
Resource-Bounded KARO

Author:
Tim Harteveld

Supervisor:
prof. dr. J-J.Ch. Meyer

June 8, 2017
45 ECTS

Abstract:

Usually, a logic is not concerned with computing power. This is a problem for logic-based agents
that need to react fast to their environment. Especially in complex situations and/or when the
agent has little computing power. The agent must also take into account the time it takes to
complete an action. If the agent needs to change its environment fast it is not useful to react
with an action that takes a long time to complete. Thus there is a constraint on the time a
reaction takes to complete and the time it takes to find a suitable reaction.
In the KARO framework agents can plan a sequence of actions that will fulfil the goals of the
agent. The KARO framework is extended to take into account the two types of time constraints.
A goal of the agent must be fulfilled before a certain point in time. The resource-bounded KARO
framework doesn’t allow action sequences that finish after the end time of a goal. It is also not
allowed to reason about the right action sequence for so long that the found action sequence
cannot be finished in time. The KARO framework is also extended with parallel actions. A goal
can be reached faster if the actions to reach the goal can be performed in parallel.

Contents

1 Introduction 2

2 KARO 2
2.1 Syntax . 2
2.2 Semantics . 4
2.3 Block World Example . 8

3 Adding Time to Actions 11
3.1 Syntax . 11
3.2 Semantics . 12
3.3 Block World Example . 14

4 Parallel Actions 16
4.1 Syntax . 16
4.2 Semantics . 17
4.3 Block World Example . 21

5 Adding Time to Reasoning 22
5.1 Non-standard Logic . 23
5.2 Timed Reasoning Logic . 23
5.3 TRL(KARO) . 23
5.4 Block World Example . 27

6 Discussion 31

1

1 Introduction

Agents perform actions to change their environment. The agents must perform the right actions
in order to achieve their goals. The actions must also be performed in the right order to have the
desired effect. KARO allows agents to plan action sequences in order to achieve their goals. The
framework is introduced in a series of papers. In the basic framework [6,11] the knowledge, abilities
and opportunities of the agent are formalised as well as the results of the actions performed by the
agent. Other papers introduce concepts like observations [7, 8], default reasoning [10] and belief
revision [9].

There is often a time constraint for achieving a goal. When dealing with these time constraints
there are two things the agent needs to take into account. Not only does performing the action
takes time but also finding a suitable sequence of actions to achieve the goal. In this paper, the
KARO framework is extended to take into account these two time constraints. The goal is to
allow an agent to plan and perform actions to achieve its goal before a certain time. The KARO
framework is also extended with parallel actions. A goal can be reached faster if the actions to
reach the goal can be performed in parallel.

The KARO framework is reintroduced in section 2. In section 3 the KARO logic is extended
so that actions take a certain amount of time and wishes are fulfilled before a certain point in
time. In section 4 the KARO logic is extended with parallel actions. And in section 5 the logic is
extended to also take into account the time the agent needs for finding solutions.

2 KARO

The KARO framework allows agents to plan action sequences to achieve their goals. The agent
has the ability to do certain actions and depending on the environment has the opportunity to
execute them. The agent also has knowledge about the state of its environment and the effect
actions have on it. The following definition is based on the definition given in [4].

2.1 Syntax

The syntax of KARO is defined with two languages, L and LC . This is to prevent the agents from
applying higher level operations on themselves. This prevents statements like: I wish to wish to
commit myself to action α and it is implementable to select committing to action α. The higher
level operations in LC can only be applied to statements in L.

2.1.1 Language L

The language L is based on propositional logic and is extended with modal operators for knowledge,
the opportunity to do actions and the capability to do actions. If p ∈ Π where Π is the set of
propositional atoms, i ∈ A where A is the set of agents and α ∈ Ac where Ac is a set of actions
defined later, then the following grammar defines the language L:

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ |Kiϕ |Aiα | 〈doi(α)〉ϕ

The operators for negation, conjunction and disjunction have their standard meaning. The
epistemic modal operator Kiϕ indicates that agent i knows ϕ. Aiα denotes the capability of
agent i to perform the action α. 〈doi(α)〉ϕ is the notation used in dynamic logic [2] for the effect
of doing action α. It denotes that when agent i does action α it can terminate with ϕ holding.
[doi(α)]ϕ is defined to be ¬ 〈doi(α)〉 ¬ϕ, it denotes that the agent is guaranteed to ends up in an
state where ϕ holds afther executing action α. This is different from 〈doi(α)〉ϕ where the agent
is guaranteed to have an opportunity to do α but not the guarantee that this will result in a state
where ϕ holds. The tautology > is defined as p∨¬p and the contradiction ⊥ is defined as p∧¬p.
The implication operator ϕ→ ψ is defined as ¬ϕ ∨ ψ.

2

If a ∈ At where At is the set of atomic actions and ϕ ∈ L, then the following grammar defines
the actions that are in the set Ac:

α, β ::= a | ϕ? | α;β | if ϕ then α else β fi | while ϕ do α od

The action ϕ? verifies whether ϕ holds. The next action is executed if ϕ holds. Execution fails
if ϕ doesn’t hold, in that case the action results in a failure state. The action α;β is composed of
the actions α and β which are done in sequence. The action if ϕ then α else β fi executes α
if ϕ holds and executes β otherwise. The action while ϕ do α od executes α as long as ϕ holds.
The empty action Λ is an action that doesn’t do anything, it has the property Λ;α = α; Λ = α.

Oiα =def 〈doi(α)〉> Def. 2.1

PracPossi(α,ϕ) =def 〈doi(α)〉ϕ ∧Aiα Def. 2.2

Cani(α,ϕ) =def KiPracPossi(α,ϕ) Def. 2.3

Cannoti(α,ϕ) =def Ki¬PracPossi(α,ϕ) Def. 2.4

It is practically possible for an agent i to make ϕ true by performing the action α if the agent
has the opportunity and the capability to do action α and doing the actions α results in ϕ being
true. An agent i can do an action if it knows that it is practically possible. The agent cannot do an
action if it knows that it is not practically possible. Oiα denotes that agent i has the opportunity
to do action α. The ability of an agent describes what actions the agent can perform and the
opportunity describes in what situation the agent can perform the actions.

In this paper it is assumed that all actions are deterministic. This guarantees that the action
α results in a state where ϕ holds, making 〈doi(α)〉ϕ stronger than [doi(α)]ϕ. If actions are
deterministic it holds that 〈doi(α)〉ϕ↔ [doi(α)]ϕ ∧Oiα.

2.1.2 Language LC

The language LC has the same operators as L and has four additional higher level operators. If
p ∈ Π , i ∈ A, α ∈ AcC where AcC is a set of actions defined later, β ∈ Ac and φ ∈ L, then the
following grammar defines the language LC :

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ |Kiϕ |Aiα | 〈doi(α)〉ϕ |Wiφ | ♦iφ |Ciφ |Comiβ

Wiφ is the wish operator, it indicates the desire of agent i to make φ true. ♦iφ is the
implementability operator, indicating that φ is implementable. Ciφ is the selection operator.
Comiβ is the commitment operator indicating the actions agent i has committed itself to doing
β. The definitions in LC for tautology, contradiction, implication, [doi(α)]ϕ, practically possible,
can and cannot are the same as in L.

The set of actions AcC is a superset of Ac. If a ∈ At, ϕ ∈ L and γ ∈ Ac, then the following
grammar defines the actions that are in the set AcC :

α, β ::= a |ϕ? |α;β |if ϕ then α else β fi |while ϕ do α od |selectϕ |commitγ |uncommitγ

selectϕ is an action that adds ϕ to the selected wishes in C. commitγ is an action that
commits the agent to do the action γ. uncommitγ is an action that uncommits the agent to do
the action γ. The other actions have the same meaning as in Ac. The set of semi-atomic actions
At+ is the combination of all the atomic actions and verify actions, At+ = At ∪ {ϕ? | ϕ ∈ L}.

Goaliϕ =def Wiϕ ∧ ¬ϕ ∧ ♦iϕ ∧Ciϕ Def. 2.5

PossIntendi(α,ϕ) =def Cani(α,ϕ) ∧KiGoaliϕ Def. 2.6

3

The goal operator Goaliϕ indicates that the agent i has the goal of reaching a state in which
ϕ holds. An agent i can have a goal ϕ if it has the wish to bring about ϕ, ϕ doesn’t already hold,
ϕ is implementable and selected. PossIntendi(α,ϕ) is the possibly intends operator, it indicates
that agent i has the possible intention to do action α in order to bring about ϕ. The agent can
intend to do α to bring about ϕ if it can do the action α to bring about ϕ and it knows that it
has the goal of bringing about ϕ.

2.2 Semantics

2.2.1 Language L

The language L is formally interpreted as a Kripke model. The class M of models contains all
M = 〈S, π,R, r0, c0〉. S is a non-empty set of possible world states. π : Π × S → {0, 1} is the
function that assigns a truth value to propositional symbols Π in state s ∈ S. R : A→ P(S × S)
is the function that gives the epistemic accessibility relation for every agent. R returns for agent
i ∈ A a set of relations between states in S. The relation must be S5, thus reflexive and euclidean.
The R(i)-equivalence class [s]R(i) is defined as {s′ ∈ S|(s, s′) ∈ R(i)}. r0 : A×At→ (S ∪ {ε})→
P(M,S) gives the set of states agent i ∈ A can be in after the state transition resulting from
preforming the action α ∈ At in the state s ∈ S. There is a special case where the function returns
an empty set as a result of an impossible action. In that case the agent will go to a special error
state ε. It is not possible to preform actions from the failure state ε. It is assumed in this paper
that actions are deterministic, thus the resulting set of function r0 will always contain just one
state. c0 : A × At → (S ∪ {ε}) → {0, 1} is the capability function. c0 assigns a truth value to
the action α ∈ At performed by agent i ∈ A in the state s ∈ S. This indicates whether agent i is
capable of preforming action α in state s.

Definition 2.7. (M, s) |= ϕ denotes that ϕ is true in the state s ∈ S and in the model M ∈M.
This is defined in the following way, where α ∈ Ac:

M, s |= ϕ ⇔ π(s)(ϕ) = 1

M, s |= ¬ϕ ⇔M, s 6|= ϕ

M, s |= ϕ ∧ ψ ⇔M, s |= ϕ and M, s |= ψ

M, s |= ϕ ∨ ψ ⇔M, s |= ϕ or M, s |= ψ

M, s |= Kiϕ ⇔ ∀s′ ∈ S((s, s′) ∈ R(i)⇒M, s′ |= ϕ)

M, s |= 〈doi(α)〉ϕ⇔ ∃M ′, s′(M ′, s′ ∈ r(i, α)(M, s) ∧M ′, s′ |= ϕ)

M, s |= Aiα ⇔ c(i, α)(s) = 1

Definition 2.8. The result function r is defined in the following way, where a ∈ At and
r(i, α)(M, ε) = M, ε.

r(i, a)(M, s) = r0(i, a)(M, s)

r(i, ϕ?)(M, s) = (M, s) if M, s |= ϕ otherwise (M, ε)

r(i, α1;α2)(M, s) = r(i, α2)(r(i, α1)(M, s))

r(i, if ϕ then α1 else α2 fi)(M, s) = r(i, α1)(M, s) if M, s |= ϕ and

r(i, α2)(M, s) otherwise

r(i, while ϕ do α od)(M, s) = (M ′, s′) such that ∃k ∈ N ∃(M0, s0) . . . ∃(Mk, sk)

((M0, s0) = (M, s) and (Mk, sk) = (M ′, s′) and

∀j < k((Mj+1, sj+1) = r(i, ϕ?;α)(Mj , sj)) and

M ′, s′ |= ¬ϕ)

4

Definition 2.9. The capability function c is defined in the following way where a ∈ At and
c(i, α)(M, ε) = 0.

c(i, a)(M, s) = c0(i, a)(s)

c(i, ϕ?)(M, s) = 1 if M, s |= ϕ and 0 otherwise

c(i, α1;α2)(M, s) = c(i, α1)(M, s) and c(i, α2)(r(i, α1)(M, s))

c(i, if ϕ then α1 else α2 fi)(M, s) = c(i, ϕ?;α1)(M, s) or c(i,¬ϕ?;α2)(M, s)

c(i, while ϕ do α od)(M, s) = 1 if for some k ∈ Nc(i, (ϕ?;α)k;¬ϕ?)(M, s)

and 0 otherwise

2.2.2 Language LC

The language LC is formally interpreted as a Kripke model in a similar way to language L. The
class MC of models contains all M = 〈S, π,R, r0, c0,W,C,Agenda〉. The set S and the functions
π,R, r0 and c0 are the same as in the model for Language L. W : A → P(S × S) is a function
that gives the desirability relation for every agent. W returns for agent i ∈ A a set of relations
between states in S. C : A × S → P(L) is a function that for a given agent i ∈ A and state
s ∈ S returns a set of expressions from the language L that represent the choices made by i in s.
Agenda : A × S → P(Ac) is a function that for a given agent i ∈ A and state s ∈ S returns the
set of actions i is committed to in s.

Before the semantics of language LC can be given, a transition system is needed. This is mainly
needed for defining the commit action. The Structural Operational Semantics method [5] is used
for this. A transition is denoted by 〈α, s〉 ⇀M

i,a+ 〈α
′, s′〉 where α, α′ ∈ Ac, i ∈ A, a+ ∈ At+ with

ϕ ∈ L and s, s′ ∈ S. This transition denotes that in state s, agent i has to perform the action
α and after performing action a+ the agent is in state s′ and still has to do action α′. The state
resulting from doing action a+ state in state s can be denoted with sa+ .

Definition 2.10. If the model M ∈ MC, α, β ∈ Ac, s ∈ S and the function π2 simply returns
the second element of a pair, in this case the state s of the model state pair (M, s), then is the
transition system TM is given with the following axioms:

〈α, s〉⇀M
i,α 〈Λ, s′〉 with s′ = π2(rC(i, α)(M, s)) if α ∈ At+and rC(i, α)(M, s) 6= ∅

〈if ϕ then α else β fi, s〉⇀M
i,ϕ? 〈α, sϕ?〉 if s |= ϕ

〈if ϕ then α else β fi, s〉⇀M
i,¬ϕ? 〈β, s¬ϕ?〉 if s 6|= ϕ

〈while ϕ do α od, s〉⇀M
i,ϕ? 〈α; while ϕ do α od, sϕ?〉 if s |= ϕ

〈while ϕ do α od, s〉⇀M
i,¬ϕ? 〈Λ, s¬ϕ?〉 if s 6|= ϕ

And the rule:
〈α, s〉⇀M

i,a+ 〈α
′, s′〉

〈α;β, s〉⇀M
i,a+ 〈α′;β, s′〉

Definition 2.11. A computation run is the sequence of semi-atomic actions needed to perform
an action. If M ∈ MC, α1, α2, . . . , αn ∈ Ac, a1, a2, . . . , am ∈ At+ and s1, . . . , sn ∈ S, then
computation run is defined as:

CRCM (i, α, s) = {a1; a2; . . . ; an} iff 〈α, s〉⇀M
i,a1 〈α1, s1〉⇀M

i,a2 〈α2, s2〉
⇀M
i,a3 · · ·⇀

M
i,an 〈αn, sn〉 such that αn = Λ

5

Definition 2.12. The relation |=C contains all relations |= of language L. It also contains rela-
tions for Wiϕ, ♦iϕ, Ciϕ and Comiα. These are defined in the following way, where M ∈ MC,
s ∈ S and Prefix(α, β) indicate that action sequence α is a prefix of action sequence β.

M, s |=C ϕ ⇔M, s |= ϕ

M, s |=C Wiϕ ⇔ ∀s′ ∈ S((s, s′) ∈W (i)⇒M, s′ |=C ϕ)

M, s |=C ♦iϕ ⇔ ∃k∃α1, . . . , αk ∈ At(M, s |=C PracPossi(α1; . . . ;αk, ϕ))

M, s |=C Ciϕ ⇔ ϕ ∈ C(i, s)

M, s |=C Comiα⇔ ∀s′ ∈ [s]R(i) ∃α1 ∈ CRCM (i, α, s′)∃α2 ∈ Agenda(i, s′)

∃α′2 ∈ CRCM (i, α2, s
′)(Prefix(α1, α

′
2))

An agent i ∈ A has the wish to fulfil ϕ, Wiϕ, if ϕ holds in all the states reachable from state s
with the desirability relation W (i). ϕ is implementable for agent i ∈ A, ♦iϕ, if there is a sequence
of actions that make it practically possible to make ϕ true. Thus the agent has the opportunity
and the capability to make ϕ true. The agent i ∈ A has selected ϕ, Ciϕ, if ϕ is in the set of
selected actions given by the function C(i, s) for the state s. An agent i is committed to action α,
Comiα, if the computation run of the action is a prefix of a computation run of an action that
is in the agent’s Agenda. Thus the agent is committed to the first part of an action that is in
the agenda, for example, if α;β; γ ∈ Agenda(i, s) then agent i is committed to the action α. This
must hold in all the states reachable with the R(i)-equivalence class [s]R(i) so that if the agent is
committed to an action it also knows that it is committed to the action.

Definition 2.13. If M = 〈S, π,R, r0, c0,W,C,Agenda〉 then

rC(i, α)(M, s) = r(i, α)(M, s)

rC(i, select ϕ)(M, s) = (〈S, π,R, r0, c0,W, choose(i, ϕ)(M, s),Agenda〉 , s)
if M, s |=C Wiϕ and ε otherwise

rC(i, commit α)(M, s) = (
〈
S, π,R, r0, c0,W,C, agenda

+(i, α)(M, s)
〉
, s)

if M, s |=C PossIntendi(α,ϕ) for some ϕ ∈ C(i, s)

and ε otherwise

rC(i, uncommit α)(M, s) = (
〈
S, π,R, r0, c0,W,C, agenda

−(i, α)(M, s)
〉
, s)

if M, s |=C Comiα and ε otherwise

When performing the action selectϕ the agent i reaches a new model where ϕ is added to
the selected actions if i wishes ϕ to be true. If agent i does not wish for ϕ to be true the action
selectϕ result in the error state. The result of the action commitα is that the agenda is updated
with the action α if i possibly intends to do α to make some selected proposition true. If the
agent does not possibly intend action α to make the selected propositions true the action commitα
results in the error state. The result of the action uncommitα is that if i was committed to α it is
removed from its agenda. If the agent is not committed to α the action uncommitα results in the
error state.

Definition 2.14. If C is the current choice function in MC, then:

choose(i, ϕ)(M, s) = C ′ where C ′(i′, s′) = C(i′, s′) if i 6= i′ or s 6= s′

and C ′(i, s) = C(i, s) ∪ {ϕ}

choose(i, ϕ)(M, s) returns a choice function where ϕ is added to the result of the function C
for the agent i and the state s, but the result stays the same for the other agents and states. The
result of the action selectϕ is thus that ϕ is added to the selected propositions if ϕ is a wish of
agent i.

6

Definition 2.15. If Agenda is the current agenda in MC, then:

agenda+(i, α)(M, s) = Agenda′ where for all s′ ∈ [s]R(i) ,Agenda′(i, s′) =

Agenda(i, s′) ∪ {α} and for all s′, s′′, s′′′ ∈ S,
α′ ∈ Agenda′(i, s′) such that,for some semi-atomic

action a, 〈α′, s′〉⇀i,a 〈α′′, s′′〉 and s′′′ ∈ [s′′]R(i) ,

Agenda′(i, s′′′) = Agenda(i, s′′′) ∪ {α′′}

agenda+(i, α)(M, s) returns an agenda that is updated with α. Not only the agenda corre-
sponding to the agent’s current state s is updated but also all the states that are epistemically
equivalent with s. Thus the commitment to α is known by the agent i. The agenda is also updated
in the states that are visited when α is executed. The agenda is then updated with the remainder
of the action α and also all states that are epistemically equivalent are updated. Figure 1 is an
example showing the propositions that are added to the agenda returned by the function agenda+.

s0 s1

s2 s3

s4 s5

R

R

R

R R

R R

R R

α

β

Agenda(i, s0) ∪ {α;β; γ} Agenda(i, s1) ∪ {α;β; γ}

Agenda(i, s2) ∪ {β; γ} Agenda(i, s3) ∪ {β; γ}

Agenda(i, s4) ∪ {γ} Agenda(i, s5) ∪ {γ}

Figure 1: The changed agenda’s in the model that is return by agenda+(i, α;β; γ)(M, s0)

Definition 2.16. If Agenda is the current agenda in MC, then:

agenda−(i, α)(M, s) = Agenda′ where for all s′ ∈ [s]R(i) ,Agenda′(i, s′) =

Agenda(i, s′) \
{
β | Prefix(CRCM (i, α, s′),CRCM (i, β, s′))

}
and for all s′, s′′, s′′′ ∈ S, α′ ∈ Agenda′(i, s′) such that,

for some semi-atomic action a, 〈α′, s′〉⇀i,a 〈α′′, s′′〉
and s′′′ ∈ [s′′]R(i) ,Agenda′(i, s′′′) = Agenda(i, s′′′)\{
β | Prefix(CRCM (i, α′′, s′′′),CRCM (i, β, s′′′))

}
agenda−(i, α)(M, s) returns an agenda where α is removed. Not only the agenda corresponding

to the agent’s current state s is updated but also all the states that are epistemically equivalent
with s. Thus the commitment to α is no longer known by i. The agenda is also updated in the
states that are visited when α is executed. The remained of the action α is removed from the
agenda and also from the agenda of all states that are epistemically equivalent.

7

Definition 2.17. The capability function cC contains all functions c

cC(i, α)(M, s) = c(i, α)(M, s)

cC(i, select ϕ)(M, s) = 1 if M, s |=C ¬ϕ ∧ ♦iϕ and 0 otherwise

cC(i, commit α)(M, s) = 1 if Agenda(i, s) = ∅ and 0 otherwise

cC(i, uncommit α)(M, s) = 1 if M, s |=C ¬PossIntendi(α,ϕ) for all ϕ ∈ C(i, s)

and 0 otherwise

The agent i is capable to perform the selectϕ action if ϕ doesn’t already hold and ϕ is
implementable for agent i. The agent is capable to perform the commitα action if the Agenda is
empty. The agent i is capable to perform the uncommitα action if i does not possibly intend to
do α to make one of the selected propositions true.

2.3 Block World Example

The blocks world has different sized blocks which can be stacked on top of each other, as given
in [4]. This world provides a simple environment for KARO to plan in. The blocks in the example
come in three different sizes. Blocks of type A are bigger then blocks of type B, blocks of type B
are bigger then blocks of type C and blocks of type A are bigger then blocks of type C. Blocks
can lay on the floor or be stacked on top of each other. Bigger blocks cannot be stacked on smaller
blocks.

When block Y is on top of block X it’s denoted as is on(X,Y) and is clear(X) denotes
that there is nothing on block X. floor(X) denotes that block X rests on the foor. The formula
type(X,A) denotes that block X is of type A. An agent in the blocks world is capable of perform
two actions. drop(X) is the action that drops block X on the floor. put(X,Y) is the action that
places block Y on top of block X. The following rules describe the blocks world:

A1 Aiput(X,Y)

A2 clear(X)↔ Aidrop(X)

O1 clear(X) ∧X 6= Y ∧ ¬(X < Y)↔ Oi(put(X,Y))

O2 Oidrop(X)

E1 [doi(put(X,Y)] (is on(X,Y) ∧ ¬is clear(X))

E2 is on(X,Y)→ [doi(drop(Y))] (is clear(X) ∧ floor(Y))

N1 (is clear(Z) ∧ Z 6= X)→ [doi(put(X,Y))] is clear(Z)

N2 (is on(V,Z) ∧ Z 6= Y)→ [doi(put(X,Y))] is on(V,Z)

N3 (is on(X,Y) ∧ is on(U, V) ∧X 6= U)→ [doi(drop(Y))] is on(U, V)

N4 is clear(Z)→ [doi(drop(Y))] is clear(Z)

N5 (X = Y ∧ U 6= V)→ [doi(α)] (X = Y ∧ U 6= V)

C1 (type(X,A) ∧ type(Y,B) ∧ type(Z,C))→ ((X > Y) ∧ (Y > Z) ∧ (X > Z))

C2 Goaleϕ→ KiGoaliϕ

C3 Aiα→ KiAiα

C4 〈doi(α)〉ϕ→ Ki 〈doi(α)〉ϕ
C5 tower(X,Y, Z)↔ floor(X) ∧ is on(X,Y) ∧ is on(Y,Z) ∧ is clear(Z)

8

The A rules describe the abilities of the agent.1 Constraint A1 describes that the agent always
has the ability to put a block on another block. Constraint A2 describes the ability of the agent
to drop a block on the floor if there is no block on top of it. The O rules describe opportunities
for the agent. Constraint O1 describes the opportunity to put a block of type Y onto a block of
type X when blocks of type Y is smaller than blocks of type X. O2 describes the opportunity
to drop a block. The E rules describe effects of certain actions. Rule E1 makes sure that after a
block is put on top of another block, this block isn’t clear anymore. E2 describes that dropping
a block puts the block on the floor and the block on which it was stacked is now clear. The N
rules describe the non-effects of actions.2 N1 makes sure that blocks that are clear stay clear if
there is a block put on another block. N2 makes sure that two blocks stay on top of each other if
another block is put somewhere else. Constraint N3 makes sure that blocks that are stacked on
top of each other stay on top of each other if other blocks are dropped. N4 makes sure that clear
blocks stay clear if a block is dropped and N5 makes sure that blocks stay of the same type if an
action is performed. The C rules introduce additional constraints for this example. Constraint C1

defines the size difference between the different types of blocks. C2 makes sure that agent i knows
what it’s goals are and C3 makes sure that agent i knows what it’s abilities are. Constraint C4

makes sure that agent i knows the results of his actions. Finally, constraint C5 gives a definition
of a tower tree blocks high.

Let there be an agent e in the initial state s0 as given in Figure 2 and the wish to build a tower of
three blocks, Wetower(X,Y, Z). The initial selected wishes and agenda are empty, C(e, s0) = ∅
and Agenda(e, s0) = ∅. The agent can make building a tower it’s goal if in the current state
s0 it wishes to make a tower, Wetower(X,Y, Z), there isn’t already a tower, ¬tower(X,Y, Z),
making a tower is implementable, ♦etower(X,Y, Z) and the agent has selected the wish to build
a tower, Cetower(X,Y, Z). It is given that the agent has the wish to build a tower and it is
clear from Figure 2 that M, s0 |= ¬tower(X,Y, Z). It’s given that the agent hasn’t selected any
wish. Whether the agent is able to select the wish depends on that the wish isn’t already true
and that the wish is implementable. Again, there isn’t a tower yet in state s0. Whether the wish
is implementable depends on whether there is an action sequence that makes the wish practically
possible.

C1

A1
B1

Figure 2: The staring position of the blocks in the example.

To see that making a tower is implementable consider the action sequence α = drop(C1);
put(A1, B1); put(B1, C1). According to definition 2.7 and 2.9 an agent is able to perform an
action sequence if the agent is able to perform the atomic actions in the action sequence in the
intermediate states. According to rule A1 an agent is able to perform the atomic actions put(X,Y)
in all states if Y is not of type A. According to rule A2 an agent is able to perform the atomic
action drop(X) in the state where X is clear and X is not of type A. Thus agent e is able
to perform α in the initial state s0 because e is able to perform the atomic actions in α in the
intermediate states. 〈doe(α)〉ϕ holds in a state s0 according to definition 2.7 if the agent i has
the opportunity to preform α and ϕ holds after preforming α. According to rule O1 an agent
has the opportunity to perform the atomic action put(X,Y) in the state where X is clear and
X is not smaller than Y . According to rule O2 an agent always has the opportunity to perform

1The abilities slightly differ from the abilities given in [4]. In this paper blocks of type A are not too heavy and
the agent is able to move them.

2 [4] gives an additional non-effect rule (there it’s rule N3). This rule is, however, the same as rule E2 and not
a non-effect. It is omitted in this paper.

9

the atomic action drop(X). Thus agent e has the opportunity to perform α in the initial state
s0 because e has the opportunity to perform the atomic actions in α in the intermediate states.
Using the E, N and C5 rules it is easy to see that tower(A1, B1, C1) holds after performing
action α. It follows that M, s0 |= 〈doe(α)〉 tower(A1, B1, C1). Using definition 2.2 it follows that
PracPosse(α, tower(A1, B1, C1)) Thus there is an action sequence that is practically possible and
that results in a tower, thus by definition 2.12, building a tower is implementable. The wish of
agent e is implementable and doesn’t already hold, according to definition 2.17 the agent is now
capable to select the wish to build a tower.

The agent performs the action select(tower(X,Y, Z)), resulting in a new state s1 where
M ′, s |=C Cetower(X,Y, Z). It follows from definition 2.13 that s1 only differs from s0 in the set
of selected wishes C(e, s1). Thus in s1 building a tower is still implementable, ♦etower(X,Y, Z),
not already realised, ¬tower(X,Y, Z), and a wish of e, Wetower(X,Y, Z). Now that in s1 build-
ing a tower is also selected if follows from definition 2.5 that building a tower is a goal for e,
Goaletower(X,Y, Z). From rule C2 it follows that e also knows it has the goal to build a tower,
KeGoaletower(X,Y, Z). It was already shown that e has the ability and the capability to build a
tower an thus that it is practically possible for e to build a tower. It follows from rule C3 and C4

that e also knows that it is practically possible to build a tower,KePracPosse(α, tower(X,Y, Z)).
Thus from definition 2.3 it follows that e can build a tower with action sequence α,
Cane(tower(X,Y, Z), α). The agent can build a tower with action sequence α and knows that
it’s goal is to build a tower, from definition 2.6 it now follows that e possibly intends to do action
sequence α, PossIntende(α, tower(X,Y, Z)). It follows from definition 2.13 that e now has the
opportunity to commit to action sequence α to fulfil its goal. Since the agenda of the agent is
empty it follows from definition 2.17 that agent e also has the ability to commit to action sequence
α to fulfil its goal.

Committing to action sequence α leads to state s2 where α is added to the Agenda of e
according to definition 2.13. According to definition 2.12 the agent is now committed to the prefix
of α, Come drop(C1). According to definition 2.17 the agent is not able to uncommit an action
as long as it possibly intends to do the action. The act of committing only changes the agenda
and thus the agent still possibly intends to do α. Let’s suppose that the agent executes the action
drop(C1), resulting in state s3.

Dropping block C1 has the effect according to rule E2 that in state s3 block C1 is on the floor
and block A1 is clear. The rules N3, N4 and N5 make sure that dropping the block doesn’t have
other effects. The agent is thus still possibly intends to build a tower with action sequence α and
is thus unable to uncommit. The Agenda of e in s3 contains put(A1, B1); put(B1, C1) because e
committed to α in state s2. The agent is now committed to the prefix of the action in its agenda,
Come put(A1, B1). Let’s suppose that the agent executes the action put(A1, B1), resulting in
state s4.

Putting block B1 on top of block A1 has the effect according to rule E1 that in state s4 block
B1 is on top of A1 and block A1 is not clear. The rules N1, N2 and N5 make sure that putting
one block on the other doesn’t have other effects. The agent still possibly intends to build a tower
with action sequence α and thus is unable to uncommit. The Agenda of e in state s4 contains
put(B1, C1) because e committed to α in state s2. The agent is now committed to the prefix of
the action in its agenda. The action in the agents agenda is an semi-atomic action an thus the
agent is committed to this action, Come put(B1, C1). Let’s suppose that the agent executes the
action put(B1, C1), resulting in state s4.

The agents puts block C1 on bock B1, which has similar results as in the previous state. But
now it holds that Floor(A1) ∧ is on(A1, B1) ∧ is on(B1, C1) ∧ is clear(C1) and thus
tower(A1, B1, C1) according to rule C5. The agent fulfilled its wish to build a tower, tower(X,Y, Z).
The agent no longer has the goal to build a tower because in this state there is already a tower.

10

3 Adding Time to Actions

In this section, KARO is extended with actions that take a certain amount of time to complete.
This enables an agent to plan actions that fulfil a wish in a limited amount of time. It also enables
the agent to have conflicting wishes at differed moments in time. For now it is assumed that the
actions select, commit and uncommit take no time to perform. In section 5 a language is given
where these actions do take time to perform.

3.1 Syntax

3.1.1 Language Lat

The language Lat is similar to the language L. Lat has in addition to the operators of language
L also a Beforei(α, τend) operator. This operator denotes that agent i is able to perform action
α before the time τend is reached. Thus if p ∈ Π where Π is the set of propositional atoms, i ∈ A
where A is the set of agents, α ∈ Ac and τend ∈ R, then the following grammar defines the language
Lat:

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ |Kiϕ | 〈doi(α)〉ϕ |Aiα |Before(α, τend)

CanBeforei(α, τend) denotes that agent i knows that it is able to do action α before time τend.

CanBeforei(α, τend) =def KiBeforei(α, τend) Def. 3.1

3.1.2 Language LatC

The language LatC is similar to language LC . Wishes now also have an end time associated with
them, Wi(ϕ, τend). This expresses that the agent is motivated to fulfil the wish before the end
time. Implementability is extended with an end time, ♦i(ϕ, τend) indicating that it is possible
to make ϕ true before the end time τend. Goal is also extended with an end time before which
the goal must be reached. PossInend is extended with an end time indicating that the agent
intends to do the actions before the end time. The agent shouldn’t intent to do an action sequence
that finishes after the end time. Thus the agent can only possibly intend to do an action if
CanBeforei(α, τend) is true.

Goali(ϕ, τend) =def Wi(ϕ, τend) ∧ ¬ϕ ∧ ♦i(ϕ, τend) ∧Ciϕ Def. 3.2

PossIntendi(α,ϕ, τend) =def Cani(α,ϕ) ∧KiGoali(ϕ, τend) ∧ Def. 3.3

CanBeforei(α, τend)

KARO doesn’t say anything about when the agent might perform its actions, only the order in
which they must be performed. But when actions take a certain amount of time to complete and
the goal must be reached before a certain end time it is important when the actions are executed.
It can be assumed that the agent starts performing the actions as soon as it’s committed to execute
an action.

There are however always unforeseen external factors that prevent the action from starting
immediately or that can slow down the action. Planning the actions is thus always done with
the estimated time an action takes. It’s better to overestimate the time it takes for an action to
resolve than to underestimate it. When the time is overestimated, actions probably take shorter
than estimated and thus the chance that the goal is reached before the end time is larger. But if
the estimate is too large the agent might not consider certain actions because it thinks the actions
take too long.

11

3.2 Semantics

3.2.1 Language Lat

The class Mat of models contains all M = 〈S, π,R, r0, c0, τ0〉. The set S and the functions π,R, r0
and c0 are the same as in the model for language L. τ0 : A×At+ → (S ∪{∅})→ R gives the time
an action takes in a certain state.

The time an action α takes is just the sum of all semi-atomic actions needed to perform the
action. It is calculated in the result function and given to the next state. In this paper, the time
is in seconds, but the time can have any unit depending on the problem.

Definition 3.4. M, s, τ |=at ϕ denotes that ϕ is true in the state s ∈ S in the model M ∈ Mat

and τ is a real number indicating the time. M, s, τ |=at ϕ is mostly defined in the same way as
M, s |= ϕ,

M, s, τ |=at ϕ ⇔ π(s)(ϕ) = 1

M, s, τ |=at ¬ϕ ⇔M, s, τ 6|=at ϕ

M, s, τ |=at ϕ ∧ ψ ⇔M, s, τ |=at ϕ and M, s, τ |=at ψ

M, s, τ |=at ϕ ∨ ψ ⇔M, s, τ |=at ϕ or M, s, τ |=at ψ

M, s, τ |=at Kiϕ ⇔ ∀s′ ∈ S((s, s′) ∈ R(i)⇒M, s′, τ |=at ϕ)

M, s, τ |=at 〈doi(α)〉ϕ ⇔ ∃M ′, s′, τ ′(M ′, s′, τ ′ ∈ rat(i, α)(M, s) ∧
M ′, s′, τ ′ |=at ϕ)

M, s, τ |=at Aiα ⇔ c(i, α)(s) = 1

M, s, τ |=at Beforei(α, τend)⇔ π3(rat(i, α)(M, s, τ)) ≤ τend

The function π3 returns the third element of a triple, in this case the time τ as returned by the
result function. The definition for M, s, τ |=at 〈doi(α)〉ϕ differs from the definition in 2.7, because
doing an action must result in a state where time has progressed. M, s, τ |=at Beforei(α, τend)
compares the time resulting from executing action α with the end time τend.

Definition 3.5. The result function rat is defined in a similar way to function r, where a ∈ At
and rat(i, α)(M, ε) = M, ε.

rat(i, a)(M, s, τ) = (M ′, s′, τ ′) such that (M ′, s′) = r0(i, a)(M, s)

and τ ′ = τ + τ0(i, a)(M, s)

rat(i, ϕ?)(M, s, τ) = (M, s, τ) if M, s, τ |=at ϕ otherwise M, ε

rat(i, α1;α2)(M, s, τ) = rat(i, α2,)(r
at(i, α1)(M, s, τ))

rat(i, if ϕ then α1 else α2 fi)(M, s, τ) = rat(i, α1)(M, s, τ) if M, s, τ |=at ϕ and

rat(i, α2)(M, s, τ) otherwise

rat(i, while ϕ do α od)(M, s, τ) = (M ′, s′, τ ′) such that ∃k ∈ N
∃(M1, s1, τ1) . . . ∃(Mk, sk, τk)((M1, s1, τ1) =

(M, s, τ) and (Mk, sk, τ0) = (M ′, s′, τ ′) and

∀j < k((Mj+1, sj+1, τj+1) =

rat(i, ϕ?;α)(Mj , sj , τj)) and M ′, s′, τ ′ |= ¬ϕ)

12

Definition 3.6. The capability function cat is defined in a similar way to function c,
where cat(i, α)(M, ε) = 0.

cat(i, α)(M, s, τ) = c0(i, a)(s)

cat(i, ϕ?)(M, s, τ) = 1 if M, s, τ |=at ϕ and 0 otherwise

cat(i, α1;α2)(M, s, τ) = cat(i, α1)(M, s, τ) and

cat(i, α2)(rat(i, α1)(M, s, τ))

cat(i, if ϕ then α1 else α2 fi)(M, s, τ) = cat(i, ϕ?;α1)(M, s, τ) or

cat(i,¬ϕ?;α2)(M, s, τ)

cat(i, while ϕ do α od)(M, s, τ) = 1 if for some k ∈ N
cat(i, (ϕ?;α)k;¬ϕ?)(M, s, τ) and

0 otherwise

3.2.2 Language LatC

The class MatC of models contains all M = 〈S, π,R, r0, c0, τ0,W,C,Agenda〉. The set S and the
functions π,R, r0, c0,W and Agenda are the same as in language LC . The function τ0 is the same
as in language Lat. The function C is changed so that an proposition and an end time are returned.

Definition 3.7. The relation |=atC contains all relations |=at of the language Lat. Similar to |=C
it also contains the relations for Wi(ϕ, τend), ♦iϕ, Ci(ϕ, τend) and Comiα. These are defined in
the following way, where M ∈ MC, s ∈ S and Prefix(α, β) indicates that action sequence α is a
prefix of action sequence β.

M, s, τ |=atC ϕ ⇔M, s, τ |=at ϕ

M, s, τ |=atC Wi(ϕ, τend)⇔ ∀s′ ∈ S((s, s′) ∈W (i)⇒M, s′, τ ′ |=atCϕ and τ ′ ≤ τend)

M, s, τ |=atC ♦i(ϕ, τend) ⇔ ∃k∃α1, . . . , αk ∈ At((M, s, τ) |=atCPracPossi(α1; . . . ;αk, ϕ)) ∧
Beforei(α1; . . . ;αn, τend)

M, s, τ |=atC Ci(ϕ, τend) ⇔ (ϕ, τend) ∈ C(i, s)

M, s, τ |=atC Comiα ⇔ ∀s′ ∈ [s]R(i) ∃α1 ∈ CRCM (i, α, s′)∃α2 ∈ Agenda(i, s′)

∃α′2 ∈ CRCM (i, α2, s
′)(Prefix(α1, α

′
2))

Definition 3.8. If M = 〈S, π,R, r0, c0, τ0,W,C,Agenda〉 then

rat
C
(i, α)(M, s, τ) = rat(i, α)(M, s, τ)

rat
C
(i, select(ϕ, τend))(M, s, τ) = (

〈
S, π,R, r0, c0, τ0,W, choose

at(i, ϕ, τend)(M, s),Agenda
〉
, s, τ)

if M, s, τ |=atCWi(ϕ, τend) and ∅ otherwise

rat
C
(i, commit α)(M, s, τ) = (

〈
S, π,R, r0, c0, τ0,W,C, agenda

+(i, α)(M, s)
〉
, s, τ)

if M, s, τ |=atCPossIntendi(α,ϕ, τend) for some

(ϕ, τend) ∈ C(i, s) and ∅ otherwise

rat
C
(i, uncommit α)(M, s, τ) = (

〈
S, π,R, r0, c0, τ0,W,C, agenda

−(i, α)(M, s)
〉
, s, τ)

if M, s, τ |=atCComiα and ∅ otherwise

13

Definition 3.9. If C is the current choice function in MatC , then:

chooseat(i, ϕ, τend)(M, s) = C ′ where C ′(i′, s′) = C(i′, s′) if i 6= i′ or s 6= s′

and C ′(i, s) = C(i, s) ∪ {(ϕ, τend)}

Definition 3.10. The capability function cat
C

contains all functions cat.

cat
C
(i, α)(M, s, τ) = cat(i, α)(M, s, τ)

cat
C
(i, select(ϕ, τend))(M, s, τ) = 1 if M, s, τ |=atC ¬ϕ ∧ ♦i(ϕ, τend) and 0 otherwise

cat
C
(i, commit α)(M, s, τ) = 1 if Agenda(i, s) = ∅ and 0 otherwise

cat
C
(i, uncommit α)(M, s, τ) = 1 if M, s, τ |=atC¬PossIntendi(α,ϕ, τend) for all

(ϕ, τend) ∈ C(i, s)and 0 otherwise

Theorem 3.1. The agent can only put actions successfully in its agenda if it is expected that the
actions fulfil a wish before the end time of the wish.

Proof. It follows from the truth axiom Kiϕ ⇒ ϕ that for arbitrary M , s and τ it holds that

M, s, τ |=atC KiBeforei(α, τend) ⇒ M, s, τ |=atC Beforei(α, τend). It follows from definition 3.1

that M, s, τ |=atC CanBeforei(α, τend) ⇒ M, s, τ |=atC Beforei(α, τend). It thus also holds that

M, s, τ |=atCCani(α,ϕ)∧KiGoali(ϕ, τend)∧CanBeforei(α, τend)⇒M, s, τ |=atCBeforei(α, τend)

for arbitrary ϕ. It follows from definition 3.3 that M, s, τ |=atC PossIntendi(α,ϕ, τend) ⇒
M, s, τ |=atC Beforei(α, τend). It follows from definition 3.8 that an agent i is only able to suc-
cessfully put an action α in its agenda if for some selected proposition ϕ with end time τend the
agent possibly intends to do the action α with result ϕ and end time τend. And thus the action α
can only successfully put in the agenda if the action α can be finished before the end time. It also
follows from definition 3.8 that all successfully selected propositions are wishes. Since the action
α needs to be selected in order to put ϕ successfully in the agenda ϕ must also be a wish. Thus
the wish ϕ is fulfilled before τend with action α.

3.3 Block World Example

In the next examples moving a block of type A takes 3 second, moving a block of type B takes
2 seconds and moving a block of type C 1 second. If the agent can perform an action before the
end time it knows that it can perform the action before the end time. Or in a constraint rule:

C6 ∀i ∈ A, (type(X,A) ∧ type(Y,B) ∧Xtype(Z,C))→ (τ0(i, drop(X)) = 3 ∧
τ0(i, drop(Y)) = 2 ∧ τ0(i, drop(Z)) = 1 ∧ τ0(i, put(X,U)) = 3 ∧
τ0(i, put(Y, U)) = 2 ∧ τ0(i, put(Z,U)) = 1)

C7 Before(α, τend)→ KiBeforei(α, τend)

Let there be an agent e in the initial state s0 as given in Figure 3 where τ(s0) = 0. The agent
e has the wish to make a block of type A clear in 1 second, We(type(X,A) ∧ is clear(X), 1).
The initial selected wishes and agenda are empty, C(e, s0) = ∅ and Agenda(e, s0) = ∅. Just like in
the example in section 2.3, to make the agents wish a goal the wish must not already be fulfilled,
implementable and selected. In state s0 there isn’t a block of type A that is clear. To be able to
select the wish it must thus be implementable.

To see that the wish is implementable consider the action drop(C1). The action takes 1 second
according to rule C6, τend = 1. According to definition 3.4 M, s0, 0 |=at Beforee(drop(C1), 1),
because τ0(e, drop(C1))(M, s0)+0 ≤ τend. The agent is able to drop block C1 according to rule A2

because block C1 has no other blocks on top of it in state s0. Agent e always has the opportunity

14

C1

A1

B1

A2

Figure 3: The staring position of the blocks in the example.

to drop block according to rule O2. The effect of dropping block C1 is according to rule E2 that
block C1 is on the floor and block A1 is clear. Thus M, s0, 0 |=at 〈doe(drop(C1)〉 is clear(A1) ∧
Aedrop(C1). It follows from definition 2.2 thatM, s0, 0 |=at PracPosse(drop(C1), is clear(A1)).
Thus there is an action sequence that is practically possible and that results in a state where a
block of type A to be clear, thus by definition 3.7 making a block of type A clear is implementable.
The wish of agent e is implementable and doesn’t already hold, according to definition 3.10 the
agent is now capable to select the wish to make a block of type A clear.

The agent performs the action select(type(X,A) ∧ is clear(X), 1). This results in a new

state s1 where M, s1, 0 |=atC Ce(type(X,A) ∧ is clear(X), 1). The time τ in state s1 is still
0 because the select action does not takes any time to be performed. It follows from definition
3.2, in a similar way as in the example in section 2.3, that making a block of type A clear

is now a goal of agent e, M, s1, 0 |=atC Goale(type(X,A) ∧ is clear(X), 1). From using rule

C2 it follows that e also knows that it has the goal to clear a block of type A, M, s1, 0 |=atC

KeGoale(type(X,A) ∧ is clear(X), 1).
The agent might however consider the action drop(B1) instead of drop(C1). Similarly, to

dropping block C1, dropping block B1 result in a state where a block of type A is clear. The
agent is able and has the capability to perform the action to drop block C1, thus it is practically
possible. The action can however not be done before τend because the action takes 2 seconds
according to rule C6 and τend = 1, ¬Beforee(drop(B1), 1). It follows from definition 3.1 that
¬CanBeforee(drop(B1), 1) and from definition 3.3 that ¬PossIntende(drop(B1), 1). The agent
is thus unable to commit to the action drop(B1).

The agent e is able to commit to the action drop(C1). It is shown before that
Beforee(drop(C1), 1) in state s0, it also holds in state s1 because the time is still 0. According to
rule C7 the agent also knows that it can do the action before the end time. According to definition
3.1 it holds in state s1 that CanBeforee(drop(C1), 1). It was already shown that e is able and
capable to do drop(C1), from using rules C3 and C4 and definitions 2.2 and 2.3 it follows that
M, s1, 0 |=at Cane(drop(C1), clear(A1)). It was already shown that e knows that it has the goal
to clear a block of type A, it can do an action that clears block A1 before the end time, it now

follows from definition 3.3 that M, s1, 0 |=atC PossIntende(drope(C1), clear(A1), 1). It follows
from definition 3.8 that e now has the opportunity to commit to action crop(C1) to fulfil its goal.
Since the agenda of the agent is empty it follows from definition 3.10 that agent e also has the
ability to commit to action drop(C1) to fulfil its goal.

Committing to action drop(C1) leads to state s2 where drop(C1) is added to the Agenda of e
according to definition 3.8. According to definition 3.7 the agent is now committed to drop the
block C1. Let’s suppose that the agent executes the action drop(C1), resulting in state s3.

Dropping block C1 has the effect according to rule E2 that in state s3 block C1 is on the floor
and block A1 is clear. According to rule C6 the action of dropping block C1 took 1 second. Thus
by definition 3.4 the time at state s3 is 1. The agent e fulfilled its wish to make a block of type A
clear within one second. The agent no longer has the goal to make a block of type A clear because
a block of type A is already clear in s3.

15

4 Parallel Actions

Performing actions in parallel becomes important if there is a limited amount of time. When two
actions are done in serial the times it takes is the sum of the time the individual actions take.
Parallel actions only take the time of the longest action. Thus it gives a huge time advantage
when an agent is able to plan and perform actions in parallel. Also, Agents are usually able to
perform actions and think at the same time. Since reasoning steps like committing and selecting
are viewed as actions, it must be possible to do other actions in parallel with this reasoning action.

The languages L,LC ,Lat and LatC can be extended to allow for parallel actions. The extension
works in a similar way for all the languages and is given in this section.

4.1 Syntax

The search-space for parallel actions, that can happen at any time, is huge. By assuming that
there are only two moments when an action can be performed the search space is kept small.
An action either starts after another action or it starts at the same time as another action. An
action can only start at the same time as another action when the two actions can be performed
in parallel. This results in a tree structure where every node is an action which is connected to
all actions that are performed in parallel after this action.

There is already a notation for actions that happen after each other, α;β. [α1‖ . . . ‖αn] denotes
that the set of actions {α1, . . . , αn} are done in parallel. For the Languages L and LC it is assumed
that the actions need to be atomic. Actions don’t take time in these languages thus the order

in which the actions are done must follow from the notation. In the languages Lat and LatC the
actions do not have to be atomic. It follows from the time the actions take what the order is in
which they are performed. To determine the order of the atomic actions the actions are placed on
a timeline. Figure 4 is a visual representation of the time line for the actions [α; γ‖β; [β‖δ]], where
∀i ∈ A, s ∈ S(τ0(i, α)(M, s) = 1, τ0(i, β)(M, s) = 2, τ0(i, γ)(M, s) = 3 and τ0(i, δ)(M, s) = 1).

α γ

β β

δ

0 1 2 3 4

Figure 4: A visual representation of the timeline of the action [α; γ, β; [β‖δ]].

From Figure 4 it’s easy to see that the actions α and β, β and δ but also γ and δ are done
simultaneously. That these actions can be done independently from each other and thus in parallel
is denoted by I(α, β), I(β, δ), I(γ, β) and I(γ, δ). Note that α and δ are not done simultaneously
and thus don’t need to be independent.

The following grammar defines the parallel actions that are in the set Ap, where a ∈ Π:

α, β ::= a | ϕ? | α;β | if ϕ then α else β fi | while ϕ do α od | [α1‖ . . . ‖αn]

The following paragraph will define the same functions for Ap as the functions for Ac. This

makes it is possible to use Ap in place of Ac in the languages L,LC ,Lat and LatC , making them
capable of using parallel actions.

16

4.2 Semantics

The actions in KARO are based on the state-transition paradigm. Trace theory [3] is used to allow
for parallel actions in this paradigm. A trace is for parallel actions what a sequence of actions
is for performing the actions in series. Two atomic actions, α and β, can form two sequences,
αβ and βα. Trace theory states that if α and β can be performed in parallel the order of the
actions doesn’t matter. This means that αβ and βα end in the same state. Performing the actions
in parallel will also end in this state, both paths towards this state are valid. The trace in this
example is the set {αβ, βα}.

r(i, [α1‖ . . . ‖αn])(M, s) = r(i, α1; . . . ;αn)(M, s) Def. 4.1

c(i, [α1‖ . . . ‖αn])(M, s) = c(i, α1; . . . ;αn)(M, s)∧ Def. 4.2

∀αx, αy ∈ {α1, . . . , αn} (I(αx, αy))

The reachability function given in definition 4.1 can be combined with the function given
in definition 2.8 and the capability function given in definition 4.2 can be combined with the
function given in definition 2.9. Both functions are about atomic actions. The state reached after
performing the atomic actions in parallel is the state the agent would end if all the actions are
done in serial. An agent i is capable of performing the atomic actions in parallel if i is capable of
performing the actions in sequence and all the atomic actions are independent of each other.

The axiom3 given in definition 4.3 is added to the transition system TM as defined in definition
2.10:

〈[α1‖ . . . ‖αn] , s〉⇀M
i,[α1‖...‖αn]

〈Λ, s′〉 with s′ = π2(rC(i, [α1‖ . . . ‖αn])(M, s)) if Def. 4.3

αn ∈ At+ for all n and rC(i, [α1‖ . . . ‖αn])(M, s) 6= ∅

In the language Lat actions take a certain amount of time to complete. When actions take
a certain amount of time the transitions of parallel actions cannot be in an arbitrary order. To
see this consider the action [α‖β; γ], where t(α) = 1, t(β) = 2, t(γ) = 1, I(α, β) and I(β, γ). A
visual representation of the action is shown in Figure 5. The order of actions α and β; γ does
matter, because α and γ cannot be done independently. The sequence αβγ is not the same as the
sequence γαβ, because the order of α and γ is different. The order of the sequence must be so
that actions that cannot be done in parallel occur in the order in which they are on the timeline,
thus α before γ. The trace in this example would be the set {αβγ, αγβ, βαγ}. Figure 6 shows
that doing γ before α leads to another state, s3.2 and that all the action sequences in the trace
lead to the same state s3.1.

α

β γ

0 1 2 3

Figure 5: A visual representation of the timeline of the action [α‖β; γ].

3Note that the definition given in [3] is different from the definition 4.3. The definition of parallel actions given
in [3] does not allow two parallel actions to start from the same state, multiple states can hold from witch actions
can be performed. Definition 4.3 allows parallel actions to start from the same state because the actions must be
independent to be performed in parallel. If two actions are independent they manipulate different things in the
world. The state can be divided into two states with the different propositions the actions manipulate. The parallel
actions can then start separately from the different states.

17

s0

s1.1

s1.2

s1.3

s2.1

s2.2 s2.3

s2.4

s3.1 s3.2

α

β

γ

γ

β

γα

β

α

β

γ α

β

Figure 6: Transition system for the actions α, β and γ, where I(α, β) and I(β, γ)

When the agent is multitasking the transition is not clearly defined by one action. A transition
starts with the execution of a number of actions in parallel and stops when some actions are
finished. The actions that were finished are not necessarily the actions that were started in the
transition. A transition is thus indicated with two types actions, the actions with which the
transition is started and the action with which the transition is finished. These actions can be
parallel actions. 〈T,R, α, s, τ〉⇀M

i,a,b 〈T ′, R′, α′, s′, τ ′〉 denotes the transition from state s to state
s′ that starts with action a and ends after action b is finished. As before in state s action α needs
to be done and in state s′ action α′ needs to be done. T is a set of tuples, (t, α), where α is
an action that needs to be done at time t. R is a set of tuples, (t, α), where α is an action that
is running and will end at time t. An example of the relation between the timeline and these
transitions is visualised in Figure 7.

The transition system for parallel actions is given in definition 4.4. The function first(T)
returns all actions in T with the lowest time associated with them. The function start(T, τ)(M, s)
returns a set of tuples, (t, α), where every tuple denotes an semi-atomic action α that is to start in
the next transition and ends at time t. It is the set of all the first semi-atomic actions in T with the
lowest start time. Thus all the actions start at the same time. The function running(T,R, τ)(M, s)
returns a set of tuples, (t, α), where every tuple denotes a semi-atomic action that is running in
the next transition. It is the union of the set actions that are already running before the next
transition and the actions that started in the next transition. The function next(T, τ) returns a
set of tuples, (t, α), where every tuple denotes an action α that needs to be done after the next
transition. The action α should start at time t. It is the union of the set of all the actions after the
first semi-atomic action in T with the lowest start time and the other actions in T . The function
stop(T,R, τ) returns a set of tuples, (t, α), where every tuple denotes an action that stops running
after the next transition. It is the set of all the actions that stop running before the next action
starts. The function act(T) returns an action where all the actions in T are done in parallel. If
T only contains one tuple a single action is returned. The function time(T) returns the time
associated with the first action in T .

18

α γ

β β

δ

0 1 2 3 4

〈T0, R0, s0, 0〉⇀M
i,[α‖β],α 〈T1, R1, s1, 1〉⇀M

i,γ,β 〈T2, R2, s2, 2〉⇀M
i,[β‖δ],[β‖γ‖δ] 〈T4, R4, s4, 4〉

t Tt Rt
0 {(0, α; γ), (0, β; [β‖δ])} ∅
1 {(1, γ), (2, [β‖δ])} {(2, β)}
2 {(2, β), (2, δ)} {(4, γ)}
4 ∅ ∅

Figure 7: A visual representation of the timeline corresponding to [α; γ‖β; [β‖δ]] and the corre-
sponding state transitions.

Definition 4.4. The transitions system TPM is similar to the transition system TM but has
for every transition a starting and stopping action. Where α, β ∈ Ap and s ∈ S.

〈T,R, s, τ〉⇀M
i,α,β 〈T ′, R′, sβ , τ ′〉

Where:
α = act(start(T, τ)(M, s))

β = act(stop(T,R, τ)(M, s))

T ′ = next(T, τ)(M, s)

R′ = running(T,R, τ)(M, s) \ stop(T,R, τ)(M, s)

τ ′ = time(stop(T,R, τ)(M, s))

The rule:
〈{(t1, α1), . . . , (tk, [αk‖ . . . ‖αk+m]), . . . , (tn, αn)} , R, s, τ〉
〈{(t1, α1), . . . , (tk, αk), . . . , (tk, αk+m), . . . , (tn, αn)} , R, s, τ〉

And Where:

first(T) = {α|¬∃(t′, α′) ∈ T where (t, α) ∈ T, t > t′}
start(T, τ)(M, s) = {(t, a+)|α ∈ first(T), for all s′ ∈ S, a+ ∈ At+

that for some α′ ∈ Ac 〈α, s〉⇀M
i,a+ 〈α

′, s′〉
α′ 6= Λ and t = τ + τ0(i, a+)(M, s)}

running(T,R, τ)(M, s) = start(T, τ)(M, s) ∪R
next(T, τ)(M, s) = {(t, α′)|α ∈ first(T), for all s′ ∈ S, α′ ∈ Ac

that for some a+ ∈ At+ 〈α, s〉⇀M
i,a+ 〈α

′, s′〉
α′ 6= Λ and t = τ + τ0(i, a+)(M, s)} ∪ T \ first(T)

stop(T,R, τ)(M, s) = {(t, α)| (¬∃(t′, α′) ∈ next(T, τ)(M, s) where t > t′) and

(t, α) ∈ running(T,R, τ)(M, s)}

19

act({(t, α)}) = α

act({(t1, α1), . . . , (tn, αn)}) = [α1‖ . . . ‖αn]

time({(t, α1), . . . , (t, αn)}) = t

time({(t1, α1), . . . , (tn, αn)}) = {t|¬∃(t′, α′) ∈ {(t1, α1), . . . , (tn, αn)} where

(t, α) ∈ {(t1, α1), . . . , (tn, αn)} , t < t′}

The computation run, agenda+ and agenda− and are redefined to uses the transition system
with the axiom of definition 4.3. The transition actions don’t need to be semi-atomic but can also
be parallel semi-atomic actions, thus the actions in the agenda and in the computation run can
also be parallel semi-atomic actions.

Definition 4.5. The computation run is the sequence of actions needed to be started in order to
execute an action. If M ∈MC, α1, α2, . . . , αn ∈ Ac, β1, β2, . . . , βm ∈ Ac and s1, . . . , sn ∈ S, then
the computation run is defined as:

CRPM (i, α, s, τ) = {α1;α2; . . . ;αn} iff 〈{(0, α)} , ∅, s, τ〉⇀M
i,α1,β1

〈T1, R1, s1, τ1〉⇀M
i,α2,β2

〈T2, R2, s2, τ2〉
⇀M
i,α3,β2

· · ·⇀M
i,αn,βn

〈Tn, Rn, sn, τn〉 such that Tn = ∅, Rn = ∅

Definition 4.6. If Agenda is the current agenda in M, then:

agenda+(i, α)(M, s, τ) = Agenda′ where for all Tkand sk in 〈{(0, α)} , ∅, s, τ〉⇀M
i,α1,β1

〈T1, R1, s1, τ1〉
⇀M
i,α2,β2

〈T2, R2, s2, τ2〉⇀M
i,α3,β3

· · ·⇀M
i,αn,βn

〈Tn, Rn, sn, τn〉
such that Tn = ∅, Rn = ∅,
s′k ∈ [sk]R(i) ,Agenda′(i, s′k) = Agenda(i, s′k) ∪ act(firt(Tk))

Definition 4.7. If Agenda is the current agenda in M, then:

agenda−(i, α)(M, s, τ) = Agenda′ where for all Tkand sk in

〈{(0, α)} , ∅, s, τ〉⇀M
i,α1,β1

〈T1, R1, s1, τ1〉⇀M
i,α2,β2

〈T2, R2, s2, τ2〉
⇀M
i,α3,β3

· · ·⇀M
i,αn,βn

〈Tn, Rn, sn, τn〉 such that Tn = ∅, Rn = ∅,
s′k ∈ [sk]R(i) ,Agenda′(i, s′k) = Agenda(i, s′k)\{
β | Prefix(CRCM (i, act(first(Tk)), s′k),CRCM (i, β, s′k, τ

′))
}

For serial actions, the time an action takes is the sum of all the time the atomic actions take.
This is no longer true when performing parallel actions. If two actions are done in parallel they
take the same amount of time to complete as the longest atomic action. The result of performing
parallel actions is the result of performing one of the action sequences in the trace of the action.
Theorem 4.1 states that the computation run is always one of the action sequences in the trace
of the action. Thus the computation run can be used in the definition of the result function. The
agent is capable of doing a parallel action if it is capable of doing the semi-atomic actions that
occur at the same time in parallel.

20

rat(i, [α1‖ . . . ‖αn])(M, s, τ) = (M ′, s′, τ ′) such that (M ′, s′) = Def. 4.8

r(i,CRPM (i, [α1‖ . . . ‖αn] , s, τ))(M, s)

and τ ′ = τ + MAX(τ0(i, α1)(M, s), . . . , τ0(i, αn)(M, s)))

cat(i, [α1‖ . . . ‖αn])(M, s, τ) = c(i, act(running({(0, α)} , ∅, τ)(M, s)∧ Def. 4.9

c(i, act(running(T1, R1, τ1)(M, s) ∧ · · · ∧
c(i, act(running(Tn, Rn, τn)(M, s) iff

〈{(0, α)} , ∅, s, τ〉⇀M
i,α1,β1

〈T1, R1, s1, τ1〉
⇀M
i,α2,β2

· · ·⇀M
i,αn,βn

〈Tn, Rn, sn, τn〉

Theorem 4.1. CRPM (i, α, s, τ) returns a sequence of actions that is one of the action sequences
in the trace of action α.

Proof. It follows from definition 4.5 that the sequence of actions returned by CRPM (i, α, s, τ) are
all the starting actions in the transition system TPM for action α. If follows from definition 4.4 that
the starting actions are given by act(start(T, τ)(M, s)). Thus doing all the actions in the tuple
given by start(T, τ)(M, s) in parallel. It follows from definition 4.4 that start(T, τ)(M, s) returns
a tuple of all the actions in T with the lowest time associated with them. The time associated
with the action b is the moment in time that the action a is finished if in the previous state it
held that a; b. Thus an action is only started if the previous action is finished. Thus the action b
is always started after action a. Thus by definition of the trace the sequence of actions returned
by CRPM (i, α, s, τ) is one of the action sequences in the trace of action α.

4.3 Block World Example

Let there be an agent e in the initial state s0 as given in Figure 8 where τ(s0) = 0. The agent e has
the wish to put block B1 on to block A1 in 3 seconds, We(3) on(A1, B1). The initial selected wishes
and agenda are empty, C(e, s0) = ∅ and Agenda(e, s0) = ∅. It follows from definition 2.5 that the
agent has a goal if it wishes something to be true, it is not already true, it is implementable and
selected. In state s0 block B1 is not on A1. To be able to select the wish it must be implementable.

C1

B1

C2

A1

Figure 8: The starting position of the blocks in the example.

To see that the wish is implementable consider the action α = [drop(C1)‖drop(C2)] ; put(A1, B1),
the timeline for this action is shown in figure 9. It follows from rule C6 that α takes 3 seconds to
perform. 1 second to move the blocks C1 and C2 simultaneously and 2 seconds to move block B1.
. It follows from definition 3.4 that M, s0, 0 |=at Beforee(α, 3). The agent is able to drop block C1

and C2 and put block B1 on to block A1 according to rule A1 and A2. The agent has the opportu-
nity to drop block C1 and C2 and put block B1 on to block A1 afterwards according to rule O1 and
O2. The effect of dropping block C1 and C2 and putting block B1 on A1 is of course that block
B1 is on top of block A1. It follows from definition 2.2 that M, s0, 0 |= PracPoss(α, on(A1, B1)).
Thus there is an action sequence that is practically possible and results in on(A1, B1), by definition
3.7 on(A1, B1) is implementable. The wish of agent e is implementable and doesn’t already hold,
according to definition 3.10 the agent is now capable to select the wish to put bock B1 on block
A1.

21

drop(C1)

drop(C2)

put(A1, B1)

0 1 3

Figure 9: A visual representation of the timeline of the action [drop(C1)‖drop(C2)] ; put(A1, B1).

The agent performs the action select(on(A1, B1), 3). This results in a new state s1 where
on(A1, B1) is selected and the time is still 0. It follow from definition 3.2, in a similar way
as in the example in section 2.3, that putting block B1 on block A1 is now a goal of agent e,

M, s1, 0 |=atC Goale(on(A1, B1). From using rule C2 it follows that e also knows that it has the

goal to put block B1 on block A1, M, s1, 0 |=atC KeGoale(on(A1, B1).
The agent might consider action β = drop(C1); drop(C2); put(A1, B1). In a similar way as

shown with α, β is practically possible for agent e and will result in a state where block B1 is on
block A1. This can however not be done within 3 seconds since the drop actions are not done in
parallel, ¬Beforee(β, 3). Thus the agent e cannot possibly intend to reach its goal with action β
within 3 seconds. The agent is thus unable to commit to β.

The agent is able to commit to the action α. It was already shown that M, s0, 0 |=atC

Beforee(α, 3), it also holds in state s1 because the time is still 0. According to rule C7 the
agent also knows that it can do the action before the end time. According to definition 3.1 it holds
in state s1 that CanBeforee(α, 3). It was already shown that e is able and capable to do action α,
from using rules C3 and C4 and definitions 2.2 and 2.3 it follows that M, s1, 0 |=at Cane(α). It was
already shown that e knows that it has the goal to put blockB1 on blockA1, it can do an action that

does this before the end time, it follows from definition 3.3 that M, s1, 0 |=atC PossIntende(α, 3).
It now follows from definition 3.8 that e now has the opportunity to commit to action α to fulfil
its goal. Since the agenda of the agent is empty it follows from definition 3.10 that agent e also
has the ability to commit to action α to fulfil its goal.

Committing to α leads to a state s2 where α is added to the Agenda of e according to def-
inition 4.6. According to definition 3.7 the agent is now committed to drop blocks C1 and C2

simultaneously. Let’s suppose that the agent starts executing [drop(C1)‖drop(C2)].
When the agent is finished dropping blocks C1 and C2 the agent is in state s3. According to

rule E2 the effect of dropping the blocks is that they are on the floor and that block B1 and block
A1 are clear. Dropping a block of type C takes according to rule C6 1 second. The two blocks are
dropped in parallel, thus the time to do them both at the same time is also 1 second. The time in
state s3 is 1 according to definition 3.4. The agent still possibly intend to put block B1 on block
A1 with action sequence α and is thus unable to uncommit. The Agenda of e in state s3 contains
put(A1, B1) because e committed to α in state s2. According to definition 3.7 the agent is now
committed to put(A1, B1). Let’s suppose that the agent starts to execute the action put(A1, B1).

When the agent is finished with putting block B1 on block A1 the agent is in state s4. According
to rule E1 the effect of Put(A1, B1) is that block B1 is on block A1 and that block A1 is not clear
any more. The action takes according to rule C6 2 second. By definition 3.4 the time at state s4
is 3 second. The agent fulfilled its wish to put block B1 on block A1 within 3 seconds. The agent
no longer has the goal to put block B1 on block A1 because this is already the case in state s4.

5 Adding Time to Reasoning

Performing the planned actions is not the only thing that costs time. The hardware on which the
agent performs its logical derivations also needs some time to perform these derivations. Thus all
reasoning done by the agent costs time which needs to be taken into account if the agent is to
achieve its wishes in time. The speed at which the agent can perform its derivations depends on
the speed of the hardware the agent is running on. The same derivation can thus take a different

22

amount of time for different agents. Thus we need KARO with the ability to reason for a limited
amount of time.

5.1 Non-standard Logic

Logical omniscience states that once an agent learns a logical statement it simultaneously knows
all logically equivalent statements. Deriving all equivalent statements requires a lot of derivations,
thus it takes time for the hardware to calculate all these equivalent statements. There can even be
an endless amount of logically equivalent statements, deriving all these takes an endless amount
of time. Only a subset of all the equivalent classes can be derived infinite time. A non-standard
logic which is not logically omniscient takes a number of steps before deriving logically equivalent
statements. These steps can be seen as time steps, thus deriving all the equivalent states takes a
certain amount of time. The derivation process can also be stopped before all possible derivations
are done. Thus the reasoning takes a certain amount of time and can be stopped after the desired
result is found.

5.2 Timed Reasoning Logic

Timed Reasoning Logic(TRL) [1] gives a method to define the set of formulas the agent considers
to be true at a certain time for any logic, making the logic thus not logically omniscient. This
is done by dividing the deliberation into time-steps. Every state in the model is indexed by the
agent and a natural number indicating the time-step to which the state belongs.

The agent has some rules to produce a new state. There are many ways in which these rules
can be applied in every step. The agent can apply all rules of which the conditions are met at
every step. This is called all rules at each cycle. The agent can also apply only a single rule each
time-step, called single rule each cycle. This adds the difficulty of selecting the right rule from all
the rules of which the conditions are met. The rules can also be continuously applied until there
are no rules left for which the conditions are met. This is then repeated for each time-step. This
way of applying the rules is called all rules to quiescence.

Let Lit be a set of languages where i ∈ A and t ∈ N. A TRL model M is a tuple M =
〈obs, infi,M〉. obs is a function that for a given step gives a set of formulas in language Lit that
the agent i observed at step t. infi is a transition function from formulas in Lit to formulas in
Lit+1. M is a set of a finite set of formulas, mi

t, in Lit such that mi
t+1 = infi(m

i
t) ∪ obs(i, t+ 1).

There is a meta-logic that describes the agent’s reasoning in time. If t is a time point and
i1, . . . , in, i are names of agents, then the meta-logic rules have the following form:

(i1, t) : φ1, . . . , (in, t) : φn
(i, t+ 1) : ψ

5.3 TRL(KARO)

Until now it was assumed that derivations in KARO don’t take up any time. Some precondition
must hold before actions can be performed. Derivations are needed to check whether these precon-
ditions hold. Thus the time to perform an action consists of two parts. The time needed to check
the preconditions and the time to perform the action itself. Especially checking the preconditions
of the select action can take a long time because a viable action sequence must be found.

KARO is redefined with TRL-type rules4, making it not logically omniscient. This makes it
possible to take into account the time it takes to check the preconditions of the actions needed
to reach a goal. An action is actually performed by the agent when it is committed to the action
and is capable of doing the action or when it is capable of doing one of the actions added in

4The definition given in this paper is the all rules at each cycle type. This results in a simple breadth search
through all the derivations. For more control on the order of the derivations the single rule each at each cycle type
can be implemented as given in [1].

23

the language LatC . The actions that are added in the language LatC are the select, commit and
uncommit actions.

The syntax of TRL(KARO) is the same as in language Lat and LatC . Since the ϕ?,
if ϕ then α else β fi and while ϕ do α od actions are not important for finding action
sequences that work for one specific case they are left out of the following description.

5.3.1 Language LTRL

The class MTRL of models contains all M = 〈S, π,R, r0, c0, τ0, obs, infi,M〉. t∗ indicates the time
the derivation actually took to perform.

Definition 5.1. The result function rat is defined in a similar way to function r, where a ∈ At,
mi
t ∈M and rat(i, α)(M, ε) = M, ε.

rTRL(i, a)(M, s, τ) = (M ′, s′, τ ′) such that (M ′, s′) = r0(i, a)(M, s)

and τ ′ = τ + τ0(i, a)(M, s)

rTRL(i, ϕ?)(M, s, τ) = (M, s, τ) if ∃t ∈ N((M, s, τ)(i, t) : ϕ)

otherwise M, ε

rTRL(i, α1;α2)(M, s, τ) = rat(i, α2,)(r
at(i, α1)(M, s, τ))

(M, s, τ)(i, t) : ϕ

(M, s, τ + t∗)(i, t+ 1) : ϕ
if ϕ is not time dependent Def. 5.2

(M, s, τ)(i, t) : >
(M, s, τ + t∗)(i, t+ 1) : ϕ

if π(s)(ϕ) = 1 Def. 5.3

(M, s, τ)(i, t) : >
(M, s′, τ + t∗)(i, t+ 1) : c(i, a)(M, s′)

if c0(M, s′)(i, a), a ∈ At and (s, s′) ∈ R Def. 5.4

(M, s, τ)(i, t) : c(i, α1)(M, s), (M, s, τ)(i, t) : c(i, α2)(r(i, α1)(M, s))

(M, s, τ + t∗)(i, t+ 1) : c(i, α1;α2)(M, s)
Def. 5.5

(M, s, τ)(i, t) : c(i, act(running({(0, α)} , ∅, τ)(M, s),

(M, s, τ)(i, t) : c(i, act(running(T1, R1, τ1)(M, s), . . . ,

(M, s, τ)(i, t) : c(i, act(running(Tn, Rn, τn)(M, s)

(M, s, τ + t∗)(i, t+ 1) : c(i, [α1‖ . . . ‖αn])(M, s)
Def. 5.6

if 〈{(0, α)} , ∅, s, τ〉⇀M
i,α1,β1

〈T1, R1, s1, τ1〉⇀M
i,α2,β2

· · ·⇀M
i,αn,βn

〈Tn, Rn, sn, τn〉

(M, s, τ)(i, t) : c(i, α)(M, s, τ)

(M ′, s′, τ ′)(i, t+ 1) : >
if (M ′, s′, τ ′) ∈ r(i, α)(M, s, τ) Def. 5.7

24

The rule given in definition 5.2 describes that the reasoning of agent i is monotonic. If the agent
derives something at time t it also holds at times after t. This only holds for formulas that are not
dependent on completing actions before the end time and thus are derived from Beforei(α, τend).
The rules that are dependent on completing actions before the end time are Beforei(α, τend),
♦i(ϕ, τend), CanBeforei(α, τend), Goali(ϕ, τend) and PossInntendi(α,ϕ, τend). The rule given
in definition 5.3 describes that atomic propositional truths do not need to be derived. The rule
given in definition 5.4 describes that every state in the epistemic equivalence class is capable of
performing the atomic action. Definition 5.5 describes that if the agent is capable of performing
two actions, the agent is capable to perform the actions in sequence. Definition 5.6 describes the
definition 4.9. Definition 5.7 describes that the agent is able to make derivations in the state
resulting from performing an action the agent is capable of in the current state. The rules of
definitions 5.4 to 5.7 have the effect that the agent is searching breadth first through the possible
action sequences.

(M, s, τ)(i, t) : 〈doi(α)〉>
(M, s, τ + t∗)(i, t+ 1) : Oiα

Def. 5.8

(M, s, τ)(i, t) : c(i, α)(M, s)

(M, s, τ + t∗)(i, t+ 1) : Aiα
Def. 5.9

(M, s, τ)(i, t) : c(i, α)(M, s), (M ′, s′, τ ′)(i, t)ϕ

(M, s, τ + t∗)(i, t+ 1) 〈doi(α)〉ϕ
if (M ′, s′, τ ′) ∈ rTRL(i, α)(M, s, τ) Def. 5.10

(M, s, τ)(i, t) : c(i, α)(M, s), (M, s, τ)(i, t) : Wi(ϕ, τend)

(M, s, τ + t∗)(i, t+ 1) : Beforei(α, τend)
if (τ + π3(rTRL(i, α)(M, s, τ)) ≤ τend

Def. 5.11

(M, s1, τ)(i, t) : ϕ, . . . , (M, sn, τ)(i, t) : ϕ

(M, s, τ + t∗)(i, t+ 1) : Kiϕ
if {s1, . . . , sn} = [s]R(i) Def. 5.12

(M, s, τ)(i, t) : 〈doi(α)〉ϕ, (M, s, τ)(i, t) : Aiα

(M, s, τ + t∗)(i, t+ 1) : PracPossi(α,ϕ)
Def. 5.13

(M, s, τ)(i, t) : KiPracPossi(α,ϕ)

(M, s, τ + t∗)(i, t+ 1) : Cani(α,ϕ)
Def. 5.14

(M, s, τ)(i, t) : Ki¬PracPossi(α,ϕ)

(M, s, τ + t∗)(i, t+ 1) : Cannoti(α,ϕ)
Def. 5.15

(M, s, τ)(i, t) : KiBeforei(α, τend)

(M, s, τ + t∗)(i, t+ 1) : CanBeforei(α, τend)
Def. 5.16

The rule in definition 5.8 describes the opportunity rule as defined in definition 2.1. The rule
in definition 5.9 describes the ability rule as defined in definition 3.4. The rule in definition 5.10
describes the do rule as defined in definition 3.4. The rule in definition 5.11 reflex the before rule
as defined in definition 3.4. The rule in definition 5.12 describes the knowledge rule as defined
in definition 3.4. The rule in definition 5.13 describes the practically possible rule as defined in

25

definition 2.2. The rule in definition 5.14 describes the can rule as defined in definition 2.3. The
rule in definition 5.15 describes the cannot rule as defined in definition 2.4. The rule in definition
5.16 describes the can before rule as defined in definition 3.1. The rules in definitions 5.8 to 5.16
are the rules of the language Lat.

5.3.2 Language LTRLC

The class MTRLC
of models contains all M = 〈S, π,R, r0, c0, τ0,W,C,Agenda, obs, infi,M〉.

Definition 5.17. If mi
t ∈M and M = 〈S, π,R, r0, c0, τ0,W,C,Agenda, obs, infi,M〉 then

rTRL
C
(i, ϕ)(M, s, τ) = rTRL(i, ϕ)(M, s, τ)

rTRL
C
(i, select(ϕ, τend))(M, s, τ) = (〈S, π,R, r0, c0, τ0,W, choose(i, ϕ, τend)(M, s),

Agenda, obs, infi,M〉 , s, τ)

if ∃t ∈ N((M, s, τ)(i, t) : Wi(ϕ, τend)) and

∅otherwise

rTRL
C
(i, commit α)(M, s, τ) = (

〈
S, π,R, r0, c0, τ0,W,C, agenda

+(i, α)(M, s),

obs, infi,M〉 , s, τ) if

∃t ∈ N((M, s, τ)(i, t) : PossIntendi(α,ϕ, τend))

for all (ϕ, τend) ∈ C(i, s) and ∅ otherwise

rTRL
C
(i, uncommit α)(M, s, τ) = (

〈
S, π,R, r0, c0, τ0,W,C, agenda

−(i, α)(M, s),

obs, infi,M〉 , s, τ) if

∃t ∈ N((M, s, τ)(i, t) : Comiα) and ∅ otherwise

(M, s, τ)(i, t) : Wiϕ, (M, s, τ)(i, t) : ¬ϕ, (M, s, τ + t∗)(i, t) : ♦i(ϕ, τend)

(M, s, τ)(i, t+ 1) : c(i, select(ϕ, τend))
Def. 5.18

(M, s, τ)(i, t) : PosIntendi(α,ϕ, τend)

(M, s, τ + t∗)(i, t+ 1) : c(commitα)(M, s)
if ∃(ϕ, τend) ∈ C(i, s) Def. 5.19

(M, s, τ)(i, t) : ¬PossIntendi(α,ϕ, τend), (M, s, τ)(i, t) : Comiα

(M, s, τ + t∗)(i, t+ 1) : c(uncommitα)(M, s)
∀(ϕ, τend) ∈ C(i, s) Def. 5.20

Definition 5.18 describes when the agent is capable of performing the select action. Definition
5.19 describes when the agent is capable of performing the commit action. Definition 5.20 describe
when the agent is capable of performing the uncommit action

(M, s, τ)(i, t) : >
(M, s, τ + t∗)(i, t+ 1) : We

if ∀s′ ∈ S((s, s′) ∈W (i)⇒ π(s′)(ϕ) = 1) Def. 5.21

(M, s, τ)(i, t) : PracPossi(α,ϕ), (M, s, τ) : Beforei(α, τend)

(M, s, τ + t∗)(i, t+ 1) : ♦i(ϕ, τend)
Def. 5.22

(M, s, τ)(i, t) : >
(M, s, τ + t∗)(i, t+ 1) : Ci(ϕ, τend)

if (ϕ, τend) ∈ C(i, s) Def. 5.23

26

(M, s, τ)(i, t) : >
(M, s, τ + t∗)(i, t+ 1) : Comiϕ

if ∀s′ ∈ [s]R(i) ∃α1 ∈ CRCM (i, α, s′)∃α2 ∈ Agenda(i, s′)

∃α′2 ∈ CRCM (i, α2, s
′)(Prefix(α1, α

′
2)) Def. 5.24

(M, s, τ)(i, t) : Wi(ϕ, τend), (M, s, τ)(i, t) : ¬ϕ, (M, s, τ)(i, t) : ♦i(ϕ, τend), (M, s, τ)(i, t) : Ci(ϕ, τend)

(M, s, τ + t∗)(i, t+ 1) : Goali(ϕ, τend)
Def. 5.25

(M, s, τ)(i, t) : Cani(α,ϕ), (M, s, τ)(i, t) : KiGoali(ϕ, τend), (M, s, τ)(i, t) : CanBeforei(α, τend)

(M, s, τ + t∗)(i, t+ 1) : PossIntendi(α,ϕ, τend)
Def. 5.26

The rule definition 5.21 describes the wish rule as defined in definition 2.12. The rule in
definition 5.22 describes the implementability rule as defined in definition 3.7. The rule in definition
5.23 describes the selected rule as defined 3.7. The rule in definition 5.24 describes the commitment
rule as defined in definition 3.7. The rule in definition 5.25 describes the goal rule as defined in
definition 3.2. The rule in definition 5.26 describes the possibly intends rule as defined in definition

3.3. The rules in definitions 5.21 to 5.26 are the rules of the language LatC .
Following the distribution axiom of epistemic logic the following rule can also be derived from

5.13:

(M, s, τ)(i, t) : KiAiα, (M, s, τ)(i, t) : Ki 〈doi(α)〉ϕ
(M, s, τ + t∗)(i, t+ 1) : KiPracPossi(α,ϕ)

Def. 5.27

5.4 Block World Example

In this example TRL(KARO) is used to plan actions in the block world as described in 2.3. Some
translations of the rules given in section 2.3 and 3.3 are given below:

(M, s, τ)(i, t) : Goaliϕ

(M, s, τ + t∗)(i, t+ 1) : KiGoaliϕ
Def. 5.28

(M, s, τ)(i, t) : Aiα

(M, s, τ + t∗)(i, t+ 1) : KiAiα
Def. 5.29

(M, s, τ)(i, t) : 〈doi(α)〉ϕ
(M, s, τ + t∗)(i, t+ 1) : Ki 〈doi(α)〉ϕ

Def. 5.30

(M, s, τ)(i, t) : Beforei(α, τend)

(M, s, τ + t∗)(i, t+ 1) : KiBeforei(α, τend)
Def. 5.31

27

Let there be an agent e in the initial state s0 as given in figure 10 where τ(s0) = 0. The
agent e has the wish to make a block A1 clear within three seconds, We(is clear(A1), 3). The
initial selected wishes and agenda are empty, C(e, s0) = ∅ and Agenda(e, s0) = ∅. There are no
observations and the inference rules are the rules given above. It is assumed that every derivation
takes 0.1 seconds, t∗ = 0.1.

C1

A1

Figure 10: The staring position of the blocks in the example.

Figure 11 gives the derivations needed to show that the agent e is capable to select is clear(A1).
For readability, the process is divided into smaller parts, connected with arrows and only the rele-
vant formulas are shown. The arrows can also represent multiple applications of the monotonicity
rule given in definition 5.2.

The agent is capable to do the action select(is clear(A1), 3). The agent executes the select
action resulting in a model where (M, s1, 0.7)(e, 7) : Ce(is clear(A1), 3). In this model the agent
can make new derivations, as shown in figure 12.

The agent is capable to commit execute the action drop block C1 in order to make block A1

clear, commit drop(C1). The agent performs the commit action resulting in a model where the
agenda is updated with the action of dropping block C1, according to definition 5.17. The agent
can now apply de rule given in definition 5.24 as shown in figure 13.

The agent is now committed to dropping block C1 and is also capable of dropping the block.
The agent will thus execute the dropping action resulting in a model where the wish of the agent
is fulfilled. As defined in rule C6, the action of dropping a block of type C takes one second. The
reasoning took 1.9 seconds, thus block A1 will be clear at 2.9 seconds. This is before the end time
of 3 seconds.

The agent would fail to commit itself to the wish of clearing block A1 before 2.9 seconds. One
of the aplications of the before rules given in definition 5.11 would fail. Without taking the (in
this example slow) reasoning into account the agent would be able to drop block C1 and clear
block A1 in one second. But the reasoning takes too long to allow for an action to be performed
in time.

28

(M, s0, 0)(e, 0) : >
5.21 5.3 5.4

(M, s0, 0.1)(e, 1) : ¬(is clear(A1)), (M, s0, 0.1)(e, 1) : We(is clear(A1), 3), (M, s0, 0.1)(e, 1) : c(e, drop(C1))(M, s0)

(M, s0, 0.1)(e, 1) : c(e, drop(C1))(M, s0)
5.9 5.7

(M, s0, 0.2)(e, 2) : Aedrop(C1), (M, sdrop(C1), 1.1)(e, 2) : >

(M, s0, 0.4)(e, 4) : Aedrop(C1)

(M, sdrop(C1), 1.1)(e, 2) : >
5.3

(M, sdrop(C1), 1.2)(e, 3) : is clear(A1) (M, s0, 0.3)(e, 3) : c(e, drop(C1))(M, s0)
5.10

(M, s0, 0.4)(e, 4) : 〈doi(drop(C1))〉 is clear(A1)
5.13

(M, s0, 0.5)(e, 5) : PracPosse(is clear(A1), drop(C1))

(M, s0, 0.4)(e, 4) : We(is clear(A1), 3) (M, s0, 0.4)(e, 4) : c(e, drop(C1))(M, s0)
5.11

(M, s0, 0.5)(e, 5) : Beforee(dropC1, 3) (M, s0, 0.5)(e, 5) : PracPosse(is clear(A1), drop(C1))
5.22

(M, s0, 0.6)(e, 6) : ♦e((drop)C1, 3)

(M, s0, 0.6)(e, 6) : ¬(is clear(A1)) (M, s0, 0.6)(e, 6) : We(is clear(A1), 3) (M, s0, 0.6)(e, 6) : ♦e((drop)C1, 3)
5.18

(M, s0, 0.7)(e, 7) : c(e, select(is clear(A1), 3))(M, s0)

Figure 11: The rules used in TRL(KARO) to derive that agent e is capable to perform the action select(is clear(A1), 3).

29

(M, s1, 0.7)(e, 7) : >
5.3 5.4

(M, s1, 0.8)(e, 8) : c(e, drop(C1))(M, s1), (M, s1, 0.8)(e, 8) : We(is clear(A1), 3), (M, s1, 0.8)(e, 8) : ¬(is clear(A1)), (M, s1, 0.8)(e, 8) : Ce(is clear(A1), 3))

(M, s1, 0.8)(e, 8) : c(e, drop(C1))(M, s1)
5.9 5.7

(M, s1, 0.9)(e, 9) : Aedrop(C1), (M, sdrop(C1), 1.8)(e, 2) : >

(M, sdrop(C1), 1.8)(e, 9) : >
5.3

(M, sdrop(C1), 1.9)(e, 10) : is clear(A1) (M, s1, 1)(e, 10) : c(e, drop(C1))(M, s1)
5.10

(M, s1, 1.1)(e, 11) : 〈doi(drop(C1))〉 is clear(A1)

(M, s1, 1.1)(e, 11) : c(e, drop(C1))(M, s1) (M, s1, 1.1)(e, 11) : We(is clear(A1), 3)
5.11

(M, s1, 1.2)(e, 12) : Beforee(drop(C1), 3)

(M, s1, 1.3)(e, 13) : c(e, drop(C1))(M, s0) (M, s1, 1.3)(e, 13) : We(is clear(A1), 3)
5.11

(M, s1, 1.4)(e, 14) : Beforee(drop(C1), 3)
5.31

(M, s1, 1.5)(e, 15) : KeBeforee(drop(C1), 3)
5.16

(M, s1, 1.6)(e, 16) : CanBeforee(drop(C1), 3)

(M, s1, 1.1)(e, 11) : Aedrop(C1)
5.29

(M, s1, 1.2)(e, 12) : KeAedrop(C1)

(M, s1, 1.1)(e, 11) : 〈doi(drop(C1))〉 is clear(A1)
5.30

(M, s1, 1.2)(e, 12) : Ke 〈doi(drop(C1))〉 is clear(A1)
5.27

(M, s1, 1.3)(e, 13) : KePracPosse(is clear(A1), drop(C1))
5.14

(M, s1, 1.4)(e, 14) : Cane(drop(C1), is clear(A1))

(M, s1, 1.1)(e, 11) : Aedrop(C1) (M, s1, 1.1)(e, 11) : 〈doi(drop(C1))〉 is clear(A1)
5.13

(M, s1, 1.2)(e, 12) : PracPosse(is clear(A1), drop(C1)) (M, s1, 1.2)(e, 12) : Beforee(dropC1, 3)
5.22

(M, s1, 1.3)(e, 13) : ♦e(drop(C1), 3)

(M, s1, 1.4)(e, 14) : ♦e(drop(C1), 3) (M, s1, 1.4)(e, 14) : ¬(is clear(A1)) (M, s1, 1.4)(e, 14) : We(is clear(A1), 3) (M, s1, 1.4)(e, 14) : Ceis clear(A1))
5.25

(M, s1, 1.5)(e, 8) : Goale(is clear(A1), 15)
5.28

(M, s1, 1.6)(e, 16) : KeGoale(is clear(A1), 3)

(M, s1, 1.6)(e, 16) : Cane(dropC1, is clear(A1)) (M, s1, 1.6)(e, 16) : KeGoale(is clear(A1), 3) (M, s1, 1.6)(e, 16) : CanBeforee(drop(C1), 3)
5.28

(M, s1, 1.7)(e, 17) : PossIntendi(drop(C1), is clear(A1), 3)
5.19

(M, s1, 1.8)(e, 18) : c(e, commit drop(C1))(M, s1)

Figure 12: The rules used in TRL(KARO) to derive that agent e is capable to perform the action commit drop(C1).

30

(M, s2, 1.8)(e, 18) : >
5.24 5.4

(M, s2, 1.9)(e, 19) : Comedrop(C1), (M, s2, 1.9)(e, 19) : c(e, drop(C1))(M, s2)

Figure 13: The rules used in TRL(KARO) to derive that agent e is committed and is capable to
perform the action drop(C1).

6 Discussion

The goal operator of the KARO framework was in this paper extended with an end time before
which the goal must be reached. Every action takes a certain amount of time to complete. The
action sequence planned by the agent must thus not take so long that it finishes after the end
time of the goal. A before operator was introduced to indicate that an action can be performed
before a certain time. Parallel actions were also introduced to the KARO framework. Performing
actions in parallel can be a lot faster than doing the actions after each other. This gives the agent
more options for achieving the goal within the given time. There are also actions in KARO that
are not about changing the environment but changes in the state of the agent. For example, the
commit action that commits an agent to a certain action. These actions also take a certain amount
of time to complete, because the agent needs to reason whether the preconditions of the actions
hold. Especially finding a suitable action sequence to fulfil the goal can take a lot of time. Timed
reasoning logic is used let KARO make only a limited number of derivations every time step,
making KARO not logically omniscient. This allows derivations to be done in a finite amount of
time.

The given extensions to the KARO framework make it possible to build a real world agent
that is able to perform with a limited amount of time and computing power.

31

References

[1] Natasha Alechina, Brian Logan, and Mark Whitsey. A complete and decidable logic for
resource-bounded agents. In Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems-Volume 2, pages 606–613. IEEE Computer Society,
2004.

[2] Michael J Fischer and Richard E Ladner. Propositional dynamic logic of regular programs.
Journal of computer and system sciences, 18(2):194–211, 1979.

[3] Antoni Mazurkiewicz. Introduction to trace theory. The Book of Traces, pages 3–41, 1995.

[4] J-J Ch Meyer, Wiebe van der Hoek, and Bernd van Linder. A logical approach to the dynamics
of commitments. Artificial Intelligence, 113(1):1–40, 1999.

[5] Gordon D Plotkin. A structural approach to operational semantics. Computer Science De-
partment, Aarhus University Aarhus, Denmark, 1981.

[6] Wiebe van der Hoek, Bernd van Linder, and J-J Ch Meyer. A logic of capabilities. In Inter-
national Symposium on Logical Foundations of Computer Science, pages 366–378. Springer,
1994.

[7] Wiebe van der Hoek, Bernd van Linder, and John-Jules Ch Meyer. An integrated modal
approach to rational agents. In Foundations of rational agency, pages 133–167. Springer,
1999.

[8] B Van Linder, W van der Hoek, and John-Jules Ch Meyer. Tests as epistemic updates:
Pursuit of knowledge. Utrecht University, Department of Computer Science, 1994.

[9] Bernd Van Linder, Wiebe van der Hoek, and J-J Ch Meyer. Actions that make you change
your mind. In Annual Conference on Artificial Intelligence, pages 185–196. Springer, 1995.

[10] Bernd van Linder, Wiebe van der Hoek, and J-J Ch Meyer. The dynamics of default reasoning.
Data & knowledge engineering, 21(3):317–346, 1997.

[11] Bernd van Linder, Wiebe van der Hoek, and J-J Ch Meyer. Formalising abilities and oppor-
tunities of agents. Fundamenta Informaticae, 34(1, 2):53–101, 1998.

32

