to date.

When a team from Romania is involved in a project, they use video conferencing software in

the daily stand-up and the retrospective meetings, so everybody can see and meet each other.

Important Roles and Functions

The product owner, the Scrum Master, and the Unit Manager are the most important roles in

managing coordination when performing software engineering projects globally at AlphaSoft.

They hold crucial functions differently, which are as follows (iv-a-1, iv-a-2):

1. Product Owner

a. Facilitate knowledge sharing by providing up-to-date, explicit information.

Coordination Practices at Product Software Companies

48

Figure 4-5 AlphaSoft's burn down chart

b. Articulate the business needs into requirements in technical language that can

be understood by the engineers, as well as translating the technical concerns

and situations to the business units and management.

2. Product Owner

a. Facilitate knowledge sharing by providing up-to-date, explicit information.

b. Articulate the business needs into requirements in technical language that can

be understood by the engineers, as well as translating the technical concerns

and situations to the business units and management.

3. Scrum Master

a. Facilitate direct communication between team members in the periodic

meeting.

b. Help the team in self-organizing the tasks.

c. Promote collaboration among teams and between teams for the product owner.

d. Shield the team from direct interruptions during the sprint.

e. Be the first officer to be found if the engineers are facing problems or

encountering impediments.

f. Help the product owner in the project review and analysis at the planning and

review meetings.

4. Unit Manager

a. Become the boundary spanner who bridges the communication and knowledge

transfer between the head office and the remote offices.

b. Be the representative of the product owner and the Scrum Master to make sure

that the employees at the remote offices able to accomplish the tasks within

the agreed time.

4.2.2 BetaSoft [CB]

BetaSoft is a multinational company that has a network of business units in many countries.

Our research focuses on an organization under BetaSoft that manages the research and

development of global ERP solutions. Two interviews were performed with the Technology

Director and the Product Manager. The Technology Director was assigned as the CEO of the

remote office in Kuala Lumpur (KL), Malaysia. The KL office has been operating for almost

Coordination Practices at Product Software Companies

49

14 years, providing most of the engineering processes for the global solution product, such as

product design, product realization, and product testing (iv-b-1).

BetaSoft has established its product engineering processes and has adopted scrum of scrum

approach to define the product roadmap (Figure 4-6, iv-b-1). The process starts with a

management team meeting, which is attended by all the discipline directors and the managing

director. The management team discusses each discipline performance within the corporate

strategy. The corporate strategy itself is defined every five years. Currently, the company has

three main strategies: to become a cloud software company, to provide platform digitalization,

and to create value-added services in business intelligence and data analytics. Then, a

technology board meeting led by the Technology Director and attended by the product

marketing director, the managing director, and sometimes the customer service director is held

to discuss the roadmap preparation. The roadmap preparation meeting provides a chance to

set yearly objectives, which define the subjective and objective directions for the technical

team.

Analyze product features

CORPORATE

STRATEGY

PRODUCT INITIATIVE

Finalize features

Define workload

Define feature prioritization

Conduct management board meeting

Conduct technology board meeting

Define product features

PRODUCT BACKLOG

Perform half release (pre-launch)

Perform product release (official
launch)

Perform product realization

Perform product development

Perform product stabilization

INCREMENT RELEASE

support

1..1

associated to

1..n

realized as

1..1

1..n

FEATURE

USER STORIES

1..n

1..n

1..n

1..n

1..1

1..n

Figure 4-6 PDD of product engineering processes at BetaSoft

Thereafter, the technology board will call the Product Manager and the feature owners to

prepare and engage with the development team. A feature owner is associated with a feature

and should be involved in the feature development such as planning, scrum meetings, and

demos (iv-b-1). Table 4-1 present the hierarchy of deliverables of the requirements definition

(iv-b-1). For example, a set of features is represented as an epic which should be delivered in

a product release. The development team helps the feature owners define the complexity of the

Coordination Practices at Product Software Companies

50

requirements and estimate the workload. These inputs from the development team are used by

the Product Manager and the feature owners to maintain the priorities.

Table 4-1 Types of deliverables of Scrum processes in BetaSoft

Deliverables Description

Initiative Initiatives can be perceived as the high-level (strategic)

requirements from business related discipline units.

Epic Epic defines the workspace as a set of features that should be

delivered in a release that represents several user requirements.

Feature Feature is a collection of related user stories which cannot be

completed in a single sprint.

User Story User story is a work unit that can be completed in single

sprint.

Task The smallest unit of work that should be performed by the

developer(s)

The feature owners and the Product Manager present the analysis results. The board then

discusses technical problems and finalizes the roadmap. Next, the finalized features are put in

the backlog as a sign that the development team can start doing their jobs. The technical

implementation is designed to be performed within six sprints, where each sprint is run within

three weeks. At the end of the development, they have another sprint for the product

stabilization, which consists of alpha testing (performance and security testing), formal

stabilization, and formal handover from the development team to the product management

team.

Before the full release, the go-to-market team, which consists of the product management

team, the customer service team, and the development team, performs a control release (half

release) to check the product entrance readiness by testing the release with several customers

from various types of industries for six weeks. At the end of the half release, the team presents

the results and shares advice to the technology board. If the technology board is satisfied with

the results, the product can be fully released to the market.

Challenges

BetaSoft has also standardized all the documents structure stored in the TFS; it is easier for

the Product Manager to check and analyze the results that reduce the information ambiguity.

The good level of fluency in English of engineers in Kuala Lumpur makes communication easier.

BetaSoft has arranged the segregation of expertise to minimize the task dependencies between

offices. The direct communication is complemented using asynchronous communication tools,

such as email, which are used to eliminate the effect of time zone differences. That is why

BetaSoft has not had any communication problems. Based on the interviews, only the quality

of the communication tools, such as unclear connections, becomes a communication problem

(iv-b-2).

Early on, organizational and local cultural differences became obstacles that limited

communication flows (iv-b-1). Employees at the Kuala Lumpur office, as well as people in Asia

in general, need to think before answering, and they choose to be quiet. This culture, sometimes,

was not acknowledged by their colleagues from the head office. Also, technical people usually

are not as extroverted as sales people, which made it harder for people from the head office to

communicate with their colleagues at the KL office.

Coordination Practices at Product Software Companies

51

Coordination Practices

BetaSoft’s software engineering processes are started by the meeting of different stakeholders

to discuss the product roadmap. The meeting is held three times a year to provide a list of

recommendations and feedback about features. The information shared with the stakeholders

is stored as PowerPoint files and saved in Microsoft TFS. Product managers and their team

members then determine priorities for new developments to put on the roadmap with the

consideration of the size and the complexity of the features. The team then prepares the more

detailed requirements and then verifies the requirements with the stakeholders. The verified

requirements then are sent to the development teams in Kuala Lumpur to be executed or

implemented. Currently, BetaSoft is considering streamlining these processes and involving all

the stakeholders in particular processes so they know the current situation and how to proceed

(iv-b-2).

Technology Board

Technical Team

Technology Director Managing Director
Product Marketing

Director

Feature Owner

Development Manager

Product Manager

Team Member

features,
stories

tasks

work in pair

initiatives
technical Information,

recommendation

recommendation, result, problem

technical situation info

recommendation

Figure 4-7 Functional diagram of two coordination areas in BetaSoft

To manage coordination between the product management team and the development

team, BetaSoft uses scrum of scrum to accommodate the segregation of the business

coordination stage and the technical coordination stage. The business coordination stage is the

coordination between the technical board and the Product Manager to decide the feature design

and release planning. The technical stage is when the Product Manager and the features owner

discuss issues with the development manager to decide the development plan, the deliverables,

and when the deliverables should be provided. The development team, led by the development

manager, consists of product designers, developers, and testers. All the technical decisions, such

as architectural design, are decided by the development team internally with the supervision

of the Product Manager and the features owner. It makes clear that individuals in the roles of

product manager and feature owner connect these two main coordination areas.

The coordination practices are shown where the technical team, led by the feature owner

and the Product Manager, discusses feedback and recommendations from the business

stakeholders. They share inputs from the technical team, clarify the requirements, and

negotiate the urgency of the requirements based on the situation of the technical teams. By

having a regular meeting, business stakeholders and technical teams can align their work

(Figure 4-8).

To update all the team members with the newest information, all the documents in the

form of slides, diagrams, worksheets, and documents are stored in the TFS. Each process owner

Coordination Practices at Product Software Companies

52

is responsible for the information updates in the TFS; for example, the Product Manager should

update all the requirements documentation in the TFS.

Reactive interactionsProactive interactions

Assign feature requirements to development

Clarify issue

Resolve issue

release development
in progress

issue raised,
passive monitoring

no issue raised,
routine, active monitoring

Update project information

Participate in (daily) periodic meeting

development accomplished

TEAM FOUNDATION

SERVER

ISSUE

SOLUTION

SCRUM MEETING

ROADMAP

DOCUMENTATION

REQUIREMENT

PRODUCT FEATURE

PRODUCT CONCEPT

SPRINT BACKLOG

stored in

1..n

1..1

resolve1..n

1..n 1..n

1..1

review

update
Perform site visit

Figure 4-8 Coordination practices in GammaSoft

The TFS can also facilitate the communication process between the development team in

KL and the customer service team in other countries. In daily activities, the development team

works for the new features development and bug fixing. The customer service team can create

a new work item to report a bug in the TFS, which the development team follows up on. The

development team can either accept or reject the work item. The rejection is not caused by the

inability to understand the description (language problem) but mostly because of the lack of

information provided by the customer service team (iv-b-2).

During the development stage, the product manager does not interfere with the

development processes (iv-b-2). Both teams, the technical team and the product management

team, have discussed the deliverables and when the agreed tasks should be accomplished. In

the meantime, when the development team finds difficulties in performing or accomplishing the

tasks, the product manager should be notified by the development manager.

To minimize the cultural challenges, people from the head office often travel to the KL

office. They can see and feel the hospitality of their colleagues, which influences how they

communicate. This face-to-face interaction can help cultural socialization, which cannot be

done remotely by using WebEx2. At the same time, the managing director of KL office pushed

the culture socialization continuously to help team members in Kuala Lumpur adopt the

cultural values at the head office, such as openness, freedom of expression, and horizontal

interaction over the organizational hierarchy (iv-b-1).

Supporting Tools Infrastructure

We can see that the roles of product manager, feature owner, and development manager are

important in the coordination processes in this company.

2 WebEx is an online meeting tool provided by Cisco. It provides virtual meeting with video support.
But in our case study, WebEx is mostly used for teleconferences (voice-based).

Coordination Practices at Product Software Companies

53

1. Product manager. The Product Manager manages the long-term roadmap of the

product and holds the central position between the technology board and the

development team. More specifically, the Product Manager leads the collaboration with

non-technical disciplines such as marketing, product marketing, and customer service.

2. Feature owner. Similarly, with the Product Manager, the feature owner provides the

function of media-broker between management and technical teams. The main

difference between the feature owner and the Product Manager is the engagement with

the development process (shorter roadmap). The feature owner is engaged with the all

the scrum meetings such as planning, stand-ups, and retrospectives. The feature owner

also responsible for the development of user stories based on the defined features and

for putting them in the backlog.

3. Development manager. The main function of the development manager is managing

the execution of the tasks during the development process to realize the requirements

within the agreed time. Related to the collaboration between the KL office and the

head office, the development manager has a function to facilitate the communication

between the development team, the feature owners, and the Product Manager.

4.2.3 GammaSoft [CC]

We conducted two interviews with different business units in GammaSoft: the service delivery

(SD) department, the organization that manages software used in internal GammaSoft, and

GammaSoft itself as a holding company. The first interview was conducted with the SD

department manager, who represents the SD department, and the second interview was held

with the global data architect, who represents GammaSoft as a holding company.

Both have a commonality because GammaSoft and the SD department particularly perform

software engineering by involving a partner company from India in product realization. More

specifically, in producing software for clients, GammaSoft as holding company also assigns a

partner from Poland to design its products. GammaSoft itself holds the responsibility of

defining the mission and the vision of the business, which is realized as product requirements

and standardization of the work methods.

Challenges

Compared to other companies that we have interviewed, GammaSoft is the largest company,

based on the number of remote offices under its holding organization. There are 40 subsidiaries

spread across various countries, and they are largely are local companies that were acquired by

GammaSoft. Each subsidiary can develop and sell its own products. GammaSoft provides the

standardization of work methods, especially for marketing and sales activities.

As a holding company, GammaSoft launched a flagship product named Business World, a

cloud-based ERP service built through partnerships with two companies in Poland and India

(iv-c-2). The partnerships were built to help them design and realize their products because of

the following considerations.

1. GammaSoft needs to focus on the business to adapt to the rapid changes in customer

needs and behaviors caused by rapid changes in technology.

2. Partner companies offer productivity in terms of resource availability and resource

specialization with a competitive economy value.

Unfortunately, between the subsidiaries, there is no collaboration such as sharing the reusable

software modules from subsidiaries in different countries (iv-v-2). Engineers in subsidiaries

spread across various countries could be a potential resource for GammaSoft. In the long term,

Coordination Practices at Product Software Companies

54

engineers with diverse experiences, knowledge, as well as access to a wider market, can be used

to build systems that are more flexible and powerful. To that end, there needs to be a synergy

between subsidiaries to unify the opportunities and the resources. There is still a problem

reflected in the interview where the organizational silos occur and limit the organization's

cohesion.

GammaSoft also faces a difficulty in managing the work with their product designer partner

and developer partner (iv-c-2). The problem also started internally at GammaSoft itself;

sometimes the company is not able to give clear requirements to its product designers. It has

become apparent that unclear information causes the dependency on the main office to become

high, which, in turn, increases the intensity of communication.

Another problem occurs with the developer partners. They do not experience considerable

challenges related to communication and English language skills of employees of partners in

India. However, cultural differences, technical experience, and process maturity levels resulted

in the developer partner being unable to finish the tasks at the required time and quality. The

developer partner is from a country where people are not used to saying “No.” The developer

partner is also sometimes unable to guarantee the quality of the work as expected by

GammaSoft. This problem is exacerbated by the small chance of synchronized communication

because of the small overlapping working hours caused by the time zone difference. As the

designer partner, these issues cause communication problems. Those challenges mentioned

above have led to a gap in terms of communication and information transaction that interferes

with the coordination between GammaSoft and its partners.

Coordination Practices

As GammaSoft wants to enforce segregation of duties by the expertise and capacities of each

organization, this company does not attempt to monitor every detail of the activities carried

out by its partners directly. Any review of the work is done according to the terms of the

agreed time and deliverables unless the partners imply or communicate directly to the product

manager or related staff in GammaSoft where there is a problem in the task execution.

GammaSoft tries to localize task dependencies in the same area of competence: GammaSoft, as

the product owner that manages the product portfolio (Figure 4-9). The product designer

company’s primary duty is translating the business requirements and the vision of GammaSoft's

board of management into a product and features roadmap. Meanwhile, the product developer

company is in charge of transforming all these designs into the desired product software and is

responsible for the operation and maintenance of the software (iv-c-2).

Figure 4-9 Segregation of tasks in GammaSoft

In the same way, for internal projects, GammaSoft also involves its developer partner for

DevOps processes (iv-c-1). To have a good communication flow, the developer partner has an

initiative to provide a service coordinator as a liaison officer in the Netherlands. The partner

company also provides a small group of engineers to help service coordinator at the first level

of problem-solving. The service coordinator becomes the communication broker between the

Coordination Practices at Product Software Companies

55

development team and service delivery manager, who represents the business users (Figure

4-10). Sometimes, business users want their queries to be executed as soon as possible,

regardless of the planning done by the service delivery manager. They often bypass the service

delivery manager and try to speak directly with the development team. Thus, the service

coordinator also becomes the patron who protects the development team from direct

intervention from business users.

Figure 4-10 Service Coordinator as a communication broker

As presented in the introduction of this report, vendor software offshore generally offers

cheap engineers and newly recruited graduates. They are usually hard workers, but they do

not have the amount of experience in the real world sufficient to provide work results with the

expected quality. Some senior engineers at GammaSoft have these qualities, but they could not

be allocated for a particular system development task because it does not correspond to their

job description. For that reason, the service delivery manager was a willing to conduct a

knowledge transfer session for young developers to influence them by seeing the best practices

demonstrated by senior engineers and applying these practices in their daily work (iv-c-1).

Supporting Infrastructure

GammaSoft does not have any specific software engineering process model for managing the

development process. It can be assumed that GammaSoft is following a traditional software

engineering process model, which commonly consists of requirements, design, implementation

(including development, testing, and deployment), and evolution. Thus, it is difficult to infer

what kind of artifacts used to monitor the engineering activities, such as burn down charts in

scrum or S-Curve Gantt Chart in PMBOK.

In terms of IT tools, GammaSoft also uses Microsoft SharePoint for the collaboration

activities with their partner and OneVision for project management and internal collaboration.

The reason behind the separation of these tools is the differentiation of the main feature of

these tools (iv-c-1, iv-c-2).

Important Roles and Functions

From this discussion, we can derive two important roles at GammaSoft that have a close

relationship with global software engineering projects.

1. Service Coordinator

a. Acts as the liaison officer who provides the function of communication broker

between the development team and the business users.

b. Covers the development team from direct intervention from business users.

c. Communicates the impediments from the technical side to the service delivery

manager (or other line managers).

2. Line managers, such as service delivery manager and product manager

Coordination Practices at Product Software Companies

56

a. Communicate the business requirements in technical language to the

development team through the service coordinator.

b. Communicate the technical considerations to the business users to balance the

business pressure and the technical capacities

4.2.4 DeltaSoft [CD]

The interview at DeltaSoft was performed with the research and development manager and

one of the team leaders. The R&D department (R&D) is responsible for the product road

mapping, research, development, and the operation and maintenance. The involvement of a

software development partner in Romania was encouraged by the needs of additional human

resources for the development process. The nearshoring partner has been working together with

DeltaSoft for almost three years. The partner company was chosen by DeltaSoft because of the

small time zone differences, the availability of resources, and their competencies. There is also

a small consideration of the lower salary grades offered in Romania, but competency and the

small time zone difference were the main considerations compared to the price (iv-d-1).

The R&D department consists of five teams: product owners, technical, business logic,

configuration and testing, and documentation. DeltaSoft adopts a scrum process model for

product engineering activities. Every iteration is supposed to be accomplished within two

weeks. There are two types of scrum team: portfolio teams and architectural teams. Currently,

there are two portfolio teams and three architectural teams. Each scrum team is a composition

of one member from the product owner and four to six other members from different units. For

example, Portfolio 1 (P1) consists of a product owner, two or three members from business

unit, and two or three members from configuration and testing; Architectural 1 (A1) consists

of a product owner, two or three members from technical and two or three members from

configuration and testing. Specifically, Architectural 3 (A3) is the team that is working with

the developer partner (Figure 4-11 and Figure 4-12).

Figure 4-11 Team allocation in DeltaSoft

The R&D department develops one product, but it has the flexibility and capability to be

delivered as various types of ERP systems, such as maintenance management and fleet

management. They create a platform that enables portfolio teams to work in a domain-specific

language to create business logics as modules within product software. Meanwhile, the

architectural teams are responsible for creating the platform, system core functionalities, and

integration with other software.

In producing the product software, DeltaSoft has defined a set of engineering processes:

market analysis, requirements processes, feature design, and software realization (Figure 4-13,

Figure 4-14, iv-d-1). Twice a year, DeltaSoft performs market trend identification where all the

Coordination Practices at Product Software Companies

57

GammaSoft

Te
am

:
P

or
tf

o
lio

, A
rc

h
it

ec
tu

ra
l,

an
d

 G
lo

ba
l P

ar
tn

er

Task

Timeline

Figure 4-12 Task allocation for the Scrum Team

sales teams from the Netherlands, Belgium, and Germany hold a meeting to discuss competition

trends, market trends, win–loss analysis, and competitor analysis. From this meeting, a list of

market requirements is produced by using the terminologies based on customers’ context. Then,

the market requirements are translated into product requirements that use the company’s own

terminology. The product requirements describe the conceptual solution, which consists of

features’ descriptions using a user story format. Afterwards, these conceptual solutions are

discussed by the feature team to select and prioritize the requirements and then arrange them

as product roadmap. The product roadmap is used by the R&D team as the reference to design,

develop, and release the software.

Product Release

Market Analysis

Combine market
requirements into product

requirements

Requirements Prioritization

Design realization plan

Realize product

Configure product

Test product

SOFTWARE

MARKET

REQUIREMENTS

PRODUCT

REQUIREMENTS

realize

1..1

1..n

1..1

1..n

Figure 4-13 PDD of software engineering processes at DeltaSoft

Coordination Practices at Product Software Companies

58

Design
realization plan

Design
realization plan

Explain requirements

Explain preliminary plan

Analyze requirementsREQUIREMENT

DEVELOPMENT PLAN

Provide feedbackFEEDBACK

BEST PRACTICE CHALLENGE

Adopt feedback

Finalize plan

d

Analyze development plan

R&D Manager,
Team Leader

Team Leader,
Team Member

Share plan

realize

improve

1..n

1..1

1..1

1..n

Figure 4-14 PDD of designing realization plan at DeltaSoft

Challenges & Coordination Practices

As seen in the above discussion, DeltaSoft applies scrum principles in its software engineering

processes, such as organizing a scrum team as a matrix unit that involves business people

(represented by the product owner) and engineers from various teams (iv-d-2). The Integrated

development environment (IDE) prepared by the architectural team showed that DeltaSoft

pays attention to technical excellence and supports the agility of the development process.

DeltaSoft has established a set of engineering processes that apparently enable DeltaSoft to

deliver product software gradually and frequently.

The interaction between DeltaSoft and its developer partner occurs only in the scope of

software development. Not all the scrum teams in DeltaSoft work together with the developer

partner team from the perspective of the organizational structure—only the Architectural 3

(A3) team that has a task to support the members from the developer partner (iv-d-2).

DeltaSoft chose to position the partner as part of the team. DeltaSoft's partner is a company

that specializes in helping other organizations in software development and implementation.

They not only serve DeltaSoft but also help other companies from various industries. Six people

appointed by the developer partner to work for DeltaSoft should be considered members of

DeltaSoft (iv-d-1). To that end, DeltaSoft realizes that informal communication is the best way

to build team cohesion. DeltaSoft also expects each team member's openness so that the use of

avatars and name aliases is avoided. Direct communication through Skype and phone calls is

more preferred than indirect or asynchronous communication. The situation also becomes easier

by the difference in time zones, which is only one hour (iv-d-2).

To build a bond between team members, DeltaSoft also does regular physical meetings

through regular visits to Romania or vice versa. The Romanian members are also involved in

meeting planning software as well as in the review meeting. DeltaSoft encourages their team

Coordination Practices at Product Software Companies

59

members, including the Romanians not only participating in tasks execution, but they are also

supposed to provide input in product requirements analysis. As indicated by the team leader,

they are free to express their thoughts, ideas, and feedback even to the R&D manager when

they feel that their inputs are valuable, could bring improvements, or could challenge the

existing approaches.

“Everyone, including our friends from Romania, can talk to me or to the R&D

manager if they have ideas. They can suggest something if they knew something

better (iv-d-2).”

In work collaboration, they use Slack to facilitate communication and file sharing among

each other interactively. Information assets are available as tacit information kept by each

employee. Transactions resulted in socialization of information through direct communication

or physical meetings and partly (generally in the form of project documents) in externalization

through media collaboration. Unfortunately, information externalization (e.g., best practices)

as a formal knowledge structure to be accessed online is not yet optimized. However, by the

help of intensive direct communication, information, or the knowledge gap caused by the

absence of external knowledge can be minimized.

Supporting Tools and Infrastructures

As mentioned before, there are several tools that are employed to support task coordination.

Slack is used as a collaboration tool where discussion and project artifact sharing (e.g.,

documents and reports) are performed over this online system (iv-d-2). They also use Skype

for direct communication between remote locations. Moreover, the use of a standard

development environment built internally also encourages task execution better because they

work in the same setting and terminologies.

Important Roles and Functions

There is no particular role with the power to address issues that arise in global software

engineering at DeltaSoft. Coordinating activities are more commonly pursued to be done

informally within the virtual team. Coordination mechanisms between the two locations benefit

from the short distance and the small time difference between the teams and DeltaSoft's

culture, which does not see the vertical structure as a barrier to coordination.

4.2.5 ZetaSoft3

The interview at ZetaSoft was conducted with the platform manager. Previously, he was the

Product Manager of the company’ s ERP product. Currently, ZetaSoft is focusing on the

development of its future product, which is a revolutionary product that will replace all the

current products into a single solution. The main idea of the new product is to create a flexible

software generator run on the cloud that can build many ERP solutions, such as financials,

sales, and logistics transactions processing for many types of industries. The CIO raised the

vision of the product, and he, as the platform manager, should be able to provide a concrete

ideation of the product.

3 ZetaSoft does not do software engineering globally. The case of this company is presented to

contrast the challenges experienced by global software engineering companies (AlphaSoft, BetaSoft,
GammaSoft, DeltaSoft)

Coordination Practices at Product Software Companies

60

ZetaSoft is not a company that runs software engineering globally. As expressed by the

platform manager, ZetaSoft does not believe that global software engineering could help the

company improve their software engineering processes or even to reduce the engineering costs.

“No, never, really never. Simple, because we don’t believe them. Same story with

Romania. We don’t believe in outsourcing or nearshoring. I think eight out of 10

projects prove that … you need so much more time, extra additional communication,

explaining to people, traveling there and back, checking everything back (iv-z-1). “

By having everyone under just one roof, employees can talk to one another to discuss problems,

ask for someone’s help, or share information directly without any problems in time zone

management.

In this organization, employees are not following a specific software engineering approach

like scrum or XP for the previous product. However, for the future product, they have adopted

some scrum practices, such as daily stand-up meetings. Meetings with software architects,

development managers, and documentarists are also held regularly. As the platform manager,

he plays a central role and performs several functions related to the engineering and project

management processes.

Even though ZetaSoft does not do software engineering globally, the company is recruiting

employees from foreign nationalities as well as and PhD students who are participating in

research and projects (iv-z-1). As long as the international members can manage to learn the

Dutch language and are eager to learn, with the help of work collaboration, they will have no

difficulties performing their tasks.

Currently, there are two major teams: a team that works on the configuration and operation

for the existing product and another team that works on the development of the future product

(iv-z-1). In some cases, such as UI integration, there will an overlap where coordination between

those teams is needed. The initiatives of the new future product, such as the use of a web

interface and advanced architecture, a completely cloud-based system will need new libraries

to be used by the current UI. They do not want to change the major UI functionalities because

the system is closely related to the user experience of their 10,000 existing customers in the

migration process.

Coordination Practices

ZetaSoft has a low hierarchical structure that speeds up coordination. The organizational

structure helps ZetaSoft cut the communication chain, which mostly happens in large

companies that run product software engineering projects (iv-z-1). During the development

process, the platform manager, as well as the other team members, can discuss any topics with

one another directly. Developers may come to the development manager first when they have

technical problems, and if they have problems or something to be discussed about functional

matters, they can come to the platform manager. When the platform manager needs processes

to speed up, the involvement of the platform manager with the development team is strict and

intense. The development team can self-organize what they think it is good to produce the

requested deliverables. However, when, in the final development, the platform manager finds

that the deliverables are not as designed or that the development team could not produce the

deliverables within the agreed deadline, he should report it to the board of management.

The communication mechanism in ZetaSoft also can be done anywhere and at any time.

When people need help, but their colleagues are not at their desks, they use Lync (Skype for

Coordination Practices at Product Software Companies

61

Business) to chat or make a call. For the future product project, they use Slack as their internal

wiki where they can communicate, collaborate, and transfer files. Meanwhile, for the existing

products, SharePoint is used as the knowledge-sharing media. The use of Slack for the future

product development coordination platform can be perceived since Slack combines a

collaborative workspace and communication media into a single platform that can promote

intensive communication.

Important Roles and Function

Based on the discussion above, we can infer that the Product Manager (or the Platform

Manager) plays an important role. This role’ s main function is connecting and managing

expectations of the board of management and the technical team by articulating the board’s

vision and expressing technical concerns to the board. The Product Manager has several

functions, such as

1. translating management’s (the CIO’s) vision into descriptive requirements;

2. proposing the requirements to the product designer/architect by

a. conducting brainstorming meeting about this project regularly with the

designer/architect and the development manager and

b. finalizing product design and specification for the functionalities;

3. forwarding the validated requirements to the development manager, tester, and

documentarist;

4. overseeing the development process; and

5. managing the overall project timeline.

4.3 The Interviews’ Summary

These investigation interviews confirmed that the key aspects of task coordination in GSE exist

in the participating product software companies. They assure that communication, project

control, and knowledge sharing are practices that can be applied to coordinate tasks and

dependencies among tasks on teams that are globally distributed. The limited time of

collaboration because of the time-zone difference and the difficulty in having co-located

collaboration become the issue in the GSE, but these companies are mostly experiencing GSE

challenges caused by of social background differences and expertise gaps. Companies that have

been able to define the product engineering software process can perform distribution and

control tasks better, also manage a more structured communication.

Furthermore, in product software companies, organizational strategies derived in the form

of organizational structure design, roles determination hold important influence in the control

of coordination both at the technical level and at the strategic level. Some specific roles such

as product owner, product manager, scrum master, unit manager, and service coordinator are

exposed as facilitators of communication, collaboration, and information transactions. The

interviews also revealed some tools that can facilitate and catalyze coordination practices.

The following chapter will synthesize the results from the interviews from this chapter and

the literature review presented in Chapter 3 as the foundation for the preliminary version of

the Global Task Coordination method construction.

 62

Table 4-2 Task Coordination Practices by the Participating Companies

Aspects AlphaSoft BetaSoft GammaSoft DeltaSoft ZetaSoft

Remote office / vendor

location(s)

Belgium, Romania,

India*

Malaysia Poland, India Romania Does not perform GSE

Years performing GSE ≥ 6 years ±17 years ± 2 years ± 2.5 years -

Processes at RO Development, testing System design,

development, testing

System design,

development, testing

Development -

Team size 40 ≥ 100 ≥ 100 6 40

Software eng. process Scrum of Scrum Similar to SAFE Traditional Scrum** Traditional, Scrum**

Target companies Dutch companies Global Global Global, internal Dutch companies

Product ERP (Retail,

Wholesale)

ERP ERP ERP (Supply Chain) ERP (Finance)

Challenges Communication, trust,

temporal

Communication tools

quality

Communication,

expertise imbalance,

temporal, organizational

silos, culture

Lack of explicit

knowledge

Communication

mechanisms

Both direct and

indirect; Site visit

Mainly indirect

Mainly indirect Mainly direct Direct

Control mechanisms Proactive; Mutual

adjustment

Reactive;

Standardization, mutual

adjustment

Reactive; Direct

supervision

Proactive;

Standardization

Proactive; Direct

supervision

Knowledge sharing

mechanisms

Document sharing; Site

visit

Formal training,

document sharing

Mentoring; Document

sharing

Pairing Document sharing

Roles Scrum Master, Unit

Manager

Product Manager,

Feature Owner,

Development Manager

Service Coordinator Team Leader Product Manager

Tools Burn Down Chart,

Scrum Meetings, Skype,

Ms TFS, Sharepoint

Skype, WebEx, Ms TFS OneVision, Skype, Ms

TFS

Skype, Sharepoint,

Slack

Ms TFS

** Not fully adopted or just similar with Scrum

 63

 SUMMARY OF STATE OF

THE ART

In this chapter, we summarize the results from the literature study as presented in Chapter

4 and the interviews as reported in Chapter 5. The end goal of this summary is to identify how

these key concepts are incorporated to be the foundation for the method construction in the

next phase.

5.1 Interdependencies in GSE

Coordinated outcome is a condition in which the organization can harmonize dependencies

among the distributed teams. By the time this condition is reached, a smooth task handover

will be obtained, and all teams have the competencies and resources needed to perform the

task. Interdependence occurs when actions taken by one referent system affects the actions or

outcomes of another referent system (McCann & Ferry, 1979). Our findings in types of

dependency in global software engineering projects are consistent with the dependency

taxonomy proposed by Strode (2016) that defines task dependency from three points of views:

Resource dependency, process dependency, and knowledge dependency.

5.1.1 Resource Dependency

This type of dependency occurs when a task could not be started immediately or accomplished

due to the absence of an artifact. The artifacts can be concrete artifacts such as persons,

location, tools, or software components. Strode (2013) mentions two forms of resource

dependency: Entity dependency is a situation where a situation where a resource is not available

which affects to the project progress. In AlphaSoft, the absence of Scrum Master can break the

formal communication among dispersed team member. It also can be happened in GammaSoft

if the product designer cannot provide the product requirements on time to the development

team. Meanwhile, technical dependency occurs when a technical aspect of development (such

as the absence of one software component) affects project progress. Technical dependency can

happen in DeltaSoft since team members are working as a virtual team for the same application.

The missing of a module that should be provided by the remote team can delay the overall

project.

Summary of State of the Art

64

5.1.2 Process Dependency

The situation where a task cannot be executed before a previous task is accomplished is called

process dependency. This type of dependency causes other team members to either switch tasks

to keep their workflow or wait until the previous task is complete. Based on the categorization

of interdependency provided by Malone and Crowston (1994), process dependency can be either

sequential interdependence or reciprocal interdependency. Sequential dependencies can be

defined as the above dependency process definition, in which some activities depend on the

completion of others before beginning. While reciprocal dependency occurs during each process

requires input from each other to run. For that reason, process dependency is strongly

associated with the resource dependency because generally, it occurs when a process requires

input from the previous process.

In our case study results, process dependency also appears along with the resource

dependency. In a case of GammaSoft, development partners will not be able to begin the task

of producing the software before the partner working on the product design completes the task.

The designer team should deliver product specification that contains requirements and features

lists that will be used as a reference for the development team in developing the product

software. The same thing happened in BetaSoft, where the development team in Kuala Lumpur

require product backlog which is processed by the Product Manager and the Feature Owner

based on the results from the Technical Board meeting.

5.1.3 Knowledge Dependency.

Knowledge is a valuable asset for knowledge-based organizations such as product software

companies. To manage knowledge and expertise dependencies, administrative coordination

(such as assign tasks to the competence employees, allocate employees, or integrate outputs) is

not enough. Companies should have expertise coordination (the management of knowledge and

expertise) so that the team can recognize where knowledge and expertise are located when they

need them (Faraj & Sproull, 2000). Our case studies show that having better or equal

knowledge can help other team members perform better than when still having knowledge gap

among the teams. That is why in DeltaSoft, the architectural team where the remote members

attached to should support the remote team members with their expertise in the development

tools and knowledge in the product itself. Another similar case also found in the Service

Delivery department at GammaSoft. The lack of experience in providing a qualified work (e.g.

efficient source code) can be rectified through a mentorship from employees from the host office.

5.2 Situational Factors of Task Coordination

5.2.1 Objectives of performing GSE.

There are different main goals that answer why companies perform GSE. Indeed, as mentioned

by Ågerfalk et al. (2008), reducing development costs is the main factor that becomes the goal

for companies involving development partners or building remote offices in other countries.

Our respondents did not deny that the cheaper salaries for engineers in Eastern Europe, South

Asia, and Southeast Asia attract companies to save money on their development costs.

Countries in those three regions also provide more young, tech-enthusiast employees that

have quality skills equivalent to engineers from developed countries. As also noted by our

respondent from ZetaSoft (iv-z-1), which does not perform GSE, building remote offices or

having partners in other countries results in increased travel costs for host companies because

Summary of State of the Art

65

managers or engineers from host companies should travel to remote facilities frequently. This

fact is also recognized and understood by DeltaSoft. The main objective DeltaSoft has when

creating a partnership with development partners is to obtain additional resources. The lower

salaries for engineers in remote facilities eventually makes up for the additional travel costs

incurred by DeltaSoft (iv-d-1).

At an enterprise scale, being able to focus on core business processes as a holding company

is the reason for companies such as GammaSoft to stretch their product development chain by

engaging business partners. Thus, GammaSoft can focus more on their main business processes,

which are sales and marketing and concentrate their attention on technical matters to the

remote facility and the development partner.

These objectives of performing GSE by the participating companies do not directly affect

the coordination practices. However, as business objective is part of organization strategy, it

can affect to the how the organization and its software processes are distributed. Eventually

these distributions will determine to on how companies are managing the division of tasks and

resources that will be discussed in the following subsection 5.2.2 and 5.2.3.

5.2.2 Organizational Distribution

In a product software company apparently, the decisions related to the product

development and technology choices such as architecture, integration, product decomposition,

and development allocation are derived from the business strategy and force process and tools

preferences (Bosch & Bosch-Sijtsema, 2010a, 2010b; van de Weerd et al., 2010). These, in turn,

would drive the distribution of the department in the organization structure.

The distribution of the departments or teams can be seen from the organizational

relationship between the host office and the remote office. We organized the types of

organizational relationships in GSE as an intern-distributed organization or extern-distributed

organization. Intern-distributed organization is the distribution of the departments or teams

where the remote office, whether it is a division or a subsidiary, is under the management of

the host office. Meanwhile extern-distributed organization is the partnership relationship such

as business outsourcing where the remote office becomes the business partner of companies. In

our case studies, we have two examples for task distribution in a single company: AlphaSoft,

BetaSoft, and GammaSoft (iv-a-1, iv-b-1, iv-c-2). The remote office of AlphaSoft is a

development branch office under the management of the Belgium office. For BetaSoft, the

development office in Kuala Lumpur is a subsidiary of the Netherlands’ office. And GammaSoft

has a remote facility in Poland to handle the product design activities. These remote offices

are running under the same company flag with the head office (Figure 5-1).

Establishing partnership with external organizations such as software development vendors

is the way to extend the organization capability to distribute the engineering activities.

GammaSoft has been outsourcing the development activities to a software development

company in India (iv-c-2). And DeltaSoft also has been establishing a partnership with a

software company in Romania (iv-d-1). The vendor's primary duty is to complete the tasks

given by the host office. The business agreement between these companies and their partners

can be varied. The business model of GammaSoft and its vendor basically is a task-based

agreement, where host company define the tasks and the requirement of the deliverables. From

there, the partner can determine the number of engineers and the best approach for them to

accomplish the tasks as long as the deliverables are delivered within the required time and

budget. Meanwhile in DeltaSoft, the partnership is a resource-based partnership, where the

Summary of State of the Art

66

Product
Management

Remote
Development

Local
Development

1 hour

Product
Management

Remote
Development

Remote
Development

1 hour 5.5 hours

4.5 hours

Product
Management

Remote
Development

8 hours

Product
Management

Remote
Development

Local
Development

1 hour

(a)

(c)

(b)

(d)

Intern organization (e.g. subsidiary
or just remote facility)

External organization (e.g. vendors,
consultants, dev partner)

Figure 5-1 Organization distribution and their temporal dispersion distance

(a) AlphaSoft (b) BetaSoft (c) GammaSoft (d) DeltaSoft

partner provides the requested number of resources (employees) with specific criteria.

Employees provided by the partners work directly for DeltaSoft under the supervision of team

leader from DeltaSoft.

Differences in relations between the two types of business relationships above do not

describe differences in how coordination is performed and do not describe the social proximity

between distributed team members. For example, although teams in remote offices that work

with DeltaSoft work under a different manager, their relationship seemed close. Another

situation is shown by GammaSoft, which, as a holding company, has subsidiaries that also has

their development teams. The social relationships proximity among the distributed teams is

likely to be more influenced by the size of the team in each location and the ability of the host

organization to create a more open communication environment for all team members.

However, this business relationship types describes on what aspects that might have to be

considered by managers at the host company in monitoring the tasks and how the tasks will

be handovered among the distributed teams such as the ease to access the resources (knowledge,

work products, or supplies) in the remote office, the ability to intervene or manage resources

in the remote office, and the ease to build a balanced communication and trust between the

distributed teams.

5.2.3 Software Processes Distribution

Referring to software engineering processes defined by Sommerville (2010) and key process

areas in product software management competence model by Bekkers et al. (2010), as discussed

in Section 3.1 and Section 4.1, there are several processes that can be shared to the remote

teams. In the interviews, we found that most of the companies share their development process

with the remote facilities or partners. BetaSoft and GammaSoft assign the software production

Summary of State of the Art

67

to their development facilities in other countries. Small development activities for configuration

and localization are done with other regional offices. Meanwhile, AlphaSoft and DeltaSoft

distribute parts of the development activities to other development teams at the remote offices.

All companies in our case studies are responsible for product portfolio management. A specific

case for GammaSoft, the company assigns requirements management and release planning,

including feature specifications to the remote facility in Poland to accomplish these tasks.

As software product management can be perceived as procedural activities where one

activity is followed by other events, obviously, there is a process dependency between those

separated teams. The situation described above shows the various ways of dependencies

between the head office and the remote offices. Product software companies can distribute the

process to their remote facilities in two ways: the distributed team is working together to

accomplish the same process, or working on an entirely different process but as a part of a

larger set of processes. Companies that distribute the same process to the dispersed teams

should pay attention to the control mechanism of the same resources (because the same activity

uses these resources) and harmonize the collaborative work by balancing the knowledge each

team has. For example, the collaborated work between the architectural team and the remote

partner in DeltaSoft shows that there is both resource dependency and knowledge dependency.

The remote team members are the additional support for Architectural Team 3 (AT3) because

they are designed to be part of the team. As the AT3 owns the knowledge of the architectural

design, they are also responsible for supporting remote team members in performing their tasks

by supporting them with the information that they have. Therefore, when the required

knowledge is owned by either party, such as the head office, then the manager or the team

leader must facilitate the access to the knowledge for the other teams. Dependencies that arise

in this situation is generally the dependency of knowledge and resources used simultaneously.

On the other hand, when each team performs a unique process, the manager must ensure

that the task handover runs smoothly. The output of the work should be ascertained as having

the determined quantity and quality so that the next team can use this output as an input or

resource in executing the following task. In this situation, dependence arises In this case, the

dependencies are more on the process dependency and resource dependency in the form of work

products.

5.2.4 Software Engineering Method

The software engineering process model such as Scrum, XP, or traditional ones are not

reflecting the situational factors that direct companies in choosing which coordination

mechanisms within the organizations. However, some practices that characterize the process

models can assist companies in reducing the risks and challenges in practice GSE. For example,

intensive meetings in Scrum helps direct communication more effective and pair programming

in XP assist in the transfer of knowledge between distributed team members.

Most of the participating companies use Scrum or a modified Scrum process model (iv-a-1,

iv-p2-1, iv-p). In AlphaSoft, there is a Scrum of Scrum where in addition to daily Scrum

meetings by each of the Scrum team, a regular cross-functional Scrum meeting is also

discovered. This higher level Scrum meeting is held once a week at the project level attended

by representatives from each Scrum team. In BetaSoft, the software engineering process model

is comparable with Scaled Agile Framework (SAFE)4 that involves broader stakeholders.

4 http://www.scaledagileframework.com/

Summary of State of the Art

68

Product managers, Scrum Masters, and feature owners are involved in several meetings that

similar to the Scrum meetings for the development team for product feature planning (Figure

4-6). These approaches bring evidence of where Scrum meetings such as planning, daily stand-

up, review, and retrospective meetings become the coordination mechanisms. As highlighted

by Paasivaara and Lassenius (2006), Agile practices like face-to-face conversation and daily

interactions are important in overcoming the limited amount of communication because they

do not stay in one place, and they have minimum overlapping working hours. Those intensive

meetings yield a chance for team members to know others’ tasks, problems, and solutions, even

if they must be separated by distance.

In the meanwhile, GammaSoft does not use a specific software engineering method, even

though there is evidence that the scrum is used by the development partner internally. This

situation could be understandable because GammaSoft wants to focus on product portfolio

management and marketing activities and to divert the processes related to product design,

requirements management, and release planning to business partners. Nevertheless, the

difference of methods used by two or more different organizations like GammaSoft and its

partners can lead to incompatibilities of processes that ultimately result in a process bottleneck

that slows down the entire project.

5.2.5 Experiences in GSE

We found that the variability of the companies' experiences in GSE is reflecting the difference

of organization' maturity in managing the tasks among the globally distributed teams. A

company like BetaSoft that has been performing GSE for almost 17 years have a sufficiently

long learning process to master many things that make it easier for them to optimize the

benefits of GSE and to address the problems during the joint projects with remote teams. In

the early stages when GSE was started, they found difficulties in understanding their respective

cultures and bridging this cultural differences. In the end, they discovered that inculturation is

better done through visiting the remote office by the team from the host office.

Other companies that experience similar cultural differences choose a quick solution by

providing a communication broker or a liaison officer, such as service delivery agent or a unit

manager. Companies that have less experience such the GammaSoft, still struggle to establish

a better communication and work synchronization with their partners.

5.2.6 Challenges faced by organizations.

Geographical distance makes the distributed teams do not have the chance to build direct

contact. Direct contact as a feature that can create social bond can be done through co-located

meeting or face to face communication. The lack of direct contact limits the distributed team

members to know their colleagues in other locations each other more in person that makes

them difficult to build teamness. They also find difficulties in monitoring and controlling the

work of their remote partners in other locations. In addition, a high geographical distance

enables the opportunity of temporal gaps that restrict them to have enough collaboration time.

Companies who have nearshore remote offices still able to have direct interaction for

communication to and supervision of remote offices. They can optimize synchronous

communication tools, such as communicating by telephone or WebEx and video conference.

But the differences caused by geographical and temporal distances bring the situation where

product software companies find difficulties in having more chance to have more direct

communication. Thus, indirect communication through communication broker or managers can

be used where these brokers can help in analysing, compiling questions or requirements and

Summary of State of the Art

69

communicating to the appropriate teams. The use of asynchronous communication such as by

using email also can be used to complement the direct communication.

The difference of tools or methods that are used by each location makes the process

handover cannot be done smoothly because the tools or methods are not compatible each other.

The organization maturity in handling the tasks, for example, the lack of experiences of the

global partner in adopting new technology also can harm the project performance. The

organization may work harder to manage these issues among the distributed teams that often

make the communication becomes exhaustive. In addition, companies that share part of the

processes with offshoring offices, such as those in Kuala Lumpur or India, should manage how

they could improve limited communication to be better. Because the head offices cannot get

involved in every task in detail, they expect that the remote teams can provide the output

according to the head offices’ expectations. Therefore, companies should determine the

standardization of process, output, and knowledge to ensure that the teams can have enough

knowledge to perform the tasks, perform the tasks effectively, provide the work product as the

required quantity and quality.,

Socio Cultural
difference

Knowledge gap

Contextual
difference

Temporal
difference

Spatial difference

Process and tool
difference

Process maturity
difference

Coordinated
outcome

Mutual
understanding

Communication
barriers

Project control

-

- -

++

+

+

+

+

-

Figure 5-2 GSE challenges causal model

As the conclusion, it can be perceived that the faced challenges affect product software

companies in different ways which eventually influence the way of these companies in

determining the appropriate coordination mechanism (Figure 5-2). These challenges force

whence companies are attempting to achieve the coordinated outcomes by controlling the tasks

and reducing the communication barriers that can hurt the team members to build mutual

understanding. Therefore, the GSE challenges can be understood as the situational background

for the coordination mechanism for product software companies.

5.3 Task Coordination Approaches: Communication, Control, and

Knowledge Sharing

From the literature study, we identified three main coordination means that are also affirmed

by the participating companies during the interviews as their mechanisms to manage the task

Summary of State of the Art

70

dependency among the distributed teams, which are communication, control, and knowledge

sharing.

5.3.1 Communication

Communication encompasses the process of transfer and exchange of information that takes

place between communication partners (Altmann, 1999, p.2). Communication is defined as an

organic coordination mechanism to manage dependencies through providing feedback and

mutual adjustment (Van De Ven et al., 1976). According to the study performed by

Lamersdorf, Munch, and Rombach (2009), there are two types of communication mechanisms:

Direct communication and indirect communication mechanisms. What is meant by direct

communication, in this case, is a communication made directly between two parties without

any intermediaries. Lamersdorf, Münch, and Rombach (2009) found that direct communication

was not possible to be done in distributed software engineering situation. Even so, indirect

communication also was not easy because of the difficulties in finding the responsible person

on the other side.

Based on the practices performed by the participating companies, they strive to optimize

direct communication as much as possible such as through phone and video conferences.

Regular and scheduled meetings in Scrum are events where team members from remote offices

also attend through video conferencing or WebEx. Additionally, site visits to have face-to-face

meetings, some of which are regularly programmed, and some of which are not. Ad-hoc direct

communication between team members commonly occurs in a smaller distributed environment,

such as in AlphaSoft and DeltaSoft. The communication, mostly done through Skype, happens

when a team member needs to arrange a meeting, ask questions or for feedback, or ask for

some help from other team members. Meanwhile, on a larger scale, communication is mostly

done through intermediaries, such as the Product Owner. For companies that have five to

seven-hour differences with their remote facilities such in BetaSoft and GammaSoft, the chance

to have synchronous communication is limited. Asynchronous communications, such as the use

of email, are done for less significant coordination purposes as a complement to the lack of

synchronous communication. However, the synchronous communication remains more

preferred. Therefore, they try to optimize their small overlapping working hours as much as

they can.

Figure 5-3 Organization design in communication

Indirect communication can be in a is also used when there is a mediation role that

integrates the information among distributed stakeholders (Chiu, 2002). In Figure 5-3, a star

communication model describes that the Product Owner in Scrum process model becomes the

central role. The product owner translates business requirements from clients and product

Summary of State of the Art

71

manager into product’s features in a technical language that can be understood by the engineers

and articulates the engineers’ consideration that can change the requirements to the business

users. Moreover, indirect communication in a large company can be in a hierarchical form

following the information flow mechanism within the organization top to bottom and vice versa.

It is necessary to break the network into smaller groups to facilitating communication (Chiu,

2002).

We found that communication among team members in global software engineering projects

are done concurrently and spontaneously. The situational factor that affected the way of team

members communicating each other is the level of temporal dependency. When the chance for

dispersed team members to work together is high, then it is better to have more direct and

synchronous communication. On the other side, direct and synchronous mechanisms still must

be performed and fulfilled using indirect communication mechanisms.

To have better communication, we propose a set of activities a reference method that should

be carried out as below:

1. Identify factors causes lack of communication, such as

a. horizontal causalities such as cultural gap and lack of trust

b. vertical causalities such as the problem of knowing to whom team member

should consult

c. the level of temporal dependency

2. Improve communication mechanisms

a. Perform cultural internalization

b. Assign medio-broker

c. Share organization structure (who knows who & what)

d. Improve communication protocol (especially for indirect & asynchronous)

5.3.2 Controlling Dependency and Synchronizing Tasks

Dependencies arise when multiple individuals or teams, their tasks, resources are interacting

and creating a chain of processes that need to be synchronized as a joint task. Each individual

or team might be able to manage their tasks and their resources. However, they could not be

able to perform well, should take another longer way around, or even could not continue their

tasks if the tasks are related to respective dependencies from other tasks. By recalling

coordination definition as an effort to manage dependencies, coordinated outcome can be seen

as a state where all the respective dependencies are well-managed.

A team as an individual entity might be performing its tasks individually. However, when

it takes into a project where each process is chained one to another such as in software

engineering, the team should consider the needs of other teams. Other teams may require not

only the deliverables of the previous tasks should be done within the required time, but also in

the right quantity and quality. That is why in a software engineering projects, leaders are

needed to do some management functions, depend on what kind of functions required in the

project. Leaders in software engineering projects at product software companies could be varied,

there are project manager, product owner, service broker, or team leader. However, they have

a common function: to manage the dependencies by synchronizing the activities.

Synchronization activities will bring all the team members together at the same time and place

for some pre-arranged purpose.

In product software companies, dependencies occur not only in the development area such

as the need of the data structure for UI/UX developers from the business logic development

Summary of State of the Art

72

team. Our case studies show that at the enterprise level, there are dependencies between

product portfolio management team to the technical team. Each team also has some

dependencies between team members in it, for example at no dependency technical team process

between product designers and product developers. Companies need to adopt software

engineering method that supports multilevel coordination or coordination in a wider scale such

as Scrum of Scrums and Scaled Agile Framework (SAFe) to integrate task dependencies that

occur in multi-scale level (Paasivaara & Lassenius, 2016).

For companies that have more experience in managing GSE projects, such as BetaSoft, as

time goes by, they have more stable coordination process at the operational level. The

coordination process can provide work direction and reporting procedures to guide the teams.

This approach emphasizes the teams as self-organizing teams who able to decide what the best

ways to perform their tasks. As the example, AlphaSoft and BetaSoft use mutual adjustment

mechanisms to manage interdependencies. They have scrum masters to facilitate the

coordination among team members by organizing regular meetings and updating information

to the knowledge base. Managers, supervisors or facilitators help the team in doing their

horizontal coordination to achieve their best performance. However, for companies that are just

starting GSE such as GammaSoft, they should keep doing direct supervision to their remote

teams or partners until they are able to deliver the results with appropriate quality.

Thus, to have a better-synchronized outcome, there are three coordination mechanisms

derived from Mintzberg (1979) related to the managing interdependencies and aligning the

tasks and work products. Therefore, we propose a set of guidelines in task coordination as

below:

1. Identify team’s ability in managing interdependencies

a. Facilitate mutual adjustment

b. Perform direct supervision

2. Provide standardization

a. Work processes standardization, for example standard programming style

b. Outputs standardization, such as documentation and work product’s quality

and quantity

5.3.3 Distributing Knowledge

Almost all the practices at our participant companies present similarities of knowledge-

sharing mechanisms. The knowledge is shared using a document repository to store explicit

knowledge and direct individual interactions for tacit knowledge. A collaboration platform

(Microsoft TFS) is commonly used as well as SharePoint, which is the document repository. In

this particular case, because of the closeness of the social interaction among team members at

DeltaSoft, they prefer to have informal and direct communication or transaction information

by using Slack.

Based on the aspects provided by Kotlarsky et al. (2008) on how organizations optimize

knowledge as an asset to support coordination, there are some differences in the way companies

manage knowledge. DeltaSoft uses tacit knowledge through social interaction. Knowledge is

perceived as social capital that can be accessed by anyone with a direct interaction. This

situation makes explicit knowledge less common in their coordination activities. Meanwhile,

companies like AlphaSoft, BetaSoft, and GammaSoft have distributed teams with broader

scales (e.g., locations and number of employees). They optimize organizational functions by

providing several roles and job functions to manage knowledge and make knowledge stored

explicitly in online repositories that can be accessed by team members. Those companies are

Summary of State of the Art

73

similar in terms of knowledge management in how they use of tools to facilitate communication

and collaboration. Comparison of knowledge management mechanisms is delivered more detail

in (Table 5-1).

Table 5-1 Knowledge coordination mechanisms by Kotlarsky et al. (2008)

Mechanisms AlphaSoft BetaSoft GammaSoft DeltaSoft

Facilitating

knowledge flows

By design, the

Unit Manager

connects both

remote offices.

The remote office

is designed as an

independent

organization under

the control of the

head office. The

feature owners

and product

managers have the

responsibility of

managing

knowledge flows.

Not specifically

mentioned, but

there is a liaison

officer from the

distance partner.

One of the teams

is assigned to

collaborate with

the nearshore

partner directly.

Making knowledge

explicit

The scrum

meetings become

spaces for direct

coordination

activities. Product

owners are

responsible for

making the

knowledge explicit.

Engineering processes (roadmap

definition, product design, and product

development) are distributed to partners

or remote office. Product owners,

feature owners and product managers

are responsible for sharing the

information related to the work as

explicit knowledge in the collaboration

workspace.

They use task-

based work

management.

They realize the

importance of

explicit

knowledge, but

they feel more

comfortable with

intensive direct

interaction.

Amplifying

knowledge

All the companies commonly use collaboration platforms that support both

synchronous and asynchronous coordination.

Building social

capital

Direct

communication

between team

members is based

on professional

relationships. Unit

managers become

the spokespeople

of communication

and the gate-

keepers of social

interaction from

remote teams to

the head office.

Informal

interaction during

the site visit helps

employees from

the head office to

feel the hospitality

of people from

remote offices and

encourage both

sides to adapt to

the culture.

The interactions

are based on

professional

relationships.

Intensive social

interaction over

the professional

relationships

melts the ice

between those two

sides.

Software engineering is a knowledge-intensive activity know (Bjørnson & Dingsøyr, 2008).

As a part of knowledge-based process chain, knowledge sharing is believed to contribute to the

collaboration in software engineering projects, including global software engineering (Kotlarsky

& Oshri, 2005). Knowledge sharing also enables team members to help others in developing

knowledge about the tasks and the team which helps them coordinate implicitly. A shared

cognition enables team members to explain and anticipate task states and member actions

(Espinosa, Lerch, & Kraut, 2002). Without an effective knowledge sharing, the project can

suffer due to the failure of coordination problems that encourage collaboration (Herbsleb &

Summary of State of the Art

74

Moitra, 2001). Adopting coordination expertise delivered by Faraj and Sproull (2000),

coordination of knowledge is done in stages as follows:

1. Identify the existence of knowledge, such as what kind of knowledge, where the

knowledge is located, and who has the knowledge.

2. Determine the needs of knowledge

3. Make the knowledge available and accessible

Identification of the existence of knowledge. Product software companies as organizations that

carry out the software engineering to produce software as a product should be able to

identify the existence of knowledge as their assets. Knowledge can be in the form of

tacit knowledge. Tacit knowledge cannot be expressed explicitly but lead or enable

people to behave and carry out their duties. Knowledge can also be expressed in an

explicit form as textual documents or other symbolic forms such as diagrams and

drawings (Nonaka & Takeuchi, 1995). Our findings on practices such as assigning

nearshore outsourcing by GammaSoft and building an offshore development facility as

DeltaSoft's show that tasks collaboration with distributed teams indicates segregation

of expertise. The expertise separation means that each location has its unique

capabilities. Our findings also indicate a different situation which on a broad scale, the

explicit knowledge, as well as they who are responsible for knowledge storing, can be

easily recognized. While on a smaller scale distributed team such as in DeltaSoft,

knowledge mostly presents as tacit knowledge.

Identifying the need for knowledge. Companies need to recognize the cognitive level of team

members to know what kind of knowledge needed by the team members. A study

performed by Kristjánsson et al. (2014) reveals that process novels (such as new tools,

technologies, or methods) bring a knowledge gap that needs appropriate adjustment in

knowledge level. Knowledge gap also can occur when two teams from different locations

with different tools and approaches should collaborate and decide to use only single

approach or tool in the project (Kotlarsky et al., 2008). The knowledge gap can occur

across all phases of the development process within a company. Therefore, the company

can create a mapping between the available knowledge and the knowledge required to

provide a knowledge gap analysis. The analysis can be used to determine the proper

knowledge sharing mechanisms that suit for the organization.

Making the knowledge available and accessible. When companies already know where the

knowledge is located and what kind of knowledge is needed, then the following step is

creating access to the necessary knowledge. Our study identified several mechanisms in

disseminating or distributing knowledge based on the knowledge transformation

categorization by Nonaka and Takeuchi (1995), namely: Socialization, externalization,

combination, and internationalization (Figure 5-4).

A knowledge broker is needed to let the knowledge flows to the knowledge owner

when the required knowledge or the knowledge owner cannot be accessed directly. A

knowledge broker may connect two distributed team with different expertise. For

example, when a developer at the remote office needs to clarify an unclear requirement,

the developer needs to contact the Product Manager from the head office. The Product

Manager can provide boundary spanning function that connects the developer to the

business user who has the requirement. In other situation, a broker also can be someone

who maintains the knowledge boundaries that makes each team focuses on their specific

expertise. In our example, a knowledge broker will not allow a team member has a

Summary of State of the Art

75

Tacit Explicit

E
xp

lic
it

T
ac

it

Coordinated
Knowledge

Socialization
(direct, mentoring,

pairing)

Combination
(Grooming,
Updating)

Internalization
(Self learning,

training)

Externalization
(Documenting)

Figure 5-4 Knowledge coordination mechanisms

meeting with the respective business user to clarify the requirement and provide the

answer to the developer.

By adopting expertise coordination approach by Faraj and Sproull (2000) and considering

the practices performed by the companies to coordinate knowledge in global distributed

environment projects, we propose a set of activities as a reference method that should be made

as below:

1. Identify source of knowledge: where the knowledge is stored, is it a tacit or explicit

knowledge, how others need the knowledge

2. Identify types of knowledge needed by the team (such as technical or functional

information)

3. Identify gap of knowledge

4. Identify situational factors (such as organizational distribution, size of virtual team)

5. Open access to knowledge by choosing proper mechanisms

5.4 Involved Tools in Task Coordination

We identified several tools that are used in global software engineering setting. The purposes

of the tools can vary, such as providing collaboration space, enabling direct communication,

amplifying the distribution of knowledge, and enhancing project control (Table 5-2).

Tools for collaboration tool are commonly found, such as Microsoft TFS. Collaboration tool

is used to support two or more individuals or teams to accomplish a common task or to achieve

a common objective (Signell et al., 2008). This type of tool can support not only collaboration,

but also project management, integration with the development environment and document

repository, and organizational information (Lanubile, Ebert, Prikladnicki, & Vizcaino, 2010).

Other tools such as Skype and WebEx that support organic coordination mechanisms to

maintain dependencies and share feedback through direct communication such as phone calls,

video calling, teleconference, and videoconference are the basic tools for communication in

software engineering in a global environment. They also can be used to support knowledge

sharing to encourage shared cognition. Non IT-based instruments such as Scrum board and

burn down chart that is used also can be assumed as tools because these instruments also

support managers and team members in project and tasks monitoring and identifying

dependencies.

Summary of State of the Art

76

Table 5-2 Tools adopted to support coordination in GSE

Tools Functions Examples

Collaboration tools Provide collaboration space and

versioning control for the product

development

Standard IDE, Microsoft TFS,

Slack, OneVision

Communication

tools

Enabling dispersed sites to have a

direct communication

Skype, WebEx, video

conference (Polycom, Cisco)

Knowledge sharing

tools

Making knowledge explicit or

accessible

Facilitating knowledge flows

SharePoint, Slack

Project management

tools

Supporting managers in monitoring

progress to establish coordination

mechanisms for better project

performance

Showing team members profile to show

other member’s profile and his/her

tasks

Microsoft TFS, OneVision,

organizational chart, Scrum

Board, Burn Down Chart

There are situational factors that can make the chosen tools are varied among these

companies. When the distributed team size is small, tacit knowledge is more used that explicit

one, or in a situation where an extensive direct conversation is mostly optimized, a tool with

chat and file transfer features such as Slack and Skype are mostly used. However, for a situation

where the knowledge and information are centralized, or coordination dispersed teams should

be mediated, online repository and tools to conduct virtual meetings (e.g. WebEx, video

conference) are frequently applied.

5.5 Organizational Support for Task Coordination

This support defines the instruments provided by the organization to facilitate task

coordination. The organization support comprises the following aspects:

 Organization strategy and governance. The organization defines the initiatives that

utilize the organization resources to perform GSE as well as the mechanism that

oversees the strategy implementation in achieving its goals.

 Organization structure. The organization optimize the line arrangement of authority,

communication, roles, and functions of the stakeholders.

 Stakeholders. Stakeholders in this context are they who have concern in task

coordination in the organization. They can be someone who facilitate, participate, or

have the authority in coordinating tasks and manage interdependencies in a distributed

product development environment.

From the literature study and our case studies, we identify several roles and functions

needed to maintain task coordination in global software engineering: Supervisor, facilitator and

knowledge broker or boundary spanner. The situation that can affect the kind of coordination

mechanisms needed by the companies is software engineering methods, the size of the virtual

team, and organizational distribution.

The roles or job positions provided to perform coordination functions are different from one

company to another, which can be seen from their coordination mechanisms. AlphaSoft uses

Scrum meetings as the main communication means in coordinating tasks. Therefore, a scrum

master becomes the important role here. Because the Scrum Master stays in the head office,

Summary of State of the Art

77

AlphaSoft also has a unit manager to become their coordination bridge between teams at the

remote office and the head office. Meanwhile, in BetaSoft and GammaSoft, each location has a

particular task specialization related to software process engineering. For that reason, they

need several roles, such as product managers and feature owners (product owners) who can

bridge these processes. In this case, the product manager and the feature owners are assisted

by a development manager assigned specifically to manage internal coordination in the

development team. Both of them maintain the tasks in integrating engineering processes and

managing dependencies between the processes performed by their partners or colleagues at

remote locations. In contrast to DeltaSoft, which virtually merges remote employees as team

members in the head office, the team leader becomes an important function to facilitate

communication and conduct supervision of the implementation of tasks.

The roles and job positions identified from the literature and interviews that perform

coordination functions are summarized as presented in Table 5-3.

Table 5-3 Roles and their job functions related to task coordination in GSE

Roles Job Functions Example job position Situational Factor

Supervisor Managing

dependencies,

organizing resources

Product Manager,

Development Manager

Organizational silos, large-

scale virtual team size,

high dependencies

between dispersed sites.

Facilitator Facilitate team

members to arrange

coordination by

themselves

Scrum Master,

Product Owner,

Product Manager,

Team Leader

Companies have already

established their

engineering processes,

small-scale virtual team

size.

Knowledge

broker/boundary

spanner

Connecting team

members to the

source of knowledge

Mediating distributed

location to the others

Unit Manager, On-site

Coordinator

Knowledge and expertise

are distributed in different

locations

 79

PART THREE SOLUTION DESIGN AND

VALIDATION

Chapter 6. Method Design: Towards Methodological Support for Task

Coordination in GSE

Chapter 7. Method Validation: Evaluation and Evolution

 81

 METHOD DESIGN:

TOWARDS METHODOLOGICAL SUPPORT

FOR TASK COORDINATION

In this chapter, we will summary our findings from the literature review and case studies to

find the concepts that reflect coordination mechanisms and formulate our instrumentation of

methodological support for task coordination.

6.1 Method Construction Preparation

6.1.1 Situational Factors

After identifying the feature groups, a set of situational factors from the literature study and

our case studies are summarized and organized to recognize the factors’ variabilities as can be

seen in Table 6-1. These situational factors can be organized into inter-organizational

(strategic) factors and practical factors caused by the GSE challenges:

1. Internal factors

The organization itself has numerous situational aspects affecting to how the

organization prepares and manage task interdependencies. The objectives of performing

GSE brings consequences to the chosen mechanisms, such as development cost

management by distributing processes to more competence vendors encourages

companies to increase their travel budgets for the site visits, but compensated by the

lower salary cost for the remote engineers. Other companies might focus only on

building a social bond among the developers because they choose only to expand their

number of engineers for specific tasks.

 Organization distribution. How large are dispersed teams, legal relationships

between scattered organizations, and how organizations divide the engineering

works.

 Process distribution. The relationship among the tasks, the proportion of

overlapped tasks, and the process chain between the distributed teams.

 Dependency. How the artifacts are shared or transferred among the distributed

teams.

2. GSE Challenges.

Method Design: Towards Methodological Support for Task Coordination

82

We consider that GSE challenges in Table 3-1 provide variability in determining

appropriate coordination practices. Problems emerge from the incompatibility of

processes, tools, and issues related to collaboration bottlenecks because the teams do

not stay in one place are expected to impact on the way job settings and dependencies.

Temporal challenge and socio-cultural problems frequently become the communication

barriers that inhibit the achievement of mutual understanding. These issues ultimately

lead to the threaten of achieving a coordinated outcome.

Table 6-1 Organization of the Situational Factors

Factors Variability

Organization profile

 Objectives {cost saving, expertise fulfillment, resource fulfillment}

 Organizational Distribution {holding, partnership}

Software Strategy

 SE Method {Agile (Scrum, Scrum of Scrum), traditional}

Distribution in SW

Processes

{expertise distribution, process, distribution, resource

distribution}

Challenges

 Geographical distance {low, high}

 Temporal distance {low, high}

 Cultural gap {low, high}

 Knowledge gap {low, high}

Since task coordination is a creative approach, we identify companies’ preferences in selecting

coordination mechanisms into the following task coordination profiles as elaborated in

Table 6-2:

1. Methodical – The approach where tasks coordination method is used to support

organization to manage tasks segregation. Each division (a team. a vendor, or remote

facility) has its responsibility of in a different task which is not handled by the other

division.

2. Practical – The organization prefers to be more pragmatic in coordinating tasks. It describes

how coordination among team member is horizontally performed.

3. Combination – Organization manages coordination mechanisms methodically by

supervising the task dependencies management as well as consider to maintain the peer-to-

peer coordination.

Some companies are still learning to manage the best approaches in coordinating tasks,

some of them already find the best approach and even can optimize their approach to satisfy

the dynamic situation of global software engineering. By referring to CMMI level definitions

(Software Engineering Institute, 2010) and the coordination pyramid by Sarma, Van der Hoek,

and Redmiles (2010), we defined a set of experience levels for the organization (Table 6-3). The

experience level definitions are used as a quick reference for companies to perform continuous

improvement in managing task coordination.

Method Design: Towards Methodological Support for Task Coordination

83

Table 6-2 Coordination Mechanisms Profiles

Coordination Profiles

Practical Methodological

Organization characteristics Small team-sized and

working on the same

software processes

Large, each team or individual

works on different software

processes

Mechanisms Maintaining

communication

Direct Indirect, aligned with the SE

processes

Controlling

project

Direct supervision,

mutual adjustment,

standardization

Direct supervision, mutual

adjustment, standardization

Sharing

knowledge and

expertise

Socialization,

Internalization

Internalization, Externalization,

Combination

Tools Tools that support

direct social

communication such as

Slack

Tools that integrates project

management and support

collaboration in software

engineering processes such as TFS

Organization support Almost none since the

collaboration is done

directly and in a small-

size team

Organization structure that defines

clear role and functions distinction.

Supported by communication and

knowledge broker

Table 6-3 Task Coordination Experience Level

Experience Level Description

Initial The company has not been specifically defined functions in business

processes and organizational structure regarding GSE and tend to be

reactive in dealing with problems in the coordination of tasks.

Managed The organization has managed task coordination in GSE projects by using

current organizational processes and structure.

Defined The organization has been specifically defined functions in business

processes and organizational structure regarding task coordination in GSE

projects.

Quantitatively

Managed

The organization has defined the process control and able to contextualize

the information. The distributed team also have considered the workspace

awareness.

Optimizing The organization also continuously improve the approach in managing task

coordination in GSE projects

6.1.2 Identify Activity Groups

By referring the use of feature group terminology in the study conducted by Luinenburg et al.

(2008) We define an activity group as a set of relevant activities that possess a similar

characteristic. We elicited the activity groups from the existing approaches from the

preliminary study phase (Appendix D). We will use the activity groups to serve as the

Method Design: Towards Methodological Support for Task Coordination

84

association criteria for in the designed method construction phase. The elicited activity groups

are presented in the following Table 6-4.

Table 6-4 Activity Group

Activity Group Description Main Sources

Identify

organizational

planning

Companies reflect the current enterprise strategy in

GSE and product management strategy.

[L5], [L6],

[CB]

Diagnose situational

factors and

challenges

Companies reflect their practices in performing global

software engineering projects and identify situational

factors and challenges that they are facing.

[L5], [CB]

Identify task

coordination support

Companies identify organizational support such as

structure, roles, and job functions in the product

software engineering roadmap that relates to global

software engineering projects. Companies analyze the

infrastructure or tools that they have.

[L5],

[L6],[CB]

Determine

appropriate task

coordination

mechanism

Based on the situational factors and challenges,

companies select which coordination mechanisms that

match with their profiles.

All sources

Perform process

improvement

Companies evaluate the improvement of the choose of

the coordination mechanisms and improve the practices

by again reflecting the current situational factors and

new challenges that they have.

[L6,CB]

6.2 Constructing Task Coordination Methodological Support

6.2.1 Method Association

In performing the method association phase, we use an association table to create a map from

the method fragments to the activity groups(Luinenburg et al., 2008; van de Weerd,

Brinkkemper, Souer, et al., 2006). We defined new terms for the key activity names

standardization. Several activities from the preliminary study phase may have different names

but have a similar meaning. For example, “Assign a liaison officer” [L7] and “Assign a service

coordinator” [CC] have two different concepts namely “liaison officer” and “service coordinator”,

but these concepts can be understood as a single concept: “On-site Coordinator”. Another

activity might consist of two activities, such as “Collaboratively develop, communicate, and

distribute work plan” should be split into “Develop work plan” and “Distribute work plan”.

From the association table, a framework and a method for task coordination in GSE

projects at product software companies are built. The framework depicts how the concepts are

incorporated. Meanwhile, the method that describes how companies can choose the appropriate

coordination mechanisms that suit with their organization. The following table (Table 6-5)

shows how activities acquired from our preliminary study. The complete association matrix is

provided in Appendix E. Additional activities also added based on our subjectivity to maintain

the logical order and flow of the activities within the method.

Method Design: Towards Methodological Support for Task Coordination

85

Table 6-5 Method Association (Example)

6.2.2 The GSE Task Coordination Framework

A preliminary version of the framework is presented in Figure 6-1. This preliminary framework

is built by considering the concepts that we have elaborated in Chapter 5. Briefly, the

framework shows two concepts that are affecting product software companies in choosing the

appropriate mechanisms in coordinating tasks in global software engineering (Organization

situational factors and Challenges) and two concepts that are supporting the operation of the

mechanism (Organizational support and Tools) to achieve coordinated output.

Coordinated Output

achieve

Mechanisms

CommunicationControl Knowledge Sharing

Socialization

Internalization

Externalization

Combination

Direct

Indirect

Synchronous

Asynchronous

Direct Supervision

Mutual Adjustment

Standardization

su
p

p
o

rt

Tools

Collaboration

Project
Management

Knowledge Sharing

Communication

su
p

p
o

rt

influence

Organization Situational Factors Challenges

Geographical

Socio Cultural

Temporal

Knowledge Gap

Organizational Aspect

Product Engineering Aspect

Organizational

Support

Structure

Stakeholders

Strategy

Figure 6-1 Framework for coordination mechanisms in GSE

6.2.3 The GSE Task Coordination Method

A primary version of Task Coordination Method referring our framework in Figure 6-2 is

presented in this section in step by step processes based on the activity groups identified in

Section 6.2.2.

Activity [L1] [L2] [L3] [L4] [L5] [L6] [L7] [CA] [CB] [CC] [CD]

Identify challenges x

Identify types of

dependencies

x

Assign onsite

coordinator

 x x x

Determine organization

structure

 x x

Identify software

engineering processes

 x x x

Method Design: Towards Methodological Support for Task Coordination

86

Figure 6-2 Picture Diagram of Task Coordination Method

The task coordination method’s PDD is presented as depicted in Figure 6-3 and the more detail

PDDs will be introduced in the following discussion.

Identify enterprise strategy

Recognize organization profile

Identify task coordination support

Determine appropriate task coordination
mechanism

Perform process improvement

SITUATIONAL FACTOR

COORDINATION

PROFILE

DEPENDENCY

COORDINATION

MECHANISM

ORGANIZATIONAL

STRUCTURE

TOOL

consider

support

1..n

1..n

1..n 1..n

1..n

1..n

support

1..n

consider
consider

1..n

1..n

1..n

SOFTWARE PRODUCT

MANAGEMENT STRATEGY

CORPORATE STRATEGY

1..n

1..n
1..n

1..n1..n

1..n

1..n

1..n

1..n

influence

influence

influence

produce
support

influence

Figure 6-3 High-level PDD of GSE Task Coordination Method

The following discussion elaborates each of the main steps of the GSE task coordination

reference method.

Identify enterprise strategy.

This first activity group simply reminds organizations to reflect what are their corporate

strategy and their product software management strategy. Those strategies might not directly

affect to the coordination mechanisms, but they will guide the employees throughout all

processes.

Identify enterprise strategy

CORPORATE STRATEGY

PRODUCT SOFTWARE

MANAGEMENT STRATEGY 1..n

follow,
realize

1..n

Figure 6-4 Activity Group 1: Identify enterprise strategy

Method Design: Towards Methodological Support for Task Coordination

87

Recognize organization profile.

The activity group is concerned with identifying any profiles related to the situational factors

in the organization, such as organization strategy in GSE, organization strategy in its product

engineering processes, and challenges faced by the organization. The organization then identify

its current coordination profile to measure its current level and to improve its coordination

approaches in the future. The organization also should recognize what kind of dependencies

that occur in their product engineering processes.

CHALLENGE GEOGRAPHICALRecognizing
Organization profile

Identify situational factors
TEMPORAL

SOCIO-CULTURAL

d

CONTEXTUAL

SITUATIONAL FACTOR

d

ORGANIZATION

STRATEGY

SOFTWARE

STRATEGY

GSE OBJECTIVE

ORGANIZATIONAL

DISTRIBUTION

SE METHOD

TASK ALLOCATION

Identify coordination profile

Identify types of dependencies
COORDINATION

PROFILE

cDEPENDENCY PROCESS

RESOURCE

KNOWLEDGE

INITIAL

MANAGEDDEFINED

cOPTIMIZED

STAKEHOLDER

1..n

characterize

1..n

1..n

1..n

characterize

Figure 6-5 Activity Group 2: Recognizing organization profile

As product software engineering is a continuous experimentation and innovation process that

produces continuous improvement in the business strategy and development operations

strategy (Fitzgerald & Stol, 2017; Rodríguez et al., 2017), product software companies should

also consider scaling their coordination practices. Agile software development approaches can

be used to scale the coordination activities horizontally (among distributed team members) and

vertically (decomposition for alignment between different functional teams). Regarding the

vertical decomposition, companies should define appropriate approach such as such as Scrum

of Scrum to ensure the parallel tasks are organized and to minimize the technical and social

dependencies (Nord, Ozkaya, & Kruchten, 2014). By performing Scrum of Scrum, the approach

to align the interdependencies is brought and replicated to a larger level to solve vertical

coordination issues such as synchronization problem between different functional teams or even

development team with the product design team.

Identify task coordination support.

The company identifies roles and job functions in company’s product software engineering

processes that participate in global software engineering projects to see how organizational

structure in supporting task coordination mechanisms. Company then identifies the tools and

types of functionalities of the tools that are employed in global software engineering projects.

Method Design: Towards Methodological Support for Task Coordination

88

ROLE

Identifying coordination
mechanism support

Identify organizational support

ORGANIZATION

STRUCTURE

FUNCTION

perform

1..1 1..n

1..n

1..1
1..1

1..n

1..n

1..n

support

Identify supporting tools
COORDINATION

MECHANISM

support

1..n 1..n

COLLABORATION

TOOL

PROJECT

MANAGEMENT TOOL

KNOWLEDGE

MANAGEMENT TOOL

TOOL

o

1..n

1..n

COMMUNICATION

TOOL

Add required collaboration support as non
functional requirements

NON FUNCTIONAL

REQUIREMENTS

is in

use

has

Figure 6-6 Activity group 3: Identifying task coordination support

Determine appropriate task coordination mechanisms.

This activity group is the main part of the task coordination method. The company can focus

on one of the types of coordination mechanisms or combine several mechanisms because the

situational factors and challenges are varied and interacting each other. That is why we

describe the coordination mechanisms selection as parallel processes that are not chained each

other the concepts (Communication, Control, and Knowledge Sharing) are using the

overlapping notation for the generalization.

Routine Activities

Determining appropriate
coordination mechanisms

Select communication mechanism

Select control mechanism

Select knowledge sharing mechanism

COMMUNICATION

MECHANISM

CONTROL

MECHANISM

KNOWLEDGE

SHARING MECHANISM

COORDINATION

MECHANISM

SITUATIONAL FACTOR DEPENDENCY

1..n1..n

1..n 1..n

considerconsider

Review task status
TASK

Status

Start Date

Due Date

Priority

TEAM MEMBER

IMPEDIMENTProcess impediments

1..n

1..n

1..n 1..n

raise

execute

Figure 6-7 Activity group 4: Determining appropriate coordination mechanisms

Method Design: Towards Methodological Support for Task Coordination

89

Select communication mechanism. As described in Section 5.3.2, to define appropriate

communication mechanism, companies should consider situational factors especially

challenges in performing GSE.

1..1

Identify temporal challenge

[high temporal challenge]

Encourage the use of asynchronous
communication

Identify horizontal causalities

Encourage the use of synchronous
communication

[else]

[socio-cultural gap occur]

Perform cultural internalization such as site visit

Identify vertical causalities

Assign communication broker

Share organization structure

[else]

[need intermediary,
functionally different]

[else]

Improve communication protocol

SYNCHRONOUS

COMMUNICATION

TEMPORAL

CHALLENGE

ASYNCHRONOUS

COMMUNICATION

SOCIO-CULTURAL

CHALLENGE

CULTURAL

INTERNALIZATION

INDIRECT

COMMUNICATION

COMMUNICATION

BROKER

ORGANIZATION

STRUCTURE

COMMUNICATION

PROTOCOL

COMMUNICATION

MECHANISM

ROLE

CHALLENGE

COMMUNICATION

TOOL

has

1..1

1..n

1..n

complement

1..n

1..n

reduce

1..n

1..n

reduce

1..n

1..n

serve

1..n

1..n

is in

1..n

1..n

improve

DAILY (VIRTUAL)

MEETING

DIRECT

COMMUNICATION

PHONE CALL WEBEX

Allocate coordination meeting for leaders

Figure 6-8 Select communication mechanism

Method Design: Towards Methodological Support for Task Coordination

90

Select control mechanism. By referring the guideline provided in Section Error! Reference

source not found., companies determine the appropriate mechanisms for controlling

dependencies in software processes in GSE projects.

Identify distributed teams ability in organizing
interdependencies

Facilitate mutual adjustment

Perform direct supervision

Provide standardization of work processes

[self-organizing][else]

Provide standardization of outputs

CONTROL MECHANISM

MUTUAL ADJUSMENT

DIRECT SUPERVISION c

STANDARDIZATION

TASK DEPENDENCY

WORK PROCESS

c

OUTPUT

TEAM

WORK PRODUCT

Quantity

Quality

DOCUMENTATION

1..n
manage

1..n

1..n

1..n

use

Figure 6-9 Select control mechanism

Select knowledge sharing mechanism. The following diagram based on the guideline provided

in Section 5.3.3 depicts the approach to having an equal level of knowledge that boosts

companies in performing tasks.

Making knowledge available
and accessible

Knowledge gap identification

Identify the existence of knowledge

Identify the needs of knowledge

Identify team s cognitive level

Identify collaborated team size

Perform socialization

Identify the lack of explicit knowledge

Perform externalization

Identify expertise differences

Perform internalization

Update knowledge base

[small]

[else]

[less or no explicit knowledge]

[explicit knowledge
is easily found]

[teams has
equal expertise]

[expertise gap occurs]

TEAM TEAM MEMBER

EXPLICIT

COGNITIVE

REQUIREMENTS

EXTERNALIZATION

KNOWLEDGE

IMPLICIT

INTERNALIZATION

COMBINATION

INTERNALIZATION

MENTORING PAIRING

SELF LEARNING FORMAL TRAINING

GROOMING UPDATING

KNOWLEDGE BASE

d

KNOWLEDGE

SHARING MECHANISM
d

CONTEXTUAL

DIFFERENCE

1..n

is in

1..n

1..nexperience

has

has

1..n

1..n

1..n

1..n

1..n

1..n

reduce

experience

1..n

1..n

Figure 6-10 Select knowledge sharing mechanism

Method Design: Towards Methodological Support for Task Coordination

91

Perform process improvement.

After a company employs coordination mechanisms based on its situational factors, the

company should reflect its current coordination profile. The reflection is used to see the changes

before and after it improve its coordination mechanisms and continuously advance coordination

practices.

Performing process
improvement

Identify new coordination experience level

Perform continuous coordination improvement

COORDINATION

PROFILE

COORDINATION

MECHANISM

1..1

1..n

improve

Figure 6-11 Activity Group 5: Continuous improvement

6.3 Primary Conclusion

As explained at the beginning, this chapter discusses the construction process of the preliminary

version of our research artifacts which are the Global Task Coordination Framework and the

Global Task Coordination Method. As abstracted by the framework, we identified that to

achieve coordinated outcomes product software companies should consider situational

backgrounds consisting of inter-organizational and faced challenges. Software product roadmap

is a part of the company's strategy as a part of the inter-organizational aspects specifically

indicates that the artifacts are designed for product software companies. In addition to these

two situational factors, product software companies should also prepare coordination supports

in the form of tools support and organizational support. Here again, through organizational

support, the role of strategy, organizational structure, and stakeholders in a product software

company shows the character that the research artifacts are intended for product software

company.

However, the constructed framework and the method are the early versions resulted from

the synthesis of the literature study and the preliminary studies conducted through interviews

in several product software companies. Therefore, these artifacts still need to be validated. In

the next chapter, we will present the strategy and the performed evaluation phase of where the

two artifacts are evaluated gradually and iteratively to produce the final artifacts that are

expected to help product software companies in coordinating tasks in a globally distributed

environment.

 93

 METHOD VALIDATION:

EVALUATION AND EVOLUTION

The designed task coordination framework and method have been evaluated through expert

interviews referring to a set of acceptance criteria. We expected feedback that criticize for the

improvement as well as the perceived intention to use of our method. In the end, the feedback

will be discussed and considered to improve our designed artifacts.

7.1 Global Task Coordination Method Evaluation Scenario

7.1.1 Method Evaluation Participants

The participating experts consist of scientific experts and business practitioners. The scientific

experts are a researcher in global software engineering domain from a technical university and

a Method Engineering course’ student assistant from Utrecht University. Meanwhile, the

practitioners are those who are participated in our preliminary study (Table 7-1).

Table 7-1 Participating experts

#Evaluation Expert’s profiles Background experiences

1. Researcher Seven years in GSE projects and a professor who

focuses his research in GSE and teaches GSE

course in a technical university.

2 Scrum Master Involved in several GSE projects. Her company

has been performing GSE for almost seven years

3. Technical Director More than one year as the Development

Manager and Principal in the remote facility,

and three years in the current position

Product Manager Principal Product Management for more than

two years. Their company has been performing

GSE for almost 17 years

4. Method Engineering Course’s

Student Assistant

Expert in method engineering

5. Service Delivery Manager Almost two years in the current position that

are working with global IT team for internal

service development and operation.

Method Validation: Evaluation and Evolution

94

The rationale for inviting the researcher is to obtain his feedback and critics from a person who

has a broader perspective in global software engineering domain from the scientific standpoint.

Other experts would be expected to provide their feedback and critics from their daily practices

to assess the usability of the artifacts.

We provide a method base document that contains the background of this research, the

diagrams and the description of the activities and concepts (PDD Documentation). In every

cycle, the method base document is updated based on feedback from the previous session. The

feedback and the evolution of the artifacts are presented in Section 7.2.

7.1.2 Method Evaluation Cycles and Criteria

The design science is an iterative approach in building solution artifacts. For evaluating

the method, we applied the FEDS, a Framework for Evaluation of Design Science by (Venable,

Pries-Heje, & Baskerville, 2016). As we propose artifacts are user oriented that should be

evaluated with real users in their real context to fulfill the need of improving task coordination

problems, we selected the “Human Risk and Effectiveness” strategy. Formative assessment

starts the evaluation strategy and progressively the evaluation engages more summative

assessment focusing on the applicability of the artifacts. The approach of our evaluation cycles

is presented in Table 7-2.

Table 7-2 Evaluation Cycles

#Cycle Method Focal Points Expert(s)

1 Criteria-based
Completeness, consistency,

efficiency, reliability, applicability

Researcher from a technical

university

2 Case Study
Perceived usefulness and perceived

ease of use

Practitioners from

AlphaSoft

3 Case Study
Perceived usefulness and perceived

ease of use
Practitioners from BetaSoft

4 Criteria-based
Completeness, consistency,

reliability
Method Engineering Expert

5 Case Study
Perceived usefulness and perceived

ease of use

Practitioners from

GammaSoft

The first evaluation adopts the criteria-based approach. We consider evaluating the model

based on the criteria in assessing a method designed by method assembly approach

(Brinkkemper et al., 1999), which are: Completeness, consistency, efficiency, reliability, and

applicability.

1. Completeness: the situational method contains all the method fragments that are

referred to by other fragments in the situational method.

2. Consistency: all activities, products, tools and people plus their relationships do not

contain any contradiction and are thus mutually consistent.

3. Efficiency: the method can be performed at minimal cost and effort

4. Reliability: the method is semantically correct and meaningful

5. Applicability: the developers can apply the situational method.

For the rest evaluations, we involve real users to assess our design artifacts with a

naturalistic setting that offers more critical face validity and also assures more rigorous

assessment of the acceptance of the artifact (Venable et al., 2016). We adopt two constructs

from Technology Acceptance Model (TAM) which are Perceived Usefulness and Perceived Ease

of Use (Davis, 1989). TAM usually is used to test the behavioural acceptance or intention of

Method Validation: Evaluation and Evolution

95

using information technology such as application framework (Polančič, Heričko, & Rozman,

2010), software process engineering tools (Wagenaar, Overbeek, & Helms, 2017), and a new

designed method in software engineering (Koc, Timm, Espana, Gonzalez, & Sandkuhl, 2016).

Perceived usefulness is defined by as "the degree to which a person believes that using a

particular system would enhance his or her job performance." Meanwhile, perceived ease of use

refers to "the degree to which a person believes that using a particular system would be free of

effort” (Davis, 1989, p. 320). Since method engineering is used in the engineering of methods

and tools in information system and technology domain (Brinkkemper, 1996), we assume that

the adoption of TAM will be useful to evaluate the designed artifacts.

Perceived ease of use

Perceived usefulness

Behavioral intention
to use

Figure 7-1 Method acceptance variables

7.2 Evaluation Results

7.2.1 1st Evaluation Session

The first assessment has been executed with Expert 1 as a CTO of a software development

partner of product software companies and a researcher of global software engineering at a

technical university in the Netherlands. As a partner, his company provides and manages the

Scrum teams in Bangalore, India. The description of the context and development of GTC

method are briefly presented, and the participant was positive towards to the presented

artifacts as he summarizes that the artifacts would be a useful guideline for companies for

managing tasks in GSE projects. However, there are some aspects need to be improved as

described as follow (va-p101):

1. Completeness. The artifacts (framework and method) covers the practices of task

coordination in GSE projects. However, the participant gave several notes, which are:

a. Regarding the socio-cultural aspect, the participant suggested focusing on

individual levels. Someone’s behaviors can be affected by his/her job

characteristics, organization culture, family culture, team culture, and

nationality culture. The previous studies in GSE that provide the discussion

about socio-cultural aspects do not provide clear context about culture

compared to the studies from social science domain. Then he suggested

combining the socio-cultural identification with the study of Myers-Briggs Type

Indicator (MBTI) in software engineering (Yilmaz, O’Connor, & Clarke, 2014).

b. There are missing stakeholders or unclearly described in the method base such

as customers, management board members, and product owner. He suggested

using abstract concepts such as “stakeholder” that can cover broad types of

involved positions or roles.

c. The participants also added the importance of virtual teamness to reduce the

perceived distance by increasing overlapping hours in the concurrent working

Method Validation: Evaluation and Evolution

96

time window. This can be done by shifting the working hours to have bigger,

making the remote team members visible through an online video camera and

big screen in the working room. In addition, the business phone of the remote

facility can be aliased number with the local country code that makes the

customers or teammates feel that they are talking with their colleagues in the

same country.

2. Consistency. The participant argued that communication and knowledge sharing

cannot be separated. Communication always contains an information transferred

between two or more peoples. Therefore, communication (especially in software

engineering) is understandable as the mechanism to provide or share information.

3. Efficiency. The participants felt the artifacts are clear and can be followed easily.

However, the participant felt that if there is enough time, he suggested performing a

real case study to measure the efficiency quantitatively.

4. Reliability. There are several typing errors and unclear definition of the activities and

concepts such as “horizontal causalities” and “vertical causalities”. The participants

suggested to rephrase the terminologies or elaborate the concepts in the documentation.

The participant also recommended to eliminate “synchronous communication” and

“asynchronous communication” because these concepts are already defined by the

communication mechanisms implicitly.

5. Applicability. Essentially, the participant thinks that the artifacts can be applied by

companies. However, due to the limited time of discussion, the participant felt that he

cannot contribute enough feedback for this criterion. He assumed that the following

assessments with practitioners would provide better feedback.

By considering the expert’s feedback, we made several adjustments to our artifacts:

Combining “Communication” and “Knowledge Sharing”. The participant suggested modifying

knowledge sharing as part of the communication mechanism. His suggestion is also

augmented by Rus, Lindvall, and Sinha (2001) which states that communication in the

context of software engineering is often associated with the transfer of knowledge and

collaboration is a form of mutual transaction knowledge. For example, when

communication is done systematically, and there is a storage process as a document,

the exchanged knowledge will be externalized and organized into organizational

memory (Rus et al., 2002, p. 13).

Communication Knowledge Sharing

Socialization

Internalization

Externalization

Combination

Direct

Indirect

Synchronous

Asynchronous

(a) before

Communication

Knowledge Sharing

Socialization

Internalization Externalization

Combination

Direct Indirect

(b) after

Figure 7-2 Merging “Knowledge Sharing” concept to “Communication”

As the concepts of knowledge sharing and communication are merged, the guidelines

also should be adjusted as depicted in Figure 7-3. Communication itself is the central

collaboration process where team members communicate their ideas, sharing their

expertise, resources, and responsibilities (Chiu, 2002).

Method Validation: Evaluation and Evolution

97

Determining appropriate
coordination mechanisms

Facilitate collaboration through
communication and knowledge sharing

Control interdependencies

COLLABORATION

CONTROL

MECHANISM

COORDINATION

MECHANISM

SITUATIONAL FACTOR DEPENDENCY

1..n1..n

1..n 1..n

considerconsider

COMMUNICATION

MECHANISM

KNOWLEDGE SHARING

MECHANISM

1..n

1..n

support

1..n

1..n

support

Figure 7-3 Adjusting communication mechanisms

Elaborating stakeholders. Impediments can come not only from the team members. Other

stakeholders such as customers or business users, product owners, and management

board members can raise impediments that might slow the engineering process. Thus,

we elaborate these stakeholders in the routine activities as depicted in Figure 7-4.

Routine Activities

Review task status
TASK

Status

Start Date

Due Date

Priority

TEAM MEMBER

IMPEDIMENTProcess impediments

1..n1..n

1..n 1..n

raise

execute

STAKEHOLDER

CUSTOMER

PRODUCT OWNER

MANAGEMENT

Figure 7-4 Elaborate other stakeholders

Reducing “perceived distance”. The participant suggested that adjusting working hours can

help organizations to increase their opportunities in having more collaboration time

(va-p1-1). Moreover, having a virtual office that makes the distributed teams can see

each other at the real time can increase the opportunity of having direct

communication. The virtual office also can be equipped with phone numbers or

extension numbers that are network-aliased with local numbers that can bring the feel

of having distance among distributed teams. The expert believes that these approaches

can help the organization in building the teamness (Figure 7-5).

[high temporal challenge]

Encourage the use of asynchronous
communication

[else]

DIRECT

COMMUNICATION

VIRTUAL OFFICE

Adjust/shift working hours to increase
overlapped collaboration time

Figure 7-5 Reducing "perceived distance"

Improving activities related to socio-cultural challenges identification. As collaboration is

involving two or more individuals, managers must consider each team member’s

Method Validation: Evaluation and Evolution

98

behaviors. The participants suggested that managers can explore the culture starting

from the culture of the origin country where the team members are coming from and

based (va-p1-1). A site visit is also useful to identify the organizational culture and

little bit deeper to the team culture. Job characteristics also can be a good start for

managers in understanding each individual characteristic. Capretz and Ahmed (2010)

noted that individual characteristics would provide the information of the ability in

communication, interpersonal, cognition, and work attitude that eventually will form

the team culture. Therefore, the adjustment has done by detailing the CULTURE

concept and renaming the activities with more explicit description (Figure 7-6).

Identify cultural challenge

[socio-cultural gap occur]

Perform cultural internalization such as site visit

Identify cross-functional communication problem

[else]

SOCIO-CULTURAL

CHALLENGE
CULTURE

INDIVIDUAL

BEHAVIOUR

TEAM CULTURE

ORGANIZATIONAL

CULTURE

NATIONAL CULTURE

1..n 1..naffect

Figure 7-6 Adjustment for the vertical and horizontal cultural issues

7.2.2 2nd Evaluation Session

Our second assessment was performed by the Scrum Master from AlphaSoft. In general, she

noticed that everything that is presented in the framework and method already includes what

in the day-to-day coordination practices.

Nevertheless, the participant concerns that the guidelines should be elaborated more for

the coordination control mechanisms. As a Scrum Master, she underpinned that facilitating

distributed team members are not only serving them by providing room, distributing the

meeting invitation and the minutes. A Scrum Master should have the “servant leadership”

capability. A Scrum Master must be able to help team members to build their critical thinking

to analyze the impediments, moderate the discussions, and encourage the team members to

develop the best solutions by themselves without intervening the tasks allocation. As a Scrum

team is a small team, she also conveyed that socio-cultural should be identified to the individual

level. A national culture such as having more respect to the hierarchy might occur with people

from the same country, but in daily practices, personal behaviors are more often seen in his/her

interaction with his/her environment (iv-p2-1).

As a practitioner, the participant is required to provide her feedbacks about the perceived

usefulness and ease of use as below:

Perceived usefulness. The participant sees that the method would be beneficial especially for

companies which want to start to perform GSE. They can learn the aspects that should

be prepared before deciding to start their GSE projects. Moreover, for those who have

been performing GSE in their projects, the method would be useful as a reference where

line managers or team leaders can go back when they find problems in coordinating

interdependencies to see what activities that should be improved. The framework might

be more useful for high-level managers. Meanwhile, the detail guidelines would be useful

for development and operation teams (iv-p2-1).

Method Validation: Evaluation and Evolution

99

Perceived ease of use. The participant sees that the method is presented in a technical manner.

For her as part of the engineering team, she could understand the notation easily by

reading through the diagrams and the process delivery diagram (method base)

documentation. The framework also depicts a clear description on how the concepts

are correlated each other. However, for those who do not have a technical background

in system engineering, it would be better to provide them the framework and the

guidelines by using picture diagram (iv-p2-1).

Based on her feedbacks, we improved our artifacts by applying her input to adjust our

coordination control guideline as depicted in Figure 7-7.

Determine appropriate control mechanism

Facilitate self-organizing
team

Supervise directly

Identify team self-organizing capability

Initiate tasks

Allocate tasks

Set up meeting sessions

Help team to identify issues

Encourage team to define solution

Help the team self-organized tasks

Provide
standardization

Provide standardization of work processes

Provide standardization of outputs

[else]

[self organized]

Figure 7-7 Adjusting control mechanisms

7.2.3 3rd Evaluation Session

The third evaluation was conducted in BetaSoft. The participants were the Technology

Director and Product Manager. The Technology Director responded our method nicely by

expressing that the task coordination model and the method recall and expose the practices

they have done for more than ten years, as can be inferred from their statement:

“I think it’s a useful method”… “Of course each should work out in the practical

guidelines, in order to make it ease to use, but I think the change management should

be taken into account of the method then it would be easier to use the method (va-

p3-1).”

Method Validation: Evaluation and Evolution

100

Meanwhile, the Product Manager also conveyed to augment the Technology Director comments

by reflecting their past experiences as follow:

“The model is useful and we recognize a lot of things… There’s part of the method

that can help us in different ways (of coordination). We also think that it’s easy to

use because we already used to it. We still can use the guidelines (va-p3-1).”

They also add that, although they have made many improvements, still at this time, they

are still striving to improve and to streamline the current processes. Referring to the

coordination level categorization as shown in Table 6-3, both participants felt they had

routinely monitored their coordination activities and quantitatively measured the overall

engineering process. Communication still becomes the most crucial issue, especially related to

communication with the non-technical team, that is how to align product engineering with the

management team, the marketing team, and the sales team (va-p3-1).

To that end, both participants suggested to add and to elaborate several aspects as below:

1. An organization’s business strategy covers a long term strategy and short term strategy.

The long-term strategy usually defines what the organization wants the business to be

like in the next five or 10 years. Meanwhile, the short-term strategy, also called as the

business objective, defines organization’s initiatives as the gradual process to achieve

the long-term goals (va-p3-1). In product software engineering, the initiatives are

recognized as a progressive and continuum of approaches that involve business,

development, and operations aspects (Fitzgerald & Stol, 2017).

2. Regarding above feedback, change management is always needed whey organization

needs to implement a new strategy or methodology. The product manager underpinned

that change management identifies the current situations and the intended (future)

situations and how an organization can handle the gap between these two situations.

Software engineering has been considered as a socio-technical system (Fuggetta & Di

Nitto, 2014). Thus, change management should be a focus on the people development

that will add value to the business (Cristal, Wildt, & Prikladnicki, 2008). For example,

when the organization moved to Scrum methodology to improve software engineering

practices, including the process that involved the offshore development office, they

started to practice Scrum (such as the daily stand-up, the review, and the retrospective

meetings) with the lowest technical level. They have been continuously and gradually

expanding the practices to involve broader business functions and higher organization

levels (va-p3-1, (va-p3-2).

3. An organization should regulate the formation of subject matter experts by segmenting

the expertise to provide a clear work separation but at the same time managing the

relationships between different domain experts to streamline the coordination process.

This practice promotes the interdisciplinary coordination and converges the cross

functions collaboration (va-p3-1). Based on this feedback, we elaborated our guideline

in managing knowledge dependencies by redefining the “Identify knowledge location”

step as “Organize knowledge and experts as organization’s assets” to accentuate the

importance of managing domain experts and their expertise to catalyze knowledge flows

in a distributed organization.

4. Related to the communication model in BetaSoft described in Figure 4-7, the

Technology Director criticized the absence of Scrum Master role in the model. He

noticed that the function of organizing and facilitating communication at the technical

Method Validation: Evaluation and Evolution

101

level are the responsibilities of a Scrum Master. The Development Manager is not

directly involved in product development viewed from the communication management

and process control standpoints. The Development Manager is responsible for assisting

the team in the execution of tasks and protects the team from impediments, but is not

involved in the team's internal decision-making. More precisely, the determination for

the internal task management is delegated to the team itself in determining the best

task distribution and execution. Thus, the team will sense to take the ownership of the

product even though they are not in the same location with product management team

at the head office (va-p3-1).

As a practitioner, the participants are required to provide their feedbacks about the

perceived usefulness and ease of use as below:

Perceived usefulness. With almost 17 years of experience in GSE, the participants judged that

they were mature enough in coordination management with their team in Kuala

Lumpur. They already feel the challenges faced due to differences in time, distance,

and culture. Judging from their maturity, they reflect on what they have been through,

so the participants infer that the methods introduced already include the practices they

undertake (va-p3-2). However, they can also learn from the practices of other

companies, for example, the use of virtual meetings to build more strong communication

and social closeness between better-distributed teams.

Perceived ease of use. The participants see that the method would be easy to use for them

because they have been performing GSE for years, feeling the challenges and gradually

improving their coordination practices to address the emerging issues. Again, change

management is also essential if organizations want to apply this method so that the

method can be adopted and implemented more easily (va-p3-2). Change management

should gradually be done when organizations want to adopt this method this method

suggests some practices that might change their existing practices. This consideration

was suggested by the fact when BetaSoft wanted to change traditional software

engineering methods to Scrum six years ago, BetaSoft has been managing the

implementation of Scrum starting slowly from the lowest technical level and

progressively increasing Scrum scalability at a higher organizational level (va-p3-2).

Based on the feedback, we considered the importance of change management. Thus, we

decided to elaborate the first step of our method as can be seen in Figure 7-8.

Identify enterprise strategy

CORPORATE STRATEGY

PRODUCT SOFTWARE

MANAGEMENT STRATEGY

1..n

follow,
realize

1..n

Prepare change management plan CHANGE MANAGEMENT PLAN

win win

1..n

1..n 1..n

1..n

Figure 7-8 Improving task coordination preparation step

Method Validation: Evaluation and Evolution

102

7.2.4 4th Evaluation Session

This time, the evaluation aimed to assess the completeness, correctness, and consistency of the

method from the method engineering technique perspective. The participant was a student

assistant of the Method Engineering course at Utrecht University. Regarding the completeness,

she indicated that the method has already elaborated the primary processes and concepts

related to task coordination in global software engineering. On the other hand, reliability

became her main critic where several concepts with different names have the same meaning

such “SOCIO-CULTURAL" and “SOCIO-CULTURAL CHALLENGE”. She also noticed that

the use more abstract naming (such as using “ACTOR” instead of “TEAM MEMBER”) and

simplifying the activity label would help to maintain the consistency (va-p4-1).

However, besides the feedback related to the correctness in the use of PDD notations and

the consistency of the activity and concept names, she noticed that the method should be

adjusted to improve the readability. Previously, the method consisted nine PDDs that makes

difficult to maintain the traceability and the internal consistency. Finally, the top two PDD

levels are merged, and the detail level PDDs are altered to conform the high-level PDD and

the task coordination framework. The revised version of the PDDs are presented in Appendix

F.1.

7.2.5 5th Evaluation Session

The last assessment was performed with the Service Delivery Manager from GammaSoft.

During the walkthrough of the research motivation and the method, several comments were

expressed that led to series of discussion. In general, the expert has a positive attitude towards

both the method and the framework. He noticed that the method provides a broad overview

of task coordination in global software engineering. Furthermore, he provided a positive

comment by commenting:

“I like the overview that you have that really helps me. It’s more than just theoretical.

I’ve learned a lot (va-p5-1).”

Moreover, the participant commented to the perceived usefulness and the perceived ease of use

as below:

Perceived usefulness. He indicated that GammaSoft is still struggling with the socio-cultural

problems caused by intern-organizational silos and cross-cultural differences with a

vendor in India such as the way of communicating as well as the difference in their first

language. The lack of expertise of the young employees from the vendor increases the

negative impact on the overall work performance. These situations motivate the expert

to look forward the usefulness of the method (va-p5-1). As the Service Delivery

Manager in GammaSoft, he must collaborate with the Service Coordinator from the

development vendor and the development and support teams in India. Eventually, he

certified that the method provides not only theoretical overview but also useful

practical guideline.

Perceived ease of use. During the presentation, we also presented several visualizations of the

concepts such as depicted in Figure 5-2, Figure 5-3, Figure 5-4, Table 6-1, and

Table 6-2. These visualizations as well as the GSE Task Coordination Framework complement

the method and provide a practical guideline (va-p5-1). As the participant’s

technological background, the method presented by using PDD as the modeling

Method Validation: Evaluation and Evolution

103

language also gives a clear explanation of the activities, practices, and concepts involved

within the guideline.

A missing subject that he really wanted to hear throughout the presentation is how the

method would help the organization in managing the governance of task coordination among

distributed team member. The participant argued that a strong leadership would be needed for

companies such his company, GammaSoft, still must struggle with global dispersion issues

especially cultural, knowledge, and expertise. Governance is defined as the action, manner, or

system of governing5. This definition is closely related to the authority and top-to-bottom

coordination control mechanism. In global software engineering, governance can be perceived

as the ability or exercise within the organization to control the distribution of work by assigning

the roles who have the authority to supervise the dispersed team member. When the distributed

teams can manage dependencies by themselves, the authority in governing the software product

engineering is shared as bottom-up ‘empower and reflect’ situations to make the team members

also take part the responsibility of the decision making (Talby & Dubinsky, 2009).

The participant, as well as Bannerman (2009), see governance as different from

management, and governance is a multidimensional concept which for example can be

considered as a method, strategy or process. There is no an absolute effective governance

approach, in which depends on the characteristics of the organizational circumstance. By

considering from a meta-management perspective, governance is a cell that compromises several

elements: purpose, structure, process, and relational mechanism. A governance cell can be

applied to particular domains within the scope of product software management, e.g. board of

directors, product development steering committee, and technical / development board. This

cell governance can be used to define a distributed software development governance to meet

its engineering and business needs (Bannerman, 2009). By considering our participant’s

feedback and the foundation of depicting software development governance presented by

Bannerman (2009), we decided to extend our method by adapting the software development

governance concepts.

As this evaluation session is the final session, the final global task coordination method is

achieved. In the next chapter, we summarize the findings from all the five evaluation sessions,

present the ultimate version of the global task coordination method as shown in Appendix F.2,

and discuss the limitations of this research.

5 http://www.dictionary.com/browse/governance

 105

PART FOUR CLOSING

Chapter 8. Discussion

Chapter 9. Conclusions

 107

 DISCUSSION

In this chapter, we will reflect on the findings and discuss the most relevant results.

Nonetheless, while this study earned valuable insights, this research and its artifacts are subject

to some limitations. Therefore, the discussion in this chapter will be guided by the synthesized

findings and the borders of this design science project.

8.1 Evaluation Summary: The Synthesized Findings

To start, it is important to re-emphasize the context in which this discussion takes place: a

methodological support for task coordination in global software engineering projects at product

software companies. We argue that product managers and those who are closely related to the

product software engineering should be able to manage task interdependencies among globally

distributed team members. There are studies performed by scholars that propose solutions to

manage tasks where coordination becomes the crucial part for a successful global software

engineering projects. Each study is focusing on a certain topic such as improving internal

development team coordination through Agile practices adoption, improving project

management and control with the use of PMBOK® guidelines, and facilitating knowledge to

enhance collaboration among scattered engineering teams. At the same time, we also considered

that every product software company with its internal organization and product engineering

process complexity raise its situational backgrounds that could make the way organization

manages the task dependencies is unique one to another. These considerations became our

motivation to perform this research.

Subsequently, we performed five semi-structured interviews to obtain more insights from

the practices carried out by product software companies in the Netherlands. Four of the

companies are performing global software engineering projects by offshoring or nearshoring

parts of the development activities or product engineering processes. The interview results

confirmed the coordination mechanisms explained by the literature and provided valuable

insights how companies analyze their capabilities through managing processes, improving

organization infrastructure, and optimizing tools to develop their coordination mechanisms.

Based on the results, we developed a task coordination framework for organizations that

perform their product software engineering globally. The first version of the GSE task

coordination framework depicts three main mechanisms in a globally distributed collaboration

works to achieve a coordinated output, which is: Control mechanism, communication

mechanism, and knowledge sharing mechanism (Figure 8-1). These mechanisms are supported

by the organization itself that develops a structure to the roles and functions that perform the

coordination activities. A strategy also should be provided to underlie and guide the actors in

managing the tasks. The coordination actors also must be aided by the tools that help the

Discussion

108

actors in performing better communication, managing the project, facilitating the collaboration,

and promoting the knowledge flows. These coordination practices are affected by how the

organization is distributed, what strategies do they have, and challenges that they should

address.

Coordinated Output

achieve

Mechanisms

CommunicationControl

Knowledge Sharing

Socialization

Internalization Externalization

Combination

Direct Indirect
Direct Supervision

Mutual Adjustment

Standardization

su
ppo

rt

Tools

Collaboration

Project
Management

Knowledge Sharing

Communication

su
pp

o
rt

influence

Inter-organizational Challenges

Geographical

Socio Cultural

Knowledge Gap

Contextual

Organizational Aspect

Product Engineering Aspect

Organizational

Support

Structure

Stakeholders

Strategy

Governance

Temporal

Figure 8-1 The Final Global Task Coordination Framework

We also suggests organizations take a look the guideline that we provide refer to the

coordination framework: (1) Identify organization strategy; (2) Assess the situational

backgrounds which are organization internal aspects and challenges caused by the distribution

of the teams; (3) Assess the supports, which are organizational supports and tool supports; (4)

Determine organization coordination practices from the project control perspective and

communication perspective by considering its situational factors; and (5) Reflect and plan to

continuously improve the practices (Appendix F.2, Figure 9-5).

To evaluate our research artifacts, we conducted five interview sessions with different roles

from three product software companies, a global software engineering researcher, and a method

engineering student assistant. From the interviews, we conclude that practitioners think that

the task coordination framework and method have covered their daily practices in managing

product engineering projects that involve team members or vendors in other countries. They

positively respond to the applicability of the artifacts by stating that the framework provides

a contextual presentation of coordination perspectives and the method elaborates the

framework in a more detail guideline. However, we also noticed that the researcher and the

student assistant are inclined to negatively respond to the readability of the first version of the

method due to its complexity and low-level granularity. By considering our participants’

feedback, we improved iteratively and presented a final version of the artifacts.

8.1.1 Meta-Modelling Criteria Viewpoint

The GSE task coordination framework and method were assessed by using process modeling

criteria by

Discussion

109

Completeness. The participants were satisfied with the framework and the method. The

practitioners indicated that the method not only covers the practices that have performed but

also provides the new practices captured from other companies. The method also describes the

roles who are responsible for the specific activities in managing the distributed works and team

members. At the same time, the framework that gives the holistic overview of task coordination

approach for product software companies to assess their situational background and the

required support.

Consistency. The attempt to provide a guideline at more detailed levels threaten coherence

of the developed method. The first-round evaluation directly criticized the consistency issue

related to the relationship between communication and knowledge sharing in domain software

engineering. In the subsequent rounds of assessment, participants found that the concepts and

the activities are autonomous and mutually consistent.

Efficiency. Partly satisfied. The scientific experts argued that the method will not be easy

to be followed by non-technical users due to the complexity and granularity. Indeed, as noticed

by the practitioners, the artifacts cover all task coordination aspects in global software

engineering because the artifacts attempt to cover broad topics. It is a challenge to provide a

solution that comprises broad issues, which on the other hand, the solution should also present

a clear explanation and applicative guideline.

Reliability. Satisfied. During the evaluation sessions, some disagreements and suggestions

of the terminologies were conveyed by the participants. In the first session, the expert suggests

using more specific and general terminologies to avoid misperception and uncertainty, while in

the second session the expert suggested that the control mechanism should be elaborated. Then,

we find it difficult to keep the method compact. After the fourth session, based on the

suggestion from the expert we modified the model and optimized the documentation to make

the method more concise. It is easier to maintain the reliability and consistency of concepts

and activities presented in the method.

Applicability. The practitioners indicated that both the method and the framework could

be applied as a reference guideline where they can come back to see when they need it as well

as in their daily practices. The Section 8.1.2 discuss the applicability from the perspective of

behavioral intention to use by discussing the perceived usefulness and the perceived ease of use

of the artifacts.

8.1.2 Behavioral Intention to Use Viewpoint

The practitioners as the participants of the expert validation sessions indicated to have an

intention to use the GSE task coordination method. The participants from BetaSoft was

enthusiastic and considered the usefulness and ease of use of the method even though they have

been doing global software engineering for more than ten years. Meanwhile, the participant

from AlphaSoft indicated that the framework could be useful for those who have higher

management roles and the detail guidelines will be helpful for line managers and team leaders.

We noticed that the experts preferred to see the method as a set of best practices guideline

where they can come back anytime, assess their current situation to detect the coordination

deficiencies while enhancing their coordination practices. The practitioners could see the

benefits of the method. They notified that they are very pleased with the method and desire

to use the method in their daily practices.

Discussion

110

8.2 The Final Global Task Coordination Method

The iterative evaluations obtained useful feedback and critics to be analyzed that led to several

areas of improvement (Section 7.2) as summarized in Table 8-1. This section presents changes

to the evaluated version of the GSE task coordination framework and method, which reach to

the final version of the artifacts (depicted in Figure 9-5 in Appendix E). The following table

depicts the summary of the changes have been done throughout the evaluation and validation

session.

Table 8-1 Method Evolution Summary

Improvement Aspects Targeted Points

Elaborating missing

activities and concepts

 Elaborate the variability in cultural issues,

 Specify the missing stakeholders

 Elaborate the control mechanisms

 Specify Change management to facilitate the ability of the

stakeholders to face the changes of organizational strategies

and methods

 Specify governance in product software development

Beautification Simplify the method to improve the readability of the PDDs

Improving consistency

and integrity
 Merge communication and knowledge sharing

 The simplification also used to maintain the consistency and

integrity among the concepts and activities in the PDDs

8.3 Limitations

Construct Validity. We used multiple data sources to construct our method. First, we

conducted literature studies (Section 2.2.1) and conducted investigation interviews (Chapter

4) with five companies with different stakeholders. There were product managers, technology

director, team leader, Scrum master, and development manager participated for in the

interviews. Each company is also distributed differently from the perspective of engineering

processes, distribution and organizational structure. We also performed the validation phase

by involving both scientific experts and business experts. We consider these approaches to

ensure that the method is built comprehensively examined and gained objective judgments not

only from a single point of view.

However, due to time constraints, we decided to conduct the validation phase by using

expert opinions that focus more on the desire to use the method. To perform a measurement

test such a desired tangible output through the application of this method, for example, a

measurement of tasks hand over effectiveness in a global software engineering project, a

longitudinal case study which takes longer observation is required. Although the experts

claimed that this method embraces a holistic overview and positively accept the method, this

limitation is obviously a threat to the construct validity of the method.

External Validity. External validity refers to the extent to which the outcomes of this

research can be generalized to other contexts. Three of the four participating product software

companies adopt Agile methodology in their software engineering processes. In addition, these

companies are based in the Netherlands. The evaluation also involved participants from the

Netherlands. We tried to maintain the external validity by selecting companies with a different

Discussion

111

characteristic of global distribution. Companies can be distributed as a holding organization,

through a partnership with other companies, or a combination of both. The distributed

organizations may work on different tasks but also on the same tasks. Also, the dispersion

factors as mentioned in Table 3-1 characterize each company differently. Nonetheless, it may

be possible that another investigation phase and validation phase at another organization

outside the Netherlands yields different results.

Reliability. The objective of the reliability test is to be sure that if a later researcher

followed exactly the same procedures and conducted the same case study, the subsequent

researcher should arrive at the same findings and conclusions. We aimed to perform a highly

reliable research by documenting all the research activities, the protocols, and providing the

linkage between the discussion comprehensively. However, a limitation regarding the reliability

is that the results of the investigation phase and the validation phase are heavily dependent on

the experience of the experts, which possibly will raise a threat to the reliability of this research.

 113

 CONCLUSIONS

Product software companies involve complex factors in their software engineering processes.

The product becomes an integral part of the organization itself that asks for the involvement

of many parties in the process of ideation, engineering, and management that ensures the

success and continuity of the products produced. An intuitive thought arises, as the complexity

increases in situations where engineering processes are carried out in a globally distributed

environment: the need to coordinate tasks and teams that will be influenced by the

differentiating factors that make coordination practices unique for each organization. This

thesis analyzes the challenges facing these organizations, how to overcome these problems, and

those involved by observing situational stipulations that may reshape the implementation of

coordination practices.

9.1 Results

Guided by the following main research question, we follow design science framework to

present an answer and validate the deliverable: “How can we provide methodological support

for the improvement of task coordination in global software engineering projects in a product

software company?” We developed various sub-research questions that guide us to answering

the main question that will be briefly discussed in the following sections.

SQ1: What are the current task coordination challenges in global software engineering?

The term challenge in our research context refers to a set of issues that can limit or result

in risks to achieve a successful global software engineering projects. In Chapter 3, we distinguish

many types of diversities caused by the distribution. There are several challenges in

coordinating tasks among globally distributed teams. The geographical distance shows how

teams are distributed in different locations spatially that restrict the organization to have direct

communication. The time-zone difference (temporal) difference for companies that have

distributed teams at other continents limits the opportunity of having overlaid collaboration

time. The socio-cultural challenge can occur in many levels. A team can be characterized by

its organizational or team culture. However, for small-sized distributed team, the organization

should manage this challenge to the individual level. The difference of knowledge and expertise

also can increase the dependency that harms the information flows. Last but not least, the

difference of process, method, experience and maturity among distributed locations cause

incompatibility that can misuse the process flows.

SQ2: What are the current practices performed by product software companies in executing

global software engineering projects?

There are many best practices and methods found from the literature and during the

interviews of which we organize into two main mechanism categories: Control and

Communication mechanisms. Control mechanism provides the overview of the practices in

Conclusions

114

managing vertical coordination that involves the role who has the authority to manage the

interdependencies among distributed teams. This vertical coordination can be seen as top-to-

bottom approach which is undertaken through authorized entities such as line managers,

project managers, or functional managers, and bottom-up approach that involves mutual

adjustments through distributing responsibility in managing tasks among peers by themselves.

Both approaches need to be complemented by the standardization of work process,

methodology, and work output that all distributed teams must follow for fluid task switching.

Direct communication cannot be replaced in any situation, even for companies that

performing global software engineering projects. Companies should try to increase the intensity

and optimize their opportunity for direct communication although the chance to collaborate

only a little and difficult to have face-to-face communication enough. Some best practices such

as regular site visit, virtual office, and the daily stand-up meeting through video conference can

be done to increase the intensity of direct communication. However, indirect communication

comes with an agreed communication protocol between distributed teams are suggested to fill

the communication deficiency caused by the shortage of direct communication.

In software engineering, communication is the mechanism that allows information flows.

Due to the possibility of knowledge gap and problems in accessing the knowledge, companies

are suggested to find the best approach to facilitate the knowledge flows. The team size and

the organization culture defines the knowledge sharing mechanism. The organization should be

able to identify the location of the knowledge and provide access to the knowledge.

SQ3: What method can be designed to facilitate companies for coordinating tasks in global

software engineering projects?

The answer to this sub research question yields the GSE task coordination method resulting

from the literature review and interviews. To start, a framework provides the general overview

to help companies understand what are the related concepts in task coordination in global

software projects. The framework depicts that coordination mechanisms should be supported

by organizational support and tool support. Organizational support refers to organization

structure, roles, and governance. Tool support refers to a collaboration tool, communication

tool, project management tool, and knowledge sharing tool. The appropriate coordination

mechanism can differ from one company to others, which can be influenced by the inter-

organizational factors (such as configurational factor, distribution strategy, and software

engineering methodology) and challenges caused by the dispersion (geographical, temporal,

knowledge, socio-cultural, and contextual diversities)

The method consists of five main activities:

1. Business analysis: determine the organization strategy, prepare for the change

management plan

2. Situational analysis: analyze situational analysis, identify dependencies, and identify

coordination profile

3. Support analysis: identify required supports, assess coordination support, identify gap

or requirements, determine the collaboration governance, add required collaboration

support as non-functional requirements.

4. Task coordination: perform routine activities, determine appropriate control

mechanism, and determine appropriate communication mechanism

5. Finalization and improvement: review current practices and determine improvement

plan

Conclusions

115

In these five activities, a coordination mechanism is not an individual concept that stands alone

in daily software engineering activities. Considering which task coordination mechanisms that

are appropriate for a product software company should consider the business strategy and

product engineering strategy. The method is also seen as a continuous improvement activities

to adapt the changes of the influential aspects and enhancements that have been done before.

We provide two coordination matrixes and coordination mechanism profile (pragmatic and

methodological) that depicts the mechanisms cultivate from the interviews and literature

review that can be followed in the method.

SQ4: How to improve the developed method in task coordination after validation by

considering its benefits and drawbacks?

To finalize the method, an iterative validation approach inspired by method evolution

approach and the Framework for Evaluation of Design Science (FEDS) was performed with

five different institutions (Chapter 7). Two sessions were done with a participant with a

scientific background to assess the method from the method engineering perspective, and three

sessions were conducted with the practitioners to evaluate the applicability and intention of

use from the usefulness and ease of use perspectives. Overall, as has been summarized in Section

8.1, the participants are satisfied with the method. The method successfully covers both

theoretical and practical aspects. They have seen that the method reflects their daily activities

and provides some suggestion or best practices that might be useful for the improvement of

task coordination in their companies. However, some feedbacks and critics were raised, but we

saw them as useful input that triggered us to evaluate and at the end improve the method.

RQ: “How can we provide methodological support for the improvement of task coordination

in global software engineering projects in a product software company?”

The answer comes in the form of the Global Coordination Method tailored using the

references from the literature and best practices from participant companies. Overall, the

method was perceived positively. The participants acknowledged the benefits of the method for

its completeness and flexibility in combination with its applicability. The method promotes the

explicit relationships between task coordination practices, the supporting bases, and the

situational backgrounds thereby embracing the overall aspects to the application of the method

such as preparation, execution, and evaluation. Yet, by considering the benefits of the method,

the participant indicated the intention to adopt the method. However, the method is certainly

not faultless. As the method developed and evaluated based on best practices by companies

that have been operating global software engineering and most of them are practicing Agile

methodology. The method should offer the guideline for the change management and software

development governance aspects in more detail especially for product software companies that

want to commence global software engineering projects. Finally, the findings suggest that GSE

task coordination method enables managers to handle challenges and interdependencies in

global software engineering projects. For a better result, the method should be performed

continuously and involve all key areas of a product software company.

9.2 Future Research

This research results and its limitations give opportunities for other extended researches in

several directions. First, the evaluation was performed by using expert opinion approach that

limits the depth of the evaluation. Therefore, when the time is on the side of both researcher

and participants, we suggest a longitudinal case study or an action research that integrate a

real situation in PSOs daily global software engineering processes can be performed to evaluate

Conclusions

116

the usefulness and applicability of the method reliably. Action research requires the

participation of the research participants in the implementation of the proposed solution in

which the researcher becomes part of the participants. Action research offer an in-depth and

first hand understanding the researcher obtains. Meanwhile, a longitudinal case study is the

researcher becomes an investigator rather than participant and performs integrated observation

over long periods of time (Benbasat, Goldstein, & Mead, 1987).

Secondly, related to the above suggestion, this method also has not presented quantitative

measurement that indicates its contribution to the business practices e.g. accelerating the

process of hand over work between the distributed teams for a more efficient GSE project, or

increases the satisfaction of the distributed team members in daily coordination practices. An

action research or longitudinal case study also allows researchers to make some measurements

that show more tangible benefits of this method.

Thirdly, the GSE task coordination method itself was solely validated by participating

experts from companies in the Netherlands. Hence, the method still can be generalized to a

larger extend by conducting another research with experts and companies from other countries.

Last but not least, several activities and concepts were added based on the feedback emerged

during the validation phase may require further validation.

 117

REFERENCES

Ågerfalk, P. J., Fitzgerald, B., Olsson, H. H., & Conchúir, E. Ó. (2008). Benefits of Global Software
Development: The Known and Unknown. In Making Globally Distributed Software Development a
Success Story (Vol. 5007, pp. 1–9). Berlin, Heidelberg: Springer.

Altmann, J. (1999). Cooperative software development: concepts, model and tools. In TOOLS ’99
Proceedings of the Technology of Object-Oriented Languages and Systems (p. 194).

Ancona, D. G., & Caldwell, D. F. (1992). Bridging the Boundary: External Activity and Performance in
Organizational Teams. Administrative Science Quarterly, 37(4), 634–665.

Arora, A., & Gambardella, A. (2004). The Globalization of the Software Industry: Perspectives and
Opportunities for Developed and Developing Countries. Policy (Vol. 5). Cambridge, MA.

Artz, P., van de Weerd, I., Brinkkemper, S., & Fieggen, J. (2010). Productization: Transforming from
Developing Customer-Specific Software to Product Software. In First International Conference, ICSOB
2010 (pp. 90–102). Utrecht, the Netherlands.

Bannerman, P. L. (2009). Software Development Governance : A Meta-management Perspective. In 2009
ICSE Workshop on Software Development Governance (pp. 3–8).

Bekkers, W., Spruit, M., van de Weerd, I., Van Vliet, R., & Mahieu, A. (2010). A Situational Assessment
Method for Software Product Management. In Proceedings of the 18th European Conference on
Information Systems (pp. 1–12). Pretoria, South Africa: AISeL.

Bekkers, W., van de Weerd, I., Spruit, M., & Brinkkemper, S. (2010). A Framework for Process Improvement
in Software Product Management. In A. Riel, R. O Connor, S. Tichkiewitch, & R. Messnarz (Eds.),
Software and Services Process Improvement (Vol. 99, pp. 1–12). Berlin, Heidelberg: Springer.

Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The Case Research Strategy in Studies of Information
Systems. MIS Quarterly, 11(3), 369.

Bertram, M., Schaarschmidt, M., & Von Kortzfleisch, H. F. O. (2012). Customization of product software:
Insight from an extensive is literature review. IFIP Advances in Information and Communication
Technology, 389, 222–236.

Bjørnson, F. O., & Dingsøyr, T. (2008). Knowledge management in software engineering: A systematic review
of studied concepts, findings and research methods used. Information and Software Technology,
50(11), 1055–1068.

Bosch, J., & Bosch-Sijtsema, P. M. (2010a). Coordination Between Global Agile Teams: From Process to
Architecture. In Agility Across Time and Space (Vol. 23, pp. 217–233). Berlin, Heidelberg: Springer
Berlin Heidelberg.

Bosch, J., & Bosch-Sijtsema, P. M. (2010b). From integration to composition: On the impact of software
product lines, global development and ecosystems. Journal of Systems and Software, 83(1), 67–76.

Brinkkemper, S. (1996). Method engineering: engineering of information systems development methods
and tools. Information and Software Technology, 38(4), 275–280.

Brinkkemper, S., Saeki, M., & Harmsen, F. (1999). Meta-modelling based assembly techniques for situational
method engineering. Information Systems, 24(3), 209–228.

Brisaboa, N. R., Cortiñas, A., Luaces, M. R., & Pol la, M. (2015). A Reusable Software Architecture for
Geographic Information Systems Based on Software Product Line Engineering. In Lecture Notes in
Computer Science (Vol. 9344, pp. 320–331).

Budgen, D., & Brereton, P. (2006). Performing systematic literature reviews in software engineering. In
Proceeding of the 28th international conference on Software engineering - ICSE ’06 (Vol. 45, p. 1051).

References and Appendices

118

New York, New York, USA: ACM Press.
Capretz, L. F., & Ahmed, F. (2010). Making Sense of Software Development and Personality Types. IT

Professional, 12(1), 6–13.
Carmel, E., & Agarwal, R. (2001). Tactical approaches for alleviating distance in global software

development. IEEE Software, 18(2), 22–29.
Carmel, E., Espinosa, J. A., & Dubinsky, Y. (2010). “Follow the Sun” Workflow in Global Software

Development. Journal of Management Information Systems, 27(1), 17–38.
Chiu, M.-L. (2002). An organizational view of design communication in design collaboration. Design Studies,

23(2), 187–210.
Cisco. (2017). Cisco WebEx. Retrieved June 21, 2017, from https://www.webex.com/why-

webex/overview.html
Cohen, D., & Crabtree, B. (2006). Semi-structured Interviews Recording Semi-Structured interviews.

Retrieved December 16, 2016, from http://www.qualres.org/HomeSemi-3629.html
Cohn, M. (2007). Differences Between Scrum and Extreme Programming. Retrieved February 22, 2017, from

https://www.mountaingoatsoftware.com/blog/differences-between-scrum-and-extreme-
programming

Conchúir, E. Ó., Ågerfalk, P. J., Olsson, H. H., & Fitzgerald, B. (2009). Global Software Development: Where
are the Benefits. Communications of the ACM, 52(8), 127–131.

Cossentino, M., Gaglio, S., Henderson-Sellers, B., & Seidita, V. (2006). A metamodelling-based approach for
method fragment comparison. CEUR Workshop Proceedings, 364, 57–70.

Cristal, M., Wildt, D., & Prikladnicki, R. (2008). Usage of SCRUM Practices within a Global Company. In 2008
IEEE International Conference on Global Software Engineering (pp. 222–226). IEEE.

Crowston, K. (1994). A Taxonomy Of Organizational Dependencies and Coordination Mechanisms.
Organizing Business Knowledge: The MIT Process Handbook. Michigan, USA.

Culture. (2017). Retrieved June 21, 2017, from https://www.merriam-webster.com/dictionary/culture
D souza, A., Kabbedijk, J., Seo, D., Jansen, S., & Brinkkemper, S. (2012). Software-as-a-Service: Implications

for Business and Technology in Product Software Companies. In Proceedings of the Pacific Asia
Conference on Information Systems (PACIS) (p. Paper 140).

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information
Technology. MIS Quarterly, 13(3), 319.

Deneckère, R., Hug, C., Onderstal, J., & Brinkkemper, S. (2015). Method Association Approach: Situational
construction and evaluation of an implementation method for software products. In Proceedings -
International Conference on Research Challenges in Information Science (Vol. 2015–June, pp. 274–
285). Athens, Greece: IEEE.

Deshpande, S., Beecham, S., & Richardson, I. (2011). Global software development coordination strategies
- A vendor perspective. Lecture Notes in Business Information Processing, 91 LNBIP, 153–174.

Espinosa, J. A., & Carmel, E. (2004). The effect of time separation on coordination costs in global software
teams: a dyad model. 37th Annual Hawaii International Conference on System Sciences, 2004.
Proceedings of the, 0(C), 1–10.

Espinosa, J. A., Lerch, J., & Kraut, R. (2002). Explicit vs. Implicit Coordination Mechanisms and Task
Dependencies: One Size Does Not Fit All. Pennsylvania, USA.

Espinosa, J. A., Nan, N., & Carmel, E. (2007). Do gradations of time zone separation make a difference in
performance? A first laboratory study. In Proceedings - International Conference on Global Software
Engineering, ICGSE 2007 (pp. 12–22). Munich, Germany: IEEE.

Espinosa, J. A., Slaughter, S. A., Kraut, R., & Herbsleb, J. (2007). Team Knowledge and Coordination in
Geographically Distributed Software Development. Journal of Management Information Systems,
24(1), 135–169.

Faraj, S., & Sproull, L. (2000). Coordinating Expertise in Software Development Teams. Management Science,
46(12), 1554–1568.

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and agenda. Journal of
Systems and Software, 123(0), 176–189.

Fricker, S. (2012). Software Product Management. In A. Maedche, A. Botzenhardt, & L. Neer (Eds.), Software
for People (Vol. 31, pp. 53–81). Berlin, Heidelberg: Springer Berlin Heidelberg.

Fuggetta, A., & Di Nitto, E. (2014). Software process. In Proceedings of the on Future of Software Engineering
- FOSE 2014 (pp. 1–12). New York, New York, USA: ACM Press.

References and Appendices

119

George, S. Z., Coronado, R. A., Beneciuk, J. M., Valencia, C., Werneke, M. W., & Hart, D. L. (2011). Depressive
Symptoms, Anatomical Region, and Clinical Outcomes for Patients Seeking Outpatient Physical
Therapy for Musculoskeletal Pain. Physical Therapy, 91(3), 358–372.

Glaser, B. G. (1965). The Constant Comparative Method of Qualitative Analysis. Source: Social Problems
Hospitals American Journal of Nursing American Sociological Review, 12(4), 436–445.

Glueck, W. F. (1980). Strategic Management and Business Policy. McGraw-Hill.
Herbsleb, J. D. (2007). Global Software Engineering: The Future of Socio-technical Coordination. In

Prooceedings of the Future of Software Engineering (FOSE ’07) (pp. 188–198). Washington DC, USA:
IEEE.

Herbsleb, J. D., & Mockus, A. (2003). An empirical study of speed and communication in globally distributed
software development. IEEE Transactions on Software Engineering, 29(6), 481–494.

Herbsleb, J. D., & Moitra, D. (2001). Global software development. IEEE Software, 18(2), 16–20.
Jain, R., & Suman, U. (2015). A Systematic Literature Review on Global Software Development Life Cycle.

ACM SIGSOFT Software Engineering Notes, 40(2), 1–14.
Kang, S., Myung, J., Yeon, J., Ha, S., Cho, T., Chung, J., & Lee, S. (2010). A General Maturity Model and

Reference Architecture for SaaS Service. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 5982 LNCS, pp. 337–
346).

Kircher, M., Jain, P., Levine, D., & Corsaro, A. (2001). Distributed extreme programming. In Proceedings of
the International Conference on eXtreme Programming and Flexible Processes in Software Engineering
(pp. 66–71).

Klopper, R., Lubbe, S., & Rugbeer, H. (2007). The Matrix Method of literature review. Alternation, 14(1),
262–276.

Klubnikin, A. (2016). How to Choose Software Outsourcing Company? Retrieved November 30, 2016, from
http://r-stylelab.com/company/blog/it-outsoursing/how-to-choose-software-outsourcing-company

Knowledge. (2017). Retrieved June 21, 2017, from https://www.merriam-
webster.com/dictionary/knowledge

Koc, H., Timm, F., Espana, S., Gonzalez, T., & Sandkuhl, K. (2016). A Method for Context Modelling in
Capability Management. Research Papers, 43.

Kotlarsky, J., & Oshri, I. (2005). Social ties, knowledge sharing and successful collaboration in globally
distributed system development projects. European Journal of Information Systems, 14(December
2004), 37–48.

Kotlarsky, J., van Fenema, P. C., & Willcocks, L. P. (2008). Developing a knowledge-based perspective on
coordination: The case of global software projects. Information and Management, 45(2), 96–108.

Kraut, R. E., & Streeter, L. A. (1995). Coordination in software development. Communications of the ACM,
38(3), 69–81.

Kristjánsson, B., Helms, R., & Brinkkemper, S. (2014). Integration by communication: Knowledge exchange
in global outsourcing of product software development. Expert Systems, 31(3), 267–281.

Lamersdorf, A., Munch, J., & Rombach, D. (2009). A Survey on the State of the Practice in Distributed
Software Development: Criteria for Task Allocation. In 2009 Fourth IEEE International Conference on
Global Software Engineering (pp. 41–50). IEEE.

Lamersdorf, A., Münch, J., & Rombach, D. (2009). A Decision Model for Supporting Task Allocation Processes
in Global Software Development. In A. Jedlitschka & O. Salo (Eds.), Software Quality Journal (Vol. 9,
pp. 332–346). Berlin, Heidelberg: Springer Berlin Heidelberg.

Lanubile, F., Ebert, C., Prikladnicki, R., & Vizcaino, A. (2010). Collaboration Tools for Global Software
Engineering. IEEE Software, 27(2), 52–55.

Lee, A. S., Baskerville, R., Lee, A. S., & Baskerville, R. L. (2017). Generalizing Generalizability in Information
Systems Research. Information Systems Research, 14(3), 221–243.

Li, Y., & Maedche, A. (2012). Formulating Effective Coordination Strategies in Agile Global Software
Development Teams. Icis-Rp, 1–12.

Luinenburg, L., Jansen, S., Souer, J., van de Weerd, I., & Brinkkemper, S. (2008). Designing web content
management systems using the method association approach. In Proceedings of the 4th International
Workshop on Model-Driven Web Engineering (MDWE 2008) (pp. 106–120).

Mak, D. K. M., & Kruchten, P. B. (2006). Task coordination in an agile distributed software development
environment. Engineering, (May), 606–611.

References and Appendices

120

Malone, T. W., & Crowston, K. (1994). The Interdisciplinary Study of Coordination. ACM Computing Surveys,
26(1), 87–119.

Mantyla, M. V., & Vanhanen, J. (2011). Software Deployment Activities and Challenges - A Case Study of
Four Software Product Companies. In 2011 15th European Conference on Software Maintenance and
Reengineering (pp. 131–140). IEEE.

McCann, J. E., & Ferry, D. L. (1979). An Approach for Assessing and Managing Inter-Unit Interdependence.
The Academy of Management Review, 4(1), 113.

McChesney, I. R., & Gallagher, S. (2004). Communication and co-ordination practices in software
engineering projects. Information and Software Technology, 46(7), 473–489.

Mintzberg, H. (1979). The Structuring of Organizations. Pearson.
Mintzberg, H. (1980). Structure in 5 S: A synthesis of the research on organization design. Management

Science, 26(3), 322–341.
Mishra, D., Mishra, A., Colomo-Palacios, R., & Casado-Lumbreras, C. (2013). Global Software Development

and Quality Management: A Systematic Review. In Lecture Notes in Computer Science (Vol. 8186 LNCS,
pp. 302–311).

Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research: Examining the craft.
Information and Organization, 17(1), 2–26.

Na, K.-S., Simpson, J. T., Li, X., Singh, T., & Kim, K.-Y. (2007). Software development risk and project
performance measurement: Evidence in Korea. Journal of Systems and Software, 80(4), 596–605.

Nguyen-Duc, A., & Cruzes, D. S. (2013). Coordination of software development teams across organizational
boundary-An exploratory study. In Proceedings - IEEE 8th International Conference on Global Software
Engineering, ICGSE 2013 (pp. 216–225). IEEE.

Nguyen-Duc, A., Cruzes, D. S., & Conradi, R. (2012). Dispersion, coordination and performance in global
software teams. Proceedings of the ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement - ESEM ’12, (Idi), 129.

Nguyen-Duc, A., Cruzes, D. S., & Conradi, R. (2015). The impact of global dispersion on coordination, team
performance and software quality-A systematic literature review. Information and Software
Technology, 57(1), 277–294.

Niazi, M., Mahmood, S., Alshayeb, M., Riaz, M. R., Faisal, K., Cerpa, N., … Richardson, I. (2016). Challenges
of project management in global software development: A client-vendor analysis. Information and
Software Technology, 80, 1–19.

Nidumolu, S. (1996). A comparison of the structural contingency and risk-based perspectives on
coordination in software-development projects. Journal of Management Information Systems, 13(2),
77–113.

Noll, J., Beecham, S., & Richardson, I. (2010). Global software development and collaboration. ACM Inroads,
1(3), 66.

Nonaka, I., & Takeuchi, H. (1995). Knowledge-Creating Company. Knowledge-Creating Company, (August),
3–19.

Nord, R. L., Ozkaya, I., & Kruchten, P. B. (2014). Agile in Distress: Architecture to the Rescue. In Agile
Methods. Large-Scale Development, Refactoring, Testing, and Estimation (Vol. 199, pp. 43–57).

Olsson, H. H., Conchúir, E. Ó., Ågerfalk, P. J., & Fitzgerald, B. (2006). Global Software Development
Challenges: A Case Study on Temporal, Geographical and Socio-Cultural Distance. In Proceedings of
the IEEE International Conference on Global Software Engineering (ICGSE’06) (pp. 3–11). Florianopolis,
Brazil: IEEE.

Olsson, H. H., Fitzgerald, B., Ågerfalk, P. J., & Conchúir, E. Ó. (2006). Agile Practices Reduce Distance in Global
Software Development. Information Systems Management, 23(3), 7–18.

Paasivaara, M., & Lassenius, C. (2006). Could Global Software Development Benefit from Agile Methods? In
Proocedings of the 2006 IEEE International Conference on Global Software Engineering (ICGSE’06) (pp.
109–113). Florianopolis, Brazil: IEEE.

Paasivaara, M., & Lassenius, C. (2016). Scaling scrum in a large globally distributed organization: A case
study. In Proceedings - 11th IEEE International Conference on Global Software Engineering, ICGSE 2016
(pp. 74–83).

Pardo, C., Pino, F. J., García, F., Piattini, M., & Baldassarre, M. T. (2012). An ontology for the harmonization
of multiple standards and models. Computer Standards & Interfaces, 34(1), 48–59.

Piri, A., Niinimäki, T., & Lassenius, C. (2012). Fear and distrust in global software engineering projects.

References and Appendices

121

Journal of Software: Evolution and Process, 24(2), 185–205.
PMI. (2000). A guide to the project management body of knowledge (PMBOK ® guide) (4th Editio).

Pennsylvania, USA: Project Management Institute.
Polančič, G., Heričko, M., & Rozman, I. (2010). An empirical examination of application frameworks success

based on technology acceptance model. Journal of Systems and Software, 83(4), 574–584.
Portillo-Rodríguez, J., Vizcaíno, A., Piattini, M., & Beecham, S. (2012). Tools used in Global Software

Engineering: A systematic mapping review. Information and Software Technology, 54(7), 663–685.
Pressman, R. s. (2010). Software Engineering: A Practitioner’s Approach (7th Editio). New York, USA:

McGraw-Hill.
Pries-Heje, L., & Pries-Heje, J. (2011). Why Scrum Works: A Case Study from an Agile Distributed Project in

Denmark and India. In 2011 AGILE Conference (pp. 20–28). IEEE.
Process. (2017). Retrieved June 21, 2017, from https://www.merriam-webster.com/dictionary/process
Purna Sudhakar, G., Farooq, A., & Patnaik, S. (2011). Soft factors affecting the performance of software

development teams. Team Performance Management: An International Journal, 17(3/4), 187–205.
Ramasubbu, N., Cataldo, M., Balan, R. K., & Herbsleb, J. D. (2011). Configuring global software teams: a

multi-company analysis of project productivity, quality, and profits. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE) (pp. 261–270). Waikiki, Honolulu, Hawaii:
ACM Press.

Reuwer, T., Jansen, S., & Brinkkemper, S. (2013). Key factors in the internationalisation process of SMEs
exporting business software as a service. International Journal of Business Information Systems, 12(2),
140.

Richardson, I., Casey, V., Burton, J., & McCaffery, F. (2010). Global Software Engineering: A Software Process
Approach. In Collaborative Software Engineering (pp. 35–56). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Richardson, I., Casey, V., McCaffery, F., Burton, J., & Beecham, S. (2012). A process framework for global
software engineering teams. Information and Software Technology, 54(11), 1175–1191.

Rodríguez, P., Haghighatkhah, A., Lwakatare, L. E., Teppola, S., Suomalainen, T., Eskeli, J., … Oivo, M. (2017).
Continuous deployment of software intensive products and services: A systematic mapping study.
Journal of Systems and Software, 123, 263–291.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software
engineering. Empirical Software Engineering, 14(2), 131–164.

Rus, I., Lindvall, M., & Sinha, S. S. (2002). Knowledge management in software engineering. IEEE Software,
19(3), 26–38.

Sääksjärvi, M., Lassila, A., & Nordström, H. (2005). Evaluating the software as a service business model: From
CPU time-sharing to online innovation sharing. In IADIS International Conference e-Society (pp. 177–
186).

Sangwan, R., Bass, M., Mullick, N., Paulish, D., & Kazmeier, J. (2007). Critical Success Factors for Global
Software. In Global Software Development Handbook (pp. 9–20).

Sarker, S., & Sahay, S. (2004). Implications of space and time for distributed work: an interpretive study of
US–Norwegian systems development teams. European Journal of Information Systems, 13(1), 3–20.

Sarma, A., Van der Hoek, A., & Redmiles, D. (2010). The Coordination Pyramid: A Perspective on the State of
the Art in Coordination Technology. CSE Technical Reports (Vol. 160).

Schneider, S., Torkar, R., & Gorschek, T. (2013). Solutions in global software engineering: A systematic
literature review. International Journal of Information Management, 33(1), 119–132.

Schwaber, K. (1997). SCRUM Development Process. In Business Object Design and Implementation (pp. 117–
134). London: Springer London.

Schwaber, K. (2004). Agile Project Management with Scrum. Washington, USA: Microsoft Press.
Setamanit, S.-O., Wakeland, W., & Raffo, D. (2006). Planning and improving global software development

process using simulation. In Proceedings of the 2006 international workshop on Global software
development for the practitioner - GSD ’06 (pp. 8–14). New York, New York, USA: ACM Press.

Signell, R. P., Carniel, S., Chiggiato, J., Janekovic, I., Pullen, J., & Sherwood, C. R. (2008). Collaboration tools
and techniques for large model datasets. Journal of Marine Systems, 69(1–2), 154–161.

Smirnova, I., Münch, J., & Stupperich, M. (2014). A Canvas for Establishing Global Software Development
Collaborations. In Communications in Computer and Information Science (Vol. 465, pp. 73–93).

Šmite, D. (2007). Global Software Development Improvement. Doctoral Thesis for Ph.D. Academic Degree.

References and Appendices

122

University of Latvia.
Smith, E. A. (2001). The role of tacit and explicit knowledge in the workplace. Journal of Knowledge

Management, 5(4), 311–321.
Software Engineering Institute. (2010). CMMI ® for Development, Version 1.3 Improving processes for

developing better products and services. Pittsburgh.
Sommerville, I. (2010). Software Engineering. (M. Horton, Ed.), Software Engineering (9th ed.). Boston:

Addison-Wesley.
Strode, D. E. (2013). Extending the dependency taxonomy of agile software development. In Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (Vol. 8224, pp. 274–289).

Strode, D. E. (2016). A dependency taxonomy for agile software development projects. Information Systems
Frontiers, 18(1), 23–46.

Strode, D. E., Hope, B., Huff, S. L., & Link, S. (2011). Coordination Effectiveness In An Agile Software
Development Context. In Proceedings of the PACIS 2011 (pp. 1–16). Brisbane, Australia: Queensland
University of Technology.

Strode, D. E., Huff, S. L., Hope, B., & Link, S. (2012). Coordination in co-located agile software development
projects. Journal of Systems and Software, 85(6), 1222–1238.

Sudhakar, G. P. (2013). A Review of Critical Success Factors for Offshore Software Development Projects.
Organizacija, 46(6), 282–296.

Talby, D., & Dubinsky, Y. (2009). Governance of an agile software project. In 2009 ICSE Workshop on
Software Development Governance (pp. 40–45). IEEE.

Vähäniitty, J. (2006). Do small software companies need portfolio management? Helsinki University of
Technology.

Van De Ven, A. H., Delbecq, A. L., & Koenig Jr., R. (1976). Determinants of Coordination Modes within
Organizations. American Sociological Review, 41(2), 322–338.

van de Weerd, I., & Brinkkemper, S. (2009). Meta-Modeling for Situational Analysis and Design Methods.
Handbook of Research on Modern Systems Analysis and Design Technologies and Applications, 38–58.

van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., & Bijlsma, L. (2006). On the Creation of
a Reference Framework for Software Product Management: Validation and Tool Support. In
Proceedings of the 2006 International Workshop on Software Product Management (IWSPM’06 -
RE’06 Workshop) (pp. 3–12). Minnesota, USA: IEEE.

van de Weerd, I., Brinkkemper, S., Souer, J., & Versendaal, J. (2006). A situational implementation method
for web-based content management system-applications: method engineering and validation in
practice. Software Process Improvement and Practice, 11(5), 521–538.

van de Weerd, I., Brinkkemper, S., & Versendaal, J. (2010). Incremental method evolution in global software
product management: A retrospective case study. Information and Software Technology, 52(7), 720–
732.

Van Gameren, B., Van Solingen, R., & Dullemond, K. (2013). Auto-erecting virtual office walls a controlled
experiment. In Proceedings - IEEE 8th International Conference on Global Software Engineering, ICGSE
2013 (pp. 206–215).

Venable, J., Pries-Heje, J., & Baskerville, R. (2016). FEDS: a Framework for Evaluation in Design Science
Research. European Journal of Information Systems, 25(1), 77–89.

Verner, J. M., Brereton, O. P., Kitchenham, B. A., Turner, M., & Niazi, M. (2014). Risks and risk mitigation in
global software development: A tertiary study. Information and Software Technology, 56(1), 54–78.

Victor, B., & Blackburn, R. S. (1987). Interdependence: An Alternative Conceptualization. Academy of
Management Review, 12(3), 486–498.

Wagenaar, G., Overbeek, S., & Helms, R. (2017). Describing Criteria for Selecting a Scrum Tool Using the
Technology Acceptance Model. In Intelligent Information and Database Systems (pp. 811–821).

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future writing a literature review.
MIS Quarterly, 26(2), xiii--xxiii.

Wen, L. (2016). Crossing the Communication Barrier in Global Software Development Projects via Global
Software Development Brokers. In Proceedings of the 24th Australasian Conference on Information
Systems (pp. 1–11).

Wieringa, R. J. (2014). Design science methodology: For information systems and software engineering.
Design Science Methodology: For Information Systems and Software Engineering. Berlin, Heidelberg:

References and Appendices

123

Springer Berlin Heidelberg.
Xu, L., & Brinkkemper, S. (2007). Concepts of product software. European Journal of Information Systems,

16(5), 531–541.
Yilmaz, M., O Connor, R. V., & Clarke, P. (2014). An Exploration of Individual Personality Types in Software

Development. In Communications in Computer and Information Science (Vol. 425, pp. 111–122).
Yin, R. K. (2013). Case Study Research: Design and Methods. Applied Social Research Methods Series, 5, 1–

53.

References and Appendices

 124

APPENDICES

Appendix A. Interview Protocol

Methodological Support for Task Coordination
on Global Software Engineering Project

in a Product Software Organization

Interview Protocol
Department of Information and Computing Science

Utrecht, The Netherlands

Interviewee : _____________________________________
Date & Time : _____________________________________
Interviewers : Carolus Borromeus Widiyatmoko
Research Supervisor : dr. Sietse J. Overbeek
 Prof. dr. Sjaak Brinkempper

First of all I want to thank you for your cooperation and taking the time to conduct this interview. The
purpose of this interview is to gather information on the current practice of task coordination in
distributed software engineering project in your organization.

In the following 45 to 60 minutes we will run through this list in the form of an interview. If during
the interview you ever feel uncomfortable or if you for any reason may wish not to answer, you are
ever free to do so. This interview will be recorded, will only be used for this research, and will never
be disclosed to third parties.

We would like to start by understanding your role in brief, and will thereafter be focusing on two
topics:

 Your organization, which is including your position, organization mission, and product
software produced by your organization

 Coordination approaches, which are including the methods, tools that are used as well as
benefits, problems, criteria become the concerns of your organization

The detailed questionnaire is on the next page.

Thank you.

References and Appendices

125

A. Product Software Organization

Organization Structure, Stakeholders, and Policy

Duration: 5-10 minutes

We would like to explore the history and the policy of global software development projects in this
company.

Note: it might be that our respondent cannot answer these questions below. In that case, ask him who
would be the right person to talk about these matters.

1. What is your role in this company in general?
2. How long has this company performed distributed approach in software development

projects?
3. Which role in this company who is having the most responsibility for the success of global

software development projects? Is there a policy associated to the global business of this
company?

4. Remote sites.
a. What are the types of your remote sites? Did you acquire startups or other

companies? Alternatively, did you develop remote sites and recruit or move your
employees to the new sites? What are the considerations of (acquiring other
companies / developing remote sites) instead of the other options? (Nguyen-Duc et
al., 2012, 2015)

b. What are the functions of the remote sites?
5. What are the metrics that you use to measure your project performance? (Na, Simpson, Li,

Singh, & Kim, 2007)
6. What are the goals that your company wants to achieve by distributing the projects to

dispersed resources? Or in other words, what are the benefits for this company? And what are
the benefits for your resources?

Product Software

Duration: 10-15 minutes

Xu and Brinkkemper (2007) define product software as “a packaged configurations of software
components or a software-based service, with auxiliary materials, which is released for and traded
in a specific market”. Hence, a product software organization can be described as companies
which develop and sell mainly software as their products for a target market without customer
specific modifications (Vähäniitty, 2006).

7. What are the product software that your company has built?
8. Do you have a roadmap or product line management for each of your software?
9. Check this framework.

Portfolio Management

Market analysis
Product life cycle

management
Partnering &
contracting

Product planning

Roadmap intelligence Product roadmapping
Core asset

roadmapping

Release planning

Requirement
prioritization

Scope change
management

Build validation

Requirements management

Requirements
gathering

Requirements
identification

Requirements
organizing

Release definition
Release definition

validation
Launch preparation

Company board

Sales

Marketing

Research &
innovation

Development

Support

Services

Market

Customers

Partners

Software Product Management
Internal

Stakeholders
External

Stakeholders

Which parts of this framework which are affected by global software engineering?

References and Appendices

126

B. Task Coordination

Task Distribution

Duration: 5-10 minutes

The following questions are exploring the decision in allocating tasks to dispersed resources. This
section is used to get the big picture of task management in global software development projects.

10. Who does decide the task management (breaking down requirement into tasks, allocating
tasks, and monitoring the progress of each task)? Moreover, to whom he/she reports the
project progress?

11. Could you please elaborate the stages in breaking and allocating the tasks in a brief?
12. What are the (main) factors considered by this company when a project manager (or another

role mentioned in B.1) in choosing what tasks to which resources? Hint: specific capability (e.g.
specialized in UI, API/middleware, etc.), volume/number of resources, level of knowledge (e.g.
ability to understand the architectural design)

Task Coordination

Duration: 20-25 minutes

Based on the study conducted by (Sangwan, Bass, Mullick, Paulish, & Kazmeier, 2007), there are
three main issues in global software engineering which are communication, coordination, and
control. Another study by (Jain & Suman, 2015) added knowledge aspect in understanding system
design as another issue. Those are the examples of issues in global software engineering based on
the literatures. The following questions are used to help us in developing a taxonomy that can
describe the challenges in global software projects and a model that describe the processes from
current practices performed by companies.

13. Could you please define “coordination” based on your experiences? And, what are the
important things that should be considered in coordinating tasks in regards to performing
software engineering globally?

14. What is the goal of coordinating tasks?
15. Do you prefer to manage the tasks with direct supervision or mutual adjustment?
16. How do you know the progress of a task or if there is a problem occurs in a task?
17. Do you have an established approach in coordinating tasks between (dispersed) teams?

a. If the answer is:
i. NO: Can you describe it in your own words what are the steps? Do you have

any problems in formulizing your processes into an established method?
ii. YES: Can you elaborate the steps? (e.g. Do you start with project progress

checking (budget & costs, deliverables), continued by problems checking or
performance optimization)

b. What are the tools that you use? And who are or what are the roles involved in the
processes?

18. There are numerous aspects related to task coordination.
a. Do you usually use direct supervision to manage the coordination? Or do you prefer to

let them arrange and decide the communication by themselves?
b. Control (McChesney & Gallagher, 2004; Portillo-Rodríguez, Vizcaíno, Piattini, &

Beecham, 2012)
i. Did you ever have a problem in project controlling?

ii. Related to the processes that you have mentioned before, who is responsible
for the project control (Is it the same roles with task distribution?) and how
does he/she control the development chain and monitor the progress?

iii. How does he/she know when there is a problem occurs in a task?
iv. What are the problems in controlling the dependencies?

c. Communication
i. Do you have a problem in internal communication between sites?

ii. How do you manage the communication between teams (HO to remote
sites, between remote sites)? What are the problems of the
communication? (Portillo-Rodríguez et al., 2012)

References and Appendices

127

iii. How frequent do you manage the communication between the resources?
(Mak & Kruchten, 2006)

iv. Do you use informal or formal communication with your remote sites? And
why? (Mak & Kruchten, 2006)

v. Have you ever found any fear and distrust among resources? How do you
manage that situation? (Piri, Niinimäki, & Lassenius, 2012)

d. Stakeholders
Who are the stakeholders involved in coordinating processes? Are there specific
persons or roles who are very important in coordinating tasks (e.g. knowledge
brokers, communication, on-site coordinator, cross-site delegators)? (Deshpande et
al., 2011)

e. Dependency
What types of cross-sites dependency in your company (e.g. process dependencies,
knowledge and expertise dependencies)? (Deshpande et al., 2011)
How do you manage the inter dependency?

f. Knowledge
Does knowledge (differences) become important to your company in relation with
your business in coordinating tasks?
Is it a barrier or an advantage for your company?
How do you manage the imbalance in knowledge and expertise? (Kotlarsky et al.,
2008; Purna Sudhakar, Farooq, & Patnaik, 2011)

g. Tool
Do you use tools to help you to coordinate tasks among sites?
What are the functions of the tools and for what reasons? (Portillo-Rodríguez et al.,
2012)

h. Performance - Project Monitoring and Controlling (continuing C.2.b)
After all, how do you measure the progress and keep the all teams work to achieve the
best performance?

i. Do you have any other things that should be considered?

References and Appendices

 128

Appendix B. Systematic Literature Review

Table 9-1. Selected papers

Authors
Type of

Research

Number

of

Citations

Summary

Bekkers,

Spruit, et al.,

2010)

Design

science

46 Their research presents a competence model and a

maturity matrix for software product management.

The model is aimed to be used by product software

companies as a solid basis for product software process

improvement. This paper is selected to bring an

understanding of the characteristics that should be

performed by a product software.

Bosch and

Bosch-

Sijtsema

(2010a)

Case study

in 3 projects

in a

company

13 In their research, they studied the relation between

large-scale and agile approaches to global software

development projects. They present “ architecture-

centric software engineering” as an integration of best

practices at the case study companies. Their approach

attempts to remove inter-team dependencies to bring

more efficiency and productivity in global software

development projects.

This paper introduces dependency as an important

concept in task coordination. In this case, dependency

is related to the processes and costs of communication,

integration, and interaction.

Noll,

Beecham, and

Richardson

(2010)

Systematic

literature

reviews of 26

papers

140 They identified eight categories of barriers: geographic

distance, temporal distance, linguistic and cultural

distance, fear and trust, problems stemming from

organizational structure, process issues, barriers

deriving from infrastructure, and barriers due to

product architecture. Moreover, to addressing these

obstacles, seven categories of solutions emerged:

approaches to address language and cultural

differences; techniques for promoting trust and

overcoming fear; communication infrastructure;

management interventions; organizational structures;

and distributed development processes.

Since distance issue becomes the top barrier, solutions

attempt to overcome this by providing more in person

communication experiences (e.g. online face-to-face

meetings); by adapting processes and organizational

structure to address delays; and by providing

infrastructure and processes to promote knowledge

sharing in a co-located setting.

This paper becomes a gate to what have been studied

that brings a broad knowledge about the challenges

and solutions to cope the barriers in global software

projects.

References and Appendices

129

Authors
Type of

Research

Number

of

Citations

Summary

Anh, Cruzes,

and Conradi

(2012)

Empirical

study of 28

papers

16 This article presents more comprehensive knowledge

on how resources dispersion effects to the coordination

mechanism and its impact on the performance in

global software projects. This study identified five

common dispersion dimensions: geographical,

temporal, cultural, work process and organizational

dispersion. They found that these dimensions could

bring impacts to the team performance indirectly by

affecting the team communications. Unfortunately, the

article does not detail on the communication levels

and aspects affected by the dispersion dimensions. It

brings an opportunity for further exploration in our

research.

Richardson,

Casey,

McCaffery,

Burton, and

Beecham

(2012)

Case studies

in a global

software

engineering

projects in

three

companies

65 They found that several companies are struggling with

the successful implementation of global software

engineering. They propose Global Teaming as a

software process which includes specific practices and

sub-practices. The goal of their approach is to improve

the quality of software product by implementing

efficient software processes.

This paper brings the example of how global software

engineering is applied in product software development

processes.

Mishra,

Mishra,

Colomo-

Palacios, and

Casado-

Lumbreras

(2013)

Systematic

literature

reviews of

144 articles

2 This paper brings the bridge to the previous researches

on how to manage quality in global software

engineering projects. The paper arranges the studies

into three main concepts: Quality Assurance, Process,

and Verification and Validation.

References and Appendices

130

Table 9-2 Task Coordination Concept Matrix

Articles Summary

C
o
n
tr

o
l

C
o
m

m
u
n
ic

a
ti
o

n

S
ta

k
eh

o
ld

e
rs

D
ep

en
d
en

cy

K
n
o
w

le
d
g
e

T
o
o
l

P
er

fo
rm

a
n
ce

Š mite (2007)

In her thesis, Š mite mentions that building team

cohesion by focusing on project tailoring does not

only become managers’ concern. It should become a

consideration of all roles or stakeholders of the

projects.

 ++ +++

Deshpande et

al. (2011)

Their study addresses coordination strategy from the

vendor’ s perspective. They revealed that process

interdependency is a critical factor in coordination

tasks, especially in large-scale development projects.

Several roles such as onsite coordinator, cross-site

delegates and liaisons are needed to improve cross-

site communication.

 + ++ +++

Ramasubbu,

Cataldo, Balan,

and Herbsleb

(2011)

The paper explains that variations in characteristics

of dispersed teams lead to different project

performance outcomes. A project performance is

measured by considering its development

productivity, process quality, and profits. The study

revealed that by distributing their development

across longer distance, companies improve their

productivity but also decrease their quality

significantly. They also notice productivity and

quality contribute to higher profit positively.

 ++ +++

Portillo-

Rodrí guez,

Vizcaí no,

Piattini, and

Beecham (2012)

This paper a systematic mapping review which

aimed to discover the available tool involved in

highly distributed teams that can support

communication, coordination, and control. Most of

the tools are used for communication, project

management, and knowledge sharing.

++ ++ + +++ +

Sudhakar (2013)

In his research, Sudhakar revealed six CFSs in

offshore software development projects: trust,

efficient communication, cultural understanding,

relationship between client and vendor, contract

type and efficient knowledge transfer.

 +++ +++ +++

Smirnova,

Mü nch, and

Stupperich

(2014)

Global Canvas describe the activity roadmaps that

should be set up by companies when establishing

global software development collaborations. The goal

of model is proposed to help companies to manage

and control projects to complete software projects

successfully.

+++ ++ +

Legends:

 +++ : The concept is the focus of the paper

 ++ : The concept is introduced and well elaborated.

 + : The concept is introduced but not explained in more detail

 Blank : The concept is not introduced

References and Appendices

131

Appendix C. Company Profiles

C.1 AlphaSoft

AlphaSoft is a product software company which offers Software Solutions, IT Outsourcing,

BPO and Staffing Services. AlphaSoft was started in 1992. Now, the company network is spread

in the Netherlands, Belgium, Germany, Switzerland, Norway, Sweden and Romania, where

Dutch companies in the Netherlands are their target market.

AlphaSoft has an ambition to grow internationally. They start to recruit professionals from

other countries and developing a remote office to support the development process in Romania.

Their flagship product is ERP software, which focuses on specific functions such as building

management system, electronic banking and point of sales, HR software, and CRM system.

The product is prepared for industry-specific market such as construction, financial sector,

government, supply chain, education, retail, and healthcare.

C.2 BetaSoft

Our interviews at BetaSoft were performed with the Technology Team in Business Solution

organization. BetaSoft itself is a product software company that consists of three main

organizations: Cloud Solution, Business Solution, and Specialized Solution. At Business

Solution, there are five major disciplines: Marketing, Sales, Product Marketing, Customer

Service, and Technology where each discipline is led by a director. The Technology Team

consists of some roles: architect, UX designer, product management, and development. The

development where spread in several countries. The development of global product is mainly

done in Kuala Lumpur (KL) and for the localization solution are performed in some countries

such as Spain, Belgium, and the Netherlands.

The development office in Kuala Lumpur was started in 1999. There were several reasons

behind the development of the remote office:

1. Difficulties in finding enough resources in the Netherlands

2. Lower salary for human resources

3. As a big city, Kuala Lumpur provides Location was selected where KL is a big city,

and a lot of people with technical education, combination of the facility, and English is

good compared to some other countries

4. They (government) facilitate the college with multimedia (Multimedia University)

5. KL bring people from other countries

C.3 GammaSoft

GammaSoft is a holding company that acquires many software companies from different

countries to spread its network. Each subsidiary is acting as GammaSoft representative office

as well as local development products. As a holding company, GammaSoft also develop ERP

solution software which is distributed and operated globally. The ERP solution has several core

capabilities in financial management, HR management, procurement, and asset management.

The software is aimed to be distributed all over the world, not only for the Netherlands market,

and not limited to specific types of industries.

The ERP solution is built by the help of two main partners. The first partner in Poland is

a consultant that help GammaSoft for the product planning, requirements engineering, and

parts of product release management. The other partner in India is focusing only on the

References and Appendices

132

software production. Meanwhile, GammaSoft itself is working on the product portfolio

management and sales activities.

Two interviews were performed in different scope of organizations. First interview was done

with the Service Delivery Manager from Business Application department, a unit that support

internal system for Unit4. This business unit has a partnership with the development partner

for the system development, implementation, and operation of IT system in GammaSoft office

in the Netherlands. The second interview was conducted with the Global Lead Data Architect

who represents GammaSoft as a holding organization.

C.4 DeltaSoft

DeltaSoft has been running as a product software companies for 26 years. Currently, it has two

sales offices in Belgium and Germany. DeltaSoft is targeting mainly customers in the

Netherlands and those two countries, but are not limited to local companies but also

international companies. Currently, they have more than 1,500 customers. They built an ERP

product that can be configured specific businesses such as fleet management, facility

management, and asset management.

To improve its product because of the needs of new technology adoption and greater scale

of development effort, DeltaSoft builds a partnership with a software company in Romania.

This partner provides additional human resources to work as part of DeltaSoft’s engineers

remotely.

C.5 ZetaSoft

In contrast with previous companies, ZetaSoft does not perform software product

engineering globally. ZetaSoft provides single ERP software package for various business

purposes such as financial, logistics, and HR management. At this time, ZetaSoft is preparing

a new product that serves as a platform functioning as a software generator. It is expected to

make developers can generate a software through configuration without having to build the

software from scratch. The new platform is also designed to be accessible through cloud that

enables ZetaSoft to create new business models. ZetaSoft's target market is companies in the

Netherlands.

References and Appendices

 133

Appendix D. Appendix ICoding scheme

The following table presents the codes that refers to the interviews performed with experts for

the problem investigation and method validation. To keep the confidentiality, we replace the

interviewee’s names with their job position.

Code Purpose APA Reference

iv-a-1 Problem investigation interview at

AlphaSoft

(Scrum Master, personal communication,

January 10, 2017)

iv-a-2 Problem investigation interview at

AlphaSoft

(Unit Manager, personal communication,

January 10, 2017)

iv-z-1 Problem investigation interview at

ZetaSoft

(Platform Manager, personal

communication, January 27, 2017)

iv-b-1 Problem investigation interview at

BetaSoft

(Technology Director, personal

communication, February 3, 2017)

iv-b-2 Problem investigation interview at

BetaSoft

(Product Manager, personal

communication, February 3, 2017)

iv-d-1 Problem investigation interview at

DeltaSoft

(Service Delivery Manager, personal

communication, February 7, 2017)

iv-d-2 Problem investigation interview at

DeltaSoft

(Global Data Architect, personal

communication, February 3, 2017)

iv-c-1 Problem investigation interview at

GammaSoft

(R&D Manager, personal communication,

February 22, 2017)

iv-c-2 Problem investigation interview at

GammaSoft

(Team Leader, personal communication,

February 3, 2017)

va-p1-1 Validation interview (Researcher, personal communication,

May 11, 2017)

va-p2-1 Validation interview at AlphaSoft (Scrum Master, personal communication,

May 16, 2017)

va-p3-1 Validation interview at BetaSoft

with the Technology Director

(Technology Director, group discussion,

June 8, 2017)

va-p3-2 Validation interview at BetaSoft

with the Product Manager

(Product Manager, group discussion,

June 8, 2017),

va-p4-1 Validation interview (Student Assistant, personal

communication, June 13, 2017)

va-p5-1 Validation interview at DeltaSoft (Service Delivery Manager, personal

communication, June 16, 2017)

References and Appendices

 134

Appendix E. Method Association

S1..S5 : Activity group (Section 5.2.2)

L1..L7 : Literature (Section 3.3)

CA..CD : Companies (Section 4.2)

Table 9-3 Association Matrix for the Activities

Group ACTIVITIES L1 L2 L3 L4 L5 L6 L7 CA CB CC CD

S1 Product management planning

x

x

Reward achievement

x

Determine task allocation

x

Set goals

x

x x x x

Determine task schedule

x

Define collaboration strategy

x

Establish process collaboration

x

Identify organization V&M x

Establish SE method

x

S2 Identify socio-cultural profiles

x x

x x

x

Identify required knowledge

x

Identify challenges

x

x x x x

Identify situational factors

x x

S3 Determine organization structure

x

x

Role assignment

x

x

x x

Assign onsite coordinator

x

Identify supporting tools

x x

S4 Relocating team x

Optimize asynchronous tool x

Establish communication norm x

x

x x

Conduct site visit x

x x

x

Facilitate meeting

x

x

x x

Optimize direct communication

x

x x x x

Manage impediments

x x

x

x x x x

Perform team pairing

x x

x

Encourage collaboration

x

x

Determine task schedule

x

x

Manage knowledge internalization

x

Conduct team building

x

x

Conduct cognitive assessment

x

Assign onsite coordinator

x

x x x x

Determine task allocation

x

x

x x x x

Manage knowledge externalization

x x x

x x x

References and Appendices

135

Group ACTIVITIES L1 L2 L3 L4 L5 L6 L7 CA CB CC CD

S4 Build social capital

x

x x

x

Form virtual teaming

x

x

x

Identify required knowledge

x

Determine coordination mechanism

x x

Establish standardization in reporting

x

Apply communication norm

x

Establish work product collaboration

x

Establish process collaboration

x

x x x x

Distribute task schedule

x

Determine communication norm

x x

Define work product quality
standardization

x x

Standardize process

x x x

S5 Organize process improvement

x

x x

Continuous improvement

x

CONCEPTS L1 L2 L3 L4 L5 L6 L7 CA CB CC CD

ROLE x x

CHALLENGE x

FORMAL TRAINING x

KNOWLEDGE BASE x x x

INDIRECT COMMUNICATION x

COMMUNICATION PROTOCOL x

SE STRATEGY x

WORK PRODUCT x x x x

CORPORATE STRATEGY x

TEAM x x x x

INTERNALIZATION x

SITE VISIT x x

EXTERNALIZATION x

DIRECT COMMUNICATION x

COGNITIVE ASPECT x

TEAM PAIRING x x

VIRTUAL TEAMING x

TOOL x

COORDINATION MECHANISM x x x x

COMMUNICATION BROKER x x x

PRODUCT MANAGER x x x

ASYNCHRONOUS COMMUNICATION x x x x x

PRODUCT OWNER x x

IMPEDIMENT x x

FEATURE OWNER x x

KNOWLEDGE x x x

References and Appendices

136

CONCEPTS L1 L2 L3 L4 L5 L6 L7 CA CB CC CD

DEVELOPMENT MANAGER, LINE MANAGER x x x x

(VIRTUAL) MEETING x x x x

SCRUM MASTER, FACILITATOR x x

SOCIO-CULTURAL x x x

MANAGEMENT BOARD x

ORGANIZATIONAL SUPPORT x

TECHNOLOGY BOARD x

 137

Appendix F. Method Base

F.1 PDD of Task Coordination Method v.4

Business Process
Analysis

Organization Situational
Analysis

Identify strategy

Prepare change management plan

Assess situational factors

Identify coordination profile

Identify types of dependencies

Coordination Support
Analysis

Assess coordination support

[need support]

Add required collaboration support as non
functional requirements

Identify gap of requiment

Identify required support

Task Coordination

Perform routine activities

Determine appropriate control mechanism

Determine appropriate communication
mechanism

Finalization and Improvement

Determine improvement plan

Review current practices

[else]

BUSINESS STRATEGY

PRODUCT MANAGEMENT

STRATEGY
CHANGE MANAGEMENT

PLAN

SITUATIONAL FACTOR
2

DEPENDENCY
4

COORDINATION PROFILE
1

ORGANIZATIONAL

SUPPORT

ROLE

FUNCTION

TOOL SUPPORT

SUPPORT GAP ANALYSIS

TASK

ID

Date

Status/Progress

Target

ACTOR

ID

Name

Superordinate

IMPEDIMENT

ID

Descrip tion

Date

Status

CONTROL MECHANISM

COMMUNICATION

MECHANISM

STRATEGY

OBJECTIVE

d

CHALLENGE
3

COORDINATION PROFILE
1

PERFORMANCE ANALYSIS

IMPROVEMENT PLAN

COORDINATION SUPPORT
5

COORDINATION

MECHANISM

d

GEOGRAPHICAL

CHALLENGE

TEMPORAL CHALLENGE

SOCIO-CULTURAL

CHALLENGE

o

KNOWLEDGE GAP

SUPPORT REQUIREMENT

NON FUNCTIONAL

REQUIREMENT

Requirement ID

Description

Type

Owner

PROCESS

RESOURCE

KNOWLEDGE

CHALLENGE
3

DEPENDENCY
4

Additional Notation:

To maintain PDD s readability, the superscript number states that the two

concepts with the same number are identical

COORDINATION SUPPORT
5

address

win

1..n

1..n

1..n

1..n

1..n

1..n

SUPPORT DIFFERENCE

1..n

1..11..1

1..n

0..n

0..n

0..n

1..n

1..n

0..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n1..n

1..n

1..n1..n

1..n1..n

1..n

1..n

1..n

1..n

1..n

0..n

0..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

INITIAL

MANAGEDDEFINED

cOPTIMIZED

QUANTITATIVELY

MANAGED

COLLABORATION TOOL

PROJECT MANAGEMENT
TOOL

KNOWLEDGE
MANAGEMENT TOOL

o

COMMUNICATION TOOL

characterize

characterize

has

has

perform

use

rais

e

select,

perform

overcome

aid

1..n

overcome

manage

determine

suggest

Perform coordination meeting with cross
functional teams

TEAM

PRODUCT

MANAGER

PRODUCT OWNER

MANAGEMENT

PRODUCT BOARD

MEMBER

Figure 9-1 PDD of the high level GTC Task Coordination Method

 138

Perform Routine
Activities

Receive impediments

Analyze task status

Obtain impediments

Analyze causality

[reactive] [active]

[Impediment is
identified][someone initiates

impediments]

Identify the needs of coordination

[else]

[else]

COORDINATION

MECHANISM

ROOT CAUSE

ANALYSIS

Impediments ID

Affected tasks

Invo lved Actors

TASK

ID

Date

Status/Progress

Target

IMPEDIMENT

ID

Description

Date

Status

ACTOR

ID

Name

Superordinate

Line Manager, Functional Manager

Obtain periodic report

1..1

1..1 map

1..n

1..n

map

map

1..1

1..n

1..n

1..1

refer

Figure 9-2 PDD of "Perform Routine Activities"

Determine appropriate control mechanism

Facilitate self-organizing
team

Supervise directly

Identify team self-organizing capability

Initiate tasks

Allocate tasks

Set up meeting sessions

Help team to identify issues

Encourage team to define solution

Help the team self-organized tasks

Provide
standardization

Provide standardization of work processes

Provide standardization of outputs

TASK

ID

Date

Status/Progress

Target

ACTOR

ID

Name

Superordinate

TASK ALLOCATION

PLAN

COORDINATION

MEETING

IMPEDIMENT

ID

Description

Date

Status

SPRINT BACKLOG

TEAM

SOLUTION

WORK PROCESS

OUTPUT

WORK PRODUCT

Quantity

Quality

DOCUMENTATION

STANDARDIZATION

MUTUAL

ADJUSTMENT

DIRECT SUPERVISION

Custom Notation:

In PDD language, it is not appropriate to have
direct connection from an OPEN ACTIVITY
WITH SUB-ACTIVITIES to a CONCEPT. But
since some OPEN ACTIVITY WITH SUB-
ACTIVITIES describe a particular coordination
practices, we introduce this new arrow that
connect OPEN ACTIVITY WITH SUB-ACTIVITIES
to a CONCEPT to increase the readability and
simplify the model.

CONTROL

MECHANISM

c

1..n refer to

1..1

1..1

1..n

refer to

1..n

1..n

1..n

discussed
in

resolve

1..n

1..n

1..n

1..n

1..n1..n

ENGINEER

CUSTOMER

PRODUCT OWNER

MANAGEMENT

o

Figure 9-3 PDD of "Determine Control Mechanism"

 139

COMMUNICATION

TOOL

Determine appropriate
communication mechanism

Improving direct
communication

Providing access

1..1

Identify temporal challenge

[high temporal challenge]

Encourage the use asynchronous
communication

Identify cultural challenge

Encourage the use of syncrhonous
communication to improve teamness

[else]

[socio-cultural gap occur]

Perform cultural internalization

Identify cross-functional communication problem

Assign communication broker

Share organization structure

[else]

[need intermediary,
functionally different]

[else]

Improve communication protocol

SYNCHRONOUS

COMMUNICATION

TEMPORAL

CHALLENGE

ASYNCHRONOUS

COMMUNICATION

SOCIO-CULTURAL

CHALLENGE

CULTURAL

INTERNALIZATION

INDIRECT

COMMUNICATION

COMMUNICATION

BROKER

ORGANIZATION

STRUCTURE

COMMUNICATION

PROTOCOL

COMMUNICATION

MECHANISM

has

1..1

1..n

1..n

complement

1..n

1..n

reduce

1..n

1..n

reduce

1..n

1..n

serve

1..n

1..n

define

1..n

1..n

improve

(ROUTINE)

COORDINATION MEETING

DIRECT

COMMUNICATION

PHONE CALL WEBEX

CULTURE

TEAM CULTURE

ORGANIZATIONAL

CULTURE

NATIONAL CULTURE

1..n 1..n
affect

VIRTUAL OFFICE

Adjust/shift working hours to increase
overlapped collaboration time

ROLE

INDIVIDUAL CULTURE

Attitude

Behaviour

SITE VISIT

Line Manager, Team Leader

Line manager, Liaison officer

Knowledge gap identification

Organize expertise

Identify required knowledge

Identify team s cognitive level

Make knowledge accessible

Analyze knowledge gap
TEAM TEAM MEMBER

EXPLICIT

COGNITIVE

REQUIREMENTS

KNOWLEDGE

TACIT

d

KNOWLEDGE GAP

1..n

is in

1..n

1..nexperience

has

has

1..n

1..n

1..n

1..n

1..n

ACTOR
1

KNOWLEDGE

SHARING MECHANISM

INTERNALIZATION

EXTERNALIZATION

SOCIALIZATION

COMBINATION

d

GROOMING UPDATING

SELF LEARNING

FORMAL TRAINING

MENTORING

PAIRING

o

o

o

KNOWLEDGE BASE
2

o

1..n

1..n

o

1..n

1..1

1..1

1..1

1..1

access,
update

access

store, retrieve

update

1..n

1..n

1..n

eliminate

1..n

1..n

has

o

EMAIL CHAT

ACTOR
1

KNOWLEDGE BASE
2

1..n

1..n 1..n

1..n

1..n
store

st

has

Figure 9-4 PDD of "Determine communication mechanism"

140

F.2 PDD of Task Coordination Method v.5 (Final Version)

Business Analysis

Situational Factor
Analysis

Identify strategy

Prepare change management plan

Assess situational factors

Identify coordination profile

Identify types of dependencies

Coordination Support
Analysis

Assess coordination support

[need support]

Add required tool support as non functional
requirements

Identify gap of requiment

Identify required support

Task Coordination

Perform routine activities

Determine appropriate control mechanism

Determine appropriate communication
mechanism

Finalization and Improvement

Determine improvement plan

Review current practices

[else]

BUSINESS STRATEGY

PRODUCT MANAGEMENT

STRATEGY
CHANGE MANAGEMENT

PLAN

SITUATIONAL FACTOR
2

DEPENDENCY
4

COORDINATION PROFILE
1

ORGANIZATIONAL

SUPPORT

ROLE

FUNCTION

TOOL SUPPORT

SUPPORT GAP ANALYSIS

TASK

ID

Date

Status/Progress

Target

ACTOR

ID

Name

Superordinate

IMPEDIMENT

ID

Description

Date

Status

CONTROL MECHANISM

COMMUNICATION

MECHANISM

STRATEGY

OBJECTIVE

d

CHALLENGE
3

COORDINATION PROFILE
1

PERFORMANCE ANALYSIS

IMPROVEMENT PLAN

COORDINATION SUPPORT
5

COORDINATION

MECHANISM

d

GEOGRAPHICAL

CHALLENGE

TEMPORAL CHALLENGE

SOCIO-CULTURAL

CHALLENGE

o

KNOWLEDGE GAP

SUPPORT REQUIREMENT

NON FUNCTIONAL

REQUIREMENT

Requirement ID

Description

Type

Owner

PROCESS

RESOURCE

KNOWLEDGE

CHALLENGE
3

DEPENDENCY
4

Additional Notation:
To maintain PDD s readability, the superscript number
states that the two concepts with the same number are
identical

COORDINATION SUPPORT
5

address

win

1..n

1..n

1..n

1..n

1..n

1..n

SUPPORT DIFFERENCE

1..n

1..11..1

1..n

0..n

0..n

0..n

1..n

1..n

0..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n1..n

1..n

1..n1..n

1..n1..n

1..n

1..n

1..n

1..n

1..n

0..n

0..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

INITIAL

MANAGEDDEFINED

cOPTIMIZED

QUANTITATIVELY

MANAGED

COLLABORATION TOOL

PROJECT MANAGEMENT
TOOL

KNOWLEDGE
MANAGEMENT TOOL

o

COMMUNICATION TOOL

characterize

characterize

has

has

perform

use

rais

e

select,

perform

overcome

aid

1..n

overcome

manage

determine

suggest

Determine software development governance

Perform coordination meeting with cross
functional teams

TEAM

PRODUCT

MANAGER

PRODUCT OWNER

MANAGEMENT

PRODUCT BOARD

MEMBER

Figure 9-5 PDD of GSE task coordination Method (Main Method’s Final Version)

 141

Appendix G. PDD Documentation

Table F-1 Table of Processes

Activity Sub Activity Description

Business

Analysis

Identify strategy The organization identifies BUSINESS STRATEGY,

the business OBJECTIVE, and PRODUCT

MANAGEMENT STRATEGY that affects to the

practices of task coordination.

Prepare change

management plan

The organization prepare the approaches to support

the employees for the organizational changes.

Situational

Factor

Analysis

Assess situational

factors

The organization needs to recognize its l factors that

could affect the practices in coordinating team

members to synchronize their TASKs and WORK

PRODUCTs.

Identify types of

dependencies

Coordinating tasks means managing inter-

DEPENDENCYs among the TASKs. Thus, the

organization must know how the TASKs and the

WORK PRODUCTs are dependence each other and

what kind of resources that are needed by other

teams.

Identify coordination

profile

The organization should determine what level of its

fluency in coordinating tasks (Table 6-3). The

profiles are used to help organization in continuously

measuring the performance in managing tasks

among distributed members and improving their

practices.

Coordination

Support

Analysis

Identify required

support

The organization should determine its

ORGANIZATIONAL SUPPORT (such as

organizational structure, governance, or actors) and

TOOL SUPPORT that can help managers,

facilitators, or team members to perform task

coordination.

Assess coordination

support

The organization evaluate the required

COORDINATION SUPPORTs to perform task

coordination

Identify gap of

requirement

The organization performs a comparison between the

requirement and the availability of the supports to

provide SUPPORT GAP ANALYSIS.

Add required tool

support as non-

functional

requirements

Deriving the SUPPORT REQUIREMENT from

SUPPORT GAP ANALYSIS, when an organization

recognizes missing TOOL SUPPORT, the missing

supports should be added to non-functional

requirements list (Schwaber, 2004).

Determine software

development

governance

When the lack of support is related to the

ORGANIZATIONAL SUPPORTs such as no clear

authorities, functions, roles, the organization should

declare the requirements in its software development

governance.

Activity Sub Activity Description

142

Task

Coordination

Perform routine

activities

The routine activities are used to monitor the

current project status, and processing occurred

impediments. Some organizations choose to be more

proactively acquiring the information before any

impediment occurs by conducting a routine meeting

(e.g. daily scrum meeting) or site visit.

Determine appropriate

control mechanism

The organization should identify the appropriate

mechanisms that suit with the SITUATIONAL

FACTORs. The chosen mechanisms can be one of

the practices or a combination of them.

Determine appropriate

communication

mechanism

The organization identifies the appropriate practices

for (especially, not limited only to) horizontal

interaction among distributed team members.

Organization also identifies the appropriate practices

to facilitate the KNOWLEDGE flows and to balance

the KNOWLEDGE and expertise among TEAM

MEMBERs.

Perform cross-

functional

coordination meeting

The organization should also perform

COORDINATION MEETING with cross functional

teams that involves different teams within a project

or involves PRODUCT MANAGEMENT BOARD.

Perform

routine

activities

Obtain periodic report The MANAGER receives periodic report that

present the latest status of the TASKs.

Receive impediments An ACTOR can report an IMPEDIMENT to the

MANAGER

Analyze task status The MANAGER analyze the TASK status

proactively by performing SITE VISIT, making a

PHONE CALL, or during a COORDINATION

MEETING.

Obtain impediments The MANAGER identifies any IMPEDIMENTs

occur in the distributed TEAM.

Analyze causality The MANAGER analyze the source and the cause of

the issue and report it in the ROOT CAUSE

ANALSYS

Identify the needs of

coordination

Based on the ROOT CAUSE ANALYSIS, the

MANAGER identifies the needs of coordination

mechanisms which will be defined in the next

activity.

Determine

appropriate

control

mechanism

Identify team self-

organizing capability
The organization checks the team members’ ability

in managing the dependencies

Supervise directly If the team could not manage the dependencies by

themselves, it is better that the MANAGER or the

facilitator (such as Scrum Master) supervise the

works directly.

Facilitate self-

organizing team

The MANAGER shares the authority in organizing

TASKs and RESOURCEs to the TEAM.

Provide

standardization

The MANAGER provides the standardization of

WORK PROCESSes (or way of working) and the

WORK PRODUCTs for the team.

Activity Sub Activity Description

143

Supervise

directly

Initiate task The MANAGER defines the TASKs that should be

executed

Allocate task The MANAGER allocates the TASKs to the

appropriate TEAM MEMBERs based on specific

TASK ALLOCATION PLAN.

Facilitate self-

organizing

team

Set up meeting

sessions

The MANAGER (or a facilitator such as Scrum

Master) sets up a COORDINATION MEETING

session. It is suggested to follow Agile principles to

conduct daily meeting also planning, review, and

retrospective meeting which are believed can help

the organization to improve the teamness among

distributed TEAM MEMBERs.

Help team to identify

issues

The TEAM should be able to identify the issues by

themselves with the helps or support from the

MANAGER.

Encourage team to

define solution

As well as identifying the issues, the TEAM should

also be able to determine the appropriate solution to

address the issues.

Help team to organize

task
Without the MANAGER’s intervention, the TEAM

have the responsibility of the TASK distribution, or

in other words, TEAM MEMBERs must proactively

take the appropriate TASKs

Provide

standardization

Provide

standardization of

work processes

Standardizing work processes by providing work

guidelines or tools that support the collaboration

will lead to a faster work performance.

Provide

standardization of

outputs

Standardizing the quality of work outputs and the

reporting (e.g. documentation) helps the transition

of chain processes easier and faster by reducing the

dependency on knowledge and resources.

Determine

appropriate

communication

mechanism

Encourage the use of

synchronous

communication to

improve teamness

The oorganization (whatever the challenges are)

should try to optimize the synchronous

communication as much as possible; even it only has

limited hours of overlapped working hours with the

remote teams.

Identify temporal

challenge

The organization should determine the issues caused

by the temporal challenges, such as difficulties in

understanding the requirements because of limited

collaboration/meeting time.

Improving direct

communication

The TEAM LEADER or MANAGER tries to

improve the limited of synchronous communication.

Identify cultural

challenge

The MANAGER identifies any SOCIO-CULTURAL

CHALLENGES that could harm the communication

among distributed teams.

Perform cultural

internalization

The organization conduct an event that enable the

dispersed teams with different cultural background

to learn each other. There are several ways to

perform cultural internalization such as SITE VISIT

and team building

Identify cross-

functional

The MANAGER tries to identify whether any issues

in the communication between the distributed teams

that have different functional tasks.

144

communication

problem

Providing access The organization provide the access to the remote

team.

Improve

communication

protocol

The organization can improve the communication

protocol by providing a form or a structure of

message for email or distributed documents that

have been agreed upon by all teams.

Organize expertize The organization identifies the location of the expert

and the expertise he or she possesses.

Knowledge gap

identification

The organization identifies the gap of knowledge

among distributed teams.

Make knowledge

accessible

The organization selects the appropriate knowledge

transfer approaches based on the types of the

available and required KNOWLEDGE (Section

5.1.4).

Providing

access

Assign communication

broker

In a case where it is difficult to have DIRECT

COMMUNICATION, and INDIRECT

COMMUNICATION through a mediator can be

done by assigning a COMMUNICATION BROKER.

Share organization

structure

By sharing the organization structure, team

members can know easily to whom they want to talk

with when they need to collaborate with (Deshpande

et al., 2011)

Improving

direct

communication

Adjust working hours Adjusting working hour from one or both dispersed

locations will increase opportunity to have more

collaboration time

Encourage the use

asynchronous

communication

Organization can communicate with other team

members at different countries to complement the

limited direct synchronous communication such as

sending the requirements through email or remind

his/her colleagues to check the requirement updates

at the SharePoint.

Knowledge gap

identification
Identify team’s

cognitive level

The organization identifies the level of knowledge

and expertise of the teams.

Identify required

knowledge

The organization identifies the required knowledge

for the team to be able to perform assigned TASKs.

Analyze knowledge

gap

The organization compares the available and the

required knowledge to determine the KNOWLEDGE

GAP.

Finalization

and

Improvement

Review current

practices

The organization performs a holistic

PERFORMANCE ANALYSIS at the end of the

project (in Agile it can be a review or retrospective

meeting) and reviews the current coordination

practices.

Determine

improvement plan

The organization determine the current

COORDINATION PROFILE and plan to improve

the future coordination practices.

Table F-2 Table of Concepts

Concept Description

145

STRATEGY STRATEGY is a unified, comprehensive. and integrated

plan that is designed to ensure that the basic objectives of the

enterprise are achieved (Glueck, 1980, p. 9)

BUSINESS

STRATEGY

The STRATEGY which is developed to achieve the OBJECTIVEs in

a business environment (Fitzgerald & Stol, 2017; Glueck, 1980)

PRODUCT

MANAGEMENT

STRATEGY

The STRATEGY which is defined in managing software

productization that is aligned with BUSINESS STRATEGY

(Fitzgerald & Stol, 2017; Fricker, 2012)

OBJECTIVE OBJECTIVE is the goal that want to be achieved by an organization

through its STRATEGY.

CHANGE

MANAGEMENT

PLAN

Change management in this context is related to the changes of

organization’s strategic initiatives or objectives. It means of perceiving

the change in strategy, business processes, the software process

management approaches that could impact the business performance

(Nidumolu, 1996).

SITUATIONAL

FACTOR

Various aspect that could impact to the configuration of a method

(Brinkkemper et al., 1999; van de Weerd & Brinkkemper, 2009)

CHALLENGE Particular issue that is associated to global software engineering

caused by the dispersion of the team members (Olsson, Conchúir, et

al., 2006).

GEOGRAPHICAL

CHALLENGE

GSE CHALLENGE caused by the distance between distributed

partners involved in the project (Šmite, 2007)

TEMPORAL

CHALLENGE

GSE CHALLENGE characterized by the level of working hours

overlay (Šmite, 2007).

SOCIO-CULTURAL

CHALLENGE

GSE CHALLENGE caused by the difference level of social, ethnic,

and cultural fit between teams from different national locations

(Šmite, 2007).

KNOWLEDGE GAP GSE CHALLENGE caused by the different level of KNOWLEDGE

and expertise or difficulties to access the source of KNOWLEDGE

among distributed teams (Kotlarsky et al., 2008)

CONTEXTUAL

CHALLENGE

GSE CHALLENGE caused by the organizational heterogeneity in

process maturity and inconsistency in work practices, methodology, or

tools (Šmite, 2007)

DEPENDENCY “Extent to which a unit’s outcomes are controlled directly by or are

contingent upon the actions of another unit” (Victor & Blackburn,

1987, p. 490)

RESOURCE RESOURCE can be an ACTOR, a WORK PRODUCT, or an effort

of an ACTOR that performs as a running TASK; or is produced or

used in a running TASK (Crowston, 1994)

PROCESS a series of actions or operations conducing to an end (“Process,” 2017)

KNOWLEDGE “The fact or condition of knowing something with familiarity gained

through experience or association” (“Knowledge,” 2017)

COORDINATION

PROFILE

Organization capabilities categorization in managing coordination

tasks among globally distributed team. The profiles are adopted from

CMMI and task coordination pyramid (Section 5.2)

Concept Description

146

COORDINATION

SUPPORT

The infrastructure of task coordination in a form of

ORGANIZATIONAL SUPPORT and TOOL SUPPORT

ORGANIZATIONAL

SUPPORT

The support from organization infrastructure that can be form of

ROLEs, business FUNCTIONs, the organization structure itself, and

the organization STRATEGY.

TOOL SUPPORT The COORDINATION SUPPORT in a form of physical artifacts

such as IT system or project management artifacts (e.g. burn-down

chart)

ROLE A position that an ACTOR gets by its virtue. ROLE is not always

someone’s job position.

FUNCTION A task that should be performed by a ROLE.

ACTOR The one who plays ROLE.

KNOWLEDGE

MANAGEMENT

TOOL

A tool that is used to facilitate knowledge sharing.

PROJECT

MANAGEMENT

TOOL

A tool or project artifacts that is used to manage or monitor the

project.

COMMUNICATION

TOOL

A tool that facilitates communication.

COLLABORATION

TOOL

A tool that facilitate work collaboration.

SUPPORT GAP

ANALYSIS

The analysis of task coordination support deficiency in a GSE project.

SUPPORT

REQUIREMENT

The analysis of required support to facilitate task coordination.

NON-FUNCTIONAL

REQUIREMENT
A list of requirements that are not related to the (developed) system’s

behavior (Schwaber, 2004).

TASK The smallest unit of work that is assigned to the team member

(Cossentino, Gaglio, Henderson-Sellers, & Seidita, 2006).

IMPEDIMENT Anything that can slow down the team in performing their TASKs

(Schwaber, 2004).

COORDINATION

MECHANISM

An approach of task coordination.

CONTROL

MECHANISM

A mechanism to manage dependencies among distributed team

members.

COMMUNICATION

MECHANISM

An organic coordination mechanism to manage dependencies through

providing feedback and mutual adjustment (Van De Ven et al., 1976).

TEAM A set of TEAM MEMBER

PRODUCT BOARD

MEMBER

A group of people from with ROLEs who become the steering

committee of software productization.

MANAGEMENT Or board of management, they who play the “C” role.

PRODUCT

MANAGER

A ROLE (also can be a job position) who has responsibility in

communicating the voice of customer (in this context the management

board also business users e.g. Sales team) and realizing the product

software roadmap.

PRODUCT OWNER A ROLE who articulates the customer’s voice into user stories.

PERFORMANCE

ANALYSIS

An analysis of a project performance both technical and budget

performances.

Concept Description

147

IMPROVEMENT

PLAN

A set of tasks or practices that should be performed in the future to

have better performance than the current period.

INITIAL A state where the company has not been specifically defined functions

in business processes and organizational structure regarding GSE and

tend to be reactive in dealing with problems in the coordination of

tasks (Table 5-5).

MANAGED A state where the organization has managed task coordination in GSE

projects by using current organizational processes and structure

(Table 5-5).

DEFINED A state where the organization has been specifically defined functions

in business processes and organizational structure regarding task

coordination in GSE projects (Table 5-5).

QUANTITATIVELY

MANAGED

A state where the organization has defined the process control and

able to contextualize the information. The distributed team also have

considered the workspace awareness (Table 5-5).

OPTIMIZING A state where the organization also continuously improve the

approach in managing task coordination in GSE projects (Table 5-5).

ROOT CAUSE

ANALYSIS

An approach of problem solving by identifying the root causes of the

problems

SPRINT BACKLOG A list of tasks that should be accomplished within a sprint (Schwaber,

2004).

TASK ALLOCATION

PLAN

A plan that determine the most optimize way to allocate tasks

CUSTOMER In this context, CUSTOMERs are the business users that represents

the real customer of a product software company, such as sales and

marketing team.

ENGINEER They who have the functions related to the product realization., for

example developers and architects.

DIRECT

SUPERVISION

A coordination approach that is achieved by having one individual

take responsibility for the work of others (Mintzberg, 1979)

MUTUAL

ADJUSTMENT

A coordination approach that is achieved by sharing the control of the

work rests in the hands of the doers (Mintzberg, 1979)

COORDINATION

MEETING

A formal meeting among (distributed) team members where

coordination is also performed.

SOLUTION A mean of problem solving.

DIRECT

COMMUNICATION

A communication practice that involves active listening among

partners.

PHONE CALL Clear

WEBEX A video conference product by Cisco (Cisco, 2017)

SITE VISIT An official travel between a company to visit its remote facility or

partner (vice versa)

VIRTUAL OFFICE A formal or business office where the team members are separated by

distance but be able to communicate through online communication

network (Van Gameren, Van Solingen, & Dullemond, 2013).

SYNCHRONOUS

COMMUNICATION

The communication among partners is done concurrently (Olsson,

Conchúir, et al., 2006)

ASYNCHRONOUS

COMMUNICATION

The communication among partners is done not in a real-time

(Olsson, Conchúir, et al., 2006).

EMAIL Clear

Concept Description

148

CHAT Clear

CULTURE “The set of values, conventions, or social practices associated with a

particular field, activity, or societal characteristic” (“Culture,” 2017)

INDIVIDUAL

CULTURE
Someone’s ethical and professional behavior

TEAM CULTURE The behavior of a team that built from the common characteristic of

the team member.

ORGANIZATION

CULTURE

A set of shared attitudes, values, goals, and practices that

characterizes an institution or organization (“Culture,” 2017)

NATIONAL

CULTURE

Similar to the definition of CULTURE and ORGANIZATIONAL

CULTURE, NATIONAL CULTURE is characterized by the common

norms, behaviors, beliefs, and customs of a sovereign nation.

INDIRECT

COMMUNICATION

The communication practice that is perform through a

COMMUNICATION BROKER

COMMUNICATION

BROKER

The person as the intermediary that provides linkages, knowledge

access, and communication bridge between two (or more) dispersed

team members.

ORGANIZATION

STRUCTURE

Clear

COMMUNICATION

PROTOCOL

A set of rules that is used in the asynchronous communication (such

as email) that provide the message content in a structured way.

KNOWLEDGE BASE A repository of KNOWLEDGE.

TACIT A type of KNOWLEDGE that has not been externalized yet

EXPLICIT A type of KNOWLEDGE that has been documented and provided in

a physical way

TEAM MEMBER Clear

COGNITIVE

REQUIREMENT

The level of knowledge and expertise that should be owned by a

knowledge worker.

KNOWLEDGE GAP The difference between the available knowledge owned by the

knowledge workers and the required knowledge to perform a particular

task.

KNOWLEDGE

SHARING

MECHANISM

The mechanism of transferring knowledge into different form, or

facilitating the flow of knowledge among knowledge workers.

INTERNALIZATION The knowledge transformation from EXPLICIT to TACIT.

SELF LEARNING A practice of INTERNALIZATION where TEAM MEMBERs learn

the KNOWLEDGE from the available EXPLICIT KNOWLEDGE by

themselves.

FORMAL TRAINING A practice of INTERNALIZATION where TEAM MEMBERs learn

the KNOWLEDGE from the available EXPLICIT KNOWLEDGE

through a formal event (e.g. classical training) provided by the

company.

EXTERNALIZATION The knowledge transformation from EXPLICIT to TACIT.

SOCIALIZATION The knowledge transformation from EXPLICIT to TACIT.

MENTORING A SOCIALIZATION practice where an expert guides another TEAM

MEMBER and provides advises throughout the task execution

Concept Description

149

PAIRING A SOCIALIZATION practice where two (or more) TEAM MEMBER

with different level of knowledge or expertise work together at the

same task that makes the less expert one can learn directly from the

expert.

COMBINATION The knowledge transformation from EXPLICIT to TACIT.

GROOMING A COMBINATION practice where the KNOWLEDGE is enriched.

UPDATING A COMBINATION practice where the KNOWLEDGE is renewed

because of the latest version is outdated.

 151

Appendix H. PDD Notation

Table G-1 PDD's notations description (van de Weerd & Brinkkemper, 2009)

Notations Descriptions

Process View

Initial state

Standard activity: An activity that contains no further

activities.

Open Activity

Open activity: An activity that consists of a collection of

sub-activities which are expanded in the same diagram or

another diagram.

Closed Activity

Closed activity: A complex activity where its sub-activities

are not expanded since it is known or not relevant in the

specific context.

Open activity with sub-activities. An activity that consists

of a collection of sub-activities which are depicted inside it.

This notation also is used to describe a set of unordered

activities

Branch: A state where the process is split into two or more

routes based on specific criteria.

Transition: A notation that explains the flow of the process.

Forking and Joining. Forking and Joining use the same

notation. Forking is used to start a set of concurrent

activities, and Joining is used as the end state of

parallelism.

 End state

Deliverable View

STANDARD CONCEPT

Standard concept: A concept that contains no further

concepts.

OPEN CONCEPT

Open concept: A concept that consists of an aggregate of

other concepts which are shown in the same or another

diagram.

CLOSED CONCEPT

Closed concept: A complex concept where its sub-concepts

are not expanded in the same diagram since it is not

relevant in the specific context.

Concept with attributes: A concept (can be a form of

standard, open, or closed concept) which describes its

attributes.

in association with

Relationship: A structural relationship that connects two

concepts and specifies how concepts are linked to another.

Aggregation: A specific type of relationship that represents

the relation between a concept containing other concepts.

Generalization: A relationship between a general concept

and more specific concepts.

Connection: Connecting process to delivered or utilized

concepts.

152

Appendix I. Expert Opinion Interview Protocol

Methodological Support for Task Coordination
on Global Software Engineering Project

in a Product Software Organization

Interview Protocol
Department of Information and Computing Science

Utrecht, The Netherlands

Interviewee : _____________________________________
Date & Time : _____________________________________
Interviewers : Carolus Borromeus Widiyatmoko
Research Supervisor : dr. Sietse J. Overbeek
 Prof. dr. Sjaak Brinkempper

First of all I want to thank you for your cooperation and taking the time to conduct this interview. The
purpose of this interview is to gather information on the current practice of task coordination in
distributed software engineering project in your organization.

After the presentation (10-15 minutes), in the following 25-30 minutes, we will run through this list
in the form of an interview. If during the interview you ever feel uncomfortable or if you for any
reason may wish not to answer, you are ever free to do so. This interview will be recorded, will only
be used for this research, and will never be disclosed to third parties.

Then, we define a set of concepts as our method acceptance requirements which have been used in

evaluating research artifacts from previous studies. We adopt concepts from Technology Acceptance

Model (TAM) which are perceived usefulness and perceived ease of use (Polančič et al., 2010, p. 583;

Wagenaar et al., 2017, p. 816). We also consider to evaluate the model based on the criteria in

evaluating a method designed by method assembly approach (Brinkkemper et al., 1999) which are

Completeness, consistency, efficiency, reliability, and applicability.

A. Interviewee Profile (5’)

1. What is your job position and your job roles or functions in this organization related to the
GSE projects?

2. How long (years of experiences) have you been working or involved in GSE projects /
research?

3. How do you estimate the coordination experience level of this organization for managing
interdependencies in GSE projects?

B. Assessment Criteria

Please answer the following questions short answer such as Yes or No, but suggest the interviewee
to give his/her short reason why the answer is ‘No’.

153

Meta-modeling assessment

1. Do you feel that the situational method contains all the method fragments that are
referred to by other fragments in the situational method (Completeness)?

2. Do you think that all the activities, products, tools, and people do not contain any
contradiction and are thus mutually consistent (Consistency)?

3. Do you think that the method is semantically correct and meaningful (Reliability)?

4. Do you think that the method can be perform at minimal cost and effort (Efficiency)?
5. Do you think that stakeholders can apply the method (Applicability)?

Usefulness

6. Do you think the method is useful for you?
7. Do you think that the method enable you to accomplish your tasks more effectively?
8. Do you think that the method increases your productivity?
9. Do you think that the method will help you to increase your experience level in

coordinating tasks in GSE projects?
Ease of Use

10. Do you think that the method is clear and understandable?
11. Do you think that you would find the method easy to use?

Behavioral Intention

12. Do you think that you would have an intention to use the method?
13. Are you going to share the method to your colleagues or use the method for all the

organization?
14. Will you fully use the capabilities of the method?

C. Open Questions (10’)

For experts, elaborate their reasoning if they answered ‘No’ for 1-5.

Suggest the interviewee to answer concisely.

1. What are your initial thoughts on the method?
2. Are you going to bring up any other approaches for the method which are valuable for you

or your organization?
3. What are the strength points of this method?
4. What are the weaknesses of this method?
5. Do you have any suggestions to improve the acceptability of this method?

	Abstract
	Acknowledgement
	Table of Contents
	Table of Figures
	Table of Tables
	Part One: Research Outline
	Chapter 1 Introduction
	1.1 Research Background
	1.2 Problem Statement
	1.3 Research Objectives
	1.4 Research Questions
	1.5 Research Contribution
	1.6 Report Outline

	Chapter 2 Research Method
	2.1 Design Cycle: Research Framework
	2.2 Research Approaches
	2.2.1 Systematic Literature Review
	Systematic Literature Searching
	Concept Matrix

	2.2.2 Semi-structured Interviews
	2.2.3 Expert Opinion
	2.2.4 Situational Method Engineering
	Metamodeling Techniques

	2.3 Plan Validity
	2.4 Research Execution

	Part Two State of The Art
	Chapter 3 Literature Study
	3.1 Global Software Engineering
	3.2 Benefits and Risks of GSE
	3.3 Task Coordination Approaches to Overcome GSE Challenges
	3.3.1 Overcoming Challenges Through Best Practices [L1]
	3.3.2 Adopting Agile in GSE [L2]
	Scrum in Global Software Engineering
	XP in Global Software Engineering

	3.3.3 Adopting PMBOK® in GSE [L3]
	3.3.4 Managing Knowledge Processes in GSE [L4]
	3.3.5 Managing Virtual Teaming [L5]
	3.3.6 GSE Canvas Model [L6]
	3.3.7 Assigning Liaison Officer as Broker [L7]

	3.4 The Literature Study’s Summary

	Chapter 4 Coordination Practices at Product Software Companies
	4.1 Product Software Company
	4.2 Challenges and Practices at Product Software Companies
	4.2.1 AlphaSoft [CA]
	Challenges
	Coordination Practices
	Supporting Infrastructure and Tools
	Important Roles and Functions

	4.2.2 BetaSoft [CB]
	Challenges
	Coordination Practices
	Supporting Tools Infrastructure

	4.2.3 GammaSoft [CC]
	Challenges
	Coordination Practices
	Supporting Infrastructure
	Important Roles and Functions

	4.2.4 DeltaSoft [CD]
	Challenges & Coordination Practices
	Supporting Tools and Infrastructures
	Important Roles and Functions

	4.2.5 ZetaSoft
	Coordination Practices
	Important Roles and Function

	4.3 The Interviews’ Summary

	Chapter 5 Summary of State of the Art
	5.1 Interdependencies in GSE
	5.1.1 Resource Dependency
	5.1.2 Process Dependency
	5.1.3 Knowledge Dependency.

	5.2 Situational Factors of Task Coordination
	5.2.1 Objectives of performing GSE.
	5.2.2 Organizational Distribution
	5.2.3 Software Processes Distribution
	5.2.4 Software Engineering Method
	5.2.5 Experiences in GSE
	5.2.6 Challenges faced by organizations.

	5.3 Task Coordination Approaches: Communication, Control, and Knowledge Sharing
	5.3.1 Communication
	5.3.2 Controlling Dependency and Synchronizing Tasks
	5.3.3 Distributing Knowledge

	5.4 Involved Tools in Task Coordination
	5.5 Organizational Support for Task Coordination

	Part Three Solution Design and Validation
	Chapter 6 Method Design: Towards Methodological Support for Task Coordination
	6.1 Method Construction Preparation
	6.1.1 Situational Factors
	6.1.2 Identify Activity Groups

	6.2 Constructing Task Coordination Methodological Support
	6.2.1 Method Association
	6.2.2 The GSE Task Coordination Framework
	6.2.3 The GSE Task Coordination Method
	Identify enterprise strategy.
	Recognize organization profile.
	Identify task coordination support.
	Determine appropriate task coordination mechanisms.
	Perform process improvement.

	6.3 Primary Conclusion

	Chapter 7 Method Validation: Evaluation and Evolution
	7.1 Global Task Coordination Method Evaluation Scenario
	7.1.1 Method Evaluation Participants
	7.1.2 Method Evaluation Cycles and Criteria

	7.2 Evaluation Results
	7.2.1 1st Evaluation Session
	7.2.2 2nd Evaluation Session
	7.2.3 3rd Evaluation Session
	7.2.4 4th Evaluation Session
	7.2.5 5th Evaluation Session

	Part Four Closing
	Chapter 8 Discussion
	8.1 Evaluation Summary: The Synthesized Findings
	8.1.1 Meta-Modelling Criteria Viewpoint
	8.1.2 Behavioral Intention to Use Viewpoint

	8.2 The Final Global Task Coordination Method
	8.3 Limitations

	Chapter 9 Conclusions
	9.1 Results
	9.2 Future Research

	References
	Appendices
	Appendix A. Interview Protocol
	Appendix B. Systematic Literature Review
	Appendix C. Company Profiles
	C.1 AlphaSoft
	C.2 BetaSoft
	C.3 GammaSoft
	C.4 DeltaSoft
	C.5 ZetaSoft

	Appendix D. Appendix ICoding scheme
	Appendix E. Method Association
	Appendix F. Method Base
	F.1 PDD of Task Coordination Method v.4
	F.2 PDD of Task Coordination Method v.5 (Final Version)

	Appendix G. PDD Documentation
	Appendix H. PDD Notation
	Appendix I. Expert Opinion Interview Protocol

