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1 Introduction

Most people have played a decent amount of card games in their lives. Many

shuffling methods have been shown to those occassional card players at some

point (or the reader nay have been depended on other people to shuffle the

cards). Certain shuffles of a deck of cards might have always seemed better

than others. Is this truly the case? And what makes a shuffle “better than”

another shuffle? What is the “fastest” way to mix up a deck of cards while

preparing a card game? These seem to be natural questions, which most people

do not worry about. However, It might make a game of cards (very) unfair.

To answer all these questions, I will dive into the world of card decks, shuffles

and “randomness”. For this, a profound analysis of the mathematics behind

these mentoined aspects is needed. This will all be presented by brightening

examples, sometimes with numerical help.

2 Prerequisites

In order to establish sufficient shuffling techniques, we need to look into the

mathematical tools needed for shuffling cards. A normal deck of cards contains

52 cards: 13 cards in 4 different kinds. But for an analysis of shuffling, we can

also work with a deck of n cards. From now on, label the cards in order 1 to n,

according to the order in which you find them. With [123], I mean the order of

the cards in which one finds them (from left to right or from top to bottom). If

n > 10, numbers will be separated like this: [(1)(2)(3)(4)...].

Example 1. Suppose we have all the cards of hearts from a regular deck, that

is (in order):

A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K. We will number the numbered cards as they

are and further: J → 11, Q→ 12 K → 13 and A→ 1. So the original deck is:

[(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)]. Suppose we mix up the cards and

get the new order: 5, 9, 2, A, J, 3, 7, Q, 4, 6, 8,K, 10. This corresponds to the deck

ordering: [(5)(9)(2)(1)(11)(3)(7)(12)(4)(6)(8)(13)(10)]. We can also show this

as a permutation (from the original deck):(
1 2 3 4 5 6 7 8 9 10 11 12 13

5 9 2 1 11 3 7 12 4 6 8 13 10

)

Here, the permutation indicates that the card on place 1 was on place 5 before

the reordering of the cards.

In the example, I spoke of “mix up the cards”. I will now make more precise

what I mean by this, through the notion of a shuffle.
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Definition 1. Suppose we have a deck of n cards. A shuffle is a probability

density on Sn.

Without using an aspect of randomness, shuffling cards would of course not be

so fair (read: interesting). shuffles will be represented by permutations. With

the permutation e, I mean the identity. The permutation (1234) means sending

1 to 2, 2 to 3, 3 to 4 and 4 to 1. So:(
1 2 3 4

2 3 4 1

)
= (1234)

I give an example of a shuffle.

Example 2. Suppose we have a deck of 4 cards. We number the cards accord-

ingly, in order: [1234]. Define Q : S4 → [0, 1] as:

Q(π)→


1
2 if π = (1234)
1
2 if π = e

0 else

So in this example, there are two options. The first option is getting the original

deck back. The second option is getting the deck [2341]. Both options appear

with probability 1
2 .

What do we want of a shuffling technique? Well preferably to be random or at

least as random as possible. That means we want it to be as close as possible

to the uniform density U on Sn. Where U(π) = 1
n! for all permutations π.

To determine what we mean by closeness, we need to define a metric on the

probability space (of shuffles). There are many options, but in this thesis one

will be used.

Definition 2. Suppose we have two probability densities Q1 and Q2 on Sn.

The variation distance, denoted ‖.‖ is defined as follows:

‖Q1 −Q2‖ =
1

2

∑
π∈Sn

∣∣Q1(π)−Q2(π)
∣∣

Here the factor 1
2 is to scale the variation distance between 0 and 1. An equiv-

alent definition is ‖.‖1, which can be calculated accordingly:

‖Q1 −Q2‖1 = max
S⊂Sn

∣∣∣∣∣∣
∑
π∈S

Q1(π)−
∑
π∈S

Q2(π)

∣∣∣∣∣∣
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We see that the variation distance between two probability densities varies from

0 to 1. To see this, define A = {π ∈ Sn | Q1(π) ≥ Q2(π)}. Then:

2‖Q1 −Q2‖ =
∑
π∈A

Q1(π)−Q2(π)+
∑
π∈A

Q2(π)−Q1(π) ≤
∑
π∈A

Q1(π)+
∑
π∈A

Q2(π) ≤ 2

If‖Q1 −Q2‖ = 0, then the probability densities are the same. If‖Q1 −Q2‖ = 1,

then they are nothing alike. Notice that not shuffling at all (permutation e with

probability 1) has the following variation distance from U on Sn:

1

2

(∣∣∣∣1− 1

n!

∣∣∣∣+ (n!− 1)

∣∣∣∣ 1

n!
− 0

∣∣∣∣ ) = 1− 1

n!

We see that not doing anything quickly becomes “less random”, if n is big.

Furthermore, the two variation distances are in fact the same, as we will now

see. The proof of this lemma is inspired by [11].

Lemma 1. The variation distances ‖.‖ and ‖.‖1 are indeed the same.

Proof. Suppose that Q,R are probability densities on Sn. We need to verify

that ‖Q−R‖ = ‖Q−R‖1. First, set A = {π | Q(π) ≥ R(π)}. Take S ⊂ Sn,

then define: Q(S) =
∑
π∈S Q(π). So:

Q(S)−R(S) = Q(S∩A)−R(S∩A)+Q(S∩A)−R(S∩A) ≤ Q(S∩A)−R(S∩A)

The inequality is achieved since the if π ∈ S ∩ A, then Q(π)− R(π) ≤ 0, since

π ∈ A. Moreover, if π1 ∈ S ∩A, then π1 ∈ A. So Q(π1)−R(π1) ≥ 0. Together

with the previous inequality, this results in:

Q(S)−R(S) ≤ Q(S ∩A)−R(S ∩A) ≤ Q(A)−R(A)

In a similar way we also achieve R(S)−Q(S) ≤ R(A)−Q(A):

R(S)−Q(S) = R(S∩A)−Q(S∩A)+R(S∩A)−Q(S∩A) ≤ R(S∩A)−Q(S∩A)

Hence:

R(S)−Q(S) ≤ R(S ∩A)−Q(S ∩A) ≤ R(A)−Q(A)

Note now that Q(A)−R(A) = R(A)−Q(A), since:

0 = Q(Sn)−R(Sn) = Q(A)−R(A)−R(A) +Q(A)

Because S was arbitrary, we can conclude:

‖Q−R‖1 = max
S⊂Sn

∣∣Q(S)−R(S)
∣∣ ≤ Q(A)−R(A)

And so:

‖Q−R‖1 ≤
1

2

(
Q(A)−R(A) +R(A)−Q(A)

)
=‖Q−R‖

4



So we proved that ‖Q−R‖1 ≤‖Q−R‖. For the other way around, notice that

(since A ⊂ Sn):

‖Q−R‖ =
1

2

(
Q(A)−R(A) +R(A)−Q(A)

)
= Q(A)−R(A)

=
∣∣Q(A)−R(A)

∣∣ ≤ max
S⊂Sn

∣∣Q(S)−R(S)
∣∣ =‖Q−R‖1

So ‖Q−R‖ ≤‖Q−R‖1 and we conclude: ‖Q−R‖ =‖Q−R‖1.

2.1 Problems with the variation distance

The variation distance seems fine, but as Mann in [13] already points out: it

has a slight problem. Suppose we have a deck of n cards, which is randomly

shuffled. So, we apply the aforementioned probability function U . Suppose

now that the top card accidentally falls off and is shown to you. You place

the card back, but in the top half of the deck. By doing this, you get a new

distribution V . The variation distance between U and V is 1
2 , since half of the

permutations have probability 2
n! and the other half 0. This is because you

put the card in the top half, so every permutation where the top card is in the

bottom half of the deck, is not possible. For the other permutations, it is obvious

that they have equal probability of appearing. It was a uniform shuffle and the

card is uniformly put in the top half of the deck. So for every permutation

π, we establish that U(π) differs 1
2(n!) from V (π). Hence ‖U − V ‖ = 1

2 . If n is

very large, knowing just one card does not really matter for randomness, but the

spread between U and V is still 1
2 . On the other hand, simulations turn out that

the variation distance function (which is also the maximal variation distance

possible) can be too forgiving in certain games. Doyle created such game which

is “as unfair as possible” for the Riffle shuffle, as explained in [13]. However, the

variation distance appears to be the most useful method of establishing whether

probability densities are close together. And, more importantly, it is a great tool

to come to a conclusion whether or not a shuffle is “random enough”.

2.2 Multiple successive shuffles

It is of course practically not possible to perform a uniform shuffle U to mix

up the deck (or is it? See section 7). It is therefore that we explore practically

useful shuffles and try to minimize the variation distance. For shuffles, we

need to dive into multiple shuffles following each other. We will denote this by

Q(k) = Q ◦ Q · · · ◦ Q (k-times). This is easily extended from what we already

know:

Q(k)(π) =
∑

π1◦···◦πk=π

Q(π1) ◦ · · · ◦Q(πk)
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It is apparent that we sum over all combinations (π1, . . . , πk) such that:

π1 ◦ · · · ◦πk = π. I give an example, using the example used earlier (example 2).

Example 3. Suppose we seek Q(3). For this, let us first determine Q(2):

Q(2)(π)→



1
4 if π = (13)(24)
1
2 if π = (1234)
1
4 if π = e

0 else

From this we can derive Q(3):

Q(3)(π)→



1
8 if π = (1432)
3
8 if π = (1234)
3
8 if π = (13)(24)
1
8 if π = e

0 else

Note that, for example, to get the permutation x = (1234), we have the following

possibilities: x ◦ e ◦ e, e ◦ x ◦ e and e ◦ e ◦ x, all with probability 1
8 .

These calculations seem a bit gruesome and indeed they turn out to be. Luckily

there are other options for some natural shuffles, as we will find out later (see

for example section 4).

3 Motivation: let’s perform a card trick!

Before continuing with an analysis of certain shuffling methods, let me first

stop for a moment to appreciate what we are doing. Why is it so important

to inspect shuffling methods used in practice? Well, some shuffles are easy to

spot as “bad”. Every shuffle without an element of uncertainty is obviously not

good in games when cards of opponents should remain hidden. However, some

shuffles which on the eye seem to be good, are not so good after all. Certain

shuffles are nice for magicians to use in card tricks, for example because they

appear to be more random than they are. I will dedicate this section to the

analysis of the Gilbreath shuffle. This shuffle has a lot of possible permutations

of the deck in his arsenal, but is not as random as it seems.

3.1 The setup

First of all, we need to define the Gilbreath shuffle.
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Definition 3. Say we have a deck of n cards as usual: [(1)(2) . . . n]. Pick any

number j ∈ {0, 1, . . . , n}. It does not really matter for the analysis in this

section, but let’s say that:

P(j = k) =

(
n
k

)
2n

This seems as a fair choice (binomial distribution), but as said: it does not really

matter for this section. Now distribute the first j cards one-by-one into a new

pile. This reverses the order in this new pile. We now have two piles (in order):

[(j+ 1)(j+ 2) . . . (n)] and [(j)(j−1) . . . (1)]. After this, riffle the cards together.

Now: form a new deck using the two piles, where the relative order of the cards

inside the piles should not be changed. Choose uniformly between the ways of

“riffling” the piles together. There are
(
n
j

)
ways to do this. The now obtained

deck has been “Gilbreath shuffled”.

This shuffle has a lot of common with the Riffle shuffle (see section 4). It has

some nice properties, but let me give an example first.

Example 4. Suppose n = 4. I will handle all options for the Gilbreath shuffle.

j pile 1 pile 2 possible decks permutation

0 [1234] ∅ [1234] e

1 [234] [1] [1234],[2134],[2314],[2341] e,(12),(132),(1432)

2 [34] [21]

[2134],[2314],[2341],

[3421],[3241],[3214]

(12),(132),(1432),

(1423),(143),(13)

3 [4] [321] [3214],[3241],[3421],[4321] (13),(143),(1423),(14)(23)

4 ∅ [4321] [4321] (14)(23)

Notice that there is no option in which we can get the top 2 or bottom 2 cards

such that the numbers have the same parity.

What is so interesting about this Gilbreath shuffle? Well, as we saw in the

example above, there is no option to get the top or bottom pair of the new deck

with two cards of the same parity. This results holds in general, as we now

witness in the form of a theorem.

Theorem 1. Say we have a deck of n cards: [(1) . . . (n)]. Let π be a permutation

of the deck. The following properties are equivalent:

1) π is obtained through a Gilbreath shuffle
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2) For every j ∈ N, the top j cards after applying the permutation are distinct

modulo j

3) For every j ∈ N and k ∈ N with jk ≤ n, the cards on the places: {(k− 1)j +

1, (k − 1)j + 2, . . . , kj} after the permutation π, are distinct modulo j.

This is also known as the Ultimate Gilbreath principle, but I left one equivalent

property out, since it is irrelevant for the card trick (for the interested reader,

see [7]). If we take n = 4, j = 2 and k = 1 or k = 2, then property (3) of theorem

1 shows that modulo 2, the first and last two card numbers after a Gilbreath

shuffle should be distinct. Hence they should have different parity, which we

indeed saw in example 4. For the proof of theorem 1, we need some notation

which will be familiar. With π(i), the card on place i after the permutation π

is applied to the deck, is meant. So, in example 4, if k = 4, then: π(1) = 4,

π(2) = 3, π(3) = 2 and π(4) = 1. This is because the new deck is in order:

[4321].

To prove theorem 1, we need a lemma. To prove this lemma, an equivalent

explanation of the Gilbreath shuffle is needed. As we saw in example 4, every

possible deck/permutation appears twice. These doubles appear exactly at con-

secutive j1 and j2. More importantly, we can calculate the number of distinct

possible decks:

1

2

n∑
k=0

(
n

k

)
=

2n

2
= 2n−1

Using the argument of Diaconis in [7], we can make exactly 2n−1 distinct

Gilbreath permutations (i.e. a permutation obtained by a Gilbreath shuffle).

Of course, this implies an equivalent explanation of the Gilbreath shuffle, since

there are only 2n−1 distinct Gilbreath permutations. For every j ∈ {1, . . . n},
pick all S = {s1, . . . , sj−1} ⊂ {2, . . . , n} with |S| = j−1. Here the si are labeled

such that: s1 < s2 < · · · < sj−1. There are exactly
(
n−1
j−1
)

such subsets for every

j, since
∣∣{2, . . . , n}∣∣ = n − 1. Then place j on position 1 and place j − i on

position si. The positions that are still not filled, should be filled in increasing

order. That is, starting from j + 1 up until n.

First of all, this indeed creates distinct decks. Secondly, the number of decks

are:
n∑
j=1

(
n− 1

j − 1

)
=

n−1∑
j=0

(
n− 1

j

)
= 2n−1

Thirdly, every permutation created this way is indeed a Gilbreath permutation.

This is because for certain j and S = {s1, . . . , sj−1}, this is the same as splitting

the deck in the piles: [(j + 1)(j + 2) . . . (n)] and [(j)(j − 1) . . . (1)]. And after

this, riffling the packs exactly together as needed (which is obviously possible).
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Concluding, because we can indeed form 2n−1 distinct Gilbreath permutations,

we indeed have an equivalent way of defining the Gilbreath permutations on

a deck. To illustrate this, let’s go back to example 4 and find all distinct

permutations.

Example 5. Take n = 4, as in example 4. We then find:

j S ⊂{2,3,4} such that |S| = j − 1 corresponding new decks

1 ∅ [1234]

2 {2},{3},{4} [2134],[2314,[2341]

3 {2,3},{3,4},{2,4} [3214],[3421],[3241]

4 {2,3,4} [4321]

A little explanation as to how to get to this table: take for example j = 3

and S = {2, 3}. Firstly, j = 3 should be on position 1 in the new deck. Then

j − 1 = 2 should be on position 2 and j − 2 = 1 should be on position 3. Now,

we can fill in the remaining numbered card 4 on the first empty position, which

is position 4. This gives indeed [3214]. If we look at all newly formed decks, we

see that these are exactly the 2n−1 = 23 = 8 distinct decks found in example 4.

After this example, it is time to prove an important lemma to prove theorem 1.

Lemma 2. The first j cards of a deck after a Gilbreath shuffle consist of j

consecutive numbered cards. They need not be consecutive in the deck after the

shuffle, but for every j you should be able to rearrange the first j numbered

cards π(1), . . . , π(j) such that they are consecutive. That is, there exist aj =

min1≤i≤j π(i), such that:

j⋃
i=1

{π(i)} = {aj , aj + 1, . . . , aj + (j − 1)}

Alternatively, if after a permutation of the deck for every j ∈ {1, . . . , n} there

exists such aj, then the permutation is a Gilbreath permutation.

Proof. Suppose we have a deck of n cards and label it in its original order, to

keep things simple. Suppose that the first card of the new deck after a Gilbreath

permutation is: π(1) = j. Because of the explanation of the equivalent way of

defining the Gilbreath permutations on a deck, we know that after j, there

should a consecutive increasing sequence. If this sequence terminates, we must
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have j − 1. After that, this process continues. However, we can indeed always

rearrange, because of the equivalent explanation of defining all the Gilbreath

permutations.

To prove the converse, suppose that after a permutation π, for every j ∈ {1, n},
there exists aj = min1≤i≤j π(i), such that:

j⋃
i=1

{π(i)} = {aj , aj + 1, . . . , aj + (j − 1)}

Denote the place where card i is after the permutation as πi. Take the first

card of the deck after applying the permutation: π(1). Assume that π(1) = j.

Create a set S ⊂ {2, . . . , n} as follows: S = {πj−1, . . . , π1}. If S is ordered

(πj−1 < πj−2 < · · · < π1), then we are done. This is, because the rest of the

cards (j+ 1, . . . , n) must be filled in increasing order, otherwise the assumption

would be violated. Suppose it is no Gilbreath permutation. Then, there exists

a smallest m > 1, such that π(m) 6= π(m − 1) + 1 and π(j) 6= am−1 − 1. This

necessarily means that (m was the smallest such that it did not hold!):

m−1⋃
i=1

{π(i)} ∪ {π(m)} = {am−1, am−1 + 1, . . . , am−1 + (m− 1)} ∪ {π(m)}

However, this certainly does not fulfill our assumption, hence completes a con-

tradiction. Hence, all that remains is to show that: πj−1 < πj−2 < · · · < π1.

For this: suppose not. So, suppose there exists a biggest i, l ∈ {1, . . . , j − 2},
such that: πi < πl (of course: l > i).

Firstly, if there is no smallest k > i, such that πm < πi for all m ≥ k, then

the first πi − 1 cards are [j(j + 1) . . . (πi − 1 − j + 1)] = [j(j + 1) . . . (πi − j)],
since otherwise our assumption of consecutive π(k)’s would not hold. Obvi-

ously, if we add card i ≤ j− 2 to these first cards, we get a contradiction. Since

i ≤ j−2 < j−1 and we would need to extend these first cards with a card with

a value greater or equal than j − 1.

On the other hand, suppose there exists a smallest k > i, such that πm < πi,

for all m ≥ k. Since these are the smallest respectively biggest such k and i, we

know that the first πi − 1 cards form a set:

πi−1⋃
w=1

{π(w)} = {k, k + 1 . . . , k + πi − 2}

We can see this because k is the smallest fulfilling k, so πj−1 < πj−2 < · · · < πk.

However, since the first πi cards must also have consecutive values and i < k,

we find that: k = i + 1. But, this results in: πm < πi, for all m ≥ i + 1.

So, there is no l > i, such that: πi < πl. All together, we can conclude that

πj−1 < πj−2 < · · · < π1 and our proof is complete.
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We can use this lemma to prove theorem 1 (proof based on [7], thoroughly

extended).

Proof. First of all: (3) ⇒ (2), since we can take k = 1. On the other hand,

we can show that (2) ⇒ (3) by induction. Suppose (2) is true. From now on,

take j fixed. Take any k ≥ 2 (k = 1 is just property (2)) and suppose jk ≤ n.

Assume that for 1 ≤ i ≤ k − 1, the cards π((i− 1)j + 1), . . . , π(ij) are distinct

modulo j. We know that the first jk are distinct modulo jk, from property

(2). This means that of every equivalence class modulo jk, there is exactly one

card. However, there should also be k cards of every equivalence class mod-

ulo j. Since we assumed by induction hypothesis that for 1 ≤ i ≤ k − 1, the

cards π((i− 1)j + 1), . . . , π(ij) are distinct modulo j, we have exactly one card

in every equivalence class modulo j left. Hence we conclude that the cards:

{π((k− 1)j+ 1), π((k− 1)j+ 2), . . . , π(kj)} are distinct modulo j. So by induc-

tion: (2)⇒ (3) and the properties (2) and (3) are equivalent.

Now suppose that (1) holds and fix j. Using lemma (2), we have an 1 ≤ aj ≤ n
such that the first j cards are: {aj , . . . , aj + (j− 1)}. These cards are obviously

distinct modulo j. Hence (1) ⇒ (2). On the other hand, suppose (2) holds.

We need to prove that for every j ∈ {1, . . . , n}, the cards on position 1 to j

in the deck are consecutive, up to order. Proceed by induction. If j = 1, then

obviously the results hold. Suppose it holds for j = k − 1 ≥ 1. So for some

a = min1≤i≤k−1 π(i) :

k−1⋃
i=1

{π(i)} = {a, a+ 1, . . . , a+ (k − 2)}

We know that the first k cards are distinct modulo k. So π(k) = a−1+m(j+1) =

a− 1 +mk, with m ∈ Z. Also: m should of course be such that 1 ≤ π(k) ≤ n.

Now, we exclude the case m 6∈ {0, 1}. If m ≥ 2, then mk − 1 > k, since k ≥ 2

and m ≥ 2. It follows that: k < π(k) − a ≤ n − a < n, because a ≥ 1. So the

first π(k)− a cards can not be different modulo π(k)− a, since:

π(k)− a ≡ 0 (mod π(k)− a)

Notice that this can only be done since k < π(k)− a < n. This gives a contra-

diction, since we assumed property (2).

Suppose now that m ≤ −1. We know that a + (k − 2) − π(k) < n, since

a + (k − 2) ≤ n and π(k) ≥ 1. On the other hand: a + (k − 2) − π(k) =

(k − 1)−mk = (1−m)k − 1 > k, because (1−m) ≥ 2 and k ≥ 2. So the first

a+(k−2)−π(k) can not be different modulo a+(k−2)−π(k), in the same sense

as the case m ≥ 2. This can now only be done because k < a+(k−2)−π(k) < n.
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Concluding: m = 0 or m = 1. This means that π(k) = a−1 or π(k) = a+(k−1).

This means that the induction step is complete and that (2)⇒ (1) using lemma

(2).

Looking at the theorem, it is obvious that the shuffle does not completely ran-

domize the original deck, since a lot of permutations are not possible. In fact,

we know that only 2n−1 permutations of a deck of n cards are possible. If we

take n = 52, then only a fraction of 251

52! ≈ 2.8 × 10−53 of the permutations of

the deck is possible. Also, the variation distance between the uniform shuffle U

and the Gilbreath shuffle G on a deck of n cards is easy to approximate:

‖G− U‖ =
1

2

∑
π∈Sn

∣∣G(π)− U(π)
∣∣ ≥ 1

2

n!− 2n−1

n!

Here we used that on at least n! − 2n−1 permutations, the variation distance

between U and G is 1
n! . This is because G gives a probability of 0 to this

amount of permutations. Even for n = 10, this gives: ‖G− U‖ ≥ 0.4999. This

is quite a rough estimation of the variation distance, but even then we see that

the variation distance is not going to be better than 0.5 for n ≥ 10.

3.2 The card trick

A lot of card tricks have been performed, using this Gilbreath principle. Say

you are a magician and you have a standard deck of cards. That is: the numbers

1 to 10 and the cards J , Q, K and A (a total of 52 cards). These cards appear

exactly once in the following 4 kinds: Spades (S), Hearts (H), Clubs (C) and

Diamonds (D). Sort your deck using a specific order of the type of cards, for

example: SHCDSHCD. . . . Because of the distinction between cards within a

specific type, the deck might appear to be random for the non-trained eye. So

you can briefly show the deck as “random” to the audience. Next, you perform

the Gilbreath shuffle. Notice: every Spades card is numbered x ≡ 1 (mod 4),

every Hearts card is numbered x ≡ 2 (mod 4), every Clubs card is numbered

x ≡ 3 (mod 4) and every Diamonds card is numbered x ≡ 0 (mod 4). Now ask

the audience for a number j, such that you can perform the Gilbreath shuffle as

explained. After this, every new deck satisfies property (3) from theorem 1. To

see how this helps in a card trick: take j = 4. Then the cards of the first quartet

on top of the deck are distinct modulo 4, the cards of the second quartet on

top of the deck (cards on position 5, 6, 7 and 8) are distinct modulo 4, et cetera.

Hence you can start showing quartet after quartet of cards. Obviously every

quartet contains exactly one card of each type. This works, since there are

exactly 52 cards in a regular deck and hence exactly 13 quartets. The audience

12



will, if they have a feeling for probability, be quite amazed. Why would they be

so amazed? Well, the probability of getting 4 different type of cards in the first

quartet in a deck of 4m cards (m cards of every type) is:

4m

4m

3m

4m− 1

2m

4m− 2

m

4m− 3
=

24m4

(4m)(4m− 1)(4m− 2)(4m− 3)

We can see this, because the first card does not matter. The second card we

take from the remaining 4m− 1 cards. Here we can not get the type of the first

card of which there are m− 1 left. Hence (4m− 1)− (m− 1) = 3m. The third

card we take from the remaining 4m − 2 cards. Here we can not get the type

of the first card and the second card of which there are 2(m − 1) left. Hence

(4m− 2)− 2(m− 1) = 2m. Similarly for the last card. Notice that m = 1 gives

a probability of 1. So the probability of getting only quartets in a deck of 52

cards is easy to calculate, since we can just take a product:

13∏
m=1

24m4

(4m)(4m− 1)(4m− 2)(4m− 3)
=
( 13∏
m=1

24m4
) 1

52!
< 0.0000000001

So any person in the audience with a little bit of feeling for probability would

see the remarkability in this trick. The trick also works for the red and black

cards in a deck of cards, which might be even more entertaining. What can we

learn from this? Well, never trust a shuffle which on the eye seems “random

enough”. This is a proper motivation to examine the variation distance between

shuffles and what we want: the uniform shuffle U , since it is not that easy on

the eye to spot “bad” shuffles.

4 Riffle shuffle

A natural way to shuffle a deck of cards, which is mathematically also very nice,

is the Riffle shuffle. This goes as follows: divide the deck into two packs of size

k and n − k. So k ∈ {0, 1, . . . , n}, packs may be empty. Choose k according

to the binomial distribution, with probability: p =
(n
k)
2n . Then split the deck

in two packs: {1, 2, . . . , k} and {k + 1, k + 2, . . . , n}. Now form a new deck,

“riffling” the two packs together. The relative order of the two packs must

be maintained, but cards in different packs need not be in their relative order

from the original deck. There are
(
n
k

)
possible ways to do this and each must

have the same probability, so choose uniformly between those interleavings. The

probability to pick a certain cut, followed by a certain interleaving is (because

of uniformity):
p(
n
k

) =
1

2n

13



Let’s look at all the possible Riffle shuffles of a deck of size 4 through an example

(inspired by [13]).

Example 6. Suppose n = 4. We have:

k packs cut probability possible interleavings

0 | 1234 1
16 [1234]

1 1| 234 1
4 [1234], [2134], [2314], [2341]

2 12| 34 3
8 [1234], [3412], [1324], [1342], [3142], [3124]

3 123| 4 1
4 [1234], [1243], [1423], [4123]

4 1234| 1
16 [1234]

This gives the following shuffling distribution Q : S4 → [0, 1]:

Q(π)→



5
16 if π = e
1
16 if π = (12)
1
16 if π = (132)
1
16 if π = (1432)
1
16 if π = (13)(24)
1
16 if π = (23)
1
16 if π = (243)
1
16 if π = (1243)
1
16 if π = (123)
1
16 if π = (34)
1
16 if π = (234)
1
16 if π = (1234)

0 else

The variation distance between randomness and this shuffle is easily determined:

‖Q− U‖ =
1

2

(∣∣∣∣ 5

16
− 1

24

∣∣∣∣+ 11

∣∣∣∣ 1

16
− 1

24

∣∣∣∣+ 12

∣∣∣∣ 1

24

∣∣∣∣ ) =
3

8

This is better than the difference between doing nothing and uniform shuffling

U , which is 1− 1
4! = 23

24 . But still, multiple shuffles are needed, especially because

for example, the order [4231] is not even possible yet.
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To determine Q(k) for large k is, even with such small n, not very nice. Because

of this, we want to extend our definition a bit to ensure an easier calculation.

4.1 The a-shuffle

Instead of the usual Riffle shuffle R, it is also possible to divide the deck of

cards in a packs (the following explanation of the a-shuffle is inspired by [13]).

These packs have size n1, . . . , na, where ni ≥ 0. So an 3-shuffle can have one

or two packs, because ni = 0 is allowed. The probability of picking a specific

distribution of packs is:

p =

(
n

n1,...,na

)
an

Note: the nominator is a multinomial coefficient, hence the packs are chosen by

the multinomial distribution. After splitting the deck in a packs of size larger

or equal to zero, we put the deck back together. While doing this, the relative

order of cards inside a pack must be maintained as with the Riffle shuffle. A

possible deck is chosen using the uniform distribution. The probability of a

specific interleaving being chosen is therefore:

1(
n

n1,...,na

)
The reason for this is because the relative order must be maintained. So we can

colour all of the cards in a pack the same colour. We do not need to make a

distinction between these cards, because their order has already been established

in the deck after the cut. Then we determine all possible ways to divide the n

cards back in the deck, this is just
(

n
n1,...,na

)
. Concluding, just as with the Riffle

shuffle R, the probability of a specific cut and a following interleaving is:

p(
n

n1,...,na

) =
1

an

Notice that if we choose a = 2, then we end up with the Riffle shuffle. The

notation for the a-shuffle is: Ra. This means that: R2 = R. Let me illustrate

the a-shuffle by a small example.

Example 7. Suppose n = 4 and a = 3. We cut the deck with n1 = n3 = 1 and

n2 = 2. This occurs with probability:
(

4
1,2,1

)
· 1
34 = 4

27 . We have the following

packs: {1}, {2, 3} and {4}. There should be
(

4
1,2,1

)
= 12 possible ways to put a

deck together. Indeed we have the possible decks:

[1234], [1243], [1423], [2134], [2143], [2314], [2341], [2413], [2431], [4123], [4213], [4231]

This is one possible way to obtain certain shuffles.
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Notice that in the example there is no way in getting 3 as first card in the deck,

due to the cut. Also, the probability of getting the original deck back after

an a-shuffle, is bigger than any other permutation as we will find using rising

sequences.

What is exactly the use for an a-shuffle? Practically, most people tend to

use only the 2-shuffle, which is the practical Riffle shuffle. Well as it turns out,

sequential Riffle shuffles are linked to an a-shuffle for certain a.

Theorem 2. Suppose we have a, b ∈ N. Performing an a-shuffle followed by a

b-shuffle is equivalent to performing an ab-shuffle.

This turns out to be a very nice and useful property, which is not true for most

shuffles. To prove this theorem, firstly some background is needed. We want to

define the inverse of an a-shuffle.

Definition 4. Define an a-unshuffle of a deck of n cards as follows. Form a

numbered decks of cards (not necessary non-empty). Do this by taking firstly

the top card of the deck and placing it with probability 1
a on one of the (now

all empty) bottom of the stacks. Repeat this until the deck of cards is empty.

Now place pile i on top of pile i+ 1 for all i with 1 ≤ i ≤ a.

As there is only one way to cut the deck in a specific piles and there is only one

way to interleave the cards to get the original deck before the unshuffle, every a-

unshuffle is the unique inverse of a certain a-shuffle. We now have the necessary

tools to complete the proof of the theorem (the proof is largely devoted to [8]).

Proof. Suppose we apply an ab-unshuffle to a deck. So we form ab stacks in the

explained way. Label these stacks (in order) not 1, 2, . . . , ab, but with elements

(x, y) of Z2. Here x ∈ {0, . . . , a − 1} and y ∈ {0, . . . , b − 1}. Label each card

accordingly, with the label of the pile it is in. Now we want to find a b-unshuffle

and an a-unshuffle, such that applying the unshuffles after one another is the

same as applying the ab-unshuffle.

To find the needed b-unshuffle, sort the deck into b stacks. In pile i, there

should be exactly all cards where y = i. Do exactly the same after this for the

needed a-unshuffle: in pile j should be exactly all cards with x = j. Now, after

the b-unshuffle followed by the a-unshuffle, the cards lie in the following order:

(0, 0), (0, 1), . . . , (0, b − 1), (1, 0), . . . , (1, b − 1), . . . , (a − 1, 0), . . . , (a − 1, b − 1).

Conclude now that this is exactly the same as the ab-unshuffle. This completes

the result, because b−1a−1 has a one-to-one correspondence with (ab)−1. Hence

an a-shuffle followed by a b-shuffle is the same as performing a ab-shuffle.

This result might not seem useful now to the reader, but in that case I suggest

reading on.
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4.1.1 Rising sequences and their use

A nice way to look at a specific deck is to find its rising sequences. This turns

out to be a useful tool in determining certain probabilities of a-shuffles.

Definition 5. Suppose we have a deck in specific ordering. Say [x1 . . . xn]. A

rising sequence is a subsequence A = (xik)k of (xi)i such that xik+1
= xik + 1

for all k. Additionally there should not exist a sequence B such that A ⊂ B

and A 6= B and B is also rising. Hence, it should be maximal.

Example 8. Consider the following deck ordering: [589214673]. Starting at 5,

we find 6 and after that 7. Hence (5, 6, 7) is a rising sequence. We could have

obtained the sequence also by starting at 6 and counting up (spotting 7). After

that returning to 6 and counting down. Moreover we find (8, 9), (2, 3), (1) and

(4).

It appears that rising sequences partition the elements (cards) in an elegant

way. Indeed this is the subject of the following theorem.

Theorem 3. Given an ordering of a deck: [x1 . . . xn]. Every numbered card xi
is in exactly one rising sequence.

Proof. Suppose we have such ordering of a deck: [x1 . . . xn]. First of all, we can

construct a rising sequence with a given xi. This is straightforward by first going

to the right in the deck and counting up (looking for xj such that xj = xi + 1).

Continue, repeating this process until we come at xn. After that go back to xi
and start counting down (looking for xk such that xk = xi − 1). Also continue

and repeat until we stop at x1. This certainly gives a rising sequence (obviously

maximal).

SupposeA = (a1, . . . ak−1, xi, ak+1, . . . , an1
) andB = (b1, . . . bm−1, xi, bm+1, . . . , bn2

)

are rising sequences. Now notice that ak+1 = bm+1, since they are rising

sequences. Continuing this way gives: B = (b1, . . . bm−1, xi, ak+1, . . . , an1
).

The reason that n1 = n2 is that if n1 > n2 (or vice versa), then xi is in

the rising sequence B, but this can never be maximal. So it can not be

a rising sequence. We can also do this the other way around, hence B =

(a1, . . . ak−1, xi, ak+1, . . . , an1) = A.

The theorem establishes that a deck ordering can be partitioned into rising

sequences. We also find that the number of rising sequences is limited to n,

where n is the order of the deck. We can achieve this by this ordering: [(n)(n−
1) . . . (2)(1)]. But what do rising sequences contribute to the a-shuffle Ra? Well,

as it turns out, it makes calculations a lot easier. See the following theorem and

its proof, which is a hybrid form of [13] and [5].
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Theorem 4. Suppose we are given a deck [(1)(2) . . . (n − 1)(n)] and we want

to perform the a-shuffle Ra. The probability of a certain permutation π on this

deck is: (
n+a−r
n

)
an

Here n is the size of the deck and r the number of rising sequences in the deck

after applying the permutation π.

Proof. Recall that all possible ways of cutting the deck and then interleaving

it have the same probability. So we need to find the number of ways to cut

the deck into a packs, such that π is a possible permutation. In an a-shuffle all

cards stay in their relative order of the packs, so each rising sequence in the new

deck is a union of the a packs. It is therefore, that we want to find the number

of ways of distributing r rising sequences into a packs.

Because π has r rising sequences, we know where r − 1 cuts must have been:

between a card that ends a rising sequence of π and another card that begin a ris-

ing sequence of π. These pairs are of course consecutive in the deck [(1) . . . (n)].

But, we need to make a−1 cuts. Hence, we remain with (a−1)−(r−1) = a−r
cuts in a deck of n cards. So we need to fill n + (a − r) = n + a − r positions

with two types: n cards and (a − r) cuts. This gives the binomial coefficient.

By prior explanation, the denominator an is trivial.

Corollary 1. Suppose we have a deck [(1)(2) . . . (n−1)(n)] and we Riffle shuffle

k-times. The probability of ending up with a certain permutation π on this given

deck is: (
n+2k−r

n

)
2kn

Here n is the size of the deck and r the number of rising sequences of the deck

after applying the permutation π.

Proof. Combine theorem 2 and theorem 4. Performing a Riffle shuffle (or 2-

shuffle) k-times is equivalent to performing a 2k-shuffle, according to theorem

2. Applying theorem 4 yields the result.

Interesting is that we can immediately see that the identity permutation (with

only one rising sequence) is more likely to appear than any other permutation.

Also, suppose we have n = r = 52 and shuffle 5 times. Then:(
n+2k−r

n

)
2kn

=

(
32
52

)
252

= 0

So we need to Riffle shuffle a normal deck of cards more than 5 times to even

possibly achieve the deck [(52)(51) . . . (2)(1)].

Knowing that the number of rising sequences determines the probability of a
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certain shuffle, we might want to know how many different permutations yield a

certain probability. For this, define D(n, r) as the number of distinct decks after

a permutation with r rising sequences. If we look at the just proved theorem,

we now know that:
n∑
r=1

D(n, r)

(
n+a−r
n

)
an

= 1

Which leads us to:
n∑
r=1

D(n, r)

(
n+ a− r

n

)
= an

Now define the Eulerian numbers A(n,m) recursively:

A(n,m) = (n−m)A(n− 1,m− 1) + (m+ 1)A(n− 1,m)

Also: A(1, 0) = A(2, 0) = A(3, 0) = A(2, 1) = A(3, 1) = A(3, 2) = 1 and A(n,m)

is only defined if: n > m ≥ 0. Using the Eulerian numbers, we have the identity

of Worpitzky (for a proof see [6]):

xn =

n−1∑
m=0

A(n,m)

(
x+m

n

)
or xn =

n∑
m=1

A(n,m− 1)

(
x+m− 1

n

)
This formula holds for the Eulerian numbers. Filling in x = a and m = n − r
gives:

an =

n−1∑
r=0

A(n, n− r − 1)

(
n+ a− r − 1

n

)
Using the identity A(n,m) = A(n, n−m− 1) and making a minor substitution

gives:

an =

n−1∑
r=0

A(n, r)

(
n+ a− r − 1

n

)
or

n∑
r=1

A(n, r − 1)

(
n+ a− r

n

)
We obtain: D(n, r) = A(n, r− 1). Fortunately, there is also an explicit formula

forD(n, r), using the fact that they are the Eulerian numbers A(n, r−1) (see [1]):

D(n, r) = A(n, r − 1) =

r∑
k=0

(−1)k
(
n+ 1

k

)
(r − k)n (1)

Indeed, D(4, 1) = A(4, 0) = 1 and D(4, 2) = A(4, 1) = 11 as we saw in example

6. At last, let me remark that sometimes A(n, r) is defined as the number

of permutations of Sn with r rising sequences. I do not adopt this notion,

but rather stick to the definition on Wikipedia. Using the closed form (or

the knowledge of values of the Eulerian numbers), we can easily calculate the

number of permutations in Sn which have r rising sequences.
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4.1.2 Applying corollary 1

As pointed out, Riffle Shuffling a deck of 52 cards needs to be done more than

5 times to have a nontrivial probability for every permutation. However, this

might not even be a problem, because the difference between 1
52! (uniform shuf-

fle U) and 0 is not that big. Therefore it is more interesting to look at the

variation distance between R(k) and U . Recall the variation distance between

two densities (Q1 and Q2) on the same deck of cards:

‖Q1 −Q2‖ =
1

2

∑
π∈Sn

∣∣Q1(π)−Q2(π)
∣∣

Applying this to R(k) and U gives:∥∥∥R(k) − U
∥∥∥ =

1

2

∑
π∈Sn

∣∣∣R(k)(π)− U(π)
∣∣∣

Or, using corollary 1 and (1), we get:

∥∥∥R(k) − U
∥∥∥ =

1

2

n∑
r=1

D(n, r)

∣∣∣∣∣∣
(
n+2k−r

n

)
2kn

− 1

n!

∣∣∣∣∣∣
=

1

2

n∑
r=1

r∑
m=0

(−1)m
(
n+ 1

m

)
(r −m)n

∣∣∣∣∣∣
(
n+2k−r

n

)
2kn

− 1

n!

∣∣∣∣∣∣
Using n = 52, we can plot the value of the variation distance for k ∈ {0, 1, . . . , 14}
(see Figure 1). We see that the variation distance takes a steep drop after 5

shuffles and is nearly 0 after 12 shuffles. The number 7 is normally (I do not

completely agree) chosen as the number of shuffles it takes to randomize a deck

(see for example [10]).

4.2 Riffle shuffle analysis using stopping time

When looking at the Riffle shuffle, we could immediately calculate the probabil-

ities through nice properties. However, there is an alternative approach which

is more strict on the variation distance between
∥∥∥R(k) − U

∥∥∥. We will work this

out and find out that it might indeed (as noticed before) be better to Riffle shuf-

fle more than 7 times. To work this out, some instruments will be explained.

Firstly, (recall) the definition of a discrete-time Markov Chain.

Definition 6. Suppose we have a sequence of random variables X1, X2 . . . and

Xi can take values in a countable state space S. This sequence is called a

discrete-time Markov Chain if it satisfies the Markov property, that is: the
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Figure 1: The variation distance between R and U (y-axis) for certain successive

Riffle shuffles (x-axis). Figure created using Mathematica.

probability of what happens in state m+ 1 is only dependent on the state Xm.

More formally:

P(Xm+1 | X1, . . . Xm) = P(Xm+1 | Xm)

It is a well-known fact that if our Markov Chain has an irreducible aperiodic

transition matrix on a finite state space, that there exists a unique stationary

distribution. In the Riffle shuffle case, we will take Xm to be the ordering of

the deck at time m. This is equivalent to some permutation π ∈ Sn, which

determines the new positions of the numbered cards. Our initial value X0

is the ordering [(1) . . . (n)]. This is obviously a Markov Chain, because the

probability of a certain permutation on this deck is only dependent on the

number of rising sequence at time m. From earlier computation, we know

that the stationary distribution is the uniform distribution: the Riffle shuffle

converges to the uniform distribution. Next, we define a random variable called

the stopping time. Also, a strong uniform time T will be defined (definition

from [4]).

Definition 7. Suppose we have a sequence of random variables X1, X2, . . . .

A stopping time T is a random variable with state space N. Moreover the

probability that T = t is only dependent on the values of X1, . . . , Xt.

Definition 8. A strong uniform time T is a randomized stopping time for a

Markov Chain (Xm : m ≥ 0) with stationary distribution π, state space S and

initial state i0 ∈ S, if:

P(Xk = i | T = k) = π(i) for all k ∈ {0, 1, . . . } and i ∈ S.

Why do we need the notion of stopping time to find a good amount of Riffle

shuffles? Well, we can use P(T > k) to estimate
∥∥∥R(k) − U

∥∥∥! The proof of the

following lemma is largely based on [3].
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Lemma 3. Suppose we have a probability distribution Q on a finite group G

(= Sn). Let T be a strong uniform time for Q. Then, for all k ≥ 0:∥∥∥Q(k) − U
∥∥∥ ≤ P(T > k)

Proof. Suppose A ⊂ G, then

Q(k)(A) = P(Xk ∈ A) =

k∑
j=1

P(Xk ∈ A, T = j) + P(Xk ∈ A, T > k)

=

k∑
j=1

P(Xk ∈ A | T = j)P(T = j) + P(Xk ∈ A | T > k)P(T > k)

But we know that T is a strong uniform time, hence P(Xk ∈ A | T = j) =

π(A) = U(A). This gives, with a little re-ordering:

Q(k)(A) = U(A) +
(
P(Xk ∈ A | T > k)− U(A)

)
P(T > k)

Hence:∣∣∣Q(k)(A)− U(A)
∣∣∣ =

∣∣∣∣(P(Xk ∈ A | T > k)− U(A)
)
P(T > k)

∣∣∣∣ ≤ P(T > k)

Conclude the hypothesis, because A was arbitrarily.

4.2.1 Stopping time for the Riffle shuffle

So, if one succeeds to find a strong uniform time for the Riffle shuffle and to ob-

tain P(T > k), then it is possible to say something about
∥∥∥R(k) − U

∥∥∥. Well, what

stopping time T should we use? Mann describes a good stopping time T in [13].

Firstly, it is sufficient to find a stopping time for the unshuffle, because the a-

unshuffle R̂a is exactly the inverse of the Riffle shuffle (that is R̂a(π−1) = Ra(π)).

Secondly, we need an equivalent way of doing an a-unshuffle. This can be done

by labelling all cards with a k ∈ {0, . . . , (a − 1)} chosen uniformly. Place all

cards with a 0 on top of the new deck, keeping their relative order. Repeat this

for all numbers in ascending order, always keeping the relative order of cards

with the same number k.

On the other hand, an equivalent way of describing the Ra shuffle is by taking an

n digit base a number and putting bars after the number of zeros, then ones, et

cetera. Here, the i-th digit of the chosen number is in the range: {0, . . . , a− 1},
chosen uniformly. After this, place the numbers in their relative order on the

spots they belong, that is the first card will be the card on the position of the

first 0 in the n base a number. Continue doing this for all zeros in the n base
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a number. Repeat this process with all ones, et cetera. The equivalence is for

example shown in [13]. I will now demonstrate with an example how this is

done.

Example 9. Take a = 3 and n = 8. Take the n digit base 3 number: 10201222.

That is, we have 2 zeros, 2 ones and 4 twos. We want to perform the 3-shuffle

using this code. Hence, the deck is split as: 12 | 34 | 5678. From the base

number, we get that the card 1 should be on place 2 and that the card 2 should

be on place 4 (since the zeros are on that spot). Continuing, we end up with:

[31524678], which is the permutation π = (13542). Use the same base number

to perform the 3-unshuffle. So the cards on place 2 and 4 should be in front, in

that order. These are indeed the cards 1 and 2. Continuing gives the original

deck [12345678]. This is the permutation (12453). Indeed (12453) = π−1, as we

expected.

We can do k consecutive 2-unshuffles by getting k binary numbers with n digits

(00 . . . 0 is also a n digit binary number), name them x1, . . . xk. Then, create

n binary numbers with k digits, name these y1, . . . , yn. They are constructed

as follows: the i-th digit of yj is equal to the j-th digit of xk+1−i. After this,

convert y1, . . . yn to regular numbers z1, . . . zn. We can then sort the zi’s in order

of size (if zi = zj , then the zk with the smallest index i or j is placest first). The

order of the indices of the zi’s gives the new deck ordering. Why is this the same

as performing k consecutive 2-unshuffles? Well, there is a similar theorem for

unshuffles, as theorem 2, but just the other way around: a b-unshuffle followed

by an a-unshuffle is equivalent to an ab-unshuffle. As Mann points out in [13],

the orders are reversed: we write a b-unshuffle followed by an a-unshuffle. Mann

gives the explanation: “for the same reason that one puts on socks and then

shoes, but takes of shoes and then socks”. I will not dive into details as with

theorem 2, but assume the aforementioned as true. An example seems more

illustrating to me.

Example 10. Suppose we want to perform 4 consecutive 2-unshuffles. So k = 4,

n = 5 and we get the following binary numbers with n = 5 digits: x1 = 11110,

x2 = 11101, x3 = 00001 and x4 = 01010. These n digit binary numbers are

chosen by uniformly selecting each digit. We get:
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card 2-unshuffle (vertically: x4x3x2x1) normal numbers

1 y1 = 0011 z1 = 3

2 y2 = 1011 z2 = 11

3 y3 = 0011 z3 = 3

4 y4 = 1001 z4 = 9

5 y5 = 0110 z5 = 6

Firstly, y1 is 0011. This is because the first digits of x1, x2, x3 and x4 are

(respectively): 1, 1, 0 and 0. Notice how we reverse the order. Secondly, the

binary numbers are easily converted to regular numbers. For example, 1011

gives: 1 · 8 + 0 · 4 + 1 · 2 + 1 · 1 = 11. Moreover, we get: (z1, z2, z3, z4, z5) =

(3, 11, 3, 9, 6). We order them (z1 comes before z3, because 1 < 3) and get the

order: (z1, z3, z5, z4, z2). So, we end up with the unshuffle of the original deck

([12345]) of: [13542].

It is finally time to define a stopping time for 2-unshuffling, which gives us a

stopping time for 2-shuffling. The stopping time T is defined as the number

of tries it takes to have n distinct base 2T numbers. Looking at the previous

example: T > 4, since the cards 1 and 3 have the same base number. This

does at first glance not immediately seem like a randomized stopping time and

strong uniform time, which we do need. But as it turns out, it is quite easy to

prove that it in fact is.

Lemma 4. If T is defined as the number of tries it takes to have n distinct base

2T numbers for 2-unshuffling, it is a strong uniform time.

Proof. First of all, it is indeed a random variable with state space N. And the

probability that T = t is only dependent on the values of X1, . . . , Xt. Here Xi

is the permutation of the deck at time i. This is a Markov Chain, since only the

last permutation matters for the current ordering of the deck. The last thing

we need to verify is if:

P(Xk = i | T = k) = π(i) for all k ∈ {0, 1, . . . } and i ∈ S

This can be explained easily, since if T = k, then we have n distinct base 2T

numbers. But these numbers are chosen randomly, hence for two cards i and j

it is equally alike that the number of card i is larger than the number of card
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Figure 2: The blue dots represent the real variation distance. The yellow ones

come from the upper bound. Figure obtained using Mathematica.

j as the other way around. So the deck is uniformly distributed. Hence given

k ∈ N and i ∈ S:

P(Xk = i | T = k) =
1

|S|
= π(i)

Now all that remains is finding P(T > k), then we can apply lemma 3. This

probability is exactly the probability that n digit base 2k numbers picked ran-

domly are not all distinct. This is easily determined by its complement. That

is: we need to find the probability that no number is equal. We have for the

first number 2k options. For the second 2k− 1, all the way to the n-th. That is:

(2k)(2k−1) . . . (2k−n+1) = (2k)!
(2k−n)! . All with equal probability 1

2kn . Combining

gives:

P(T > k) = 1− (2k)!

(2k − n)!

1

2kn

We finally have an upper bound, but I have to disappoint you: this is not strict

enough to come to the already calculated values of
∥∥∥R(k) − U

∥∥∥. Take the usual

case n = 52 and see figure 2 for the upper bound and the variation distance.

Luckily, we have another way of using P(T > k). We know that the shuf-

fling is truly random if T “stops”. Hence it is interesting to determine E(T ).
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Because P(T ≥ 0) = 1, we can rewrite the standard E(T ) and behold:

E(T ) =

∞∑
k=0

kP(T = k) =

∞∑
k=0

P(T > k) =

∞∑
k=0

(
1− (2k)!

(2k − n)!

1

2kn

)
For n = 52, we get around 11.7. So it takes about 12 Riffle shuffles to randomize.

This is almost the same as using the first value of k for which
∥∥∥R(k) − U

∥∥∥ is

very close to 0. This is, oppositely to the upper bound, a direct way to see that

around 12 Riffle shuffles should indeed be sufficient.

5 Top-in shuffle

Another way to shuffle, which will turn out to be of less practical use, is the

Top-in shuffle as in [13].

Definition 9. Define the following probability mass function σ : Sn → [0, 1]

by:

σ(π) =

 1
n if π =

(
(n)(k)(k + 1)(k + 2) . . . (n− 1)

)
where k ∈ {1, 2, . . . , n}

0 else

So if we apply this function, we get a permutation (with probability 1
n which

sends the top card of the deck to place k and all cards on place i ≥ k will be

send to i+ 1.

Now the Top-in shuffle (TS). Mark the bottom card of the deck (the card 1).

Then proceed iteratively:

Step 1: Find a permutation π using σ.

Step 2: If the card on place n is not equal to the marked card: apply π and

return to step 1. Otherwise: apply π and quit the iteration.

What does the Top-in shuffle do? It inserts the top card in the deck at a

place chosen uniformly. It continues to do so until the marked card comes on

top. After that it places the marked card uniformly in the deck and the shuffle

is complete. When the marked card came up top, all cards beneath where

randomized and the last step randomly inserts the marked card. So this process

indeed randomizes, that is: all decks are equally alike. However, as said, it is of

less practical use: it is not very efficient and takes a while to do. See an example

below.

Example 11. Take n = 4. The following k’s have been generated by Math-

ematica (using “RandomInteger[{1, 4}]”): {4, 1, 3, 4, 1, 2, 1, 4, 1, 2}. Notice that

getting at least n ones is always enough, if the last one is followed by another
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k.

old deck k permutation in this step π new deck

[1234] 4 e [1234]

[1234] 1 (1432) [4123]

[4123] 3 (23) [4132]

[4132] 4 e [4132]

[4132] 1 (1423) [2413]

[2413] 2 (143) [2341]

[2341] 1 (1432) [1234]

So the deck is shuffled to itself.

Now define the random variable T as the number of times one needs to apply

σ in total. Hence in the example above, T = 7. As we wanted to find out

how many Riffle shuffles are needed to randomize, now we want to find out

how soon the iterations quit. So we need to determine E(T ). For this, write

T = Tn + · · · + T2 + 1. Here Tj as the number of times we need to generate a

number k such before the tagged card moves from position j − 1 to position j.

The probability of picking a number such that the tagged card is moved from

position j − 1 to j in a certain iteration is:

p :=
1

n

j−1∑
m=1

1 =
j − 1

n

Using the geometric series we get (p(1− p)i−1):

P(Tj = i) =

 j−1
n

(
n−j+1
n

)i−1
if i ∈ N

0 else

Which makes determining E(Tj) easy, as this is just 1
p = n

j−1 . Using this, we

obtain E(T ):

E(T ) = 1 +

n∑
j=2

E(Tj) = 1 + n

n−1∑
j=1

1

j
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Because the Harmonic numbers can be approximated by log n for large n, we

can estimate E(T ) by n log n for large n. Specifically for n = 52, we get:

E(T ) = 1 + 52

51∑
j=1

1

j
≈ 236 or E(T ) ≈ 52 log 52 ≈ 205

This turned out to be a nice and quiet simple approach. But, as we recall from

section 4.2, that P(T > k) an upper bound is for the variation distance. For

this, the definition of T must indeed be so, that it is a strong uniform time.

Lemma 5. If we define T as the number of permutations we need to generate

for the Top-in Shuffling process, then T is a strong uniform time.

Proof. First of all, it is indeed a random variable with state space N. And the

probability that T = t is only dependent on the values of X1, . . . , Xt. Here Xi is

the permutation in step i. It is therefore obvious that T is a stopping time for the

Markov Chain (Xi)i. The stationary distribution π is the uniform distribution,

because at a certain moment all distributions of the deck are equally alike. The

last thing we need to verify is if:

P(Xk = i | T = k) = π(i) for all k ∈ {0, 1, . . . } and i ∈ S

This can be explained easily, since if T = k, then every ordering is equally alike.

This is exactly how the Top-in Shuffling process was defined. Hence given k ∈ N
and i ∈ S:

P(Xk = i | T = k) =
1

|S|
= π(i)

So from now on, a method of estimating P(T > k) will be presented. For this,

define the coupon collecter distribution. Liang provides an extensive method to

estimate P(T > k) in [12]. Suppose we have a coupon collector. We define the

random variable C as the number of coupons the collector has when he collected

all n coupons. Here the probability of getting a specific type of coupon is: 1
n .

Lemma 6. Let C be a coupon collector random variable. Given α > 0, we

have:

P(C > dn log n+ αne) ≤ 1

eα

Proof. Define Ai to be the event that the i-th coupon type is not present in the

first dn log n+ αne draws. Because the probability of not drawing coupon type

i is (i.i.d.) n−1
n = 1− 1

n , we have:

P(Ai) ≤ (1− 1

n
)dn logn+αne
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We can now estimate from above:

P(C > dn log n+ αne) ≤ P(

n⋃
i=1

Ai) ≤
n∑
i=1

P(Ai)

≤
n∑
i=1

(1− 1

n
)dn logn+αne ≤ n exp

(
log
(

(1− 1

n
)dn logn+αne

))
≤ n exp

(
(n log n+ αn) log

(
1− 1

n

))
≤ n exp

(
− n log n+ αn

n

)
= e−α

Another result will complete our estimation, combined with the previous lemma

(for the proof, see [12]).

Lemma 7. Let C and T be as before. We have, for all k ∈ N:

P(T < k) ≤ P(C < k)

Proof. Define Ci to be the number of coupons the coupon collector has when

he has collected the first i distinct coupons. Then:

C = (Cn − Cn−1) + · · ·+ (C2 − C1) + C1 = (Cn − Cn−1) + · · ·+ (C2 − C1) + 1

What can we say about (Ci+1 − Ci)? Well, it is for sure a geometric random

variable, notation g(p). But what is p? The probability of getting a new sort of

coupon is p = n−i
n . Hence, we can write:

C =

n∑
k=1

g(
k

n
)

On the other hand we already know that

T = Tn + . . . T2 + 1 =

n∑
k=2

g(
k − 1

n
) + g(

n

n
) =

n∑
k=1

g(
k

n
)

We can indeed conclude our hypothesis.

Corollary 2. The variation distance
∥∥∥TS(k) − U

∥∥∥ is less than or equal to ε > 0

for k ≥ dn log n+ n log 1
ee = dn log n

e e

Proof. Combine lemma 3, lemma 6 and lemma 7.

How nice this corollary might seem, it turns out to be not really good. For

small values of ε, we need really large values of k. Even for ε = 1
3 , we need

k ≥ 263. The approach with E(T ) seems better. All in all, we can conclude

that the Riffle shuffle is (way) more effective than the Top-in shuffle.
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6 Overhand shuffle

We have already seen a frequently used shuffle, namely the Riffle shuffle. An-

other shuffle often used in practice is the Overhand shuffle. For this shuffle, we

first define the order reversing permutation. We will denote it with σ. Applying

σ to a deck is exactly reversing the order. So the original deck [(1) . . . (n)] is,

after applying σ, equal to [(n) . . . (1)]. Now the Overhand shuffle.

Definition 10. Suppose we have a deck of n cards in the original numbered

order: [(1) . . . (n)]. The Overhand shuffle, denoted O(p) goes as follows: define

X1, . . . Xn−1 random variables. The state space S of these random variables Xi

is {Y,N}, for “Yes” and “No”. We define the probability density as: P(Xi =

Y ) = p. Hence P(Xi = N) = 1−p. Of course: p ∈ (0, 1). How do we shuffle the

cards? Well, if Xi = Y , then we separate the i-th card (counted from top, so

X1 = Y means separating card 1 from card 2) from the i+1-th card. If Xi = N ,

we do not separate them. If some Xi = Y , we find k < i such that Xk = Y

and k as large as possible. This means finding the first variable with value Y ,

looking back from Xi. We then place all the cards k + 1 until i on a new pile,

in their current order. If no k ∈ N can be found, do this for all cards 1 until i.

Repeat this for all n− 1 variables and apply the reversing order permutation σ.

Before I dive into the matter, let me first give an example.

Example 12. Suppose we have a deck of n = 9 cards. First, let p = 1
2 .

Mathematica (using “RandomInteger[{1,2},8]”. Here a 1 was a Y) generates

9 variables: (X1, . . . , X9) = (Y,N,N, Y, Y, Y, Y,N). Since X1 = Y , we should

separate the top card 1 from the second card 2. So the new deck is: [.......1].

Since X2 = X3 = N and X4 = Y , we must (since X1 is the last variable with

value Y ) put the cards 2, 3 and 4 in their current order on the new pile. We

get: [....2341]. Continuing, we get: [897652341]. Since we applied the Overhand

shuffle once, we must reverse the order. So the new deck is:

[143256798]

This does not seem as a very good shuffle, but the case p = 1
2 “feels” as our best

option. Let me show anoter case: p = 4
5 . Mathematica generates 8 variables

(using “RandomInteger[{1,5},8]”. Here only a 5 gave a N.):

(X1, . . . , X9) = (Y, Y, Y,N,N, Y, Y, Y ). In the same way, this gives (before re-

versing): [987456321]. And after reversing, we get:

[123654789]

This indeed seems “less random”.

A few questions can arise. Why do we need the reversing shuffle σ? Well, af-

ter an uneven amount of consecutive Overhand shuffles, the deck has reversed
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order. However, for an analysis of the Overhand shuffle, it is more convenient

to look at the original, non-reversed order. And for an analysis of how many

shuffles are needed, it does not matter.

What is this Overhand shuffle exactly? Well, it is a mathematical model of

taking all cards in your left hand and sliding sets of cards to your right hand. If

p = 1
2 , this means you slide on average 2 cards into your right hand. Of course,

if (X1, . . . , Xn−1) = (Y, Y, . . . , Y ), then we separate every card. This exactly

reverses the order of the cards, but after applying σ, we get the identity per-

mutation on the deck. On the other hand, if (X1, . . . , Xn−1) = (N,N, . . . , N),

then we do not separate a single card. Hence we put the entire deck down and

after applying σ, we get the deck in reversed order.

In example (12), we recognized more of a pattern in the case p = 4
5 . This

might of course be “dumb luck”. But, it is possible to determine the variation

distance between the O(p) and U .

Lemma 8. For a deck of n cards, the variation distance between O(p) and U

is: ∥∥O(p)− U
∥∥ =

1

2

(
n!− 2n−1

n!
+

n−1∑
k=0

(
n− 1

k

)∣∣∣∣pk(1− p)n−1−k − 1

n!

∣∣∣∣
)

Proof. We know that:∥∥O(p)− U
∥∥ =

1

2

∑
π∈Sn

∣∣O(p)(π)− U(π)
∣∣ =

1

2

∑
π∈Sn

∣∣∣∣O(p)(π)− 1

n!

∣∣∣∣
Moreover, there are only 2n−1 permutations with nonzero probability of occur-

ring with a Overhand shuffle. We can see this, because there are n− 1 options

of choosing Y or N , which generate all distinct permutations. This explains the

term
n!− 2n−1

n!
= (n!− 2n−1)

∣∣∣∣0− 1

n!

∣∣∣∣
Also, for every other permutation, the probability of occurring is determined

by the amount of Y ’s (k times). If Y occurs k times in a permutation, then N

occurs (n− 1)−k = n− 1−k times. However, for every k, there are
(
n−1
k

)
such

permutations. We have to do this for every k ∈ {0, . . . , n − 1}. This explains

the other term:
n−1∑
k=0

(
n− 1

k

)∣∣∣∣pk(1− p)n−1−k − 1

n!

∣∣∣∣
Combining the two gives the result.

Going back to example 12, we can fill in n = 10. Then we get:
∥∥O( 1

2 )− U
∥∥ =∥∥O( 4

5 )− U
∥∥ = 14173

14175 ≈ 1. So in the case n = 10, it does not matter if we pick
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p = 1
2 or p = 4

5 , the different Overhand shuffles seem to be evenly bad. For

lower values of n, we see that p = 1
2 is our best option.

Figure 3: The variation distance between O(p) and U (y-axis) for different values

of deck size n. Here, the blue dots represent n = 2, the yellow dots represent

n = 4 and the green dots represent n = 6. Figure obtained using Mathematica.

6.1 Direct calculation of variation distance for multiple

shuffles

Sadly, there is no theorem for multiple shuffles as with the Riffle shuffle (theorem

2). However, we can still calculate the variation distance
∥∥Ok(p)− U

∥∥ for k > 1.

How does this work? Well, for a deck of size n, create a n!×n!−matrix for every

possible permutation of the deck (of course, this takes a while, more on that at

the end of this section). Then, fill in the transition probabilities for going from

a certain deck ordering to another deck ordering with one Overhand shuffle. In

this section, do not apply the reversing order σ. We can do this for every state

of the deck to every state of the deck.

Example 13. Take n = 3. There are 3! = 6 different decks, namely: [123], [132],

[213], [231], [312], [321]. Hence, we have an 6×6−matrix, denote A(p). From the

deck [123], there are 4 different permutations possible. Firstly: Y Y , this gives

the deck [321] with probability p2. Secondly: Y N , this gives the deck [231] with

probability p(1 − p). Thirdly: NY , this gives the deck [312] with probability

p(1 − p). Lastly: NN , this gives the deck [123] with probability (1 − p)2. So,
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we get:

[123] [132] [213] [231] [312] [321]( )
[123] (1− p)2 0 0 p(1− p) p(1− p) p2

Of course, we can do this with the other states (decks) as well and complete the

matrix:

[123] [132] [213] [231] [312] [321]



[123] (1− p)2 0 0 p(1− p) p(1− p) p2

[132] 0 (1− p)2 p(1− p) p2 0 p(1− p)
[213] 0 p(1− p) (1− p)2 0 p2 p(1− p)
[231] p(1− p) p2 0 (1− p)2 p(1− p) 0

[312] p(1− p) 0 p2 p(1− p) (1− p)2 0

[321] p2 p(1− p) p(1− p) 0 0 (1− p)2

Since this forms a Markov chain, we can calculate A(p)k and from there derive

the probability that a deck is in a certain state, when it began in the deck or-

dering [123]. For this, we only need the first row of the matrix. So, we multiply

by the row vector: (1, 0, 0, 0, 0, 0) from the left. Then we substract a row vec-

tor with the uniform distribution values: 1
6 (1, 1, 1, 1, 1, 1). After that, take the

absolute value of the row vector and sum its entries.

Let me illustrate this with A( 1
2 )1 = A( 1

2 ):

(
1 0 0 . . .

)


9
16 0 0 3

16
3
16

1
16

0 9
16

3
16

1
16 0 3

16

0 9
16

3
16

1
16 0 3

16
3
16

1
16 0 9

16
3
16 0

3
16 0 1

16
3
16

9
16 0

1
16

3
16

3
16 0 0 9

16


=
(

9
16 0 0 3

16
3
16

1
16

)

We then substract 1
6 (1, 1, 1, 1, 1, 1) and take the absolute value of the entries:∣∣∣∣( 9

16 0 0 3
16

3
16

1
16

)
−
(

1
6

1
6

1
6

1
6

1
6

1
6

)∣∣∣∣ =(
19
48

1
6

1
6

1
48

1
48

5
48

)
Summing the entries and multiplying by 1

2 yields:∥∥∥∥O(
1

4
)− U

∥∥∥∥ =
1

2

(19

48
+

1

6
+

1

6
+

1

48
+

1

48
+

5

48

)
=

7

16
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Because we only did one shuffle, we can verify our result by using lemma 8.

Indeed:∥∥∥∥O(
1

4
)− U

∥∥∥∥ =
1

2

(
3!− 23−1

3!
+

3−1∑
k=0

(
3− 1

k

)∣∣∣∣(1

4

)k(
1− 1

4

)3−1−k − 1

3!

∣∣∣∣
)

=
7

16

Once again, let n = 3 and see the following figure. As you will notice, it takes

five shuffles to get a small variation distance, for the value p = 1
2 in the Overhand

shuffle. This is quite much for a deck of 3 cards.

Figure 4: The variation distance between O(p) and U (y-axis) for different

values of consecutive shuffles k. Here, the blue dots represent p = 1
4 , the yellow

dots represent p = 1
2 and the green dots represent p = 3

4 . Figure obtained using

Mathematica.

What about larger values of n? Well, sadly, we are not able to do the compu-

tations for a deck of 52 cards. This would take a 52! × 52!−matrix, something

computers can not handle. So, while we are able to do multiple shuffles, this

method is not really useful for large n.

6.2 Bound for Overhand shuffle

As we concluded, we can not work with large n using matrices. However, we

can estimate a lower bound for the necessary amount of shuffles.

Theorem 5. A lower bound of shuffles for the Overhand shuffle with parameter

p ∈ (0, 1) is given by:
p2(2− p)

8π2(1− p2)
n2 log n
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Oppositely to the Riffle shuffle bounds, I will not prove this theorem. An ex-

tensive proof for this theorem can be found in a paper of Jonasson, who came

up with this lower bound theorem and its proof in [9]. Note that for smaller

values of p, we need less Overhand shuffles according to the lower bound. But

be careful, this does not tell us anything, since we need an upper bound as

well. For example, if we use p = 1
4 and n = 3, then the lower bound takes a

value of less than 0.02. So we should not need any shuffles according to this

lower bound. We already saw in figure 6.1 that this is not nearly enough. Since

Pemantle already proved in [14] that the Overhand shuffle is at most of order

n2 log n, we can conclude that we need about O(n2 log n) Overhand shuffles to

mix up a deck of n cards.

What can we conclude from the lower bound or the mixing time of O(n2 log n)?

Well, if we take a standard deck of n = 52 cards and perform consecutive Over-

hand shuffles with p = 1
2 , the lower bound is approximately 67. Using only this

lower bound, we can already conclude that Riffle Shuffling is a lot more effective

to mix up a deck of cards.

7 Fisher-Yates shuffle

As with the Top-in shuffle, there is another shuffle that truly randomizes the

deck. This is known as the Fisher-Yates shuffle (see [2]).

Definition 11. Suppose we have a deck of n cards in its original order: [(1) . . . (n)].

We proceed by doing n− 1 iterations:

If the size of the current deck is larger than 1, remove a random card of this

current deck. Add this to the bottom of the new deck. If the size of the cur-

rent deck is 1, stop. Your deck has now been completely randomized using a

Fisher-Yates shuffle (denoted FS).

The only thing a card shuffler needs to do is pick n − 1 random numbers in

different domains. The i-th random number should be an integer k with 1 ≤
k ≤ n− i+ 1, chosen uniformly. A proposition to prove that this shuffle indeed

randomizes the deck.

Proposition 1. The Fisher-Yates shuffle indeed randomizes a deck of n cards.

Proof. Suppose we have a deck of n cards in its original order: [(1) . . . (n)]. If we

can show that the probability that a card on position x ends on position y after

the shuffle is 1
n , then we are done. For this, denote the probability that a card

on position x ends on position y after the shuffle with Pxy. Firstly: Px1 = 1
n ,

since the card x should be chosen first. This happens with uniform probability
1
n , since there are n cards left. From now on, assume y ≥ 2. To end on position
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y, the card numbered x should not be chosen in the first y−1 times of removing

a card. To not be chosen in the i-th try has probability: n−(i−1)−1
n−(i−1) = n−i

n−i+1 ,

because there are n − (i − 1) cards left. After that, the card should be chosen

in the y time of removing a card (with probability 1
n−(y−1) ). This gives, for all

y ≥ 2:

Pxy =
( y−1∏
i=1

n− i
n− i+ 1

) 1

n− (y − 1)
=
n− y + 1

n

1

n− y + 1
=

1

n

Conclude that Pxy = 1
n , for every (x, y) ∈

(
N≤n

)2
, hence we are done.

A small example to illustrate the Fisher-Yates shuffle. In iteration i, the ran-

dom integer k, with 1 ≤ k ≤ n − i + 1 is generated in Mathematica by

“RandomInteger[{1, n− i+ 1}]”.

Example 14. Suppose n = 9, the random integers generated (in order) are:

(8, 4, 7, 3, 2, 1, 3, 1). I will handle all iterations.

step k old deck before removal card removed new deck after iteration

1 8 [123456789] 8 [8]

2 4 [12345679] 4 [84]

3 7 [1235679] 9 [849]

4 3 [123567] 3 [8493]

5 2 [12567] 2 [84932]

6 1 [1567] 1 [849321]

7 3 [567] 7 [8493217]

8 1 [56] 5 [849321756]

Note that in the last iteration, two cards are added to the new deck. This is

because card 6 clearly must be the last one in the new deck.

One could always shuffle a deck in this way and this needs only n steps (n− 1

iterations and adding the remaining card to the bottom of the deck). However,

randomly selecting a card/number is not something most people are good at. So

for a card game, it could be possible to let an outsider generate n−1 numbers and

randomize the deck. Why an outsider? Well, since the shuffle is not as fast for

the eye as for example the Riffle shuffle. A card player who pays attention, knows

the order of the new deck. Therefore the Fisher-Yates shuffle is theoretically a

good mixing strategy for cards, however it has its cons.

8 Conclusion

A lot of different shuffling methods came up in this thesis. Some are more

theoretical and randomized a deck really easily. Others are of more practical
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use, but turn out to be harder to analyse mathematically. The variation distance

turned out to be a useful tool in the analysis of card shuffling. For every deck of

n cards and every shuffle Q, we can analysize Q(k) by means of a n!×n!−matrix.

For some methods, especially the Riffle shuffle, better tools have been developed.

As a general conclusion: the Riffle shuffle turns out to be of most practical use in

casual and professional card games (i.e. in real life, with real cards). For online

gambling, Fisher-Yates seems to be the best alternative. I convinced myself to

stop using the Overhand shuffle, because although it is generally easier, it takes

certainly more time to shuffle a deck of cards than with the Riffle shuffle.
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