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Abstract

Spiking neural networks are investigated both as biologically plausible models
of neural computation and also as a potentially more efficient type of neural
network. While convolutional spiking neural networks have been demonstrated
to achieve near state-of-the-art performance, no such networks have been
presented for gated recurrent neural networks. Recurrent neural networks
in the form of networks of gating memory cells have been central in state-
of-the-art solutions in problem domains that involve sequence recognition
or generation. Here, we design an analog gated Long Short-Term Memory
(LSTM) cell where its constituent neurons can be substituted for efficient
spiking neurons. These adaptive spiking neurons implement an adaptive form
of sigma-delta coding to convert internally computed analog activation values
to spike-trains. For such neurons, we derive the effective activation function,
which resembles a half sigmoid. We show how analog neurons with such
activation functions can be used to create an analog LSTM cell, networks
of these cells can then be trained with standard backpropagation. We train
these LSTM networks on a noisy and noiseless version of the original sequence
prediction task from Hochreiter & Schmidhuber (1997), and also on a noisy
and noiseless version of a classical working memory reinforcement learning
task, the T-Maze. Substituting the analog neurons for corresponding adaptive
spiking neurons, we then show that almost all resulting spiking neural network
equivalents correctly compute the original tasks.
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Chapter 1

Introduction

The goal of this work is to construct a brain-like model which is able to
find patterns in time-series. A possible model for this is an artificial neural
network, which is a graph where the neurons (the vertices) are connected
to each other by weights (the edges). The output of a neuron is the result
of a non-linear function applied on the weighted sum of the inputs of the
neuron. The neurons are often arranged in such a way that multiple layers
of neurons are created. The first layer is called the input layer, the last is
the output layer and the layers in between are the hidden layers. During an
inference pass the network computes the mapping from the input (e.g. an
image) to the output (e.g. a classification), while during the training phase
the weights of the network are adjusted to improve this mapping. To enable
a neural network to process and predict time series Long Short-Term Memory
(LSTM) units can be implemented in the neural network. Deep learning [1],
which is the use of artificial neural networks, is inspired by the human brain,
which consists of approximately 1011 neurons connected with each other by
1015 synapses. However, the type of neural network that has been shown
to be very successful on a wide variety of tasks, like image recognition [2],
speech recognition [3] and reinforcement learning problems [4], is not very
biologically plausible, meaning that they are a great oversimplified model of
the brain. In this work spiking neurons will be used to construct a brain-like
model to extract patterns on time-series.

Spiking neural networks are a variant of artificial neural networks and
consist of spiking neurons that communicate by using brief electric pulses –
spikes – making them closer to biological neurons, which only fire 1-5 times
per second on average [5]. They are being investigated as potential models
for computational and energy efficiency and are also attractive since unlike
artificial neural networks they have a natural notion of time. Spiking neural
networks can be more efficient than analog neural networks for continuous
time input, like video or audio. This is especially the case in a network
that has already been trained. An analog neural network needs to do a full
inference pass for every new input. So if a video has 60 frames per second,
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the neural network needs to do 60 inference passes per second. For much
continuous time data, the new input is very similar to the previous input.
The states of the neurons in the new inference phase will be very similar to
the states during the previous inference phase. It seems to be a waste to
completely recompute the full network every time a new input is presented.
Spiking neural networks are an attractive alternative, since a spiking neuron
is more active when its input changes and less active when its input stays
stable. This is unlike a traditional neural network, where the computational
activity is the same for changing input as it is to stable input. A spiking
neural network has a similar advantage over an analog neural network when it
comes to handling asynchronous sensor input. A neural network that controls
a self-driving car might have input coming from both a video camera with
60 frames per second and a radar sensor with 1000 outputs per second. The
states of the neural network can be updated 60 times per second, which
means that it would miss possibly essential input from the radar, or the states
can be updated 1000 times per second, which will require an unnecessarily
large amount of computational power. A spiking neural network could be a
solution for this problem, by allowing the network to only update the states
of the neurons that should change, instead of updating all the neurons in the
network, without missing any input information.

More efficient neural networks might be achieved in the future by using
spiking neural networks on standard hardware like Graphics Processing Units
(GPUs), application-specific integrated circuits (ASICs) like Tensor Processing
Units (TPUs) [6] or by mimicking spiking neurons with analog hardware [7].
It is still unclear which of these methods is best for spiking neural networks
and even if spiking neural networks are the best way to implement energy
efficient neural networks. But there is a great demand for energy efficient
neural networks, since they can be used on a wide variety of problems, from
assistants on mobile phones that need speech recognition, to drones and
self-driving cars, see Figure 1.1.

The two main types of neural networks are feedforward neural networks
[8] and recurrent neural networks [9] (RNNs). Convolutional neural networks
[10] are the most common type of feedforward neural networks. The neurons
in a convolutional neural network are only connected to a small subset of
the neurons in the previous layer, creating a receptive field and this makes
these networks work well on most visual tasks. A number of successful
convolutional neural networks based on spiking neurons have been reported
[11, 12, 13, 14], with varying degrees of biological plausibility and efficiency.
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Figure 1.1: Elon Musk, the CEO of Tesla, Inc., on the need for more efficient
solutions for machine learning, e.g. neural networks.

Still, while spiking neural networks have been applied successfully to solve
image-recognition tasks, many deep learning algorithms use recurrent neural
networks. Recurrent neural networks have units that send there output back
to their own input, while the units in a feedforward neural network like a
convolutional neural network send their output only to the next layers. This
looping behaviour of the network gives it the ability to remember information.
Although most types of recurrent neural networks are hard to train due to
the vanishing gradient problem [15], Long Short-Term Memory (LSTM) [16]
networks have been shown to work very well. Compared to convolutional
neural networks, LSTMs use memory cells to store selected information and
various gates to direct the flow of information in and out of the memory cells.
To the best of our knowledge, no spiking neural network implementation of
LSTM has been published.

Most neural networks are trained by using backpropagation to find the
derivatives of the error with respect to the weights and then use gradient
descent to update these weights. Since this method is very successful for
analog neural networks, it is a promising way to train spiking neural networks
in the same way; however, spiking neurons send brief spikes, which are not
differentiable. One way to overcome this is to use analog neurons during
training with activation functions that approximate the behaviour of the
spiking neurons [14, 13, 17]. These analog neurons are then replaced by
spiking neurons after training, such that the (more efficient) spiking neurons
can be used for inference.
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Related work

Research in recent years has drawn parallels between the Leaky Integrate-
and-Fire (LIF) neuron [18] and the Spike Response Model (SRM) neuron [19]
and the Sigma Delta Modulation (SDM) scheme [20]. In the SDM scheme the
encoder, which is the sending neuron, encodes an analog signal (its membrane
potential) to a digital signal (spikes).The decoder, which is the receiving
neuron, can be fed with the spikes to reconstruct an estimate of the analog
signal. The density of the spikes indicates the amplitude of the encoded signal.
In [21] a Sigma-Delta Quantized Network is introduced to process video data.
Each layer of the convolutional neural network sends a discretized form of
its change in activation to the next layer. This means that the amount of
computation will scale with the amount of change in the activations, rather
than the size of the network. A similar method is used in [22] where a Delta
Network is used to optimize the computation of a recurrent neural network.
Each neuron transmits its value only when the change in its activation exceeds
a certain threshold. Both of these methods lower the computational cost, but
no performance improvements have been shown on hardware like GPUs. This
is because the main bottleneck for the performance of neural networks is the
limited (access to) memory on the current hardware [23], so new hardware is
needed to unlock the potential of these new techniques. The neurons used in
these methods are time-agnostic, in contrast to traditional spiking neurons
which have a sense of time.

Neuromorphic hardware implements a neural network directly on a chip
in a very energy-efficient way. A spiking convolutional network on IBM’s
TrueNorth chip [24, 11] has been shown to achieve near state-of-the-art
results on several datasets, while being extremely energy-efficient. The
performance of the network was good, despite several network architecture
limitations and the fact that the neuron activations were limited to the states
0 and 1. Neuromorphic hardware is well adapted to handle data from event-
based sensors, such as the Dynamic Vision Sensor [25]. Event-based sensors
asynchronously send output when there is a change in the input, instead of
regular sensors that send out output at a fixed rate.

A successful spiking convolutional neural network is presented in [17]. It
uses the Adaptive Spiking Neuron model [26], which is biologically plausible
and quickly adapts to the dynamic range of the input signal. Although the
spiking neural network gets near deep learning state-of-the-art performance
and is relatively biologically plausible, it uses spikes with analog values. This
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is computationally a potential disadvantage compared to models that use
binary spikes, since an extra float multiplication is needed. To our knowledge,
there is no spiking LSTM model publicly available. [11] mentions results from
an LSTM that is implemented on the neuromorphic TrueNorth chip, but no
spiking LSTM model is presented.

LSTM is not the only successful model to incorporate memory in a neural
network. The architecture and performance of Gated Recurrent Units (GRUs)
and Recurrent Additive Networks (RANs) is similar to LSTMs, but they have
less parameters. Attention-Gated MEmory Tagging (AuGMEnT) [27] is a
more biologically plausible neural reinforcement learning model with working
memory units, but is limited by the type of tasks that it can perform. This
is due to the fact that it only looks at changes in input and cannot control
the flow of information by using gates. AuGMEnT can for example not
successfully work on tasks with noisy input, which makes it near impossible
to learn complicated tasks like speech recognition.

Our work

In this work we demonstrate a gated recurrent spiking neural network that
corresponds to an LSTM unit with a memory cell and an input gate. Analo-
gous to recent work on spiking neural networks [14, 13, 17], we first train a
network with modified LSTM units that computes with analog values, and
show how this LSTM-network can be converted to a spiking neural network
using adaptive spiking neurons that encode and decode information in spikes
using a form of sigma-delta coding [20, 17, 21]. In particular, we develop
a binary version of the adaptive sigma-delta coding proposed in [17]: we
derive the shape of the transfer function that this model of fast-adapting
spiking neurons exhibits, and we assemble the analog LSTM units using just
this transfer function. The fact that the adjusted ASN sends binary spikes
(spikes with a fixed height) instead of analog spikes is a big advantage since it
makes it more biologically plausible and it is computationally less expensive.
Since input-gating is essential for maintaining memorized information without
interference from unrelated sensory inputs [16], and to reduce complexity, we
model a limited LSTM neuron consisting of an input cell, input gating cell, a
Constant Error Carousel (CEC) and output cell. The resultant analog LSTM
network is then trained on a number of classical sequential tasks, such as the
noiseless and noisy Sequence Prediction and the noiseless and noisy T-Maze
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task [16, 28]. We demonstrate how nearly all the corresponding spiking LSTM
neural networks correctly compute the same function as the analog version.

Note that the conversion of gated RNNs to spike-based computation
implies a conversion of the neural network from a time-step based behavior to
the continuous-time domain. For RNNs this means considering the continuous
signal integration in the memory cell. We solve the time conversion problem
by approximating the spiking memory cell behavior through time.

The focus of this work is not to show a more computational efficient
LSTM, but this work is a first step towards using spiking neural networks
in such diverse and challenging tasks like speech recognition and working
memory cognitive tasks.
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Chapter 2

Model

First a brief explanation about artificial neural networks, recurrent neural
networks, spiking neural networks and Long Short-Term Memory is needed
to be able to understand how to construct an Adapting Spiking LSTM
network. We describe the Adaptive Spiking Neurons and analytically derive
the corresponding activation function. We then show how an LSTM network
can be constructed comprised of a spiking memory cell and a spike-driven
input-gate, and we discuss how analog versions of this LSTM network are
trained and converted to spiking versions.

Artificial neural networks

A traditional artificial neural network is a simplification of the brain, see
Figure 2.1 for an example. The synapses are represented by a single number, a
weight, although in reality the synapse has a complex behaviour that changes
over time. The membrane potential of a neuron is replaced by a weighted
sum of inputs from other neurons. The output of the neuron is generated
by applying a non-linear function f , called the activation function, on the
input value. This output value is a real-valued number and can be seen as
the firing rate of the neuron. The firing rate is the number of spikes per time
interval that reach the receiving neuron. A higher firing rate will raise the
membrane potential of the receiving neuron more than a low firing rate. The
relation between the membrane potential of a neuron and the firing rate of
the neuron is described by the activation function.

The goal of the training phase is to minimize the error of the output.
First, the network does a feed-forward pass with input x, in which all the
neurons in the network are evaluated. In the case of supervised learning, the
output y of the network is compared to the desired output ȳ which results
in an error E, for example by using a mean squared error or cross entropy
error function. In the case of reinforcement learning [29] the neural network
acts as the function approximator for the action-value function. An action is
selected based on the output of the network and an error can be calculated.
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The second training step is to calculate the derivative of the error E with
respect to weight wij which connects neuron i to neuron j. We do this for all
the weights in the network. Since the activation functions in the network are
differentiable (except for maybe a finite number of points), a neural network
can be seen as stacked differentiable functions. So the chain rule can be
applied layer by layer to easily find the derivatives with respect to all the
weights. This is called backpropagation. The last training step is to update
the weights by using gradient descent. Each weight is updated in the direction
that will minimize the error: ∆wij = −η ∂E

∂wij
, where η is the learning rate.

Unlike traditional statistical techniques, where the goal is often to be able
to map the training data correctly with as few free parameters as possible to
prevent overfitting, neural networks use multiple orders of magnitude more
parameters. It is remarkable that the huge number of free parameters in a
neural network do not result in many overfitting problems. It is still unclear
why this is the case and it is a very active area of research [30]. Also note
that the brain has approximately 1015 synapses and that an average human
lives for approximately 109 seconds. So it could be argued that the human
brain has much more parameters than data [31].

Figure 2.1: An artificial neural network with two hidden layers.
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Figure 2.2: A recurrent neural network (left). The output of the hidden layer
(red) is not only sent to the output layer but also to itself. A recurrent neural
network can be visualized by unrolling it (right). In this case there is only one
neuron in each layer. All the weights directed to the right are identical. The
darker the shade of the node, the greater the sensitivity of the node to the
input at time one. The sensitivity decays exponentially over time, resulting
in the vanishing gradient problem.

Recurrent neural networks

Feedforward neural networks, which consist of only neurons that send their
output to the next layers, have no time dimension. Recurrent neural networks,
which consist of neurons that can send their output to the next layers,
previous layers or the same layer, have a time dimension. This time dimension
is discretized in fixed steps. A recurrent neural network has the ability to
learn to remember information and use it at a later point in time. After
enough training iterations and with the correct hyper-parameter settings, a
recurrent neural network is able to link input at an earlier point in time with
the desired output at a later point in time.

A recurrent neural network is the most general of all the traditional neural
networks and feedforward neural networks are a subset of recurrent neural
networks. By unrolling a recurrent neural network we can see it as a very
deep feedforward neural network with layers with reoccurring weights, see
Figure 2.2. This property makes a recurrent neural network very hard to
train. The error at a later point in time needs to be backpropagated to an
earlier point in time, so the derivative of the activation function of the same
neuron needs to be applied for multiple time steps. This quickly leads to
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a vanishing or exploding gradient of the error and makes training difficult,
especially for tasks where something needs to be remembered for a long time.

Long Short-Term Memory (LSTM)

The vanishing gradient problem, see Figure 2.2, was a big obstacle for training
recurrent neural networks. This problem was solved in 1997 by the introduc-
tion of the Long Short-Term Memory (LSTM) [16], which is well-suited to
learn relations between events that are separated by time lags of unknown
size. The central component of an LSTM is the Constant Error Carousel
(CEC), this is the recurrent part of the LSTM. The CEC is a neuron with the
identity function as its activation function, so its derivative will always be 1.
This is why the gradient will not explode or vanish during backpropagation
through time. To control the flow in and out of the CEC, an input and output
gate are added. These gates are multiplied by the outputs of the input and
output cell respectively. Often a forget gate is added to give the LSTM the
ability to reset its CEC [32]. In newer versions peepholes are added to give
the gates access to the state of the CEC [33]. The activation functions of the
gates are usually sigmoid functions and the activation functions of the input
and output cell are hyperbolic tangents.

Figure 2.3: An LSTM cell, including the input, output and forget gates,
the input and output cells, the Constant Error Carousel and the peephole
connections.
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Note that the operations in the LSTM are differentiable, so a network of
LSTM cells can be trained by using backpropagation with gradient descent.
An overview of an LSTM cell is shown in Figure 2.3.

Spiking neural networks

Spiking neurons are different from traditional artificial neurons, because they
communicate by sending spikes. These spikes can have a variable analog value,
as in [17], or a fixed binary value, as in this work. But the most important
property of spiking neurons is the fact that they model the dynamics of
the membrane potential, giving them the possibility to use time to encode
information.

The computations in neural networks are mostly matrix-vector multipli-
cations. During the inference phase, the weight matrix Wlk, containing the
weights from layer k to layer l, is multiplied with the activation vector yk,
which contains the output of the neurons in layer k. The result of Wlkyk is
the input vector to layer l, xl. In analog neural networks Wlk and yk are both
dense, but in spiking neural networks the majority of the neurons does not
spike, especially when the the input to the neurons does not change, resulting
in a sparse activation vector yk. The non-zero values in yk are floats in [17],
but are 1 in this work. So the matrix-vector multiplication Wlkyk can be
simplified to a summation: xlj =

∑
i∈{i|yki=1}Wlkj,i . A spiking neuron often

needs to send multiple spikes to be able to communicate the same amount of
information as an analog neural network, but it can still be more efficient if
the input of the neuron does not change quickly [17].

Adaptive Spiking Neuron

Most standard spiking neuron models are described by a differential equa-
tion, like the Hodgkin-Huxley model [34] and the Izhikievic model [35]. A
completely different class of spiking neuron models is based on filters, the
most well-known of these formulations is the Spike Response Model [36]. The
spiking neurons that are used in this thesis are also based on filters and
are called Adaptive Spiking Neurons (ASNs), as described in [26]. This is
a variant of an adapting Leaky Integrate & Fire (LIF) neuron model that
includes fast adaptation to the dynamic range of input signals. The ASNs
used here communicate with spikes of a fixed height h, in contrast to [17]
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where ASNs use spikes with a variable height. The behavior of the ASN is
determined by the following equations:

incoming postsyn. current: I(t) =
∑
i

∑
tis

wi exp

(
tis − t
τβ

)
, (2.1)

input signal: S(t) = (φ ∗ I)(t), (2.2)

threshold: ϑ(t) = ϑ0 +
∑
ts

mfϑ(ts) exp

(
ts − t
τγ

)
, (2.3)

internal state: Ŝ(t) =
∑
ts

ϑ(ts) exp

(
ts − t
τη

)
, (2.4)

where wi is the weight (synaptic strength) of the neuron’s incoming connection;
tis < t denote the spike times of neuron i, and ts < t denote the spike times
of the neuron itself; φ(t) is an exponential smoothing filter with a short time
constant τφ; ϑ0 is the resting threshold; mf is a variable controlling the speed
of spike-rate adaptation; τβ, τγ, τη are the time constants that determine the
rate of decay of I(t), ϑ(t) and Ŝ(t) respectively. The neuron emits a spike
when S(t)− Ŝ(t) > ϑ(t)

2
. See [26] and [17] for more details.

Activation function of the Adaptive Analog Neuron

In order to create a network of ASNs that performs correctly on typical LSTM
tasks, our approach is to train a network of Adaptive Analog Neurons (AAN)
and then convert the resulting analog network into a spiking one, similar to
[14, 13, 17]. We define the activation function of the AANs as the function
that maps the input signal S to the average PSC I that is perceived by
the next (receiving) ASN. By setting τη = τβ = τγ we can obtain the exact
activation function as:

AAN(S) =
−h

ln
(

2·S−ϑ0
2·S(mf+1)+ϑ0

) for S >
ϑ0

2
, 0 otherwise. (2.5)

Using this mapping from the AAN to the ASN (see Figure 2.4), the
activation function can be used during training: thereafter, the ASNs are
used as “drop in” replacements for the AANs in the trained network; this
activation function is derived in Chapter 3. Unless otherwise stated, the
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Figure 2.4: The average output signal of the ASN (left) as a function of its
incoming PSC I, where the error bars indicate the standard deviation of the
spiking simulation, and the corresponding AAN curve. The shape of the ASN
curve is well described by the AAN activation function, Equation 2.5, so the
two curves overlap. The ASNσ (right) can be constructed by combining three
ASNs and its shape is described by AANσ.

Figure 2.5: The solid lines correspond to the mean and standard deviation
of the activation function of an ASN with mf = 0.1, ϑ0 = 0.1 (blue) and an
ASN with mf = 0.3, ϑ0 = 0.3 (red), both with τη = 50 and τγ = 20. The
values correspond with Equation 2.6.The dashed lines show their respective
firing rates. A lower firing rate corresponds to a larger uncertainty in the
signal.
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AAN and ASN use τη = τβ = τγ = 10ms and a spike height, h, such that
AAN(4) = ASN(4) = 1. ϑ0 and mf are set to 0.1 for all neurons. Note that
using this formulation of the activation function allows us to communicate
binary spikes only.

For some applications we might need a more general ASN with τη = τβ 6= τγ .
The AAN of this ASN is approximated in Chapter 3, see Equation 3.6, by
using a Taylor expansion and is:

f(S) =
h

exp
(

2mf τ2γS+2ϑ0τητγ

τγ(mf τγ+2(mf+1)τη)S+ϑ0τγτη+ϑ0τ2η

)
− 1
− c, (2.6)

for S > ϑ0
2

and f(S) = 0 for S <= ϑ0
2
, with c a constant.

By slightly increasing mf and ϑ0 we can lower the firing rate of the neuron,
but it also increases the variance (see figure 2.5). A low firing rate decreases
the computational costs of the network, but increases the noise.

Adaptive Spiking LSTM

An LSTM cell usually consists of an input and output gate, an input and
output cell and a CEC [16]. Deviating from the original formulation, and more
recent versions where forget gates and peepholes were added [37], the Adaptive
Spiking LSTM as we present it here only consists of an input gate, input
and output cell, and a CEC. As noted, to obtain a working Adaptive Spiking
LSTM, we first train its analog equivalent, the Adaptive Analog LSTM.
Figure 2.6 shows the schematic of the Adaptive Analog LSTM and its spiking
analogue. It is important to note that we aim for a one-on-one mapping from
the Adaptive Analog LSTM to the Adaptive Spiking LSTM. This means that
the Adaptive Analog LSTM is trained with the same time representation
(time steps used for each input) that is used during the inference phase of the
Adaptive Spiking LSTM.

Sigmoidal ASN

The original formulation of LSTM uses sigmoidal activation functions in the
input gate and input cell that cannot easily be replaced by the activation
function of the AAN, as the absence of a gradient for negative input in
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Figure 2.6: An overview of the construction of an Adaptive Analog LSTM
(top) and an Adaptive Spiking LSTM cell (bottom). This compares to an
LSTM with only an input gate. The green inset describes the construction of
ASNσ.

the AAN is problematic during training. We constructed a sigmoid-like
activation function AANσ by combining three AANs (see the inset in Figure
2.6). First, we create an AANtanh unit, which is effectively a hyperbolic
tangent-like activation function, by using two identical AANs, AAN1 and
AAN2 in parallel; the AAN1 receives input with weight w, while AAN2 receives
the same input but with input weight −w. Then the output signal of AAN2

is multiplied by a fixed weight of −1 and added to the output signal of AAN1.
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The spike height h of AAN1 and AAN2 is set to ln
(

1
mf+1.

)
to ensure that the

positive and negative limits of AANtanh(S) are 1 and −1. Finally, to create
AANσ the spike height h of AAN1 and AAN2 is halved and a bias neuron
AANb is added. The AANb unit receives a constant input of 1 and its spike
height h is set such that AANb(1) = 1

2
. A spiking sigmoidal neuron ASNσ is

then created simply by replacing all the AANs in the AANσ by ASNs.
A complication to the construction of the AANσ function is that, since the

AAN function is zero for inputs smaller than 1
2
ϑ0, the AANσ has a constant

output 0.5 for inputs between −1
2
ϑ0 and 1

2
ϑ0 and thus the derivative is zero.

This is problematic during training; to counter this, we used an artificial
derivative of value AANσ

(
1
2
ϑ0 + ε

)
for inputs between −1

2
ϑ0 − ε and 1

2
ϑ0 + ε,

with ε = 0.05. The AAN and resultant AANσ functions are shown in Figure
2.4.

Spiking input gate and spiking input cell

The AANσ functions are used in the Adaptive Analog LSTM cell for the input
gate and input cell. The activation value of the input cell is multiplied by
the activation value of the input gate, before it enters the CEC, see Figure
2.6. In the spiking version of the input gate, the three outgoing signals from
the ASNσ are accumulated in an intermediate neuron (ASN∗ in Figure 2.6).
The internal state Ŝ of this neuron is then multiplied with the spikes that
move from the ASNσ of the input cell to the ASN of the output cell. This
leads to a direct mapping from the Adaptive Analog LSTM to the Adaptive
Spiking LSTM.

Spiking Constant Error Carousel (CEC) and spiking out-
put cell

The Constant Error Carousel (CEC) is the central part of the LSTM cell and
avoids the vanishing gradient problem [16]. In the Adaptive Spiking LSTM,
we merge the CEC and the output cell to one ASN with an internal state
that does not decay. The value of the CEC in the Adaptive Analog LSTM
corresponds with state I of the ASN output cell in the Adaptive Spiking
LSTM.

In the Adaptive Spiking LSTM, we set τβ in Equation 2.1 to a very large
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value for the CEC cell to obtain the integrating behavior of a CEC. Since no
forget gate is implemented this results in a spiking CEC neuron that fully
integrates its input. When τβ is set to ∞, every incoming spike is added to a
non-decaying PSC I. So if the state of the sending neuron (ASNin in Figure
2.7) has a stable inter-spike interval (ISI), then I of the receiving neuron
(ASNout) is increased with incoming spike height h every ISI, so h

ISI per time
step. In Chapter 3, see Equation 3.5, we derive that for τη = τγ we have
h

ISI = S
τη

with S the output value of ASNin.
The same integrating behavior needs to be translated to the analog

CEC. Since the CEC cell of the Adaptive Spiking LSTM integrates its input
S every time step by S

τη
, we can map this to the CEC of the Adaptive

Analog LSTM. The CEC of a traditional LSTM without a forget gate is
updated every time step by CEC(t) = CEC(t − 1) + S, with S its input
value. The CEC of the Adaptive Analog LSTM is updated every time step
by CEC(t) = CEC(t − 1) + S

τη
. This is depicted in Figure 2.6 via a weight

after the input gate with value 1
τη
.

The left plot in Figure 2.7 shows that setting τβ to ∞ for ASNout in a
spiking network results in the same behavior as using an analog CEC that
integrates with CEC(t) = CEC(t− 1) + S

τη
, since the slope of the analog CEC

is indeed the same as the slope of the spiking CEC. However, the spiking CEC
still has a higher value in the end than the analog CEC. This is caused by
the adaptive behavior of the ASN and results in large errors especially when
the input of the network changes quickly. The plot in the right of Figure 2.7
shows the output signal of AANout and ASNout. The spiking output is larger
than the analog output during the time that the CECs are still increasing,
because of the adapting behavior of the ASN. The output of ASNout stabilizes
to the same value as AANout shortly after the CECs stop increasing.

The spike height h of the output cell is set to 0.3, instead of a standard
value of 0.12. This was done to increase the influence of the LSTM cell in the
network.

Learning rule used for training the spiking LSTM

As noted before, the spiking network is solely used for inference. However,
since the spiking neurons need time to adapt to the magnitude of their input
signal, we have to train the analog network with multiple time steps per input
x. For all the experiments ∆T = 40 time steps are used per input.
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Figure 2.7: A simulation to illustrate how the analog CEC integrates its input
signal with the same speed as an ASN with τβ =∞ provided that the input
signal does not change (left). As can be seen in the right figure, the spiking
output signal deviates from the analog output signal during integration, but
stabilizes to the same value as the analog output when the integration stops.

The equations that are used to update the Adaptive Analog LSTM in the
inference phase are:

it = AANσ (Wxixt) ,

ct = ct−1 +
1

τη
itAANσ (Wxcxt) ,

ht = AAN (ct) ,

where i, c are respectively the input gate and CEC activations and h is the
output of the Adaptive Analog LSTM.

To train the analog LSTMs on the supervised tasks, a customized truncated
version of real-time recurrent learning (RTRL) was used. This is the same
algorithm used in [37], where the partial derivatives w.r.t. the weights Wxc

and Wxi (see Figure 2.6) are truncated. The derivatives are given by:
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∂ct
∂wxc

=
∂ct−1

∂wxc
+ AAN′σ (Wxcxt) itxt,

∂ct
∂wxi

=
∂ct−1

∂wxi
+ AANσ (Wxcxt)AAN′σ (Wxixt)xt,

and the weights are updated as:

∆wxc(t) = αes(t)
∂ct
∂wxc

,

∆wxi(t) = αes(t)
∂ct
∂wxi

,

with:

es(t) =
1

τη
AAN′ (ct) ec(t),

where ec(t) is the backpropagated error up to the LSTM output.
For the reinforcement learning (RL) tasks we used RL-LSTM [28], which

uses the same customized, truncated version of RTRL that was used for the
supervised tasks. RL-LSTM also incorporates eligibility traces to improve
training and Advantage Learning [38]. All regular neurons in the network are
trained with traditional backpropagation. Note that the extra 1

τη
weight after

the input gate, in Figure 2.6, results in an extra 1
τη

term in the derivatives
w.r.t. the weights Wxc and Wxi.

Let p be the number of inputs in a sequence that is presented to the
network in each episode. All the weights are updated at every time step
– so ∆T × p times per episode – but the errors are only presented to the
network at the end of each time step. Calculating the derivatives of all the
weights in the network ∆T × p times per episode is expensive, but we can
heavily speed up the training since the presented architectures do not have a
CEC that influences other CECs or itself. This means that we can multiply
the partial derivatives w.r.t the weights Wxc and Wxi by ∆T and use only p
forward passes, backward passes and weight updates per episode. This gives
exactly the same results as using ∆T × p updates per episode, but is much
less expensive.
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Chapter 3

Transfer functions

It is essential to have the AAN activation function that matches the behavior
of the ASN if we want to transform a trained AAN network to a ASN network.
We derive the AAN activation function; this is presented both for the case
τη = τγ , which results in an exact derivation, and for the case τη 6= τγ , which
results in an approximation for the activation function.

Exact derivation of the AAN activation function

We consider a spiking neuron with input S. This input S is constant over
time and Ŝ(t) aims to approximate S using a threshold ϑ(t). Whenever
S− Ŝ(t) > 0.5 ·ϑ(t), the neuron emits a spike of fixed height h to the synapses
connecting to target neurons, and a value of ϑ(tf ) is added to Ŝ, with tf the
time of the spike. At the same time, the threshold is also increased with a value
mfϑ(tf ). We assume that the synapse has a weight of 1. The post-synaptic
current (PSC) in a target neuron is then given by I(t), which is the signal
that the receiving neuron will perceive. We are interested in deriving an acti-
vation function that maps the input signal S to the PSC I of the target neuron.

Since the variables of the Adaptive Spiking Neuron decay exponentially,
they converge asymptotically. For a given fixed size current injection, we
consider a neuron that has stabilized around an equilibrium, meaning that
Ŝ(t) and ϑ(t) at the time of a spike always reach the same values. Let these
values be denoted as Ŝl and ϑl respectively. We see ϑ(tf ) = ϑl and Ŝ(tf ) = Ŝl
for all tf . The PSC I(t) also always declines to the same value, Il, before it
receives a new spike. So if we set t = 0 for the last time that there was a
spike, we can rewrite our ASN equations, Equations 2.1, 2.2, 2.3 and 2.4, for
τβ = τη and 0 < t < tf to:

23



Ŝ(t) = Ŝle
− t
τη + ϑle

− t
τη ,

ϑ(t) = ϑ0 + (ϑl − ϑ0)e
− t
τγ +mfϑle

− t
τγ ,

I(t) = Ile
− t
τη + he

− t
τη .

Here, we derive the activation function f of our spiking neuron model.
This activation function f is a function of S; f will be a bit larger than

Il since that is the lowest value of I(t), and we are interested in the average
value of I(t) between two spikes: f(S) = Iaverage.

Since we are in a stable situation, the time between each spike is fixed;
we define this time as te. So if the last spike occurred at t = 0, the next spike
should happen at t = te. This implies that Ŝ(t), ϑ(t) and I(t) at t = te must
have reached their minimal values Ŝl, ϑl and Il respectively.

To obtain the activation function f , we solve the following set of equations:

Ŝ(te) = Ŝl,

ϑ(te) = ϑl,

I(te) = Il,

and by noting that the neuron only spikes when S − Ŝ(t) > 0.5 · ϑ, we also
have:

S − Ŝl = 0.5 · ϑl.

We first notice:

he
− te
τη

1− e−
te
τη

= Il. (3.1)

We now want an expression for ϑl:

ϑ0 + (ϑl − ϑ0)e
− te
τγ +mfϑle

− te
τγ = ϑl,

ϑ0 − ϑ0e
− te
τγ = ϑl −mfϑle

− te
τγ − ϑle

− te
τγ .
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We can rewrite this to:

ϑ0
1− e−

te
τγ

1− (mf + 1)e
− te
τγ

= ϑl. (3.2)

Using equations S − Ŝl = 0.5 · ϑl and Ŝ(te) = Ŝl, we get:

(S − 0.5 · ϑl)e
− te
τη + ϑle

− te
τη = S − 0.5 · ϑl,

e
− te
τη (2 · S + ϑl) = 2 · S − ϑl.

Inserting Equation 3.2 gives:

e
− te
τη

(
2 · S + ϑ0

1− e−
te
τγ

1− (mf + 1)e
− te
τγ

)
= 2 · S − ϑ0

1− e−
te
τγ

1− (mf + 1)e
− te
τγ

.

This can be rewritten to:

e
− te
τη

(
2 · S(1− (mf + 1)e

− te
τγ ) + ϑ0(1− e−

te
τγ )
)

= 2 · S(1− (mf + 1)e
− te
τγ )

− ϑ0(1− e−
te
τγ ),

(2 · S + ϑ0)e
− te
τη − (2 · S(mf + 1) + ϑ0)e

− te
τγ e
− te
τη = 2 · S − ϑ0

− 2 · S(mf + 1)e
− te
τγ

+ ϑ0e
− te
τγ ,

(2 · S + ϑ0)e
− te
τη − (2 · S(mf + 1) + ϑ0)e

−te( 1
τγ

+ 1
τη

)
+ (2 · S(mf + 1)− ϑ0)e

− te
τγ

= 2 · S − ϑ0. (3.3)

We are interested in an analytic solution for te: by setting τη = τγ this last
equation reduces to a quadratic polynomial with variable x = e

− te
τη . Note

that this last equation also has an exact solution when we set τη = 2τγ or
τη = 3τγ or vice versa. This would result in a polynomial of degree three or
four, which can also be solved exactly. Other combinations of τη and τγ can
be computed by using a Taylor series expansion as approximation, this is
done in the next section. Here, we set τη = τγ and the quadratic polynomial
is then solved by using the quadratic formula for x = e

− te
τη . This results in

either x = 1 so te = 0 or:

e
− te
τη =

2 · S − ϑ0

2 · S(mf + 1) + ϑ0

. (3.4)
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The desired activation function f(S) should be equal to the average value
of I(t) between two spikes. Let the last spike with spike height h come in
at t = 0 and the next one will come in at te. I(t) decays exponentially with
time constant τη. Then we can say that I(t) is described by (Il + h) · e−

t
τη

between two spikes at t = 0 and t = te. So this gives us the desired activation
function:

f(S) =

∫ te

0

(Il + h) · e−
t
τη dt · 1

te
,

= −τη (Il + h) · (e−
te
τη − 1) · 1

te
,

=
h · τη
te

, (3.5)

where the last equality comes from inserting Equation 3.1. By using Equation
3.4 we get our final activation function:

f(S) =
−h

ln
(

2·S−ϑ0
2·S(mf+1)+ϑ0

) .
Approximation of the AAN activation function

Instead of choosing τη = τγ in Equation 3.3 to get an analytic solution for te,
we can also use a (second order) Taylor series expansion to approximate the
exponential function:

ex ≈ 1 + x+
x2

2
,

for x close to 0. We can use this in our previous equation:

(2 · S + ϑ0)(1− 1

τη
te +

1

2τ 2
η

t2e)

− (2 · S(mf + 1) + ϑ0)(1− (
1

τγ
+

1

τη
)te +

1

2
(

1

τγ
+

1

τη
)2t2e)

+ (2 · S(mf + 1)− ϑ0)(1− 1

τγ
te +

1

2τ 2
γ

t2e)

= 2 · S − ϑ0.
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We need a few steps to isolate te:

(2 · S + ϑ0)(− 1

τη
te +

1

2τ 2
η

t2e)

− (2 · S(mf + 1) + ϑ0)(−(
1

τγ
+

1

τη
)te +

1

2
(

1

τγ
+

1

τη
)2t2e)

+ (2 · S(mf + 1)− ϑ0)(− 1

τγ
te +

1

2τ 2
γ

t2e) = 0,

(2 · S + ϑ0)(− 1

τη
+

1

2τ 2
η

te)

− (2 · S(mf + 1) + ϑ0)(−(
1

τγ
+

1

τη
) +

1

2
(

1

τγ
+

1

τη
)2te)

+ (2 · S(mf + 1)− ϑ0)(− 1

τγ
+

1

2τ 2
γ

te) = 0,

((2 · S + ϑ0)
1

2τ 2
η

− (2 · S(mf + 1) + ϑ0)
1

2
(

1

τγ
+

1

τη
)2

+ (2 · S(mf + 1)− ϑ0)
1

2τ 2
γ

)te

= (2 · S + ϑ0)
1

τη
− (2 · S(mf + 1) + ϑ0)(

1

τγ
+

1

τη
)

+ (2 · S(mf + 1)− ϑ0)
1

τγ
,

(−S ·mf
1

τ 2
η

− (2 · S(mf + 1) + ϑ0)
1

τγτη
− ϑ0

1

τ 2
γ

)te

= −2 · S ·mf
1

τη
− 2ϑ0

1

τγ
,

(−S ·mfτ
2
γ − (2 · S(mf + 1) + ϑ0)τγτη − ϑ0τ

2
η )te

= −2 · S ·mfτ
2
γ τη − 2ϑ0τγτ

2
η .

This leads to our expression for te :

te =
2τγτη(S ·mfτγ + ϑ0τη)

S · τγ(mfτγ + 2(mf + 1)τη) + ϑ0τγτη + ϑ0τ 2
η

.
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We now insert this expression in Equation 3.1 and get:

Il(S) =
h

e
te
τη − 1

=
h

exp
(

2τγ(S·mf τγ+ϑ0τη)

S·τγ(mf τγ+2(mf+1)τη)+ϑ0τγτη+ϑ0τ2η

)
− 1

.

To make sure that our activation function f(S) is 0 at S = ϑ0
2

we choose our
activation function to be:

f(S) = Il(S)− Il(
ϑ0

2
) =

h

exp
(

2mf τ2γS+2ϑ0τητγ

τγ(mf τγ+2(mf+1)τη)S+ϑ0τγτη+ϑ0τ2η

)
− 1
− c,

(3.6)

for S > ϑ0
2

and f(S) = 0 for S <= ϑ0
2

with c = Il(
ϑ0
2

).
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Chapter 4

Experiments and results

Since the presented Adaptive Analog LSTM only has an input gate and no
output or forget gate, we present four classical tasks from the LSTM literature
that do not rely on these additional gates. The next step is to train the
AAN networks and transform these to ASN networks. We present the results
for the noiseless and noisy sequence prediction tasks and the noiseless and
noisy T-maze tasks. Finally, we present examples of networks that failed to
transform successfully from analog to spiking.

Sequence Prediction with Long Time Lags

The main concept of LSTM, the ability of a CEC to maintain information over
long stretches of time, was demonstrated in [16] in a Sequence Prediction task:
the network has to predict the next input of a sequence of p+ 1 possible input
symbols denoted as a1, ..., ap−1, ap = x, ap+1 = y. In the noise free version of
this task, every symbol is represented by the p+ 1 input units with the i− th
unit set to 1 and all the others to 0. At every time step a new input of the
sequence is presented. As in the original formulation, we train the network
with two possible sequences, (x, a1, a2, ..., ap−1, x) and (y, a1, a2, ..., ap−1, y),
chosen with equal probability. For both sequences the network has to store a
representation of the first element in the memory cell for the entire length of
the sequence (p). We train 20 networks on this task for a total of 100k trials,
with p = 100, on an architecture with p+ 1 input units and p+ 1 output units.
The input units are fully connected to the output units without a hidden
layer.

The same sequential network construction method from the original paper
was used to prevent the ‘abuse problem’: the Adaptive Analog LSTM cell
is only included in the network after the error stops decreasing [16]. This is
needed to speed up the training phase. If the LSTM cell is inserted into the
network from the start, the network will try to use the LSTM as a bias unit
to reduce the error for parts of the tasks that do not require memory. This
will push the weights of the LSTM far away from 0 at the beginning of the
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training phase. After the network learned to complete the non-memory part
of the task, it will take a long time for the weights of the LSTM to get close
to 0 again.

The error function used for this task was the cross-entropy error:

O = −
∑

(x,z)∈S

p+1∑
i=1

zi ln yi + (1− zi) ln (1− yi) ,

with x the input of the network, yi the resulting prediction of output neuron
i and zi the target of output neuron i.

In the noisy version of the sequence prediction task, the network still has
to predict the next input of the sequence, but the symbols from a1 to ap−1

are presented in random order and the same symbol can occur multiple times.
Therefore, only the final symbols ap and ap+1 can be correctly predicted. This
version of the sequence prediction task avoids the possibility that the network
learns local regularities in the input stream. We train 20 networks with the
same architecture and parameters of the previous task, but for 200k trials. For
both the noise-free and the noisy task we considered the network converged
when the average error over the last 100 trials was less than 0.38, this usually
indicated that the maximum difference between each output neurons value
and its target was less than 0.25.

T-Maze task

In order to demonstrate the generality of our approach, we trained a network
with Adaptive Analog LSTM cells on a Reinforcement Learning task, originally
introduced in [28]. In the T-Maze task, an agent has to move inside a maze to
reach a target position in order to be rewarded while maintaining information
during the trial. The maze is composed of a long corridor with a T-junction at
the end, where the agent has to make a choice based on information presented
at the start of the task. The agent receives a reward of 4 if it reaches the
target position and −0.4 if it moves against the wall. If it moves to the wrong
direction at the T-junction it also receives a reward of −0.4 and the system is
reset. The larger negative reward value, w.r.t. the one used in [28], is chosen
to encourage Q-values to differentiate more during the trial. This is needed to
increase the differences in the Q-values to make sure that the noisier spiking
neural network will still select the correct action. The agent has 3 inputs
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Figure 4.1: Overview of the T-maze task with corridor length 3. In this case
the sign at the start of the trial is located on the south side, so the goal is
also placed at the south side of the T-junction.

and 4 outputs corresponding to the 4 possible directions it can move to. At
the beginning of the task the input can be either 011 or 110 (which indicates
on which side of the T-junction the reward is placed). Here, we chose the
corridor length N = 20.

A noiseless and a noisy version of the task were defined: in the noiseless
version the corridor is represented as 101, and at the T-junction 010; in a noisy
version the input in the corridor is represented as a0b where a and b are two
uniformly distributed random variables in a range of [0, 1]. While the noiseless
version can be learned by LSTM-like networks without input gating [27], the
noisy version requires the use of such gates. The network consists of a fully
connected hidden layer with 12 AANtanh units and 3 Adaptive Analog LSTMs.
The same training parameters are used as in [28], except for the exploration
mechanism. While [28] uses a directed exploration mechanism where the
agent is more likely to explore in the ambiguous parts of the task, we use the
much simpler Max-Boltzmann controller [39]. It selects the greedy action (the
action with the highest Q-value) with probability 1− ε and a random action
k sampled from the Boltzmann distribution PB with probability ε = 0.05:

PB(k) =
exp (Qk)∑
k′ exp (Qk′)

.

We train 10 networks for each task and all networks have the same architecture.
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As a convergence criteria we checked whenever the network reached on average
a total reward greater than 3.5 in the last 100 trials.

Experimental setup

The analog neural networks, the spiking neural networks and the tasks
were built in Python from the ground up. No deep learning libraries like
TensorFlow were used, because full control over the LSTM elements and the
translation to spiking neurons was needed. The Numpy library was used for
linear algebra operations. Pandas and matplotlib were used for analyzing
and plotting the results. The neural networks were trained on Cartesius,
the Dutch national supercomputer, to be able to train multiple networks in
parallel. The performance of the spiking neural networks was checked on a
regular desktop.

Experimental results

As shown in Table 4.1, almost all of the networks that were successfully trained
for the noise-free and noisy Sequence Prediction tasks could be converted into
spiking networks. Figure 4.2 shows the last 7 inputs of a noise-free Sequence
Prediction task before (left) and after (right) the conversion, demonstrating
the correct predictions made in both cases. For the noise-free version, only
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Figure 4.2: The output values of the analog (left) and spiking (right) network
for the noise-free Sequence Prediction task. Only the last 280 time steps of
the episode are shown. In the last 40ms it correctly predicts symbol y (red),
instead of symbol x (green).
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Figure 4.3: The Q-values of the analog (left) and spiking (right) network
for the noisy T-Maze task. In the last 40ms both the analog and spiking
networks select the correct action (north).

one network out of 20 did not perform correctly after the conversion. Indeed,
for the 19 successful networks, after presenting either x or y as the first symbol
of the sequence, the average difference in the value of the CECs was 3.47. It
means that the CEC behaves differently when the x condition is presented
w.r.t. the y condition: in one case it stores a high value and in the other a very
low one. When the conversion failed, the CEC did not store values that were
different enough. While such a small difference can be reliably expressed with
a high-precision Adaptive Analog LSTM, the Adaptive Spiking LSTM will
inevitably accumulate more noise, thus making the winner output difficult to
recognize. Note that, in the noisy task, all the successfully trained networks
were still working after the conversion: in this case, due to the input noise,
the CEC values are always well separated. Finally, we found that the number
of trials needed to reach the convergence criterion were, on average, higher
than the one reported in [16].

Similar results were obtained for the T-Maze task, see Table 4.2. Only
one network out of 10 failed the task after the conversion in the noise-free
conditions, while all the networks were still working after the conversion
in case of the noisy condition. Figure 4.3 shows the Q-values of a noisy
T-Maze task, demonstrating the correspondence between the analog and
spiking representation even in presence of noisy inputs.

In general, we see that the spiking CEC value is close to the analog CEC
value, while always exhibiting some deviations. Most of this is the result
from the Adaptive Analog LSTM slowly filling up during the course of the
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Seq. Prediction noisy Seq. Prediction

[16] % Successful Trials 100 100
[16] Success After 5040 5680
AAN % Successful Trials 100 95
AAN Success After 8630 22358
ASN % Successful Trials 95 100
ASN Firing Rate 374.1 Hz 363.8 Hz

Table 4.1: Summary of the results for the Sequence Prediction tasks with p = 100.
The ‘Success After’ values correspond to the number of episodes that were needed
to converge during training. ‘ASN % Successful Trials’ is the percentage of the
working analog neural networks that were successfully transformed to spiking neural
networks. The firing rate is the average firing rate per neuron in the network.

T-maze noisy T-Maze

[28] % Successful Trials 100 100
[28] Success After 1M 1.75M
AAN % Successful Trials 100 100
AAN Success After 1.29M 3.19M
ASN % Successful Trials 90 100
ASN Firing Rate 349.2 Hz 359.2 Hz

Table 4.2: Summary of the results for the T-maze tasks with corridor length 20.
The ‘Success After’ values correspond to the total number of steps that were needed
to converge during training. ‘ASN % Successful Trials’ is the percentage of the
working analog neural networks that were successfully transformed to spiking neural
networks. The firing rate is the average firing rate per neuron in the network.
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Figure 4.4: The values of the analog CECs and spiking CECs for the noise-free
Sequence Prediction task. Only one CEC cell was used. The spiking CEC is
the internal state Ŝ of the output cell of the Adaptive Spiking LSTM.

Figure 4.5: The values of the analog CECs and spiking CECs for the noisy
T-maze task. Three CEC cells were used. The spiking CEC is the internal
state Ŝ of the output cell of the Adaptive Spiking LSTM.

episode, which is caused by the AANσ. Although limx→∞AANσ(x) = 1 and
limx→−∞AANσ(x) = 0 just like a sigmoid function, AANσ needs much higher
input values to get close to 1 and much lower input values to get close to 0.
The result is that the input gate and the input cell of the Adaptive Analog
LSTM are essentially never fully closed, causing to significantly increase the
CEC value if a high number of time steps are used per episode. This would
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not be a problem if the Adaptive Spiking LSTM was able to exactly copy the
behavior of its analog counterpart; however, Figure 4.4 shows that the spiking
CEC does not increase at all when the analog CEC slowly increases. This is
caused by the adapting behavior of the ASN, and thus the adapting behavior
of ASNσ. When a large negative value is inserted in ASNσ the output will
first be significantly smaller than the desired output. Some time is needed for
ASNσ to return to its intended state. The inputs in a task like the noise-free
Sequence Prediction change so quickly (every 40ms a new input is presented),
that the input gate and input cell of the Adaptive Spiking LSTM do not have
time to adapt. This results in a completely closed input gate, since the value
of the input gate is determined by internal state Ŝ which is 0 if the input is
smaller than θ0

2
. This is less of a problem for the T-maze task, since the same

input is presented during the majority of the episode.

Failures

It is insightful to analyze the behavior of the neural networks that failed the
tasks. Figure 4.6 shows the Q-values of the only neural network that was not
successfully translated to a spiking neural network on the noiseless T-maze
task with corridor length 20. Figure 4.7 shows the accompanying CEC values.
The target is on the south side of the T-junction, but only the analog network
takes the correct action in the end. This is caused by a seemingly small error
in the second spiking CEC (green curve in Figure 4.7). This second CEC has
a large negative weight connected to the north action and a large positive
weight connected to the south action. A small error in this spiking CEC has
a dramatic effect on the performance of the spiking neural network.

The Adaptive Analog and Adaptive Spiking LSTM networks performed
well on a noiseless and noisy T-maze with a corridor of length 20. The
maximum corridor length for which the LSTM network from [28] still had a
maximum performance was 50 and 40, for respectively the noiseless and noisy
T-maze task. The Adaptive Analog LSTM networks got 100% successful
trials on the noiseless T-maze task with corridor length 50 and 90% successful
trials on the noisy T-maze task with corridor length 40. But their spiking
counterparts had 10% and 22.2% successful trials respectively. In Figure 4.8
you see the Q-values of a network on the noiseless T-maze task with corridor
length 50 that works correctly in its analog version, but fails after it has been
transformed to a spiking neural network. The spiking neural network takes
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the correct actions until it is halfway the corridor, then it moves back to its
starting position. Figure 4.9 shows the values of the CECs over time for these
networks. The second and third CECs (green and red) increase much faster
in the Adaptive Analog LSTMs than in the Adaptive Spiking LSTMs. The
second CEC has a large positive weight connected to the ‘east’ Q-value, so
the error in the spiking CEC lowers that Q-value. This results in failure of
this task.
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Figure 4.6: The Q-values of the analog (left) and spiking (right) network
for the noiseless T-Maze task with corridor length 20. In the last 40ms the
analog network selects the correct action (south), while the spiking network
selects the wrong action (north).
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Figure 4.7: The three CEC values belonging to the analog and spiking
networks with Q-values in Figure 4.6. The error in the second spiking CEC
(green line) causes the network to fail the task.
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Figure 4.8: The Q-values of the analog (left) and spiking (right) network for
the noiseless T-Maze task with corridor length 50. Approximately midway
through the corridor, the spiking network starts selecting the wrong action
(west instead of east). The spiking network never reaches the T-junction,
while the analog network reaches the T-junction and finds the goal.
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Figure 4.9: The three CEC values belonging to the analog and spiking
networks with Q-values in Figure 4.8. The second spiking CEC (green line)
does not increase fast enough during the course of the trial, causing the
network to fail the task.

38



Chapter 5

Discussion

Gating is a crucial ingredient in recurrent neural networks that are able
to learn long-range dependencies [16, 40]. Input gates in particular allow
memory cells to maintain information over long stretches of time regardless
of the presented - irrelevant - sensory input [16]. The ability to recognize and
maintain information for later use is also that which makes gated RNNs like
LSTM so successful in the great many sequence related problems, ranging
from natural language processing to learning cognitive tasks [28].

To transfer deep neural networks to networks of spiking neurons, a highly
effective method has been to map the transfer function of spiking neurons to
analog counterparts and then, once the network has been trained, substitute
the analog neurons with spiking neurons [14, 13, 17]. Here, we showed how
this approach can be extended to gated memory units, and we demonstrated
this for an LSTM network comprised of an input gate and a CEC.

The main contribution of this work is that we analytically derive the
activation function of the ASN. This enabled us to transform the ASN to a
spiking neuron with binary spikes, which, as many real neurons, approximates
a half-sigmoid (Fig. 2.4). We showed how several spiking neurons together
can approximate a full sigmoid function. This sigmoid function was needed
since a differentiable gating function turned out to be a requirement for the
gating mechanism of an LSTM, for which analog networks use sigmoidal
units. The resultant LSTM network was then shown to be suitable for
learning sequence prediction tasks, both in a noise-free and noisy setting,
and a standard working memory reinforcement learning task, also both in
a noise-free and noisy setting. The learned network could then successfully
be mapped to its spiking neural network equivalent for at least 90% of the
trained analog networks. So we successfully constructed a brain-like model –
the Adaptive Spiking LSTM – capable of finding patterns in time-series.
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Limitations and future improvements

The results in Chapter 3 and 4 are exciting, but it is worth mentioning that
our work has some limitations. These limitations might become obstacles
when we try our method on more difficult tasks, so we suggest some possible
improvements and give a direction for future work.

For spiking neuron simulations with low time resolutions, or ASNs with
small time constants, the behavior of the ASN is not well modelled by the AAN
function. This is simply because the low time resolution of the simulation of
the ASN will not result in the theoretically correct stable state of the ASN,
which is given by the AAN function. These inaccuracies in the simulations
were negligible if time steps of 0.5ms were used instead of time steps of
1ms. However, changing the time resolution of the spiking neural network
simulations to 0.5ms did not change the results in Tables 4.1 and 4.2.

We also showed that some difficulties arise in the conversion of analog to
spiking LSTMs. The three main obstacles are the adaptation of an ASN, the
behavior of ASNσ and the shape of AANσ.

Principally, the ASN activation function is derived for steady-state adapted
spiking neurons, and the difference between the ASN and the AAN in the
adaptation phase causes an error that may be large for fast changing signals.
This error is subsequently integrated by the CEC. Analog-valued spikes as
explored in [17] could likely resolve this issue since they need much less time
to adapt to their input signal, at the expense of some loss of computational
efficiency. One more method was explored to remove the adaptation error
in the CEC. In Figure 2.7 (left) we can see that the spiking CEC increases
too much when ASNin is adapting, because ASNin sends more spikes in its
adaptation phase than in its stable phase. So some of these spikes need
to be ignored or discounted in value. Also notice that in an ASN that has
not reached its stable state yet input signal S differs significantly from the
incoming PSC I, since S needs time to catch up to I. The difference between
S and I can be used as a discounting factor for the incoming spikes to the
CEC during the adaptation phase. |I − S| is large during the adaptation
phase and small during the stable phase. Multiplying all the incoming spikes
of ASNout in Figure 2.7 (top) by 1− |I−S|

h
removed the difference between the

value of the analog CEC and the spiking CEC almost completely. However,
this idea has not been tested sufficiently.

The problem with the behavior of ASNσ is linked to the ASN adaptation
problem. For example in the sequence prediction tasks the input gate and
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the input cell of the Adaptive Analog LSTM are almost, but not completely,
closed during most of the trial. But in the Adaptive Spiking LSTM ASNσ will
be 0, instead of close to 0. This is because every 40ms a new input neuron
starts firing, so ASNσ is trying to adapt to its input signal during the whole
trial, without actually reaching its stable state. This results in a negative
output for the ASNσ of the input gate, which is rounded of to 0 by ASN∗ in
Figure 2.6. This small difference between the analog and spiking states of the
input gate and input cell can add up over time to an error in the CEC value
that will make a significant difference. There is no clear solution to solve this,
since the slow adaptation is inherent to the ASN model.

The last problem, concerning the shape of AANσ, makes it hard for the
AAN networks to learn the tasks and is also one of the causes for the problem
with the behavior of ASNσ. As can be seen in Figure 2.4 the positive and
negative limits of ASNσ are respectively 1 and 0, but ASNσ approaches its
limit much slower than a usual sigmoid function. Consequently, the Adaptive
Analog LSTM will have a hard time to close its input gate and input cell
and this leaking signal is then amplified because it is multiplied by ∆T

τη
, which

is equal to 4 in our experiments. This results in a CEC that slowly fills up
during the course of the trial and makes it harder to train compared to the
traditional LSTM. But the leaking CEC of the Adaptive Analog LSTM is also
hard for the spiking CEC to imitate. The spiking LSTM generally handles
sudden changes and stable signals in the CEC well, but has trouble when the
CEC should slowly increase or decrease.

The translation from analog to spiking was successful for the noiseless and
noisy T-maze tasks with corridor lengths 20, but failed for the noiseless and
noisy T-maze tasks with corridor lengths 50 and 40 respectively. The reason
for this failure seems to be twofold. First of all, the formulation of Advantage
Learning demands the Q-values to increase when the agent gets closer to the
T-junction, because future rewards are lowered by a discount factor γ per
time step. Thus the agent needs to know where it is located in the corridor
and the only way to do this is by using its LSTM unit. The agent slowly
increases its CEC during the course of the trial to adjust its Q-values. But
exactly this slow build-up in the CEC is hard to imitate for the spiking CEC,
as was mentioned in the previous paragraph. By changing the discount factor
γ from 0.98 to for example 0.995 the CECs will need to increase less during
the trial. The second reason why the translation from analog to spiking for a
long corridor failed was that the Q-values were too close to each other. This
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made the action selection very sensitive to noise in the CECs and the noise in
the ASNs in general. One way to enlarge the differences between the Q-values
is to increase the difference between the positive and the negative rewards.
Training the network with a positive reward of 4.0 and a negative reward of
−0.5 instead of −0.2 will need more training iterations.

Although the adaptive spiking LSTM implemented in this thesis does
not have output gates, they can be included by following the same approach
used for the input gates: a modulation of the synaptic strength. The reasons
for omitting the output gate are multiple: first of all, most of the tasks
do not really require output gates and often the output of the LSTM can
be suppressed by regular units; moreover, modulating each output synapse
independently is less intuitive and biologically plausible than for the input
gates. A similar argument can be made for the forget gates, which were not
included in the original LSTM formulation: here, the solution consists in
modulating the decaying factor of the CEC.

The previously described problems with the leaking CEC and the differ-
ences in behaviour between AANσ and ASNσ need to be solved in order to get
better results for more complicated tasks with the Adaptive Spiking LSTM.
One could try to replace ASNσ in the input gate and input cell by multiple
ASNs, which can then be fully closed. But at least a small mismatch between
the analog and spiking CEC seems to be inevitable, so it is also worth trying
to design networks and training methods that are more robust to noisy CEC
values.

In later versions an output and forget gate might be added to enable a
network with Adaptive Spiking LSTMs to perform more difficult tasks, like
speech recognition using the TIDIGIT dataset [41] or Wall Street Journal
speech corpus [42]. Finally we might also try to tune the parameters in the
ASN to decrease the firing rate without losing performance.
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