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Abstract 

The Dutch National Police maintains an online interface that allows civilians to report their 

complaints regarding trade fraud over an online medium (e.g. eBay). Since an increasing 

amount of complaints are being filed, it is desirable to make an automatic distinction 

between complaints worth investigating and those not worth investigating. One valuable 

distinction which can be made early in the process is that between a complaint which will be 

withdrawn by either the complainant or the police and a complaint that will not be 

withdrawn. This thesis examines whether either one of nine machine learning classifiers 

trained on free text complaint data can be used for this purpose. Complicating this task is the 

class distribution in the data, where a majority of 86.7% is labelled as "not withdrawn". To 

prevent this skewness from affecting classifier performance, resampling, word weighting, 

and word normalization are applied, of which the influence on the classification performance 

is assessed. 

This research shows that using machine learning, it is possible to create such a 

distinction by classifying complaints on whether they will be withdrawn or not. Overall, it is 

found that probabilistic classifiers (i.e. naive Bayes) have the highest unimproved 

performance and that through data alterations the performance of an optimized machine 

learning technique (i.e. SVM) can be improved up to 13.5 percentage points. Furthermore, 

by optimizing the classifiers, the difference in performance between the best classifier (i.e. 

Logistic regression) and the worst classifier (i.e. K-nearest-neighbor) can be reduced from 

11.8 to only 4.2 percentage points.  
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1 Introduction 

The internet has given criminals new ways to conduct their activities. For example, many trade 

fraud cases now occur online (e.g. fake designer goods which are sold as real designer goods 

on the internet). Online trade fraud can be defined as the committing of a scam over the 

internet (Leukfeldt, Domenie & Stol, 2010). A rising trend in online trade fraud can be noticed 

in the Netherlands where in 2013 3.3% of the Dutch citizens were the victim of online trade 

fraud as opposed to 2.9% in 2012 (Inspectie Veiligheid en Justitie, 2015). To stop the rising 

trend, the Dutch police is forced to come up with new solutions for tackling online trade fraud. 

The police has devised a solution to tackle online trade fraud. Since criminals who 

conduct their business online are not limited to geographical areas, it is desirable and essential 

to have a central point where the trade fraud complaints are aggregated and dealt with. For 

this the Dutch police, in 2010, established a unit responsible for solving online trade fraud 

cases, LMIO1. To further improve the intake and registration of online crime, and the 

collaboration of the police and the commercial parties, the police formed the National Service 

Center e-Crime, LSCeC2, as an extension of LMIO in May 2015 (Streefkerk, 2015).  

To ensure LMIO thrives as a project, its success and workflow have recently been 

evaluated (Inspectie Veiligheid en Justitie, 2015). This evaluation showed that LMIO succeeds 

at being the central point it was intended to be, handling approximately 90% of all online trade 

fraud complaints. Furthermore, this evaluation showed that LMIO’s way of working follows 

the general process the Dutch police follows in their cases (de Poot et al., 2004). Complaints 

received through www.politie.nl are analyzed by crime analysts according to intuition and 

police guidelines to determine which are relevant for creating a dossier. Such a dossier 

consists of a story and evidence and is built up by police planners through investigatory 

actions in which obtained information is used to either prove or disprove hypotheses (van den 

Braak, 2010; Latukolan & van Ginkel, 2016; de Poot et al., 2004). Dossiers created by LMIO are 

used as input by local police units to start a case.  

Approximately 50.000 complaints are filed online each year, with the average loss per 

complaint estimated at 200 euros (Streefkerk, 2015). Employees at DLOC3, an administrative 

police unit that handles incoming data, register these complaints in the enforcement database, 

BVH4, and analyze them for completeness and usability. The outcome of this analysis is 

communicated through e-mail to LMIO, where it is used to refine their own analysis (Peters, 

2016b). However, since LMIO does not have enough manpower, the online trade fraud 

complaints cannot all lead to a case (Inspectie Veiligheid en Justitie, 2015). It is thus important 

                                                        

1 Landelijk Meldpunt Internet Oplichting 
2 Landelijk Service Centre e-Crime 
3 Dienst Landelijk OperatieCentrum 
4 Basisvoorziening Handhaving 
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that a distinction is made as early as possible between complaints worth investigating and 

those not worth investigating, so that resources are not wasted. To ensure missing information 

does not play a role in this distinction, Bex et al. are currently creating an agent, capable of 

understanding free-text fields using NLP techniques, to communicate with online trade fraud 

victims to obtain all information necessary for building a case while automatically processing 

it (Bex, Peters, & Testerink, 2016).  

To assist crime analysts in the distinction between complaints worth investigating and 

those not worth investigating machine learning techniques could be used. Machine learning 

techniques are increasingly being applied for classification purposes in the field of crime 

analysis (Chen et al., 2004; Sharma & Panigrahi, 2012). Research in this field explores and 

compares the use of many classifiers including naive Bayes, decision trees, and neural 

networks (Abdelhamid et al., 2014; Baumgartner et al., 2008; Gupta et al., 2016; Oatley & 

Ewart, 2003). Since the dataset used in this research consists of both textual high degree of 

skewness, research on classification for textual data will have to be combined with research 

on classification for skewed data to find the proper distinctions on complaints worth 

investigating and those not worth to assist both LMIO’s crime analysts and employees at DLOC 

(Brause et al., 1999; Japkowicz & Stephen, 2002; Phua et al., 2004; Sebastiani, 2002; Sun et al., 

2007). 

An example of a valuable distinction which can be made early in the process is that 

between a complaint for a civil case and one for a criminal case. In a civil case, a buyer has 

received an item which did either not live up to the expectations or broke down after some 

days. The delivery of such items is not considered a criminal act, article 326 of the Criminal 

Code5 does not apply. Even though the online form for filing complaints uses a decision tree to 

distinguish civil from criminal cases and refers civil complaints to a foundation which provides 

free juridical advice6, LMIO still receives civil complaints. It often occurs that such complaints 

are first taken up for investigation and discarded later in the investigation, after resources 

have been spent on them.  

The purpose of this research is to investigate how machine learning techniques can be 

utilized to automatically distinguish online trade fraud complaints worth investigating from 

those not worth investigating and thereby helping both LMIO’s crime analysts and employees 

at DLOC in their daily job. Peters (2016a) has already performed a preliminary study to 

determine which machine learning techniques could be used to distinguish online trade fraud 

complaints, and after applying these techniques Peters has obtained initial promising 

classification results. However, by increasing and improving the machine learning techniques 

used, better results regarding complaint distinction can hopefully be obtained, so that a 

                                                        

5 Wetboek van Strafrecht 
6 Juridisch Loket 
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resulting classifier can be used by the Dutch police to (partly) automate and thereby support 

the handling of online trade fraud complaints. The main research question is as follows: 

“How can the handling of online trade fraud complaints be (partly) automated?” 

In order to answer the main research question, a set of subsequent research questions has to 

be answered: 

- What are the characteristics of complaint data? (Chapter 4 & 6)  

- Which steps in the process of handling a complaint can be (partly) automated given the 

current data availability? (Chapter 3, 4, & 5) 

- Can machine learning techniques be utilized for complaint handling? (Chapter 6) 

- What machine learning techniques perform best with respect to the automatable steps 

in the process of handling a complaint? (Chapter 7 & 8) 

This master thesis consists of nine chapters. The next chapter contains the method that has 

been followed in this research. In chapter 3 it is described what criminal investigation in 

general is and how it has been applied in the Netherlands. Chapter 4 explores the handling of 

an online trade fraud complaint by both DLOC and LMIO, after which chapter 5 explores how 

the process of handling an online trade fraud complaint can benefit from data mining. Chapter 

6 describes the theory behind data mining and how it can be applied in this research. In 

chapter 7, the conducted experiment and obtained results are set out, after which the results 

are discussed in chapter 8. The research questions set out above are answered in chapter 9 

and finally, a set of ideas and improvements for future research are presented in chapter 10. 

2 Research Approach 

In this research an initial and extensive data analysis has been performed to analyze the 

performance of machine learning techniques on classifying online trade fraud complaints 

using a design science approach (Wieringa, 2010). This research has focused on the creation 

of a binary classifier for textual skewed data. To discuss and confirm the findings of the data 

analyses, interviews have been held with both LMIO’s crime analysts and employees at DLOC. 

This research consisted of the following steps, which are also depicted in Figure 1: 

1. First, an extensive literature study has been conducted to obtain knowledge on the way 

of working at the police. The theoretical knowledge obtained from this has served as 

the basis upon which the remainder of this research has been built. The goal was to 

understand, from a theoretical perspective, how LMIO’s analysts and employees at 

DLOC handle complaints so that this research could be adjusted to serve their actual 

daily pursuits. 

2. After knowledge had been obtained on the way of working, a literature study has been 

performed to acquire knowledge on the use of machine learning techniques. In this 

study the observed techniques used in crime analysis has been compared with respect 
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to their applicability for complaint classification. Next to this, a separate literature 

study has been performed to determine which machine learning techniques are most 

appropriate for classifying either textual or skewed data. The result of these studies 

was a list of machine learning techniques, along with their characteristics. The 

performance of the machine learning techniques on this list have been analyzed in the 

data analysis.  

3. To ensure this research met the needs of both LMIO’s crime analysts and employees at 

DLOC, they were interviewed on their view of complaint classification. For this, the 

complaint data was first examined to obtain in-depth knowledge on its characteristics. 

Based on these interviews, an ordered list of useful classification metrics has been 

created, which was used to initiate the data analysis. 

4. As mentioned in Chapter 1, previous research on complaint classification has already 

been performed by Peters (2016a). For this the Waikato Environment for Knowledge 

Analysis, WEKA (Frank et al., 2010), was used, which is a machine learning tool kit. 

Performed actions and found results were analyzed to assist as a starting point for the 

remainder of the data analysis. 

5. After all preparatory work was completed, the actual data analysis began. A process 

was gone through in which each machine learning technique found in step 2 was 

applied on the dataset to determine whether classification on textual skewed data 

could be appropriately achieved for the top classification metric resulting from step 3. 

For each machine learning technique, the influence of data alterations on its 

classification performance was assessed, after which the classification results were 

compared to a baseline set through both experience and discussions with LMIO’s crime 

analysts and employees at DLOC.  

 

Figure 1: Research approach 
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3 Analyzing Criminal Investigation 

This chapter aims to provide a general understanding of what criminal investigation is and 

how it has been practiced in the Netherlands. It discusses the theory behind crime analysis 

and the different steps a Dutch crime analyst undertakes to solve a case.  

3.1 The theory behind criminal investigation 

In the literature, criminal investigation is generally seen as the overarching term for a 

discipline which can be broken down into a multitude of different sub-disciplines (Boba, 2005; 

Osborn and Wernicke; 2003). For example, in the Netherlands a distinction is made between 

on the one hand operational or tactical (de Poot et al., 2004) and on the other hand strategic 

crime investigation (van den Braak, 2010). Operational crime investigation is focused on 

supporting the investigation and solving of a single case, while strategic crime investigation 

tries to prevent crime through trend prediction. An example of operational crime investigation 

could be identifying and arresting a burglar, while with strategic crime investigation the 

pattern of burglaries in a neighborhood is used to predict when and where the next burglary 

will occur. De Poot et al. (2004) also make the distinction between reactive and proactive 

investigation; the former starts with an identified crime, for instance after a complaint, while 

the latter starts with a crime suspicion about certain persons or companies based on available 

information. 

Standing at the center of criminal investigation is the act of problem solving. Problem 

solving involves an initial state, a final state, and a set of actions to overcome the distance 

between the states. These actions are based upon previous experiences which are stored in 

schemas, a knowledge structure in which thoughts, behavior, and the relationships among 

them are categorically arranged (DiMaggio, 1997). For police investigators or crime analysts 

these experiences are obtained in previous cases. Pirolli and Card describe schemas for police 

investigators or crime analysts as “a set of patterns around the important elements of their 

tasks” (Pirolli and Card, 2005, p. 1). In criminal investigation schemas can be triggered by case 

characteristics (e.g. type of murder), as well as by the case goal. When, for example, the goal of 

a case is to inform rather than prosecute, a different schema is activated (de Poot et al., 2004). 

The ultimate goal of each case is to solve it, which depends upon the distance between the 

initial and the final state, the problem situation and case goal. This distance is considered small 

when at the start of the investigation it is already clear how this goal can be reached, and 

considered large when this is unclear and there are many sub goals and actions which have to 

be undertaken to reach the case goal (de Poot et al., 2004). 

In order to reach the case goal and solve a case, a story has to be (re)constructed. De Poot 

et al. (2004) mention a story consists of “the circumstances which can be seen as causes and 
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reasons for acts resulting in consequences”7 (p. 44). Criminal investigations consist of a 

reconstruction phase, in which (part of) the story is reconstructed, and a verification phase, in 

which evidence is gathered to support the story (de Poot et al., 2004). During the investigation 

these phases interact in an iterative process: stories are constructed and subsequently verified 

or falsified using arguments and evidence (Bex, 2011). According to Crombag, van Koppen, 

and Wagenaar (1994) the quality of the reconstructed story accounts for half of the proof in a 

case. The other half of the proof is formed by the manner in which the reconstructed story is 

anchored using evidential data found during the verification phase. 

3.2 Dutch criminal investigation 

Based upon the existence of both a suspect and a story four types of cases can be discerned 

(de Poot et al., 2004): 

- Crystal-clear cases: both a suspect and a story are present; 

- Verification cases: a suspect’s identity and a story are present; 

- Investigation cases: no suspect, but a story is present; 

- Search cases: neither a suspect nor a story are present. 

Not every case the police encounters is investigated. For investigation and search cases, 

Greenwood and Priscilla (1975) found that a dead end in the most obvious investigation tracks 

often results in ceasing a case. De Poot et al. (2004) have researched how often and why the 

Dutch police ceases cases. They found that crystal-clear cases (94%) are taken into 

investigation most often, followed by verification cases (72%), investigation cases (72%), and 

search cases (38%). In addition to the aforementioned distance between the problem situation 

and case goal, the policies of the police and/or Public Prosecution Service, the structural 

characteristics of a case, and the ease of solving it are important selection criteria. For 

verification and investigation cases respectively 5% and 8.5% of the cases are ceased due to 

the quality of the story. According to the theory of anchoring narratives (Crombag et al., 1994) 

this reduced quality increases the distance between the problem situation and case goal, thus 

requiring the police to spend more resources on recovering the story before they can start 

searching for evidence. Search cases, with the exception of severe cases, are most often (60%) 

ceased due to policies of the police and/or Public Prosecution Service, where the chance of 

solving the case does not weigh up against the costs. 

For the cases that are taken into investigation the Dutch police uses two investigation 

approaches; concurrent and sequential investigation. Verification, investigation, and search 

cases are often investigated using a sequential approach, in which one investigation track at a 

time is given attention. With crystal-clear and severe cases, a concurrent approach is applied 

in which multiple investigation acts are carried out simultaneously, even though this could 

                                                        

7 Translated from Dutch 
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result in performing acts which were not necessary to achieve the case goal. Cases which the 

police are alerted to within 15 minutes are often responded to quickly using a lot of manpower. 

By doing so, the police are capable of obtaining as much evidence as possible while it is still 

fresh and turn a case into a verification or crystal-clear case, improving the chances of it being 

solved quickly (de Poot et al., 2004). 

During an investigation, the Dutch police uses checklists containing in more or less detail 

all acts which have to be performed. These checklists differ depending on the type of case. An 

example could be a checklist for a murder case including the three themes: [1] initial actions, 

[2] crime scene, and [3] neighborhood canvass. At the start of the investigation multiple initial 

actions have to be performed (e.g. obtain map of the area), before the crime scene can be 

investigated and a canvass can be held. For each of the themes an undefined number of actions 

is listed which have to be performed (e.g. interview cab drivers for the canvass). When the 

police receive a story at the start of the case, as is with verification and investigation cases, this 

story stands at the center of the investigation. A top-down approach is applied to either 

confirm, complete or alter the story. With search cases, when no story is available, the 

investigation and corresponding checklists are initially focused towards identifying a suspect, 

before a story is reconstructed (de Poot et al., 2004).  

A case can have two possible outcomes:  

1. The story has been reconstructed according to the Golden W’s: Who is it about? What 

did happen? Where did it take place? By what means did it happen?  In what way did it 

happen? When did it take place? Why did it happen? (Gross, 1908), and is supported 

by the evidence, after which the case is handed over to the Public Prosecution Service, 

or  

2. The reconstruction of the story has stranded due to a lack of evidence to support the 

existing hypotheses and the case is ceased.  

Independent of the outcome, three general actions should be and are often executed while 

finishing a case (de Poot et al., 2004): [1] report all information in the dossier and archive this 

dossier, [2] file additional information unrelated to the case, and [3] evaluate the case. 

3.3 The role of the crime analyst 

Crime analysis is “the identification of and provision of insight into the relationship between 

crime data and other potentially relevant data with a view to police and judicial practice”8 (van 

den Braak, 2010, p. 13-14). In the Netherlands two types of crime analysts can be discerned 

(Timmers, 2016). An operational crime analyst is often assigned to a case to create order in 

the bulk of information retrieved during the investigation. Using the findings of an operational 

                                                        

8 Original source Minnebo (2004). Translated from Dutch. 
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crime analyst, a tactical crime analyst tries to ultimately come to a most probable story. To 

determine this most probable story, the general course of action for Dutch crime analysts is to 

first create various hypotheses based on features of the crime and construct scenarios based 

on those hypotheses (van den Braak, 2010). The scenarios are initially based on the facts 

which are considered definitely proven. These facts are then plotted on a timeline, which is 

known as anchoring in time (de Poot et al., 2004). To fill the unknown gaps between the 

anchors, unsupported events are hypothesized and added to the scenarios. Through an 

iterative process of finding new evidence, looking over the evidence, and creating support for 

or against the hypothesized events, scenarios are either altered, deleted, or given more body 

(i.e. anchored), until a definitive story is reached. This process, as described by van den Braak 

(2010), aligns with the steps in the analysis process by Pirolli and Card (2005) in which 

evidence is gathered and looked over in a foraging loop, and tied to hypotheses in a sense 

making loop. 

Choosing amongst hypotheses and determining their validity is undoubtedly the 

ultimate responsibility of a crime analyst. Van den Braak (2010) stresses the importance of 

inter-hypothesis comparison over single hypothesis evaluation. However, Heuer (1999) states 

that most crime analysts follow the single hypothesis evaluation approach based on their 

instinct, referred to as a satisficing strategy. Next to this, Heuer, along with Pirolli and Card, 

state that this evaluation process is restricted by human limitations; specifically, three 

problem domains may be distinguished (Heuer, 1999; Pirolli and Card, 2005): the confined 

human working memory, a perceptual prejudice along with the inability to define more than 

one hypothesis, and a confirmation prejudice. To overcome these limitations, Heuer (1999) 

proposes the use of an eight-step method, known as the analysis of competing hypotheses. In 

this method, all possible hypotheses along with evidence to prove or disprove them are 

grouped in an evidence matrix. Through a process of comparing both existing and newly 

acquired evidence against each hypothesis in the matrix, impossible hypotheses can be refuted 

until a single hypothesis remains. During this process, any accepted hypothesis should be 

reflected against the validity of the evidence. In the end, the remaining and refuted hypotheses 

should all be presented, along with the argumentation for conclusions drawn. This analysis of 

competing hypotheses, as proposed by Heuer, has been adopted by the Dutch crime analysts 

for reconstructing the story (Minnebo, 2004). 

4 Handling Online Trade Fraud 

In this chapter, the process of handling an online trade fraud case by both LMIO and DLOC will 

be explained. It describes the legislation used for prosecuting fraudsters and discusses the 

types of fraud which are committed. The information in this chapter is mostly derived from 

Latukolan and van Ginkel (2016) and interviews held at LMIO and DLOC. 
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4.1 Prosecuting online trade fraud 

Online trade fraud cases are penalized just as regular trade fraud cases, according to article 

326 of the Dutch Criminal Code. In this article, four scam modes are given which, when 

individually or jointly applied to produce a benefit for a fraudster, will lead to a conviction for 

trade fraud, namely: [1] the adoption of a false name, [2] the adoption of a false role, [3] tricky 

maneuvers, and [4] a contexture of figments (Bernklau & van der Putte, 2015). A tricky 

maneuver, for example, occurs when a fraudster sends a box of potatoes instead of the 

purchased item. With a contexture of figments, both the amount and intrusiveness of a 

fraudster’s false statements are of importance. When a victim could have known he was being 

scammed, a contexture of figments is not in place. For LMIO, it is important that dossiers sent 

to the local police units consist of a story and corresponding evidence proving the occurrence 

of one or several of those scam modes.   

4.2 Online trade fraud scenarios 

The online trade fraud complaints that LMIO receives can be roughly discerned into four 

scenarios: [1] classic trade fraud, [2] triangular trade fraud, [3] screenshot payments, and [4] 

spoofed websites (Streefkerk, 2015). With respect to classic trade fraud, two types of cases 

can be distinguished, which are depicted in Figure 2 and Figure 3; the case in which an item is 

offered for sale by a fraudster but not delivered (Figure 2), and the case in which a fraudster 

responds to a wanted advertisement (Figure 3). Triangular trade fraud involves a fraudster 

buying a real item and meanwhile selling a fake item. The buyer of the fake item will be given 

the account number of the original seller, resulting in the fraudster receiving the real item for 

free, leaving the buyer empty handed and feeling betrayed by the original seller. With 

screenshot payments a fraudster intends to convince the seller that he transferred the money 

for an item through modifying a bank account screenshot and so receiving the item without 

actually paying for it. Spoofed websites are websites which feel genuine, through the use of 

fake logos and quality marks, but do not deliver bought items. With all of the four scenarios, 

Streefkerk (2015) mentions fraudsters making use of society trends to increase the likeliness 

of their product being seen by potential victims, for example by switching from standard 

commerce sites (e.g. Marktplaats.nl) to social media.  
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4.3 The process of handling a complaint 

The process starts when a complaint has been filed, for which a civilian has two options; either 

online at www.politie.nl or at a local police station. Between 150 and 200 online trade fraud 

complaints are filed each day (Inspectie Veiligheid en Justitie, 2015). Due to the policy of the 

Dutch police to refer online trade fraud victims to the website, close to 90% of all complaints 

are filed online.  

After a complaint has been filed online it will first be stored in a demilitarized zone (i.e. 

secured environment) hosted by KPN. A notice will be sent to the Dutch banks and commerce 

sites containing the suspect’s username and account number. Besides this notice, both LMIO 

and DLOC will receive an e-mail containing the full complaint. At DLOC, an administrative 

police unit that handles incoming data, employees will enter the complaint into the 

enforcement database, BVH, to be accessible by all police units, which will further be explained 

in Chapter 4.3.1. Since LMIO does not make use of the BVH, but uses a stand-alone system, a 

complaint is also registered by LMIO in their database. To ensure that LMIO’s database is up-

to-date with the BVH, e-mails are sent by DLOC to notify LMIO of changes to a complaint 

(Peters, 2016b).  

Figure 2: For sale fraud Figure 3: Wanted fraud 

http://www.politie.nl/
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Figure 4: Information flow of a complaint9 

An overview of the dataflow is included in Figure 4. Complaints that have been filed 

online are not official criminal complaints in the legal sense, since they are not signed. 

However, LMIO treats them as legitimate complaints and requests for an autograph when they 

are utilized in a case (Inspectie Veiligheid en Justitie, 2015).  

When filing a complaint at www.politie.nl the complainant is asked to enter his own 

personal details as well as the personal details of the other party insofar they are known. Next 

to this, the online web form contains a free-text field which the complainant can use to tell the 

story that led to the complaint. An online trade fraud complaint thus consists of a story of what 

happened, combined with the identity of a suspect. In many cases though, a suspect tries to 

hide his true identity using a fake identity. With respect to chapter 3.2, where four types of 

cases were discerned, an online trade fraud case can thus either be a verification case or an 

investigation case, depending upon the (un)known identity of the suspect.  

4.3.1 DLOC process of handling a complaint 

An online trade fraud complaint received by DLOC is processed and entered in the BVH to be 

accessible by all police units. Employees at DLOC have three main responsibilities: 

1. Ensuring the completeness of a complaint: when a complaint is found to be incomplete, 

employees at DLOC will ask follow-up questions to the complainant to complete the 

complaint. 

                                                        

9 Source: Peters (2016b) 

http://www.politie.nl/
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2. Classifying a complaint as civil or criminal: when a complaint is received by DLOC it is 

classified as either civil or criminal, since cases can only be built upon criminal 

complaints. A civil complaint is not registered in the BVH. 

3. Processing complaint withdrawals: when a complaint is withdrawn online by the 

complainant this has to be manually processed in the BVH. Next to this an e-mail is sent 

to LMIO to inform them of the withdrawal of the complaint. 

The three responsibilities are contained in two processes which are depicted in Figure 5 and 

Figure 6: registering and withdrawing a complaint, and summarized in Table 1 and Table 2. 

Both processes will be explained in detail below based upon interviews conducted at DLOC. 

Registering a complaint 

 

Figure 5: DLOC process of registering a complaint 

The process of registering a complaint will be explained using the example of a complainant 

buying train tickets on Marktplaats but not receiving them. After the complaint has been filed 

online, an initial confirmation e-mail will be send to the complainant containing the reference 

number required for communication. The complaint will then be added to the complaint 

module which is used by employees at DLOC for handling a complaint. To minimize the time 

spent on complaints that cannot be used for building a case, a complaint will first be judged 

for its applicability (e.g. civil/criminal). Since, in our example, the complainant did not receive 
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any goods which were ordered online, the complaint should be considered as online and 

criminal and thus as a relevant complaint. An irrelevant complaint will be marked as 

withdrawn in the complaint module and both the complainant and LMIO will be notified. For 

a relevant complaint, a process begins in which the complaint is refined according to police 

standards. 

First, a product category (e.g. NS Tickets) has to be selected based upon the description 

given by the complainant. It may occur that a street name or place description has not been 

adopted correctly in the complaint module due to a misunderstood article or period (e.g. Prof. 

Dr. Koslaan as Profdr Koslaan), in which case it has to be manually adjusted. Next, a complaint 

is judged for its completeness to ensure it can be used by LMIO when building a case. If a 

complaint is found to be incomplete, one or multiple follow-up question(s) will be asked to the 

complainant, which have to be answered within 5 days, otherwise a complaint will be 

withdrawn. Follow-up questions will continue to be asked until the complaint is judged as 

complete. The complaint will then be entered in the BVH and a confirmation e-mail will be 

send to the complainant containing a new reference number. All tasks involved in registering 

a complaint have been summarized in Table 1. 

Table 1:  Tasks involved in registering a complaint 

Nr. Task Input Output System 
1 Check complaint 

type 
A single complaint which 
has been filed through 
www.politie.nl 

The type of the 
complaint 

Complaint 
module 

2 Withdraw 
complaint and 
inform 
complainant 

A complaint which 
cannot be classified as an 
online trade fraud 
complaint or has not 
been responded to 
within time 

A withdrawal e-mail 
send to both the 
complainant and LMIO 

Complaint 
module 

3 Enter product 
and place 
description 

An unprocessed 
complaint 

The complaint 
complemented with 
product and place 
description 

Complaint 
module 

4 Check complaint 
completeness 

A complaint 
complemented with 
product and place 
description 

An overview of the 
completeness of the 
complaint 

Complaint 
module 

5 Ask follow-up 
question(s) to 
complainant 

An incomplete complaint An e-mail send to the 
complainant containing 
follow-up question(s) 

Complaint 
module 

http://www.politie.nl/
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Withdrawing a complaint 

 

Figure 6: DLOC process of withdrawing a complaint 

It often occurs that a complainant decides to withdraw his complaint, for example when an 

ordered product is received after filing the complaint. Employees at DLOC receive between 

25-30 withdrawal requests per day (i.e. 15-20% of the daily amount of complaints), which 

have to be processed in the BVH. Ideally, a complainant withdraws his complaint using a link 

provided in the confirmation e-mail sent when filing the complaint. This link is connected to 

the withdrawal module, BAGS, which automatically informs both LMIO and DLOC of the 

withdrawal. However, 10-20% of all withdrawal requests are received through other sources 

(e.g. the general contact form on www.politie.nl). These requests first have to be manually 

entered into the withdrawal module by employees at DLOC before the process of handling a 

withdrawal can be continued.  

A BAGS generated e-mail contains the complaint module reference number and a reason 

for withdrawal. Since the complaint module reference number cannot be used in the BVH, the 
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BVH reference number first has to be retrieved from the complaint module. Next, both 

numbers will be added to an excel file containing references to all complaints which have to 

be withdrawn. Finally, a withdrawal is processed in the BVH and a withdrawal e-mail is send 

to both the complainant and LMIO. All tasks involved in withdrawing a complaint have been 

summarized in Table 2. 

Table 2: Tasks involved in withdrawing a complaint 

Nr. Task Input Output System 
1 Manually enter 

withdrawal in 
withdrawal module 
(BAGS) 

An e-mail by the 
complainant 
containing a request 
for withdrawal 

A request in the 
withdrawal module to 
withdraw the 
complaint 

BAGS 

2 Process withdrawal in 
withdrawal module 
(BAGS) 

An automated request 
for withdrawal by the 
complainant  

A withdrawal e-mail 
send to LMIO and 
DLOC 

BAGS 

3 Retrieve BVH 
reference number 
from complaint 
module 

A withdrawal e-mail 
containing a reference 
number to a complaint 

The BVH reference 
number matching the 
complaint module 
reference number 

Complaint 
module 

4 Add complaint to 
internal withdrawal 
list 

A text file containing 
the complaint module 
and BVH reference 
number 

Excel file containing an 
additional row for the 
complaint 

Excel 

5 Process withdrawal in 
BVH 

An excel file containing 
the complaint to be 
withdrawn  

The complaint edited 
in the BVH and a 
withdrawal e-mail send 
to the complainant 

BVH 
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4.3.2 LMIO process of handling a case 

When a complaint has been received by LMIO, it is handled according to a standard process 

(Inspectie Veiligheid en Justitie, 2015), which has been depicted in Figure 7. Each step of the 

process will be explained in more detail and connected to the generic process of solving a case 

as seen in Chapter 3.  

 

Figure 7: LMIO process of handling a case10 

Analysis 

LMIO receives between 150 and 200 complaints per day (Inspectie Veiligheid en Justitie, 

2015). These complaints have to be analyzed to determine which could lead to an interesting 

case. For this, LMIO’s analysts make use of iBase, which is a relational database used for 

recording and analyzing data. Each day, the complaints - both civil and criminal - are imported 

into iBase and cleaned; empty entities and unrealistic data, such as phone number 

0123456789, are removed. Using iBase, entities are grouped based upon features in the data 

(e.g. similar account numbers or e-mail addresses) and connections between entities are 

discovered. Once a month, a list of suspects’ account numbers is extracted from iBase and sent 

to the police units, which may help them in their own cases.  

                                                        

10 Source: Inspectie Veiligheid en Justitie (2015) 
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Next to managing data and creating overviews, LMIO also investigates complaints. As 

was mentioned in chapter 3.2, not every possible case the police encounters is investigated; a 

pre-selection has to be made by LMIO’s analysts to decide on which complaints should be 

investigated and which should not. For this pre-selection, four criteria are used: 

1. Are there questions surrounding the entity elsewhere in the police organization? 

2. Has the entity committed more frauds? 

3. Is the suspect a minor? 

4. How high are the costs of the damage? 

Most investigations result from criteria 1, where individual police units request for 

information surrounding a specific entity, leaving LMIO less time to perform their own 

investigations on interesting entities. To determine which complaints the remaining time 

should be spent on, the analysts combine criteria 2-4. An investigation is always started if the 

suspect is a minor, has committed more than 10 frauds, or if the costs of damage exceed 5.000 

euro. In case of more remaining time, intuition is used for selecting complaints worth 

investigating (Inspectie Veiligheid en Justitie, 2015).  

If a complaint is further investigated, a dossier is constructed by the analysts consisting 

of [1] a detailed graph of all other entities connected to the entity, [2] all transactions of the 

entity, [3] the full complaint, and [4] a summary of each complaint connected to the entity. 

This dossier is then sent to the police unit of the city in which the suspect resides. The 

respective police unit can determine to preliminary investigate the possible case on their own, 

or have LMIO preliminary investigate the case. 

Preliminary investigation (dossier) 

If a dossier is handed over to LMIO for preliminary investigation, a police planner will be 

assigned to it. This police planner will, based upon the constructed dossier, try to recover the 

suspect’s identity and determine whether a crime has been committed with respect to article 

326 SR. To achieve this, requests for information are set out to relevant third parties (e.g. 

banks, commerce sites) for additional information regarding entities in the dossier, for 

example the identity of the holder of an account number. LMIO’s police planners, as opposed 

to the analysts, do not have a standard approach for handling a complaint, due to the unknown 

availability of information. However, following the top-down approach mentioned in chapter 

3.2, a police planner builds a case, using the story as the center of the investigation (de Poot et 

al., 2004). 

During the investigation, obtained information is stored in Summ-IT, a nation-wide 

registration system to support the processes of an investigation. When a case has been fully 

investigated, this system is used as input for the case file which will be sent to the police unit. 

In this case file the crime will be described according to a predefined template, which is also 
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included in Summ-IT. For constructing this case file, the police planners follow four general 

steps in an undefined order: 

- Read and describe complaints; 

- Report and describe investigatory findings; 

- Create a general story according to the Golden W’s, as mentioned in chapter 3.1; 

- Apply article 326 of the Dutch Criminal Code to the case and describe the committed 

prosecutable facts. 

After the case file has been created, it will be included in the dossier which will be physically 

sent to the police unit of the city in which the suspect resides. This dossier consists, besides 

the case file, of a project proposal, a handover document, a weighting document, a case 

analysis, and all documents used in building the case. The respective police unit will assess the 

quality of the dossier and determine based upon both this assessment and the availability of 

human resources whether a follow-up investigation will be conducted to ultimately present a 

case file to the Public Prosecution Service (Inspectie Veiligheid en Justitie, 2015). 

5 Applying Data Mining at DLOC/LMIO 

Before machine learning techniques can be used to (partly) automate the complaint handling 

process by DLOC and LMIO, it first had to be assessed where and how this should be applied. 

For this, interviews have been conducted at both DLOC and LMIO which were combined with 

the workflows as explained in chapter 4.3.  

After a complaint has been filed by the complainant, it will immediately be sent to both 

DLOC and LMIO, who will work concurrently on the same complaint and communicate 

alterations to a complaint by e-mail. A potential solution which can be used by both DLOC and 

LMIO would ideally have to influence the process before a complaint is received. This implies 

influencing the process when filing a complaint, which is already being researched by Bex et 

al. (2016). Complementing the research by Bex et al., it has been opted to focus in this research 

on (partly) automating the process of either DLOC or LMIO. Even though this focus could 

restrict this research from being directly influential to both DLOC and LMIO, it does allow for 

indirect effects on the other process, due to the e-mail communication about the complaints. 

If, for example, the process at DLOC is enhanced, alterations can be faster communicated, 

thereby reducing the time spent by LMIO on complaints not worth investigating and 

improving the overall process of handling an online trade fraud complaint. 

In the interviews it became obvious that a single complaint flows through a set of general 

steps at LMIO, which is depicted in Figure 7. However, since individual complaints differ 

substantially from one another, a tailored approach is required when analyzing and 

investigating a complaint, which makes it difficult to directly influence LMIO’s process of 

handling a complaint. At DLOC, the processes of registering and withdrawing a complaint are 
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not influenced by the details of a complaint, which enables the possibility to (partly) automate 

a process. Interviews at DLOC made it apparent that the most time intensive task was the 

answering of complainant’s questions received via e-mail, followed by the registering of a 

complaint, and finally the withdrawing of a complaint. Regarding the problem solving urgency 

the same ranking was appointed.  

Since the task of answering complainant’s questions was designated as the most urgent 

problem, it was first explored how this could be improved using machine learning techniques. 

A possible solution could be a classifier which evaluates the content of an e-mail to predict the 

type of question, based on which a reply e-mail is formulated. However, since no dataset is 

available containing received e-mails, it was not possible to automate the answering of 

complainant’s questions. Next, the process of registering a complaint, as illustrated in Figure 

5, was explored for its possibilities regarding (partly) automation. Since through the research 

of Bex et al. (2016) the information contained in a “raw” complaint will be significantly 

improved in the nearby future, the cycle in which follow-up questions are asked and processed 

will become redundant. Therefore it has little added value to focus on automating this section 

of the complaint registering process. This leaves two tasks remaining in the process to be 

(partly) automated, namely the checking of the complaint type and the completing of the 

product and place description. During the interviews it was mentioned that the completing of 

the product and place description was not time-intensive and should therefore not be given 

any attention. Automatically determining the complaint type however was described as a 

welcome feature, as was predicting whether a complaint will be withdrawn is not. Both 

predictions serve the same goal, namely the distinction between complaints worth 

investigating and those not worth. By categorizing complaints, more important complaints can 

be dealt with earlier, thereby increasing the processing speed of those complaints at DLOC. 

This also improves the process at LMIO, since feedback regarding a complaint withdrawal is 

received faster, which will reduce the time spent on complaints not worth investigating.  

Based on the interviews and the dataset, it was opted to focus in this research on 

distinguishing complaints based on whether they will be withdrawn or not. In chapter 4.3.1 

two types of withdrawal were explained: withdrawal by DLOC judgement or withdrawal by 

complainant request. Within these two types of withdrawal, many specific reasons exist, some 

of which are: “no internet fraud”, “civil case”, “double complaint”, “ID fraud”, “phishing”, 

“money was recovered”, and “goods delivered”. A possible classification approach in this 

research could be the distinction of withdrawn complaints based on those reasons, however, 

since employees at DLOC are merely interested in whether a complaint will be withdrawn or 

not, it has been chosen to group all withdrawn complaints together. As a result, the classifier 

will thus categorize a complaint as either withdrawn or not withdrawn.  

Categorizing complaints will occur once they are received in the Complaint module, 

which will alter the process as shown in Figure 5. Once a complaint has been received it will 
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be positioned in either one of two bins: withdrawn or not withdrawn. Complaints positioned 

in the not withdrawn bin will continue to be processed as before, with an employee at DLOC 

judging its completeness and asking follow-up questions. However, for complaints categorized 

in the withdrawn bin, a multitude of new approaches could be followed. Potential approaches 

could be [1] automatically withdrawing a complaint once it is received, [2] once a week/month 

automatically withdrawing all complaints, or [3] manually processing the complaints at a later 

point in time. A desirable approach would rely upon the outcome of this research as well as 

DLOC’s goal regarding complaint handling (e.g. focus on customer intimacy or process 

efficiency). If, for example, DLOC highly values a complainant to be treated in a correct manner 

and only wants complaints to be withdrawn with absolute certainty, complaints which have 

been classified as withdrawn with 50% certainty cannot be automatically processed. 

However, if process efficiency is important and only 15 complaints are categorized as 

withdrawn each day, a certainty of 50% could well be enough to automatically withdraw a 

complaint. Since utilizing the research results within DLOC depends upon many variables, of 

which some examples have been given, it must thus be decided after conducting this research, 

in cooperation with DLOC, how this will be done. 

6 Data Mining in Crime Analysis 

In this chapter, the principles of data mining and classification will be explained. It will be 

described how classification has been applied in crime analysis and discusses how it can be 

applied to online trade fraud complaints. 

6.1 Describing data mining 

Data mining can be viewed as a step in the Knowledge Discovery in Databases (KDD) process 

as described by Fayyad, Piatetsky-Shapiro, and Smyth (1996). They define KDD as “the 

nontrivial process of identifying valid, novel, potentially useful, and ultimately understandable 

patterns in data” (Fayyad et al., 1996, p. 30). In this process, data necessary to achieve an 

outcome is first selected, after which it is preprocessed and transformed to ensure the data is 

of sufficient quality and follows the required format for applying the desired data mining 

techniques. Examples of data preprocessing and transformation are the cleaning, generalizing, 

aggregating, discretizing, and reducing of the data. When the data has been prepared, data 

mining techniques can be applied to build models on a dataset. After a model has been created, 

knowledge can be extracted by applying it to a dataset. An example of such knowledge 

extraction could be a model that predicts the likelihood of someone having a heart disease 

based on a patient record to assist a general practitioner in his daily job. The created models 

in the data mining step are evaluated for their applicability and accuracy. Throughout the 

entire KDD process, it is possible to take a step back and perform alterations. An example for 

this could be that the previously prepared data does not comply with the standards of the 

selected data mining technique and has to be retransformed or that additional data is required 
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for building accurate models. The KDD process as described by Fayyad et al. is depicted in 

Figure 8.  

 
Figure 8: KDD process11 

In this research, machine learning techniques will be utilized to build models in the data 

mining step of the process. Machine learning explores how computers can acquire new 

knowledge or enhance their performance based on data. Four types of machine learning 

techniques can be distinguished (Han, Kamber, & Pei, 2012): 

- Supervised learning in which a training set with correctly labeled entities is used for 

training models on how to predict those labels and thereby classifying the data. 

- Unsupervised learning in which a training set without labeled entities is used for 

training models on how to cluster the data based on its characteristics. 

- Semi-supervised learning in which a training set with both labeled and unlabeled 

entities is used for training models on how to predict the class labels and cluster the 

data. 

- Active learning in which a user actively evaluates intermediate results to improve the 

accuracy of built models. 

6.2 Classifying data using machine learning 

As stated in the main research question the purpose of this research is to (partly) automate 

online trade fraud complaint handling. For this machine learning techniques will be used 

which make use of the principle of classification. A classification approach involves the 

building of a classifier (or model) to predict class labels and consists of two phases; a training 

phase in which the classifier is built on a dataset with entities and their corresponding class 

labels, and a classification phase in which class labels for given entities are predicted using the 

classifier. The goal of a classifier is to correctly predict all class labels. To determine the 

accuracy (i.e. number of correct predictions) of a classifier it is tested on a dataset and the 

percentage of correctly classified entities is taken. If this dataset would be the same dataset as 

used for building the classifier, the accuracy would most probably be overly optimistic due to 

the nature of a classifier to overfit the data (i.e. tuning the classifier to specific entities which 

are not present in the general dataset). Therefore, in the training phase, a training set is used 

                                                        

11 Source: Fayyad et al. (1996) 
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for training the classifier and a test set, which is independent of the training set, is used for 

determining its accuracy. Since, in this research, the entities in the training set have a 

corresponding class label, classification is a supervised learning technique (Han et al., 2012). 

Numerous machine learning techniques exist, of which the ones initially applicable to this 

research will be explained below. This list of techniques is based on the work of Peters (2016a) 

and a supporting literature study.  

Decision tree classification 

With decision tree classification, a tree structure is constructed from a dataset consisting of 

internal nodes, branches, and leaf nodes. Each internal node represents a condition for an 

attribute (e.g. age greater than 25), each branch the outcome to this condition (e.g. yes/no), 

and each leaf node a class label for this condition (e.g. applies for loan/does not apply for loan). 

Decision trees are a popular machine learning technique due to their intuitive nature, reliable 

accuracy and fast operational runtime. To decide the conditions on which a tree should be 

constructed, decision tree algorithms make use of attribute selection measures. Attribute 

selection measures are heuristics to determine the condition used for splitting which results 

in the best split on a given dataset. Popular decision tree induction algorithms are ID3, C4.5, 

and CART which make use of attributes selection measures such as the resubstitution error, 

Gini-index, and entropy (Han et al., 2012). 

In 1995, Freund and Schapire (1995) proposed an algorithm, Adaptive Boosting, which 

uses majority voting to combine the weighted output of many small decision trees based on 

their predictive accuracy. Even though AdaBoost holds a risk for overfitting on the training 

data due to this weighting, it has been shown to outperform many other machine learning 

techniques including regular decision trees (Schapire and Singer, 2000; Sebastiani, 2002; 

Weiss et al., 1999) 

Naive Bayesian classification 

Naive Bayesian classifiers are part of the Bayesian classifiers which predict class membership 

probabilities based upon Bayes’ theorem. A naive Bayesian classifier models a class 

distribution with conditional probabilities which can be used to predict a class label.  With 

naive Bayesian classifiers, the attributes which influence a class label are expected to be 

independent of, and not of any influence to each other, which is known as class-conditional 

independence. Even though this assumption for independence does not always hold, naive 

Bayesian classifiers are popular due to their low complexity, are known to accurately predict 

class labels, and are comparable to or even outperform more complex machine learning 

techniques (Han et al., 2012).  

Naive Bayesian classifiers can be split up into two generative models, known as multi-

variate Bernoulli and multinomial naive Bayes. The difference between these models can be 

found in the probability definition. With multi-variate Bernoulli naive Bayes, the probability 
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of an entity belonging to a specific class is calculated by multiplying the binary probability of 

all attributes for that entity, including that of non-occurring attributes. Multinomial naive 

Bayesian classifiers calculate the probability of an entity belonging to a specific class by 

multiplying the probability of each occurring attribute for a specific entity, excluding non-

occurring attributes. If, for example, an attribute “Marktplaats” does not occur for a given 

entity, it will thus be included in the probability prediction for a multi-variate Bernoulli naive 

Bayesian classifier and excluded in a multinomial naive Bayesian classifier. Both naive Bayes 

models are used as standard naive Bayes in research even though they differ substantially 

(McCallum & Nigam, 1998).   

K-nearest-neighbor classification 

K-nearest-neighbor (KNN) classifiers are an example of lazy learners, which do not perform 

any calculations on training sets until it is required for a test set. When an entity in a test set 

is received, the classifier loops over the training set to determine which entities are the closest 

to it with respect to its attributes. The closeness to a neighbor is determined using a distance 

metric (e.g. Euclidian distance as used in this research). This distance metric can, however, not 

be applied to all types of attribute values, for instance categorical values. K-nearest-neighbor 

classifiers are known to be computationally slow, but in terms of accuracy comparable to 

Bayesian classifiers (Han et al., 2012). 

Support vector machine classification 

With support vector machine (SVM) classification a dataset is separated based upon its 

characteristics using a hyperplane (i.e. decision boundaries) as illustrated in Figure 9. For this, 

the dataset is transformed to a higher dimension using non-linear mapping. By applying a 

proper non-linear mapping to an adequately high dimension, a hyperplane can always be 

found which separates a dataset with two classes. SVM classifiers are computationally slow, 

but known to be less sensitive to overfitting and highly accurate (Han et al., 2012). 

 

Figure 9: Support vector machine classification12 

                                                        

12 Source: inovancetech.com 
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Logistic regression classification 

Logistic regression classifiers model the probability that an entity belongs to a certain class. 

For this, a logistic function combining regression coefficients is used to transform the output 

of a linear function. Such a regression coefficient determines how much an attribute in the 

dataset influences the overall model. The regression coefficients required to predict the class 

of an entity are calculated in the training set and verified on the test set. Logistic regression 

classifiers are comparable to naive Bayesian classifiers in terms of accuracy (Witten & Frank, 

2005).  

Association rule classification 

With association rule classification a set of IF-THEN rules is used to predict a class label. The 

IF part of a rule, the antecedent, can consist of multiple attributes, while the THEN section, the 

consequent, contains a single class prediction. An often occurring type of algorithm for 

learning this set of rules is the sequential covering algorithm (e.g. CN2 or RIPPER). Using this 

type of algorithm, a rule is learned one at a time using a greedy depth-first strategy, after which 

the entities covered by this rule are removed before a next rule is learned (Han et al., 2012).  

Neural network classification 

Neural network classifiers predict the class label of an entity using a structure of input/output 

units and weighted connections as depicted in Figure 10. A neural network is constructed over 

a predefined number of iterations, better known as epochs. In each epoch, the output of the 

last epoch is first entered in an input layer, which forwards it to a predefined number of hidden 

layers. A hidden layer contains a set of weighted units, which outputs are combined as input 

for a next unit. The weight of each unit is updated according to its predictive accuracy in the 

last epoch. After the data has gone through all hidden layers it is passed on to the output layer, 

where a class prediction can be made. A popular algorithm for computing a neural network is 

the backpropagation algorithm (Han et al., 2012). 

 

Figure 10: Neural network classification13 

                                                        

13 Source: texample.net 
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Ensembling 

To improve the classification accuracy and thereby fulfilling the goal of a classifier, it often 

occurs that the outcomes of individual classifiers are combined to create an overall classifier, 

which is known as ensembling (Han et al., 2012). For this, both similar machine learning 

techniques (i.e. bagging) as well as dissimilar machine learning techniques (i.e. stacking) can 

be combined. With bagging, a predefined number of training sets is sampled with replacement 

from the available dataset, and a set of classifiers using a similar machine learning technique 

is built based on these training sets. An overall classifier is created using the principle of 

majority voting, in which each individual classifier returns its outcome for a given test set and 

the outcome occurring most often is taken as the real outcome (Han et al., 2012). With 

stacking, this same principle applies, however, the individual classifiers can be built using 

different machine learning techniques (Wolpert, 1992). In general, ensemble methods are 

known to be more accurate than individual classifiers due to their robustness to overfitting 

(Han et al., 2012).  

6.3 Classification in crime analysis 

Data mining techniques, including classification, are increasingly being applied to the field of 

crime analysis. Chen et al. (2004) explored data mining techniques used for crime analysis, 

and Sharma and Panigrahi (2012) have categorized over 40 approaches using machine 

learning techniques for fraud detection. 

Abdelhamid, Ayesh, and Thabtah (2014) have used associative classification, a technique 

in which both association rules and classification are combined, to accurately discriminate 

phishing websites from legitimate websites. Making use of Bayesian networks, Baumgartner, 

Ferrari, and Palermo (2008) have been able to predict the characteristics of a homicide 

offender based on crime scene variables (e.g. police report or autopsy report) more accurate 

than a team of police experts. These characteristics could be used by police officers to identify 

a possible suspect. Gupta et al. (2016) have compared naive Bayes, Bayesian network, decision 

tree, and association rule techniques for their speed and accuracy in classifying crimes and 

accidents in Denver City, and found that association rules result in the highest accuracy. In 

their collaboration with the West Midlands Police, Oatley and Ewart (2003) used a Bayesian 

network to predict whether a certain property in the UK’s Midlands will be re-victimized or 

not and within what timespan. Next to this, a neural network was used to classify possible 

offenders for their likelihood of conducting unsolved crimes.  

Some of the research performed in this field focuses mainly on how to deal with a skewed 

dataset (i.e. one class is overly present). In their research, Brause, Langsdorf, and Hepp (1999) 

combined a rule-based association system with a neural network to detect credit card fraud. 

Since credit card fraud cases are relatively rare compared to legal cases, Brause et al. dealt 

with a skewed dataset. For a classifier to be adequate on skewed data, its accuracy has to be 
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higher than the percentage of the most occurring class in the dataset (e.g. the percentage of 

legal cases with respect to Brause et al.). Using their combined classifier, Brause et al. were 

able to achieve an accuracy of 99.955%. Phua, Alahakoon, and Lee (2004) have performed 

research on which classification method is best to be used for fraud detection with a skewed 

dataset. They proposed the use of a stacking-bagging method, in which a naive Bayes, neural 

network and decision tree classifier are combined. 

6.4 Classifying online trade fraud complaints 

Even though machine learning techniques have been used for many purposes in crime 

analysis, to the knowledge of the author only one research has focused on how to apply 

machine learning techniques to online trade fraud complaints (Peters, 2016a). The results of 

Peters are promising and show that machine learning techniques could be applied to online 

trade fraud complaints, however, the classification performance did not meet the required 

thresholds. In this research, the use of machine learning techniques will be increased and 

improved so that the required thresholds can hopefully be attained. Unfortunately, Peters only 

broadly described his followed procedures, making it hard to apply all of his findings to this 

research. Knowledge on how to classify online trade fraud complaints will therefore have to 

be a combination of the findings from Peters (2016a), an illation from literature on 

classification in crime analysis, and a deduction from literature on classifying textual and 

skewed data.  

The dataset used in this research is an online trade fraud complaints dataset which has 

been provided by the Dutch National Police and has been preprocessed by Peters (Peters, 

2016a). This dataset consists of 51.386 entries, which have all been manually labelled by 

employees at DLOC on whether a complaint has been withdrawn or not and for what reason. 

As explained in Chapter 4.3.1, a complaint can be withdrawn due to a complainant’s request 

or DLOC’s judgement. A complainant can request a withdrawal for any reason which is, when 

possible, categorized by employees at DLOC. When employees at DLOC withdraw a complaint 

on their own judgement this is done according to predefined reasons (e.g. civil, incomplete, no 

online trade fraud, double complaint). However, due to the large amount of withdrawal 

reasons, it cannot be deduced which withdrawals result from LMIO’s judgement and which 

from a complainant’s request. 

In total, 8.609 (16.7%) entries have been labelled as withdrawn and 1.136 (2.2%) as civil, 

which is a reason for withdrawal and therefore a subset of the withdrawn entries. Due to the 

offset ratio of minority to majority the online trade fraud complaints dataset is to be 

considered as a skewed dataset. The dataset contains a total of 60 attributes, including the 

binary class labels, and contains a free-text field in which the complainant’s story that led to 

the complaint is included. An anonymized and translated example of the free text field of a 

withdrawn and not withdrawn complaint is included in Table 3.  
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Table 3: Data example 

Withdrawn John Doe advertised a rental home. In hindsight it all appears to be fake. 

Not withdrawn I have bought a bottle of Dom Perignon and a bottle of Crystal 1999 from 

John Doe via Marktplaats and transferred 100 euro to 

NL01ABCD0123456789. Up to now, I have not received anything and 

John Doe does not respond to my e-mails. 

In this research textual attributes of a skewed dataset will be used. Therefore literature 

studies on classification for textual and skewed data have both been performed and outcomes 

are presented in the next sub chapters. 

6.4.1 Classification for skewed data 

Similar to Brause et al. (1999) and Phua et al. (2004), the online trade fraud complaints dataset 

used in this research contains a high degree of skewness. This high degree of skewness 

involves one class being overly present in the dataset. Since a skewed dataset consists of a 

majority and a minority class, a relatively high accuracy can be attained when classifying every 

entity to the majority class. Standard machine learning techniques are designed to pay more 

attention to majority classes, and thereby often perform poorly on a skewed dataset 

(Japkowicz and Stephen, 2002). In the literature, two abstract solutions are given for solving 

this problem: [1] a data-level approach, and [2] an algorithm-level approach (Japkowicz and 

Stephen, 2002; Phua et al., 2004; Sun et al., 2007; Sun, Kamel, & Wong, 2009; Tang et al., 2009). 

Regarding the data-level approach, Japkowicz and Stephen (2002) have evaluated 

whether alterations to the training set can improve the accuracy of a classifier on a skewed 

dataset. For this they compared the accuracy of a classifier trained on an unaltered dataset to 

the same classifier trained on a dataset altered using one of the following two techniques: 

- Undersampling in which the entities in the majority class will be, at random, eliminated 

until a desired distribution is achieved.  

- Oversampling in which the entities in the minority class will be, at random, duplicated 

until a desired distribution is achieved. 

As a mixed approach, Japkowicz and Stephen also used cost-modification in which the costs of 

misclassifying a class depends upon the class distribution. If, for instance, the class distribution 

is 1:4, then the costs of misclassifying a minority entity will be four times as high as 

misclassifying a majority entity. 

Japkowicz and Stephen found that a greater class imbalance, a greater dataset complexity 

(i.e. the amount of dimensions required for separating the dataset), and a smaller training set 

size all negatively influence the performance of a classifier. Regarding decision trees, 

Japkowicz and Stephen found that the accuracy of decision trees on linearly separable classes 

(i.e. classes which can be separated in two sides) is barely influenced by any class imbalances, 
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however, for more complex separations (i.e. non-binary classes) decision trees were found to 

be most influenced by class imbalances followed by neural networks. Support vector machines 

did not show to be affected by any class imbalances. Regarding the data alteration technique, 

Japkowicz and Stephen discovered that both oversampling and cost-modification improve the 

performance of classification trees on a skewed dataset, however, undersampling has no effect 

in their research domain. For neural networks, under- and oversampling were found to both 

improve the performance of a classifier. Data alteration techniques, however, did not have any 

effect on the performance of support vector machine classifiers. 

The three alteration techniques evaluated by Japkowicz and Stephen (2002) are also 

supported by Sun et al. (2007;2009) and Tang et al. (2009) as the best techniques. Phua et al. 

(2004) have used these techniques to evaluate the best data distribution for an automobile 

insurance fraud dataset. They found that either a 40:60 or a 50:50 distribution provides the 

most accurate classification results.  

In this research, two of the techniques mentioned by Japkowicz and Stephen (2002) will 

be applied for redistributing the dataset, undersampling and oversampling. When 

undersampling the dataset, majority cases will be, at random, eliminated until a desired 

distribution is achieved. For oversampling the dataset, the SMOTE algorithm as proposed by 

Chawla et al. (2002) will be used. With SMOTE, a minority case is duplicated by randomly 

selecting one of its 5 nearest minority neighbors. Next, a hyperplane is created between the 

minority case to be duplicated and the selected minority case. Finally, the new minority case 

is created by randomly selecting a point on this hyperplane and joining the two minority cases 

for this point. SMOTE has been shown to be a reliable and robust redistribution technique in 

comparison to random oversampling and other redistribution techniques (Chawla et al., 2002; 

Liu, 2004).    

 Regarding the algorithm-level approach, ensembling as described in chapter 6.2 is 

mentioned in the literature as a method for improving classifier accuracy (Han et al., 2012; 

Sun et al., 2007; Sun et al., 2009; Tang et al., 2009;). Many ensembling methods have been 

proposed in the literature which all rely upon either bagging or stacking (Gao et al., 2008; Han 

et al., 2012; Tang et al., 2009; Wang, Zhang, & Wang, 2009). However, results obtained through 

using these ensembling methods heavily depend upon the type of data and, due to often 

conflicting results, no general theory can be deduced on how to apply them to the online trade 

fraud dataset. This means that the effect of the ensembling methods will have to be tailored to 

our dataset. 

6.4.2 Classification for textual data 

In his paper, Sebastiani (2002) presents an overview of machine learning techniques used for 

classifying textual data. By comparing the classification results of classifiers used in individual 

papers on the Reuters dataset, which is a multi-labelled collection of documents with a highly 
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skewed distribution, Sebastiani is able to derive conclusions on classifier performance. 

Ensembling based (e.g. AdaBoost), SVM, logistic regression, association rule (e.g. RIPPER), 

KNN, decision tree, and neural network classifiers all have a high performance on textual data. 

Probabilistic (e.g. naive Bayes) classifiers, however, show a lower performance on classifying 

textual data. In the remainder of this sub chapter, individual research performed on textual 

classification will be presented.  

Schapire and Singer (2000) designed an alternative version of AdaBoost, BoosTexter, 

and compared its classification results with KNN, naive Bayes, and RIPPER. The results of their 

evaluation showed that BoosTexter significantly outperforms the other classifiers. Research 

by Weiss et al. (1999) also showed that ensembling based decision trees outperform other 

machine learning techniques. In his paper, Joachims (1998) concludes that the performance 

of an SVM classifier is better than that of naive Bayes, decision tree and KNN classifiers. This 

finding is supported by Dumais et al. (1998) in their research on SVM performance for text 

classification. Yang (1998) compared 10 classifiers on their performance and discovered that 

KNN, logistic regression, and neural networks outperform the other classifiers. In his research, 

however, Yang did not include a SVM classifier. In a follow-up research, Yang and Liu (1999) 

included a SVM classifier in their analysis and concluded that it is similar in performance to 

KNN and logistic regression. This study, however, showed that neural networks underperform 

compared to these three classifiers.  

By combining the results from all literature studies it can be concluded that the machine 

learning techniques described by Sebastiani (2002) cover the spectrum of techniques used for 

classifying textual, skewed, and criminal data. The performance of the mentioned machine 

learning techniques will therefore be analyzed in the data analysis. 

6.4.2.1 Input for textual classification 

One common feature between each classifier for textual data is the input used for training and 

testing it. Such input consists of a collection of documents, known as a corpus, and a 

corresponding class label. In this research, a document is represented by a single complaint. 

Since a corpus, however, is merely a collection of (transposed) documents and holds no 

information on itself, it has to be converted into a term-document matrix. In a term-document 

matrix, the frequency of every term occurring in each document (i.e. complaint) is contained. 

For this research, it has been opted to use terms ranging from 1 to 3 adjacent words (i.e. 1:3-

grams), which have been tokenized using the NLP suite Frog (Van den Bosch et al., 2007). 

Alternative features could also be used for creating the terms such as part-of-speech, in which 

words are assigned to a category based on their use and function. By combining the 1:3-grams 

created for all individual complaints, the set of terms for the term-document matrix is 

obtained. As with classification for skewed data, alterations on a data-level approach can be 

applied to the term-document matrix. A distinction is made between word weighting 

techniques and word normalization techniques. 
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Word weighting techniques transpose the frequencies of each term in the term-

document matrix based on the estimated importance of a word in a document. In this research, 

three word weighting techniques will be compared with respect to their influence on a 

classifier’s performance: no weighting, binary weighting, and term-frequency/inversed-

document-frequency (TF-IDF) weighting. By applying no weighting (i.e. not transposing the 

frequencies), a baseline can be created to which the performance of the two other weighting 

techniques can be compared. With binary weighting, the frequency of all occurring terms is 

transposed to 1, so that a term can either be occurring or not occurring. Research has shown 

that binary weighting outperforms other weighting techniques on a similar dataset (Pang et 

al. 2002; Schneider, 2004). TF-IDF is one of the most common weighting techniques in 

Information Retrieval and is increasingly being used for text classification (Zhang et al., 2011). 

By multiplying the frequency of a word with the inverse of the amount of documents in which 

it exists, TF-IDF assigns a weighting based on a word’s relative value. For example, the Dutch 

article “de” is used very often and has little predictive value resulting in a low weighting, while 

the verb “oplichten” is more predictive and therefore receives a higher weighting. 

Word normalization techniques transpose a word into its standard form and are often 

applied in the field of NLP to reduce the dimensionality of a corpus. Two specific word 

normalization techniques will be applied in this research, stemming and lemmatization. With 

stemming, a word is reduced to its standard form (i.e. stem) by removing the suffix. In this 

research the stemming algorithm as proposed by Porter (1980) will be used, which has been 

adapted for the Dutch language. Lemmatizers utilize lexica to transpose a word to its canonical 

form (i.e. lemma) depending upon its morphology. For example, the Dutch word “bakken” used 

as a noun has the lemma “bak”, while the verb has the lemma “bakken”. In this research the 

NLP suite Frog will be used to obtain the lemmas of all words in the corpus (Van den Bosch et 

al., 2007). The difference between stemming and lemmatization can be clearly exemplified 

using the Dutch word “zochten”. The stem for this word is “zocht” while the lemma is “zoeken”.  

6.4.3 Evaluating classifiers for (non-)textual skewed data  

Since with a skewed dataset a relatively high accuracy can be attained when classifying every 

entity to the majority class, the accuracy of a classifier is no reliable measure for how well it 

performs. Instead of looking at the accuracy, it is proposed to make use of the true/false 

positive/negative rates, as summarized in Table 4 (Sun et al., 2007; Han et al., 2012). 
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An evaluation measure often used with textual data for analyzing the performance of 

classifying the positive class is the Fβ-measure, from here on called F-measure (Equation 6.7). 

This measure makes use of both the recall (i.e. TPrate), which shows how many of class A’s 

entities have been correctly classified, and the precision, which shows how many entities were 

correctly classified as class A. In general, a beta of 1 is used for the F-measure, as will be in this 

research, which makes it a harmonic mean between the recall and precision. It applies the 

same weight to both the recall and precision, thus a high F-measure ensures that most of the 

relevant entities have been correctly classified (Sun et al., 2007; Han et al., 2012). The 

equations for the precision, recall, and F-measure are given in equation 6.5, 6.6, and 6.7.  

When calculating the average F-measure in a binary classification problem two 

approaches can be followed: micro-averaging or macro-averaging. With micro-averaging, the 

respective class weights are taken into account when determining the overall F-measure of 

two classes, while macro-averaging uses the arithmetic mean (Sokolova and Lapalme, 2009; 

Yang and Liu, 1999). The equations for the micro- and macro averaged F-measure are given in 

equation 6.8 and 6.9. 

 
Precision  = 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 [6.5] 

 
Recall  = 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 [6.6] 

 Fβ-measure  = 
(1 + 𝛽2)  ∗  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
 [6.7] 

 Fmicro = 
(𝑛 ∗ 𝐹𝑐𝑙𝑎𝑠𝑠𝐴) + (𝑚 ∗  𝐹𝑐𝑙𝑎𝑠𝑠𝐵)

(𝑛 + 𝑚)
 [6.8] 

 Fmacro = 
𝐹𝑐𝑙𝑎𝑠𝑠𝐴 +  𝐹𝑐𝑙𝑎𝑠𝑠𝐵

2
 [6.9] 

Table 4: True/false positive/negative rates 

 Predicted class 
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 A B 

A TP FN 

B FP TN 
 

True Positive Rate: TPrate = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 [6.1] 

True Negative Rate: TNrate = 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 [6.2] 

False Positive Rate: FPrate  = 
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 [6.3] 

False Negative Rate: FNrate  = 
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 [6.4] 
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The application of the F-measure for analyzing the performance of classifying skewed 

data is shown in the following example using the confusion matrix in Table 5. Here, 1000 

instances of class A and 100 instances of class B are used. Of the 1000 instances in class A, 800 

have been correctly classified, where for class B, 20 instances have been correctly classified. 

Overall, an accuracy of 820 / 1100 = 0.745 is achieved on the test set. However, the F-

measure of class B is only 0.125, which is significantly lower than the accuracy. Furthermore, 

with an F-measure for class A of 0.851, the micro-averaged F-measure is 0.785, while the 

macro-averaged F-measure is 0.488. Due to the skewed nature of the test set, a fairly high 

accuracy and micro-averaged F-measure can be achieved by correctly classifying a large part 

of the majority class, while the minority class is undermined. Since in (skewed) text 

classification, it is generally important to correctly classify all classes instead of correctly 

classifying a single class, it is proposed to use the macro-averaged F-measure as a performance 

evaluation measure (Forman, 2003; Yang and Liu, 1999). 

Table 5: Example confusion matrix 

 Predicted class 

A
ct

u
a

l 
cl

a
ss

 

 A B 

A 800 200 

B 80 20 

7 Results 

In this chapter, the results of the data analysis will be described. For each classification 

technique, an overview will be given of the difference in performance between the resampling, 

word normalization and word weighting techniques. Furthermore, important decisions made 

in this research as well as the framework used for conducting the experiments will be 

explained in detail. 

7.1 Research considerations 

Data acquired through research are mere numbers if it has not carefully been excogitated how 

to obtain it and what to do with it. For obtaining the data, decisions regarding resampling, 

word weighting, and word normalization have already been explained in Chapter 6.4 based on 

performed literature studies. However, considerations for creating the research framework 

and evaluating the data resulting from this framework have not yet been discussed and will 

be in this sub chapter.  
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7.1.1 Framework creation 

Even though most decisions for creating the research framework are induced by earlier 

decisions regarding the structure of this research, two decisions remain: [1] whether and how 

to select features for building a classifier, and [2] how to obtain the most accurate results.  

When building a term-document matrix on the training set, more than 2.000.000 terms 

are generated consisting of 1:3-grams. Since most classification algorithms cannot handle such 

a vast amount of terms, a set of terms has to be selected which will be used for training the 

classifier. To help in the decision on which terms to select, feature selection algorithms can be 

used which try to generate the best classification results using the least amount of features. 

Various feature selection algorithms exist (e.g. Information Gain, Odds Ratio) which have all 

extensively been evaluated with respect to text classification (Forman, 2003; Yang & Pedersen, 

1997). Even though feature selection algorithms are found to often positively influence 

classification results, it has been opted to use the most occurring terms over a standard feature 

selection algorithm. Underlying this is the focus of this research, which is on determining the 

influence of resampling, word weighting, and word normalization techniques on classifier 

performance. When applying feature selection, another dimension would be added to the 

problem, which would make it hard discriminate the influence of the above mentioned data 

alteration techniques. Through a small experimental setup it was found that the classification 

performance improved when increasing the amount of features used for training up to 100 

after which it stabilized. To reduce the runtime of the research framework, while still 

obtaining the best possible results, the amount of features used for training the classifiers was 

chosen to be fixed at 100. Selecting the 100 most occurring terms makes the classification 

algorithm unbiased in the distinction of the minority and majority class, thereby explicitly 

showing the influence of the data alteration techniques to that process. 

Next to being discriminable, results that have been obtained should also be an accurate 

demonstration of the truth and not a positive or negative outlier. Such positive or negative 

outliers could be the result of a small dataset where not enough data is available to accurately 

train and test a classifier (Beleites et al., 2013). To prevent outlier results, it is proposed to 

make use of 10-fold stratified cross validation, which reduces the variance of the outcome 

(Kohavi, 1995).  With 10-fold stratified cross validation, the dataset is split in 10 folds of 

similar size, which all hold the same class distribution ratio as the original dataset. When 

training and testing a classifier 9 of the folds are used for training, while the remaining fold is 

used for testing it. This process is repeated 10 times, so that each fold is used 9 times for 

training and once for testing. After all 10 iterations have been performed the mean of the 

individual results is taken as the overall result. 
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7.1.2 Result evaluation 

When analyzing the classification performance of a classifier trained on skewed textual data, 

a macro-averaged F-measure is often used as was described in Chapter 6.4.3. In the context of 

this research, however, it has been assessed whether this is the best evaluation measure. Since 

the purpose of a classifier is to have the best performance with respect to a certain goal, it was 

essential to first determine this goal before choosing the evaluation measure. During the 

interviews conducted at DLOC, the goal was described to be the correct categorization of a 

complaint in either one of two bins “withdrawn” or “not withdrawn” based on whether a 

complaint will be withdrawn or not. Furthermore, no bin was emphasized as being more 

important than the other. Currently, it is unknown what will happen with complaints in the 

“withdrawn” bin, as was explained in Chapter 5. This does, however, certainly influence the 

choice for a classification metric. If the certainty for a complaint to be placed in this bin is large, 

the precision should be as high as possible, opposed to a large recall when it is important that 

as many to be withdrawn cases are covered. Even though no bin was emphasized as being 

more important, it did make sense during the interviews at DLOC that, independent of the 

utilization, the “withdrawn” bin should contain as little incorrect complaints as possible. For 

the purpose of this research and choosing an appropriate classification metric, it has therefore 

been decided that the precision of the “withdrawn” class (i.e. minority class) should be as high 

as possible.  

 In Chapter 6.4.3, the precision was given as the True Positives divided by both the True 

Positives and False Positives. The precision with respect to the minority class can be calculated 

using equation 7.3. From this equation it can be derived that the precision can increase if either 

more minority classes are correctly classified or less majority classes are incorrectly classified. 

Since it was concluded that the precision of the minority class should be as high as possible, a 

classification metric based upon the precision should be used for evaluating a classifier’s 

performance. Two classification metrics following this condition are known, the first being the 

precision itself, and the second the F-measure. The equations for the minority/majority 

precision, recall, and F-measure are given in equations 7.1 to 7.6. It should, however, be noted 

that these equations are based upon the minority and majority label in Table 6. If these labels 

would be turned around, the equations would have to be turned around as well. 
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When comparing these two metrics, it first had to be decided whether the majority class 

is included or not in determining a classifier’s overall performance. Even though the minority 

class is considered to be the most important class, it was deemed important that the overly 

present majority class should not be ignored, since overall a classifier is as good as its worst 

classification performance. A classification metric to indicate the overall performance should 

therefore focus on both the minority and majority class. To determine which overall 

performance metric would be best applicable, the pros and cons of using either the F-measure 

or merely the precision had to be enlisted and weighted, which can be found in Table 7. When 

using merely the precision as a metric, the overall performance would be measured by 

calculating the arithmetic mean of the precision of both classes. For determining the overall 

performance using the F-measure, the macro-average would be used. 

Table 7: Pros and cons F-measure and precision 

Precision 

- Pros 

o A low precision of either class ensures a low overall performance 

o The precision as a classification metric is uninfluenced by any other 

classification metrics 

- Cons 

o A high minority precision can be attained using only a few test cases, making the 

classifier seem correct, while it is only little informative 

F-measure 

- Pros 

o A low precision of either class ensures a low overall performance 

Table 6: Recall/precision for minority/majority class 

 Predicted class 

A
ct

u
a

l 
cl

a
ss

 

 Maj Min 

Maj TP FN 

Min FP TN 
 

Recall minority: Rmin = 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 [7.1] 

Recall majority: Rmaj = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 [7.2] 

Precision minority: Pmin  = 
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 [7.3] 

Precision majority: Pmaj  = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 [7.4] 

 F-measure minority: Fmin  = 
2∗𝑃𝑚𝑖𝑛∗𝑅𝑚𝑖𝑛

𝑃𝑚𝑖𝑛+𝑅𝑚𝑖𝑛
 [7.5] 

 F-measure majority: Fmaj  = 
2∗𝑃𝑚𝑎𝑗∗𝑅𝑚𝑎𝑗

𝑃𝑚𝑎𝑗+𝑅𝑚𝑎𝑗
 [7.6] 
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o By combining recall and precision, a high overall performance implies that the 

classifier is very informative 

- Cons 

o A high precision of either class could have little influence on the overall 

performance if the recall is low 

The cons as enlisted above will be further explained using Table 8 for the precision and 

Table 9 for the F-measure. Both tables hold 1000 instances of the majority class and 100 

instances of the minority class. In Table 8, all instances of the majority class have been 

correctly classified, while only 1 instance of the minority class is correct, which results in an 

average precision of 0.955. Since only one test case is correctly classified as the minority class, 

the precision of the minority class is 1, while the recall is 0.01. The average precision thus 

indicates that the classifier is highly informative, while in fact all test cases except for one have 

been classified as the majority class, which does not add any information. When using the 

macro-averaged F-measure, as explained in Chapter 6.4.3, the low recall on the minority class 

negatively influences the overall performance, thereby creating a better perspective on the 

classifier’s overall performance. However, this feature of the macro-averaged F-measure is 

also its Achilles heel, as a good precision on the minority class, which is deemed to be 

important for this research, can become overshadowed by a low recall, which will be shown 

using Table 9. Here, 995 test cases have been correctly classified as the majority class and 30 

test cases as the minority class. Even though the precision of the minority class is an acceptable 

0.857, the macro-averaged F-measure is 0.704.  

 

             

 

 

 

 

 

From the examples it becomes apparent that using merely the precision as an overall 

classification metric does not hold enough information, and that the macro-averaged F-

measure omits to show the influence of the minority precision. Since the precision as an 

overall classification metric only makes use of the respective individual precisions, the 

information obtained using this metric cannot be enriched. For the macro-averaged F-

measure, however, an alternative is available which could optimize the outcome with respect 

to the minority precision, namely the F0.5-measure. The generic formula for the F0.5-measure, 

which is derived from equation 6.7, is given in equation 7.7 and has been applied to the 

 Predicted class 

A
ct

u
a

l 
cl

a
ss

 

 Maj Min 

Maj 1000 0 

Min 99 1 

 Predicted class 

A
ct

u
a

l 
cl

a
ss

 

 Maj Min 

Maj 995 5 

Min 70 30 

  Table 8: Example precision con Table 9: Example F-measure con 
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minority and majority class with respect to Table 6 in equation 7.8 and 7.9. As can be seen 

from the formulae, the False Positives and False Negatives for respectively the minority and 

majority class are deemed to be less important with the F0.5-measure, thereby increasing the 

influence of the precision. Using the F0.5-measure over the normal F-measure would thus 

comply better with the preset condition of the minority precision being important, however, 

the F0.5-measure gives a worse representation of the overall performance of a classifier. 

 F0.5-measure  = 
(1 + 0.52)  ∗  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙

(0.52 ∗  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
 [7.7] 

 F0.5-measure minority = 
(1 + 0.52)  ∗  𝑇𝑁

(1 + 0.52) ∗ 𝑇𝑁 + 0.52 ∗ 𝐹𝑃 + 𝐹𝑁
 [7.8] 

 F0.5-measure majority = 
(1 + 0.52)  ∗  𝑇𝑃

(1 + 0.52) ∗ 𝑇𝑃 + 0.52 ∗ 𝐹𝑁 + 𝐹𝑃
 [7.9] 

Considering the various downsides in the approaches towards measuring the 

performance of the results in this research, it was concluded that a single classification metric 

cannot show both the overall performance as well as the performance on the minority 

precision. From above observations, it can be concluded that, for this research, the best metric 

regarding the overall performance is the macro-averaged F-measure (i.e. F1-measure), 

following the approach of both Forman (2003) and Yang and Liu (1999). This metric equally 

weighs both recall and precision of the minority and majority class, thereby clearly showing 

the overall performance evenly influenced by all variables. To overcome the downside of the 

F-measure, the macro-averaged F0.5-measure will also be used for discussing the performance 

of a classifier on the minority precision, following the approach of both Ruiz and Srinivasan 

(1999) and Wang et al. (2014). By combining both metrics, the outcomes of this research will 

comply with the preset conditions of having a good overall classifier resulting in an as high as 

possible minority precision. 

To determine which classifier holds the best performance, classification results should 

also be compared to a baseline, since a classification result which does not exceed a baseline 

holds no additional value (Yang and Liu, 1999). With a skewed dataset, the best uninformed 

classification results are obtained when classifying all test cases as the majority class, which 

should then thus be used to calculate a classification metric’s baseline. However, since in this 

research the influence of data alteration techniques on multiple classifiers is assessed, 

majority voting was considered to be inapplicable. Using majority voting, one would only see 

how good a classifier performs to when no classifier would be used instead of how much the 

data alteration techniques influence the performance of the classifier. Therefore, each 

classifier should be compared to its unimproved counterpart. For both resampling and word 

weighting this can well be applied, however, for word normalization it was determined to omit 

test cases where no word normalization was applied for runtime optimization. This required 

to choose either lemmatization or stemming as the unimproved baseline. As the basis for this 



38 

 

decision, the feature list as included in Appendix 12.1 was used, which has randomly been 

generated using the same train/test set distribution as used for conducting the tests. In this 

feature list, lemmatization and stemming normalized 36 of the 100 features alike, which was 

confirmed to be average using three additional randomly generated feature lists. Furthermore, 

the feature list revealed that using lemmatization, multiple different stems were merged into 

a single lemma. Since [1] lemmatization more clearly transforms features from their standard 

form than stemming, thereby having a larger influence on the feature list, and [2] 

lemmatization and stemming normalize a considerate amount of feature in the same way, it 

was decided to use stemming as the base form for word normalization. Overall, when 

evaluating the influence of data alteration techniques on a classifier’s performance, it will thus 

be compared to the results obtained using a training set which has not been sampled, is 

unweighted, and has been normalized using stemming. 

7.2 Research framework 

In order to ensure the analyses in this research are performed under equal conditions, a 

research framework has been created. Analysis is conducted using Weka (Witten and Frank, 

2005) combined with R (R Core Team, 2015) using the package RWeka (Hornik et al., 2009). 

Linguistic analysis is performed by Frog (Van den Bosch et al., 2007), incorporated in the 

framework using the package Frogr (Van Atteveldt, 2014). This framework consists of two 

sections: the preprocessing section and the training/testing section.  

7.2.1 Preprocessing 

The dataset used in this research is an online trade fraud complaints dataset which has been 

provided by the Dutch National Police and has already been preprocessed by Peters (Peters, 

2016a), therefore requiring no additional data preprocessing. Since this research is based 

upon the prediction of the “withdrawn” label using a complaint’s free-text field, these variables 

are first selected from the dataset, after which a corpus is created where each document 

represented a single complaint. The words in each document are transformed to their base 

form using either a Dutch adapted stemmer (Porter, 1980) or lemmatizer (Van den Bosch et 

al., 2007). In a subsequent cleaning phase, all punctuation is removed and Dutch stop words 

are removed according to a predefined list14. Next, the corpus is split using stratified 10-fold 

cross validation, so that the ratio of minority to majority classes in each fold is maintained and 

each complaint is used once for testing and nine times for training. 

7.2.2 Training/testing 

Each of the 10 folds resulting from the preprocessing section is used for training and testing a 

classifier following the same procedure as illustrated in Figure 11. First, 90% of the fold 

                                                        

14 http://snowball.tartarus.org/algorithms/dutch/stop.txt 



39 

 

assigned for training the classifier is transformed into a term-document matrix containing 1:3-

grams. All terms present in the term-document matrix are evaluated for their presence in the 

documents (i.e. complaints) and the term-document matrix is reduced to the 100 most 

occurring terms. Next, the term-document matrix is resampled using either random 

undersampling or SMOTE (Chawla et al., 2002). With random undersampling, the minority 

class entries are kept constant and the majority class entries are randomly downscaled 

according to the training sample distribution. For SMOTE, the minority class entries are 

upscaled to match the amount of majority class entries and the majority class entries are 

randomly up- or downscaled according to the training sample distribution. The classifier is 

then build on the resampled term-document matrix using Weka’s default classifier 

implementations (Frank et al., 2010). To avoid interference with the aspects under 

investigation in this research, we have opted to use the basic parameter settings provided by 

Weka. 

After the classifier has been built it is tested using the assigned 10% of the fold. A term-

document matrix is first created on all documents in the testing corpus, after which it is 

reduced to the same 100 terms used for training the classifier. If a term used for training the 

classifier does not occur in the term-document matrix of the test set, a value of 0 is assigned 

to it for each document indicating its absence. When the term-document matrix has been 

constructed it is entered as input to the classifier and the predicted class labels are evaluated 

with respect to the actual class labels.  

Finally, the evaluation results of each individual fold are combined and averaged 

resulting in an overall evaluation for the classifier under the predefined settings. 

 

Figure 11: Training/testing section in research framework 
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7.3 Multinomial naive Bayes 

Table 10 holds an overview of the macro-averaged F1-measures obtained using the default 

implementation of WEKA’s NaiveBayesMultinomial classifier (McCallum and Nigam, 1998). 

The macro-averaged F0.5-measures are included in between brackets to more clearly distinct 

the influence of the precision on the F-measure. For each normalization/weighting technique 

combination, the best results are displayed in bold and the overall best result for a 

combination is underlined.  

In Figure 12 the F-measures of the minority and majority class, using undersampling and 

lemmatization, are illustrated, while Figure 13 depicts the recall and precision. A complete 

overview of the illustrations can be found in Appendix 12.2. 

Table 10: F-measures using multinomial naive Bayes 

Resampling 
technique 

Normalization 
technique 

Training 
sample 
distribution 

Weighting technique 

No 
Weighting 

Binary TF-IDF 

No Sampling Lemmatization 16.7:83.3 0.583 
(0.588) 

0.557 
(0.573) 

0.454 
(0.431) 

Stemming 16.7:83.3 0.572 
(0.579) 

0.553 
(0.569) 

0.454 
(0.431) 

Undersampling Lemmatization 30:70 0.589 
(0.584) 

0.590 
(0.588) 

0.454 
(0.431) 

40:60 0.576 
(0.573) 

0.585 
(0.579) 

0.455 
(0.433) 

50:50 0.545 
(0.553) 

0.550 
(0.556) 

0.539 
(0.548) 

60:40 0.509 
(0.531) 

0.503 
(0.527) 

0.146 
(0.105) 

70:30 0.462 
(0.450) 

0.440 
(0.485) 

0.144 
(0.101) 

Stemming 30:70 0.588 
(0.579) 

0.584 
(0.583) 

0.454 
(0.431) 

40:60 0.569 
(0.567) 

0.576 
(0.572) 

0.455 
(0.432) 

50:50 0.537 
(0.545) 

0.544 
(0.550) 

0.534 
(0.544) 

60:40 0.496 
(0.521) 

0.493 
(0.519) 

0.146 
(0.106) 

70:30 0.453 
(0.492) 

0.432 
(0.478) 

0.144 
(0.101) 

Oversampling Lemmatization 30:70 0.584 
(0.580) 

0.583 
(0.581) 

0.454 
(0.431) 
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40:60 0.567 
(0.566) 

0.573 
(0.569) 

0.455 
(0.433) 

50:50 0.541 
(0.549) 

0.550 
(0.554) 

0.548 
(0.554) 

60:40 0.509 
(0.530) 

0.509 
(0.529) 

0.147 
(0.108) 

70:30 0.465 
(0.501) 

0.453 
(0.493) 

0.143 
(0.101) 

Stemming 30:70 0.578 
(0.574) 

0.579 
(0.578) 

0.454 
(0.431) 

40:60 0.558 
(0.557) 

0.566 
(0.563) 

0.455 
(0.432) 

50:50 0.533 
(0.542) 

0.538 
(0.545) 

0.542 
(0.549) 

60:40 0.497 
(0.520) 

0.496 
(0.520) 

0.147 
(0.109) 

70:30 0.455 
(0.492) 

0.442 
(0.484) 

0.144 
(0.101) 

 

Figure 12: F-measures using multinomial naive Bayes; 
X-axis: training sample distribution, Y-axis: F-measure 
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Figure 13: Recall and precision using multinomial naive Bayes; 
X-axis: training sample distribution, Y-axis: recall/precision

 

7.3.1 General results 

Overall, the best classification result is achieved using an undersampled 30:70 training 

distribution with lemmatization and binary weighting. Here, the F-measure of the majority 

class is reduced by 1.6% with respect to the baseline (87.2%) and the F-measure of the 

minority class is improved with 5.2%. In general, a training sample distribution which 

resembles the original distribution tends to hold the best classification performance.  

7.3.2 Resampling technique 

For evaluating the overall performance of resampling techniques, not only do the actual 

techniques have to be compared, but also the training sample distributions. In general, 

undersampling tends to outperform oversampling for training sample distributions in which 

the majority class is dominant up to 50:50. When the minority class becomes the dominant 

class in the training sample distribution, this changes to oversampling outperforming 

undersampling. However, the difference between the over- and undersampling is of minor 

influence on the performance of a multinomial naive Bayes classifier. A greater difference can 

be noticed between the training sample distributions, where a distribution with a dominant 

majority class shows a better performance. When evaluating the recall and precision, it can be 

noticed that, as more minority cases are included in the training sample, the recall of the 

minority class improves while the recall of the majority class decreases for both binary and 

no weighting. Meanwhile, the precision of the minority and majority class are not influenced, 

resulting in a decreased F-measure for the majority class and an almost even F-measure for 

the minority class.  

7.3.3 Word normalization technique 

When classifying the test set using multinomial naive Bayes, it can be noticed that 

lemmatization consistently outperforms stemming with respect to the F-measure for all 
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resampling and word weighting techniques. Inducing this outperformance, both recall and 

precision are slightly improved when using lemmatization. 

7.3.4 Word weighting technique 

In general, both no weighting and binary weighting tend to have a comparable classification 

performance for both under- and oversampling when using a 30:70 training distribution. For 

distributions 40:60 and 50:50, binary weighting slightly outperforms no weighting, while for 

distributions 60:40 and 70:30 no weighting slightly outperforms binary weighting. When 

applying no sampling to the training set, it can be observed that using no weighting on the 

term-document matrix benefits the performance of a multinomial naive Bayes classifier. For 

TF-IDF weighting, an interesting finding can be observed. When applying a 30:70 and 40:60 

training sample distribution for both under- and oversampling, all instances are classified as 

the majority class due to the profound effect of the majority a priori probability on the class 

prediction, resulting in a recall of 1 for the majority class and a recall of 0 for the minority 

class. For a 60:40 and 70:30 distribution opposed results can be observed. Arising from these 

observations is an F-measure of 0 for the class which has not been predicted. With a 50:50 

training sample distribution, this phenomenon does not occur, resulting in a higher average 

F-measure. Using a TF-IDF weighting, however, does not pose the best classification results. 

7.4 Logistic regression 

Table 11 holds an overview of the average F-measures obtained using the default 

implementation of WEKA’s Logistic classifier (Le Cessie and van Houwelingen, 1992). In 

Figure 14 the F-measures of the minority and majority class, using undersampling and 

lemmatization, are illustrated, while Figure 15 depicts the recall and precision. A complete 

overview of the illustrations can be found in Appendix 12.3. 

Table 11: F-measures using logistic regression 

Resampling 
technique 

Normalization 
technique 

Training 
sample 
distribution 

Weighting technique 

No 
Weighting 

Binary TF-IDF 

No Sampling Lemmatization 16.7:83.3 0.468 
(0.462) 

0.467 
(0.460) 

0.456 
(0.436) 

Stemming 16.7:83.3 0.466 
(0.458) 

0.464 
(0.455) 

0.456 
(0.435) 

Undersampling Lemmatization 30:70 0.545 
(0.565) 

0.562 
(0.581) 

0.520 
(0.538) 

40:60 0.594 
(0.590) 

0.593 
(0.588) 

0.593 
(0.589) 

50:50 0.542 
(0.552) 

0.544 
(0.553) 

0.538 
(0.550) 

60:40 0.430 0.451 0.417 
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(0.477) (0.493) (0.467) 

70:30 0.311 
(0.370) 

0.341 
(0.401) 

0.295 
(0.353) 

Stemming 30:70 0.532 
(0.550) 

0.544 
(0.561) 

0.509 
(0.525) 

40:60 0.583 
(0.581) 

0.583 
(0.579) 

0.581 
(0.577) 

50:50 0.532 
(0.544) 

0.534 
(0.546) 

0.529 
(0.542) 

60:40 0.422 
(0.470) 

0.443 
(0.486) 

0.412 
(0.463) 

70:30 0.307 
(0.366) 

0.329 
(0.390) 

0.292 
(0.349) 

Oversampling Lemmatization 30:70 0.554 
(0.572) 

0.571 
(0.578) 

0.565 
(0.576) 

40:60 0.582 
(0.577) 

0.577 
(0.573) 

0.588 
(0.583) 

50:50 0.528 
(0.541) 

0.541 
(0.549) 

0.550 
(0.556) 

60:40 0.452 
(0.492) 

0.484 
(0.514) 

0.475 
(0.508) 

70:30 0.367 
(0.425) 

0.411 
(0.462) 

0.383 
(0.439) 

Stemming 30:70 0.538 
(0.553) 

0.559 
(0.566) 

0.553 
(0.562) 

40:60 0.569 
(0.566) 

0.565 
(0.562) 

0.579 
(0.575) 

50:50 0.521 
(0.534) 

0.533 
(0.542) 

0.542 
(0.549) 

60:40 0.447 
(0.487) 

0.477 
(0.508) 

0.476 
(0.508) 

70:30 0.366 
(0.423) 

0.407 
(0.458) 

0.383 
(0.439) 
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Figure 14: F-measures using logistic regression; 
X-axis: training sample distribution, Y-axis: F-measure 

 

Figure 15: Recall and precision using logistic regression; 
X-axis: training sample distribution, Y-axis: recall/precision
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measure of a logistic regression classifier improves as the minority cases are scaled up to 40%. 

When evaluating the recall and precision, it can be observed that adding more minority cases 

greatly benefits the recall of the minority class, while removing majority cases only slightly 

decreases the recall of the majority class. Starting at a 50:50 distribution, this effect is reversed 

and the average F-measure decreases. For undersampling this effect is stronger noticeable 

than for oversampling. 

7.4.3 Word normalization technique 

With respect to lemmatization and stemming, similar results are observed as with 

multinomial naive Bayes. 

7.4.4 Word weighting technique  

In general, applying binary weighting tends to outperform both TF-IDF and no weighting for 

all resampling and word normalization techniques. When comparing TF-IDF and no 

weighting, it is observed that applying no weighting benefits the F-measure of a logistic 

regression classifier when undersampling and applying TF-IDF weighting when 

oversampling. Applying TF-IDF weighting positively influences any small values regarding the 

recall and precision of a logistic regression classifier. Furthermore, while reducing both the 

recall of the minority class and the precision of the majority class in comparison to applying 

no weighting, the recall of the majority class and precision of the minority class are increased. 

Since the F-measure is a harmonic mean, the influence of the increased smaller values 

outweighs the influence of the decreased larger values, thus resulting in a better overall 

performance. 

7.5 Decision tree 

Table 12 holds an overview of the average F-measures obtained using the default 

implementation of WEKA’s J48 classifier (Quinlan, 1993). In Figure 16 the F-measures of the 

minority and majority class, using undersampling and lemmatization, are illustrated, while 

Figure 17 depicts the recall and precision. A complete overview of the illustrations can be 

found in Appendix 12.4. 

Table 12: F-measures using decision tree 

Resampling 
technique 

Normalization 
technique 

Training 
sample 
distribution 

Weighting technique 

No 
Weighting 

Binary TF-IDF 

No Sampling Lemmatization 16.7:83.3 0.536 
(0.551) 

0.535 
(0.551) 

0.511 
(0.526) 

Stemming 16.7:83.3 0.527 
(0.540) 

0.523 
(0.537) 

0.500 
(0.510) 

Undersampling Lemmatization 30:70 0.552 
(0.549) 

0.550 
(0.548) 

0.560 
(0.558) 
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40:60 0.533 
(0.536) 

0.535 
(0.537) 

0.542 
(0.544) 

50:50 0.497 
(0.513) 

0.496 
(0.512) 

0.504 
(0.522) 

60:40 0.456 
(0.489) 

0.454 
(0.487) 

0.437 
(0.477) 

70:30 0.394 
(0.444) 

0.395 
(0.446) 

0.382 
(0.436) 

Stemming 30:70 0.544 
(0.542) 

0.545 
(0.543) 

0.549 
(0.548) 

40:60 0.532 
(0.535) 

0.530 
(0.533) 

0.534 
(0.538) 

50:50 0.494 
(0.522) 

0.496 
(0.512) 

0.491 
(0.511) 

60:40 0.445 
(0.477) 

0.447 
(0.482) 

0.423 
(0.466) 

70:30 0.388 
(0.436) 

0.386 
(0.438) 

0.378 
(0.432) 

Oversampling Lemmatization 30:70 0.537 
(0.541) 

0.537 
(0.542) 

0.540 
(0.538) 

40:60 0.542 
(0.543) 

0.546 
(0.547) 

0.536 
(0.535) 

50:50 0.543 
(0.542) 

0.546 
(0.544) 

0.528 
(0.530) 

60:40 0.541 
(0.540) 

0.539 
(0.538) 

0.513 
(0.520) 

70:30 0.525 
(0.529) 

0.523 
(0.527) 

0.492 
(0.509) 

Stemming 30:70 0.529 
(0.534) 

0.532 
(0.537) 

0.528 
(0.527) 

40:60 0.534 
(0.535) 

0.538 
(0.539) 

0.532 
(0.532) 

50:50 0.539 
(0.538) 

0.539 
(0.538) 

0.519 
(0.522) 

60:40 0.533 
(0.532) 

0.534 
(0.533) 

0.511 
(0.519) 

70:30 0.518 
(0.522) 

0.519 
(0.523) 

0.488 
(0.506) 
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Figure 16: F-measures using decision tree; 
X-axis: training sample distribution, Y-axis: F-measure 

 

Figure 17: Recall and precision using decision tree; 
X-axis: training sample distribution, Y-axis: recall/precision 

 

7.5.1 General results 

Using a decision tree classifier, the best classification result is achieved for an undersampled 

30:70 training sample distribution with lemmatization and TF-IDF weighting. In comparison 

to the baseline (88.7%), the F-measure of the majority class is reduced by 5.4%, but the F-

measure of the minority class is improved with 12%. Overall, resampling and weighting a 

dataset before training a decision tree classifier consistently improves its F-measure up to 

3.3%. 

7.5.2 Resampling technique 

When undersampling a dataset, the best classification results are consistently achieved using 

a 30:70 training sample distribution, closely resembling the distribution of the original 

dataset. By diminishing the amount of majority cases in the training set, the F-measure of the 

minority class is barely influenced, while the F-measure of the majority class plummets. For 

oversampling a different pattern can be observed where the F-measure of the majority class 
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only slightly decreases by changing the distribution. Since the F-measure of the minority class 

increases at nearly the same rate, the average F-measure appears to be fixed. When comparing 

the recall of both under- and oversampling, it can be found that for oversampling the recall of 

the minority and majority class starts at a respectively lower and higher rate than for 

undersampling and shows a smaller increase and decrease. For oversampling less test cases 

are thus classified as the minority class when a greater training sample distribution is used 

resulting in a more constant F-measure. 

7.5.3 Word normalization technique 

With respect to lemmatization and stemming, similar results are observed as with 

multinomial naive Bayes. 

7.5.4 Word weighting technique 

In general, both binary and no weighting tend to equally influence the F-measure of a decision 

tree classifier. It is therefore interesting to look at the influence of TF-IDF weighting in 

comparison to binary and no weighting for both under- and oversampling. TF-IDF weighting 

consistently shows the best performance when undersampling with a 30:70 or 40:60 training 

sample distribution, but underperforms for a 50:50 distribution and above. Underlying this 

pattern is a higher recall and precision for the minority class in combination with an even 

recall and precision for the majority class. As the training sample distribution increases, the 

recall of the majority class decreases in comparison to binary and no weighting, resulting in a 

lower F-measure. For oversampling a similar pattern emerges, however, instead of 

outperforming binary and no weighting, TF-IDF shows a similar performance with a 30:70 or 

40:60 training sample distribution, which is explained by a lower recall on the majority class, 

resulting in a lower average F-measure.  

7.6 Multivariate naive Bayes 

Table 13 holds an overview of the average F-measures obtained using the default 

implementation of WEKA’s NaiveBayes classifier (John and Langley, 1995). In Figure 18 the 

F-measures of the minority and majority class, using undersampling and lemmatization, are 

illustrated, while Figure 19 depicts the recall and precision. A complete overview of the 

illustrations can be found in Appendix 12.5. 

Table 13: F-measures using multivariate naive Bayes 

Resampling 
technique 

Normalization 
technique 

Training 
sample 
distribution 

Weighting technique 

No 
Weighting 

Binary TF-IDF 

No Sampling Lemmatization 16.7:83.3 0.573 
(0.570) 

0.586 
(0.583) 

0.508 
(0.525) 

Stemming 16.7:83.3 0.560 0.581 0.452 
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(0.561) (0.579) (0.488) 
Undersampling Lemmatization 30:70 0.552 

(0.556) 
0.573 

(0.571) 
0.486 

(0.512) 
40:60 0.526 

(0.540) 
0.555 

(0.559) 
0.484 

(0.511) 
50:50 0.508 

(0.529) 
0.534 

(0.546) 
0.471 

(0.502) 
60:40 0.484 

(0.513) 
0.513 

(0.533) 
0.473 

(0.503) 
70:30 0.453 

(0.492) 
0.485 

(0.515) 
0.471 

(0.502) 
Stemming 30:70 0.527 

(0.541) 

0.566 
(0.564) 

0.434 
(0.476) 

40:60 0.508 
(0.527) 

0.552 
(0.555) 

0.421 
(0.466) 

50:50 0.486 
(0.513) 

0.531 
(0.542) 

0.418 
(0.464) 

60:40 0.464 
(0.498) 

0.510 
(0.529) 

0.408 
(0.457) 

70:30 0.446 
(0.486) 

0.484 
(0.513) 

0.340 
(0.450) 

Oversampling Lemmatization 30:70 0.453 
(0.482) 

0.509 
(0.518) 

0.431 
(0.471) 

40:60 0.450 
(0.480) 

0.507 
(0.517) 

0.428 
(0.468) 

50:50 0.448 
(0.479) 

0.505 
(0.516) 

0.425 
(0.467) 

60:40 0.446 
(0.477) 

0.503 
(0.515) 

0.425 
(0.466) 

70:30 0.443 
(0.476) 

0.501 
(0.514) 

0.417 
(0.461) 

Stemming 30:70 0.453 
(0.482) 

0.504 
(0.515) 

0.423 
(0.465) 

40:60 0.451 
(0.481) 

0.503 
(0.515) 

0.420 
(0.463) 

50:50 0.448 
(0.479) 

0.501 
(0.513) 

0.417 
(0.461) 

60:40 0.447 
(0.478) 

0.500 
(0.513) 

0.413 
(0.458) 

70:30 0.444 
(0.477) 

0.498 
(0.512) 

0.410 
(0.455) 

 



51 

 

 

Figure 18: F-measures using multivariate naive Bayes; 
X-axis: training sample distribution, Y-axis: F-measure 

 

Figure 19: Recall and precision using multivariate naive Bayes; 
X-axis: training sample distribution, Y-axis: recall/precision 

  

7.6.1 General results 

Overall, the best classification result is achieved using no sampling and applying binary 

weighting. Since resampling does not improve the base classifier, the individual effects of the 

data alteration techniques will be assessed with respect to the unsampled multivariate naive 

Bayes classifier.  

7.6.2 Resampling technique 

When training a multivariate naive Bayes classifier, resampling the training set consistently 

reduces the F-measure of the majority class with respect to no sampling, which results from a 

reduced recall on the majority class. Even though the recall of the minority class is clearly 

improved, the precision remains the same thus resulting in an unimproved F-measure for the 

minority class. Resampling the training set causes more majority instances to be classified as 

minority instances and thereby lessening the majority F-measure without enhancing the 

minority F-measure.  
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7.6.3 Word normalization technique 

With respect to lemmatization and stemming, similar results are observed as with 

multinomial naive Bayes. 

7.6.4 Word weighting technique 

Even though the average F-measure of binary and no weighting tends to be equal, the 

individual F-measures of the minority and majority class differ substantially, which can also 

be observed with the recall and precision. Where applying no weighting results in a higher 

minority recall and lower majority recall, applying binary weighting results in a lower 

minority recall and higher majority recall. Since the precision of the majority class is higher 

than that of the minority class, the effect of a shift in the majority class recall outweighs the 

effect of a shift in the minority class recall on the majority F-measure. For TF-IDF, the decrease 

in majority class recall is even larger than with no weighting, causing a greater effect on the 

F-measure. 

7.7 Association rule 

Table 14 holds an overview of the average F-measures obtained using the default 

implementation of WEKA’s JRip classifier (Cohen, 1995). In Figure 20 the F-measures of the 

minority and majority class, using undersampling and lemmatization, are illustrated, while 

Figure 21 depicts the recall and precision. A complete overview of the illustrations can be 

found in Appendix 12.6. 

Table 14: F-measures using RIPPER 

Resampling 
technique 

Normalization 
technique 

Training 
sample 
distribution 

Weighting technique 

No 
Weighting 

Binary TF-IDF 

No Sampling Lemmatization 16.7:83.3 0.457 
(0.437) 

0.459 
(0.442) 

0.459 
(0.443) 

Stemming 16.7:83.3 0.456 
(0.435) 

0.458 
(0.441) 

0.456 
(0.436) 

Undersampling Lemmatization 30:70 0.566 
(0.576) 

0.565 
(0.575) 

0.559 
(0.571) 

40:60 0.585 
(0.581) 

0.581 
(0.577) 

0.576 
(0.573) 

50:50 0.539 
(0.548) 

0.540 
(0.548) 

0.531 
(0.541) 

60:40 0.446 
(0.487) 

0.443 
(0.486) 

0.444 
(0.486) 

70:30 0.320 
(0.381) 

0.332 
(0.399) 

0.314 
(0.374) 

Stemming 30:70 0.546 0.547 0.543 
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(0.559) (0.558) (0.559) 
40:60 0.574 

(0.570) 

0.571 
(0.568) 

0.578 
(0.577) 

50:50 0.532 
(0.541) 

0.530 
(0.539) 

0.527 
(0.537) 

60:40 0.441 
(0.484) 

0.439 
(0.483) 

0.432 
(0.477) 

70:30 0.291 
(0.351) 

0.299 
(0.358) 

0.281 
(0.336) 

Oversampling Lemmatization 30:70 0.454 
(0.431) 

0.454 
(0.431) 

0.487 
(0.496) 

40:60 0.454 
(0.431) 

0.454 
(0.431) 

0.502 
(0.516) 

50:50 0.454 
(0.431) 

0.466 
(0.457) 

0.521 
(0.536) 

60:40 0.546 
(0.544) 

0.547 
(0.547) 

0.527 
(0.533) 

70:30 0.526 
(0.533) 

0.521 
(0.531) 

0.464 
(0.495) 

Stemming 30:70 0.454 
(0.431) 

0.454 
(0.431) 

0.481 
(0.486) 

40:60 0.454 
(0.431) 

0.454 
(0.431) 

0.497 
(0.508) 

50:50 0.454 
(0.431) 

0.457 
(0.431) 

0.523 
(0.534) 

60:40 0.538 
(0.538) 

0.538 
(0.539) 

0.523 
(0.530) 

70:30 0.514 
(0.523) 

0.501 
(0.520) 

0.447 
(0.483) 

 

 

Figure 20: F-measures using RIPPER; 
X-axis: training sample distribution, Y-axis: F-measure  
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Figure 21: Recall and precision using RIPPER; 
X-axis: training sample distribution, Y-axis: recall/precision 

  

7.7.1 General results 

Using an association rule classifier, the best classification result is achieved for an 

undersampled 40:60 training sample distribution with lemmatization and no weighting. Here, 

the F-measure of the minority class is improved with 34.3% with respect to the baseline (0%) 

and the F-measure of the majority class is decreased with 8.1%. By both resampling and 

weighting a training set, the average F-measure of an association rule classifier can be 

improved with up to 12.9%.  

7.7.2 Resampling technique 

Under- and oversampling both show a different pattern on the training sample distributions. 

With undersampling, the average F-measure first improves when increasing the training 

sample distribution to 40:60 after which the average F-measure declines. This initial rise in F-

measure can be explained by an initially greater improvement of the minority class recall and 

majority class precision in comparison to the decline in majority class recall and minority class 

precision. Starting from a 50:50 training sample distribution these patterns reverse and the 

F-measure of the majority class decays due to a lower recall. When oversampling a training 

set, an association rule classifier predicts most test cases as the majority class up to a 50:50 

training sample distribution due to the excessive presence of the majority cases in the training 

set. By increasing the proportion of minority cases, the test entities will be more and more 

classified as the minority class, resulting in a higher minority class recall and a lower majority 

class recall. Overall, undersampling performs best for training sample distributions up to 

50:50 and oversampling for the distributions with a greater proportion of minority cases. 

7.7.3 Word normalization technique 

With respect to lemmatization and stemming, similar results are observed as with 

multinomial naive Bayes. 
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7.7.4 Word weighting technique 

For undersampling, no general patterns regarding the applied word weighting technique can 

be observed. All word weighting techniques tend to have a similar performance on all training 

sample distributions, with TF-IDF having the lowest F-measure. When oversampling, the 

influence of TF-IDF weighting is compared to both binary and no weighting, since they result 

in similar F-measures. TF-IDF weighting consistently shows the best performance when 

oversampling a training set up to a 50:50 training sample distribution, but underperforms for 

a 60:40 or 70:30 distribution. Where an association rule classifier using binary or no 

weighting is highly influenced by the excessive amount of majority cases in training sample 

distributions up to 50:50, a classifier using TF-IDF weighting is still able to predict test cases 

as the minority class. However, as the distribution shifts upwards, the recall of the TF-IDF 

weighted classifier decays, resulting in a lower average F-measure. 

7.8 Neural network 

Table 15 holds an overview of the average F-measures obtained using the default 

implementation of WEKA’s MultilayerPerceptron classifier with the maximum number of 

epochs capped at 100 due to runtime issues. In Figure 22 the F-measures of the minority and 

majority class, using undersampling and lemmatization, are illustrated, while Figure 23 

depicts the recall and precision. A complete overview of the illustrations can be found in 

Appendix 12.7. 

Table 15: F-measures using neural network 

Resampling 
technique 

Normalization 
technique 

Training 
sample 
distribution 

Weighting technique 

No 
Weighting 

Binary TF-IDF 

No Sampling Lemmatization 16.7:83.3 0.454 
(0.431) 

0.509 
(0.526) 

0.454 
(0.431) 

Stemming 16.7:83.3 0.454 
(0.431) 

0.492 
(0.504) 

0.454 
(0.431) 

Undersampling Lemmatization 30:70 0.530 
(0.558) 

0.564 
(0.564) 

0.457 
(0.436) 

40:60 0.526 
(0.557) 

0.538 
(0.544) 

0.562 
(0.570) 

50:50 0.421 
(0.480) 

0.513 
(0.530) 

0.506 
(0.534) 

60:40 0.509 
(0.570) 

0.481 
(0.511) 

0.527 
(0.546) 

70:30 0.269 
(0.324) 

0.407 
(0.458) 

0.214 
(0.242) 

Stemming 30:70 0.517 
(0.544) 

0.551 
(0.554) 

0.455 
(0.433) 
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40:60 0.523 
(0.567) 

0.530 
(0.541) 

0.558 
(0.560) 

50:50 0.503 
(0.545) 

0.508 
(0.529) 

0.465 
(0.503) 

60:40 0.505 
(0.546) 

0.508 
(0.529) 

0.520 
(0.543) 

70:30 0.259 
(0.350) 

0.377 
(0.433) 

0.205 
(0.228) 

Oversampling Lemmatization 30:70 0.435 
(0.544) 

0.552 
(0.551) 

0.175 
(0.247) 

40:60 0.505 
(0.588) 

0.551 
(0.579) 

0.456 
(0.436) 

50:50 0.463 
(0.487) 

0.544 
(0.544) 

0.175 
(0.239) 

60:40 0.385 
(0.459) 

0.524 
(0.531) 

0.216 
(0.358) 

70:30 0.366 
(0.446) 

0.500 
(0.517) 

0.151 
(0.119) 

Stemming 30:70 0.352 
(0.461) 

0.541 
(0.543) 

0.176 
(0.298) 

40:60 0.468 
(0.537) 

0.545 
(0.545) 

0.455 
(0.432) 

50:50 0.334 
(0.445) 

0.531 
(0.534) 

0.176 
(0.265) 

60:40 0.343 
(0.380) 

0.528 
(0.533) 

0.179 
(0.262) 

70:30 0.251 
(0.230) 

0.481 
(0.507) 

0.159 
(0.140) 

 

 

Figure 22: F-measures using neural network; 
X-axis: training sample distribution, Y-axis: F-measure 
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Figure 23: Recall and precision using neural network; 
X-axis: training sample distribution, Y-axis: recall/precision 

  

7.8.1 General results 

Overall, the best classification result is achieved using an undersampled 30:70 training 

distribution with lemmatization and binary weighting. Here, the F-measure of the majority 

class is reduced by 7.5% with respect to the baseline (90.9%) and the F-measure of the 

minority class is improved with 29.5%. Since no general patterns regarding classifier 

performance can be observed due to highly alternating results, it has been decided to combine 

all findings into a single chapter.  

A first pattern which can be observed between under- and oversampling is the difference 

between all graphs in Appendix 10.7. Applying either under- or oversampling results in 

different local minima, which can clearly be seen by the highly fluctuating graphs. An 

underlying reason for this could be that undersampling is performed at random with no test 

cases being duplicated, while with oversampling, minority test cases are duplicated using 

SMOTE. When a single test case, which has often been duplicated, has a great influence on the 

algorithm, the neural network classifier could be forced into a local minimum for either 

minority or majority cases.  

When undersampling, the results obtained for the application of no weighting and TF-

IDF weighting tend to follow a similar pattern. For a 30:70 or 40:60 training sample 

distribution, a high recall for the majority class and low recall for the minority class are 

obtained. A local minimum for a 50:50 distribution causes more instances to be classified as 

the minority class, thus leading to an increased recall for the minority class and a reduced 

recall for the majority class. With a 60:40 distribution similar results are obtained as with a 

30:70 or 40:60 distribution for no weighting, while for TF-IDF weighting this pattern is less 

distinct. Applying a 70:30 distribution again results in a local minimum where most test cases 

are classified as minority cases, resulting in a high recall for the minority class and low recall 

for the majority class. 
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For oversampling, no weighting and TF-IDF weighting also tend to follow a similar 

pattern, where for TF-IDF this pattern is more distinct. With all training sample distributions, 

except for a 40:60 distribution, most test cases are predicted to be minority cases, causing the 

recall of the minority class to outweigh that of the majority class. However, since the F-

measure is a harmonic mean, the precision of the minority class leads to a low value. Opposed 

to the other training sample distributions, with a 40:60 distribution most test cases are 

predicted to be majority cases. A possible cause for this could be the duplication of highly 

influential training cases using SMOTE which has been explained above.  

When applying a binary weighting to the training set, the F-measures for both under- 

and oversampling tend to converge as the training sample distribution increases, caused by 

an increased recall for the minority class and reduced recall for the majority class. This pattern 

follows similar patterns which have been observed for all other classifiers, which leads to the 

assumption that a binary weighted neural network is less sensitive for local minima.  

With respect to lemmatization and stemming, similar results are observed as with 

multinomial naive Bayes for the average F-measures. However, underlying these F-measures 

are different reasons. Even though no general pattern can be discovered regarding recall and 

precision, the F-measures of the majority class when applying lemmatization outperform the 

F-measures when applying stemming. Since the F-measures of the minority class are more 

alike, the average F-measure for lemmatization outperforms that for stemming. 

7.9 K-nearest-neighbor 

Table 16 holds an overview of the average F-measures obtained using the default 

implementation of WEKA’s IBk classifier (Aha and Kibler, 1991). Based on the results of Peters 

(2016a) it has been decided to have a fixed amount of 5 neighbors. Due to runtime issues, only 

the undersampling results have been obtained and oversampling results are omitted in Table 

16. In Figure 24 the F-measures of the minority and majority class, using undersampling and 

lemmatization, are illustrated, while Figure 25 depicts the recall and precision. A complete 

overview of the illustrations can be found in Appendix 12.8. 

Table 16: F-measures using KNN 

Resampling 
technique 

Normalization 
technique 

Training 
sample 
distribution 

Weighting technique 

No 
Weighting 

Binary TF-IDF 

No Sampling Lemmatization 16.7:83.3 0.506 
(0.519) 

0.480 
(0.486) 

0.512 
(0.522) 

Stemming 16.7:83.3 0.503 
(0.515) 

0.476 
(0.477) 

0.504 
(0.511) 

Undersampling Lemmatization 30:70 0.543 
(0.543) 

0.538 
(0.544) 

0.534 
(0.533) 

40:60 0.534 0.552 0.505 
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(0.535) (0.550) (0.514) 
50:50 0.498 

(0.513) 
0.506 

(0.519) 
0.454 

(0.484) 
60:40 0.435 

(0.473) 
0.424 

(0.466) 
0.377 

(0.429) 
70:30 0.347 

(0.404) 
0.320 

(0.379) 
0.294 

(0.350) 
Stemming 30:70 0.538 

(0.538) 
0.534 

(0.539) 
0.522 

(0.522) 
40:60 0.531 

(0.532) 
0.543 

(0.541) 
0.493 

(0.505) 
50:50 0.487 

(0.504) 
0.501 

(0.516) 
0.439 

(0.473) 
60:40 0.426 

(0.466) 
0.414 

(0.458) 
0.367 

(0.421) 
70:30 0.341 

(0.398) 
0.305 

(0.363) 
0.282 

(0.335) 

 

 

Figure 24: F-measures using K-nearest-neighbor; 
X-axis: training sample distribution, Y-axis: F-measure 
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Figure 25: Recall and precision using K-nearest-neighbor; 
X-axis: training sample distribution, Y-axis: recall/precision 

  

7.9.1 General results 

For KNN, the best classification result is achieved using an undersampled 40:60 distribution 

with lemmatization and binary weighting. Here, the F-measure of the majority class is 

decreased by 7.9% with respect to the baseline (89.4%) and the F-measure of the minority 

class is improved with 17.8%. Overall, resampling a dataset before training a KNN classifier 

can improve its F-measure up to 4.9%. 

7.9.2 Resampling technique 

When applying either no weighting or a TF-IDF weighting, the resampling results follow the 

same pattern as with a decision tree classifier, while applying binary weighting induces the 

same resampling results as with a logistic regression classifier. 

7.9.3 Word normalization technique 

With respect to lemmatization and stemming, similar results are observed as with 

multinomial naive Bayes. 

7.9.4 Word weighting technique 
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However, the recall of the majority class is lower in comparison to the other weighting 
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average F-measure. When comparing binary and no weighting, it becomes apparent that for 

training sample distributions up to 50:50, applying binary weighting results in a higher recall 

for the majority class and a lower recall for the minority class. However, the average F-

measure is barely influenced, and no general pattern can be observed. 
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7.10 Support vector machine 

Table 17 holds an overview of the average F-measures obtained using the default 

implementation of WEKA’s SMO classifier (Platt, 1998). Due to runtime issues, the no 

sampling and oversampling results for binary weighting could not be obtained and here 

therefore been omitted in Table 17. In Figure 26 the F-measures of the minority and majority 

class, using undersampling and lemmatization, are illustrated, while Figure 27 depicts the 

recall and precision. A complete overview of the illustrations can be found in Appendix 12.9. 

Table 17: F-measures using support vector machine 

Resampling 
technique 

Normalization 
technique 

Training 
sample 
distribution 

Weighting technique 

No 
Weighting 

Binary TF-IDF 

No Sampling Lemmatization 16.7:83.3 0.454 
(0.431) 

- 0.454 
(0.431) 

Stemming 16.7:83.3 0.454 
(0.431) 

- 0.454 
(0.431) 

Undersampling Lemmatization 30:70 0.460 
(0.446) 

0.517 
(0.525) 

0.454 
(0.431) 

40:60 0.568 
(0.576) 

0.568 
(0.581) 

0.530 
(0.546) 

50:50 0.519 
(0.537) 

0.509 
(0.525) 

0.514 
(0.534) 

60:40 0.365 
(0.425) 

0.444 
(0.493) 

0.315 
(0.375) 

70:30 0.211 
(0.236) 

0.263 
(0.313) 

0.199 
(0.215) 

Stemming 30:70 0.457 
(0.438) 

0.470 
(0.455) 

0.454 
(0.431) 

40:60 0.556 
(0.566) 

0.570 
(0.574) 

0.504 
(0.524) 

50:50 0.506 
(0.538) 

0.513 
(0.531) 

0.505 
(0.527) 

60:40 0.362 
(0.421) 

0.399 
(0.453) 

0.306 
(0.365) 

70:30 0.203 
(0.222) 

0.250 
(0.295) 

0.177 
(0.174) 

Oversampling Lemmatization 30:70 0.454 
(0.431) - 

0.454 
(0.431) 

40:60 0.578 
(0.575) - 

0.589 
(0.583) 

50:50 0.508 
(0.528) - 

0.543 
(0.553) 
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60:40 0.421 
(0.469) - 

0.450 
(0.492) 

70:30 0.263 
(0.313) - 

0.265 
(0.315) 

Stemming 30:70 0.454 
(0.431) - 

0.454 
(0.431) 

40:60 0.567 
(0.564) - 

0.578 
(0.574) 

50:50 0.498 
(0.520) - 

0.537 
(0.548) 

60:40 0.418 
(0.466) - 

0.455 
(0.464) 

70:30 0.259 
(0.308) - 

0.259 
(0.307) 

 

 

Figure 26: F-measures using support vector machine; 
X-axis: training sample distribution, Y-axis: F-measure 

 

Figure 27: Recall and precision using support vector machine; 
X-axis: training sample distribution, Y-axis: recall/precision 
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7.10.1 General results 

Using a support vector machine classifier, the best classification result is achieved for an 

oversampled 40:60 training sample distribution with lemmatization and TF-IDF weighting. 

Here, the F-measure of the minority class is improved with 35.4% with respect to the baseline 

(0%) and the F-measure of the majority class is decreased with 8.6%. By both resampling and 

weighting a training set, the average F-measure of a SVM classifier can be improved with up 

to 13.5%.  

7.10.2 Resampling technique 

Overall, it can be observed that under- and oversampling both follow a similar pattern as with 

logistic regression, where the average F-measure first increases as the training sample 

distribution shifts to 40:60 after which it decays. The best classification results for a SVM 

classifier are therefore consistently obtained using a 40:60 training sample distribution. 

However, opposed to all other classifiers, a SVM classifier is more positively influenced by 

oversampling in comparison to undersampling. Initially, a higher recall on the minority class 

is achieved when using a 40:60 distribution, inducing a higher minority F-measure. This could 

be caused by SMOTE duplicating highly discriminative cases, which positively influence the 

training of the classifier. For greater distributions, the recall of the minority class equalizes for 

both resampling techniques. Besides this first effect, oversampling also induces a lower decay 

of the majority class recall. When undersampling, most test cases are classified as majority 

cases up to a 40:60 distribution after which it quickly transitions to most cases being classified 

as minority cases. However, oversampling causes a more gradual transition, thus resulting in 

an improved majority recall for all training sample distributions above 40:60.  

7.10.3 Word normalization technique 

With respect to lemmatization and stemming, similar results are observed as with 

multinomial naive Bayes. 

7.10.4 Word weighting technique 

When undersampling, it can be noticed that binary weighting consistently outperforms the 

other word weighting techniques. A binary weighted SVM classifier induces a more gradual 

decline of the majority class recall and incline of the minority class recall, therefore resulting 

in higher average F-measures. Since oversampling results have not been obtained for binary 

weighting, only TF-IDF and no weighting can be compared. Where for undersampling TF-IDF 

weighting underperforms in comparison to no weighting, for oversampling the results are 

reversed. Due to a higher recall on the majority class, a TF-IDF weighted SVM classifier 

consistently outperforms an unweighted SVM classifier. 
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7.11 AdaBoost 

Table 18 holds an overview of the average F-measures obtained using the default 

implementation of WEKA’s AdaBoostM1 classifier (Freund and Schapire, 1996). In Figure 28 

the F-measures of the minority and majority class, using undersampling and lemmatization, 

are illustrated, while Figure 29 depicts the recall and precision. A complete overview of the 

illustrations can be found in Appendix 12.10. 

Table 18: F-measures using adaboost 

Resampling 
technique 

Normalization 
technique 

Training 
sample 
distribution 

Weighting technique 

No 
Weighting 

Binary TF-IDF 

No Sampling Lemmatization 16.7:83.3 0.454 
(0.431) 

0.454 
(0.431) 

0.454 
(0.431 

Stemming 16.7:83.3 0.454 
(0.431) 

0.454 
(0.431) 

0.454 
(0.431) 

Undersampling Lemmatization 30:70 0.463 
(0.449) 

0.478 
(0.474) 

0.471 
(0.463) 

40:60 0.544 
(0.564) 

0.556 
(0.577) 

0.539 
(0.567) 

50:50 0.507 
(0.527) 

0.515 
(0.532) 

0.506 
(0.536) 

60:40 0.410 
(0.462) 

0.408 
(0.549) 

0.393 
(0.449) 

70:30 0.282 
(0.337) 

0.250 
(0.298) 

0.264 
(0.316) 

Stemming 30:70 0.467 
(0.454) 

0.470 
(0.455) 

0.472 
(0.462) 

40:60 0.535 
(0.555) 

0.538 
(0.559) 

0.516 
(0.527) 

50:50 0.495 
(0.518) 

0.498 
(0.520) 

0.492 
(0.517) 

60:40 0.404 
(0.453) 

0.403 
(0.454) 

0.340 
(0.451) 

70:30 0.158 
(0.134) 

0.164 
(0.148) 

0.160 
(0.138) 

Oversampling Lemmatization 30:70 0.454 
(0.431) 

0.454 
(0.431) 

0.531 
(0.542) 

40:60 0.553 
(0.553) 

0.550 
(0.553) 

0.550 
(0.553) 

50:50 0.513 
(0.529) 

0.515 
(0.531) 

0.537 
(0.541) 

60:40 0.458 
(0.494) 

0.454 
(0.589) 

0.448 
(0.501) 
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70:30 0.347 
(0.407) 

0.351 
(0.410) 

0.338 
(0.408) 

Stemming 30:70 0.454 
(0.431) 

0.454 
(0.531) 

0.531 
(0.546) 

40:60 0.535 
(0.536) 

0.494 
(0.490) 

0.551 
(0.556) 

50:50 0.483 
(0.506) 

0.497 
(0.519) 

0.534 
(0.536) 

60:40 0.434 
(0.475) 

0.416 
(0.462) 

0.417 
(0.461) 

70:30 0.374 
(0.430) 

0.327 
(0.386) 

0.284 
(0.344) 

 

Figure 28: F-measures using adaboost; 
X-axis: training sample distribution; Y-axis: F-measure  

 

Figure 29: Recall and precision using adaboost; 
X-axis: training sample distribution; Y-axis: recall/precision 

 

0

0,2

0,4

0,6

0,8

1

30:70 40:60 50:50 60:40 70:30

AdaBoost Undersampling 
Lemmas No Weighting

Minority Majority

0

0,2

0,4

0,6

0,8

1

30:70 40:60 50:50 60:40 70:30

AdaBoost Undersampling 
Lemmas Binary

Minority Majority

0

0,2

0,4

0,6

0,8

1

30:70 40:60 50:50 60:40 70:30

AdaBoost Undersampling 
Lemmas TF-IDF

Minority Majority

0

0,2

0,4

0,6

0,8

1

30:70 40:60 50:50 60:40 70:30

AdaBoost Undersampling 
Lemmas No Weighting

Rec. Minority Rec. Majority

Prec. Minority Prec. Majority

0

0,2

0,4

0,6

0,8

1

30:70 40:60 50:50 60:40 70:30

AdaBoost Undersampling 
Lemmas Binary

Rec. Minority Rec. Majority

Prec. Minority Prec. Majority

0

0,2

0,4

0,6

0,8

1

30:70 40:60 50:50 60:40 70:30

AdaBoost Undersampling 
Lemmas TF-IDF

Rec. Minority Rec. Majority

Prec. Minority Prec. Majority



66 

 

7.11.1 General results 

For AdaBoost, the best classification result is achieved using an undersampled 40:60 

distribution with lemmatization and binary weighting. Here, the F-measure of the majority 

class is decreased by 4.4% with respect to the baseline (90.9%) and the F-measure of the 

minority class is improved with 24.6%. Overall, resampling a dataset before training an 

AdaBoost classifier can improve its F-measure up to 10.2%. 

7.11.2 Resampling technique 

With respect to undersampling, the classification results obtained using an AdaBoost classifier 

tend follow the same pattern as those obtained using an SVM classifier. For oversampling, 

applying both binary and no weighting triggers the same response for an AdaBoost classifier, 

where the recall of the minority class ameliorates as the training sample distribution shifts up 

to 40:60, after which its increase stabilizes again. The decay of the majority class recall is also 

larger up to a 40:60 distribution, however this decay is less influential to the macro-averaged 

F-measure than the increase in recall of the minority class. An underlying reason for this 

phenomena could be that highly discriminative cases have been duplicated using SMOTE 

which positively influences the overall recall of an AdaBoost classifier, just as with 

oversampling an SVM classifier. In general, oversampling has a greater influence on the 

classification performance as compared to undersampling, thereby resembling the results 

found for a decision tree classifier. Since AdaBoost combines a collection of small decision 

trees using majority voting, this outcome is therefore as expected. 

7.11.3 Word normalization technique 

With respect to lemmatization and stemming, similar results are observed as with 

multinomial naive Bayes. 

7.11.4 Word weighting technique 

When undersampling, all weighting techniques influence an AdaBoost classifier in the same 

manner. Increasing the training sample distribution up to 40:60 only influences the recall and 

precision of the minority class, while the majority class holds similar classification results. 

Starting from a 50:50 distribution, the recall of the majority class rapidly diminishes thereby 

decreasing the majority class F-measure. Due to the harmonic nature of the F-measure, the 

minority F-measure is left unaffected by the increase in minority recall. For oversampling, 

both binary and no weighting have a similar effect on the classifier, with a sudden spike of the 

minority and majority recall at a 40:60 distribution. Applying TF-IDF weighting, however, 

results in a more gradual transition of both the minority and majority recall, even though this 

cannot be observed in the macro-averaged F-measures. 
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8 Discussion 

This chapter discusses the findings mentioned in the results chapter and critically assesses 

them with respect to considerations made during this research and the results from previous 

researches.  

8.1 Evaluating the overall results 

During this research a total of 9 classifiers have been evaluated with respect to their behavior 

to resampling, word normalization and word weighting. An overview of the individual results 

has been combined in Table 19, in which for each classifier the baseline is compared to the 

optimal training set setup. This optimal setup is included in between brackets, where the first 

letter represents the resampling type, the number the percentage of minority cases, and the 

last letter the weighting type.  

Table 19: Overview individual classifier results 

Classifier Baseline Optimal Difference 

Multinomial 

naive Bayes 

0.572 0.590 

(U30B) 

0.018 

Logistic 

regression 

0.466 0.594 

(U40N) 

0.128 

Decision tree 0.527 0.560 

(U30T) 

0.033 

Multivariate 

naive Bayes 

0.560 0.586 

(N16B) 

0.026 

Association 

rule 

0.456 0.585 

(U40N) 

0.129 

Neural 

network 

0.454 0.564 

(U30B) 

0.110 

K-nearest-

neighbor 

0.503 0.552 

(U40B) 

0.049 

Support vector 

machine 

0.454 0.589 

(O40T) 

0.135 

AdaBoost 0.454 0.556 

(U40B) 

0.102 

When evaluating the observations of each individual classification algorithm, it becomes 

apparent that the difference in optimized performance between the best classifier (i.e. Logistic 

regression) and the worst classifier (i.e. K-nearest-neighbor) is only minor with 4.2 

percentage points (i.e. pp). Four classifiers hold the best optimized classification performance 

within a range of 1pp, namely the logistic regression, multinomial naive Bayes, multivariate 
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naive Bayes, and association rule classifiers. Even though the differences between the 

individual baseline and optimal classification results vary in size, this minor difference in 

optimal performance suggests that a classifier can only be improved up to a certain extent. 

This would thus imply that, after optimizing, the selection of an appropriate classification 

algorithm should depend less upon performance, but more on other metrics (e.g. runtime). In 

our results, the macro-averaged F-measures do not exceed 0.594, which results from a low 

performance on the minority class. Underlying this relatively low overall performance could 

be a variety of reasons: 

- Since employees at DLOC and LMIO were merely interested in whether a complaint 

will be withdrawn or not, individual withdrawal reasons were not taken into account. 

When analyzing the reasons for withdrawal it became apparent that the majority of the 

withdrawals (i.e. 4.901 of the 8.609) result from either refunding the money or 

receiving of the ordered goods. These two reasons for withdrawal are caused by 

human acting which is difficult to predict using a static text field. Because the majority 

of the minority class consists of cases which were withdrawn based on human acting, 

it makes sense that the performance on the minority class is rather disappointing. 

- During the data understanding phase as explained in chapter 6.1 the features used in 

the free-text field for both withdrawn and not withdrawn complaints showed a high 

resemblance. When, for example, warning the police for a possible fraudster, which is 

not a valid complaint, words like “marktplaats” (online trading website), “oplichter” 

(fraudster), and “product” (idem) are often used. Such explanative features are also 

used in a complaint which has not been withdrawn. Comparing a subset of individual 

complaints revealed that it is possible that the free-text fields do not contain enough 

information to be distinct, thereby reducing the overall performance of a classifier 

trained on this dataset using features resulting from a bag-of-words approach. 

- Since in this research it has been opted to use the 100 most occurring terms, which are 

used in both withdrawn and not withdrawn complaints, the overall performance of the 

classifiers could be reduced compared to when the more distinctive features would be 

selected using a feature selection algorithm.  

8.2 Evaluating the data alteration results 

8.2.1 Resampling  

With respect to resampling, each individual classification technique follows a similar trend. 

When increasing the training sample distribution, the precision of the minority class slightly 

decreases, while the recall of the minority class strongly increases. The majority class follows 

a similar pattern where the precision of the majority class slightly increases, while the recall 

of the majority class strongly decreases. Even though resampling is intended to increase the 

minority performance without detriment of the majority performance, the observed pattern 
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can be explained. During the training phase a classifier will, at first, become less inclined to 

automatically label a test case as the majority class as the skewness is lifted, after which it will 

be inclined towards the minority class as it becomes overly present in the training set. The 

rate at which the recall and precision change differs per classification technique, however, the 

precision of the minority class does, independent of the training sample distribution, remain 

centered around 30% for each classification technique. In a similar way, the precision of the 

majority class remains centered around 90%. 

When further evaluating the above described pattern, it becomes clear that, in our 

results, increasing the percentage of minority cases can only improve the F-measure of the 

minority class up to a certain extent due to its harmonic nature. A low precision will always 

overshadow the increase in recall, thereby restricting its positive influence on the F-measure. 

For the majority class, the F-measure only decreases due to the decline in recall, thus nullifying 

the influence of the high precision. Combining both patterns results in the conclusion that an 

optimal resampling percentage should thus be at a level where the initial increase in minority 

performance neutralizes the decrease in majority performance. This initial increase is the 

largest when there are less minority cases, which implies that the resampling percentage 

should be in favor of the majority class, resembling the initial minority/majority ratio. In Table 

19, all optimal results are achieved using either a 30/70 or a 40/60 distribution, thereby 

supporting above conclusion.  

Comparing both under- and oversampling results in general it is found that 

undersampling often slightly outperforms oversampling, which is also shown in Table 19 

where 7 of the 9 optimal results were achieved using undersampling. In his initial research, 

however, Peters (2016a) concluded oversampling outperforms undersampling, same as 

Japkowicz and Stephen (2002) did in their research. A possible explanation for this difference 

could lie in the dataset and features used in this research. When oversampling training cases 

with little distinctive features, a classification algorithm is presented with just more cases 

instead of more distinctive cases. Due to the higher absolute number of cases, a classifier could 

be more inclined towards the majority class as would be with undersampling, where the same 

distribution but less cases are presented. The difference in performance between under- and 

oversampling, however, was found to be minor for most training setups and should therefore 

not be used as the only metric for deciding on which resampling technique to use. 

8.2.2 Word weighting 

In Chapter 7, the influence of word weighting with respect to each individual classifier has 

been discussed. To evaluate the overall influence of word weighting, these individual results 

are combined in Table 20. Here, the weighting technique with the highest absolute number of 

cases in which it resulted in the best performance for each resampling technique is marked 

with an X. When multiple weighting techniques perform best on the same amount of cases 

they are both marked with an X.  
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Looking at the table it becomes apparent that for most classifiers, the right choice of 

weighting technique can outperform an unweighted baseline. Which technique to use 

depends upon the classification technique, however, binary weighting often outperforms TF-

IDF weighting. This finding could imply that merely the presence of a term is enough for a 

classifier to be based upon, which is consistent with earlier findings with respect to SVM and 

naive Bayes classifiers (Jurafsky & Martin, 2014; Pang et al. 2002; Schneider, 2004). 

Table 20: Overview word weighting influence 

Classification 

technique 

Resampling 

technique 

Weighting technique 

No 

weighting 

Binary TF-IDF 

Multinomial 

naive Bayes 

No sampling X   

Undersampling X X  

Oversampling  X  

Logistic 

regression 

No sampling X   

Undersampling  X  

Oversampling  X  

Decision tree No sampling X   

Undersampling   X 

Oversampling  X  

Multivariate 

naive Bayes 

No sampling  X  

Undersampling  X  

Oversampling  X  

Association 

rule 

No sampling  X X 

Undersampling X   

Oversampling   X 

Neural 

network 

No sampling  X  

Undersampling  X  

Oversampling  X  

K-nearest-

neighbor 

No sampling   X 

Undersampling X   

Support vector 

machine 

No sampling X  X 

Undersampling  X  

Oversampling   X 

AdaBoost No sampling X X X 

Undersampling  X  
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Oversampling   X 

8.2.3 Word normalization 

When comparing the classification performance with respect to word normalization only one 

conclusion can be drawn, namely that lemmatization poses a better effect than stemming. In 

Table 21, the difference in performance using either stemming or lemmatization has been 

compared for all classifiers under the optimal setup. As can be seen from the table, all 

classifiers perform better using lemmatization, however, the difference in performance is only 

minor, ranging from 0.5 to 1.8pp. Overall, with a few exceptions, lemmatization has little but 

consistently improved the recall and precision of both the minority and majority class. 

Table 21: Overview word normalization influence 

Classifier Stemming Lemmatization Difference 

Multinomial naive Bayes 0.584 0.590 0.006 

Logistic regression 0.583 0.594 0.011 

Decision tree 0.549 0.560 0.011 

Multivariate naive Bayes 0.581 0.586 0.005 

Association rule 0.574 0.585 0.011 

Neural network 0.551 0.564 0.013 

K-nearest-neighbor 0.543 0.552 0.009 

Support vector machine 0.578 0.589 0.011 

AdaBoost 0.538 0.556 0.018 

8.3 Evaluating the additional results 

In chapter 8.1, three possible reasons have been mentioned with respect to the relatively low 

classification performance on minority class. To initially examine these possible causes, 

follow-up experiments have been set up in which the influence of each cause is independently 

verified. Furthermore, an experiment has been executed regarding the probabilistic classifiers 

as the findings in this research did not match the prescribed literature. 

8.3.1 The performance of probabilistic classifiers 

When comparing findings regarding individual classifier performance with previous research, 

it can be observed that probabilistic classifiers perform better on this dataset. In their 

research, Yang and Liu (1999) found logistic regression, SVM, and KNN to significantly 

outperform neural networks and naive Bayes with respect to the macro-averaged F-measure 

on the Reuters-21578 corpus. Even though it is based upon the micro-averaged F-measure, 

the result comparison of Sebastiani (2002) also showed the lower performance of 

probabilistic classifiers on the skewed Reuters corpus in comparison to the other classifiers 

in his research. Here it should be noted that the Reuters corpus is a multi-labeled dataset 

instead of binary, and that the classifiers in the overview of Sebastiani (2002) have not been 
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improved using resampling. However, when comparing the unsampled results, the 

probabilistic classifiers still outperform all other classifiers in this research including logistic 

regression and association rules. Looking at the probabilistic classifiers individually, it was 

observed that the difference in performance between an unsampled and a resampled 

classifier was negligible. Combining this with the skewed characteristic of the dataset led to 

the assumption that on a highly skewed dataset, determining the posterior probability in a 

naive Bayes classifier is mainly influenced by the class likelihood and less by the class priori.  

To support this assumption, the class likelihood estimates of an unsampled MNB 

classifier using stemming and no weighting have been included in Appendix 10.11. The table 

shows the likelihood of the most present feature to be only 0.041 for the majority class and 

0.038 for the minority class. In the prediction of a class using a naive Bayesian classifier the 

priori is multiplied with the respective likelihood of the present features. When, for example, 

5 features are contained in the test set, this would in the best possible case (i.e. 0.041^5) result 

in a likelihood multiplication of 0.000000115 (i.e. 1.15E-7) for the majority class. Multiplying 

this with the priori of 0.83 would only slightly alter this outcome to 9.6E-8. This same principle 

applies to the minority class, where due to the low value resulting from the likelihood 

multiplication, the priori is of minor influence when calculating the posterior probability (i.e. 

7.9E-8 to 1.4E-8). The influence of the priori is thus determined by the amount of features 

present in the test set. When the test set contains only one feature, the influence of the priori 

is rather large, however, when the amount of features present in the test set increases, this 

influence gradually decreases. A lower priori influence makes a probabilistic classifier more 

dependent upon the class likelihoods, thereby uncovering the predictive power of the used 

features. Above observations could imply that [1] the predictive power of a probabilistic 

classifier on textual data depends upon the length of cases in the test set, or [2] the chosen 

features in this research cannot be used for predicting the class label. To either confirm of 

disconfirm this, an experiment has been set up in which the class predictions were evaluated 

with respect to the total amount of features in the test set which have been used for building 

the classifier. For this experiment, the multinomial naive Bayes classifier has been trained 

according to the baseline and framework as described in Chapter 7. The results of this 

experiment are contained in Table 22 and depicted in Figure 30 and Figure 31. 

Table 22: Results per feature set using multinomial naive Bayes 

#Features 

in test set 

Set 

size 

Recall 

minority 

Recall 

majority 

Precision 

minority 

Precision 

majority 

F-measure 

minority 

F-measure 

majority 

0-9 1529.2 0.068 0.965 0.313 0.825 0.110 0.889 

10-19 1921.8 0.273 0.884 0.331 0.856 0.298 0.870 

20-29 1016.4 0.343 0.844 0.298 0.871 0.318 0.857 

30-39 459.9 0.443 0.827 0.309 0.894 0.361 0.859 

40+ 211.3 0.482 0.819 0.281 0.920 0.348 0.866 
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Figure 31: F-measure using multinomial naive Bayes;  
X-axis: #features in test set, Y-axis: F-measure 

Evaluating above results reveals a clear relationship between the predictive accuracy of 

a classifier and the amount of features used in the test set. Using less features causes a 

multinomial naive Bayes classifier to predict more test cases as the majority class compared 

to using more features. This observation supports the assumption that the influence of the 

priori decreases as more features are present in the test set. Furthermore, by increasing the 

amount of features in the test set, the average F-measure increases due to a higher recall for 

the minority class. Figure 31 suggests, however, that this effect follows a logarithmic equation, 

thereby lessening the impact on the minority recall as more features are used in the test set, 

which is confirmed by an R2 value of 0.992 for the equation y = 0.2572ln(x) + 0.0753. To ensure 

this result is not induced by the fortunate combination of outliers, the standard deviations of 

all feature set sizes have been evaluated through Figure 32, which confirms the logarithmic 

nature of the minority recall. Combining all findings from this experiment, it can be concluded 

that the predictive power of a probabilistic classifier on a skewed dataset depends upon the 

amount of features used in the test set. Since in this research the 100 most common features 

have been used, the amount of features used in the test set are likely to be correlated with the 

length of the test set, thereby supporting the hypothesis that the predictive power of a 

classifier on textual data depends upon the length of the cases in the test set.  
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Figure 30: Recall and precision using multinomial naive Bayes; 
X-axis: #features in test set, Y-axis: recall/precision 
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Figure 32: Minority recall using multinomial naive Bayes; 
X-axis: #features in test set, Y-axis: minority recall 

8.3.2 The influence of feature selection 

In chapter 8.2.1 it was mentioned that independent of the training sample distribution, the 

precision of the minority class remains fixed around 30%. This implies that, even though the 

100 most common features contain more information than simply classifying all test cases as 

either the minority or majority class, the information richness is restricted. To examine 

whether feature selection could be used to overcome this limitation in information richness, 

an experiment following the same training procedure as above has been set up in which bi-

normal separation (Forman, 2003) is used to select the most informative features. Since it is 

unknown whether a total of 100 selected features accurately represents the classification 

performance, as was with selecting the most common features, the number of features used 

for training the classifier range from 100 to 5000. The results of this experiment are contained 

in Table 23 and depicted in Figure 33 and Figure 34. 

Table 23: Results using multinomial naive Bayes with bi-normal separation 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0-9 10-19 20-29 30-39 40+

MNNB No Sampling Stemming 
No Weighting 

#Features in 

training set 

Recall 

minority 

Recall 

majority 

Precision 

minority 

Precision 

majority 

F-measure 

minority 

F-measure 

majority 

100 0.033 0.989 0.384 0.836 0.060 0.906 

1000 0.221 0.879 0.275 0.849 0.241 0.863 

5000 0.440 0.799 0.306 0.876 0.360 0.835 
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Figure 34: F-measures using multinomial naive Bayes; 
X-axis: #features in training set, Y-axis: F-measure  

When exploring above results, it becomes apparent that increasing the amount of 

features used for training the classifier induces an increase in test cases to be classified as the 

minority class (i.e. minority recall). Since the recall of the minority class cannot extend 1, the 

seemingly linear minority recall trend in Figure 33 must level and is likely to be a logarithmic 

trend as in Figure 32. Based on the current results, however, it is hard to determine at which 

rate the minority recall levels, as could be in Figure 32.  

Interestingly, the minority recall begins at a relatively low value (0.033) when using 100 

features selected with bi-normal separation compared to the minority recall using the 100 

most occurring features (0.241). This observation can be explained through the way feature 

selection operates. By comparing the ratio of a feature occurring in a minority case to that of 

it occurring in a majority case, features can be ordered based on their distinctiveness (i.e. a 

high comparison ratio). A feature occurring in 10% of the minority cases and 1% of the 

majority cases is thus more informative than a feature occurring in 5% of both the minority 

and majority cases. This comparison ratio, however, does pose a downside, namely that it does 

not take into account the number of absolute occurrences of a feature. When, for example, a 

feature occurs in 10 minority cases and 0 majority cases, it is considered to be highly 

informative and shall thus be selected. With a total of 1000 minority cases, however, this 

feature discerns only a small portion of the training set, and a selected feature occurring in 

150 minority and 25 majority cases would have been better. In this research, this downside 

has been tried to overcome using a minimum of 25 occurrences.  

Given that the selected features are highly distinctive, the low minority recall using 100 

features combined with the followed increase when using more features suggests a reduced 

influence of the priori which, as was discussed earlier, implies few features are used for testing 

when training the classifier with 100 selected features. Combining this with above example 

leads to the conclusion that the distinctive features selected using bi-normal separation do 
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Figure 33: Recall and precision using multinomial naive Bayes; 
X-axis: #features in training set, Y-axis: recall/precision  
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not cover a wide spectrum of the test cases. Since the most distinctive features occur in only a 

limited amount of complaints, the assumption is supported that the features in the dataset do 

not contain enough information to be used for making a distinction on whether a complaint 

will be withdrawn or not.  

In order to conduct a fair comparison between training on the most occurring features 

and feature selection, the performance of a multinomial naive Bayes classifier on the 

respectively 100, 1000, and 5000 most occurring features also had to be tested according to 

the same training procedure. The results of this experiment are contained in Table 24 and 

depicted in Figure 35 and Figure 36. 

Table 24: Results using multinomial naive Bayes with most common feature selection 

    

Figure 36: F-measures using multinomial naive Bayes; 
X-axis: #features in training set, Y-axis: F-measure  

As can be seen from Figure 35, increasing the amount of most common features for 

training also induces a logarithmic increase in the minority recall and thereby the minority F-

measure. Since the average F-measure only increases by 2.6pp when using 5000 instead of 

100 features, while the training time increases from 15 minutes to 24 hours, it was, as 

explained in Chapter 7.1, chosen to use only 100 features. With the results found in this 

research it should, however, be kept in mind that increasing the number of features used for 

training will increase the performance on the minority class for a multinomial naive Bayes 

classifier. Further research is required to conclude whether increasing the amount of features 

used also positively influences the minority performance for other classifiers. 
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minority 

Precision 

majority 

F-measure 

minority 

F-measure 

majority 

100 0.241 0.892 0.314 0.854 0.272 0.872 

1000 0.412 0.804 0.299 0.872 0.346 0.836 

5000 0.474 0.780 0.303 0.881 0.369 0.827 

Figure 35: Recall and precision using multinomial naive Bayes; 
X-axis: #features in training set, Y-axis: recall/precision  
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Comparing the results of the two feature selection methods, it can be observed that for 

100 features (-8.9pp) and 1000 features (-4.9pp), using bi-normal separation as the feature 

selection metric only reduces the performance of multinomial naive Bayes classifier, while for 

5000 features there is no difference in performance. Combining this with above conclusion 

that the distinctive features in this dataset cover only a small spectrum of the test cases, it can 

be concluded that when training a multinomial naive Bayes classifier on a dataset with little 

distinctive features the best feature selection metric is to use the most common features. 

Further research is required to conclude whether this finding also applies to other classifiers. 

8.3.3 The influence of additional data cleansing 

As explained in Chapter 8.1, the reason for withdrawal could play a role in the relatively low 

classification performance on the minority class. To see whether cases in which human acting 

plays an active role influence the classification performance, an experiment has been set up in 

which the 4901 minority cases withdrawn due to either refunding the money or receiving of 

the ordered goods were removed from the dataset. This left 3708 minority cases remaining, 

thereby increasing the skewness of the dataset to 8.0%. The followed experiment procedure 

was similar to above experiments, with the number of features used for training the classifier 

ranging from 100 to 5000. The results of this experiment are contained in Table 25 and 

depicted in Figure 37 and Figure 38. 

Table 25: Results using multinomial naive Bayes on the reduced dataset 

      

Figure 38: F-measures using multinomial naive Bayes; 
X-axis: #features in training set, Y-axis: F-measure  
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#Features in 
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Recall 
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minority 
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F-measure 

minority 

F-measure 

majority 

100 0.178 0.947 0.221 0.930 0.200 0.938 

1000 0.463 0.870 0.232 0.950 0.308 0.908 

5000 0.530 0.863 0.245 0.955 0.334 0.906 

Figure 37: Recall and precision using multinomial naive Bayes; 
X-axis: #features in training set, Y-axis: recall/precision  
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By removing the minority cases in which human acting plays an active role, the minority 

F-measure is slightly reduced, while the majority F-measure is increased. Underlying this 

pattern is an increased majority recall and precision combined with a decreased minority 

precision as compared to Figure 35. Even though the informative value in these specific cases 

helps in more accurately classifying minority cases, its diminishing effect on the majority 

performance is greater. This leads to the conclusion that the information in these specific 

minority cases resembles that of the majority cases, thereby supporting the assumption that 

the free-text field in this dataset does not contain enough information to accurately distinct 

withdrawn from not withdrawn cases. Overall, when training a multinomial naive Bayes 

classifier on the reduced dataset with either 1000 of 5000 features, the classification 

performance can be improved up to 2.2pp.  
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9 Conclusion 

Due to the rising trend in online trade fraud, the Dutch police has established a police unit 

responsible for solving online trade fraud cases, LMIO, which cooperates with an 

administrative police unit that handles incoming data, DLOC (Inspectie Veiligheid en Justitie, 

2015). Since the police does not have enough manpower to turn each complaint into a case, it 

is important that a distinction is made as early as possible between complaints worth 

investigating and those not worth investigating, so that resources are not wasted. This 

research has focused on whether machine learning techniques can be utilized for this purpose 

and thereby (partly) automate the handling of online trade fraud complaints. The above 

statements have been combined in a main research question:  

“How can the handling of online trade fraud complaints be (partly) automated?” 

In order to answer this main research question, a series of sub-questions were formed as 

described in Chapter 1. In this chapter, these sub-questions will first be individually answered 

using the conducted literature studies and data analysis, after which an answer for the main 

research question will be formulated. 

9.1 Answering the sub-questions 

9.1.1 SQ1: What are the characteristics of complaint data? 

In order to answer this sub-question, the dataset provided by the Dutch National Police has 

been extensively reviewed as described in chapter 6.4. The dataset consists of 51.386 

complaints, which have all been manually labelled by employees at DLOC on whether a 

complaint has been withdrawn or not and for what reason. Each complaint consists of 

personal details of the complainant, as well as the personal details of the fraudster insofar 

they are known. Next to these personal details, each complaint contains information regarding 

the actual fraud (e.g. type of product, commerce site details, payment method, product price) 

combined with a free-text field in which the complainant’s story that led to the complaint is 

included. Characteristic of this dataset is that the vocabulary used for describing a complaint 

in this free-text field are alike, independent of whether it has been withdrawn or not. 

Each complaint contains a total of 60 attributes, including the binary class label stating 

whether a complaint has been withdrawn or not. In total, 8.609 (16.7%) entries have been 

labelled as withdrawn. Due to the offset ratio of withdrawn to not withdrawn complaints the 

online trade fraud complaints dataset is to be considered as a skewed dataset, which involves 

one class being overly present in the dataset.  
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9.1.2 SQ2: Which steps in the process of handling a complaint can be (partly) automated 

given the current data availability? 

For answering sub-question 2 and uncovering the relevant characteristics for handling an 

online trade fraud complaint, interviews were conducted at both DLOC and LMIO, as described 

in Chapter 4.3 and 5. Next to these interviews, a literature study was conducted which was 

mostly based upon the work by Latukolan and van Ginkel (2016). The result was a workflow 

for the most important processes at both DLOC and LMIO. During the interviews, these 

processes were further elaborated upon, and it became obvious that a tailored approach for 

each complaint restricts the process at LMIO from being (partly) automated. Therefore the 

focus of this research and correspondingly this sub-question shifted entirely to the process of 

handling a complaint at DLOC. Based on the available dataset and feedback during the 

interviews, it was opted to emphasize this research on the registering of a complaint. During 

the registering of a complaint, two characteristics are of importance: the type of a complaint, 

and the completeness of a complaint. Since research by Bex et al. (2016) focuses on improving 

the completeness of a complaint, it was chosen in consultation to direct this research towards 

predicting the type of a complaint, specifically whether a complaint will be withdrawn or not. 

Through this prediction, more important complaints (i.e. those that will not be withdrawn) 

can be dealt with earlier, thereby increasing the processing speed of those complaints at 

DLOC. This also improves the process at LMIO, since feedback regarding a complaint 

withdrawal is received faster, which will reduce the time spent on complaints not worth 

investigating. 

9.1.3 SQ3: Can machine learning techniques be utilized for complaint handling? 

To answer this sub-question, three literature studies were performed. The first literature 

study has focused on the usage of machine learning techniques in crime analysis in general 

and with respect to complaint handling. Resulting from this literature study was the finding 

that no specific set of techniques exists which is more often used than others for crime analysis 

in general. Furthermore, it became apparent that even though machine learning has been used 

for other purposes (Gupta et al., 2016), it is mostly applied to assist with fraud detection 

(Sharma & Panigrahi, 2012). Other than previous research by Peters (2016a) no literature on 

the usage of machine learning techniques in the context of online trade fraud complaints could 

be found. A second conducted literature study was aimed at the textual nature of the dataset 

as mentioned under sub-question 1. An overview of machine learning techniques used for 

classifying textual data has been given by Sebastiani (2002), who concluded that Ensembling 

based (e.g. AdaBoost), SVM, logistic regression, association rule (e.g. RIPPER), KNN, decision 

tree, and neural network classifiers all have a high performance on textual data, while 

probabilistic classifiers have a lower performance. The third literature study examined the 

influence of a skewed dataset on the performance of machine learning techniques. It was 

found that standard machine learning techniques are designed to pay more attention to 
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majority classes, and thereby often perform poorly on a skewed dataset. By performing data 

alterations to the training set, this problem could be solved (Japkowicz and Stephen, 2002; 

Phua et al., 2004). Specifically, three data alteration techniques were found to positively 

influence the performance of a machine learning technique on a skewed dataset: resampling, 

word weighting, and word normalization (Japkowicz and Stephen, 2002; Schneider, 2004; Van 

den Bosch et al., 2007). By combining the results from all literature studies it was concluded 

that the machine learning techniques described by Sebastiani (2002) cover the spectrum of 

techniques used for classifying textual, skewed, and criminal data. 

In his research, Peters (2016a) obtained initial promising results when exploring the use 

of machine learning techniques for classifying online trade fraud complaints. Combining these 

initial promising results with the literature studies where [1] machine learning techniques 

were found to aid crime analysis in general, [2] machine learning techniques were found to 

hold a high performance when classifying textual data, and [3] the performance of machine 

learning techniques on skewed data can be improved through data alterations, led to the 

conclusion that machine learning techniques can indeed be utilized for complaint handling.  

9.1.4 SQ4: What machine learning techniques perform best with respect to the automatable 

steps in the process of handling a complaint? 

Answering this sub-question required the combination of all answers to the above sub-

questions. In chapter 7, a data analysis was conducted in which each machine learning 

technique explained by Sebastiani (2002) was evaluated on its ability to predict whether a 

complaint will be withdrawn or not. Here, the performance of each technique was optimized 

using a combination of resampling, word normalization, and word weighting. Overall, it was 

found that through data alterations, the performance of a machine learning technique can be 

improved up to 13.5pp, with probabilistic classifiers having the highest unimproved 

performance. By optimizing a classifier it can predict with 80-90% certainty (i.e. precision) 

that a complaint will not be withdrawn and 30-35% certainty that it will be. Furthermore, it 

became apparent that the difference in optimized performance between the best classifier (i.e. 

Logistic regression; 59.4%) and the worst classifier (i.e. K-nearest-neighbor; 55.2%) is only 

minor with 4.2pp. Four classifiers hold the best optimized classification performance within 

a range of 1pp, namely the logistic regression, multinomial naive Bayes, multivariate naive 

Bayes, and association rule classifiers.  

9.2 Answering the main research question 

The main research question of this thesis was: “How can the handling of online trade fraud 

complaints be (partly) automated?”. Through interviews at both DLOC and LMIO it was found 

that the process of registering a complaint at DLOC was most relevant to be automated. In 

specific, by predicting whether a complaint will be withdrawn or not, more important 
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complaints can be dealt with earlier, thereby increasing the processing speed of those 

complaints at DLOC, while also indirectly improving the process at LMIO.  

Based on previous work by Peters (2016a), machine learning techniques were found to 

be applicable for making this prediction. Literature studies on the use of machine learning 

techniques for characteristics of the dataset (i.e. criminal, textual, and skewed) revealed the 

combination of machine learning with data alteration techniques to result in the best 

classification performance, which was confirmed during the data analysis. The data analysis 

furthermore revealed that the best optimized machine learning technique to be used for 

making the prediction is Logistic regression. Using a Logistic regression classifier, a recall of 

33.5% and a precision of 29.7% can be attained for the minority class, while for the majority 

class a recall of 84.0% and a precision of 86.3% can be attained.  

As described in chapter 5, the applicability of this research at the Dutch National Police 

depends upon the classification performance on the “withdrawn” complaints, since these 

complaints will be stored in a separate bin and will receive a tailored processing approach. 

Based on the above mentioned results, it is not likely that the Dutch National Police will 

automatically withdraw a complaint using a Logistic regression classifier. However, since the 

results for both the minority and majority class exceed the unsampled ratio of minority to 

majority complaints (16.7%/83.3%), the process of handling an online trade fraud complaint 

can be partly automated using machine learning techniques. In cooperation with the Dutch 

National Police, it should be decided whether the classification performance complies with 

their standards, and how the separate bin will be treated. 
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10 Future Research 

During this research, many interesting opportunities for further research came to light. First 

of all, it has been opted in this research to use the 100 most occurring features for training a 

classifier instead of using a less naive feature selection method. In the discussion, the influence 

of selecting features using bi-normal separation (Forman, 2003) has been evaluated for a 

multinomial naive Bayes classifier. Resulting from this evaluation was the conclusion that the 

distinctive features in this dataset do not cover a wide spectrum of the dataset, which does 

not benefit the performance of a probabilistic classifier. This does not impose, however, that 

feature selection cannot positively influence other classifiers. Additional research is required 

to therefore conclude whether feature selection does indeed hold no value when the 

distinctive features in a dataset are not widespread. Furthermore, it should be explored 

whether the findings regarding data altering, as performed in this research, hold when using 

feature selection. 

In this research, it has been examined whether a complaint’s free-text field can be used 

to predict whether a complaint will be withdrawn or not. Even though it was concluded that 

this free-text field can indeed be used to some extent to make this prediction, the performance 

was restricted. Since a complaint does not solely exist of a free-text field, but contains 59 other 

attributes, it should be researched if a more accurate classifier can be created using a selection 

of those attributes, thereby further helping the police in their goal to improve the handling of 

criminal complaints filed online by Dutch civilians. Based on initial results by Peters (2016a), 

using a selection of the 59 other attributes could result in an improved classification 

performance in comparison to using merely the free-text field. 

Independent from the rest of this research, it was discussed in chapter 5, that employees 

at DLOC perceive the answering of complainant’s questions received via e-mail as the most 

time intensive task. To ease this task, a classifier could be trained which evaluates the content 

of an e-mail to predict the type of question, based on which a reply e-mail is formulated. 

Unfortunately, no dataset was available at the time of this research. However, when such a 

dataset can be built, it would be useful for the Dutch Police to have such a classifier support 

them in their daily activities.  
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