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Abstract

In economic chaos theory, results often follow from the analysis of discrete
dynamical systems. In this thesis, we review three methods for identifying
chaos in continuous dynamical systems: the analysis of Lyapunov expo-
nents, methods for computing unstable periodic orbits and the 0-1 test
for chaos. The results for three economic models do not seem to be in
agreement for the different methods.
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1 Introduction

1.1 Chaos in economics

In today’s economy, many complex phenomena such as irregular fluctuations
and unpredictable market transitions may arise. The financial-economic crisis
that started in 2007 is an example of the devastating effects these events can
have on the worldwide market. Policymakers are faced with the question to
respond to these fluctuations. In order to do so, it is important to understand
the underlying dynamics and phenomena that may appear with such dynamics.

We can distinguish between exogenous and endogenous “shocks” that
may have influence on an economic system. In the early days of the study of
economic dynamical systems, which we can roughly date back to the 1930s, the
exogenous effects on an inherently stable economic system were often investi-
gated. In the 1940s and 1950s, this linear stability was criticized because it did
not give an economic explanation of observations. They were countered by the
nonlinear business cycle models, but because these models also did not suffice,
a new theory of rational expectations was set up in the 1960s. In mathematics
and physics, deterministic chaos was discovered in the 1960s. The application of
this new chaos theory would lead to a definite choice for the endogenous effects
as the focus of research in economic systems. Hommes explains this internal
variability with the idea of a behavioral theory of heterogeneous expectations [7].

However, the models that he uses are low-dimensional dynamical systems
with discrete time steps. This makes the models easy to understand and
reproduce, but the viability of discrete-time economics can be questioned.
It is also known that chaos can occur in discrete dynamical systems of all
dimensions, whereas chaos in continuous-time dynamical systems can only
occur for dimension at least three. Hence, chaos should not be endogenous to
continuous economic models with one or two dimensions, unless discrete forcing
plays a role.

1.2 Discrete versus continuous dynamical systems

The models Hommes uses are dynamical systems with discrete time step.
They assume a feedback system with a fixed time step. Even though economic
transactions do not take place continuously, in general they will not take
place with a fixed time step. These transactions will overlap in a random
way, and only in rare circumstances one can define a ‘natural period’ [12].
Furthermore, because trades on the financial market can be made everywhere
and always, the continuity assumption of the economy has become an even
stronger ‘approximation’ of the reality.

As we mentioned before, chaotic behavior can occur in one-dimensional discrete
systems, whereas it can only occur in continuous systems with at least three
dimensions. The assumption of chaotic behavior in complex economic systems
is therefore more satisfied by showing chaos in continuous models.

To study the chaotic behavior of continuous dynamical systems, we will focus
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on the dynamics upon the strange attractor of the system. This attractor can
be informally defined as the invariant set to which most orbits of the systems
tend.

1.3 Deterministic chaos

We will restrict ourselves to the study of deterministic chaos described by ordi-
nary differential equations. Deterministic chaos can be characterized informally
by the following three properties [2]:

1. sensitive dependence on initial conditions

2. dense unstable periodic orbits

3. topological mixing on an attractor

In this thesis, we review three methods for identifying chaos in continuous dy-
namical systems: analysis of Lyapunov exponents (2.1), methods for computing
unstable periodic orbits (2.2) and the so-called 0-1 test for chaos (2.3). The
first two of these can be used to identify sensitive dependence on initial condi-
tions, the second to find unstable periodic orbits and the third of these seeks to
identify non(quasi-)periodic behavior.

2 Methods

2.1 Lyapunov exponents

2.1.1 Interpretation

Lyapunov exponents are concerned with the asymptotic growth speed of so-
lutions of linearized dynamical systems. They can be considered informally
as the time-averaged eigenvalues of a non-autonomous systems of differential
equations. Let

y′(t) = f(t, y(t)), y(t) ∈ Rd, f : R× Rd → Rd, (1)

be a system of d differential equations. Define the Jacobian matrix of f by

A(t) =
(
Aij(t)

)
:=
(∂fi(t, y)

∂yj

)
, i, j = 1, . . . , d. (2)

Let Y (t) ∈ Rd×d satisfy the matrix differential equation

Y ′(t) = A(t)Y (t), Y (0) = Y0 invertible, (3)

then Y (t) is called a fundamental matrix solution. Now let

λi := lim sup
t→∞

1

t
||Y (t)ei||, (4)

where ei are the canonical coordinate vectors, be such that
∑
i λi is minimal

over all Y0. We shall call these d quantities the Lyapunov exponents of (1).
In particular, for a system

y′(t) = B(t)y(t), y(t) ∈ Rd, f : R× Rd → Rd, (5)
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such that B(t) is upper triangular for all t, i.e., all entries below the main
diagonal are zero, we can define the Lyapunov exponents as

λi = lim
t→∞

1

t

∫ t

0

Bii(s)ds, (6)

assuming that B(t) is bounded, continuous and regular. For computational
reasons, this definition is preferred over (4). For a general system, we should
therefore find a continuous change of variables such that it can be written as
(5).
The most common means of identifying chaos is to establish that at least one
Lyapunov exponent is positive on the strange attractor.

2.1.2 QR factorization

The QR factorization of a real matrix Y is a decomposition

Y = QR, (7)

where Q satisfies QTQ = I, i.e., Q is orthonormal, and R is upper triangular
with positive diagonal. If Y is non-singular, this decomposition is unique.
There are several methods for explicitly computing the decomposition, but we
shall use the modified Gram-Schimdt algorithm in this thesis. For more details,
see, for instance, [4].

2.1.3 Practical computation

Let Y be a fundamental matrix solution of (1). We then factorize this solution by
the Gram-Schmidt procedure: Y (t) = Q(t)R(t), where Q ∈ Rd×d is orthonormal
and R is upper triangular. Define the matrix S(t) = Q(t)T Q̇(t). Then by
differentiating both sides of the orthonormality relation Q(t)TQ(t) = I,

d

dt
(Q(t)TQ(t)) = Q̇(t)TQ(t) +Q(t)T Q̇(t) =

d

dt
I = 0,

we see that S is skew-symmetric. Substituting the QR factorization is (3) gives

Q̇R+QṘ = AQR. (8)

We can split this equation into separate differential equations for R and Q. At
first, we multiply by QT from the left. This yields the equation

Ṙ = BR, (9)

with

B(t) = Q(t)TA(t)Q(t)− S(t). (10)

Now because R and Ṙ are upper triangular, it follows that B = ṘR−1 is also
upper triangular. By construction, one sees that the lower triangular part of
S will cancel out the lower triangular part of QTAQ. So because S is skew-
symmetric, we can fully specify its components:
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Sij =


(QTAQ)ij , i > j,

0, i = j,

−Sji, i < j,

(11)

We now multiply (8) by R−1 from the right, which gives the differential equation
for Q:

Q̇ = AQ−QṘR−1 = AQ−QB

Q̇ = AQ−Q
(
QTAQ− S

)
Q̇ =

(
I −QQT

)
AQ+QS (12)

We now see that by simultaneously solving the system of differential equations
formed by (1), (9) and (12), we can use the definition of B as in (10) to compute
the Lyapunov exponents in definition (6). This computation is implemented
simultaneously with solving the system of differential equations to see the con-
vergence of the Lyapunov exponents in time. All these computations are done
with a fourth order Runga-Kutta method unless mentioned otherwise.

2.1.4 Attractor dimension

The Lyapunov exponents can be scaled by rescaling time. It is therefore useful to
consider a quantitative characterization that accounts for the relative strength
of the positive Lyapunov exponent(s). Let the Lyapunov exponents be labeled
such that λ1 ≥ λ2 ≥ · · · ≥ λd and let k be the index for which

λ1 + · · ·+ λk > 0 and λ1 + · · ·+ λk+1 < 0.

We will calculate the Lyapunov dimension DL as defined by Kaplan and Yorke
[8]:

DL = k +
λ1 + · · ·+ λk
|λk+1|

. (13)

2.2 Unstable periodic orbits

Here we explain in more detail the Lindstedt-Poincaré technique to compute
unstable periodic orbits as described by Viswanath in [13].
We want to numerically compute periodic solution of the (multidimensional)
differential equation

ẋ(t) = f(x(t)). (14)

If the period T is unknown, we can perform the time scaling t 7→ t/ω, where
ω = 2π/T . This leads to the differential equation

ωẋ(t) = f(x(t)), (15)

where the corresponding periodic solution now has period 2π.
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2.2.1 Fourier representation

We would now like to represent our periodic solution as a Fourier series:

x(t) =

∞∑
k=−∞

x̂ke
ikt. (16)

As the solution now has period 2π, the Fourier coefficients x̂k ∈ C, k ∈ Z are
given by

x̂k =

∫ π

−π
x(t)e−iktdt.

To perform the numerical computation, we have to truncate the Fourier series to
a finite numberN . Assuming that our periodic solution is analytic, we can get an
exponentially converging approximation as N →∞ by sampling the solution on
a uniform grid with N grid points xj = x(j∆t), j = 0, 1, . . . , N − 1,∆t = 2π/N .
We can now apply discrete Fourier transformation to the grid function and its
Fourier representation:

xj =
1

N

N/2∑
k=−N/2

x̂ke
ijk∆t, x̂k =

N−1∑
j=0

xje
−ijk∆t. (17)

The discrete Fourier transformation and its inverse can be effectively com-
puted. The Fast Fourier Transformation (FFT) and the Inverse Fast Fourier
Transformation (IFFT) are stable algorithms implemented in MATLAB, which
allow computation of (17) in O(N logN) operations.

Another advantage of this representation is that it allows us to compute the
derivate of the function in an easy way:

x′(t) =

∞∑
k=−∞

ikx̂ke
ikt. (18)

2.2.2 Newton’s method

We now apply Newton’s method to find a zero of the residual function

r(x(t), ω) = f(x(t))− ωẋ(t). (19)

We now calculate x(j∆t), j = 0, . . . , N −1 on a uniform grid, fill in these values

in fj and compute the FFT of fj , f̂k, k = − (N−1)
2 , . . . , (N−1)

2 , to find the Fourier
representation of the residual:

r̂k = f̂k − ikx̂k.

Now assume we have a first guess (x0(t), ω0), then we can express the actual
solution (x(t), ω) of a zero residual as a perturbation: x(t) = x0(t) + y(t) and
ω = ω0 + dω, where we dictate that y(t) is periodic with period 2π. We can
now linearize the residual around this guess to find an approximation:
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r(x0(t) + y(t), ω0 + dω) ≈ r(x0(t), ω0) +A(t)y(t)− ω0ẏ(t)− dωẋ0(t), (20)

where A(t) is the Jacobian matrix of f , evaluated at the guess solution x0(t).
With Newton’s method, we now get a new guess x1(t) = x0(t) + y(t) and
ω1 = ω0 + dω, for which we repeat the procedure. The Lindstedt-Poincaré
method is concerned with approximately finding a zero of (20).

2.2.3 Lindstedt-Poincaré method

For the l-th iteration of Newton’s method, we have to solve the correction equa-
tion

ωlẏ(t) = A(t)y(t) + rl(t)− dωẋl(t), (21)

where (xl(t), ωl) is the starting guess and rl(t) := r(xl(t), ωl), to find an approx-
imate zero of the linearized residual. For notational reasons, we will now drop
the subscript indicating the iteration. First, we consider the homogeneous part:

ωẏ(t) = A(t)y(t) (22)

We can find a solution for every initial value y(0) = y0 by solving the fun-
damental matrix equation

ωẎ (t) = A(t)Y (t), Y (0) = I, (23)

for Y ∈ Rd×d. Then the solution of (22) is given by

y(t) = Y (t)y0. (24)

Now, we try a general solution of (21) in the form

y(t) = Y (t)y0 + dωf1(t)− f2(t). (25)

Filling in this solution in (21) and after collection terms, we see that f1(t) and
f2(t) must satisfy

ωḟ1(t) = A(t)f1(t) + r(t), (26)

ωḟ2(t) = A(t)f2(t) + ẋ(t). (27)

We can let the initial conditions be given by f1(0) = f2(0) = 0. Now by
solving (23), (26) and (27), we find the solution of (21) up to y0 and dω. By
demanding that y(2π) = y0 and f(x(0))T y0 = 0, we ensure the solution is
periodic and dω is uniquely determined. Now we can again update the guess in
(21) and repeat the algorithm.

2.3 The 0-1 test for chaos

The 0-1 test for chaos was developed in a series of papers by Gottwald and
Melbourne to distinguish between regular and chaotic behavior in dynamical
systems [5]. In contrast to the method of calculating Lyapunov exponents, the

9



0-1 test does not involve any preprocessing of the (discretized) data, use of Ja-
cobian matrices or other processes that may influence the practical computation.

Given a time series φ(n), for n = 1, . . . , N , of one of the variables of the system,
let

pc(n) =

n∑
j=1

φ(j) cos(jc), qc(n) =

n∑
j=1

φ(j) sin(jc) (28)

for a random c ∈ (π/5, 4π/5). From this, we calculate the time-averaged mean
square displacement

Mc(n) =
1

N

N∑
j=1

([pc(j + n)− pc(j)]2) + ([qc(j + n)− qc(j)]2), (29)

for n ≤ N/10. The asymptotic growth rate Kc is given by

Kc = lim
n→∞

logMc(n)

log n
. (30)

A significantly chaotic driving signal φ(n) is expected to behave approximately
like a two-dimensional Brownian motion, causing (p, q) to undergo a random
walk. In the (quasi)-periodic case, the behavior of (p, q) is expected to be
bounded and to show symmetry.

We now repeat this procedure for 100 random values of c ∈ (π/5, 4π/5), and
we then plot K = median(Kc) versus the number of iterations n to study the
asymptotic behavior of K. For non-chaotic behavior, K will converge to 0 and
for chaotic behavior, K will converge to 1.

Because we study continuous-time dynamical systems, we have to discretize the
data to use this test. For all models, we take the last 10,000 points that are
calculated in the Runga-Kutta method.

3 Application to test problems

In this section, we shall apply the described methods to identify chaos to the
following models:

1. Lorenz-63 model

2. Medio model

3. Asada et al. model

4. H.-W. Lorenz model

The Lorenz-63 is not an economic model, but it is used to illustrate the
methods and the familiar results. The non-chaotic Duffing oscillator model is
used only to illustrate the Lindstedt-Poincaré method. We will introduce each
model and explain its origin. The (projected) attractor of the model is also
shown.
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Duffing oscillator model
The Duffing oscillator, given by

q̈ = −q − εq3, (31)

is a small perturbation of the linear oscillator. If we let p = q̇, the
system is transformed into a two-dimensional Hamiltonian system with

H(p, q) = p2

2 + q2

2 + εq4

4 . We therefore know that every trajectory of this system
of equations is a periodic orbit. We shall choose ε = 0.1.

Figure 1: A trajectory of the Duffing oscillator in the (q, p)-plane for ε = 0.1. It
is calculated with N = 20, 000 time steps of size ∆t = 0.01 using a fourth order
Runga-Kutta method. We see that it is a periodic orbit.

Lorenz-63 model
The differential equations

ẋ = σ(−x+ y), (32)

ẏ = −xz + rx− y, (33)

ż = xy − bz, (34)

with σ = 10, r = 28 and b = 8
3 , where studied by Edward Lorenz to illustrate

irregular behavior in deterministic flow for relatively simple systems. It is one
of the most studied systems, exhibiting chaotic behavior with a butterfly-like
strange attractor.
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Figure 2: The Lorenz-63 attractor in the (x, y, z)-plane. It is calculated with
N = 20, 000 time steps with size ∆t = 0.1 using a fourth order Runga-Kutta
method. We see a butterfly-like attractor.

Medio model
The differential equations

ẋ1 = 10rx10(1− x10)− 10x1, (35)

ẋj = 10xj−1 − 10xj , j = 2, . . . , 10, (36)

for r = 5, form a ten-dimensional system that is equivalent to the model
studied by Medio in [12,106]. It is seen as the continuous-time-equivalent
of a discrete ‘one-hump’ function, in this case particularly the logistic map
xn+1 = rxn(1 − xn). The economic relevance of this system is not discussed
in the paper by Medio: he uses the results of his computations to show the
applicability of continuous-time system in the analysis of economic models, just
as we do.

Asada et al. model
The system of differential equations governed by

u̇ = u
(
αuu(u− ū)− αui(i− p̂− (̄i− π̄)) + αuωΩ̂

)
, (37)

ω̇ = κω
(
λp(βwe(u− û)− βwωΩ̂)− λw(βpu(u− û) + βpωΩ̂)

)
, (38)

π̇ = βπ(p̂− π), (39)

i = −γii(i− ī) + γip(p̂− π̄) + γiu(u− ū), (40)

p̂ = κ
(
βpu(u− ū) + βpωΩ̂ + κp(βwe(u− ū)− βwωΩ̂)

)
+ π, (41)

Ω̂ = log(ω)− log(ω̄), (42)

is studied by Asada et al. as a model of a Keynesian macroeconomy, exhibiting
complex dynamics [1]. If the p̂- and Ω̂-equation are inserted in the four other
equations, we find a four-dimensional autonomous system of differential equa-
tions in the four state variables u, the rate of capacity utilization of firms, ω,
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Figure 3: A projection of the Medio attractor onto the (x5, x8, x1)-plane. It is
calculated with N = 20, 000 time steps with size ∆t = 0.01 using a fourth order
Runga-Kutta method. We see that the orbit follows an ring-like structure that
is folded into itself.

the real wage, π, the inflationary climate and i the nominal rate of interest.
Although the given set of parameters in the paper of Asada et al. is incomplete,
we were able to find the missing values such that chaotic behavior seems to
occur. The values of the chosen parameters are:

βpu = 1, βpω = 0.4, λp = 0.7, βwe = 0.8, βwω = 0.4, λw = 0.3, βπ = 0.5,

αuu = 0.22, αuω = 0.1, αui = 0.25, γii = 0.1, γip = 0.5, γiu = 1,

κ = 0.91, ū = 1.1, ω̄ = 0.2, π̄ = 0.5 and ī = 0.5,

with initial conditions u0 = 0.97, ω0 = 0.95, π0 = 0.5 and ı0 = 0.5. This model
turned out to be mildly ‘stiff’: the fourth order explicit Runga-Kutta method
did not give the desired results. We therefore integrate this model with a
built-in MATLAB-function.

H.-W. Lorenz model
The six-dimensional system given by the equations

K̇i = Ii − δiKi, (43)

Ẏi = α(Ii − sYi +
∑
j>i

bijYi), (44)

for i, j = 1, 2, 3, with

Ii = C2
−1

(DYi+ε)
2 + EYi +A

( G
Ki

)H
, (45)

is an adaptation of the macroeconomic business cycle model studied by Kaldor
[9]. It models an economy with three sector i, where Yi is the gross output and
Ki is the capital stock. We will study this system for the set of parameters

A = 5, C = 25, D = 0.015, E = 0.05, G = 320, H = 7, α = 5,
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Figure 4: A projection of the Asada et al. attractor onto the (u, ω, π)-plane.
It is calculated with N = 800, 000 time steps with size ∆t = 0.005 using the
MATLAB-function ode45.

δ1 = 0.05, δ2 = 0.0505, δ3 = 0.051, ε = 0.00001, s = 0.29 and

b12 = b13 = b23 = 0.015,

which slightly differs from the set H.-W. Lorenz studied. The initial values are
K0 = 393 and Y0 = 63 for all three sectors [11]. We show the results for this set
of parameters and for the original set with H = 3.

Figure 5: A projection of the H.-W. Lorenz attractor for H = 3 onto the
(K1,K2,K3)-plane. It is calculated with N = 20, 000 time steps with size
∆t = 1 using a fourth order Runga-Kutta method. We see a complex, messy
structure. For the original set of parameters, we found the same attractor as
H.-W. Lorenz.
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Figure 6: A projection of the H.-W. Lorenz attractor for H = 7 onto the
(K1,K2,K3)-plane. It is calculated with N = 20, 000 time steps with size
∆t = 1 using a fourth order Runga-Kutta method.

3.1 Lyapunov exponents

In this section, we demonstrate the convergence of the Lyapunov exponents for
the four-dimensional Asada et al. model. We list the Lyapunov exponents for
each model.

Figure 7: Plot of 1
t

∫ t
0
Bii(s)ds as in (6) for the four-dimensional Asada et al.

model versus time t. The limiting behavior determines the value of the Lyapunov
exponents. Small oscillations occur but there appears to be convergence for each
Lyapunov exponent.
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Table 1: Lyapunov exponents λi

Lyapunov Lorenz-63 Medio Asada H.-W. Lorenz H.-W. Lorenz
exponent et al. for H = 3 for H = 7

λ1 1.0949 0.2772 0.0427 -0.0002 0.0088

λ2 -0.1328 -0.0006 -0.2070 -0.0052 -0.0010

λ3 -15.6843 -2.9753 -0.2423 -0.0885 -0.0185

λ4 - -4.5471 -0.6264 -0.2650 -0.1810

λ5 - -8.9307 - -0.2831 -0.2349

λ6 - -11.0678 - -0.3224 -0.3204

λ7 - -15.4458 - - -

λ8 - -17.0468 - - -

λ9 - -19.9864 - - -

λ10 - -20.2784 - - -

The Lyapunov dimensions are 2.0613 for the Lorenz-63 model, 2.0930 for the
Medio model, 1.2062 for the Asada et al. model, 0 for the H.-W. Lorenz model
(H = 3) and 2.4179 for the H.-W. Lorenz model (H = 7). We expect that
the positive Lyapunov exponent for the Asada et al. model should be zero.
We conclude that the models Lorenz-63, Medio and H.-W. Lorenz (H = 7) are
chaotic, whereas Asada et al. and H.-W. Lorenz (H = 7) apparently are not.
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3.2 Unstable periodic orbits

The Lindstedt-Poincaré method as described by Viswanath is successfully im-
plemented for the Duffing oscillator and the Lorenz-63 model. For the Duffing
oscillator, the first two iterations give the same results as in [13]. For the Lorenz-
63 model, we found the smallest residual error to be 8.6e− 8.
It turned out to be problematic to find good starting conditions for the iter-
ation. For the three economic models, we unsuccessfully tried to implement
the method from a starting point on the attractor. No convergence was found.
Consequently, we were unable to draw any conclusions about economic models
by studying unstable periodic orbits.

Table 2: Lindstedt-Poincaré method

(a) Duffing oscillator. The starting guess is
(q, q̇) = (cos(t), sin(t)).

iteration Real residual error

0 1e-1

1 2.3e-3

2 9.2e-7

3 3.1e-13

4 1.6e-13

5 1.0e-13

6 7.1e-14

(b) Lorenz-63 model. The starting guess is
(x0, y0, z0) = (−13.8,−19.6, 27.0).

iteration Real residual error

0 2.0e0

1 3.5e-6

2 2.7e-8

3 3.4e-8

4 4.7e-8

5 6.4e-8

6 8.6e-8

Figure 8: Projection in the (x, z)-plane of the periodic orbit of the Lorenz-63
model calculated with the Lindstedt-Poincaré method.
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3.3 The 0-1 test for chaos

We implemented the 0-1 test for chaos for the three economic models. For
comparison, the 0-1 test is also applied to the Lorenz-63 model.

Figure 9: 0-1 test for chaos for the Asada et al. model. Left: limiting behavior
of the K-value. Right: plot of pc(n) and qc(n) for n ≤ N/10 and a random
value of c ∈ (π/5, 4π/5).

Figure 10: 0-1 test for chaos for the Medio model. Left: limiting behavior of
the K-value. Right: plot of pc(n) and qc(n) for n ≤ N/10 and a random value
of c ∈ (π/5, 4π/5).

Figure 11: 0-1 test for chaos for the H.-W. Lorenz model with H = 3. Left:
limiting behavior of the K-value. Right: plot of pc(n) and qc(n) for n ≤ N/10
and a random value of c ∈ (π/5, 4π/5).
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Figure 12: 0-1 test for chaos for the H.-W. Lorenz model with H = 7. Left:
limiting behavior of the K-value. Right: plot of pc(n) and qc(n) for n ≤ N/10
and a random value of c ∈ (π/5, 4π/5).

Figure 13: 0-1 test for chaos for the Lorenz-63 model. Left: limiting behavior of
the K-value. Right: plot of pc(n) and qc(n) for n ≤ N/10 and a random value
of c ∈ (π/5, 4π/5).

Based on the 0-1 test for chaos, we find the H.-W. Lorenz model for both cases
exhibiting chaos, whereas the Medio model does not exhibit chaos. We were
unable to draw conclusions for the Asada et al. model.

4 Conclusions

To validate our methods, we tested the Duffing oscillator and the Lorenz-63
model with the analysis of Lyapunov exponents and the calculation of periodic
orbits using the Lindstedt-Poincaré method as described by Viswanath. We
found the expected results for both methods. The Lyapunov dimension of
2.0613 seems to be within a small margin of the results in other studies. The
Lindstedt-Poincaré method gives a convergence to a real residual error of 8.6e-8
for the Lorenz-63 model. We expected to find (unstable) periodic orbits.
The Medio model has one strictly positive Lyapunov exponent λ1 = 0.2772.
Its Lyapunov dimension is bigger than the dimension of the Lorenz-63 model,
suggesting it is “more chaotic” than the Lorenz-63 model. However, the
K-value clearly converges to zero, which suggest that the system does not
exhibit chaotic behavior. Our results are inconclusive.
In the Asada et al. model, we found one positive Lyapunov exponent
λ1 = 0.0427. It may be that this value should be zero, as the 0-1 test for chaos
does not give a satisfying conclusion. Our results are inconclusive.
The H.-W. Lorenz model for H = 3 has no positive Lyapunov exponent and
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the model for H = 7 has one positive Lyapunov exponent and the biggest
Lyapunov dimension of all systems studied in this thesis. However, the 0-1 test
for chaos gives the same results for both sets of parameters. This is obviously
in disagreement with the results for the analysis of Lyapunov exponents. The
case H = 7 satisfies both conditions and the case H = 3 is inconclusive.

Overall there seems to be a difference between the results from the analysis of
Lyapunov exponents and the 0-1 test for chaos. As the results of the study
of Lyapunov exponents and Lyapunov dimension have been confirmed in many
papers, we think the 0-1 test for chaos has to be investigated more thoroughly
to understand the conflicting results of this thesis. The method of computing
unstable periodic orbits has shown to be a good method for systems for which
good starting conditions can be determined. In other cases, it turned out to
be problematic to find initial values in the basin of attraction of the unstable
periodic orbit.
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