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Introduction

In this thesis, we want to find special values of the hypergeometric function, so we first define
the hypergeometric function. The Pochhammer symbol is defined as

(a)n =

n−1∏
i=0

(a+ i) = a(a+ 1) · · · (a+ n− 1), (1)

for a ∈ C and n ∈ N≥1, we also define (a)0 = 1. Now we define the Gauss hypergeometric

function by 2F1(a, b; c|x) =
∑∞
n=0

(a)n(b)n
n!(c)n

xn, where a, b, c ∈ C and c /∈ {k ∈ Z; k ≤ 0}. The

given power series has a radius of convergence equal to ∞ if a or b is a non-negative integer,
and radius of convergence equal to 1 otherwise. The function 2F1(a, b; c|x) is a solution of the
hypergeometric differential equation(

x(1− x)
d2

dx2
+ (c− (a+ b+ 1)x)

d

dx
− ab

)
f(x) = 0. (2)

Note that equation (2) is a linear differential equation of degree 2, so its solution space is a
2-dimensional C-vector space, but we do not consider the other solution of equation (2) yet.

A theorem of Wolfart, see [1, chapter 5], states that for F (x) = 2F1 (a, b; c |x ) there are three
cases with respect to the parameters a, b, c:

• the function F (x) is algebraic over C(x), so if x is algebraic, then F (x) is algebraic;

• the monodromy group of F (x) is an arithmetic hyperbolic triangle group and 0 < a < c < 1
and 0 < b < c < 1 and 1 − c + |a − b| + |c − a − b| < 1; then there is a subset E of the
algebraic numbers, dense in C, such that F (x) is algebraic for x ∈ E;

• otherwise, there are only finitely many algebraic numbers x with F (x) algebraic.

The most suprising statement in Wolfart’s theorem is that there exists a class of transcendental
functions, such that there exists a set E of algebraic numbers such that if x ∈ E, then F (x)
is algebraic. Moreover, this set is not only infinite, but is dense in C. In the classification of
Wolfart’s theorem, we are only interested in the second case: the first case can be calculated and
the third case is beyond this stage of this thesis.

In chapter 1 we start with a theorem of Schwarz1, which states that the image of the upper
half plane H by a quotient of hypergeometric functions is equal to a curvilinear triangle; this
statement will be made precise in this chapter. The proof of Schwarz’ theorem is classical and
not the main part of this thesis; it is written out in appendix A. The theorem of Schwarz gives a
relation between hypergeometric functions and triangle groups, where the triangle group follows

1Hermann Amandus Schwarz, 1843–1921, son in law of Ernst Kummer
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from the given curvilinear triangle. It turns out that, after some choices, this triangle group
is commensurable with the modular group SL2(Z), and this is where modular functions and
modular curves enter this thesis. In chapter 1 we do some preliminary calculations to be able
to calculate special values of the hypergeometric function later on: for a given finite list of
parameters, we calculate their triangle groups, this result is given in table 1.1. It turns out that
the modular curves we consider in this thesis are all isomorphic to P1(C), and the function field
of a modular curve isomorphic to P1(C) is generated by a single element, called a Hauptmodul.
We also calculate these Hauptmoduln for the given list of parameters, which gives the tools we
need to actually calculate special values of the hypergeometric function, this result is given in
table 1.2.

In chapter 2 we calculate some special values of the hypergeometric function, using the
triangle groups and Hauptmoduln from chapter 1. The key idea is that for the Hauptmoduln
in this thesis it is the case that a Hauptmodul is a biholomorphic function from a curvilinear
triangle to the upper half plane, and the quotient of hypergeometric functions is a biholomorphic
function from the upper half plane to a curvilinear triangle. The composition of these two
functions is a Möbius transformation of the triangle we started with, we also calculate this
transformation. From differentiating this relation follows a formula to calculate special values
of the hypergeometric function. The main interesting point of this formula is that it involves
the derivative of the Hauptmodul, and the derivative of a modular function is not a modular
function. To calculate the derivative of a modular function is an interesting problem, but it is
possible and we did this in our thesis. Using the formula we proved in this chapter, we succeeded
in giving two proofs, see theorem 2.15 and theorem 2.20, of the identity

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)

=
3√
5
, (3)

which is given as a conjecture in [4]. Using the same method, we have found some other identities,
which are given in theorem 2.16.

In chapter 3 we do some more calculations on special values of the hypergeometric function
without using the theorem of Schwarz. The method we use is a little bit technical; it uses the
analytic continuation of a hypergeometric function along a curve. Using this method we found
some other special values, one of which is

2F1

(
1

84
,

43

84
;

2

3

∣∣∣∣∣38241952
(
5289411798647305− 672452454064707

√
21
)

84434123054702851182481

)

=
84

√
2975681180018235190280192

(
3224592092541346723

√
21− 14673095170014395553

)
1674802610123026678739408499666232174237347823394822911603359375

· <
(
e−πi/6

12

√
2343 + 1287i

√
3 + 1521i

√
7 + 923

√
21

)
, (4)

which is equation (3.60). This identity has an algebraic argument, and an algebraic value;
moreover the absolute value of its argument is less than 1, so this special value falls inside the
region of convergence of the function 2F1 (1/84, 13/84; 2/3 |x ).

I would like to thank my supervisor Frits Beukers for advising me while I wrote my thesis.
Several times he pointed out possible simplifications in my proofs and calculations, and for this
clarity I am especially grateful. I would like to thank my second reader Gunther Cornelissen for
taking the time to read this thesis. Also I want to thank my fellow students who participated in
the master’s thesis seminar; I have learned a lot from their talks and they listened to my talks,
even when I did calculations on the blackboard.
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Chapter 1

Triangle groups and
Hauptmoduln

In this chapter we will study triangle groups and Hauptmoduln (these objects will be defined
later), which will give special values of the hypergeometric function in the next chapter, see chap-
ter 2 on page 16. To see the connection between triangle groups and hypergeometric functions,
we start with Schwarz’ theorem. By definition, a curvilinear triangle has edges which are line
segments or circle segments. It can be shown that a curvilinear triangle with given angles is
unique up to a Möbius transformation.

Theorem 1.1 (Schwarz,[12, page 311],[6, page 207]). Let a, b, c ∈ R and define λ = |1− c| and
µ = |c − a − b| and ν = |a − b|. Suppose that 0 ≤ λ, µ, ν ≤ 1. Let f, g be linearly independent
solutions of the hypergeometric differential equation with parameters a, b, c, then the function
D = f/g maps H one-to-one and conformal onto the interior of a curvilinear triangle T with
vertices A with angle λπ and B with angle µπ and C with angle νπ. Moreover, it holds that
D(0) = A and D(1) = B and D(∞) = C.

Note that choosing other linearly independent solutions of the hypergeometric differential
equation gives a Möbius transformation of the triangle T : let α, β, γ, δ ∈ C such that αδ− βγ 6=
0, then from considering the functions αf + βg and γf + δg instead of f and g follows that
αf+βg
γf+δg = α(f/g)+β

γ(f/g)+δ . From now on we will assume λ = 1/k and µ = 1/l and ν = 1/m and

1/k + 1/l + 1/m < 1 for k, l,m ∈ N≥1.

Definition 1.2 (Definition and conventions). Let T be a curvilinear triangle with angles π/k, π/l, π/m
and 1/k + 1/l+ 1/m < 1. Let K0, L0,M0 be, respectively, the edges of T opposite to the angles
π/k, π/l, π/m. Let K,L,M be, respectively, be the reflections of the hyperbolic plane in the
edges K0, L0,M0. Define Γ∗(k, l,m) = 〈K,L,M〉 and Γ(k, l,m) ⊂ Γ∗(k, l,m) as the index 2 sub-
group consisting of words of even length. Note that Γ(k, l,m) is contained in SL2(C), because
the composition of two reflections is a Möbius transformation. Because the matrix −I2 gives the
identity map, we identify Γ(k, l,m) with Γ(k, l,m) ∪ −Γ(k, l,m), which is its lift from PSL2(C)
to SL2(C). If no confusion arises, we write Γ instead of Γ(k, l,m).

From [5, page 34] we know that given three circles in C, there exists a unique circle C which
intersects all three circles orthogonally, which is called the orthogonal circle or the radical circle.
Note that this orthogonal circle is invariant under Γ, so for z ∈ C and γ ∈ Γ, it follows that
γz ∈ C. Later on it will be the case that C = R, from which follows that Γ ⊂ SL2(R) ⊂ SL2(C).

4



CHAPTER 1. TRIANGLE GROUPS AND HAUPTMODULN 5
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Figure 1.1: Picture of the triangle T (2, 3,∞) with its reflections; some triangles of the tesselation
of H are drawn. One reflection of T is drawn in stripes, which together with T is a fundamental
domain of Γ(2, 3,∞)\H.

Theorem 1.3 ([9, theorem 2.8]). Let K,L,M be the reflections in the edges of a hyperbolic
triangle T with angles π/k, π/l, π/m. The images of (the interior of) T under the action of
the distinct elements of the group Γ∗(k, l,m) = 〈K,L,M〉 fill the hyperbolic plane without gaps
and overlappings. Moreover, Γ∗(k, l,m) is defined by the relations K2 = L2 = M2 = (KL)m =
(MK)l = (LM)k = e.

Proof. A partial proof of this theorem is given in [9, theorem 2.8]. For the parts omitted, a
reference to [2, paragraph 398–402] is given.

Because the images of T with respect to the action of Γ do not overlap, it follows that elements
of the interior of T have a trivial stabilizer. Moreover, let z be an element of the closure of T , not
equal to one of the vertices of T , then z has a trivial stabilizer in Γ: there are only two images
of T under Γ∗ which are neighbours of the edge on which z lies, which are reflections of each
other. On the other hand, if z is a vertex of T , then z has a non-trivial stabilizer in Γ. From
this follows that the union of T and one of its reflections (with edges identified) is equal to the
hyperbolic space modulo the action of Γ. If we make the assumption that the orthogonal circle
of T is equal to R, we can identify the hyperbolic space with H.

For the function D in theorem 1.1, we have that D−1 is a biholomorphic function from T
to H. Using the Schwarz reflection principle, see appendix A.4, it follows that D−1 extends to
a modular function with respect to Γ(k, l,m) ⊂ SL2(R). We want at least one of |1 − c| and
|c − a − b| and |a − b| to be equal to 0: with a Möbius transformation the vertex of T with
angle 0 can be sent to ∞ such that the two edges from ∞ are parallel to the imaginary axis
{z ∈ C|<(z) = 0}. From this follows that the function D is periodic, which is necessary if
we want D to be a modular function with respect to a congruence subgroup of PSL2(Z). The
requirement that at least one of the vertices of T (k, l,m) has an angle equal to 0 means that
Γ(k, l,m) is a non-cocompact Fuchsian triangle group. In [14, theorem 3ii] all non-cocompact
arithmetic Fuchsian triangle groups are given, where {k, l,m} is equal to one of the following
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sets:

{2, 3,∞}, {2, 4,∞}, {2, 6,∞}, {2,∞,∞}, {3, 3,∞}, {3,∞,∞}, {4, 4,∞}, {6, 6,∞}, {∞,∞,∞}.
(1.1)

For the list in equation (1.1), we calculate Γ(k, l,m), which we summarize in table 1.1. In
the following calculations, we use that the triangle group of a triangle is generated by rotations
around vertices, where only two generators are necessary. Moreover, a rotation can be obtained
from two reflections. Note that not always holds that Γ(k, l,m) ⊂ PSL2(Z), because elements
of PSL2(Z) with finite order have order at most 3, so a rotation with order at least 4 cannot be
written as an element of PSL2(Z). We choose the triangles T such that the orthogonal circle of
T is equal to R, and the group Γ is straightforward to write down.

1.1 Triangle groups

Let {k, l,m} = {2, 3,∞} and define T (2, 3,∞) = {z ∈ H; 0 < <(z) < 1
2 , |z| > 1}. Reflection

along the line <(z) = 1
2 , followed by reflection along the line <(z) = 1 gives the map τ : z 7→ z+1.

Reflection along the line <(z) = 0, followed by reflection with respect to the circle |z| = 1 gives
the map σ : z 7→ −1

z . From this follows that Γ(2, 3,∞) = 〈τ, σ〉. Because PSL2(Z) is generated
by z 7→ z + 1, which is equal to τ , and z 7→ −1

z , which is equal to σ, it follows that

Γ(2, 3,∞) = PSL2(Z). (1.2)

Let {k, l,m} = {2, 4,∞} and define T (2, 4,∞) = {z ∈ H; 0 < <(z) < 1
2 , |z| >

√
2

2 }. Reflection
along the line <(z) = 1

2 , followed by reflection along the line <(z) = 1 gives the map τ : z 7→ z+1.

Reflection along the line <(z) = 0, followed by reflection with respect to the circle |z| =
√

2
2

gives the map α : z 7→ −1
2z . From this follows that Γ(2, 4,∞) = 〈τ, α〉. Note that the map

α cannot be defined by a matrix in PSL2(Z), but σ = ατα−1 : z 7→ z
1−2z can be defined by

a matrix in PSL2(Z) and α2 is the identity map. From this follows that a word in α, τ with
an even number of factors α in it can be defined by a matrix in PSL2(Z), so the subgroup
Γ(2, 4,∞) ∩ SL2(Z) has index 2 in Γ(2, 4,∞), with the identity and α as coset representatives.
Furthermore Γ(2, 4,∞) ∩ SL2(Z) is generated by σ, τ . We know that Γ0(2) = Γ1(2) is generated
by z 7→ z + 1, which is equal to τ , and z 7→ z−1

2z−1 , which is equal to τσ. From this follows that
Γ0(2) ⊂ Γ(2, 4,∞)∩SL2(Z). By considering the image of Γ(2, 4,∞)∩SL2(Z) modulo 2 it follows
that Γ(2, 4,∞) ∩ SL2(Z) = Γ0(2) and

Γ(2, 4,∞) = Γ0(2) ∪
(

0 −1
2 0

)
Γ0(2). (1.3)

Let {k, l,m} = {2, 6,∞} and define T (2, 6,∞) = {z ∈ H; 0 < <(z) < 1
2 , |z| >

√
3

3 }. Reflection
along the line <(z) = 1

2 , followed by reflection along the line <(z) = 1 gives the map τ : z 7→ z+1.

Reflection along the line <(z) = 0, followed by reflection with respect to the circle |z| =
√

3
3

gives the map α : z 7→ −1
3z . From this follows that Γ(2, 6,∞) = 〈τ, α〉. Note that the map

α cannot be defined by a matrix in PSL2(Z), but σ = ατα−1 : z 7→ z
1−3z can be defined by

a matrix in PSL2(Z) and we have α2 : z 7→ z. From this follows that a word in α, τ with
an even number of factors α in it can be defined by a matrix in PSL2(Z), so the subgroup
Γ(2, 6,∞) ∩ SL2(Z) has index 2 in Γ(2, 6,∞), with the identity and α as coset representatives.
Furthermore Γ(2, 6,∞) ∩ SL2(Z) is generated by σ, τ . We know that Γ0(3) is generated by
z 7→ z + 1, which is equal to τ , and z 7→ z−1

3z−2 , which is equal to σ−1τ−1. From this follows that
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Γ0(3) ⊂ Γ(2, 6,∞)∩SL2(Z). By considering the image of Γ(2, 6,∞)∩SL2(Z) modulo 3 it follows
that Γ(2, 6,∞) ∩ SL2(Z) = Γ0(3) and

Γ(2, 6,∞) = Γ0(3) ∪
(

0 −1
3 0

)
Γ0(3). (1.4)

Let {k, l,m} = {2,∞,∞} and define T (2,∞,∞) = {z ∈ H; 0 < <(z) < 1
2 , |z −

1
2 | >

1
2}.

Reflection along the line <(z) = 1
2 , followed by a reflection along the line <(z) = 1 gives the

map τ : z 7→ z + 1. Reflection along the line <(z) = 1
2 , followed by reflection with respect to the

circle |z − 1
2 | =

1
2 gives the map σ : z 7→ z−1

2z−1 . From this follows that Γ(2,∞,∞) = 〈τ, σ〉. We

know that Γ0(2) is generated by z 7→ z+ 1, which is equal to τ , and z 7→ z−1
2z−1 , which is equal to

σ. From this follows that
Γ(2,∞,∞) = Γ0(2). (1.5)

Let {k, l,m} = {3, 3,∞} and define T (3, 3,∞) = {z ∈ H;− 1
2 < <(z) < 1

2 , |z| > 1}. Reflection
along the line <(z) = 1

2 , followed by reflection along the line <(z) = 3
2 gives the map τ : z 7→ z+2.

Reflection along the line <(z) = − 1
2 , followed by reflection with respect to the circle |z + 1| = 1

gives the map σ : z 7→ −z−1
z . From this follows that Γ(3, 3,∞) = 〈τ, σ〉. We know that Γ(2)

is generated by z 7→ z + 2, which is equal to τ , and z 7→ 3z−2
2z−1 , which is equal to τσ−1τσ−2.

From this follows that Γ(2) ⊂ Γ(3, 3,∞). Reduction of Γ(3, 3,∞) modulo 2 gives an image of
〈σ〉 ⊂ PSL2(Z/2Z), from which follows that

M(3, 3,∞) = Γ(2) ∪
(
−1 −1
1 0

)
Γ(2) ∪

(
0 1
−1 −1

)
Γ(2). (1.6)

Let {k, l,m} = {3,∞,∞} and define T = {z ∈ H; 0 < <(z) < 1
2 , |z −

1
3 | >

1
3}. Reflection

along the line <(z) = 1
2 , followed by reflection along the line <(z) = 1 gives the map τ : z 7→ z+1.

Reflection along the line <(z) = 1
2 , followed by reflection with respect to the circle |z − 2

3 | =
1
3

gives the map σ : z 7→ 2z−1
3z−1 . From this follows that Γ(3,∞,∞) = 〈τ, σ〉. We know that Γ0(3) is

generated by z 7→ z + 1, which is equal to τ , and z 7→ −z+1
−3z+2 , which is equal to σ−1. Reduction

of Γ(3,∞,∞) modulo 3 gives an image 〈τ〉 ⊂ PSL2(Z/3Z), from which follows that

M(3,∞,∞) = Γ0(3). (1.7)

Let {k, l,m} = {4, 4,∞} and define T = {z ∈ H;− 1
2 < <(z) < 1

2 , |z| >
√

2
2 }. In the

calculations of Γ(2, 4,∞) we found that the rotation of T (2, 4,∞) around ∞ is given by τ :

z 7→ z + 1 and the rotation around
√

2
2 i is given by α : z 7→ −1

2z . From this follows that

the rotation around 1
2 + i

2 is given by τα : z 7→ 2z−1
2z . Because around the point 1

2 + i
2 the

triangles T (2, 4,∞) and T (4, 4,∞) are equal, it follows that the rotation of T (2, 4,∞) around
1
2 + i

2 is the same map as rotation of T (4, 4,∞) around 1
2 + i

2 . Because T (4, 4,∞) consists
of T (2, 4,∞) and its reflection in the axis <(z) = 0, it follows that the rotation of T (4, 4,∞)
around ∞ is given by τ2 : z 7→ z + 2. From this follows that Γ(4, 4,∞) = 〈τ2, τα〉. We already

know that Γ(2, 4,∞) = 〈τ, α〉 = Γ0(2) ∪
(

0 −1
2 0

)
Γ0(2). Because α and τα have even order,

the length of a word in 〈τ, α〉 can be defined, from this follows that Γ(4, 4,∞) consists of the
words in Γ(2, 4,∞) with even length: here we use that all words of even length in 〈τ, α〉 can
be written as words in 〈τ2, τα〉, because α−1 = α and if a word w starts with τ−1, then τ2w
starts with τ . From this follows that Γ(4, 4,∞) ∩ SL2(Z) = 〈τ2, (τα)2, (τα)τ2(τα)−1〉. Now
consider the reduction of Γ0(2) modulo 4. Because the identity matrix modulo 4 is a word of
even length, it follows that Γ(4) ⊂ Γ0(2) consists of words of even length, from which follows
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that Γ(4) ⊂ Γ(4, 4,∞). Reduction modulo 4 of (τα)τ2(τα)−1 : z 7→ −3z+4
−4z+5 gives the identity

matrix, so the image of 〈τ2, τα, (τα)τ2(τα)−1〉 = 〈τ2, τα〉 ⊂ SL2(Z/4Z) gives a group of order 8,
and because Γ(4) has index 48 in SL2(Z), it follows that [SL2(Z) : Γ(4, 4,∞)∩SL2(Z)] = 48

8 = 6,
where (τα)τ2(τα)−1 : z 7→ z−1

2z−1 . To sum up, it follows that

Γ(4, 4,∞) =

〈
±
(

1 2
0 1

)
,±
(

2 −1
2 0

)
,Γ(4)

〉
. (1.8)

Let {k, l,m} = {6, 6,∞} and define T = {z ∈ H;− 1
2 < <(z) < 1

2 , |z| >
√

3
3 }. In the

calculations of Γ(2, 6,∞) we found that the rotation of T (2, 6,∞) around ∞ is given by τ :

z 7→ z + 1 and the rotation around
√

3i
3 is given by α : z 7→ −1

3z . From this follows that the

rotation around 1
2 +

√
3i
6 is given by τα : z 7→ 3z−1

3z . Because around the point 1
2 +

√
3i
6 the

triangles T (2, 6,∞) and T (6, 6,∞) are equal, it follows that the rotation of T (2, 6,∞) around
1
2 +

√
3i
6 is the same map as rotation of T (6, 6,∞) around 1

2 +
√

3i
6 . Because T (6, 6,∞) consists

of T (2, 6,∞) and its reflection in the axis <(z) = 0, it follows that the rotation of T (6, 6,∞)
around ∞ is given by τ2 : z 7→ z + 2. From this follows that Γ(6, 6,∞) = 〈τ2, τα〉. We already

know that Γ(2, 6,∞) = 〈τ, α〉 = Γ0(3) ∪
(

0 −1
3 0

)
Γ0(3). Because α and τα have even order,

the length of a word in 〈τ, α〉 can be defined, from this follows that Γ(6, 6,∞) consists of the
words in Γ(2, 6,∞) with even length: here we use that all words of even length in 〈τ, α〉 can
be written as words in 〈τ2, τα〉, because α−1 = α and if a word w starts with τ−1, then τ2w
starts with τ . From this follows that Γ(6, 6,∞) ∩ SL2(Z) = 〈τ2, (τα)2, (τα)τ2(τα)−1〉. Now
consider the reduction of Γ0(3) modulo 6. Because the identity matrix modulo 6 is a word of
even length, it follows that Γ(6) ⊂ Γ0(3) consists of words of even length, from which follows that
Γ(6) ⊂ Γ(6, 6,∞). Reduction modulo 6 of (τα)τ2(τα)−1 : z 7→ −5z+6

−6z+7 gives the identity matrix,

so the image of 〈τ2, τα, (τα)τ2(τα)−1〉 = 〈τ2, τα〉 ⊂ SL2(Z/6Z) gives a group of order 18, and
because Γ(6) has index 144 in SL2(Z), it follows that [SL2(Z) : Γ(6, 6,∞) ∩ SL2(Z)] = 144

18 = 8,
where (τα)τ2(τα)−1 : z 7→ 2z−1

3z−1 . To sum up, it follows that

Γ(6, 6,∞) =

〈
±
(

1 2
0 1

)
,±
(

3 −1
3 0

)
,Γ(6)

〉
. (1.9)

Let {k, l,m} = {∞,∞,∞} and define T (∞,∞,∞) = {z ∈ H; 0 < <(z) < 1, |z − 1
2 | >

1
2}.

In the calculations of Γ(2,∞,∞) we found that the rotation of T (2,∞,∞) around ∞ is given
by τ : z 7→ z + 1 and the rotation around 1 is given by α : z 7→ 3z−2

2z−1 . Because around
the point 1 the triangles T (2,∞,∞) and T (∞,∞,∞) are equal, it follows that the rotation of
T (2,∞,∞) around 1 is the same map as rotation of T (∞,∞,∞) around 1. Furthermore, because
T (∞,∞,∞) consists of T (2,∞,∞) and its reflection with respect to <(z) = 1

2 , it follows that
the rotation around ∞ of T (∞,∞,∞) is given by τ2 : z 7→ z + 2. From this follows that
Γ(∞,∞,∞) = 〈τ2, α〉. We know that Γ(2) is generated by z 7→ z + 2, which is equal to τ2, and
z 7→ 3z−2

2z−1 , which is equal to α. From this follows that

Γ(∞,∞,∞) = Γ(2). (1.10)

As a check of the results in this section, we consider the volume of the triangle T . The
volume of a curvilinear triangle with angles π/k, π/l, π/m is given by π−π/k−π/l−π/m. The
fundamental domain of SL2(Z)\H is given by {z ∈ H;− 1

2 < <(z) < 1
2 , |z| > 1}, which has angles

0, π/3, π/3 and volume π/3. From this follows that

Vol(T (k, l,m)) =
π

6
· [SL2(Z) : SL2(Z) ∩ Γ(k, l,m)]

[Γ(k, l,m) : SL2(Z) ∩ Γ(k, l,m)]
; (1.11)
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here we wrote π/6, because the volume of half the fundamental domain of SL2(Z) is equal to
π/6.

k, l,m Triangle T Left Vertex Right Vertex Γ(k, l,m) ⊂ SL2(R)

2, 3,∞ <(z) ∈ (0, 1
2 ), |z| > 1 i 1/2 +

√
3i/2 SL2(Z)

2, 4,∞ <(z) ∈ (0, 1
2 ), |z| > 1

2

√
2 i/

√
2 1/2 + i/2

〈
1√
2

(
0 −1
2 0

)
,Γ0(2)

〉
2, 6,∞ <(z) ∈ (0, 1

2 ), |z| > 1
3

√
3 i/

√
3 1/2 +

√
3i/6

〈
1√
3

(
0 −1
3 0

)
,Γ0(3)

〉
2,∞,∞ <(z) ∈ (0, 1

2 ), |z − 1
2 | >

1
2 0 1/2 + i/2 Γ0(2)

3, 3,∞ <(z) ∈ (− 1
2 ,

1
2 ), |z| > 1 −1/2 +

√
3i/2 1/2 +

√
3i/2

〈(
−1 −1
1 0

)
,Γ(2)

〉
3,∞,∞ <(z) ∈ (0, 1

2 ), |z − 1
3 | >

1
3 0 1/2 +

√
3i/6 Γ0(3)

4, 4,∞ <(z) ∈ (− 1
2 ,

1
2 ), |z| > 1

2

√
2 −1/2 + i/2 1/2 + i/2

〈(
1 2
0 1

)
, 1√

2

(
2 −1
2 0

)
,Γ(4)

〉
6, 6,∞ <(z) ∈ (− 1

2 ,
1
2 ), |z| > 1

3

√
3 −1/2 +

√
3i/6 1/2 +

√
3i/6

〈(
1 2
0 1

)
, 1√

3

(
3 −1
3 0

)
,Γ(6)

〉
∞,∞,∞ <(z) ∈ (0, 1), |z − 1

2 | >
1
2 0 1 Γ(2)

Table 1.1: Table of non-compact arithmetic Fuchsian triangle groups; two of the three vertices
of the triangles are given: the third vertex is equal to ∞. Here the left and right vertices are
such that the real part of the left vertex is smaller than the real part of the right vertex. Note
that all given groups contain the matrix −I2.

Γ(2, 3,∞) = PSL2(Z)

Γ(3,∞,∞) = Γ0(3)

Γ(2,∞,∞) = Γ0(2)

Γ(∞,∞,∞) = Γ(2)

Γ(3, 3,∞)

Γ(2, 4,∞)

Γ(2, 6,∞)

Γ(4, 4,∞)

Γ(6, 6,∞)

3

4

2

2

3

2

2

2

2

Figure 1.2: Subgroup inclusions of the groups in table 1.1

1.2 Hauptmoduln

From now on we write X(Γ) for the Riemann surface Γ\(H ∪ Q ∪ {∞}); in [10, chapter I.2]
it is explained how the quotient of H modulo a discrete subgroup of SL2(R) can be seen as a
Riemann surface. Note that only for congruence subgroups G ⊂ SL2(Z) it is guaranteed that
X(G) is compact. Because the groups Γ from table 1.1 all contain a congruence subgroup, it
follows that X(Γ∩SL2(Z)) is a compact Riemann surface, and after taking the quotient modulo
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Γ it follows that X(Γ) is compact, because the quotient space of a compact topological space is
compact. Now we know that X(Γ) is a Riemann surface, we can calculate its isomorphism class:

Lemma 1.4. Let Γ as in table 1.1. Then X(Γ) ∼= P1(C) as Riemann surfaces.

Proof. First note that X(Γ) is a compact Riemann surface. Now we calculate the genus of X(Γ),
which follows from the triangulation of X(Γ). Let T ∗ be a reflection of the triangle T from
table 1.1 and take the triangles T and T ∗ as faces (for an example, see figure 1.1), and their
edges as edges of the triangulation, and the vertices of T and T ∗ as vertices of the triangulation.
Taking equivalences modulo Γ into account, it follows that there are 3 vertices and 3 edges and 2
faces, from which follows that the Euler characteristic of X(Γ) is equal to 3− 3 + 2 = 2 = 2− 2g,
from which follows that X(Γ) has genus equal to 0. Because the only compact Riemann surface
of genus 0 is P1(C), it follows that X(Γ) ∼= P1(C).

Recall that a meromorphic function f on a Riemann surface is a function with values in C
with a discrete set of poles. If the codomain of f is equal to P1(C) and f is not identically equal
to ∞, then f is called holomorphic instead of meromorphic.

Lemma 1.5. Let X be a compact Riemann surface. Then a meromorphic function f : X →
P1(C) has a unique pole of order 1 if and only if f is an isomorphism.

Proof. Suppose that f : X → P1(C) is an isomorphism. From this follows that f is injective,
so f has a unique pole of order 1; here we use that a function with a pole of order ≥ 2 is not
injective.

Suppose that f : X → P1(C) has a unique pole of order 1. From this follows that f is
injective, because a meromorphic function has the same number of poles as it has zeroes, counting
multiplicities, see [10, proposition 1.12a]. On the other hand, because f is continuous and X is
compact, it follows that f(X) ⊂ P1(C) is compact. Because P1(C) is Hausdorff, it follows that
f(X) is closed. Because X is open, and f is an open map, it follows that f(X) is open. Because
f has a unique pole of order 1, it follows that f is non-constant, so f(X) = P1(C). From this
follows that f is bijective, so f−1 is holomorphic. From this follows that f is an isomorphism.

Lemma 1.6. Let f : X → P1(C) be an isomorphism. Let C(X) be the field of meromorphic
functions on X, then it follows that C(X) = C(f(z)).

Proof. Suppose that f is an isomorphism. Let g be a meromorphic function on X, then it follows
that g ◦ f−1 is a meromorphic function on P1(C). Because the field of meromorphic functions of
P1(C) is equal to C(z), it follows that (g ◦ f−1)(z) = R(z) for some rational function R ∈ C(z).
From this follows that g(z) = R(f(z)), which proves that g ∈ C(f(z)), so C(X) = C(f(z)).

Corollary 1.7. Let f ∈ C(X(Γ)) be a meromorphic function with a unique pole. Then f is a
Hauptmodul of X(Γ).

In the situation of lemma 1.6 the function field C(X) is generated by one element, which is
called a Hauptmodul of X(Γ). To find Hauptmoduln with respect to the groups in table 1.1,
we use lemma 1.5 to prove that the functions we find indeed are Hauptmoduln. Now we want
to define functions and their orders on X(Γ). Let a ∈ Z>0 be minimal such that every element
of C(X(Γ)) is periodic with period a, note that a is the width of the cusp ∞ of Γ. Then for
f ∈ C(X(Γ)) we can write f(z) =

∑∞
k=k0

akq
k with q = e2πiz/a. The order of f at z → ∞ is

equal to the minimal k ∈ Z such that ak 6= 0. Note that if f(z) → 0 for z → ∞, then f has a
positive order, and f has a negative order if f(z) →∞ for z →∞. The order of a pole of f(z)
at z →∞ is equal to minus the order of f(z) at z →∞.
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Let {k, l,m} = {2, 3,∞}, then we know that the j-function is a Hauptmodul with respect to
the group PSL2(Z).

Let {k, l,m} = {2, 4,∞}. We know that ∆(z)/∆(2z) is a modular function with respect

to Γ0(2). We have ∆
(
− 1

2z

) /
∆
(
−2 1

2z

)
= (2z)12∆(2z)

z12∆(z) = 212∆(2z)/∆(z), from which follows

that h(z) = ∆(z)/∆(2z) + 212∆(2z)/∆(z) is a modular function with respect to Γ, see table 1.1.
Because h(z) is holomorphic on H and has a pole of order 1 for z →∞, it follows from corollary 1.7
that

h(2, 4,∞)(z) =
∆(z)

∆(2z)
+ 212 ∆(2z)

∆(z)
. (1.12)

Let {k, l,m} = {2, 6,∞}. We know that η12(z)/η12(3z) is a modular function with respect

to Γ0(3). We have η12
(
− 1

3z

) /
η12
(
−3 1

3z

)
= (3z)6η12(3z)

z6η12(z) = 36η12(3z)/η12(z), from which follows

that h(z) = η12(z)/η12(3z) + 36η12(3z)/η12(z) is a modular function with respect to Γ, see
table 1.1. Because h is holomorphic on H and has a pole of order 1 for z → ∞, it follows from
corollary 1.7 that

h(2, 6,∞)(z) =
η12(z)

η12(3z)
+ 36 η

12(3z)

η12(z)
. (1.13)

Let {k, l,m} = {2,∞,∞}. We know that h(z) = ∆(z)/∆(2z) is a modular function with
respect to Γ = Γ0(2), see table 1.1. Note that h is holomorphic on H and has a pole of order 1
for z →∞. From corollary 1.7 follows that

h(2,∞,∞)(z) =
∆(z)

∆(2z)
. (1.14)

Let {k, l,m} = {3, 3,∞}. We already know that the j-function is a Hauptmodul in the case
{k, l,m} = {2, 3,∞}. The triangle T (3, 3,∞) consists of T (2, 3,∞) and its reflection with respect
to the line <(z) = 0. From Schwarz reflection follows that the image of the j-function on the
triangle T (3, 3,∞), see table 1.1, is equal to H ∪ (1728,∞) ∪ H, where H = {z ∈ C;=(z) < 0}.
From this follows that 1728 − j(z) is a biholomorphic function from T to C\[0,∞), which is
invariant under Γ(3, 3,∞). We define the square root on C\[0,∞) such that

√
−1 = i. Note that

h(z) =
√

1728− j(z) has a pole of order 1 for z →∞, so from corollary 1.7 that

h(3, 3,∞)(z) =
√

1728− j(z). (1.15)

Let {k, l,m} = {3,∞,∞}. We know that η12(z)/η12(3z) is a modular function with respect
to Γ = Γ0(3), see table 1.1. From corollary 1.7 follows that

h(3,∞,∞)(z) =
η12(z)

η12(3z)
. (1.16)

Let {k, l,m} = {4, 4,∞}. We already know that ∆(z)/∆(2z) + 212∆(2z)/∆(z) is a Haupt-
modul in the case {k, l,m} = {2, 4,∞}. The triangle T (4, 4,∞) consists of T (2, 4,∞) and
its reflection with respect to the line <(z) = 0. From Schwarz reflection follows that the im-
age of h(2, 4,∞) on the triangle T (4, 4,∞), see table 1.1, is equal to H ∪ (128,∞) ∪ H, where
H = {z ∈ C;=(z) < 0}. From this follows that 128 − h(2, 4,∞)(z) is a biholomorphic function
from T to C\[0,∞), which is invariant under Γ(4, 4,∞). We define the square root on C\[0,∞)
such that

√
−1 = i. Note that h(z) =

√
128−∆(z)/∆(2z)− 212∆(2z)/∆(z) has a pole of order

1 for z →∞, so from corollary 1.7 that

h(4, 4,∞)(z) =

√
128− ∆(z)

∆(2z)
− 212

∆(2z)

∆(z)
. (1.17)
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Let {k, l,m} = {6, 6,∞}. We already know that η12(z)/η12(3z) + 36η12(3z)/η12(z) is a
Hauptmodul in the case {k, l,m} = {2, 6,∞}. The triangle T (6, 6,∞) consists of T (2, 6,∞)
and its reflection with respect to the line <(z) = 0. From Schwarz reflection follows that the
image of h(2, 6,∞) on the triangle T (6, 6,∞), see table 1.1, is equal to H ∪ (54,∞) ∪ H, where
H = {z ∈ C;=(z) < 0}. From this follows that 54 − h(2, 6,∞)(z) is a biholomorphic function
from T to C\[0,∞), which is invariant under Γ(6, 6,∞). We define the square root on C\[0,∞)
such that

√
−1 = i. Note that h(z) =

√
54− η12(z)/η12(3z)− 36η12(3z)/η12(z) has a pole of

order 1 for z →∞, so from corollary 1.7 that

h(6, 6,∞)(z) =

√
54− η12(z)

η12(3z)
− 36

η12(3z)

η12(z)
. (1.18)

Let {k, l,m} = {∞,∞,∞}. The Hauptmodul of Γ(2) is known as the modular λ-function,

which is defined as λ(z) = 16η
8(z/2)η16(2z)

η24(z) , which gives

h(∞,∞,∞)(z) = λ(z). (1.19)

k, l,m a b hk,l,m ∞ h(l) h(r)
2, 3,∞ 1/12 5/12 j(z) ∞ 1728 0
2, 4,∞ 1/8 3/8 ∆(z)/∆(2z) + 212∆(2z)/∆(z) ∞ 128 −128
2, 6,∞ 1/6 1/3 η12(z)/η12(3z) + 36η12(3z)/η12(z) ∞ 54 −54
2,∞,∞ 1/4 3/4 ∆(z)/∆(2z) ∞ 0 −64

3, 3,∞ 1/6 1/2
√

1728− j(z) ∞ 24
√

3 −24
√

3
3,∞,∞ 1/3 2/3 η12(z)/η12(3z) ∞ 0 −27

4, 4,∞ 1/4 1/2
√

128−∆(z)/∆(2z)− 212∆(2z)/∆(z) ∞ 16 −16

6, 6,∞ 1/3 1/2
√

54− η12(z)/η12(3z)− 36η12(3z)/η12(z) ∞ 6
√

3 −6
√

3
∞,∞,∞ 1/2 1/2 16η8(z/2)η16(2z)/η24(z) 0 1 ∞

Table 1.2: Table of Hauptmoduln, where the functions η, j,∆ respectively denote the Dedekind
eta function, the modular j-function and the unique weight 12 normalized cusp form. The values
of h at the left and right vertices from table 1.1 are written as h(l) and h(r).

1.3 Algebraic relations between Hauptmoduln

The Hauptmoduln of the groups from table 1.1 are given in table 1.2. Now we want to find
the equations which relate them to each other, using the subgroup inclusions from figure 1.2: if
Γ1 ⊂ Γ2, it follows that C(X(Γ2)) ⊂ C(X(Γ1)). The results will be summarized in table 1.3.
In the calculations in section 1.2 we already found some algebraic relations, which gives the
first five rows of table 1.3. Because figure 1.2 gives nine subgroup inclusions, and we obtained
algebraic relations following from five subgroup inclusions, we want to calculate the algebraic
relations between Hauptmoduln which follow from the remaining four subgroup inclusions. Note
that in these four subgroup inclusions both groups are contained in SL2(Z). These results are
summarized in the last four rows of table 1.3. It is possible to calculate these relations as in the
second proof of theorem 2.11, by calculating q-expansions, but we will use a more theoretical
calculation, starting with a lemma.

Lemma 1.8. Let Γ1 ⊂ Γ2 ⊂ SL2(Z) with index n such that C(X(Γ1)) = C(h1(z)) and C(X(Γ2)) =
C(h2(z)). Write h2(z) = R(h1(z)) with R(z) ∈ C(z). Then it follows that the degree of R is
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equal to n. Moreover, if z0 is not equal to h2(w0) where w0 ∈ H is SL2(Z)-equivalent to i or
eπi/3, it follows that #R−1(z0) = n, counted without multiplicity.

Proof. Let z0 ∈ C, then there exists a w0 ∈ H such that h2(w0) = z0; otherwise the function
1/(h2(z) − z0) has no poles and therefore is constant, which is a contradiction. Let γ ∈ Γ2,
then it follows that z0 = h2(w0) = h2(γw0) = R(h1(γw0)), from which follows that {h1(γw0) ∈
H|γ ∈ Γ2} ⊂ R−1(z0). On the other hand, assume that R(h1(w1)) = h2(w1) = h2(w0) = z0 for
a w1 ∈ H, then it follows that there exists a γ ∈ Γ2 such that γw0 = w1: if there are w0, w1 ∈ H
which are not equivalent modulo Γ2 such that h2(w0) = h2(w1) = z0, the function 1/(h(z)− z0)
has two poles, which is a contradiction. From this follows that

R−1(z0) = {h1(γw0) ∈ H|γ ∈ Γ2}. (1.20)

For w0 ∈ H, the set {h1(γw0) ∈ H|γ ∈ Γ2} has at most n elements, because Γ1 has index n
in Γ2. Now assume that #R−1(z0) < n, note that there exists a w0 ∈ H such that h2(w0) = z0.
From this follows that there exist γ1, γ2 ∈ Γ2 which are not equivalent modulo Γ1 such that
h1(γ1w0) = h1(γ2w0). From this follows that there exists a γ ∈ Γ1 such that γγ1w0 = γ2w0, so
γ−1

2 γγ1w0 = w0. If γ−1
2 γγ1 = ±I2, it follows that γγ1 = ±γ2, which contradicts the assumption

that γ1, γ2 are not eqiuvalent modulo Γ1. From this follows that w0 has a non-trivial stabilisator
in SL2(Z), from which follows that z0 = h2(w0) where w0 is SL2(Z)-equivalent to i or e2πi/3.

The group Γ(∞,∞,∞) is an index 2 subgroup of Γ(2,∞,∞), so h(2,∞,∞)(z) ∈ C(h(∞,∞,∞)(z)),
write h(2,∞,∞)(z) = h(z) and h(∞,∞,∞)(z) = λ(z). The triangle T (∞,∞,∞) consists of
T (2,∞,∞) and its reflection with respect to the line <(z) = 1/2. From Schwarz reflection fol-
lows that the image of the function h on the triangle T (∞,∞,∞), see table 1.1, is equal to
H ∪ (−∞,−64) ∪H, where H = {z ∈ C;=(z) < 0}. From this follows that 64 + h(z) is a biholo-
morphic function from T to C\[0,∞). We define the square root on C\[0,∞) such that

√
−1 = i.

From this follows that
√
h(z) + 64 is a biholomorphic function from T (∞,∞,∞) to H, which is a

Hauptmodul, see corollary 1.7. Because λ also is a Hauptmodul of X(Γ(2)), it must be a Möbius
transformation of

√
h(z) + 64. We have limz→0

√
h(z) + 64 = 8 and limz→1

√
h(z) + 64 = −8

and limz→∞
√
h(z) + 64 =∞ and limz→0 λ(z) = 1 and limz→1 λ(z) =∞ and limz→∞ λ(z) = 0,

from which follows that λ(z) = 16

8+
√
h(z)+64

and

h(2,∞,∞)(z) =
256

λ(z)2
− 256

λ(z)
. (1.21)

The group Γ(∞,∞,∞) is an index 3 subgroup of Γ(3, 3,∞), from which follows that
√

1728− j(z) ∈
C(λ(z)). Now we apply lemma 1.8 with Γ1 = Γ(∞,∞,∞) and Γ2 = Γ(3, 3,∞) and h1(z) = λ(z)
and h(z) = h2(z) =

√
1728− j(z), from which follows a R ∈ C(z) such that h(z) = R(λ(z)). We

have h(z+1) = −h(z) and λ(z+1) = 1−λ(z), from which follows that R(1−z) = −R(z). A set
of coset representatives of Γ(∞,∞,∞)\Γ(3, 3,∞) is given by {z 7→ z, z 7→ −1− 1/z, z 7→ − 1

z+1}
and a set of coset representatives of Γ(3, 3,∞)\ SL2(Z) is given by {z 7→ z, z 7→ z + 1}. We have

h(i) = h(i+1) = 0 and λ(i) = 1/2 and λ(−1−1/i) = −1 and λ
(
−1
i+1

)
= 2, from which follows that

R−1(0) = {1/2,−1, 2}. From h(ρ) = −24
√

3 and λ(ρ) = λ(−1− 1/ρ) = λ( −1
ρ+1 ) = ρ follows that

R−1(−24
√

3) = {ρ, ρ, ρ}. From h(ρ+ 1) = 24
√

3 and λ(ρ+ 1) = λ
(
−1− 1

ρ+1

)
= λ( −1

ρ+2 ) = 1−ρ
follows that R−1(24

√
3) = {1 − ρ, 1 − ρ, 1 − ρ}. Moreover, we have limz→∞ h(z) = ∞ and

limz→∞ λ(z) = 0 and limz→∞ λ(−1 − 1/z) = ∞ and limz→∞ λ
(
−1
z+1

)
= 1. From this follows
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that the numerator of R is equal to (z − 1/2)(z + 1)(z − 2), and the denominator of R is equal
to a constant times z(z − 1). A calculation gives that

h(3, 3,∞)(z) = 8i
(2λ(z) + 1)(λ(z)− 2)(λ(z) + 1)

λ(z)(λ(z)− 1)
. (1.22)

The group Γ(2,∞,∞) = Γ0(2) is an index 3 subgroup of Γ(2, 3,∞). From this follows that
j(z) ∈ C(h(z)), where j is the j-function and h(z) = h(2,∞,∞)(z) = ∆(z)/∆(2z). Write j(z) =
R(h(z)). Now we apply lemma 1.8 with Γ1 = Γ(2,∞,∞) and Γ2 = SL2(Z) and h1(z) = h(z) and
h2(z) = j(z). A set of coset representatives of Γ0(2)\ SL2(Z) is given by {z 7→ z, z 7→ − 1

z , z 7→
− 1
z+1}. We have j(i) = 1728 and h(i) = h(−1/i) = 512 and h

(
−1
i+1

)
= −64, from which follows

that R−1(1728) = {512, 512,−64}. Also we have j(ρ) = 0 and h(ρ) = h(−1/ρ) = h
(
−1
ρ+1

)
=

−256 with ρ = eπi/3, from which follows that R−1(0) = {−256,−256,−256}. Moreover, we have

limz→∞ j(z) = ∞ and limz→∞ h(z) = ∞ and limz→∞ h(−1/z) = limz→∞ h
(
−1
z+1

)
= 0. From

this follows that the numerator of R is equal to (z + 256)3, and the denominator of R is equal
to a constant times z2. A calculation gives that

h(2, 3,∞)(z) = j(z) =
(h(z) + 256)3

h(z)2
. (1.23)

The group Γ(3,∞,∞) = Γ0(3) is an index 4 subgroup of Γ(2, 3,∞). From this follows
that j(z) ∈ C(h(z)), where j is the j-function and h(z) = h(3,∞,∞)(z) = η12(z)/η12(3z).
Write j(z) = R(h(z)). Now we apply lemma 1.8 with Γ1 = Γ(3,∞,∞) and Γ2 = SL2(Z)
and h1(z) = h(z) and h2(z) = j(z). A set of coset representatives of Γ0(3)\ SL2(Z) is given
by {z 7→ z, z 7→ − 1

z , z 7→ −
1
z+1 , z 7→ −

1
z+2}. We have j(i) = 1728 and h(i) = h(−1/i) =

243 + 162
√

3 and h
(
−1
i+1

)
= h

(
−1
i+2

)
= 243 − 162

√
3, from which follows that R−1(1728) =

{243 + 162
√

3, 243 + 162
√

3, 243 − 162
√

3, 243 − 162
√

3}. Also we have j(ρ) = 0 and h(ρ) =

h(−1/ρ) = h
(
−1
ρ+2

)
= −243 and h

(
−1
ρ+2

)
= −27 with ρ = eπi/3, from which follows that

R−1(0) = {−243,−243,−243,−27}. Moreover, we have limz→∞ j(z) =∞ and limz→∞ h(z) =∞
and limz→∞ h(−1/z) = limz→∞ h

(
−1
z+1

)
= limz→∞ h

(
−1
z+2

)
= 0. From this follows that the

numerator of R is equal to (z + 243)3(z + 27), and the denominator of R is equal to a constant
times z3. A calculation gives that

h(2, 3,∞)(z) = j(z) =
(h(z) + 243)3(h(z) + 27)

h(z)3
. (1.24)
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Inclusion Index Function
Γ(3, 3,∞) ⊂ Γ(2, 3,∞) 2 1728− z2

Γ(2,∞,∞) ⊂ Γ(2, 4,∞) 2 z + 212/z
Γ(4, 4,∞) ⊂ Γ(2, 4,∞) 2 128− z2

Γ(3,∞,∞) ⊂ Γ(2, 6,∞) 2 z + 36/z
Γ(6, 6,∞) ⊂ Γ(2, 6,∞) 2 54− z2

Γ(∞,∞,∞) ⊂ Γ(2,∞,∞) 2 256/z2 − 256/z

Γ(∞,∞,∞) ⊂ Γ(3, 3,∞) 3 8i (2z−1)(z−2)(z+1)
z(z−1)

Γ(2,∞,∞) ⊂ Γ(2, 3,∞) 3 (z + 256)3/z2

Γ(3,∞,∞) ⊂ Γ(2, 3,∞) 4 (z + 243)3(z + 27)/z3

Table 1.3: Table of algebraic relations between Hauptmoduln. Here the given rational function
expresses the Hauptmodul of the second group in terms of the Hauptmodul of the subgroup, see
table 1.2 for the Hauptmoduln.



Chapter 2

Special values of the
hypergeometric function

2.1 The image of the function D of Schwarz’ theorem

In theorem 1.1 it is given that f/g is a biholomorphic function from H to a curvilinear triangle;
here f, g are linearly indepedent solutions of the hypergeometric differential equation. We do
not know the image of f/g yet, we only know it is a Möbius transformation of the triangle in
table 1.1. To calculate the image of f/g, we start with some calculations on the hypergeometric
function, but first define basis elements of the vector space of solutions of the hypergeometric
differential equation.

Definition 2.1. Let 0 < a, b < 1. Then we define the following basis of local solutions around
x = 0 of the hypergeometric differential equation:

F0(x) := 2F1 (a, b; 1 |x ) |x| < 1

G0(x) := log(x)F0(x) +

∞∑
n=0

(a)n(b)n
(n!)2

n−1∑
j=0

1

a+ j
+

1

b+ j
− 2

j + 1

xn |x| < 1. (2.1)

Define D(x) = G0(x)/F0(x). Assume that a+ b < 1. Then we define the following basis of local
solutions around x = 1 of the hypergeometric differential equation:

F1(x) := 2F1 (a, b; a+ b |1− x ) |x− 1| < 1

G1(x) := (1− x)1−a−b
2F1 (1− b, 1− a; 2− a− b |1− x ) |x− 1| < 1. (2.2)

Assume that a+ b = 1. Then we define the following basis of local solutions around x = 1 of the
hypergeometric differential equation:

F1(x) := 2F1 (a, b; 1 |1− x ) |x− 1| < 1

G1(x) := log(1− x)F1(x) +

∞∑
n=0

(a)n(b)n
(n!)2

n−1∑
j=0

1

a+ j
+

1

b+ j
− 2

j + 1

 (1− x)n |x− 1| < 1.

(2.3)

16
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The element ∞ is contained in all sets {k, l,m} in table 1.1, so we can take c = 1, from
which follows that limx→0D(x) = G0(x)/F0(x) = ∞. Note that later in this chapter we will
calculate 2F1 (a, b; a+ b |x ) for some values of a, b, x, but we choose parameters a, b, 1, and do
not choose a, b, a+b: if we choose parameters a, b, 1, we do not have to consider different cases in
the definitions of F0(x) and G0(x). Moreover, with parameters a, b, 1 we have limx→0D(x) =∞,
which is not always the case if we choose a basis of local solutions around x = 0 with parameters
a, b, a+ b.

For 0 < x < 1 we have D(x) ∈ R and limx→0D(x) = −∞. For −1 < x < 0 we have
D(x) ∈ πi + R and limx→0D(x) = πi −∞, where the logarithm of a negative real number has
imaginary part π, this follows from analytic continuation along H. From this follows that the
edge of D(H) = {D(x)|x ∈ H} between D(0) and D(1) is contained in R, and the edge of D(H)
between D(0) and D(∞) is contained in πi+ R. If we choose the parameters a, b such that the
angles and orientation of D(H) and T , see table 1.1, are equal, then it follows that D(H) and T
are Möbius transformations of each other: here we use that a curvilinear triangle is unique up
to a Möbius transformation.

Because both T and D(H) have one vertex at ∞ with angle 0, it follows that the Möbius
transformation from D(H) to T is a linear transformation: it sends ∞ to ∞. The triangle D(H)
has distance π between the parallel lines, which we call its width. Let v be the width of the
triangle in table 1.1, then it follows that M(z) = π

v z +w for some w ∈ C. Now we will calculate
D(1) = limx→1D(x), from which we can calculate the number w, because we want that M sends
the left vertex of T to D(1). The results will be summarized in table 2.1 and an example is given
in figure 2.1 on page 22. In our calculations we will use the following lemma’s.

Lemma 2.2. Let α, β ∈ R\{r ∈ Z; r ≤ 0}. Then it follows that (α)n/(β)n = Γ(β)
Γ(α)n

α−β(1 +

O(1/n)), where for a function f : N→ R we have that f = O(1/n) if the function n ·f is bounded
for n→∞.

Proof. The Stirling approximation reads Γ(z) =
√

2π
z

(
z
e

)z
(1 + O(1/z)), from which follows for

α, β ∈ R that

(α)n
(β)n

=
Γ(β)Γ(α+ n)

Γ(α)Γ(β + n)
=

Γ(β)
√

2π
n+α

(
n+α
e

)n+α

Γ(α)
√

2π
n+β

(
n+β
e

)n+β

1 +O(1/n)

1 +O(1/n)

=
Γ(β)

√
n+β
n+α

Γ(α)(n+ α)β−α
eβ−α(n+ α)n+β

(n+ β)n+β

1 +O(1/n)

1 +O(1/n)

=
Γ(β)

√
n+β
n+α

Γ(α)(n+ α)β−α
eβ−α

(
1 +

α− β
n+ β

)n+β
1 +O(1/n)

1 +O(1/n)

n→∞→ Γ(β)

Γ(α)
nα−β(1 +O(1/n)),

(2.4)

where we use that
√

n+β
n+α = 1+O(1/n) and (n+α)α−β = nα−β(1+O(1/n)) and

(
1 + α−β

n+β

)n+β

=

exp(α − β)(1 + O(1/n)) and 1+O(1/n)
1+O(1/n) = 1 + O(1/n), note that (α)n/(β)n is defined, because

α, β /∈ {r ∈ Z; r ≤ 0}.

Lemma 2.3. Suppose that 0 < a, b < 1 and 0 < a+ b ≤ 1 and let D as in definition 2.1. Then

lim
x→1

D(x) =

∞∑
j=1

1

1− a+ j
+

1

1− b+ j
− 2

j + 1
. (2.5)
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Proof. From comparing Riemann schemes follows that 2F1 (a, b; c |x ) = (1−x)c−a−b2F1 (c− a, c− b; c |x ),
from which follows that (1− x)1−a−bF(x) = 2F1 (1− a, 1− b; 1 |x ).

Sm,n =

n∑
j=m

1

1− a+ j
+

1

1− b+ j
− 2

j + 1
=

n∑
j=m

(a+ b)j + a+ b− 2ab

(1− a+ j)(1− b+ j)(j + 1)
, (2.6)

then it follows that

(1− x)1−a−bG0(x) = log(x)2F1 (1− a, 1− b; 1 |x )

+

∞∑
n=0

(1− a)n(1− b)n
(n!)2

n−1∑
j=0

1

1− a+ j
+

1

1− b+ j
− 2

j + 1

xn

= log(x)2F1 (1− a, 1− b; 1 |x )

+ S0,∞2F1 (1− a, 1− b; 1 |x )−
∞∑
n=0

(1− a)n(1− b)n
(n!)2

Sn,∞x
n (2.7)

and

D(x) =
G0(x)

F0(x)
=

(1− x)1−a−bG0(x)

(1− x)1−a−bF0(x)
= log(x) + S0,∞ −

∑∞
n=0

(1−a)n(1−b)n
(n!)2 Sn,∞x

n

2F1 (1− a, 1− b; 1 |x )
. (2.8)

For n→∞ we have (1−a)n(1−b)n
(n!)2 = O(n−a−b) and Sn,∞ = O(1/n), because the summand in the

definition of Sn,m is inO(1/j2). Because−a−b < 0, it follows that limx→1

∑∞
n=0

(1−a)n(1−b)n
(n!)2 Sn,∞x

n

is finite. On the other hand, because (1−a)n(1−b)n
(n!)2 = O(n−a−b), it follows that limx→1 2F1 (1− a, 1− b; 1 |x )

is infinite. From this follows that

lim
x→1

D(x) = lim
x→1

log(x) + S0,∞ −
∑∞
n=0

(1−a)n(1−b)n
(n!)2 Sn,∞x

n

2F1 (1− a, 1− b; 1 |x )

 = S0,∞, (2.9)

which is what we wanted to prove.

2.2 Calculations with given parameters

We will calculate the result in lemma 2.3 for the parameters which follow from table 1.1; we still
have to choose parameters a, b ∈ R such that {0, |1−a−b|, |a−b|} = {1/k, 1/l, 1/m} for {k, l,m}
as in equation (1.1). In our calculations we will use that

∑n
j=1

1
j = log(n) + γ + O(1/n) where

γ is the Euler-Mascheroni constant. It can be shown that π cos(πz)
sin(πz) =

∑
n∈Z

1
z+n , from which

follows for a ∈ R that

∞∑
j=0

1

a+ j
− 1

1− a+ j
=

∞∑
j=0

1

a+ j
+

1

a− 1− j
=
∑
j∈Z

1

a+ j
= π

cos(πa)

sin(πa)
. (2.10)

Define

Sm =

∞∑
j=0

(
m−1∑
k=1

1
k
m + j

− m− 1

j + 1

)
, (2.11)



CHAPTER 2. SPECIAL VALUES OF THE HYPERGEOMETRIC FUNCTION 19

then it follows that

Sm = m

∞∑
j=0

(
m∑
k=1

1

k +mj
− m

m+mj

)
= m lim

n→∞

∫ 1

0

n∑
j=0

xmj

(
m∑
k=1

xk−1 −mxm−1

)
dx

= m lim
n→∞

∫ 1

0

1− xm(n+1)

1− xm

(
m∑
k=1

xk−1 −mxm−1

)
dx = m

∫ 1

0

∑m
k=1 x

k−1 −mxm−1

1− xm
dx

= m

∫ 1

0

(
1

1− x
− mxm−1

1− xm

)
dx = m

[
log

(
1− xm

1− x

)]1

0

= m log(m). (2.12)

Let {k, l,m} = {2, 3,∞}, so a = 1
12 and b = 5

12 and

lim
x→1

D(x) =

∞∑
j=0

1
11
12 + j

+
1

7
12 + j

− 2

j + 1

=
π cos(7π/12)

2 sin(7π/12)
+
π cos(11π/12)

2 sin(11π/12)
+

∞∑
j=0

1/2
1
12 + j

+
1/2

5
12 + j

+
1/2

7
12 + j

+
1/2

11
12 + j

− 2

j + 1

= −2π +
1

2
(S12 − S6 − S4 + S2) = −2π + log(1728). (2.13)

Because the triangle T from table 1.1 has width 1
2 , it follows that M(z) = 2πiz + w for some

w ∈ C. Because M(i) = −2π + log(1728) = −2π + w, it follows that M(z) = 2πiz + log(1728).
Let {k, l,m} = {2, 4,∞}, so a = 1

8 and b = 3
8 and

lim
x→1

D(x) =

∞∑
j=0

1
7
8 + j

+
1

5
8 + j

− 2

j + 1

=
π cos(5π/8)

2 sin(5π/8)
+
π cos(7π/8)

2 sin(7π/8)
+

∞∑
j=0

1/2
1
8 + j

+
1/2

3
8 + j

+
1/2

5
8 + j

+
1/2

7
8 + j

− 2

j + 1

= −
√

2π +
1

2
(S8 − S4) = −2π + log(256). (2.14)

Because the triangle T from table 1.1 has width 1
2 , it follows thatM(z) = 2πiz+w for some w ∈ C.

Because M( 1
2

√
2i) = −

√
2π + log(256) = −

√
2π + w, it follows that M(z) = 2πiz + log(256).

Let {k, l,m} = {2, 6,∞}, so a = 1
6 and b = 1

3 and

lim
x→1

D(x) =

∞∑
j=0

1
5
6 + j

+
1

2
3 + j

− 2

j + 1

=
π cos(2π/3)

2 sin(2π/3)
+
π cos(5π/6)

2 sin(5π/6)
+

∞∑
j=0

1/2
1
6 + j

+
1/2

1
3 + j

+
1/2

2
3 + j

+
1/2

5
6 + j

− 2

j + 1

= − 2π√
3

+
1

2
(S6 − S2) = − 2π√

3
+ log(108). (2.15)

Because the triangle T from table 1.1 has width 1
2 , it follows thatM(z) = 2πiz+w for some w ∈ C.

Because M( 1
3

√
3i) = −2π/

√
3 + log(108) = − 2

3

√
3π+w, it follows that M(z) = 2πiz+ log(108).

Let {k, l,m} = {2,∞,∞}, so a = 1
4 and b = 3

4 and

lim
x→1

D(x) =

∞∑
j=0

1
1
4 + j

+
1

3
4 + j

− 2

j + 1
= S4 − S2 = log(64). (2.16)
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Because the triangle T from table 1.1 has width 1
2 , it follows that M(z) = 2πiz + w for some

w ∈ C. Because M(0) = log(64) = w, it follows that M(z) = 2πiz + log(64).
Let {k, l,m} = {3, 3,∞}, so a = 1

6 and b = 1
2 and

lim
x→1

D(x) =

∞∑
j=0

1
5
6 + j

+
1

1
2 + j

− 2

j + 1
=
π cos(5π/6)

2 sin(5π/6)
+

∞∑
j=0

1/2
1
6 + j

+
1

1
2 + j

+
1/2

5
6 + j

− 2

j + 1

= −
√

3π

2
+

1

2
(S6 − S3 + S2) = −

√
3π

2
+ log(48

√
3). (2.17)

Because the triangle T from table 1.1 has width 1, it follows that M(z) = πiz + w for some
w ∈ C. Because M(−1/2 +

√
3i/2) = −

√
3π/2 + log(48

√
3) = −πi/2 −

√
3π/2 + w, it follows

that M(z) = πiz + log(48
√

3) + πi/2.
Let {k, l,m} = {3,∞,∞}, so a = 1

3 and b = 2
3 and

lim
x→1

D(x) =

∞∑
j=0

1
1
3 + j

+
1

2
3 + j

− 2

j + 1
= S3 = 3 log(3). (2.18)

Because the triangle T from table 1.1 has width 1
2 , it follows that M(z) = 2πiz + w for some

w ∈ C. Because M(0) = log(27) = w, it follows that M(z) = 2πiz + log(27).
Let {k, l,m} = {4, 4,∞}, so a = 1

4 and b = 1
2 and

lim
x→1

D(x) =

∞∑
j=0

1
3
4 + j

+
1

1
2 + j

− 2

j + 1
=
π cos(3π/4)

2 sin(3π/4)
+

∞∑
j=0

1/2
1
4 + j

+
1

1
2 + j

+
1/2

3
4 + j

− 2

j + 1

= −π
2

+
1

2
(S4 + S2) = −π

2
+ log(32). (2.19)

Because the triangle T from table 1.1 has width 1, it follows that M(z) = πiz + w for some
w ∈ C. Because M(−1/2 + i/2) = −π/2 + log(32) = −πi/2 − π/2 + w, it follows that M(z) =
πiz + log(32) + πi/2.

Let {k, l,m} = {6, 6,∞}, so a = 1
3 and b = 1

2 and

lim
x→1

D(x) =

∞∑
j=0

1
2
3 + j

+
1

1
2 + j

− 2

j + 1
=
π cos(2π/3)

2 sin(2π/3)
+

∞∑
j=0

1/2
1
3 + j

+
1

1
2 + j

+
1/2

2
3 + j

− 2

j + 1

= −
√

3π

6
+

1

2
S3 + S2 = −

√
3π

6
+ log(12

√
3). (2.20)

Because the triangle T from table 1.1 has width 1, it follows that M(z) = πiz + w for some
w ∈ C. Because M(−1/2 +

√
3i/6) = −

√
3π/6 + log(12

√
3) = −πi/2 −

√
3π/6 + w, it follows

that M(z) = πiz + log(12
√

3) + πi/2.
Let {k, l,m} = {∞,∞,∞}, so a = b = 1

2 and

lim
x→1

D(x) =

∞∑
j=0

1
1
2 + j

+
1

1
2 + j

− 2

j + 1
= 2S2 = log(16). (2.21)

Because the triangle T from table 1.1 has width 1, it follows that M(z) = πiz + w for some
w ∈ C. Because M(0) = log(16) = w, it follows that M(z) = πiz + log(16).
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k, l,m a b M(z)
2, 3,∞ 1/12 5/12 2πiz + log(1728)
2, 4,∞ 1/8 3/8 2πiz + log(256)
2, 6,∞ 1/6 1/3 2πiz + log(108)
2,∞,∞ 1/4 3/4 2πiz + log(64)

3, 3,∞ 1/6 1/2 πiz + log(48
√

3) + πi/2
3,∞,∞ 1/3 2/3 2πiz + log(27)
4, 4,∞ 1/4 1/2 πiz + log(32) + πi/2

6, 6,∞ 1/3 1/2 πiz + log(12
√

3) + πi/2
∞,∞,∞ 1/2 1/2 πiz + log(16)

Table 2.1: Table of Möbius transformations M which send the triangle from table 1.1 to the
image of the function D from definition 2.1.

2.3 A formula to calculate special values of the hypergeo-
metric function

Now we want to calculate special values of the hypergeometric function, using the composition of
the functions h from table 1.2 and D from definition 2.1. However, because the function h does
not send the vertices of T from table 1.1 to 0, 1,∞, the function D(h(z)), with h from table 1.2
does not send the vertices of T to the vertices of D(H). To send the vertices of T to the vertices of
D(H), define H(z) = m(h(z)) as a Möbius transformation of h such that H(∞) = m(h(∞)) = 0
and H(l) = m(h(l)) = 1 and H(r) = m(h(r)) = ∞, where l and r are the left and right vertex
of the triangle T from table 1.1. For an example, see figure 2.2 on page 22.

k, l,m a b h(z) H(z) = m(h(z))
2, 3,∞ 1/12 5/12 j(z) 1728/z
2, 4,∞ 1/8 3/8 ∆(z)/∆(2z) + 212∆(2z)/∆(z) 256/(z + 128)
2, 6,∞ 1/6 1/3 η12(z)/η12(3z) + 36η12(3z)/η12(z) 108/(z + 54)
2,∞,∞ 1/4 3/4 ∆(z)/∆(2z) 64/(z + 64)

3, 3,∞ 1/6 1/2
√

1728− j(z) 48
√

3/(z + 24
√

3)
3,∞,∞ 1/3 2/3 η12(z)/η12(3z) 27/(z + 27)

4, 4,∞ 1/4 1/2
√

128−∆(z)/∆(2z)− 212∆(2z)/∆(z) 32/(z + 16)

6, 6,∞ 1/3 1/2
√

54− η12(z)/η12(3z)− 36η12(3z)/η12(z) 12
√

3/(z + 6
√

3)
∞,∞,∞ 1/2 1/2 16η8(z/2)η16(2z)/η24(z) z

Table 2.2: Table of Hauptmoduln as in table 1.2; the Möbius transformation m(z) is such that
H(∞) = m(h(∞)) = 0 and H(l) = m(h(l)) = 1 and H(r) = m(h(r)) = ∞, where l and r are
the left and right vertex of the triangle T from table 1.1.

Lemma 2.4. Let D as in definition 2.1, let H as in table 2.2, let M as in table 2.1, let T as in
table 1.1. Then it follows that D(H(z)) = M(z).

Proof. The function D is a biholomorphic function from H to D(H). We also have that H is a
biholomorphic function from T to H: using H(−z) = H(z) it can be shown that H sends the
edges of T to R. Because H sends the vertices of T to 0, 1,∞ in counterclockwise order, it follows
that H sends T to H and the reflection of T to H = {z ∈ C|=(z) < 0}. From this follows that
D ◦H is a biholomorphic function from T to D(H). On the other hand, the function M is also
a biholomorphic function from T to D.



CHAPTER 2. SPECIAL VALUES OF THE HYPERGEOMETRIC FUNCTION 22

0 1

H

R

D

R
−
√

3π/6 + log(12
√

3)

−
√

3π/6 + log(12
√

3) + πi

Figure 2.1: The function D from definition 2.1 sends the upper half plane H biholomorphically
to the triangle in the right picture. Here the parameters are equal to a = 1/3 and b = 1/2 and
the inverse angles are equal to {6, 6,∞}.

R
− 1

2 + 1
6

√
3i

− 1
2 + 5

6

√
3i

1
2 + 1

6

√
3i

H

0 1
5

1

H

R

Figure 2.2: The function H from table 2.2 sends the triangle T from table 1.1 biholomorphically
to the upper half plane H. Here the parameters are equal to a = 1/3 and b = 1/2 and the inverse
angles are equal to {6, 6,∞}. Later in this chapter we will show that H(−1/2 + 5

√
3i/6) = 1/5,

which we already indicate in this picture.

R
− 1

2 + 1
6

√
3i 1

2 + 1
6

√
3i

D ◦H

R
−
√

3π/6 + log(12
√

3)

−
√

3π/6 + log(12
√

3) + πi

Figure 2.3: The function D◦H with D from definition 2.1 and H from table 2.2 sends the triangle
T from table 1.1 biholomorphically to the triangle in the right picture. Here the parameters are
equal to a = 1/3 and b = 1/2 and the inverse angles are equal to {6, 6,∞}.
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The function D−1 ◦ M ◦ H−1 is biholomorphic function from H to H, so it is a Möbius
transformation. We have (D−1 ◦M ◦H−1)(0) = 0 and (D−1 ◦M ◦H−1)(1) = 1 and (D−1 ◦M ◦
H−1)(∞) =∞, because H(∞) = 0 and H sends the vertices of T to 0, 1,∞ and D(0) =∞ and
D sends 0, 1,∞ to the vertices of D(H). From this follows that D−1 ◦M ◦H−1 is the identity
function, so M(z) = D(H(z)).

Now we know that M(z) = D(H(z)), we can differentiate this relation, from which a formula
follows. To find this formula, we start with calculating the derivative of D.

Lemma 2.5. Let F0, G0 as in definition 2.1, then it follows that

d

dx

(
G0(x)

F0(x)

)
=
x−1(1− x)−a−b

F0(x)2
. (2.22)

Proof. Define the Wronskian determinant

W (x) := det

(
G0(x) F0(x)
G′0(x) F ′0(x)

)
= G′0(x)F0(x)− F ′0(x)G0(x), (2.23)

then it follows that

W ′(x) = G′′0(x)F0(x)− F ′′0 (x)G0(x)

=

(
−1− (a+ b+ 1)x

x(1− x)
G′0(x) + abG0(x)

)
F0(x)−

(
−1− (a+ b+ 1)x

x(1− x)
F ′0(x) + abG0(x)

)
F0(x)

= −1− (a+ b+ 1)x

x(1− x)
W (x) =

(
− 1

x
+
a+ b

1− x

)
W (x). (2.24)

From this follows that W (x) is a multiple of x−1(1 − x)−a−b. Around x = 0 we have G0(x) ≈
log(x)F0(x), from which follows that G′0(x)F0(x)−G0(x)F ′0(x) ≈ x−1F0(x)2+log(x)F ′0(x)F0(x)−
log(x)F0(x)F ′0(x) = F0(x)2/x ≈ 1/x, which is what we wanted to prove.

Lemma 2.6. Let D and F0 as in definition 2.1, let H as in table 2.2, let M as in table 2.1, let
T as in table 1.1. Let z be an element of T or one of its reflections such that |H(z)| < 1, then
it follows that

F0(H(z))2 =
H(z)−1 · (1−H(z))−a−b ·H ′(z)

M ′(z)
. (2.25)

Proof. We have D(H(z)) = M(z) for z ∈ T , note that this relation does not always hold if z is
not an element of T , because D is a multivalued function. From differentiating D(H(z)) = M(z)
follows that M ′(z) = D′(H(z)) ·H ′(z). Using lemma 2.5 gives the result.

Lemma 2.7. Let D,F0, G0 as in definition 2.1, let H as in table 2.2, let M as in table 2.1,
let T as in table 1.1. Let z be an element of T or one of its reflections. Let L(z) = αz+β

γz+δ be a
Möbius transformation, then it follows that

(γG0(H(z)) + δF0(H(z)))2 = (γM(z) + δ)2H(z)−1(1−H(z))−a−bH ′(z)

M ′(z)
. (2.26)

Proof. From M(z) = D(H(z)) follows that LM(z) = LD(H(z)) and

L′(M(z)) ·M ′(z) =
det(L)M ′(z)

(γM(z) + δ)2
= (LD)′(H(z)) ·H ′(z) =

det(L)H(z)−1(1−H(z))−a−bH ′(z)

(γG0(H(z)) + δF0(H(z)))2
,

(2.27)
from which the result follows.
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Lemma 2.8. Let 0 < a, b, a + b < 1 and F0, G0, F1 as in definition 2.1. Then it follows for
z ∈ C with |x|, |1− x| < 1 that

2F1 (a, b; a+ b |1− x ) = F1(x) = − Γ(a+ b)

Γ(a)Γ(b)
G0(x)+

Γ(a+ b)

Γ(a)Γ(b)

 ∞∑
j=0

1

a+ j
+

1

b+ j
− 2

j + 1

F0(x).

(2.28)

Proof. We have
(a)n(b)n

(a+ b)n · n!
=

Γ(a+ b)

Γ(a)Γ(b)
· 1

n
+O(1/n2). (2.29)

From this follows that around x = 0 we have F1(x) ≈ − Γ(a+b)
Γ(a)Γ(b) log(x), which gives us the

coefficient of G0(x), here the approximation means that F1(x)+ Γ(a+b)
Γ(a)Γ(b) log(x) is finite for x→ 0.

Now write F1(x) + Γ(a+b)
Γ(a)Γ(b)G0(x) = AF0(x) for some A ∈ C, then it follows that

A =
F1(x)

F0(x)
+

Γ(a+ b)

Γ(a)Γ(b)

G0(x)

F0(x)
. (2.30)

We have F1(1) = 1 and F0(1) = Γ(1−a−b)
Γ(1−a)Γ(1−b) , from which follows that the limit x → 1 of

equation (2.30) is equal to

A =
Γ(1− a)Γ(1− b)

Γ(1− a− b)
+

Γ(a+ b)

Γ(a)Γ(b)

 ∞∑
j=0

1

1− a+ j
+

1

1− b+ j
− 2

j + 1


=

Γ(a+ b)

Γ(a)Γ(b)

 π sin(πa+ πb)

sin(πa) sin(πb)
+

∞∑
j=0

1

1− a+ j
+

1

1− b+ j
− 2

j + 1


=

Γ(a+ b)

Γ(a)Γ(b)

 ∞∑
j=0

1

a+ j
+

1

b+ j
− 2

j + 1

 . (2.31)

Here we used lemma 2.3, and the identities Γ(z)Γ(1− z) = π/ sin(πz) and equation (2.10).

Corollary 2.9. Let 0 < a, b, a + b < 1, let T as in table 1.1, let M as in table 2.1, let H as in
table 2.2, let v be the left vertex from table 1.1. Let z be an element of T or one of its reflections
such that |1−H(z)| < 1, then it follows that

2F1 (a, b; a+ b |1−H(z) )
2

(2.32)

is equal to

(1−H(z))−a−b

H(z) ·M ′(z)
· Γ(a+ b)2

Γ(a)2Γ(b)2

M(z) +

∞∑
j=0

− 1

a+ j
− 1

b+ j
+

2

j + 1

2

·H ′(z)

=
(1−H(z))−a−b

H(z) ·M ′(z)
· Γ(a+ b)2

Γ(a)2Γ(b)2

(
M ′ · (z − v)− π cos(πa)

sin(πa)
− π cos(πb)

sin(πb)

)2

·H ′(z). (2.33)

Proof. The proof follows from lemma 2.7 and using a Möbius transformation with lower entries
equal to the numbers given in lemma 2.8. To prove the last equality, note that M(z) = M ′ · (z−
v) +

∑∞
j=0

1
1−a+j + 1

1−b+j −
2
j+1 , where M ′ is a constant, because M ′(z) is a linear function.
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Remark 2.10. Another method to give a proof of corollary 2.9 starts with the observation that
G1(H(z))
F1(H(z)) is a Möbius transformation of the triangle T , where G1, F1 are as in definition 2.1.

Because a+ b < 1, it follows that G1(H(v))/F1(H(v)) = G1(1)/F1(1) = 0 and

lim
z→∞

G1(H(z))

F1(H(z))
= lim
x→0

G1(x)

F1(x)
=

Γ(2− a− b)
Γ(1− a)Γ(1− b)

/
Γ(a+ b)

Γ(a)Γ(b)
=

Γ(2− a− b)Γ(a)Γ(b)

Γ(1− a)Γ(1− b)Γ(a+ b)
.

(2.34)
From this follows that

G1(H(z))

F1(H(z))
=

Γ(2− a− b)Γ(a)Γ(b)

Γ(1− a)Γ(1− b)Γ(a+ b)
· z − v
z + C

, (2.35)

for some still unknown complex number C. It can be shown that

d

dz

(
G1(x)

F1(x)

)
= (a+ b− 1)

x−1(1− x)−a−b

F1(x)2
, (2.36)

from which follows that

lim
z→v

d

dz

(
G1(H(z))

F1(H(z))

)
= lim
z→v

(a+ b− 1)
H(z)−1(1−H(z))−a−b

F1(H(z))2
H ′(z)

= (a+ b− 1) lim
z→v

(1−H(z))−a−bH ′(z). (2.37)

From lemma 2.6 we know that

lim
z→v

F0(H(z))2 = F0(1)2 = lim
z→v

H(z)−1 · (1−H(z))−a−b ·H ′(z)
M ′(z)

= lim
z→v

(1−H(z))−a−b ·H ′(z)
M ′(z)

,

(2.38)
from which follows that

lim
z→v

d

dz

(
G1(H(z))

F1(H(z))

)
= (a+ b− 1)M ′ · F0(1)2 = (a+ b− 1) ·M ′ Γ(1− a− b)2

Γ(1− a)2Γ(1− b)2
. (2.39)

On the other hand, we have

lim
z→v

d

dz

(
Γ(2− a− b)Γ(a)Γ(b)

Γ(1− a)Γ(1− b)Γ(a+ b)
· z − v
z + C

)
=

Γ(2− a− b)Γ(a)Γ(b)

Γ(1− a)Γ(1− b)Γ(a+ b)
· 1

v + C
. (2.40)

From comparing equation (2.39) and equation (2.40) follows the value of C, which gives

G1(H(z))

F1(H(z))
=

Γ(2− a− b)Γ(a)Γ(b)

Γ(1− a)Γ(1− b)Γ(a+ b)
· z − v

z − v − π
M ′

(
cos(aπ)
sin(aπ) + cos(bπ)

sin(bπ)

) . (2.41)

From differentiating both sides of equation (2.41) follows that

(a+b−1)
(1−H(z))−a−b

H(z) · F1(H(z))2
H ′(z) =

Γ(2− a− b)Γ(a)Γ(b)

Γ(1− a)Γ(1− b)Γ(a+ b)
·

− π
M ′

(
cos(aπ)
sin(aπ) + cos(bπ)

sin(bπ)

)
(
z − v − π

M ′

(
cos(aπ)
sin(aπ) + cos(bπ)

sin(bπ)

))2 ,

(2.42)
from which the result follows.
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2.4 First example

Theorem 2.11 ([1, chapter 5, theorem 3]). We have

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)
=

3

4
4
√

11. (2.43)

We will give two proofs of this result.

First proof. We use corollary 2.9 with a = 1/12 and b = 5/12 and H(z) = 1728/j(z) and M(z) =
2πiz+ log(1728), see table 2.1 and table 2.2. We have

∑∞
j=0

1
a+j + 1

b+j −
2
j+1 = −2π− log(1728).

From this follows that

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1− 1728

j(z)

)2

=

(
1− 1728

j(z)

)−1/2

2πi · 1728/j(z)
· π

Γ(1/12)2Γ(5/12)2
(2πiz − 2π)

2 ·
(

1728

j(z)

)′

=
2π2i

(
1− 1728

j(z)

)−1/2

(iz − 1)2

Γ(1/12)2Γ(5/12)2j(z)
· j′(z). (2.44)

Let z = 2i, we have j(2i) = 663 = 287 496, from which follows that

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)2

=
π2i
√

1331
1323

15972Γ(1/12)2Γ(5/12)2
· j′(z) (2.45)

Now we want to calculate j′(z), note that for a Möbius transformation γ(z) = az+b
cz+d ∈ SL2(Z)

we have j(γz) = j(z), from which follows that

j′(γz)γ′(z) = (cz + d)−2j′(γz) = j′(z). (2.46)

Let ∆ be the unique normalized cusp form of weight 12, then it follows that ∆(z) · j′(z) is a
modular form of weight 14, because limz→∞∆(z)j′(z) = −2πi, this can be calulated using the
q-expansion of j′(z) and ∆(z). The space of modular forms of weight 14 with respect to SL2(Z)
is onedimensional, and spanned by E2

4(z)E6(z), with

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn. (2.47)

Because the constant coefficient of E2
4(z)E6(z) is equal to 1, it follows that

∆(z)j′(z) = −2πiE2
4(z)E6(z). (2.48)

It is known that η(2i) = 2−11/8π−3/4Γ(1/4), from which follows that ∆(2i) = 2−33π−18Γ(1/4)24.
We have

E4(z)3 = ∆(z)j(z) and E2
6(z) = E4(z)3 − 1728∆(z) = ∆(z)(j(z)− 1728). (2.49)

From this follows that E4(2i)3 = 2−30·33·113π−18Γ(1/4)24 and E6(2i)2 = 2−30·36·72π−18Γ(1/4)24.
We know that E4(2i) and E6(2i) are real and positive, so

E4(2i)2 = 2−20 · 32 · 112π−12Γ(1/4)16 and E6(2i) = 2−15 · 33 · 7π−9Γ(1/4)12 (2.50)
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and

j′(2i) = −2πi
E4(2i)2E6(2i)

∆(2i)
= −2πi

2−35 · 33 · 7 · 112π−21Γ(1/4)28

2−33π−18Γ(1/4)24
= −i205821Γ(1/4)4

2π2
. (2.51)

From this follows that

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)2

=
π2i
√

1331
1323

15972Γ(1/12)2Γ(5/12)2
· −i205821Γ(1/4)4

2π2

=
205821

√
1331
1323

2 · 15972
· Γ(1/4)4

Γ(1/12)2Γ(5/12)2
=

9
√

33

8

Γ(1/4)4

Γ(1/12)2Γ(5/12)2
.

(2.52)

From
∏m−1
k=0 Γ(z + k/m) = (2π)(m−1)/2m1/2−mzΓ(mz) with z = 1/12 and m = 3 and

Γ(z)Γ(1− z) = π
sin(πz) with z = 1/4 follows that

Γ(1/4)2

Γ(1/12)Γ(5/12)
=

Γ(1/4)2Γ(3/4)

Γ(1/12)Γ(5/12)Γ(3/4)
=

Γ(1/4)2Γ(3/4)

2π 4
√

3Γ(1/4)
=

Γ(1/4)Γ(3/4)

2π 4
√

3
=

1√
2 4
√

3
(2.53)

and

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)2

=
9
√

33

8
· 1

2
√

3
=

9
√

11

16
. (2.54)

The result follows, because 2F1 (1/12, 5/12; 1/2 |1323/1331) is real and positive.

Second proof. We will evaluate equation (2.44) in z = 2i and z = i. Note that j(i) = 1728 and
j(2i) = 663 = 287 496, from which follows that

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)2

=
2F1

(
1
12 ,

5
12 ; 1

2

∣∣∣1− 1728
j(2i)

)2

2F1

(
1
12 ,

5
12 ; 1

2

∣∣∣1− 1728
j(i)

)2 =
18
(

1− 1728
j(2i)

)−1/2

· j′(2i)

113
(

1− 1728
j(z)

)−1/2

· j′(z)
. (2.55)

The function j(2z) is a modular function with respect to Γ0(2), so the polynomial

P (x, z) = (x− j(2z))
(
x− j

(
2
−1

z

))(
x− j

(
2

z

z + 1

))
= (x−j(2z))(x−j(z/2))(x−j(z/2+1/2))

(2.56)
has coefficients which are modular with respect to SL2(Z). From this follows that the coefficients
of P (x, z) are in C(j(z)). Moreover, because j(2z) is holomorphic on H, it follows that the
coefficients of P (x, z) are in C[j(z)]. We will calculate the q-expansions of the coefficients of
P (x, z), where we omit all positive powers of q; here we use that a modular function with respect
to SL2(Z) which is holomorphic on H and goes to 0 for z → ∞ is the zero function. The
q-expansion of the coefficient of x2 is equal to

−
(
q−2 + 744

)
−
(
q1/2 + 744

)
−
(
−q−1/2 + 744

)
≡ −q−2 − 2232 ≡ −j(z)2 + 1488j(z)− 162000.

(2.57)
The coefficient of x is equal to(

q−2 + 744
) (
q1/2 + 744

)
+
(
q−2 + 744

) (
−q−1/2 + 744

)
+
(
q1/2 + 744

)(
−q−1/2 + 744

)
≡ 1488q−2 + 42987519q−1 + 40492979352 ≡ 1488j(z)2 + 40773375j(z) + 8748000000. (2.58)
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The constant coefficient is equal to

−
(
q−2 + 744

) (
q1/2 + 744

)(
−q−1/2 + 744

)
≡ q−3 − 159768q−2 + 8509195260q−1 − 151107596045760

≡ j(z)3 − 162000j(z)2 + 8748000000j(z)− 157464000000000. (2.59)

From this follows that P (j(2z), j(z)) is equal to the zero function with

P (x, y) = x3 + (−y2 + 1488y − 162000)x2 + (1488y2 + 40773375y + 8748000000)x

+(y3 − 162000y2 + 8748000000y − 157464000000000). (2.60)

Differentiating with respect to z gives that 2Px(z)j′(2z) + Py(z)j′(z) := 2Px(x, y)j′(2z) +
Py(x, y)j′(z) = 0, where Px and Py denote the derivatives of P with respect to the variables x
and y; we also write Px(z) instead of Px(j(2z), j(z)) and Py(z) instead of Py(j(2z), j(z)). From
this follows that

j′(2z)

j′(z)
= − Py(z)

2Px(z)
(2.61)

and

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)2

= − 18

113
lim
z→i

√
1− 1728/j(z)

1− 1728/j(2z)

Py(z)

2Px(z)

= 23 · 312 · 73 · 112
√

33 lim
z→i

√
1− 1728

j(z)

Px(z)
, (2.62)

where we calculated the nonzero limit terms in the quotient. Because in this limit both the
numerator and denominator go to 0, we use the rule of l’Hôpital, from which follows that

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)2

= 2−4 · 39 · 73 · 112
√

33 lim
z→i

(
1− 1728

j(z)

)−1/2

j′(z)

2Pxx(z)j′(2z) + Pxy(z)j′(z)
. (2.63)

Dividing by j′(z) and using equation (2.61) gives that

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)2

= 2−4 · 39 · 73 · 112
√

33 lim
z→i

(
1− 1728

j(z)

)−1/2

Px(z)

−Py(z)Pxx(z) + Px(z)Pxy(z)
. (2.64)

The denominator in equation (2.64) has a nonzero limit, from which follows that

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)2

= 2−11 · 3−9 · 7−3 · 11−2
√

33 lim
z→i

Px(z)√
1− 1728

j(z)

. (2.65)

Multiplying equation (2.62) and equation (2.65) gives that

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)4

=
34 · 11

28
. (2.66)

The result follows, because 2F1 (1/12, 5/12; 1/2 |1323/1331) is real and positive.
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Remark 2.12. It is possible to finish the second proof of theorem 2.11 in another way, which
does not use the rule of l’Hôpital. We know that j′(z) has a root of order 2 at z = eπi/3

and a root of order 1 at z = i, but not other roots. From this follows that we can write
j(2z + 2i) = 663 + αz + O(z2) and j(z + i) = 1728 + βz2 + O(z3) with α ∈ iR<0 and β ∈ R<0.
From this follows that limz→0

d
dz j(2z+ 2i) = 2j′(2z+ 2i) = α and limz→0 j

′(2z+ 2i) = α/2. We
also have

j′(z + i)√
1− 1728

j(z+i)

=
2βz +O(z2)
√
βz

24
√

3
+O(z2)

=
2β +O(z)
√
β

24
√

3
+O(z)

= 48
√

3β +O(z), (2.67)

where we have
√

3β ∈ iR<0; this follows from the fact that for z ∈ iR>1 we have
√

1− 1728/j(z) ∈
R>0. From this follows that

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)2

= lim
z→i

18
(

1− 1728
j(2i)

)−1/2

· j′(2i)

113
(

1− 1728
j(z)

)−1/2

· j′(z)
=

18
√

1331

113
√

1323
· α/2

48
√

3β
. (2.68)

Because the coefficient of z2 in P (663+αz, 1728+βz2) is equal to 0, it follows that α/
√
β = 22 869,

from which follows that

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)2

=
18
√

1331

113
√

1323
· 22 869

48
√

3
=

18
√

1331

113
√

1323
· 22 869/2

48
√

3
=

9

16

√
11. (2.69)

Corollary 2.13. We have

2F1

(
1

12
,

5

12
; 1

∣∣∣∣ 8

1331

)
=

4
√

33Γ(1/4)2

4
√

2π3/2
. (2.70)

Note that this special value of the hypergeometric function is not algebraic, which falls outside
this thesis.

Proof. From lemma 2.6 follows that

F0(H(z))2 = 2F1

(
1

12
,

5

12
; 1

∣∣∣∣1728

j(z)

)2

= − 1

2πi · j(z)

(
1− 1728

j(z)

)−1/2

j′(z), (2.71)

where M(z) = 2πiz + log(1728) and H(z) = 1728/j(z). We have j(2i) = 663, and from the first

proof of theorem 2.11 we know that j′(2i) = −i 205821Γ(1/4)4

2π2 . Because 2F1

(
1/12, 5/12; 1

∣∣ 8
1331

)
is real and positive, the result follows.

In the first proof of theorem 2.11 we do not have to calculate a polynomial in two variables,
but is is a transcendental proof in the sense that the proof ends with some combination of Γ-
function factors which happens to be algebraic. The second proof is algebraic, in the sense that
we calculate a limit of the square root of a rational function, which arguments have a rational
limit.

2.5 Transcendental method

In theorem 2.15 we prove the identity which is conjectured in [4, equation 5.3], where we also
use theorem 2.14.
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Theorem 2.14. [Chowla-Selberg formula, [3, Page 110, formula 2]]For a fundamental discrim-
inant d it follows that

∏
[a,b,c]∈H(d)

a−1/4

∣∣∣∣∣η
(
b+
√
d

2a

)∣∣∣∣∣ = (2π|d|)−h(d)/4

 |d|∏
m=1

Γ

(
m

|d|

)( dm )
w(d)/8

, (2.72)

where H(d) is a complete set of non-equivalent primitive binary quadratic forms of discriminant
d, and h(d) is the class number of the discrimimant d. Moreover, w(−3) = 6 and w(−4) = 4
and w(d) = 2 for d < −4 and

(
d
m

)
is the Jacobi symbol.

Theorem 2.15. We have

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)

=
3√
5
. (2.73)

Proof. Let a = 1/3 and b = 1/2 and M(z) = πiz + log(12
√

3) + πi/2 and

H(z) =
12
√

3

6
√

3 +
√

54− η12(z)
η12(3z) − 36 η

12(3z)
η12(z)

, (2.74)

see table 2.1 and table 2.2. From this follows that

2F1

(
1

3
,

1

2
;

5

6
|1−H(z)

)2

=
(1−H(z))−5/6

πi ·H(z)
· Γ(5/6)2

Γ(1/3)2Γ(1/2)2

(
πiz + πi/2−

√
3π/6

)2

H ′(z).

(2.75)
Let y = − 1

2 + 5
6

√
3i. We know that j(y) is an algebraic integer, and using the theory

of complex multiplication we will calculate its value; in this situation we can calculate this
without difficulties, the general method is by searching for the Hilbert class polynomial of a
given discriminant. The lattice 3Z + Z3y is an ideal in the order O = Z + 5Z( 1

2 + 1
2

√
3i) in the

ring of integers OK of K = Q(
√
−3). The class number of O is equal to

h(O) =
h(OK)f

[O×K : O×]

∏
p|f

(
1−

(
dK
p

)
1

p

)
=

1 · 5
3

∏
p|5

(
1−

(
−3

p

)
1

p

)
= 2, (2.76)

where f is the conductor of the order O = Z+ fOK . The ideal 3Z+ 3yZ = 3Z+
(
− 3

2 + 5
2

√
3i
)
Z

is not a principal ideal in O, because 3 has norm 9 and 3y has norm 21, but O does not contain
elements of order 3. The square of this ideal is equal to Z + Z(3y + 2) = Z + 3yZ, which is a
principal ideal. Because the ideal classes in O are given by 3Z+ 3yZ and Z+ 3yZ, it follows that
the Galois conjugates of j(y) are given by j(y) and j(3y). The polynomial (x− j(y))(x− j(3y))
has integer coefficients because j(y) is an algebraic integer. A numerical calculation gives that

j(y) = 1728 · 512(−369830 + 165393
√

5) = −1728 · 512 ·
√

5(2−
√

5)6

(
3

2

√
5− 1

2

)
. (2.77)

We know that ∆(z)
∆(3z) is a modular function with respect to Γ0(3). From this follows that the

polynomial

P (x, z) =
∏

γ∈Γ0(3)\ SL2(Z)

(
x− ∆(γz)

∆(3γz)

)
(2.78)

is invariant under SL2(Z), so has coefficients in C(j(z)). Because the functions ∆(γz)/∆(3γz)
are holomorphic on H, it follows that P (x, z) has coefficients in C[j(z)]. Calculating the q-
expansion of the coefficients of P (x, z) gives that P (x, z) has coefficients in Z[j(z)]. Because
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j(y) = 1728 · 512(−369830 + 165393
√

5), it follows that P (x, y) has coefficients in Q(
√

5). The
algebraic conjugate of j(y) is equal to j(3y), so P (x, y)P (x, 3y) has integer coefficients, because
j(y) is an algebraic integer. A calculation in Mathematica gives that a factor of P (x, y)P (x, 3y)
is equal to 531441− 75584178x+ x2, from which follows that

∆
(
− 1

2 + 5
6

√
3i
)

∆
(
− 3

2 + 5
2

√
3i
) =

∆
(
− 1

2 + 5
6

√
3i
)

∆
(
− 5

2 + 5
2

√
3i
) = 729(51841 + 23184

√
5) = 2−2436(

√
5 + 1)24. (2.79)

From equation (2.79) we know that η12(y)/η12(3y) = −27(2 +
√

5)4, where the sign follows
from the definition of the η function. From this follows that H(y) = 1/5 and

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

= −2−5/3 · 3 · 511/6i
Γ(5/6)2

Γ(1/3)2
H ′(y). (2.80)

We have

H ′(z) =
−12
√

3(
6
√

3 +
√

54− η12(z)
η12(3z) − 36 η

12(3z)
η12(z)

)2 ·
−1 + 36

(
η12(3z)
η12(z)

)2

2
√

54− η12(z)
η12(3z) − 36 η

12(3z)
η12(z)

·
(
η12(z)

η12(3z)

)′
, (2.81)

from which follows that

h(y)′ =
1

675

(
−360 + 161

√
5
)
·
(
η12(y)

η12(3y)

)′
=

1

675

(
−360 + 161

√
5
)
· 12 · −27(2 +

√
5)4 (η(y)/η(3y))′

η(y)/η(3y)
(2.82)

and

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

= 21/3 · 32 · 51/3i · Γ(5/6)2

Γ(1/3)2

(
η′(y)

η(y)
− 3

η′(3y)

η(3y)

)
. (2.83)

We know that η′(z)
η(z) = πi

12E2(z) with E2(z) = 1 − 24
∑∞
n=1 σ(n)qn. Moreover, E(z) =

3
2E2(3z)− 1

2E2(z) is a modular form with constant coefficient 1, and of weight 2 with respect to
the group Γ0(3). From this follows that

η′(z)

η(z)
− 3

η′(3z)

η(3z)
=
πi

12
E2(z)− 3

πi

12
E2(3z) = −πi

6
E(z), (2.84)

from which follows that

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

= 2−2/3 · 3 · 51/3π · Γ(5/6)2

Γ(1/3)2
E(y). (2.85)

A calculation in SageMath gives that the space of modular forms of weight 8 with respect to the
group Γ0(3) is 3-dimensional, from which follows that E4, E2 ·E4, E ·E6, E

2
4 are linearly depen-

dent, with Ek(z) = 1 − 2k
Bk

∑∞
n=1 σk−1(n)qn. A calculation gives −27E4(y) + 18E2(y)E4(y) +

8E(y)E6(y) + E2
4(y) = 0, from which after dividing by |η16(y)| follows that

− 27

(
E(y)

|η4(y)|

)4

+ 18

(
E(y)

|η4(y)|

)2
E4(y)

|η8(y)|
+ 8

E(y)

|η4(y)|
E6(y)

|η12(y)|
+

(
E4(y)

|η8(y)|

)2

= 0. (2.86)
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We know that E(y) and E4(y) and E6(y) are real and positive, from which follows that

E4(y)

|η8(y)|
= 3
√
j(y) = 48

6
√

5(−69 + 31
√

5)

E6(y)

|η12(y)|
=
√
j(y)− 1728 = −233496

√
3 + 104448

√
15. (2.87)

From this follows that

− 27

(
E(y)

|η4(y)|

)4

+ 864
6
√

5(−69 + 31
√

5)

(
E(y)

|η4(y)|

)2

+ 192
√

3(−9729 + 4352
√

5)
E(y)

|η4(y)|
+ 2304 · 3

√
5 · (69− 31

√
5)2 = 0 (2.88)

and

− 45

(
E(y)

3
√

5|η4(y)|

)4

+ 288(155− 69
√

5)

(
E(y)

3
√

5|η4(y)|

)2

+ 64
√

3(−9729 + 4352
√

5)
E(y)

3
√

5|η4(y)|
+ 1536(4783− 2139

√
5) = 0. (2.89)

Solving this equation gives E(y)
3√5|η4(y)| = 2(3

√
3−
√

15) and E(y) = 2 3
√

5(3
√

3−
√

15)|η4(y)|. From

this follows that

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

= 21/3 · 33/2 · 52/3(3−
√

5)π · Γ(5/6)2

Γ(1/3)2
|η4(y)|. (2.90)

From theorem 2.14 follows that

η

(
1

2
+

1

2

√
3i

)
= eπi/242−1/43−1/4π−1/4 Γ(1/3)3/4

Γ(2/3)3/4
. (2.91)

We know that ∆(z)
∆(5z) is a modular function with respect to Γ0(5). From this follows that the

polynomial

P (x, z) =
∏

γ∈Γ0(5)\ SL2(Z)

(
x− ∆(γz)

∆(5γz)

)
(2.92)

is invariant under SL2(Z), so has coefficients in C(j(z)). Because ∆(γz)/∆(5γz) is holomorphic
on H, it follows that P (x, z) has coefficients in C[j(z)], and from the q-expansions of the coef-
ficients of P (x, z) follows that P (x, z) has coefficients in Z[j(z)]. Because j(1/2 +

√
3i/2) = 0,

it follows that P (x, 1
2 + 1

2

√
3i) has integer coefficients. A calculation in Mathematica gives that

P (x, 1
2 + 1

2

√
3i) = (95367431640625− 3144531250x+ x2)3, from which follows that

∆
(

1
2 + 1

2

√
3i
)

∆
(

5
2 + 5

2

√
3i
) =

∆
(

1
2 + 1

2

√
3i
)

∆
(
− 3

2 + 5
2

√
3i
) = 9765625(161 + 72

√
5) = 2−12510(

√
5 + 1)12. (2.93)

From equation (2.79) and equation (2.93) follows that

∆

(
−1

2
+

5

6

√
3i

)
= ∆

(
1

2
+

1

2

√
3i

)
∆
(
− 3

2 + 5
2

√
3i
)

∆
(

1
2 + 1

2

√
3i
) ∆

(
− 1

2 + 5
6

√
3i
)

∆
(
− 3

2 + 5
2

√
3i
)

= −2−185−10π−6 Γ(1/3)18

Γ(2/3)18
(
√

5 + 1)12 (2.94)
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and ∣∣∣∣η4

(
−1

2
+

5

6

√
3i

)∣∣∣∣ = 2−35−5/3(
√

5 + 1)2π−1 Γ(1/3)3

Γ(2/3)3
. (2.95)

From this follows that

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

= 21/3 · 33/2 · 5−1 Γ(5/6)2Γ(1/3)

Γ(2/3)3
. (2.96)

We have

Γ(5/6)2Γ(1/3)

Γ(2/3)3
=

Γ(5/6)2Γ(1/3)2

Γ(1/3)Γ(2/3)3
=

22/3πΓ(2/3)2

Γ(1/3)Γ(2/3)3
=

22/3π

Γ(1/3)Γ(2/3)
= 2−1/331/2, (2.97)

from which follows that

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

=
9

5
. (2.98)

Because 2F1 (1/3, 1/2; 5/6 |4/5) is real and positive, the result follows.

Using the method of theorem 2.15, we proved some other results: first we searched for imagi-
nary quadratic z ∈ H such that j(z) is algebraic of degree at most 2. Then we selected the values
of z such that H(z) from table 2.1 is rational and |H(z)−1| ≤ 1, because the convergence radius
of a hypergeometric series is equal to 1. Moreover, the outcome should be algebraic, so we do
not include answers with the Γ-function in it.

Theorem 2.16. We have

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣27

28

)
=

3

√
256

49
2F1

(
1

4
,

1

2
;

3

4

∣∣∣∣34
)

=
4

√
64

27
(2.99)

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣14
)

=
8

9
3
√

2 2F1

(
1

4
,

1

2
;

3

4

∣∣∣∣80

81

)
=

9

5
(2.100)

2F1

(
1

6
,

1

3
;

1

2

∣∣∣∣25

27

)
=

3

4

√
3 2F1

(
1

8
,

3

8
;

1

2

∣∣∣∣2400

2401

)
=

2

3

√
7. (2.101)

Proof. To prove the first equality in equation (2.99), let a = 1/3 and b = 1/2 and M(z) +∑∞
j=0

1
a+j + 1

b+j −
2
j+1 = πiz + 1

2πi −
1
6

√
3π. let y = − 1

2 + 7
6

√
3i. The lattice 3Z + Z3y is

an ideal in the order O = Z + 7Z[ 1
2 + 1

2

√
3i], which has class number 2. From this follows

that j(y) = 331776000(−52518123 + 11460394
√

21), and j(3y) is the algebraic conjugate of
j(y). We have η12(y)/η12(3y) = −27(6049 + 1320

√
21), from which follows that H(y) = 1/28,

see table 2.2. Solving equation (2.86) gives that E(y)/|η(y)|4 = 6
√

3 3
√

7(
√

21 − 5). We also
have ∆(− 1

2 + 1
2

√
3i)/∆(− 7

2 + 7
2

√
3i) = 13841287201(6049 + 1320

√
21) and η( 1

2 + 1
2

√
3i) =

eπi/242−1/43−1/4π−1/4 Γ(1/3)3/4

Γ(2/3)3/4
, from which the result follows.

To prove the first equality in equation (2.100), let a = 1/3 and b = 1/2 and M(z)+
∑∞
j=0

1
a+j+

1
b+j −

2
j+1 = πiz + 1

2πi −
1
6

√
3π. let y = − 1

2 + 1
2

√
3i, so j(y) = 0. We have η12(y)/η12(3y) =

−243, from which follows that H(y) = 3/4, see table 2.2. Solving equation (2.86) gives that

E(y)/|η(y)|4 = 4/
√

3. We also have η( 1
2 + 1

2

√
3i) = eπi/242−1/43−1/4π−1/4 Γ(1/3)3/4

Γ(2/3)3/4
, from which

the result follows.
To prove the first equality in equation (2.101), let a = 1/6 and b = 1/3 and M(z) +∑∞
j=0

1
a+j + 1

b+j −
2
j+1 = 2πiz − 2

3

√
3π. let y = 2

3

√
3i. The lattice 3Z + Z3y is an ideal



CHAPTER 2. SPECIAL VALUES OF THE HYPERGEOMETRIC FUNCTION 34

in the order O = Z + 4Z[ 1
2 + 1

2

√
3i], which has class number 2. From this follows that

j(y) = −40500(−35010 + 20213
√

3), and j(3y) is the algebraic conjugate of j(y). We have
η12(y)/η12(3y) = 702 + 405

√
3, from which follows that H(y) = 2/27, see table 2.2. Solving

equation (2.86) gives that E(y)/|η(y)|4 = 3(3−
√

3)/ 6
√

2. We also have ∆(− 1
2 + 1

2

√
3i)/∆(− 4

2 +
4
2

√
3i) = and η( 1

2 + 1
2

√
3i) = eπi/242−1/43−1/4π−1/4 Γ(1/3)3/4

Γ(2/3)3/4
, from which the result follows.

To prove the second equality in equation (2.99), let a = 1/4 and b = 1/2 and M(z) +∑∞
j=0

1
a+j + 1

b+j −
2
j+1 = πiz + 1

2πi −
1
2π. let y = − 1

2 + 3
2 i. The lattice 2Z + Z2y is an

ideal in the order O = Z + 3Z[i], which has class number 2. From this follows that j(y) =
76771008 − 44330496

√
3, and j(2y) is the algebraic conjugate of j(y). We have ∆(y)/∆(2y) =

−64(97 + 56
√

3), from which follows that H(y) = 1/4, see table 2.2. In this case we consider
E(z) = 2E2(z) − E2(z) instead of the previously used definition. The space of modular forms
of weight 6 with respect to the group Γ0(2) turns out to be twodimensional, from which follows
that

− 4E(z)3 + 3E(z)E4(z) + E6(z) = 0 (2.102)

and E(y)/|η(y)|4 = 4
√

2
6
√

21
√

3− 36. We also have ∆(i)/∆(3i) = 19683(7 + 4
√

3) and η(i) =
Γ(1/4)
2π3/4 , from which the result follows.

To prove the second equality in equation (2.100), let a = 1/4 and b = 1/2 and M(z) +∑∞
j=0

1
a+j + 1

b+j −
2
j+1 = πiz + 1

2πi −
1
2π. let y = − 1

2 + 5
2 i. The lattice 2Z + Z2y is an

ideal in the order O = Z + 5Z[i], which has class number 2. From this follows that j(y) =
1728(12740595841 − 5697769392

√
5), and j(2y) is the algebraic conjugate of j(y). We have

∆(y)/∆(2y) = −64(51841 + 23184
√

5), from which follows that H(y) = 1/81, see table 2.2.
Solving equation (2.102) gives and E(y)/|η(y)|4 = 12 4

√
5(
√

5 − 3). We also have ∆(i)/∆(5i) =

244140625(161 + 72
√

5) and η(i) = Γ(1/4)
2π3/4 , from which the result follows.

To prove the second equality in equation (2.101), let a = 1/8 and b = 3/8 and M(z) +∑∞
j=0

1
a+j + 1

b+j −
2
j+1 = 2πiz−

√
2π. let y = 3

2

√
2i. The lattice 2Z+Z2y is an ideal in the order

O = Z + 3Z[
√

2i], which has class number 2. From this follows that j(y) = 8000(23604673 −
9636536

√
6), and j(2y) is the algebraic conjugate of j(y). We have ∆(y)/∆(2y) = 64(4801 +

1960
√

6), from which follows that H(y) = 1/2401, see table 2.2. Solving equation (2.102) gives

that and E(y)/|η(y)|4 = 14
√

2
3
√

5− 2
√

6. We have ∆(
√

2i)/∆(3
√

2i) = 531441(49 + 20
√

6) and

from theorem 2.14 follows that
∣∣η4(
√

2i)
∣∣ = Γ(1/8)Γ(3/8)

16πΓ(5/8)Γ(7/8) , from which the answer follows.

2.6 Remarks on the transcendental method

It is possible to generalize theorem 2.15, from which follows that there exists a subset E of the
algebraic numbers, dense in C such that if x ∈ E, then 2F1 (1/3, 1/2; 5/6 |x ) is also algebraic.
Note that here we use that H is a continuous surjective function from H to C, so the image of a
dense subset of H under H is a dense subset of C.

Theorem 2.17. Let a = 1/3 and b = 1/2, let H(z) be defined as in table 2.2, let z ∈ Q(
√

3i)∩H
such that |1−H(z)| < 1. Then 2F1

(
1
3 ,

1
2 ; 5

6 |1−H(z)
)

is algebraic.

Proof. From a = 1/3 and b = 1/2 follows that

M(z) +

∞∑
j=0

1

a+ j
+

1

b+ j
− 2

j + 1
= −1

6
π(−3i+

√
3− 6iz). (2.103)
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From table 2.2 we know that H(z) is an algebraic function of η12(z)/η12(3z), write H(z) =
f(η12(z)/η12(3z)). Then it follows from corollary 2.9 that

2F1

(
1

3
,

1

2
;

5

6
|1− h(z)

)2

=
(1−H(z))−5/6

36i ·H(z)
· Γ(5/6)2

Γ(1/3)2

(
−3i+

√
3− 6iz

)2

·H ′(z). (2.104)

From equation (2.78) follows that η12(z)/η12(3z) is algebraic, because j(z) is algebraic. From
this follows that f ′(η12(z)/η12(3z)) is algebraic, so 2F1

(
1
3 ,

1
2 ; 5

6 |1−H(z)
)

is algebraic if and only
if

Γ(5/6)2

Γ(1/3)2

(η12(z)/η12(3z))′

η12(z)/η12(3z)
(2.105)

is algebraic. We have

Γ(5/6)2

Γ(1/3)2

(η12(z)/η12(3z))′

η12(z)/η12(3z)
= −2πi

Γ(5/6)2

Γ(1/3)2
E(z)

= −2πi
Γ(5/6)2

Γ(1/3)2
· E(z)

|η4(z)|
· |η4(z)|∣∣η4

(
− 1

2 + 1
2

√
3i
)∣∣ ·

∣∣∣∣η4

(
−1

2
+

1

2

√
3i

)∣∣∣∣ ,
(2.106)

where E(z) = 3
2E2(3z)− 1

2E2(z) and E2(z) = 1− 24
∑∞
n=1 σ(n)qn. From equation (2.86) follows

that E(z)
|η4(z)| is algebraic, and because z ∈ Q(

√
3i), it follows that |η4(z)|/

∣∣η4
(
− 1

2 + 1
2

√
3i
)∣∣ is

algebraic. We have
∣∣η4
(
− 1

2 + 1
2

√
3i
)∣∣ = 9Γ(7/6)3π−5/2, so 2F1

(
1
3 ,

1
2 ; 5

6 |1−H(z)
)

is algebraic if
and only if

π
Γ(5/6)2

Γ(1/3)2

Γ(7/6)3

π5/2
=

Γ(5/6)2

Γ(1/3)2

Γ(1/6)3

216π3/2
=

√
πΓ(1/6)Γ(2/3)

54Γ(1/3)2Γ(2/3)
=

√
3Γ(1/6)Γ(2/3)

108
√
πΓ(1/3)

=

√
322/3

108
(2.107)

is algebraic, which is the case: here we used that Γ(1/6)Γ(2/3) = 22/3
√
πΓ(1/3). From this

follows that if z ∈ Q(
√

3i), then 2F1

(
1
3 ,

1
2 ; 5

6 |1−H(z)
)

is algebraic.

The proof of theorem 2.15 ends with a combination of Γ-function factors which happens to
be algebraic, like the first proof of theorem 2.11. Although the proof of theorem 2.15 gives us an
algebraic special value of the hypergeometric function, it is not an elegant proof, also because its
beginning does not indicate that it will actually produce an algebraic number. We want to find a
more elegant proof, like the second proof of theorem 2.11, so we want an algebraic proof instead
of a transcendental proof which at the very end happens to produce an algebraic number.

The method in theorem 2.16 relies on the cancellation of some Γ-function factors, so for
given values of the parameters a, b it follows from theorem 2.14 that there are very few quadratic
imaginary fields in which the number y can be chosen, and the expression in theorem 2.14
gets more complicated with higher absolute value of the discriminant. In theorem 2.15 we only
considered rational arguments, but for non-rational arguments the method also works: without
proof we state

2F1

(
1

2
,

1

3
;

5

6

∣∣∣∣23

27
− 10

27

√
2i

)
=

1

16

(
i+
√

2
)(
−2i+

√
3
)

2F1

(
1

6
,

1

3
;

1

2

∣∣∣∣∣1− 9
(
2677 + 2284 3

√
2− 3497 3

√
4
)

15625

)
=

2

3

(
1 +

3
√

4
)

2F1

(
1

8
,

3

8
;

1

2

∣∣∣∣∣1− 32
(
325
√

2− 457
)

2401

)
=

3

8

√
4 + 6

√
2, (2.108)
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where we respectively used y = 2i/
√

3 and y =
√

3i and y =
√

2i.
Until here we only could produce a special value if |1 − H(z)| ≤ 1, but for |1 − H(z)| > 1

there is also a method: we will calculate A,B ∈ C such that x−a2F1 (a, a; a+ 1− b |1/x ) =
AF0(x) +BG0(x), because x−a2F1 (a, a; a+ 1− b |1/x ) is a solution of around x =∞ of the hy-
pergeometric differential equation with parameters a, b, 1. Note that x−a2F1 (a, a; a+ 1− b |1/x )
and F0(x), G0(x) have a disjoint domain, so this equality means that their analytic continuations
to |x− 1| < 1 are equal.

Lemma 2.18. Let 0 < a, b, a+b < 1, let F0, G0 as in definition 2.1. Let F∞(x) = x−a2F1 (a, a; a+ 1− b |1/x )
be a solution of the hypergeometric differential equation with parameters a, b, 1 around x = ∞.
Then it follows that

F∞(x) =
Γ(1− a)Γ(a− b+ 1)

2πΓ(1− b)

i · (1− e−2πia) ·

 ∞∑
j=0

1

1− a+ j
+

1

1− b+ j
− 2

j + 1

+ 2π

F0(x)

+
Γ(1− a)Γ(a− b+ 1)

2πΓ(1− b)
· i ·
(
1− e−2πia

)
G0(x). (2.109)

Proof. Write F∞(x) = AF0(x) +BG0(x) for some A,B ∈ C. We have F0(1) = Γ(1−a−b)
Γ(1−a)Γ(1−b) and

F∞(1) = Γ(1−a−b)Γ(a+1−b)
Γ(1−b)2 . From lemma 2.3 follows that

G0(1) =
Γ(1− a− b)

Γ(1− a)Γ(1− b)

 ∞∑
j=0

− 1

a+ j
− 1

b+ j
+

2

j + 1

 , (2.110)

from which a linear relation follows. Now consider the analytic continuation of F∞(x) = AF0(x)+
BG0(x), starting and ending at x = 1, with one counterclockwise loop around x = 0. Because
analytic contination along a curve is invariant with respect to homotopy, for the function F∞(x)
a path in |x| > 1 can be followed, and for AF0(x) + BG0(x) a path in |x| < 1 can be followed.
From this follows that e2πiaF∞(x) = AF0(x) +B(G0(x) + 2πiF0(x)), from which another linear
relation follows. From this follows that

Γ(1− a− b)
Γ(1− a)Γ(1− b)

(
1

∑∞
j=0−

1
a+j −

1
b+j + 2

j+1

1 2πi+
∑∞
j=0−

1
a+j −

1
b+j + 2

j+1

)(
A
B

)
=

(
Γ(1−a−b)Γ(a+1−b)

Γ(1−b)2

e−2πia Γ(1−a−b)Γ(a+1−b)
Γ(1−b)2

)
,

(2.111)
from which the result follows.

Proposition 2.19 ([1, chapter 5, theorem 3]). It holds that

2F1

(
1

12
,

7

12
;

2

3

∣∣∣∣64000

64009

)
=

2

3
6
√

253. (2.112)

Proof. Let a = 1/12 and b = 5/12, then it follows from table 2.2 that H(z) = 1728/j(z), and
from table 2.1 follows that M(z) = 2πiz+ log(1728). Let y = 1/2 + 3

√
3i/2, then it follows that

j(z) = −12 288 000 and H(y) = −9/64000. From lemma 2.7 follows that

F∞(x) =
Γ(11/12)Γ(2/3)

2πΓ(7/12)

((
i− eπi/3

)
(2π − log(1728)) + 2π

)
F0(x)

+
Γ(11/12)Γ(2/3)

2πΓ(7/12)

(
i− eπi/3

)
G0(x). (2.113)
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Note that
∑∞
j=0

1
11/12+j + 1

7/12+j −
2
j+1 = 2π − log(1728), then from lemma 2.18 it follows that

H(y)−1/6
2F1

(
1

12
,

1

12
;

2

3

∣∣∣∣ 1

H(y)

)2

(2.114)

is equal to

=
H(y)−1(1−H(y))−a−bH ′(y)

2πi
·
(

Γ(11/12)Γ(2/3)

2πΓ(7/12)

)2

·
((
i− eπi/3

)
(2πiy + log(1728)) +

(
i− eπi/3

)
(2π − log(1728)) + 2π

)2

(2.115)

and

2F1

(
1

12
,

1

12
;

2

3

∣∣∣∣−64000

9

)2

= −37/3iΓ(2/3)2Γ(11/6)2

161 920 000 · 3
√

4π2
j′(y). (2.116)

We have j′(z) = −2πiE4(z)2E6(z)/∆(z) and

E4(z) = 3
√

∆(z)j(z) and E6(z) =
√

∆(z) · (j(z)− 1728), (2.117)

from which follows that j′(z) = −2πi ·∆(z)1/6 · j(z)1/3
√
j(z)− 1728, so we first calculate ∆(y).

Note that E4(y) ∈ R and E6(y) ∈ R>0 and ∆(y) ∈ R<0, so we have j′(y) ∈ iR>0. We have

∆

(
−1

2
+

3

2

√
3i

)
= ∆

(
−1

2
+

1

2

√
3i

)
·

∆
(
− 1

2 + 3
2

√
3i
)

∆
(
− 1

2 + 1
2

√
3i
) = − Γ(1/3)18

66π6Γ(2/3)18
· 3−10, (2.118)

from which follows that

j′(y) = 2πi
Γ(1/3)3

2 · 38/3 · Γ(2/3)3
· 12 288 0002/3 ·

√
12 289 728 =

310 886 400i
√

3Γ(7/6)3

π3/2
(2.119)

and

2F1

(
1

12
,

1

12
;

2

3

∣∣∣∣−64000

9

)2

= −37/3iΓ(2/3)2Γ(11/6)2

161 920 000 · 3
√

4π2
· 310 886 400i

√
3Γ(7/6)3

π3/2
= 22 · 3−5/3.

(2.120)
We have

(1− x)a2F1 (a, a; a+ 1− b |x ) = 2F1

(
a, 1− b; a+ 1− b

∣∣∣∣ x

x− 1

)
, (2.121)

from which follows that

2F1

(
1

12
,

7

12
;

2

3

∣∣∣∣64000

64009

)2

= 22 · 3−5/3 ·
(

64009

9

)1/6

=
4

9
3
√

253. (2.122)

The result follows, because 2F1 (1/12, 7/12; 2/3 |64000/64009) is real and positive.

2.7 Algebraic method

The proof of theorem 2.15 ended with a combination of Γ-factors which happens to be algebraic.
Now we want to produce an alternative proof of theorem 2.15, which looks like the second
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proof of theorem 2.11. To find this proof, we first want to find a polynomial P (x, y) such that
P (j(z), H(z)) = 0, with H as in table 2.2; from the subgroup inclusions from figure 1.2 we know
that we can find such a polynomial. Because Γ(3,∞,∞) is contained in both Γ(2, 3,∞) and
Γ(2, 6,∞), we can express h(2, 3,∞) and h(2, 6,∞) as a rational function in h(3,∞,∞), see
table 1.3.

Let

P1(x, y) = 803894544+24690528y+221400y2 +792y3 +y4 +50976x+1916xy−36xy2−xy3 +x2,
(2.123)

then it follows that

P1(z) = P1

(
(z + 243)3(z + 27)

z3
, z +

36

z

)
= 0, (2.124)

so P1(z) is the zero function; note that the arguments of P1(x, y) come from table 1.3. It is also
possible to give a nonconstructive proof of the existence of the polynomial P1: let k, l ∈ Z≥0 and
consider the set S = {(a, b) ∈ (Z≥0)2|3a + b ≤ k; a + b ≤ l}. Then it follows that the function(
(z + 243)3(z + 27)/z3

)a (
z + 36/z

)b
with (a, b) ∈ S has, seen as a Laurent series around z = 0,

only terms zm with −k ≤ m ≤ l. The elements {zm| − k ≤ m ≤ l} span a k + l+ 1-dimensional
C-vector space, so if #S > k + l + 1, it follows that there must be a linear relation between the

elements
(
(z + 243)3(z + 27)/z3

)a (
z + 36/z

)b
with (a, b) ∈ S, which gives the polynomial P1.

In this case, if k = 8 and l = 6, it follows that #S = 16 > k + l + 1, which proves the existence
of a linear relation.

Now we insert h(3,∞,∞)(z) from table 1.2 into equation (2.124), from which follows that

P1(j(z), h(2, 6,∞)(z) = 0, (2.125)

From h(2, 6,∞)(z) = 54 − h(6, 6,∞)(z)2 follows that P1(j(z), 54 − h(6, 6,∞)(z)2) = 0, so
P2(j(z), h6,6,∞(z)) = 0, where P2(x, y) = P1(x, 54− y2) and

P2(x, y) = 2916000000−108000x+x2−56160000y2+10720xy2+367200y4−198xy4−1008y6+xy6+y8.
(2.126)

From table 2.2 we know thatH(6, 6,∞)(z) = 12
√

3
h(6,6,∞)(z)+6

√
3
, from which follows that h6,6,∞(z) =

√
108−H(6,6,∞)(z)+2

H(6,6,∞)(z) . From this follows that P2

(
j(z),

√
108−h(z)+2

h(z)

)
= 0, so P (j(z), H(6, 6,∞)(z)) =

0 with P (x, y) = y8P2

(
x,
√

108y−2
y

)
and

P (x, y) = 34828517376− 139314069504y + 162533081088y2 + 80621568xy2

− 241864704xy3 − 83846430720y4 + 265379328xy4 + 5159780352y5 − 127650816xy5

+ 17581473792y6 + 24786432xy6 + 3057647616y7 − 1271808xy7 + x2y8. (2.127)

Using this fact we can produce a second proof of theorem 2.15.

Theorem 2.20 (Same statement as theorem 2.15). We have

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)

=
3√
5
. (2.128)

Proof. We use corollary 2.9 with a = 1/3 and b = 1/2 and M(z) +
∑∞
j=0

1
a+j + 1

b+j −
2
j+1 =

π/6 · (6iz + 3i−
√

3) and M ′(z) = πi and H(z) as in table 2.2. From this follows that

2F1

(
1
3 ,

1
2 ; 5

6 |1−H(5z)
)2

2F1

(
1
3 ,

1
2 ; 5

6 |1−H(z)
)2 =

(1−H(5z))−5/6 ·H(z) ·
(
6i(5z) + 3i−

√
3
)2 ·H ′(5z)

(1−H(z))−5/6 ·H(5z) ·
(
6iz + 3i−

√
3
)2 ·H ′(z) . (2.129)
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Note that we consider 1−H(z) on the line segment {z ∈ H;<(z) = −1/2,=(z) >
√

3i/6} where
it is real and positive, so we can define its fractional powers. Let y = − 1

2 + 1
6

√
3i, then we have

H(y) = 1 and H(5y) = 1/5. The function M(z) is only defined on the triangle from table 1.1,
so instead of 5y = − 5

2 + 5
6

√
3i we consider − 1

2 + 5
6

√
3i, from which follows that

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

= lim
z→y

2F1

(
1
3 ,

1
2 ; 5

6 |1−H(5z)
)2

2F1

(
1
3 ,

1
2 ; 5

6 |1−H(z)
)2 = 45 lim

z→y

(1−H(5z))−5/6 ·H ′(5z)
(1−H(z))−5/6 ·H ′(z)

.

(2.130)
Let P (x, y) as in equation (2.127). Differentiating P (z) := P (j(z), H(z)) = 0 gives that

Px(j(z), H(z)) · j′(z) + Py(j(z), H(z)) · h′(z) = Px(z) · j′(z) + Py(z) ·H ′(z) = 0 (2.131)

and differentiating P (5z) = P (j(5z), H(5z)) = 0 gives

Px(j(5z), H(5z))·j′(5z)+Py(j(5z), H(5z))·H ′(5z) = Px(5z)·j′(5z)+Py(5z)·H ′(5z) = 0, (2.132)

where Px and Py denote the partial derivatives of P (x, y). From this follows that

H ′(5z)

H ′(z)
=
Px(5z) · j′(5z) · Py(z)

Px(z) · j′(z) · Py(5z)
(2.133)

and

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

= 45 lim
z→y

(1−H(5z))−5/6

(1−H(z))−5/6
· Px(5z) · j′(5z) · Py(z)

Px(z) · j′(z) · Py(5z)
. (2.134)

We already knew that H(y) = 1 and H(5y) = 1/5, we also have j(y) = 0 because −1/y =
3
2 +
√

3i/2, and we have j(5y) = 1728 · 512(−369830 + 165393
√

5). Extracting nonzero limit
terms gives

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

=
45Py(y) · Px(5y)

(4/5)5/6Py(5y)
lim
z→y

(1−H(z))5/6

Px(z)
· j
′(5z)

j′(z)
. (2.135)

To calculate the limit in equation (2.135), we first want to find an expression for j′(5z)/j′(z).
A set of coset representatives of Γ0(5)\H is given by z 7→ z, z 7→ −1/z, z 7→ − 1

z+1 , z 7→ −
1
z+2 , z 7→

− 1
z+3 , z 7→ −

1
z+4 . From this follows that the polynomial

f(x) = (x− j(5z))
(
x− j

(z
5

))(
x− j

(
z + 1

5

))
·
(
x− j

(
z + 2

5

))(
x− j

(
z + 3

5

))(
x− j

(
z + 4

5

))
(2.136)

has coefficients in the ring C[j(z)] ⊂ C(j(z)): here we use that j(z) is holomorphic on H, so the
coefficients of f(x) are polynomials in j(z). A calculation gives a polynomial Q(x, y) such that
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Q(j(5z), j(z)) is the zero function, with

Q(x, y) =141359947154721358697753474691071362751004672000 + 53274330803424425450420160273356509151232000x

+ 6692500042627997708487149415015068467200x2 + 280244777828439527804321565297868800x3

+ 1284733132841424456253440x4 + 1963211489280x5 + x6 + 53274330803424425450420160273356509151232000y

− 264073457076620596259715790247978782949376xy + 36554736583949629295706472332656640000x2y

− 192457934618928299655108231168000x3y + 128541798906828816384000x4y − 246683410950x5y

+ 6692500042627997708487149415015068467200y2 + 36554736583949629295706472332656640000xy2

+ 5110941777552418083110765199360000x2y2 + 26898488858380731577417728000x3y2

+ 383083609779811215375x4y2 + 2028551200x5y2 + 280244777828439527804321565297868800y3

− 192457934618928299655108231168000xy3 + 26898488858380731577417728000x2y3

− 441206965512914835246100x3y3 + 107878928185336800x4y3 − 4550940x5y3 + 1284733132841424456253440y4

+ 128541798906828816384000xy4 + 383083609779811215375x2y4 + 107878928185336800x3y4

+ 1665999364600x4y4 + 3720x5y4 + 1963211489280y5 − 246683410950xy5 + 2028551200x2y5

− 4550940x3y5 + 3720x4y5 − x5y5 + y6. (2.137)

Differentiating Q(z) := Q(j(5z), j(z)) = 0 gives

5Qx(j(5z), j(z)) · j′(5z) +Qy(j(5z), j(z)) · j′(z) = 5Qx(z) · j′(5z) +Qy(z) · j′(z) = 0, (2.138)

where Qx and Qy denote the partial derivatives of Q with respect to x and y. From equa-
tion (2.138) follows that

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

= −9Py(y) · Px(5y) ·Qy(y)

(4/5)5/6Py(5y)
· lim
z→y

(1−H(z))5/6

Px(z) ·Qx(z)
. (2.139)

It is possible to evaluate the limit in equation (2.139) using the rule of l’Hôpital, but there is
a more simple method. From the fact that that T (6, 6,∞) has angle π/6 at y, it follows that
H(z)−1 has a root of order 6 at z = y, so (1−H(z))5/6 has a root of order 5 at z = y. If we know
the root orders of Px(z) and Qx(z) at z = y, we can factor the limit in equation (2.139), which
gives a limit with roots of lower order in numerator and denominator. From the valence formula
follows that j(z) has a third order root at ρ = e2πi/3. On the other hand, we have y = 1/(−ρ−2),
so j(z) also has a third order root at y. The function j′(z) is a modular function of weight 2,
which has a pole of order 1 at z = ∞, and a root of order 2 at z = ρ, and a root of order 1 at
z = i. To calculate the order of Qx(z), we have Qx(z)′ = 5Qxx(z) · j′(5z) +Qxy(z) · j′(z), where
the second term has a root of order 2. To calculate the order of Qxx(z) at z = y, we have

Qxx(z)′ = 5Qxxx(z) · j′(5z) +Qxxy(z) · j′(z), (2.140)

which has a nonzero limit, because j′(y) = 0 and Qxxx(y) 6= 0 and j′(5y) 6= 0. From this follows
that Qx(z) has a second order root at z = y.

Because both sides of equation (2.139) are nonzero and finite, it follows that Px(z) has a
third order root at z = y. From this follows that we can factor the limit in equation (2.139) in
two nonzero limits, which have lower order roots in numerator and denominator, which hopefully
gives a shorter calculation:

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

= −9Py(y) · Px(5y) ·Qy(y)

(4/5)5/6Py(5y)
· lim
z→y

(1−H(z))1/2

Px(z)
· lim
z→y

(1−H(z))1/3

Qx(z)
. (2.141)
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In both these limits in equation (2.141) the denominator and numerator go to 0, so we use the
rule of l’Hôpital, from which follows that the first limit from equation (2.141) is equal to

− lim
z→y

1
2 (1−H(z))−1/2

Pxx(z) · j
′(z)

H′(z) + Pxy(z)
= lim
z→y

1
2 (1−H(z))−1/2 · Px(z)

Pxx(z) · Py(z)− Pxy(z) · Px(z)

=
1

12230590464
lim
z→y

Px(z)

(1−H(z))1/2
, (2.142)

where in the first equality we used equation (2.131) and in the second equality we calculated the
nonzero limit in the denominator. Because the limit in the last step is the inverse of the limit

we started with, it follows that limz→y
(1−H(z))1/2

Px(z) = 1/
√

12230590464 = 48−3.

The second limit from equation (2.141) is equal to

− lim
z→y

1
3 (1−H(z))−2/3 · H

′(z)
j′(z)

5Qxx(z) · j
′(5z)
j′(z) +Qxy(z)

= lim
z→y

1
3 (1−H(z))−2/3 · Px(z) ·Qx(z)

Qxx(z) ·Qy(z) · Py(z)
, (2.143)

here we used that Qxx(z) has a root of order 1, see equation (2.140), and j′(z) has a root of
order 2 at z = y, and Qxy(z) has a finite limit at z = y. Evaluating nonzero limits gives that
the second limit from equation (2.141) is equal to

1

3Qy(y) · Py(y)
lim
z→y

Px(z) ·Qx(z)

(1−H(z))2/3 ·Qxx(z)
=

483

3Qy(y) · Py(y)
lim
z→y

Qx(z)

(1−H(z))1/6 ·Qxx(z)
.

(2.144)
Multiplying the second limit from equation (2.141) by the square of equation (2.144) gives that(

lim
z→y

(1−H(z))1/3

Qx(z)

)3

=

(
483

3Qy(y) · Py(y)

)2

lim
z→y

Qx(z)

Qxx(z)2
, (2.145)

from which follows that

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

= −
9 3
√
Py(y) · Px(5y) · 3

√
Qy(y)

48 · 32/3 · (4/5)5/6Py(5y)
· 3

√
lim
z→y

Qx(z)

Qxx(z)
. (2.146)

To calculate the limit in equation (2.146), we use the rule of l’Hôpital, which gives

lim
z→y

Qx(z)

Qxx(z)
= lim
z→y

5Qxx(z) · j′(5z) +Qxy(z) · j′(z)
10Qxx(z) ·Qxxx(z) · j′(5z) + 2Qxx(z) ·Qxxy(z) · j′(z)

= lim
z→y

1

2Qxxx(z)
,

(2.147)
here we used that Qxx(z) · j′(z) and Qxx(z) ·Qxxx(z) · j′(z) both have a root of order 1 at z = y,
but the terms with j′(z) have higher order roots. From this follows that

2F1

(
1

3
,

1

2
;

5

6

∣∣∣∣45
)2

= −
9 3
√
Py(y) · Px(5y) · 3

√
Qy(y)

48 · 3
√

2 · 32/3 · (4/5)5/6Py(5y) · 3
√
Qxxx(y)

=
9

5
. (2.148)

Because 2F1 (1/3, 1/2; 5/6 |4/5)
2

is real and positive, the result follows.



Chapter 3

Belyi functions

In this chapter we construct another method to calculate special values of the hypergeometric
function. Because in this chapter we do not use modular functions, we use the symbol z to
denote a complex variable. We start with a result on Fuchsian differential equations, which we
define first.

Definition 3.1. Let z1, . . . , zk ∈ C be distinct points. Let p, q be meromorphic functions such
that: p only can have poles of order at most 1 at the points z1, . . . , zk and no other poles; q
only can have poles of order at most 2 at the points z1, . . . , zk and no other poles. Moreover, for
z → ∞ it should be the case that p(z) = O(1/z) and q(z) = O(1/z2). A Fuchsian differential
equation (of degree 2) is a linear differential equation y′′(z) + p(z) · y′(z) + q(z) · y(z) = 0, such
that p, q have the properties mentioned before. The points z1, . . . , zk,∞ are called the singular
points of this equation. In this chapter, we only consider Fuchsian differential equations of degree
2. It is possible to define conditions on p and q such that ∞ is a regular point, but we always
see ∞ as a singular point.

Proposition 3.2. Let f be a solution of a Fuchsian differential equation with singular points
z1, . . . , zk,∞ of degree 2. Let Q be a rational function which only ramifies above the singularities
of the equation of f . Then F (z) := f(Q(z)) satisfies a Fuchsian differential equation with singular
points Q−1({z1, . . . , zk,∞}). Moreover, let y ∈ Q−1({z1, . . . , zk,∞}) with Q(y) = zi such that
Q(z)−Q(y) has a root of degree d at z = y. Let a, b be the local exponents of zi, then y has local
exponents da, db. Let y ∈ Q−1(∞) such that Q(z) has a pole of order d at z = y. Let a, b be the
local exponents of ∞, then y has local exponents da, db.

Proof. By assumption we know that f is a solution of the equation y′′(z)+p(z)·y′(z)+q(z)·y(z) =
0, from which follows that

Q′(z)2 · f ′′(Q(z)) +Q′(z)2 · p(Q(z)) · f ′(Q(z)) +Q′(z)2 · q(Q(z)) · f(Q(z)) = 0. (3.1)

We have F ′(z) = f ′(Q(z)) ·Q′(z) and F ′′(z) = f ′′(Q(z)) ·Q′(z)2 + f ′(Q(z)) ·Q′′(z). From this
follows that

F ′′(z) +

(
p(Q(z)) ·Q′(z)− Q′′(z)

Q′(z)

)
· F ′(z) +

(
q(Q(z)) ·Q′(z)2

)
· F (z) = 0. (3.2)

We want to prove that the function p(Q(z)) · Q′(z) − Q′′(z)
Q′(z) only has poles of order at most

1 in the points Q−1({z1, . . . , zk,∞}), and no other poles. The function Q′′(z)
Q′(z) only has a pole at

42
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z = y if Q′(y) = 0 or Q′′(y) =∞, and then this pole has order 1. If Q′(y) = 0, then the function
Q(z)−Q(y) has a multiple root at z = y, which implies that Q(y) is one of the singularities of
f ; if Q′′(y) = ∞, it follows that Q(y) = ∞. For z → ∞, from writing Q(z) as a Laurent series
around z =∞, it follows that Q′′(z)/Q′(z) = O(1/z).

The function p(Q(z)) ·Q′(z) only has a pole at z = y if p has a pole at Q(y) or if Q(y) =∞,
from which follows that y ∈ Q−1({z1, . . . , zk,∞}). First assume that Q has a pole of order d at
z = y, then p(Q(z)) has a root of order at least d at z = y, and Q′(z) has a pole of order d+ 1
at z = y, so p(Q(z)) · Q′(z) has a pole of order at most 1 at z = y. Now assume that Q(y) is
finite. If Q(z) − Q(y) has a root of degree d at z = y, it follows that the p(Q(z)) has a pole of
order at most d. On the other hand, the function Q′(z) has a root of order d − 1 at z = y, so
the function p(Q(z)) ·Q′(z) has a pole of order at most 1 at z = y.

Now we want to prove that p(Q(z)) · Q′(z) = O(1/z), first assume that Q goes to ∞ with
order d, then p(Q(z)) has a root of order at least d, and Q′(z) has a pole of order d−1 at z =∞.
If Q(∞) is finite and Q(z)−Q(y) has order d, it follows that p(Q(z)) has a pole of order at most
d for z →∞, but Q′(z) has a root of order d− 1 for z →∞. From this follows that the function

p(Q(z)) ·Q′(z)− Q′′(z)
Q′(z) only has poles of order at most 1 in the points Q−1({z1, . . . , zk,∞}), and

no other poles. Moreover, for z →∞ we have p(Q(z)) ·Q′(z)− Q′′(z)
Q′(z) = O(1/z).

The function q(Q(z)) ·Q′(z)2 only has a pole at z = y if q has a pole at Q(y) or if Q(y) =∞,
from which follows that y ∈ Q−1({z1, . . . , zk,∞}). First assume that Q has a pole of order d at
z = y, then q(Q(z)) has a root of order at least 2d at z = y, and Q′(z)2 has a pole of order 2d+2
at z = y, so q(Q(z)) · Q′(z)2 has a pole of order at most 2 at z = y. Now assume that Q(y) is
finite. If Q(z) − Q(y) has a root of degree d at z = y, it follows that the pole of q(Q(z)) has a
pole of order at most 2d. On the other hand, the function Q′(z)2 has a root of order 2d − 2 at
z = y, so the function q(Q(z)) ·Q′(z) has a pole of order at most 2 at z = y.

Now we want to prove that q(Q(z)) ·Q′(z)2 = O(1/z2), first assume that Q goes to ∞ with
order d, then q(Q(z)) has a root of order at least 2d, and Q′(z) has a pole of order 2d − 2 at
z =∞. If Q(∞) is finite and Q(z)−Q(y) has order d, it follows that q(Q(z)) has a pole of order
at most 2d for z →∞, but Q′(z)2 has a root of order 2d− 2 for z →∞. From this follows that
the function q(Q(z)) ·Q′(z)2 only has poles of order at most 2 in the points Q−1({z1, . . . , zk,∞}),
and no other poles. Moreover, for z →∞ we have q(Q(z)) ·Q′(z)2 = O(1/z2).

The statement about local exponents follows from the composition f◦Q, we omit the complete
proof.

3.1 First example

In this section we will give a third proof of theorem 2.11. Our first goal is to prove the iden-
tity in equation (3.11). Consider the function P (z) = (z + 256)3/z2. We have P−1(0) =
{−256,−256,−256} and P−1(1728) = {−64, 512, 512} and P−1(∞) = {0, 0,∞}, counting mul-
tiplicities. From this follows that P only ramifies above the points 0, 1728,∞, this can be proven
using the Riemann–Hurwitz formula: let S′, S be Riemann surfaces and let an analytic map
S′ → S of degree N be given. Then it follows that

2g(S′)− 2 = N · (2g(S)− 2) +
∑
p∈S′

(eP − 1), (3.3)

where eP is the ramification index of P . We can apply this formula with P : P1(C) → P1(C),
which is a map of degree 3. Because g(P1(C)) = 0, it follows that

∑
p∈P1(C)(eP − 1) = 4, but

we already found the points −256, 512, 0 with eP respectively equal to 2, 1, 1. From this follows
that P only ramifies above {P (−256), P (512), P (0)} = {0, 1728,∞}.
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First recall that a Fuchsian differential equation with 3 singular points is determined uniquely
by its local exponents. Consider

Q(z) = 1− 1728

P (64z − 64)
, (3.4)

then it then follows thatQ−1(0) = {0, 9, 9} andQ−1(1) = {1, 1,∞} andQ−1(∞) = {−3,−3,−3}.
Consider

2F1

(
1

12
,

5

12
;

1

2
|Q(z)

)
, which has Riemann scheme

0 9 1 ∞ −3
0 0 0 0 1/4

1/2 1 0 0 5/4
. (3.5)

From this follows that

(z + 3)−1/4
2F1

(
1

12
,

5

12
;

1

2
|Q(z)

)
has Riemann scheme

0 9 1 ∞ −3
0 0 0 1/4 0

1/2 1 0 1/4 1
. (3.6)

Because in equation (3.6) the points z = −3 and z = 9 have local exponents 0, 1, these points
are regular points of this function, which leaves z = 0, 1,∞ as singular points. From this follows
that (z

3
+ 1
)−1/4

2F1

(
1

12
,

5

12
;

1

2
|Q(z)

)
= 2F1

(
1

4
,

1

4
;

1

2
|z
)

(3.7)

as an equation of power series around z = 0, because both functions have the same Riemann
scheme, and evaluate to 1 for z = 0, and are holomorphic at z = 0. From inserting z

z−1 into
equation (3.7) follows that(

z

3(z − 1)
+ 1

)−1/4

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣Q( z

z − 1

))
= 2F1

(
1

4
,

1

4
;

1

2

∣∣∣∣ z

z − 1

)
. (3.8)

Comparing Riemann schemes gives that

(1− z)−1/4
2F1

(
1

4
,

1

4
;

1

2

∣∣∣∣ z

z − 1

)
= 2F1

(
1

4
,

1

4
;

1

2
|z
)
, (3.9)

from which follows that(
1− 4

3
z

)−1/4

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣Q( z

z − 1

))
=
(z

3
+ 1
)−1/4

2F1

(
1

12
,
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12
;

1

2
|Q(z)

)
(3.10)

and

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣z(8z − 9)2

(4z − 3)3

)
=

(
3− 4z

z + 3

)1/4

2F1

(
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,
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12
;

1

2

∣∣∣∣z(z − 9)2

(z + 3)3

)
. (3.11)

Now we know the identity in equation (3.11), we can plug in z = 9/8, which gives

2F1

(
1

12
,

5

12
;

1

2
|0
)

= 1
?
=

(
− 4

11

)1/4

2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)
, (3.12)

which is not true, because we know that 2F1 (1/12, 5/12; 1/2 |1323/1331) is real and positive, and
also is not equal to 4

√
11/4. The reason that the possible equality in equation (3.12) is not true,
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is that equation (3.11) is an equality of power series around z = 0. If we want to plug in z = 9/8,
we should construct a curve γ : [0, 1] → C which starts at z = 0 and ends at z = 9/8, because

for both these values of z the function z(8z−9)2

(4z−3)3 evaluates to 0. But along the curve γ(t)(8γ(t)−9)2

(4γ(t)−3)3

the functions in equation (3.11) change because the hypergeometric function is multivalued, and
changes under monodromy.

Consider the path

γ(t) =
9

16
+

9

16
eπi(1−t), (3.13)

we want to calculate the analytic continuation of equation (3.11) along γ. Substituting γ(t)

into z(8z−9)2

(4z−3)3 gives a loop which starts and ends at z = 0, and is homotopic to a clockwise loop

around z = 1, for a picture see figure 3.1. Inserting γ(t) into z(z−9)2

(z+3)3 gives a path, starting at

z = 0 and ending at z = 1323/1331, which is homotopic to one clockwise loop around z = 1, see
figure 3.1 for a picture; formally we should extend the path we found with a line segment from
z = 1323/1331 to z = 0, but along this line segment the functions F1 and G1 are invariant under
analytic continuation. From this follows that if we want to calculate the analytic continuation of
equation (3.11), we have to know the function 2F1 (1/12, 5/12; 1/2 |x ) after one clockwise loop
around x = 1. Unfortunately, we do not know the monodromy of this function, but in chapter 2
we calculated the monodromy of some other functions, so we want to use these results.

Figure 3.1: Left: picture of the loop z(8z−9)2

(4z−3)3 with z = γ(t); this loop starts at z = 0, goes

clockwise around z = 1, and ends at z = 0. Right: picture of the loop z(z−9)2

(z+3)3 with z = γ(t); this

loop starts at z = 0, goes clockwise around z = 1, and ends at z = 1323/1331. Here γ : [0, 1]→ C
is given by t 7→ 9

16 + 9
16e

πi(1−t).

In chapter 2 we already found some formulas, which we can use to calculate the monodromy
of 2F1 (1/12, 5/12; 1/2 |x ). In definition 2.1 we defined the following bases of local solutions of
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the hypergeometric differential equation with parameters 1/12, 5/12, 1:

F0(x) := 2F1

(
1

12
,

5

12
; 1 |x

)
|x| < 1

G0(x) := log(x)F0(x) +

∞∑
n=0

(1/12)n(5/12)n
(n!)2

n−1∑
j=0

1

1/12 + j
+

1

5/12 + j
− 2

j + 1

xn |x| < 1

F1(x) := 2F1

(
1

12
,

5

12
;

1

2
|1− x

)
|x− 1| < 1

G1(x) := (1− x)1/2
2F1

(
7

12
,

11

12
;

3

2
|1− x

)
|x− 1| < 1.

(3.14)

Note that in this definition we have 2F1 (1/12, 5/12; 1/2 |x ) = F1(1 − x), so in our calculations
we sometimes have to insert 1−x instead of x. We follow these definitions to be consistent with
chapter 2, so we can use the results in this chapter. In lemma 2.8 we found that

2F1

(
1

12
,

5

12
;

1

2
|1− x

)
= F1(x) = −

√
π

Γ(1/12)Γ(5/12)
G0(x)+

√
π(2π + log(1728))

Γ(1/12)Γ(5/12)
F0(x). (3.15)

We also want to express G1 in terms of F0 and G0; we first state and prove this formula as
a lemma:

Lemma 3.3. Let 0 < a, b, a + b < 1 and F0, G0, G1 as in definition 2.1. Then it follows for
x ∈ C with |x|, |1− x| < 1 that

G1(x) = − Γ(2− a− b)
Γ(1− b)Γ(1− a)

G0(x)+
Γ(2− a− b)

Γ(1− b)Γ(1− a)

 ∞∑
j=0

1

1− a+ j
+

1

1− b+ j
− 2

j + 1

F0(x).

(3.16)

Proof. The unbounded part of G1(x) around x = 0 is equal to − Γ(2−a−b)
Γ(1−b)Γ(1−a) log(x), which gives

us the coefficient of G0(x). Write G1(x) = − Γ(2−a−b)
Γ(1−a)Γ(1−b)G0(x) + AF0(x) for some A ∈ C, then

it follows that

A =
G1(x)

F0(x)
+

Γ(2− a− b)
Γ(1− a)Γ(1− b)

G0(x)

F0(x)
. (3.17)

We have limx→1G1(x) = 0 and limx→1
G0(x)
F0(x) =

∑∞
j=0

1
1−a+j + 1

1−b+j −
2
j+1 , from which the

result follows.

From lemma 3.3 follows that

G1(x) = −
√
π

2Γ(7/12)Γ(11/12)
G0(x) +

√
π(−2π + log(1728))

2Γ(7/12)Γ(11/12)
F0(x), (3.18)

where we use that Γ(3/2) =
√
π/2. The vector space of solutions of the hypergeometric dif-

ferential equation is two-dimensional, and has bases B0 = {F0, G0} and B1 = {F1, G1}, see
definition 2.1. From equation (3.18) and equation (3.15) we know that the transformation ma-
trix from B1 to B0 is given by

M =

(√
π(2π+log(1728)

Γ(1/12)Γ(5/12)

√
π(−2π+log(1728)

2Γ(7/12)Γ(11/12)

−
√
π

Γ(1/12)Γ(5/12) −
√
π

2Γ(7/12)Γ(11/12)

)
, (3.19)
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this means that (F1, G1) = (F0, G0) ·M . The monodromy matrix of one counterclockwise loop
around x = 0 is given by M0 = ( 1 2πi

0 1 ) with respect to the basis B0.
Now we know the transformation formulas and monodromy matrices, we can calculate the

function 2F1 (1/12, 5/12; 1/2 |x ) after one clockwise loop around x = 1: using the matrix M from
equation (3.19) we write the function 2F1 (1/12, 5/12; 1/2 |x ) as a linear combination of F0(1−x)
and G0(1− x), then we calculate the monodromy of this function, and then we transform back
to a linear combination of F1(1− x) and G1(1− x). We have

2F1

(
1

12
,

5

12
;

1

2
|x
)

= F1(1− x) = −
√
π

Γ(1/12)Γ(5/12)
G0(1− x) +

√
π(2π + log(1728))

Γ(1/12)Γ(5/12)
F0(1− x).

(3.20)
If x starts at 0 and goes one clockwise loop around 1, it follows that 1− x starts at 1 and goes
one clockwise loop around 0. From this follows that equation (3.20), after one clockwise loop of
x around 1, is equal to

−
√
π

Γ(1/12)Γ(5/12)
(G0(1− x)− 2πiF0(1− x)) +

√
π(2π + log(1728))

Γ(1/12)Γ(5/12)
F0(1− x). (3.21)

Now we transform equation (3.21) to the basis B1 using the matrix M from equation (3.19),
from which follows that the analytic continuation of 2F1 (1/12, 5/12; 1/2 |x ) after one clockwise
loop around 1 is equal to

M−1

(
1 −2πi
0 1

)
M

(
1
0

)
=

(
1 + i/2

−iΓ(7/12)Γ(11/12)
Γ(1/12)Γ(5/12)

)
=

(
1 +

i

2

)
F1(1−x)−iΓ(7/12)Γ(11/12)

Γ(1/12)Γ(5/12)
G1(1−x),

(3.22)
where we identified F1(1 − x) with (1, 0)t, and G1(1 − x) with (0, 1)t. The calculation in equa-
tion (3.22) means that we started with the function F1(1−x), which is identified with the vector
(1, 0)t. Then the function F1(1− x) is sent to a linear combination of F0(1− x) and G0(1− x),
which is identified with the vector M · (0, 1)t. Because 1 − x goes one clockwise loop around
0, the monodromy matrix

(
1 −2πi
0 1

)
is used, because M · (1, 0)t is written with respect to the

basis B0: this gives a new linear combination of F0(1− x) and G0(1− x). After calculating the
monodromy, the linear combination of F0(1 − x) and G0(1 − x) is sent back to the basis B1,
which gives a linear combination of F1(1− x) and G1(1− x).

From this follows that the left-hand side of equation (3.11), after analytic continuation along
γ, is equal to (

1 +
i

2

)
F1(1− 0)− iΓ(7/12)Γ(11/12)

Γ(1/12)Γ(5/12)
G1(1− 0) = 1 +

i

2
, (3.23)

because F1(1) = 1 and G1(1) = 0. The right-hand side of equation (3.11), after analytic contin-
uation along γ, is equal to

e−πi/4
4

√
4

11

(
1 +

i

2

)
F1

(
1− 1323

1331

)
− ie−πi/4 4

√
4

11

Γ(7/12)Γ(11/12)

Γ(1/12)Γ(5/12)
G1

(
1− 1323

1331

)
= 1 +

i

2
,

(3.24)

where the factor e−πi/4(4/11)1/4 comes from the analytic continuation of
(

3−4z
z+3

)1/4

along z =

γ(t). Here we use that in equation (3.11) an equality of power series is mentioned, and the
analytic continuation of the left-hand side of equation (3.11) is equal to the analytic continuation
of the right-hand side of equation (3.11). From equation (3.24) we have one linear equation in
F1(8/1331) and G1(8/1331), and if we can produce another linear equation, we can calculate
F1(8/1331) and G1(8/1331).
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Because F1(8/1331) and G1(8/1331) are real, we can take the complex conjugate of equa-
tion (3.24), which gives another linear equation between F1(8/1331) and G1(8/1331). From this
follows that(

1 + i/2
1− i/2

)
=

e−πi/4 4

√
4
11

(
1 + i

2

)
−eπi/4 4

√
4
11

Γ(7/12)Γ(11/12)
Γ(1/12)Γ(5/12)

eπi/4 4

√
4
11

(
1− i

2

)
−e−πi/4 4

√
4
11

Γ(7/12)Γ(11/12)
Γ(1/12)Γ(5/12)

(F1(8/1331)
G1(8/1331)

)
, (3.25)

which is a system of two linear equations in two unknowns, and we can solve this: we have

F1

(
8

1331

)
= 2F1

(
1

12
,

5

12
;

1

2

∣∣∣∣1323

1331

)
=

3

4
4
√

11 (3.26)

and √
1331

1323
G1

(
8

1331

)
= 2F1

(
7

12
,

11

12
;

3

2

∣∣∣∣1323

1331

)
=

117/4

168
√

3

Γ(1/12)Γ(5/12)

Γ(7/12)Γ(11/12)
. (3.27)

3.2 Theoretical motivation

In section 3.1 the function P (z) = (z+256)3/z2 is used, from which follows a special value of the
hypergeometric function. Now we will give the theoretical motivation why we used the function
P (z) and the parameters 1/12, 5/12. Later we want to find new special values of the hyperge-
ometric function using this method, but with other parameters and another rational function.
Looking at the example in section 3.1, we formulate some conditions which are necessary to find
a new special value of the hypergeometric function.

The function j is an isomorphism from X(SL2(Z)) to P1(C). On the other hand, we have
that h(z) = ∆(z)/∆(2z) is an isomorphism from X(Γ0(2)) to P1(C). From these isomorphisms
follows that the inclusion map ι : Γ0(2)\H → SL2(Z)\H extends to a holomorphic function
P : P1(C)→ P1(C), but we already found this function in table 1.3. Moreover, from lemma 1.8
follows that P is a Belyi function, because in the notation of lemma 1.8 we have Γ2 = SL2(Z)
and h2(z) = j(z), from which follows that 0 and 1728 are the only values of h2(w0), if w0 is
SL2(Z)-equivalent to i or eπi/3. The map z 7→ − 1

2z is an involution on Γ0(2)\H, and we have
h
(
− 1

2z

)
= 212/h(z). From the isomorphism h : X(Γ0(2)) → P1(C) follows an involution on

P1(C) with z 7→ 212/z. For a picture of all mentioned maps, see figure 3.2.

Γ0(2)\H P1(C)

SL2(Z)\H P1(C)

z 7→− 1
2z

∼
h

ι

z 7→212/z

P

∼
j

Figure 3.2: Picture of maps between Γ0(2)\H and SL2(Z)\H.

The functions P1(z) := P (z) and P2(z) := P (212/z) are two different functions from P1(C)
to itself. The hypergeometric differential equation with parameters 1/12, 5/12, 1/2 has local
exponents 0, 1/2 at z = 0, and 0, 0 at z = 1, and 1/12, 5/12 at z =∞. We have

P−1
1 (0) = {−256,−256,−256} P−1

1 (1728) = {−64, 512, 512} P−1
1 (∞) = {0, 0,∞}

P−1
2 (0) = {−16,−16,−16} P−1

2 (1728) = {−64, 8, 8} P−1
2 (∞) = {∞,∞, 0}, (3.28)
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counting multiplicities. Consider the functions Q1(z) = 1 − 1728/P1(64z − 64) and Q2(z) =

1− 1728/P2(64z − 64), then it follows that Q2(z) = Q1

(
z
z−1

)
and

Q−1
1 (0) = {0, 9, 9} Q−1

1 (1) = {1, 1,∞} Q−1
1 (∞) = {−3,−3,−3}

Q−1
2 (0) =

{
0,

9

8
,

9

8

}
Q−1

2 (1) = {∞,∞, 1} Q−1
2 (∞) =

{
3

4
,

3

4
,

3

4

}
, (3.29)

where 0, 1,∞ are the only singular points: the extra singular points become regular, because their
local exponents are equal to 0, 1, which follows from the choice of parameters. The points 0, 1,∞
in equation (3.29) come from the points 0,−64,∞ in equation (3.28), and the set {0,−64,∞}
is invariant under the involution z 7→ 212/z: the point z = −64 is invariant, and the points
z = 0,∞ get interchanged. In general the set of singular points is not invariant under the
involution, from which follows that in some situations an extra Möbius transformation should be
applied. Note that because we have only three singular points with given local exponents, the
differential equation following from this Riemann scheme is unique.

Because the inverse images in equation (3.29) give the same Riemann scheme, and the
functions P1 and P2 are different, this gives an algebraic relation, see equation (3.11). Us-
ing the algebraic relation equation (3.11), a special value of the hypergeometric function can
be calculated, because in this situation we have Q1(0) = Q2(0) = 0 and Q2(9/8) = 0 and
Q1(9/8) = 1323/1331 6= 0. Note that in equation (3.29) the points 0,∞ have different multiplici-
ties, but because the local exponents are equal to 0, 0, the local exponents at z = 0 and z →∞ are
in both cases equal to 0, 0, which gives the same Riemann schemes for 2F1 (1/12, 5/12; 1/2 |Q1(z) )
and 2F1 (1/12, 5/12; 1/2 |Q2(z) ).

Now we want to give a motivation why we chose the function P arising from the group
inclusion Γ0(2) ⊂ SL2(Z), because in principle we can choose every function in C(z). The first
property of P we used was that P is a Belyi function, because then we can use proposition 3.2:

Definition 3.4. A Belyi function is a holomorphic map from a compact Riemann surface to
P1(C) which ramifies only over three points.

The fact that P is a Belyi function follows from lemma 1.8, because we know that X(Γ0(2)) ∼=
P1(C), and we also know the Hauptmodul of X(Γ0(2)). A list of congruence subgroups of SL2(Z)
which modular curves have genus 0 is given in [13].

Another property we used in the situation in section 3.1, is that in the Riemann scheme of

2F1 (1/12, 5/12; 1/2 |P (z) ) there are two points with the same exponent difference. If all three
points in a Riemann scheme have a pairwise different exponent difference, it is not possible to
produce an involution which gives the same Riemann scheme.

3.3 First calculation

We want to find a new special value of the hypergeometric function, using the method from
section 3.1, but in this case we consider the congruence subgroup Γ0(7) ⊂ SL2(Z), which has
index 8. Our first goal is to prove the identity in equation (3.38). Note that in this calculation
we first choose the group Γ0(7), and later in this section we will choose the parameters of the

hypergeometric function. A Hauptmodul for X(Γ0(7)) is given by h(z) = η4(z)
η4(7z) , and a set of

coset representatives of Γ0(7)\ SL2(Z) is given by{
z 7→ z, z 7→ −1/z, z 7→ −1

z + 1
, z 7→ −1

z + 2
, z 7→ −1

z + 3
, z 7→ −1

z + 4
, z 7→ −1

z + 5
, z 7→ −1

z + 6

}
.

(3.30)
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From the inclusion map Γ0(7)\H→ SL2(Z)\H follows a map P : P1(C)→ P1(C) with

P−1(0) = {h(γeπi/3)|γ ∈ Γ0(7)\SL2(Z)} =
{
z ∈ C|(z2 + 13z + 49)(z2 + 245z + 2401)3 = 0

}
P−1(1728) = {h(γi)|γ ∈ Γ0(7)\ SL2(Z)} =

{
z ∈ C|(z4 − 490z3 − 21609z2 − 235298z − 823543)2 = 0

}
P−1(∞) = {h(γ∞)|γ ∈ Γ0(7)\ SL2(Z)} ={0, 0, 0, 0, 0, 0, 0,∞}, (3.31)

counting multiplicities. If we choose parameters a, b, c such that 1− c = 1/3 and c− a− b = 1/2
and b − a = 1/7, the points in P−1(0) with multiplicity 3 and the points in P−1(1728) have
local exponents 0, 1, and are therefore regular points. The point 0 ∈ P−1(∞) has local exponent
difference 1, and therefore can be made a regular point. From this follows that there are only three
singular points, and then we can use that a Fuchsian differential equation with three singular
points is unique, given its local exponents. Note that with these parameters the corresponding
triangle group is compact, contrary to the non-compact triangle groups we used until here.

Remark 3.5. In this calculation we know the Hauptmodul of X(Γ0(7)), from which we could
calculate the inverse images of 0, 1728,∞. If the Hauptmodul is not known, we can still consider
the formulas in equation (3.31), but then we only know the multiplicities of the inverse images
of 0, 1728,∞. Here we use that for z0, z1 ∈ H we have h(z0) = h(z1) if and only if there exists a
γ ∈ Γ0(7) such that z0 = γz1. The question whether there exists a γ ∈ Γ0(7) such that z0 = γz1

can be answered using only the group Γ0(7), without knowing its Hauptmodul.

The Atkin–Lehner involution on Γ0(7) is given by z 7→ − 1
7z and we have h

(
− 1

7z

)
= 49/h(z).

The set of points in equation (3.31) does not contain a subset of three elements which is invariant
under z 7→ 49/z, so we cannot use the method from section 3.1: here we use that an involution
on a set with an odd number of elements has a fixpoint, but the points ±7 are not mentioned in
equation (3.31). Define

P (z) =
(49 + 13z + z2)(2401 + 245z + z2)3

z7
(3.32)

and consider the following function and its Riemann scheme:

z−1/12
2F1

(
1

84
,

13

84
;

2

3

∣∣∣∣P (z)

1728

)
;

− 13
2 + 3i

2

√
3 − 13

2 −
3i
2

√
3 ∞

0 0 2/21
1/3 1/3 5/21

; (3.33)

here we chose the function P and parameters 1/84, 13/84, 2/3 and the factor z−1/12, because then
equation (3.33) only has three singular points. However, the singular points of equation (3.33) are

not equal to 0, 1,∞, so we will make a substitution: insert 3i
√

3z− 13
2 −

3i
√

3
2 into equation (3.31);

define

Q(z) =
P
(

3i
√

3z − 13
2 −

3i
√

3
2

)
1728

=
2(z − 1)z

(
−27iz2 +

(
−696

√
3 + 27i

)
z + 348

√
3 + 844i

)3(
6
√

3z − 3
√

3 + 13i
)7 ,

(3.34)
from which follow the following function and Riemann scheme:(

3i
√

3z − 13

2
− 3i
√

3

2

)−1/12

2F1

(
1

84
,

13

84
;

2

3
|Q(z)

)
;

0 1 ∞
0 0 2/21

1/3 1/3 5/21
. (3.35)
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The function in equation (3.35) has singular points 0, 1,∞ and has the same Riemann scheme
as 2F1 (2/21, 5/21; 2/3 |z ), so after dividing by −13/2− 3i

√
3/2 it follows that(

1− 27 + 39
√

3i

98
z

)−1/12

2F1

(
1

84
,

13

84
;

2

3
|Q(z)

)
= 2F1

(
2

21
,

5

21
;

2

3
|z
)
, (3.36)

as an equality of power series around z = 0; here we use that both sides of equation (3.36) have
the same Riemann scheme, evaluate to 1 at z = 0 and are holomorphic at z = 0. Because z = 0, 1
have the same local exponents, it follows for equation (3.36) that inserting 1 − z instead of z
gives the same Riemann scheme. From this follows that(

1− 27 + 39
√

3i

98
z

)−1/12

2F1

(
1

84
,

13

84
;

2

3
|Q(z)

)
=

(
1− 27− 39

√
3i

98
z

)−1/12

2F1

(
1

84
,

13

84
;

2

3
|Q(1− z)

)
,

(3.37)
because both sides of this equality are holomorphic at z = 0, and evaluate to 1 at z = 0. From
this follows that

2F1

(
1

84
,

13

84
;

2

3
|Q(z)

)
=

(
98− 27z − 39

√
3iz

98− 27z + 39
√

3iz

)1/12

2F1

(
1

84
,

13

84
;

2

3
|Q(1− z)

)
. (3.38)

Now we know the identity in equation (3.38), we want to construct a curve γ : [0, 1] → C
such that Q(γ(0)) = Q(γ(1)) = 0, because then we can use that 2F1 (1/84, 13/84; 2/3 |0) =
1, and we can find a linearly independent solution G0(x) for |x| < 1 of the hypergeometric
differential equation with G0(0) = 0; the function G0 will be defined in equation (3.41). If we
have Q(1 − γ(1)) 6= 0, we can find a special value of the hypergeometric function. Now we
calculate the analytic continuation of equation (3.38) from z = 0 to

z = y :=
1

3i
√

3

(
49

2

(
−5−

√
21
)

+
13

2
+

3

2
i
√

3

)
=

1

2
+

116

9

√
3i+

49

6

√
7i ≈ 1

2
+ 43.9i, (3.39)

note that Q(y) = 0. Let γ : [0, 1]→ C be a halfcircle going clockwise from z = 0 to z = y, then
Q(γ(t)) ∼= γ−1

0 γ−1
1 γ−1

0 γ−1
1 written from right to left, where γ0 is a counterclockwise loop around

z = 0, and γ1 is a counterclockwise loop around z = 1. We also have Q(1 − γ(t)) ∼= γ1γ0γ1γ0,
followed by a path from 0 to

Q(1− y) = −38241952 · 21307687138103583− 4649976434760203
√

21

33275593513886484375
≈ 1.358, (3.40)

through the lower half plane. In section 3.1 we could use the same formula in equation (3.23)
and equation (3.24), because the two loops were homotopic. However, in this calculation the two
loops are not homotopic, so we should calculate two different analytic continuation along two
different loops.

Now we want to calculate the monodromy of the functions in equation (3.38), along the
curves Q(γ(t)) and Q(1 − γ(t)). To do this, we first define local bases of the hypergeometric
differential equation with parameters a = 1/84 and b = 13/84 and c = 2/3 around x = 0 and
x = 1. If we know these functions and the transformation matrix between these two bases, we
can calculate the monodromy of the functions in equation (3.38), where every time we calculate
the monodromy of one loop around x = 0 or x = 1, we transform to the local basis around that
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point. Define

F0(x) := 2F1 (a, b; c |x ) |x| < 1

G0(x) : x1−c
2F1 (a+ 1− c, b+ 1− c; 2− c |x ) |x| < 1

F1(x) := 2F1 (a, b; a+ b+ 1− c |1− x ) |x− 1| < 1

G1(x) := (1− x)c−a−b2F1 (c− b, c− a; c− a− b+ 1 |1− x ) |x− 1| < 1. (3.41)

With a = 1/84 and b = 13/84 and c = 2/3, it follows that the monodromy matrix of the loop γ0

is given by M0 =
(

1 0
0 e2πi/3

)
, with respect to the basis {F0, G0}. The monodromy matrix of the

loop γ1 is given by
(

1 0
0 −1

)
. Without proof we state that

M =

(
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

Γ(2−c)Γ(c−a−b)
Γ(1−a)Γ(1−b)

Γ(a+b−c)Γ(c)
Γ(a)Γ(b)

Γ(2−c)Γ(a+b−c)
Γ(a−c+1)Γ(b−c+1)

)
=

( √
πΓ(2/3)

Γ(43/84)Γ(55/84)

√
πΓ(4/3)

Γ(71/84)Γ(83/84)

− 2
√
πΓ(2/3)

Γ(1/84)Γ(13/84) − 2
√
πΓ(4/3)

Γ(29/84)Γ(41/84)

)
(3.42)

is the transformation matrix from the basis {F0, G0} to {F1, G1}, this means that (F0, G0) =
(F1, G1) ·M .

The analytic continuation of the left-hand slide of equation (3.38) is equal to

M−1
0 M−1M−1

1 MM−1
0 M−1M−1

1 M

(
1
0

)
=

(
α
.

)
, (3.43)

where 27α6 − 54α5 + 36α4 − 36α3 + 42α2 − 21α + 7 = 0 and α ≈ 1.123 + 0.071i. In this
calculation, we started with the vector (1, 0)t, which we identify with F0(x), then we calculate
the monodromy of the loop Q(γ(t)) ∼= γ−1

0 γ−1
1 γ−1

0 γ−1
1 , transforming to the appropriate basis B0

or B1, depending on whether the loop is around x = 0 or x = 1. Because G0(0) = 0, it follows
that the analytic continuation of equation (3.38) along γ(t) is equal to α, so we omit the second
component of equation (3.43).

To calculate the analytic continuation of the right-hand side of equation (3.38), we use that
98−27γ(t)−39

√
3iγ(t)

98−27γ(t)+39
√

3iγ(t)
is a function from [0, 1] to C\(−∞, 0), so its square root can be defined. From

this follows that right-hand side of equation (3.38) is equal to

A :=

(
98− 27y − 39

√
3iy

98− 27y + 39
√

3iy

)1/12

MM0M
−1M1MM0M

−1M1M

(
1
0

)

=

(
98− 27y − 39

√
3iy

98− 27y + 39
√

3iy

)1/12 √
πΓ(2/3)

(csc(π/84) csc(13π/84)− sec(π/84) sec(13π/84))
2

·

(
csc2(π/84) csc2(13π/84)+(1−2i

√
3) sec2(π/84) sec2(13π/84)+16(1−i

√
3) csc(π/42) sec(4π/21)

Γ(43/84)Γ(55/84)

2 (−1+2i
√

3) csc2(π/84) csc2(13π/84)−sec2(π/84) sec2(13π/84)+16(i
√

3−1) csc(π/42) sec(4π/21)
Γ(1/84)Γ(13/84)

)
,

(3.44)

written with respect to the basis {F1, G1} where we identified (1, 0)t with F1(x) and (0, 1)t with
G1(x). Here we choose to write equation (3.44) with respect to the basis {F1, G1}, and not with
respect to the basis {F0, G0}, later this will be convenient to write down equation (3.46). In this
calculation we also started with the function F0(x), and calculate the monodromy of the loop
Q(1− γ(t)) ∼= γ1γ0γ1γ0, transforming to the appropriate basis B0 or B1, depending on whether
the loop is around x = 0 or x = 1.
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Now we know the analytic continuation of the left-hand side and the right-hand side ofequa-
tion (3.38), it follows that equation (3.43) and equation (3.44) are equal to each other, where we
in equation (3.43) have to insert x = 0 and in equation (3.44) we have to insert x = Q(1 − y).
From this follows that

α = A1 · F1(Q(1− y)) +A2 ·G1(Q(1− y)), (3.45)

where α is as in equation (3.43) and A is defined as in equation (3.44). This gives one linear
equation in F1(Q(1− y)) and G1(Q(1− y)), but we want another linear equation. In section 3.1
we found one equation, but we also could take the complex conjugate of that equation, from
which followed a new linear equation. Because we cannot say something about the complex
argument of F0(Q(1 − y)) and G0(Q(1 − y)), we have written equation (3.44) with respect to
the basis B1 = {F1, G1}. We have F1(Q(1− y)) ∈ R and G1(Q(1− y)) ∈ iR, from which follows
that F1(Q(1− y)) = F1(Q(1 − y)) and G1(Q(1− y)) = −G1(Q(1 − y)). From this follows the
equation α = (F1(Q(1− y)),−G1(Q(1− y))) ·A, from which follows that(
A1 A2

A1 −A2

)(
F1(Q(1− y))
G1(Q(1− y))

)
=

(
α
α

)
and

(
A1 A2

A1 −A2

)
(M t)−1

(
F0(Q(1− y))
G0(Q(1− y))

)
=

(
α
α

)
.

(3.46)
Solving the right-hand equation in equation (3.46) for F0(Q(1− y)) and G0(Q(1− y)) gives

that

F0(Q(1− y)) = (csc(π/84) csc(13π/84)− sec(π/84) sec(13π/84))
2

(
205

1546− 286
√

21

)1/12
B1 −B2√

3 3
√

7B3

(3.47)

with

B1 =(
√

3 + 3i)α
12

√
2343 + 1287i

√
3− 1521i

√
7− 923

√
21

×
(
csc2(π/84) csc2(13π/84) + sec2(π/84) sec2(13π/84) + 16 csc(π/42) sec(4π/21)

)
(3.48)

and

B2 =3i
12

√
2343− 1287i

√
3 + 1521i

√
7− 923

√
21
(
csc2(π/84) csc2(13π/84)− sec2(π/84) sec2(13π/84)

)
α

(3.49)

and

B3 = csc4(π/84) csc4(13π/84) + sec4(π/84) sec4(13π/84) + 1024 csc2(π/42) sec2(4π/21)

+ 2 csc2(π/84) csc2(13π/84)
(
7 sec2(π/84) sec2(13π/84) + 64 csc(π/42) sec(4π/21)

)
+ 128 csc(π/42) sec2(π/84) sec2(13π/84) sec(4π/21). (3.50)

From this follows that F0(Q(1 − y)) is algebraic, but it is a very complicated expression. Note
that we have |Q(1− y)| > 1, so this argument does not lie in the convergence region of F0.

3.4 Second calculation

In equation (3.39) we defined a value of y, for another calculation we choose another value:

y :=
1

3i
√

3

(
49

2

(
−5 +

√
21
)

+
13

2
+

3

2
i
√

3

)
=

1

2
+

116

9

√
3i− 49

6

√
7i ≈ 1

2
+ 0.717i, (3.51)
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we have Q(y) = 0. We use the same method as in section 3.3, in particular we use the same
definitions of F0, G0, F1, G1. Define γ(t) : [0, 1] → C as the half-circle from x = 0 to x = y
through the upper half plane, then it follows that Q(γ(t)) ∼= γ−1

1 and Q(1 − γ(t)) is homotopic
to a clockwise loop around x = 1, followed by a path through the lower half plane from x = 0 to

Q(1− y) =
38241952

(
−21307687138103583− 4649976434760203

√
21
)

33275593513886484375
≈ −48977.05, (3.52)

see figure 3.3 for a picture.

Figure 3.3: Left: picture of the loop Q(γ(t)); this loop starts at x = 0, goes clockwise around
x = 1, goes clockwise around x = 0, and ends at x = 0. Right: picture of the loop Q(1− γ(t));
this loop starts at x = 0, goes clockwise around x = 1, and goes through the lower half plane to
the number in equation (3.52). Here γ : [0, 1] → C is a clockwise half-circle from z = 0 to the
number in equation (3.51).

From this follows that the analytic continuation of the left-hand side of equation (3.38) along
γ(t) is equal to

M−1M−1
1 M

(
1
0

)
=

(
2 cos(π/7)√

3
2Γ(29/42)Γ(41/42)·π−1/2Γ(7/6)−1

sec(π/84) sec(13π/84)−csc(π/84) csc(13π/84)

)
(3.53)

with respect to the basis {F0, G0}; here we can ignore the second component, because G0(0) = 0.
The analytic continuation of the right-hand side of equation (3.38) is equal to

A := 12

√√√√ 1

820

(
781 + 923

√
7

3
− 39i

(
11
√

3 + 13
√

7
))

M−1M−1
1 M

(
1
0

)

= 12

√√√√ 1

820

(
781 + 923

√
7

3
− 39i

(
11
√

3 + 13
√

7
))( 2 cos(π/7)/

√
3

2Γ(29/42)Γ(41/42)·π−1/2Γ(7/6)−1

sec(π/84) sec(13π/84)−csc(π/84) csc(13π/84)

)
,

(3.54)

with respect to the basis B0 = {F0, G0}. Note that it is no coincidence that the vectors apparing
in equation (3.53) and equation (3.54) are the same, because the loops Q(γ(t)) and Q(1− γ(t))
both are homotopic to one clockwise loop around x = 1.
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Now we know how the right-hand side of equation (3.38) behaves under monodromy, we want
to insert x = Q(1 − y). However, the functions F0, G0 are not defined in Q(1 − y), but their
analytic continuation is defined, if we specify the root in the definition of G0. From this follows
that equation (3.53) and equation (3.54) are equal to each other, when x = 0 is inserted in
equation (3.53) and x = Q(1− y) is inserted in equation (3.54); here we use that equation (3.53)
and equation (3.54) are both analytic continuations of equation (3.38) along the same curve γ.
This gives one linear equation in F0(Q(1− y)) and G0(Q(1− y)):

2 cos(π/7)√
3

= A1 · F0(Q(1− y)) +A2 ·G0(Q(1− y)). (3.55)

Now we want to find another linear equation, using complex conjugates. The Euler integral reads

2F1 (a, b; c |z ) =
Γ(c)

Γ(a)Γ(b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−adt (3.56)

for 0 < <(b) < <(c), what in particular proves that 2F1 (a, b; c |z ) is real for z ∈ R<0. From this
follows that F0(Q(1− y)) ∈ R and G0(Q(1− y)) ∈ e−πi/3R>0, where we use that the path from
x = 0 to the number in equation (3.52) goes through the lower half plane. From this follows that(

A1 A2

A1 e−2πi/3A2

)(
F0(Q(1− y))
G0(Q(1− y))

)
=

(
2 cos(π/7)/

√
3

2 cos(π/7)/
√

3

)
. (3.57)

Solving this equation gives that

F0(Q(1− y)) = 2F1

(
1

84
,

13

84
;

2

3

∣∣∣∣∣38241952
(
−21307687138103583− 4649976434760203

√
21
)

33275593513886484375

)

=
12

√
512

(
773− 143

√
21
)

358817445
· <
(
e−πi/6

12

√
2343 + 1287i

√
3 + 1521i

√
7 + 923

√
21

)
,

(3.58)

however because |Q(1−y)| > 1, see equation (3.52), this result is on the analytic continuation of

2F1 (1/84, 13/84; 2/3 |x ), and not about its region of convergence. Fortunately, using an identity
we can find a special value which has an argument inside the region of convergence of F0, which
we will show now.

From the identity

2F1 (a, b; c |z ) = (1− z)−a2F1

(
a, c− b; c

∣∣∣∣ z

z − 1

)
(3.59)

follows that

2F1

(
1

84
,

43

84
;

2

3

∣∣∣∣∣38241952
(
5289411798647305− 672452454064707

√
21
)

84434123054702851182481

)

=
84

√
2975681180018235190280192

(
3224592092541346723

√
21− 14673095170014395553

)
1674802610123026678739408499666232174237347823394822911603359375

· <
(
e−πi/6

12

√
2343 + 1287i

√
3 + 1521i

√
7 + 923

√
21

)
, (3.60)

which is a special value of the hypergeometric function inside its region of convergence: we have

38241952
(
5289411798647305− 672452454064707

√
21
)

84434123054702851182481
≈ 0.99997958. (3.61)



Appendix A

Details about Schwarz’ theorem

In this appendix, we give a proof of theorem 1.1.

A.1 Definition of the hypergeometric function

Recall from the introduction that the hypergeometric differential equation is given by(
z(1− z) d2

dz2
+ (c− (a+ b+ 1)z)

d

dz
− ab

)
f(z) = 0, (A.1)

written with z as variable.
If z0 6= 0, 1,∞, the hypergeometric differential equation has a holomorphic local solution

around z0. If z0 = 0, 1,∞, the solution of the hypergeometric differential equation is not always
holomorphic. To see which power series can satisfy the hypergeometric equation, we use the
Ansatz f = zρ + · · · around z = 0, where the dots indicate higher powers of z. Calculating
the coefficient of zρ−1 gives ρ(ρ − 1) + cρ = 0, from which follows that ρ = 0 and ρ = 1 − c
are the only possibilities of the starting power of the solution of the hypergeometric differential
equation around z = 0, which we call local exponents. Around z = 1 we calculate the coefficient
of (z − 1)ρ−1 in f = (z − 1)ρ−1 + · · · , which gives −ρ(ρ− 1) + ρ(c− a− b− 1) = 0, from which
follows that ρ = 0 or ρ = c− a− b. To calculate the local exponents around z =∞, we consider
functions of 1/z around z = 0, so we first rewrite the hypergeometric differential equation in the
variable 1/z instead of z.

We have ∂
∂z = ∂1/z

∂z
∂

∂1/z = − 1
z2

∂
∂1/z and

∂2

∂z2
= − ∂

∂z

(
1

z2

∂

∂1/z

)
= − ∂

∂z

(
1

z2

)
· ∂

∂1/z
− 1

z2

∂

∂z

(
∂

∂1/z

)
=

2

z3

∂

∂1/z
+

1

z4

∂2

∂(1/z)2
. (A.2)

From this follows that the hypergeometric differential equation is given by

z(1− z) 2

z3

∂f

∂1/z
+ z(1− z) 1

z4

∂2f

∂(1/z)2
− (c− (a+ b+ 1)z)

1

z2

∂f

∂1/z
− abf = 0. (A.3)

Now we use the Ansatz f = (1/z)ρ + · · · , and calculate the coefficient of (1/z)ρ which gives
−2ρ − ρ(ρ − 1) + ρ(a + b + 1) − ab = −(ρ − a)(ρ − b) = 0, which gives ρ = a and ρ = b as
local exponents around z =∞. Now we define a Riemann scheme as a table in which the local
exponents are written down, see table A.1.

56
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0 1 ∞
0 0 a

1− c c− a− b b

Table A.1: Riemann scheme of the hypergeometric differential equation with parameters a, b, c

In general, consider the equation

y′′ + p(z)y′ + q(z)y = 0 (A.4)

where p, q are meromorphic functions. A point z ∈ C is called singular if not both p, q are
holomorphic at z, and z is called regular singular if p has at most a pole of order 1 at z and
q has at most a pole of order 2 at z. The point ∞ is regular (and maybe singular) if p has a
root of at least order 1 at ∞ and q has a root of order at least 2 at ∞. It can be shown that
if there are at most three singular points, then the singular points and their local exponents
determine equation (A.4) uniquely. Suppose that y(z) satisfies equation (A.4). Then we have
(zay)′ = aza−1y + zay′ and (zay)′′ = a(a− 1)za−2y + 2aza−1y′ + zay′′. From this follows that

(zay)′′ + p(z)(zay)′ + q(z)zay = a(a− 1)za−2y + 2aza−1y′ + zay′′ + ap(z)za−1y + p(z)zay′ + q(z)zay

=
a(a− 1)

z2
zay +

2a

z

(
(zay)′ − a

z
zay
)

+
ap(z)

z
zay, (A.5)

from which follows that

(zay)′′ +

(
p(z)− 2a

z

)
(zay)′ +

(
q(z)− a(a− 1)

z2
+

2a2

z2
− ap(z)

z

)
zay = 0, (A.6)

which is again a Fuchsian equation, but the local exponents at z = 0 are increased by a, and
the local exponents at z = ∞ are decreased by a. Analogously it can be shown that if y is the
solution of a Fuchsian equation, then (z − 1)ay is the solution of a Fuchsian equation, but the
local exponents at z = 1 are increased by a, and the local exponents at z =∞ are decreased by
a.

A.2 Schwarzian derivative

Definition A.1. The Schwarzian derivative of a meromorphic function w is defined as

S(w) =

(
w′′

w′

)′
− 1

2

(
w′′

w′

)2

=
w′′′

w′
− 3

2

(
w′′

w′

)2

. (A.7)

One important property of the Schwarzian derivative is that the Schwarzian derivative of a
Möbius transformation is equal to the zero function, which we will prove in corollary A.3. It is
also true that every function with a Schwarzian derivative equal to the zero function is a Möbius
transformation, this will be proven in corollary A.7.

Proposition A.2. Let A,B,C,D ∈ C such that AD − BC 6= 0 and let w be a meromorphic
function. Let v = Aw+B

Cw+D , then it follows that S(v) = S(w).

Proof. Suppose that v = Aw+B
Cw+D with A,B,C,D ∈ C and AD − BC 6= 0. Without loss of

generality we can assume that AD −BC = 1. We have that(
Aw +B

Cw +D

)′
=
Aw′(Cw +D)− Cw′(Aw +B)

(Cw +D)2
=

w′

(Cw +D)2
(A.8)
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and (
Aw +B

Cw +D

)′′
=
w′′(Cw +D)2

(Cw +D)4
− 2(Cw +D)Cw′2

(Cw +D)4
=

w′′

(Cw +D)2
− 2Cw′2

(Cw +D)3
(A.9)

and(
Aw +B

Cw + d

)′′/(
Aw +B

Cw + d

)′
=

(Cw +D)2

w′

(
w′′

(Cw +D)2
− 2Cw′2

(Cw +D)3

)
=
w′′

w′
− 2Cw′

Cw +D
.

(A.10)
From this follows that

S

(
Aw +B

Cw + d

)
− S(w) (A.11)

is equal to(
w′′

w′
− 2C

w′

Cw +D

)′
− 1

2

(
w′′

w′
− 2C

w′

Cw +D

)2

−
(
w′′

w′

)′
+

1

2

(
w′′

w′

)2

=− 2C

(
w′

Cw +D

)′
− 1

2

(
w′′

w′
− 2C

w′

Cw +D

)2

+
1

2

(
w′′

w′

)2

=− 2C

(
w′

Cw +D

)′
− 1

2

((
w′′

w′

)2

− 4C
w′′

w′
w′

Cw +D
+ 4C2

(
w′

Cw +D

)2
)

+
1

2

(
w′′

w′

)2

=− 2C

(
w′

Cw +D

)′
+ 2C

w′′

Cw +D
− 2C2

(
w′

Cw +D

)2

= 0, (A.12)

where the last equality follows from working out the quotient derivative. From this follows that
S(v) = S(w).

Corollary A.3. Let v be a Möbius transformation, then S(v) is the zero function.

Proof. By proposition A.2 we have that S(v)(z) = S(z)(z), because w(z) = Az+B
Cz+D for some

A,B,C,D ∈ C with AD − BC 6= 0. Furthermore we have z′′

z′ = 0
1 , where the prime denotes

differentation with respect to z. From this follows that S(z) = 0′ − 1
202 = 0.

Proposition A.4. Let v, w be nonconstant meromorphic functions and assume that the image
of w is contained in the domain of v. Then it follows that S(v◦w)(z) = S(w)(z)+w′(z)2 ·(S(v)◦
w)(z).

Proof. In this proposition we prove an equality of functions. To avoid confusion with composition
of functions, we evaluate these functions in some arbitrary z in the domain of w. First note that
(v ◦ w)′(z) = v′(w(z)) · w′(z) and (v ◦ w)′′ = v′′(w(z)) · w′(z)2 + v′(w(z)) · w′′(z) and

(v ◦ w)′′(z)

(v ◦ w)′(z)
=
v′′(w(z)) · w′(z)2 + v′(w(z)) · w′′(z)

v′(w(z)) · w′(z)
=
v′′(w(z)) · w′(z)

v′(w(z))
+
w′′(z)

w′(z)
. (A.13)

We have that (
v′′(w(z)) · w′(z)

v′(w(z))
+
w′′(z)

w′(z)

)′
(A.14)
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is equal to

v′′′(w(z)) · w′(z)2 + v′′(w(z)) · w′′(z)
v′(w(z))

− v′′(w(z))w′(z) · v′′(w(z))w′(z)

v′(w(z))2
+

(
w′′(z)

w′(z)

)′
=w′(z)2 · v

′′′(w(z))

v′(w(z))
+
v′′(w(z)) · w′′(z)

v′(w(z))
− w′(z)2 ·

(
v′′(w(z))

v′(w(z))

)2

+

(
w′′(z)

w′(z)

)′
(A.15)

and

−1

2

(
v′′(w(z)) · w′(z)

v′(w(z))
+
w′′(z)

w′(z)

)2

= −1

2

(
v′′(w(z)) · w′(z)

v′(w(z))

)2

− v′′(w(z)) · w′(z)
v′(w(z))

w′′(z)

w′(z)
− 1

2

(
w′′(z)

w′(z)

)2

= −1

2
w′(z)2 ·

(
v′′(w(z))

v′(w(z))

)2

− v′′(w(z)) · w′′(z)
v′(w(z))

− 1

2

(
w′′(z)

w′(z)

)2

.

(A.16)

From this follows that

S(v ◦ w)(z) = w′(z)2 · v
′′′(w(z))

v′(w(z))
− 3

2
w′(z)2 ·

(
v′′(w(z))

v′(w(z))

)2

+

(
w′′(z)

w′(z)

)′
− 1

2

(
w′′(z)

w′(z)

)2

,

(A.17)

which is equal to w′(z)2 · (S(v) ◦ w)(z) + S(w)(z), which finishes the proof.

Proposition A.5 ([11, chapter 8, exercise 19]). Let w be a nonconstant meromorphic function
such that S(w) = 0. Then w(z) = Az+B

Cz+D for some A,B,C,D ∈ C and AD −BC 6= 0, so w is a
Möbius transformation.

Proof. First note that if w′′ is the zero function, then w is a linear function, so w is a Möbius
transformation. Now assume that w′′ is not the zero function and define f = w′′/w′. Because

S(w) =
(
w′′

w′

)′
− 1

2

(
w′′

w′

)2

= 0, it follows that 2f ′ = f2 and (1/f)′ = −f ′/f2 = − 1
2 . From this

follows that 1/f(z) = −(z + a)/2 for some a ∈ C. From this follows that (logw′(z))′ = w′′(z)
w′(z) =

f(z) = − 2
z+a . From this follows that logw′(z) = −2 log(z + a) + b and w′(z) = b

(z+a)2 for some

other b ∈ C. From this follows that w(z) = − b
z+a +c = cz+ca−b

z+a for some c ∈ C, so w is a Möbius
transformation. Furthermore, if AD −BC = 0, it follows that w is a constant function.

Proposition A.6 ([8, section II.1]). Let v, w be nonconstant meromorphic functions with the
same domain U ⊂ C such that S(v)(z) = S(w)(z) and v is not a constant function. Then it
follows that v = Aw+B

Cw+D for some A,B,C,D ∈ C with AD −BC 6= 0.

Proof. First note that v′ and w′ cannot be both the zero function, because then v and w would
be constant functions. Without loss of generality assume that there exists a point z0 ∈ U such
that w′(z0) 6= 0. From this follows that w is locally invertible around z0. From this follows that

S(v ◦ w−1)(z) = S(w−1)(z) + w−1′(z)2 · (S(v) ◦ w−1)(z)

= S(w−1)(z) + w−1′(z)2 · (S(w) ◦ w−1)(z) = S(w ◦ w−1)(z) = 0. (A.18)

In the second equality we used that S(v) = S(w), and in the last equality we used that the

Schwarzian derivative of the identity function w◦w−1 is the zero function, because
(
z′′

z′

)
= 0

1 = 0.

Because locally around z0 holds that (v ◦ w−1)(z) = Az+B
Cz+D , it follows locally that v(z) =

Aw(z)+B
Cw(z)+D , from which follows that v(z) = Aw(z)+B

Cw(z)+D globally on U . Furthermore, if AD−BC = 0,

it follows that v is a constant function.
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Corollary A.7. Let v be a meromorphic function such that S(v) is the zero function. Then it
follows that v = Aw+B

Cw+D for some A,B,C,D ∈ C with AD −BC 6= 0.

Proof. We use proposition A.6 with w(z) = z, then it follows that S(w) is the zero function.
Because S(v) is also the zero function, there exist A,B,C,D ∈ C with AD −BC 6= 0 such that
v(z) = Az+B

Cz+D .

If we want to solve the equation S(f) = Q for some given meromorphic function Q, then
proposition A.6 and corollary A.7 give a sort of uniqueness statement: if we find one solution for
f , we have all solutions. Now we want to find one solution of S(f) = Q, which will be done in
corollary A.9.

Proposition A.8. Consider the differential equation y′′+p(z)y′+ q(z)y = 0 with p, q meromor-
phic functions and y1, y2 linearly independent local solutions. Then it follows that S(y1/y2) =
2q − p′ − p2/2.

Proof. We have (y1/y2)′ =
y′1y2−y1y

′
2

y22
and(

y1

y2

)′′
=
y′′1 y2 − y1y

′′
2

y2
2

− 2y2y
′
2(y′1y2 − y1y

′
2)

y4
2

=
(−py′1 − qy1)y2 − y1(−py′2 − qy2)

y2
2

− 2y′2(y′1y2 − y1y
′
2)

y3
2

= p · −y
′
1y2 + y1y

′
2

y2
2

− 2y′2
y2
· y
′
1y2 − y1y

′
2

y2
2

=

(
−p− 2y′2

y2

)(
y1

y2

)′
. (A.19)

From this follows that (
y1

y2

)′′/(
y1

y2

)′
= −p− 2

y′2
y2
. (A.20)

From this follows that

S(y1/y2) =

(
−p− 2

y′2
y2

)′
− 1

2

(
−p− 2

y′2
y2

)2

= −p′ − 2
y′′2 y2 − y′22

y2
2

− 1

2

(
p2 + 4p

y′2
y2

+ 4
y′22
y2

2

)
= −p′ − 2

y′′2
y2
− 1

2
p2 − 2p

y′2
y2

= −p′ + 2
py′2 + qy2

y2
− 1

2
p2 − 2p

y′2
y2

= −p′ + 2q − 1

2
p2,

(A.21)

which finishes the proof.

Corollary A.9. Let p, q be meromorphic functions and define Q = 2q − p′ − p2/2. If Q is not
the zero function, then the solutions of the differential equation S(w) = Q are given by y1/y2

where y1, y2 are linearly independent solutions of y′′ + py′ + qy = 0.

Proof. Let y1, y2 be two linearly independent solutions of y′′+py′+qy = 0. From proposition A.8
we know that S(y1/y2) = Q. Let v be a meromorphic function such that S(v) = Q, then it follows

from proposition A.6 that v = Ay1/y2+B
Cy1/y2+D for some A,B,C,D ∈ C. If AD−BC = 0, it follows that

v is constant and S(v) is the zero function. Furthermore we have v = Ay1+By2
Cy1+Dy2

, which shows the
connection between Möbius transformations and linear maps. Because AD−BC 6= 0, it follows
that Ay1 +By2 and Cy1 +Dy2 are linearly independent: if λ(Ay1 +By2) + µ(Cy1 +Dy2) = 0,

it follows that Aλ + Cµ = 0 and Bλ + Dλ, so

(
A B
C D

)(
λ
µ

)
=

(
0
0

)
from which follows that

λ = µ = 0.
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Using corollary A.9 we now can solve the equation S(f) = Q for a given meromorphic function
Q, which we will need to prove theorem A.24. We end this section about the Schwarzian derivative
by a calculation we will need later.

Proposition A.10. Let w(z) = (z − z0)au(z) with u(z) holomorphic and u(z0) 6= 0 for some
z0 ∈ C. If a = −1, 0, 1, then S(w) is holomorphic at z0. If a 6= −1, 0, 1, it follows that

S(w)(z) = 1−a2
2(z−z0)2 + · · · , so S(w) has a pole of order 2.

Proof. If a = 0, we consider the function w−w(z0) instead of the function w, note that S(w) =
S(w − w(z0)). We have

w′(z) = a(z − z0)a−1u(z) + (z − z0)au′(z) (A.22)

and
w′′(z) = a(a− 1)(z − z0)a−2u(z) + 2a(z − z0)a−1u′(z) + (z − z0)au′′(z) (A.23)

and

w′′′(z) = a(a−1)(a−2)(z−z0)a−3u(z)+3a(a−1)(z−z0)a−2u′(z)+3a(z−z0)a−1u′′(z)+(z−z0)au′′′(z).
(A.24)

From this follows that

w′′(z)

w′(z)
=
a(a− 1)(z − z0)−1u(z) + 2au′(z) + (z − z0)u′′(z)

au(z) + (z − z0)u′(z)
(A.25)

and

w′′′(z)

w′(z)
=
a(a− 1)(a− 2)(z − z0)−2u(z) + 3a(a− 1)(z − z0)−1u′(z) + 3au′′(z) + (z − z0)u′′′(z)

au(z) + (z − z0)u′(z)
,

(A.26)
where we multiplied numerator and denominator with (z − z0)1−a.

If a = 1, we have

w′′(z)

w′(z)
=

2u′(z) + (z − z0)u′′(z)

u(z) + (z − z0)u′(z)
and

w′′′(z)

w′(z)
=

3u′′(z) + (z − z0)u′′′(z)

u(z) + (z − z0)u′(z)
. (A.27)

Because u(z0) 6= 0, it follows that 1/(u(z)+(z−z0)u′(z)) is holomorphic around z0, so w′′(z)/w′(z)
and w′′′(z)/w′(z) are both holomorphic around z0, so S(w) is holomorphic around z0.

If a = −1, we have

w′′(z)

w′(z)
=

2(z − z0)−1u(z)− 2u′(z) + (z − z0)u′′(z)

−u(z) + (z − z0)u′(z)
= − 2

z − z0
+ 2

u′(z0)

u(z0)
+O(z − z0) (A.28)

and

w′′′(z)

w′(z)
=
−6(z − z0)−2u(z) + 6(z − z0)−1u′(z)− 3u′′(z) + (z − z0)u′′′(z)

−u(z) + (z − z0)u′(z)

=
6

(z − z0)2
− 6u′(z0)

u(z0)(z − z0)
+O(1) (A.29)

and

− 3

2

(
w′′(z)

w′(z)

)2

= − 6

(z − z0)2
+

6u′(z0)

u(z0)(z − z0)
+O(1), (A.30)
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where in the Laurent expansions O(z − z0) denotes a holomorphic function around z0 which is
equal to 0 at z0, and O(1) denotes a function which is holomorphic around z0. From this follows

that w′′′(z)
w′(z) −

3
2

(
w′′(z)
w′(z)

)2

= 0 +O(1), from which follows that S(w) is holomorphic around z0.

If a 6= −1, 0, 1, we have that

lim
z→z0

(z − z0)2

(
w′′(z)

w′(z)

)2

= (a− 1)2 and lim
z→z0

(z − z0)2w
′′′(z)

w′(z)
= (a− 1)(a− 2), (A.31)

so limz→z0(z − z0)2S(w)(z) = (a− 1)(a− 2)− 3
2 (a− 1)2 = 1

2 −
1
2a

2.

To sum up, for a 6= 0, it follows that S(w)(z) = 1−a2
2z2 + · · · , where the dots indicate z−1 and

higher powers of z. From this follows S(w)(1/z) = (1− a2)z2/2 + · · · , where the dots indiate z
and lower powers of z.

A.3 Riemann mapping theorem and curvilinear triangles

Theorem A.11 (Riemann mapping theorem, [7, paragraph X.1]). Let U ⊂ C be a simply
connected open subset of C, not equal to C. Then there exists a biholomorphic function f from
G to D := {z ∈ C; |z| < 1}. Moreover, let z0 ∈ U , from the requirements f(z0) = 0 and
f ′(z0) ∈ R>0 follows that f is uniquely determined.

Definition A.12. We call γ = f([a, b]) ⊂ C an analytic arc if there exists a function f : [a, b]→
C where [a, b] is a real interval, such that for every t0 ∈ [a, b] there exists a convergent power
series such that f(t) =

∑∞
n=0 an(t − t0)n on some open interval around t0. Furthermore we

require f to be injective and f ′(t) 6= 0 for all t ∈ [a, b].

Lemma A.13 ([7, lemma IX.2.4]). Let f : U → V be an analytic function such that for every
compact subset K ⊂ V the set f−1(K) is compact. If {zn} is a sequence in U approaching the
boundary of U , then {f(zn)} approaches the boundary of V .

Theorem A.14 ([7, theorem IX.2.5]). Let f : U → D be a biholomorphic function. Let γ be
an analytic arc contained in the boundary of U . Suppose that U lies on one side of γ, then f
extends to a function on U ∪ γ, holomorphic on U and continuous on U ∪ γ.

Definition A.15. A curvilinear triangle is a connected open subset of C∪{∞} = P1(C), which
has a boundary consisting of three points, and three open line segments or open segments of a
circle. It can be shown that a curvilinear triangle with given angles is unique, up to a Möbius
transformation.

Lemma A.16. Let T ⊂ C be a curvilinear triangle with angles λπ, µπ, νπ in counterclockwise
order and 0 < λ, µ, ν < 1. Let f be the function from theorem A.11: a biholomorphic function
from D to T . Then it follows that f can be extended to a continuous bijective function from D∪S1

to T ∪ ∂T , where S1 and ∂T are the boundaries of D and T . Moreover, we have f(S1) = ∂T .

Proof. We cannot use theorem A.14 to give a continuous extension of f to D∪S1, with S1 = {z ∈
C; |z| = 1}, because S1 is not an analytic arc: there does not exist a continuous bijection from
some closed interval in R to S1; removing the two endpoints of a closed interval gives a connected
set, but removing two distinct points from S1 gives a disconnected set. To produce a continuous
extension of f to D∪S1, define S1

+ = {z ∈ S1;=(z) ≥ 0} and S1
− = {z ∈ S1;=(z) ≤ 0}, then there

exist continuous extensions of f to D ∪ S1
− and to D ∪ S1

+ which agree on S1
− ∩ S1

+ = {−1, 1},
because the continuous extension of f is continuous on D ∪ S1. Furthermore, because f is
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continuous, it follows that the continuous extension of f to D ∪ S1 takes values in T : if {zn}
is a sequence in D which converges to z ∈ D ∪ S1, it follows that f(z) = limn→∞ f(zn), and
the sequence {f(zn)} in T converges to a point in T . Analogously f−1 can be continued to a
function on T , using the three circle segments as analytic arcs, and the analytic continuation of
f−1 to T takes values in D ∪ S1.

Now we want to prove that the continuous extensions of f and f−1 are each others inverses.
From lemma A.13 we know that f(S1) ⊂ ∂T and f−1(∂T ) ⊂ S1, here we use that f and
f−1 are both holomorphic, so in particular continuous, so the inverse image by f or f−1 of
a compact set is a compact set. To prove that f is surjective, let z ∈ ∂T , and let {zn} be
a sequence in T converging to z. Because f−1 is continuous, the sequence {f−1(zn)} in D
converges to a point y ∈ S1, where we used lemma A.13. Because f is continous, it follows that
f(y) = limn→∞ f(f−1(zn)) = limn→∞ zn = z, which proves that the analytic continuation of f
is surjective. Analogously it follows that f−1 as a function from ∂T to S1 is surjective.

Now we want to prove that the continuous extension of f is injective. Suppose that there
exists x 6= y ∈ S1 such that f(x) = f(y) = z ∈ ∂T , from this follows that there exists two
sequences {xn} and {yn} in D which converge to a different limit in S1, but the sequences
{f(xn)} and {f(yn)} in T converge to the same limit in ∂T . To see this, we use some methods
from analysis: we already know that the function f−1 can be analytically continued to T , which
is a compact set. From this follows that the analytic continuation of f−1 is uniformly continuous
on T , because a continuous function on a compact set is uniformly continuous. Furthermore
uniform continuity implies Cauchy continuity, so for two Cauchy sequences {an} and {bn} in T
with limn→∞ |an − bn| → 0, it follows that limn→∞ |f−1(an) − f−1(bn)| → 0. Note that f−1

is uniformly continuous on T , because f−1 is uniformly continuous on T . From the definition
of Cauchy continuity applied to the sequences {f(xn)} and {f(yn) follows that limn→∞ xn =
limn→ yn, so there do not exist x 6= y ∈ S1 such that f(x) = f(y) = z ∈ ∂T , so the continuous
extension of f is injective. Analogously it follows that f−1 as a function from ∂T to S1 is
injective.

Now we want to prove that the continuous extensions of f and f−1 are each others inverse. Let
x ∈ S1 and {xn} a sequence in D which converges to x, then f−1(f(x)) = limn→∞ f−1(f(xn)) =
limn→∞ xn = x. Let x ∈ ∂T and {xn} a sequence in T which converges to x, then f(f−1(x)) =
limn→∞ f(f−1(xn)) = limn→∞ xn = x. This proves that the continuous extensions of f and f−1

are each others inverse.

Lemma A.17. Let a curvilinear triangle T ⊂ C be given with angles λπ, µπ, νπ in counterclock-
wise order. Then there exists a continuous bijection f : H∪R∪{∞} → T , where T is the closure
of T . Moreover, f is biholomorphic on H and f(H) = T , and f(R ∪ {∞}) = ∂T , where ∂T is
the boundary of T , and f(0) is equal to the vertex of T with angle λπ and f(1) is equal to the
vertex of T with angle µπ and f(∞) is equal to the vertex of T with angle νπ.

Proof. Consider the function g : H ∪ R ∪ {∞} → D with z 7→ z−i
z+i . We have that g is a

biholomorphic function H → D, because −1 7→ i and 0 → −1 and 1 → −i, and h is continuous
on H ∪ R ∪ {∞}, and bijective as function R ∪ {∞} → S1. From this follows that the function
g ◦ f is a homeomorphism from H ∪ R ∪ {∞} to T which is also a biholomorphic function from
H to T .

Let h be a Möbius transformation which sends 0, 1,∞ to the images of (g◦f)−1 of the vertices
of T with angles λπ, µπ, νπ. Because of the conservation of orientation, it follows that h sends H
to itself, so h is a homeomorphism from H∪R∪{∞} to itself and also a biholomorphic function
from H to itself. From this follows that h ◦ g ◦ f is a homeomorphism from H ∪ R ∪ {∞} to
T , is a biholomorpic function from H to T and sends 0, 1,∞ to the vertices of T with angles
λπ, µπ, νπ.
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A.4 Schwarz reflection principle and Schwarz triangle map

Theorem A.18 ([7, theorem IX.1.1(ii)]). Let U ⊂ H be open such that the boundary of U
contains an interval I ⊂ R. Let f be a function on U ∪ I, analytic on U and continous on I.
If f is realvalued on I, then f has a unique analytic continuation to U ∪ I ∪ U which satisfies
f(z) = f(z), where the set U is the complex conjugate of the set U .

Corollary A.19 (Schwarz reflection principle). Let U ⊂ H be open such that the boundary of U
contains an interval I ⊂ R. Let f be a function on U ∪ I, analytic on U and continuous on I. If
f(I) lies on a line L = {z0+λz1|λ ∈ R} with z0 ∈ C and 0 6= z1 ∈ C, then f has a unique analytic
continuation to U ∪ I ∪ U which satisfies f(z) = δ(f(z)) with δ(z) = z1/z1 · z + z0 − z1/z1 · z0.

If f(I) lies on a circle C with midpoint z0 ∈ C and radius r0 ∈ R>0, then f has a unique

analytic continuation to U ∪ I ∪ U which satisfies f(z) = δ(f(z)) with δ(z) =
z0z+r

2
0−|z0|

2

z−z0 .

Proof. Suppose that f(I) lies on a line z0 +λz1 and let γ(z) = (z− z0)/z1, then γ sends the line
L to the real line. From this follows that γ ◦ f sends the real interval I to the real line. From
theorem A.18 follows that there exists a unique analytic continuation of γ ◦ f with (γ ◦ f)(z) =
(γ ◦ f)(z). From this follows that γ−1(γ ◦ f)(z) = f(z) = γ−1(γ ◦ f)(z) = (γ−1 ◦ γ ◦ f)(z),
which gives an analytic continuation of f . Note that γ−1(z) = z0 + z1z, from which follows that
(γ−1 ◦ γ)(f(z)) = z0 + z1(f(z)− z0)/z1 = z1/z1 · f(z) + z0 − z1/z1 · z0.

Suppose that f(I) lies on a circle C with midpoint z0 and radius r0. Let γ(z) = i z−(z0−r0)
z−(z0+r0) ,

then γ sends the circle C to the real line, because γ(z0 − r0) = 0 and γ(z0 + r0) = ∞ and and
γ(z0 + ir0) = i ir0+r0

ir0−r0 = i i+1
i−1 = 1. From this follows that γ ◦f sends the real interval I to the real

line. From theorem A.18 follows that there exists a unique analytic continuation of γ ◦ f with
(γ ◦ f)(z) = (γ ◦ f)(z). From this follows that γ−1(γ ◦ f)(z) = f(z) = γ−1(γ ◦ f)(z) = (γ−1 ◦ γ ◦
f)(z), which gives an analytic continuation of f . Note that γ−1(z) = i(z0+r0)z+z0−r0

iz+1 , because

γ−1(0) = z0 − r0 and γ−1(∞) = z0 + r0 and γ−1(1) = i(z0+r0)+z0−r0
i+1 = z0 + ir0−r0

i+1 = z0 + ir0.
Furthermore we have(

i(z0 + r0) z0 − r0

i 1

)(
i −i(z0 − r0)
1 −z0 − r0

)
=

(
i(z0 + r0) z0 − r0

i 1

)(
−i i(z0 − r0)
1 −z0 − r0

)
=

(
−2z0 2|z0|2 − 2r2

0

−2 2z0

)
, (A.32)

and we define the Möbius transformation δ using the matrix (we multiply all elements in the
matrix with −1/2) in the previous equation. From this follows for the analytic continuation of
f that f(z) = δ(f(z)).

Remark A.20. To give a concrete description of the function δ from corollary A.19, note that
for r, θ ∈ R with r > 0 we have

δ(z0 + reiθ) =
z0(z0 + reiθ) + r2

0 − |z0|2

1(z0 + reiθ)− z0

=
z0reiθ + r2

0

reiθ
= z0 +

r2
0

reiθ
= z0 +

r2
0

r
eiθ, (A.33)

so δ(z) lies on the line segment between z0 and z, and |δ(z)− z0| · |z − z0| = r2
0. This geometric

construction is called the Schwarz reflection principle.

Lemma A.21. Let f be the function from lemma A.17. Then S(f) is holomorphic and one-valed
on C\{0, 1}.
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Proof. We will construct an analytic continuation of f , along a curve which goes from z ∈ H,
through the interval (1,∞) to the lower half plane, and through the interval (0, 1) to the upper
half plane, back to z. From corollary A.19 with I = (1,∞) follows for z ∈ −H that f(z) = γ(f(z))
for some Möbius transformation γ. Now we again use the Schwarz reflection principle, but with
the analytic continuation of f which is defined on −H, and the interval (0, 1). From this follows

that we should define f on H as f(z) = δ(γ(f(z))) = (δγ)(f(z)) for some Möbius transformation
δ. These two analytic continuations give that the analytic continuation of f along a curve around
the point 1 is equal to a Möbius transformation of f . From proposition A.2 follows that S(f)
is invariant under analytic continuation along the curve around 1. Analogously it follows that
S(f) is invariant under analytic contination around the point 0. From this follows that S(f)
can be defined globally on C\{0, 1}. Furthermore we have that S(f) is holomorphic on C\{0, 1}
because f is holomorphic at H, see proposition A.10. From this follows that S(f) is a holomorphic
function on C\{0, 1} which is one-valued.

Lemma A.22. Let f be the function from lemma A.17. Then f = y1/y2, where y1, y2 are
linearly independent solutions of y′′ + Q(z)y = 0, where Q(z) has double poles at z = 0, 1 and
has a double root at z →∞.

Proof. Because f sends 0 ∈ H∪R with angle π to f(0) with angle λπ, it follows that f(z) = zλu(z)

for some holomorphic function u around z = 0, so S(f)(z) = 1−λ2

2z2 + · · · . Analogously it
follows that f(z − 1) = (z − 1)µu(z) for some other holomorphic function u around z = 1, so

S(f)(z − 1) = 1−µ2

2(z−1)2 + · · · . Furthermore we have f(1/z) = 1/zνu(1/z) for z =∞, from which

follows that S(f)(1/z) = (1− ν2)z2/2 + · · · . From this follows that S(w) = 2Q for some rational
function Q with double poles in z = 0 and z = 1 and a double root at z → ∞. Applying
corollary A.9 gives that f = y1/y2 with y1, y2 linearly independent solutions of the equation
y′′ +Qy = 0.

Lemma A.23. The functions y1, y2 from lemma A.22 satisfy a Fuchsian second order differential
equation with local exponents 1/2 ± λ/2 at z = 0 and 1/2 ± µ/2 at z = 1 and −1/2 ± ν/2 at
z =∞.

Proof. The equation y′′ + Q(z)y = 0 is a Fuchsian equation, with 0, 1,∞ as regular singular
points: this follows from the orders of poles and roots at z = 0, 1,∞, see lemma A.22. Because
the rigidity of Fuchsian equations with three regular singular points, the differential equation
y′′ + Q(z)y = 0 follows from the local exponents at z = 0, 1,∞. To find the local exponents of
y1, y2 at z = 0, we plug in y = zρ + · · · in y′′ + Qy = 0 and consider the coefficient of zρ−2,

which gives ρ(ρ − 1) + 1−λ2

4 = 0, from which follows that ρ = 1
2 ±

λ
2 : here we use that around

z = 0 we have S(f)(z) = 2Q(z) ≈ 1−λ2

2z2 . Analogously it follows that around z = 1 we have
ρ = 1

2 ±
µ
2 . Around z =∞ have to rewrite y′′+Qy = 0 in the variable 1/z instead of z, which we

did in equation (A.3). From this follows that y′′/z4 + 2y′/z3 +Qy = 0, where the prime denotes
differentiation with respect to 1/z. Now we plug in y = (1/z)ρ + · · · and consider the coefficient
of (1/z)ρ+2 which gives ρ(ρ− 1) + 2ρ+ (1− ν2)/4 = 0, from which follows that ρ = − 1

2 ±
ν
2 .

Theorem A.24 (Schwarz). Let a, b, c ∈ R and define λ = |1−c| and µ = |c−a−b| and ν = |a−b|.
Suppose that 0 ≤ λ, µ, ν ≤ 1, then the function f = y1/y2 maps H one-to-one and conformal
onto the interior of a curvilinear triangle, where y1, y2 are linearly independent solutions of the
hypergeometric differential equation equation (2) with parameters a, b, c. The vertices of the
triangle correspond to the points f(0), f(1), f(∞) with corresponding angles λπ, µπ, νπ.
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Proof. From lemma A.23 we know that y1, y2 satisfy a second order Fuchsian equation with local
exponents expressed in λ, µ, ν. We also want to express these local exponents variables a, b, c,
but in the statement of this theorem absolute signs are used, so λ, µ, ν are known up to sign.
Because the statement of lemma A.23 is invariant under choice of sign of λ, µ, ν, this gives in all
cases the same Riemann scheme, see table A.2.

0 1 ∞
1
2 + λ

2
1
2 + µ

2 − 1
2 + ν

2
1
2 −

λ
2

1
2 −

µ
2 − 1

2 −
ν
2

=
0 1 ∞

1− c/2 (1− a− b+ c)/2 (−1 + a− b)/2
c/2 (1 + a+ b− c)/2 (−1− a+ b)/2

.

Table A.2: Riemann scheme of the differential equation y′′ +Qy = 0

The function z−c/2(z−1)−1/2−a/2−b/2+c/2f has local exponents 0, 1−c at z = 0, and 0, c−a−b
at z = 1, and a, b at z =∞, and therefore must be a solution of the hypergeometric differential
equation with parameters a, b, c. From this follows that the quotient of two linearly independent
solutions of y′′+Qy = 0 is equal to the quotient of two linearly independent solutions of the hyper-
geometric differential equation, see equation (2), because the factors z−c/2(z−1)−1/2−a/2−b/2+c/2

in the denominator and numerator cancel each other. To sum up, in lemma A.17 we started
with a biholomorphic fuction from H to a curvilinear triangle with angles λπ, µπ, νπ, and then
proved after some steps that this function is the quotient of two linearly independent solutions
of the hypergeometric differential equation with parameters a, b, c. Note that every choice of

y1, y2 gives a curvilinear triangle with given angles, because Ay1+By2
Cy1+Dy2

= Ay1/y2+B
Cy1/y2+D is a Möbius

transformation of y1/y2.
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