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Abstract

This thesis proposes that the concept of deception brought forward by novelty search
research can be applied to the Iterated Prisoner’s Dilemma problem, and in doing so
simultaneously fights the claim that Zero-determinant strategies can outperform any
evolutionary opponent. Zero-determinant strategies are a special class of strategies where
its moves are probabilistically conditioned on the previous outcome through careful
mathematics. When compared with behaviors that merely attempt to obtain the highest
score possible through objective search, more complex and above all unique behaviors
generated from novelty search allows us to transcend the deception problem that come
with certain configurations of an Iterated Prisoner’s Dilemma tournament.

Keywords: game theory, iterated prisoner’s dilemma, novelty search, zero-determinant
strategies, evolutionary players, evolution of cooperation, deception, no free lunch
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1 Introduction

Recent research has brought exciting new developments in the fields of evolutionary game
theory. Zero-determinant strategies are new class of strategies for an old problem which
excels at outperforming slowly evolving strategies such as those created by evolutionary
algorithms (by slowly trailing the fitness gradient), and novelty search is a new method
of an evolutionary algorithm that ignores the concept of fitness and searches merely for
unique behaviors.

One of the most heavily analyzed game in game theory, the Prisoner’s Dilemma,
shows how two players are unable to cooperate even when those players are considered
fully rational. The extended iterated Prisoner’s Dilemma is where players repeatedly
play the same game, but here with the opportunity to punish the other when they are
betrayed. In a single game, defecting is the dominant strategy, and mutual defection is
the only strong Nash equilibrium in the game. When repeated, strategies become more
fluid, and a number of strategies have posed as a significant opponent over the many
years of analyzing the Iterated Prisoner’s Dilemma (IPD). The goal of an IPD strategy
is to accumulate the most rewards after n iterations.

The Prisoner’s Dilemma, framed in the 1950s, is presented as a game where two
persons are arrested and imprisoned. They are in solitary confinement and are not
allowed to communicate with each other. The prosecutors lack sufficient evidence to
convict the two players, but are each offered a bargain. They are given the opportunity
to either defect by testifying that the other committed the crime, or implicitly cooperate
with the other by remaining silent. The payoff matrix to go with this story is displayed
in Figure 1.

Strategies that are developed for the IPD are varied, and almost always follow static
rules. Always Defect (ALL-D) is simply set up to always choose the defect option, no
matter past actions. Its counterpart, Always Cooperate (ALL-C), is to always cooperate
irrelevant of past actions. These are simple strategies that can barely be called a strategy,
but are important as they are the outer edges within the set of strategies applicable to the
IPD. Renown strategies also within this set include Tit-for-Tat (TFT, repeat opponent’s
last choice), Pavlov (repeat last choice if it was T or R) and the recently formulated
Zero-Determinant strategy (conditional probabilities based on the last round of play).
Most competitive strategies are variants of these strategies. An IPD tournament is
a setting where some set of strategies must play a set number of games against each
other strategy. The winner of a tournament is the strategy which obtains the highest
cumulative score over all other strategies.

In this thesis, we propose an evolutionary system that does not necessarily perform
better than any valid strategy for the IPD, but will likely have good performance when
up against specialized strategies. Most strategies have a weak point, and there always
exists a strategy that directly focuses on that weak point. Normal evolutionary strategies
have the weakness that they always slowly try to work their way up towards a higher
payoff, and there exist strategies that punish exactly such behavior. This evolutionary
strategy, we call NOVELTY, maximises exploration and is not expected to have a weak
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Cooperate Defect
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3 (R)
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5 (T)

0 (S)
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5 (T)

1 (P)

1 (P)

Figure 1: The payoff matrix for the Prisoner’s Dilemma. If players P1 and P2 cooperate,
they each earn a reward R. When one defects, the defector receives a defector reward T ,
and the betrayed receives S. When both defect, both are rewarded with P . Any payoff
matrix is a prisoners dilemma when it satisfies T > R > P > S, which guarantees that
the only Nash equilibrium is mutual betrayal, and 2R > T + S, which makes mutual
cooperation the best cumulative outcome. The above matrix shows the most commonly
used values for (T,R, P, S).

point. This does not mean that it will win all possible tournaments, but it does have a
profound advantage over other strategies in any tournament.

The rest of this thesis is structured as follows. First, the background of the IPD is
examined in Section 2. Following that a system is devised which can model any valid
strategy that can be used for in a tournament, in Section 3. The strategy that explicitly
punishes the general evolutionary strategy is described in Section 4. The concept of
NOVELTY, named simply after its core technique, is detailed in sections 5 and 5.1.
The experimental design and its results of NOVELTY’s hypothetical performance is
demonstrated in sections 6 and 7. Finally, we discuss our findings and its implications
in Section 8. There are two appendices. Appendix A show more concrete examples of
the model presented in page 6. Appendix B provides the software and the parameters
used during experimentation with NOVELTY.

2 Background

Static stratagies are strategies which have their rules defined a priori. This implies that
for every static strategy there exists some set of possible optimal counter strategies. A
counter strategy can be devised by considering the rules of which some static strategy
relies, and then subsequently exploiting those rules to maximize payoff. The very idea
of counter strategies has lead to numerous tournaments revolving around the aforemen-
tioned Prisoner’s Dilemma. In 1980, people sent in their strategy proposals for the
first Iterated Prisoner’s Dilemma tournament (Axelrod & Dion, 1988). The winner was
TFT, due to it having a number of characteristics that are found to be advantageous
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during conflict games. It starts peaceful (starts with cooperating), can be provoked (de-
fecting leads to it defecting), but can also forgive (cooperating leads to it cooperating
once again) and its methods are clear. Numerous tournaments followed, even until this
day, and many strategies are designed to win by exploiting other known strategies, or
colluding with other strategies.

For example, Slany and Kienreich (2007) designed a strategy called OmegaTitForTat,
which plays like TFT but can recover from mutual defection deadlock situations. A good
example of such a situation is pitting TFT against DTFT (like TFT, but starts with a
defection). Both will immediately go into a defection deadlock, even though they could
conceptually cooperate as well as a TFT mirror match-up. Another interesting concept
Slany and Kienreich designed was roughly the following: consider two strategies, Lord
and Peon. Lord is essentially TFT, while Peon plays a repeating list of choices which
strongly resembles ALL-C. Lord can detect whether it is playing versus Peon because it
knows this list of choices, and once detected, exploits Peon. The idea here is to submit a
single Lord strategy to a tournament, and many Peons, so the Lord can exploit a large
share of the strategies. To do this, the authors created multiple email accounts and faked
a large number of varying personas in order to get their Peon strategies submitted.

INTEL does not exist to add itself to this list of competitive IPD players. The
motivation is to find the quickest way to find the counter strategy of any arbitrary
strategy that is valid within the IPD. These need not necessarily be rational strategies.
The thought originated from two ideas: the idea that the very best strategy (call it
BEST) in any game would be one that immediately constructs the counter strategy to
any opposing strategy. The other idea is that many, if not all, non-cooperative games
are of a deceptive nature. This is because actions need not necessarily be immediately
rational, but be part of a rational plan down the line.

A combination of these two ideas leads to a strategy, NOVELTY, that uses the
deceptive nature of the game to its advantage, and conceptually comes very close to the
abstract strategy BEST that can instantly develop a counter strategy. It is, in a way,
the inverse of the Adaptive strategy. The Adaptive strategy first analyses the opponent,
then objectively picks choices which have given the best average score re-calculated after
every iteration. NOVELTY does not look at the results objectively as does Adaptive,
but assumes deception instead, therefore allowing it to react much quicker to sudden
changes in behavior.

As an example, imagine some IPD tournament that plays n games using normal
scores as described in Figure 1. Adaptive is up against a rather strange TFT strategy
(sTFT), where it will always cooperate until game 20, and then turns into normal TFT.
If, during the analyzing stage, Adaptive cooperates six times, then defects five times, the
average score from cooperating will be 3 (R), and the average score from defecting will
be 5 (T ). When sTFT starts following TFT rules from game 20 onwards, the average
score from defecting will slowly move towards 1 (P ). It will be until game 33 until the
average scores for playing either cooperate or defect are equal and Adaptive might start
reacting to the opponent. The concept of probing, where some random intervention
allows any strategy to make a random choice instead of its normal choice, would only
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prolong the adaptation. Specifically, Adaptive would play C instead of D due to random
intervention in our example, receiving the S reward, because sTFT still plays D. This
decreases the average score for C. Then, the next iteration Adaptive goes back to playing
D (no intervention), while sTFT plays C as per TFT rules. Adaptive receives T , and
sTFT receives S. This increases the average score for D. Therefore, it takes an even
longer time for the average score for D to reach the average score for C. Probing only
hurts Adaptive in this case, and many similar cases.

3 Set of all Valid Strategies

In order to properly examine how NOVELTY would perform against tournaments with
arbitrarily large number of strategies competing, we need to find a way to populate the
set of all valid strategies, T , with something other than the abstract concept of a valid
strategy. Here, we devise an explicit system that can properly model all variations of
what a strategy can be. Current implementations of syntactically defining a strategy are
insufficient, as highly specialized strategies are abstracted or merely defined in words.
The motivation was to define an implementation where programmatically we could create
any valid static strategies of near-infinite complexity. This could subsequently be used
to generate a statistical sampling of the set of all valid strategies T , for use during the
experimentation of our NOVELTY concept.

In our system, any static strategy is expressed as (Q,E). The strategy outputs
a decision from the decision set {C,D,R}, where R represents a random choice, by
extracting the first element from the sequence of decisions Q. If Q is empty, it instead
evaluates decision tree E first, then tries to extract from Q again. The decision tree
consists of a hierarchical set of nodes, where at the leafs it assigns a sequence to Q.
Figure 2 is an example of the TFT strategy. Further specifics to this system are described
next.

Q′ = {C}

if Payoff t−1 = {P, S}

Q = {C}Q = {D}

Figure 2: Model for the TFT strategy. TFT has no randomization component, so ξ is
0, it starts with cooperating, so Q initializes to {C}. When Q is empty, it requests a
new Q from the tree. When the previous game was resulted in either a P or S, then the
next choice will be to defect. Q′, α and β are omitted because they serve no purpose in
this model.

The decision tree contains various types of nodes. The root and internal nodes
are conditional nodes, and the leafs either assign a sequence to Q or jump to another
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conditional node. The payoff-conditional node is an evaluation of payoffs,

〈L : if α,βPayoff t−k = χ〉 (1)

where k > 0, and χ ∈ P (T,R, P, S). L represents a textual label. At the start of
every run through decision tree E, two variables A = B = 0 are initialized. When a
conditional node evaluates, α increases A and we jump down to the left node as the
node evaluates to true, or β increases B and we jump down to the right node as the
node evaluates to false. α, β and L are optional, α = β = 0 when undefined. Note
that {T,R, P, S} ⇒ > and ∅ ⇒ ⊥. The first iteration of an IPD is when t = 0. The
value-conditional node is an evaluation of values,

〈L : if α,βu ≤ v〉 (2)

where u, v ∈ Z, but u and/or v may also be functions that output a value that is a
member of Z. When a payoff-conditional fails to evaluate, which is when t−k < 0, then Q
becomes the result of a predefined function Q′ and the evaluation of E immediately ends.
Computer scientists may imagine E to be inside a try-block, and Q′ to be the contents
of a catch-block. Q and Q′ are a sequence of choices of the form Q = [i ≤ j]{q1}{q2},
or without a conditional, Q = {q1}. In general, qn is shorthand for {xy00 , x

y1
1 , · · · , x

ym
n },

where x ∈ {C,D,R} and y ∈ N0. When the evaluation of [i ≤ j] is true, Q = q1,
otherwise Q = q2. yi denotes the number of times xi is repeated, so for example,
{C3, D} = {C,C,C,D}. To avoid empty sequences, any Q that happens to be empty
will default to {R}, such as in the case of {C0} for example.

At the leafs of the decision tree E, we find result nodes or jump nodes. Result nodes
can assign a sequence to Q,

〈Q = [i ≤ j]{q1}{q2}〉 (3)

or may jump to a conditional node for re-evaluation, using the labels L as references.
Naturally, when a conditional node has no label, it cannot be jumped to. A jump node
is of the form

〈Go to Lk−1〉 (4)

k − 1 signifies that any conditional nodes that use the k variable have those values
reduced by one every time this jump node is visited. value- and payoff-conditional nodes
are always the internal or root nodes of the tree, and result or jump nodes are always at
the leafs of the tree. The tree terminates when Q is assigned a new sequence. A valid
model is where Q must initialize with at least one element, and the tree contains no
duplicate conditional nodes1.

We have shown the familiar TFT model in Figure 2, but more complex strategies
can be found in Appendix A. Following the restrictions put into place, we can randomly

1Two conditional nodes are the same when they both have the same defined L label, or their k and
χ variables are equal.
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generate any valid strategies for the IPD. While a very large amount of these are likely to
be under-performing strategies, it is up to the well-performing strategies to best exploit
those in a tournament with a great number of unique strategies.

4 Zero-determinant strategies

Visualizing the set of all valid strategies T is very useful in understanding what NOV-
ELTY tries to overcome. However, a very important piece of the puzzle has not yet been
discussed. Press and Dyson (2012) have devised a strategy they call Zero-Determinant
(ZD) strategies, which unilaterally sets the score of their opponent in an effort to stay on
top. It is important to understand the workings of this strategy, as it claims to be able
to defeat any evolutionary opponent (such as NOVELTY) because it can outmanoeuvre
its slowly adapting opponent.

Mathematically, ZD strategies are a vector of probabilities (p, q) conditioned on the
four outcomes of the previous move. Press and Dyson show that some fixed strategy
vector p̄ for player X (or (q̄ for player Y ), which is based on the previous move, gives
the linear equation between the scores for players X and Y : αSX + βSY + γ = 0. The
elements in some strategy vector p = (p1, p2, p3, p4) define the probabilities for when to
cooperate when the previous outcome was R, T , S and P respectively. For example, if
p1 = 0.75 and the previous outcome ended in R for the player, there is a 75% chance this
player would cooperate. The vector p = (1, 0, 1, 0) equals the TFT strategy. This linear
relation is constructed from the determinant of the dot product between the Markov
matrix v and any vector f : v · f ≡ D(p, q, f). They show that using substitution of the
probability values for p̄, Y ’s score eventually can be expressed as

SY =
(1− p1)P + p4R

(1− p1) + p4
(5)

where p1 and p4 are elements in the vector p̄. In other words, playerX can unilaterally
set player Y ’s score, as p1 and p4 are under control of player X. Solutions for p̄ are when
p1 ≤ 1 and p4 ≥ 0. Figure 3 shows the possible payoffs for all valid solutions for p̄.

The idea behind zero-determinant strategies lies in the extortionate share. Two new
variables are introduced, χ and φ, where

0 < φ ≤ (P − S)

(P − S) + χ(T − P )
(6)

This range is necessary for the variable to make sense in some underlying equations
omitted in this explanation. By balancing these two variables, we can create new valid
solutions for p̄ that allow the player to get payoffs higher than R. X and Y ’s best
respective scores become:

SX =
2 + 13χ

2 + 3χ
, SY =

12 + 3χ

2 + 3χ
(7)
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Figure 3: Plot for all possible payoffs in the standard IPD as shown in Figure 1 for
player Y given the values for elements p1 and p4 for some p̄. It shows that player X can
set all scores P ≤ SY ≤ R, and it is up to the strategy of player Y to expand this to
S ≤ SY ≤ T . It also shows that there is no need for player X to explicitly react to the
strategy of player Y , because only Y controls scores outside the [P,R] range.

Figure 4 shows the scores for both players given a certain χ value. In ZD strategies,
the extortion factor χ defines the strategy p̄, not the strategy of the opponent. For
player Y , the optimal counter strategy is to have an extortion value exactly equal to
that of player X. In this case, the player strategies cancel each other out, and effectively
sets them back to fair strategies where χ = 1. Press and Dyson argue that these single-
memory ZD strategies always dominate payoff-maximising evolutionary strategies.

Smith (1982) has defined that any strategy for game theory succeeds in a population
only if it can compete versus itself. That is, a strategy only succeeds if it can also fare
well against strategies that are very much like themselves. These are called evolutionary
stable strategies. Adami and Hintze (2013) show that extortionist strategies are evo-
lutionary unstable, because they make themselves extinct whenever they play against
themselves (or very similar to themselves). We read from Figure 4 that with ZD strategy
X and non-ZD strategy Y , SX > SY for all χ > 1. For all χ > 1, p4 = 0 to keep p̄ valid,
meaning the strategy will never cooperate when the last round was P . Therefore, when
ZD strategy X plays against ZD strategy X ′, mean payoff becomes P . In other words,
SX = SX′ = P . However, Figure 4 also shows that for all χ > 1, SY > P , excluding
limχ→∞. It is the generous ZD strategies, where χ < 1, that are evolutionary stable
instead. These strategies, when confronted with each other, will have a mean payoff of
R. Therefore, extortionate ZD strategies will eventually go extinct as they cannot face
each other, and the idea that for a single game of the Prisoner’s Dilemma, defecting is
the optimal strategy, but for the IPD the cooperating subset of strategies are the stable
strategies, lives on.
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Figure 4: Graph showing the payoffs for SX and SY given the extortion policy for player
X. χ < 1 are generous ZD strategies, χ = 1 are non-ZD strategies, and χ > 1 are
extortionate ZD strategies. The limit for this extortion policy lies at SX = 13

3 , but this
is obviously infeasible, as SY = 1, and few strategies allow for such extortion to continue.
Perhaps strategies with χ < 1 would allow it.

Q′ = {C}

if Payoff t−1 = {T,R}

if Payoff t−1 = {S}

Q = {D}if r ≤ 1
2

Q = {D}Q = {C}

if Payoff t−1 = {R}

if r ≤ 1
3

Q = {D}Q = {C}

if r ≤ 8
9

Q = {D}Q = {C}

Figure 5: Model for the successful strategy Extort-2, named this way because its extor-
tion rate χ is set to 2 and is thus an extortionate ZD strategy. In essence, ZD strategies
are simply a set of conditional probabilities based on the last round of play. Because
this strategy uses probability, we use r as a shorthand for z ∼ U(0, 1). The extortion
component is best visible in the left branches of the decision tree, where a cooperative
outcome R has a 1

9 chance to result in a defection (this is extortion). The lack of gen-
erosity in this strategy is visible in the right branch of the decision tree, where mutual
defection will always lead to more mutual defection.

10



5 Deception

We can now map arguably the most important subset of all valid strategies in the
IPD, the set of all memory-one strategies, in Figure 6. It shows the relations between
cooperating strategies, defecting strategies and the previously explained ZD strategies.

Cooperating Strategies

ZD Strategies

Defecting Strategies

TFT

ALL-C ALL-D

Generous TFT

Generous-ZD
Exto

rti
on

at
e-Z

D

Figure 6: A Venn diagram of the three sets of single-memory strategies. Single memory
strategies are strategies that only consider the most recently played game. ALL-C is
a cooperating strategy that is of maximum generosity, and so sits furthest away from
defecting strategies. ALL-D is the exact opposite, being maximally extortionate. The
shading shows the intuitionally effective display of variations in ZD strategies with re-
spect to its χ, with low χ on the left and high χ on the right. TFT, technically a ZD
strategy, sits in the middle of all three, being equally cooperative as defecting. Its ex-
tortion rate is at exactly 1. The subsets Generous-ZD and Extortionate-ZD are where
extortion policies are χ < 1 and χ > 1 respectively.

A problem is deceptive when lower-order evolutionary building blocks that are com-
bined into larger building blocks to not lead to a global optimum. A more theoretical
formulation of this concept is given by Whitley (2014), where given a fitness function
on some optimization problem, when all of the lowest-order hyperplanes associated with
a solution can be correctly determined, then the problem is not deceptive. If any of
these lowest-order hyperplanes are incorrect, the intersection of all hyperplanes will end
up somewhere vastly different than with a non-deceptive problem. Thus, a problem is
deceptive when at least one part of the problem is deceptive.

Intuitively it is quite easy to show examples of deceptive problems. Take the Chinese
finger trap toy, a simple puzzle that traps the fingers in both ends of a small cylinder.
The objective here, is to free your fingers. The first impulse one would have would be to
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pull apart your hands, but this only tightens the traps’s grip on your fingers. Instead,
the solution is to push your fingers towards each other, which is exactly the opposite of
what one would expect to do when presented with such a problem. In more abstract
terms, when one presents this problem to an evolutionary algorithm with the objective is
to maximise the distance between fingers, any input corresponding to ”pull both hands”
when maximised will lead to high fitness values (that is, distance is at its highest when
both hands are pulled with the greatest force). It is easy to see that such behavior will
lead to a local optimum, but it would be very difficult for the algorithm to evolve from
this behavior to the behavior that is exactly opposite of these supposedly successful
behaviors.

To relate this to Prisoner’s Dilemma strategies, non-deceptive strategies belong to
the set of either cooperating strategies or defecting strategies. The ultimate intention
of any such strategy would be to either cooperate as often as possible, or defect as
often as possible. Essentially, if the last game round was of mutual cooperation, a
defecting strategy will attempt to betray such cooperation, and a cooperating strategy
will attempt to continue cooperating. By contrast, all strategies in the set of memory-
one ZD strategies, exempting ALL-D, TFT and ALL-C, are deceptive. Notice that these
are exactly the three strategies that lie in the intersections of the circles of the shaded
Venn diagram in Figure 6. This is not coincidental. These are the only strategies that
are part of the set of ZD strategies for which all their probabilities for cooperating are
either set to 0 or 1. Examine Table 1, which shows the conditional probabilities for a
select number of elements in the set of ZD strategies. The deceptive strategies GTFT,
ZDGTFT-2 and EXTORT-2 each have at least one conditional probability set between
the range of 0 and 1. These three strategies have performed exceedingly well in the latest
IPD tournament (Stewart & Plotkin, 2012), coming high in either score or wins (but not
both). We will empirically show in later sections that it is indeed these strategies that
are difficult to solve for a normal evolutionary player, and that NOVELTY is capable of
dealing with these deceptive strategies.

ALL-D ALL-C TFT GTFT ZDGTFT-2 EXTORT-2

P (C|CC) 0 1 1 1 1 8
9

P (C|CD) 0 1 0 1
3

1
8

1
2

P (C|DC) 0 1 1 1 1 1
3

P (C|DD) 0 1 0 1
3

1
4 0

Table 1: The conditional probabilities listed for six ZD strategies. The last three we
consider deceptive, the first three are not deceptive. P (C|Y ) shows the probability for
playing cooperate on the next round given that the previous round’s outcome was of Y
(for example, the probability that EXTORT-2 cooperates after being betrayed equals
1
2).
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5.1 Novelty Search

NOVELTY makes use a new and, in many applications, yet unproven method named
novelty search (Lehman & Stanley, 2011). The main motivation for this research was
the argument that our application of fitness in evolutionary methods, where the goal is
always to obtain a higher fitness, determines the direction of evolution. Evolutionary
algorithms run the risk of becoming stuck in a local optimum, and there is a lot of
research dedicated to solving that issue. For example, simulated annealing sometimes
performs harmful changes to the evolutionary path in order to break free from potential
local optima whirlpools (Kirkpatrick, Gelatt, & Vecchi, 1983). Instead, novelty search
ignores the entirety of the objective function, which is rarely a perfectly fitting objective
function with respect to the problem domain, and searches explicitly for behaviors that
are unique.

To apply novelty search for evolutionary algorithms, generally the NeuroEvolution of
Augmenting Topologies (NEAT) method is used, developed by Miikkulainen and Stanley
(2002). NEAT begins evolution with a population of artificial neural network, initialised
to only the bare essentials. A neural network in its most basic form is a set of input nodes
and output nodes, where each input node is connected to each output node. Whenever
an individual from the population, a phenome2, is evaluated, each input node is given
some value based on the problem domain. Upon activation, each node, starting from
the input nodes, transforms its input into another value and communicates that value
with every node it is connected to. After activation, the values in each output node
are used to specify the behavior of the phenome. These neural networks evolutionary
grow in complexity by adding hidden nodes evolutionarily and allowing for speciation
within genomes. Hidden nodes lie between input and output nodes, and only exist to
further sophisticate the possible outputs. This demonstrates the ability of NEAT to
encounter simple behaviors before more complex ones. Speciation is grouping specific
structures in neural networks together to form a species, protecting their innovation
from the global population and allowing for such new species to have a chance against
older, more sophisticated species. This allows for the diversity in genomes to exist that
a technique such as novelty search needs to flourish.

Novelty search replaces the objective function. Instead, it looks for genomes that
are more different than others, while making sure that the low complexity search space
is examined first before moving on to more complex, yet novel, behaviors. Novelty
is evaluated by using a domain-dependant metric. For example, in our simple Chinese
finger trap example, the novelty metric would look for behaviors where the fingers end up
at different distances from eachother. In contrast, an objective function would simply
reward high distances, keeping the search only to behaviors that purely obtain high
distances at all times. It would likely only solve the trap once a behavior is sufficiently
(perhaps exceedingly) complex enough that it contains a step in its behavior where
distances between fingers are very short. It can be intuitively guessed which method
would find behaviors that solve the trap faster. Figure 7 shows a conceptual comparison

2A genome is converted to a phenome in order to distinguish it of its immutability in its structure

13



between the two search methods.

(a) (b)

Figure 7: Conceptual representation of the evolutionary path of any evolutionary algo-
rithm using an objective function (a) and novelty search (b) to find the solution (marked
by a crossed-out circle). The further away from the start, the higher the complexity of
the solution. The spiral-themed path in (b) represents how the algorithm does a thor-
ough search through the search space, starting at low complexity, and not affected by
any goal other than the search for novelty. When a problem is deceptive, the novelty
search is undisturbed by deceptions, whereas in (a) the path might not be as optimal as
presented, or ever even reach the solution.

The novelty metric computes the sparseness of a behavior within the search space.
It does this by making use of a novelty archive, where old behaviors are kept and used
to calculate the behavioral distance of a new individual. Generally, this measure of
sparseness is calculated through a k-nearest neighbors algorithm. The sparseness p at
point x is given by

p(x) =
1

k

k∑
i=0

dist(x, µi) (8)

where µi is the ith nearest neighbor of x with respect to the novelty metric dist. The
greater this Euclidean distance, the greater the novelty. A threshold is maintained, that
can rise and fall depending on the rate of approval of new sufficiently novel genomes.
This archive gives a useful sample in showing where the search has been, and where it is
going. We can make use of an goal function to determine when to stop the search, but
we must make sure not to use any such objectivity during the search.

We have so far discussed the intricacies of novelty search, its potential towards having
greater success in solving deceptive problems, but an important issue is that it does
perform worse when confronted with non-deceptive yet relatively complex problems.
This makes intuitive sense, as shown in Figure 7, the length of the path in (a) is decidedly
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shorter than that for (b), where the distance from start to goal is supposed to illustrate
complexity. This impediment could possibly be overcome by introducing a two-step
search, where it starts a search using objective measures, and when fitness is no longer
increasing sufficiently each generation (indicating deception), reset and switch to novelty
search.

Another concern, which has been given little attention but has shown to be quite
important, is the novelty metric used. Imagine if we had an evolutionary algorithm
which uses a badly designed objective function, and subsequently proceeds to function
unacceptably. Indeed, there exists a large volume of literature expanding on noisy and
uncertain problems, for when problems have a set of objective results and clear decisions
on which behavior is superior becomes much more difficult (Hughes, 2001). While the
novelty metric is expected to properly identify key differences between two behaviors,
there is no such things as having a multitude of performance criterium. There is only
the uniqueness of a behavior that counts.

Whitley (2014) makes the claim that only challenging problems are deceptive. While
this work is no good place to discuss the claim to the fullest extent, there is good reason
to believe that within the confines of the Prisoner’s Dilemma only the deceptive strategies
are challenging for an evolutionary algorithm to overpower.

6 Experimental Design

The software for which the empirical data has been generated is a modified version of
Colin (2017), which can be found in Appendix B. The main objective for the experi-
ment was to find whether there was a significant change in phenome evaluation when
using novelty search rather than objective functions. An experiment consisted of a large
number of parameters, but most are set to default states. The fitness of an NOVELTY
phenome is evaluated by playing n games against each strategy in the strategy pool and
calculating its score. When a strategy employs some form of probability, then n games
are played an additional 99 times and the average score is calculated instead, to make
sure high scores are not attributed to sheer luck. The total score, the cumulative of
all calculated (average) scores, is considered a phenome’s fitness. An objective-function
based search therefore searches for high scores.

The network of a phenome, shown also in Figure 8, has a variable number of inputs
nodes, and exactly two output nodes. Inputs nodes must be at least 3, and must be an
odd amount. The first input node is the bias node. Every subsequent pair of input nodes
represents the outcomes of past iterations, where the first pair is the previous iteration
its set of choices, and the ith pair the t−ith iteration its set of choices. The two output
nodes signal its propensity to playing C or D respectively. All values are normalized to
[0, 1).

The reasoning for two output nodes instead of one, is to account for potential un-
certainty within the network. To explain the difference precisely, imagine two countries
with compulsory voting. Both countries employ a two-party system, and have exactly
the same populations and both parties have the same ideologies. The only difference
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between the two countries is that in country A voters have a choice between party ’Co-
operate’ and ’Defect’, and in country B voters have a choice between party ’Cooperate’,
’Defect’ and to vote ’indecisive’. For the algorithm, country A represents a single out-
put node where values greater or equal to 0.5 would result in a Cooperate action, and
country B represents the double output version, where the node with the higher value
results in its respective action. In country A the election results are 55% for ’Cooperate’
and 45% for ’Defect (in the algorithms terms, this would result in a single output value
of 0.55). Country B’s election results are instead 35% for ’Cooperate’, 40% for ’Defect’
and 25% for ’indecisive’ (two output values of 0.35 and 0.40), it shows that ’Defect’ has
more decisive voters, and should be given the preference. The uncertain voters have
been filtered out in country B.

Bias

My choice at t−1

Opponent choice at t−1

My choice at t−2

Opponent choice at t−2

Propensity to play C

Propensity to play D

Input
layer

Output
layer

Figure 8: An NOVELTY phenome in its most basic state. This phenome can look up to
two iterations back in the past (memory-2). Hidden nodes will be added evolutionarily
as generations transpire. After initialization, input and output nodes do not change.

Novelty search is implemented using a behavior archive and a novelty metric that
is based on the choices made during a fitness evaluation. This sequence of choices a
phenome has made during each of its n games is called a phenome’s behavior. A behavior
archive, also known as a novelty archive, is a collection of behaviors that are sufficiently
different from others during the same time frame. The behavior archive starts empty,
and is filled with any behavior until its size equals k, which is the minimum amount in
order to calculate a behavior’s distance to the k nearest behaviors. When the archive
reaches size k, it obtains the distance threshold pmin by calculating the average distance
these first k behaviors are from each other. Each new behavior is compared to the k
nearest behaviors, and is either accepted into the archive when the distance is greater
than pmin, or refused otherwise. Each time a behavior is accepted, pmin is increased by
5 percent point. When refused, pmin is decreased by 0.2 percent point.

This same archive is used to show the empirical data found. Because it contains the
behaviors of only novel phenomes, it is also used for objective-based searches, because
the visualizing the archive clearly demonstrates the search for both methods. During
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objective searches, the archive functions well as a filter for phenomes that are too much
alike in behavior, which would merely bloat the data with duplicate behaviors.

7 Results

Each of the following experimental results have a number of important parameters ad-
justed. The full details of all parameters for each experiment are relegated to Ap-
pendix B. This data is extracted from the novelty archive. During objective searches,
the novelty archive was only used to show where the search was headed in the search
space, but completely ignored for actual searching purposes. It was slightly modified to
allow for better visualization of the search trend.

The goal of these experiments was to find whether novelty search performs better in
finding behaviors which consistently have top scores in an Iterated Prisoner’s Dilemma
tournament versus exclusively ”challenging” opponents. Challenging opponents here
imply extortionate ZD strategies.

The following graphs in this section are visualizations of the novelty archive during its
search. The following explanation is valid for all graphs in this section. The X axis is the
index number of each element in the novelty archive, sorted by seniority. Early behaviors
found in the first few generations are on the left side of the graph, and this should be
interpreted as a temporal measure. The left-Y axis is the score obtained by a behavior,
the right-Y axis is the number of wins obtained by a behavior. One strategy wins over
the other when that strategy has accumulated a greater score than the other. Each small
vertical bar on the graph displays an archived behavior’s score (left Y axis). This allows
for nice visualization of the search, because a tournament of any size has a minimum
obtainable score and a maximum obtainable score, and all scores in between show the
possible scores obtainable by a behavior. These minima and maxima are dictated by
the opponent pool of any such tournament. The average-wins curve shows the average
number of wins each behavior up to some index i have obtained. Wins are not equal to
a behavior’s ranking. The average-ranking shows the average ranking each behavior has
obtained up to some index i. The Y-axis for this curve is not displayed, as it is always a
static value from 0 to 1, where 1 means having the highest score in a tournament, and
0 means having the lowest score in a tournament. Ranking r is calculated by

r =
(n− pi)
(n− 1)

(9)

where n is the number of players in a tournament, and p the position of player i after
a tournament has ended. For example, third place is converted to a ranking of 0.3̄ in
a tournament with 4 players. When the average-ranking curve climbs, the behaviors in
the archive increase in quality.

In Figure 9 we find a comparison between objective search and novelty search when
the tournament pool is composed of only a large number of arbitrary non-extortionate
strategies. It neatly displays the main difference between these two search methods.
Objective search searches for the high score, and searches the narrow search space
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around such high-scoring behaviors. The big cluster of behaviors just under 30000
is where the objective search will eternally remain. This particular tournament only
contains non-extortionate, non-deceptive strategies. Both the average-wins and average-
ranking curves are near identical, because objectively maximising either will lead to a
tournament-winning behavior.

Novelty search very clearly demonstrates its exploratory power. It has considered
most, if not all, behaviors that lead to all possible scores, including the ones objective
search has spent the same time rediscovering over and over. However, because the
problem is not deceptive, this more thorough search through the search space is a wasted
effort. The tournament does not contain a strategy that is strong against evolutionary
opponents.

Objective search (a) Novelty search (b)

Figure 9: IPD Tournament with 100 randomly generated non-extortionate strategies,
using the model from Section 3. Both systems are using a population of 150 genomes
with memory-5 and K = 3.

We empirically display the recipe for a deceptive strategy. EXTORT-2 is a strategy
that outperforms objective-searching evolutionary opponents, as high scores are obtained
by cooperating with EXTORT-2. During tournaments, this would be an error, as going
for high scores against EXTORT-2 means being extorted by EXTORT-2. Allowing
EXTORT-2 to obtain an inevitably higher score increases its chances of winning the
tournament, and thus decreasing the phenome’s chances. In Figure 10, the number of
behaviors that have won against EXTORT-2 is much greater in novelty search than
in objective search. Additionally, the actual scores obtained in novelty search are also
greater, because novelty search is taking more time in investigating that search space
area. The average-ranking curve is climbing as it moves into greater complexity space,
suggesting complexity is necessary to defeat EXTORT-2. The optimal behaviors found
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by objective search are discarded immediately, as their fitness are too low to be included
in the next generation. They are found in the archive especially because the result of
their behavior is drastically different from the rest. None of the high scores that are
clustered during objective search win against EXTORT-2.

Objective search (a) Novelty search (b)

Figure 10: IPD Tournament with only EXTORT-2. Both systems are using a population
of 150 genomes with memory-5 and K = 4. The diamonds are added to accentuate
behaviors which have obtained a higher score than EXTORT-2.

The concept of deception in strategies can be expanded to tournaments by including
a number of deceptive strategies to a tournament. We use the ZD strategies found in
Table 1 and graph the results in Figure 11. We see similar behavior as in Figure 10, where
objective search is only interested in obtaining top scores, and novelty search explores all
obtainable scores. The deception is shown in by comparing the average-ranking curves
for both graphs. Objective search exclusively finds rather high scores, but its ranking
remains forever what is the equivalent of 3rd place. Novelty search has managed second
place by exploring all possibilities, and therefore breaks free from the deceptive trap.
It is not optimal, it does not win the tournament, but it does perform better than the
normal evolutionary phenome.

Another object of deception is best explained by observing Tables 2 and 3. Each row
shows the score the row strategy has obtained versus the column strategy. The score
column is the cumulative score of a row, and the wins column displays the number of
times the row strategy has won against a column strategy. A strategy obtains a 1

2 win
when it ties with a strategy. Top scores and top wins are emphasized in bold. These
tables show the relative strength of NOVELTY over classical evolutionary strategies.

Comparing the two tables, average scores for the objective phenome and novelty phe-
nomes are respectively 690 and 498. The novelty phenome is much lower, as it disallows

19



Objective search (a) Novelty search (b)

Figure 11: IPD Tournament with GTFT, ZDGTFT-2 and EXTORT-2. Both systems
are using a population of 150 genomes with memory-5 and K = 4.

Phenome GTFT ZDGTFT-2 EXTORT-2 Score Wins

Phenome 150 300 213 663 0.5
GTFT 400 245 101 746 2
ZDGTFT-2 300 150 181 631 0.5
EXTORT-2 358 106 256 720 3

Table 2: The best phenome’s performance found during the objective search. GTFT
wins this tournament, EXTORT-2 has defeated all other opponents. Our phenome is
third place.

Phenome GTFT ZDGTFT-2 EXTORT-2 Score Wins

Phenome 102 288 106 496 2.5
GTFT 102 245 101 448 1.5
ZDGTFT-2 253 150 181 584 0
EXTORT-2 101 106 256 463 2

Table 3: The best phenome’s performance found during the novelty search. ZDGTFT-2
wins this tournament, our phenome has the most wins. Our phenome is second place.
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the other strategies from obtaining great amounts of payoff from playing against it. It
is much less cooperative, which is useful when playing against extortionate strategies.
The novelty phenome does cooperate, with ZDGTFT-2, but is generally less inclined.
This behavior has allowed it to obtain second place as opposed to third place. Further-
more, notice that EXTORT-2 has won against all opponents in Table 2, yet did not
win the tournament. Thus, winning a tournament is not as easy as simply defeating all
opponents. It is also critical to consider by how much one is winning (or losing).

We have shown how NOVELTY has a better chance in withstanding ZD strategies
than the normal evolutionary strategy. Deception is suggested to exist in an IPD tour-
nament environment, and this deception is only present together with ZD strategies.
While NOVELTY is not yet finding any behaviors that explicitly wins any configuration
of an IPD tournament, the deceptive obstacles that ZD strategies have brought to IPD
tournaments have been significantly transcended.

8 Discussion

Novelty search is principally inspired by evolution in nature. Nature’s evolution is vir-
tually unguided, yet has produced solutions to unimaginably difficult problems. Such
solutions are never quite precise, they are very often estimations, never perfect. An arti-
ficial neural network is neither as precise. Depending on the problem, phenomes can be
structurally very different, but exhibit similar behavior. If the solutions these networks
produce needed to be very precise, it often meant a solution either could not be found, or
the objective function was overfitted so excessively that it could not produce any other
solution than a precise one.

Slime molds are a great example in nature of novelty search in action. These giant
multinucleated cells can extend more than a square decimeter. In an experiment, these
molds are put on a plate that is connected by a bridge over to another plate loaded with
their food. However, this bridge is covered in a bitter but harmless substance. After
exhausting all other options, the slime mold extended a single thin tentacle across the bit-
terness to explore what was on the other side, and subsequentially finds the food (Vogel
& Dussutour, 2016). In other words, after having exhausted all other options, novel be-
havior emerged which has lead to the organism to overcome the deceptive bridge. If this
problem was attempted by an artificial evolutionary algorithm, abstractly, the designers
would have had three options. An intuitive objective function (positive fitness for find-
ing food, negative fitness for finding bitter substances), an overfitting objective function
(positive fitness for finding food, and for exploring landscapes with bitter substances),
or the novelty search function. The first function might possibly never find food. The
second function would find the food, but if the experiment was adjusted to also add food
nearby without any deceptive bitter bridges, it would prefer the less optimal one. The
third function would function similarly to how the slime mold functioned.

Nature’s most remarkable creations are often very much general-purpose. Slime
molds have shown to solve a wide array of problems, such as building networks, avoid
traps, solving mazes and anticipating periodic events. We ourselves are the most exem-
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plary illustration of this remark, and there are few things one can think of that do not
have directly or indirectly an occupation connected to it. The ”No Free Lunch” (NFL)
theorem states that if an algorithm performs well on a certain set of problems, then that
same algorithm will have paid in performance when used for a different set of problems.
More specifically, Wolpert and Macready (1997) explains that if an algorithm performs
better than a random search on a set of problems, random search must perform better
than that algorithm on another set of problems. This is an important specification, as
novelty search is a generalist that essentially employs random search in a structured
way. Novelty is explicitly a new behavior generated through randomization, rather than
simply a random behavior.

Reduce this abstract set of problems to a set of tournaments κ ⊂ K, we have found
novelty search to be a quick estimator for a solution of any κ, whether it contains
deceptive strategies or not. One could design an algorithm that specifically overfits for
ZD strategies, but as the NFL dictates, it will pay in performance against a different
class of tournaments. Particular reports of strong results such an overfitted strategy
may produce in a particular tournament κ are of limited utility.

Given these implications, there exist a large number of multi-agent learning algo-
rithms that remain uncompared. Zawadzki, Lipson, and Leyton-Brown (2014) makes
the important case that experiments are often designed to advocate for their newly-
designed algorithm rather than surveying the landscape with their own algorithm as one
extra addition. That these experiments are also often conducted until different envi-
ronment, making comparisons even more difficult. Here, too, these comparisons are not
made empirically. This is due to an important observation made by Zawadzki et al.,
p. 21: ”Algorithm performance depended substantially on which opponent was played.”.
This observation is perfectly in line with the NFL theorem. A strong performance ver-
sus one algorithm means a weak performance versus another. These same algorithms
are also, in theory, sensitive to being deceived. For example, no-regret learning is an
algorithm, where regret is considered the difference between playing the best pure static
strategy τs, and the payoff it received when playing some sequence of actions. Obtaining
no regret is when this difference is zero, meaning every time the algorithm picks an
action different to τs static action, it leads to a higher payoff.

However, such an algorithm is deceived by extortionate strategies. There is reason to
believe that no-regret learning will always become an ALL-D type strategy, as any time
the algorithm is extorted it will shift its weights down to more defections until its only
defecting. It will never realise that balancing out the extortions with your own extortions
will increase your overall payoff without necessarily increasing the extortioner’s payoff
relative to your own. This fact is elaborated properly when contrasting it against a TFT
strategy. Assume for illustrative purposes that we already know the best pure static
strategy is to cooperate. When playing n repeated games, it will find that defecting
at the nth game is beneficial to its regret. We can continue this logic until the regret
algorithm will defect continually against TFT strategies. Fictitious play is another
algorithm that perhaps stands a better chance against at least extortionate strategies,
as it assumes its opponent is playing an unknown and potentially mixed stationary
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strategy (Young, 2004, pp. 76-90). More generally however, further research into such
algorithms would be welcome, as only a comparison between evolutionary players has
been explored thus far.

When we consider that novelty search in essence is a very structured random walk,
such that it is quite balanced with respect to the NFL theorem (that is, the algorithm
does not pay much performance when up against any alternative set of problems), there
might remain methods to upgrade the algorithm without upsetting this NFL-balance.
Novelty search can be extended by enforcing minimal criteria, which prunes the space
of viable behaviors, increasing efficiency (Lehman & Stanley, 2010). In evolution, this
minimum criterium is the ability to survive long enough to reproduce. While there are
countless ways to organisms to survive and reproduce, the outcome is the same. Often,
and especially during the experiments performed in this thesis, our algorithm has found
many behaviors which are structurally different yet express the same functionality. The
minimum criteria in natural evolution is survival and reproduction, but in our algorithm
it can correspond to anything. When the minimum criteria are not met then the behavior
is discard, otherwise the algorithm proceeds as normal.

In our IPD problem, an interesting minimum criteria design could be to generate
the minimum criteria after performing some tests on a tournament prior to actually
initiating the algorithm. We generate the minimum criteria by playing a number of
very simple non-deterministic strategies, probably ALL-D and ALL-C. When these test
strategies have not won the tournament after n trials, we can safely assume that these
simple test strategies will never win. We could assume any strategy which perfectly
mimics any test strategy to be under the minimum criteria and thus be pruned out of
the search. We can easily find out whether a behavior equals a test strategy, such as
ALL-D, by inspecting the response of the behavior using all possible input permutations
and comparing it with the test strategy. We want to use non-deterministic strategies as
they minimize the chance of randomness plays a role in the creation of minimal critera.
This concept would prune a large number of possibly complex structures which express
very simple actual behavior.

Another upgrade to novelty search might be to initially start with an objective search-
based algorithm prior to a novelty search-based algorithm. Objective search often is
quicker at finding solutions to less challenging problems, but these are still problems
that need solving. We can stop the search either when the goal solution has been found,
or the top fitness found during a generation has not changed in the last n generations.
When the latter is the case, we can assume there exists some deception and the novelty
search algorithm can be started.

In summary, novelty search has allowed us to find strategies for IPD tournaments
where the objective is not as simple as attempting to obtain the highest score versus other
strategies. The novelty search allows us to find complex behaviors that can break through
this deception and find strategies that consistently perform better in any tournament
configuration.
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9 Conclusion

This thesis has made use of the novelty search algorithm to produce better performing
strategies to play an Iterated Prisoner’s Dilemma tournament. Winning a tournament
tends to be a highly deceptive endeavour due to the interactions among the strategies.
We have presented what constitutes a deceptive tournament, and have shown novelty
search to more consistently find a greater variety of behaviors that break through the
deceptive barriers than objective search would. Finally, we have discussed how the
”No Free Lunch” theorem is respected by using novelty search, and have explored some
ideas on how to improve the used methods. The conclusion is that finding evolutionary
behaviors in Iterated Prisoner’s Dilemma tournaments is difficult when the opponents
are of the extortionate kind, and that novelty search offers an answer for evolutionary
algorithms to combating these recently developed strategies.
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A Strategy Models

Q′ = {C}

if Payoff t−1 = {T, S}

Q = {C}Q = {D}

Figure 12: Model for the Pavlov strategy, or win-stay lose-switch strategy. Pavlov has
no randomization component, so ξ is 0, it starts with cooperating, so Q initializes to
{C}. When Q is empty, it requests a new Q from the tree. Pavlov considers both T
and R a win, both of which result from a defect and cooperate choice respectively. If it
encounters a T , it will ’stay’ by defecting once more. If it encounters a S, which means it
has cooperated last round, it will ’switch’ to defecting. Q′, α and β are omitted because
they serve no purpose in this model.

Q = {C6, D5}
Q′ = [A > B]{C}{D}

Top : if S,PPayoff t−1 = {R,S}

if 0,T−PPayoff t−1 = {T}

Go to Topk−1Go to Topk−1

if R−S,0Payoff t−1 = {R}

Go to Topk−1Go to Topk−1

Figure 13: Model for the Adaptive strategy. Adaptive generally starts with six coop-
erates followed by five defections, then takes choices which have given the best average
score, recalculates after every move. T,R, P, S values for α and β refer to the actual
payoff values for the PD.
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Q = {C}
Q′ = {DB, C2}

Top : if 0,1Payoff t−1 = {R, T}

Go to Topk−1Q = C

Figure 14: Model for the Gradual strategy. Gradual cooperates until the opponent
defects, in such case defects the total number of times the opponent has defected during
the game. Followed up by two cooperations.

Q′ = {C}

if B ≤ 0

Q = Dif 0,1Payoff t−1 = {R, T}

Q = DQ = C

Figure 15: Model for the Grudger strategy. Cooperate until the opponent defects. Then
always defect unforgivingly.

Q′ = {C}

if Payoff t−1 = {P, S}

if 0,10.05 ≤ X ∼ U([0, 1])

Q = DQ = C

if 0,−1B ≤ 0

Q = CQ = D

Figure 16: Model for the Remorseful Prober strategy. Repeat opponent’s last choice (ie
Tit For Tat), but sometimes probe by defecting in lieu of co-operating. If the opponent
defects in response to probing, show remorse by co-operating once. We use the B counter
to keep track of whether we probed or not, but we could also look further back in the
history of the outcomes to see whether we probed.
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B Experiment

B.1 Software

Author-modified source code forked from Colin (2017) can be found here:
https://github.com/XGDragon/INTEL-sharpneat/releases/tag/v2.3.1-intel

B.2 Experimental Parameters

The following tables show the parameters used for all experiments found in Section 7.
If a parameter varied between experiments, it will be marked var.

Evolution Specific

Activation Scheme Acyclic

Population 150

Number of Species 10

Elitism Proportion 20%

Selection Proportion 20%

Probability Asexual Offspring 50%

Probability Crossover 50%

Probability Interspecies Mating 1%

Genome Specific

Connection Weight Range 5

Probability Connection Weight Mutation 98.8%

Probability Neuron Add Mutation 0.1%

Probability Neuron Add Connection 1%

Probability Neuron Remove Connection 0.1%

Domain Specific

Number of Games 100

Strategy Pool var

Random Robust Check3 100

Random Player Seed 9865

Memory (inputnodes× 2− bias) 5

K var

Evaluation Mode var

Evaluation Limit 100000

3The amount of runs done versus a non-deterministic strategy. The resulting payoffs from each rerun
is averaged and returned.
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