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about the cover image

This famous drawing of Maurits Cornelis Escher provides a nice metaphor for
the quantum mechanical description of the world. The crocodiles can be seen
as the states of some system and the drawing on the paper of these crocodiles

as the physical act of measurement, which forces the system to take some
observable state. As a quantum mechanical principle, we cannot observe the
rich and versatile state of the system itself, because the measurement of one
observable is not always compatible with the measurement of another. After
the measurement, the its states immediately become alive an involved again,
escaping from their classical context of compatible observables forced upon

that was forced upon them. The metaphysical concept of forcing the state to be
in some compatible structure by measurement is one of the key features of the

quantum logic studied and developed in this thesis.



A B S T R A C T

The subject of this thesis is on the shared horizon of theoretical physics and
logic: Quantum logic. In 1936, Birkhofff and von Neumann already formulated
a quantum logic. But, this logic has some undesirable properties concerning
the interpretation of the logical conjunction and disjunction as “and” and “or”.
Therefor, Landsman has recently set out to develop a new logic for quantum
mechanics, which is set up inside a topos and thus is intuitionistic.

The construction of Landsmans intuitionistic quantum logic relies on the
Gelfand representation theorem. However, to apply the theorem a constructive
proof is needed. Coquand and Spitters recently published such a proof, but the
material that was published is too condensed for our taste. So in this thesis
we attempt to expand on this constructive proof of the Gelfand representation
theorem and check all details the original authors left out. As a result, more
insight is gained in the constructive proof of the Gelfand representation theorem,
providing a stronger foundation for intuitionistic quantum logic.
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1

I N T R O D U C T I O N

In the academic fields of physics and mathematics, the disciplines of theoretical
physics and logic respectively take similar, fundamental place. In physics one
often leans on various mathematical disciplines such as (functional) analysis,
numerical methods and algebra, but one does not expect logic to be one of
them. However, the intersection of theoretical physics and logic is nonempty
and contains many interesting subjects.

Most of these subjects have in common that they concern quantum mechan-
ics. For example, in 1977 Davis uses Boolean algebras to obtain a relativistic
interpretation of quantum mechanics [1]. The Boolean algebras determine a
“frame of reference” that characterizes the real numbers in terms of self-adjoint
operators on a Hilbert space. Davis then interprets quantum mechanical prin-
ciples, such as the Heisenberg uncertainty relations, just as a consequence of
operators not being in the same frame of reference.

Another, more recent example is a suggested correspondence between quan-
tum field theory, topology, logic and computation theory [2]. Category theory
provides a Rosetta stone analogue for these four disciplines by defining a cate-
gory with as objects physical systems, manifolds, propositions or data types,
and as arrows physical processes, cobordisms, proofs of programs respectively.

The subject of this thesis will provide another example of quantum mechanics
being at the shared horizon of theoretical physics and logic. Whereas the previ-
ous examples build on and expand from quantum mechanics, this thesis will
question and investigate the mathematical foundations of quantum mechanics
itself: Quantum logic.

In 1932, von Neumann published his Mathematische grundlagen der Quanten-
mechanik, establishing the mathematical foundations of quantum mechanics
[3]. This new formalism needed a new logic, as the logic of classical mechanics
was not applicable. So in 1936 Birkhoff and von Neumann defined the classical
quantum logic, which is still used today [4]. This logic has some remarkable
features as we shall see. Most striking is the physical interpretation of the
logical disjunction and conjunction, which cannot be interpreted as “or” and
“and” respectively.

Furthermore, the law of excluded middle (stating that a statement is either
true or false) holds in this logic. For many purposes this might be convenient,
but it goes against the quantum mechanical intuition provided by the thought
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2 introduction

experiment of Schrödingers cat [5]: The cat does not have to be either alive or
dead but can be in a superposition of the two. It is precisely the law of excluded
middle, which dominates our classical intuition, that makes it hard to obtain
the intuition propagated by this thought experiment. One would not expect the
law of excluded middle to hold in the logic of quantum mechanics.

Recently, a new logic for quantum mechanics has been developed, motivated
by these objections to the classical quantum logic of Birkhoff and von Neumann
[6]. The logical structure is defined within a “quantum mechanical topos” and
is therefor intuitionistic. As we shall see, this logic encompasses a similar view
on quantum mechanics as Davis proposed, by having its propositions not just
contain a statement about the outcome of some measurement, as a proposition
must also specify a classical context in which the measurement is done. This
prevents us from formulating propositions that are physically incompatible
(for example about the measurement of both position and momentum), which
would otherwise lead any truth valuation on our propositions to be ill defined.

A crucial ingredient in obtaining this logic is the Gelfand representation
theorem, which states that elements of a certain class of Banach algebras can
be represented by continuous functions on that Banach algebra. The theorem
provides us with a quantum phase space, which in effect lists all possible sets
compatible observations. Due to the probabilistic nature of quantum mechanics,
this phase space is not determined by the state of the system, contrasting with
deterministic classical mechanics. As a consequence, in most states we cannot
predict the outcome of a measurement with absolute certainty. The quantum
phase space obtained from the Gelfand represtentation theorem, fortunately
provides a useful structure that allows us to define a Kripke semantics and an
associated truth valuation on our propositions.

The Gelfand representation theorem is well known and originates from
functional analysis. However, to apply it internally in the quantum mechanical
topos, we need to prove it constructively. Such a proof is given in a very concise
article by Coquand and Spitters [7], but it is too concise for out taste. In this
thesis we will attempt to work out this proof extensively.

The thesis is structured in the following way. First, we expand on the
development of quantum logic from the logic of classical mechanics. We then
summarize the objections to this logic for quantum mechanics constructed by
Birkhoff and von Neumann, that lead to the development intuitionistic quantum
logic. Although the logical structure can be postulated as it is, its development
relies on the Gelfand representation theorem. To gain a proper understanding
of this theorem, we state and prove its original version in functional analysis
after defining the necessary concepts. Then, Stone’s version of the Gelfand
representation theorem is proved non-constructively. Finally, we set out to
give a detailed constructive proof of the localic Gelfand representation theorem
following Coquand and Spitters.

The reader is expected to have a good understanding of algebra and category
theory. For the relevant algebraic background, we refer to [8, 9, 10]. The
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reader is assumed to have a little knowledge on functional analysis, however
most relevant concepts will be defined and explained in this thesis. A basic
knowledge about quantum mechanics is recommended to fully grasp the
implications and relevant context of this thesis, but it is not required. A good
background is provided for example in [11].
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Q U A N T U M L O G I C

One of the core ideas of quantum theory is that systems can be in a super-
position of observable states. Referring to the famous thought experiment of
Schrödingers cat [5], classically one would say that the cat is either alive or
dead, whereas quantum theoretically the cat is in a superposition of both the
alive state and the dead state, as long as it is not observed. It takes some time
to fully wrap your head around this idea, but it turns out that doing so enables
you to better describe nature in terms of physical laws [12].

The logical counterpart of Schrödingers cat is intuitionistic logic. Whereas in
classical logic one would say that a statement is either true or false (this is the
“law” of excluded middle), intuitionistically no such claim is made; statements
do not have to be true or false, as long as no proof is given. Rejecting the law of
excluded middle seems to be a natural choice for setting up a logical system
for quantum theory. However, the current, mainstream logic for quantum
mechanics is in fact obeying the law of excluded middle and, as we shall see,
has some interpretation problems concerning the logical connectives.

In 1927 von Neumann formulated the theory of linear operators on Hilbert
spaces as the mathematical structure for quantum mechanics. This framework
still stands strong today. As this mathematical framework differs from the
mathematical framework of classical mechanics, a new logic was needed. In
1936 Birkhoff and von Neumann formulated the quantum logic which was (in-
tentionally) very similar to the classical logical structure of classical mechanics.
To properly understand its origin, we will first briefly describe the classical logic
of classical mechanics and consequently explain the logical system set up by
Birkhoff and von Neumann. Objections to this classical quantum logic will lead
to the intuitionistic quantum logic. After explaining the essential connection
between this logic and the Gelfand representation theorem, we will conclude
this chapter by giving some background on logic in sheaf toposes of which the
intuitionistic quantum logic is an example.
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6 quantum logic

2.1 classical logic in classical mechanics

Given some classical system, we denote X as its configuration space and an
observable is a function f : X → R. Denote O(X) as the set of observables of X.
The Gelfand spectrum of X is defined as the set

Σ(O(X)) = {ω : O(X)→ C|ω( f g) = ω( f )ω(g), ω is linear and nonzero }.
(1)

Physically, these maps describe a set such that each element corresponds
to a value of an observable that is compatible with the values for the other
observables in that set. By defining for each x ∈ X a map ωx by

ωx( f ) = f (x), (2)

we see that the configuration space X completely determines its Gelfand spec-
trum. ωx is called the Gelfand transform of x and it is the Gelfand representation
theorem, which we discuss extensively in the next chapter, that ensures that
this map is in fact an isomorphism. This is what we would expect: Classical
mechanics is deterministic. If you know the state of a system, you can predict
the outcome of any measurement of an observable with infinite accuracy.

To set up a logic we need a set ΣX of atomic propositions, which in our case
are given by the expressions of the form f ∈ ∆ where f is an observable and ∆
is a subset of R. We will underline propositions, to separate our notation for
the logic of the physical system with the physical system itself. This expression
has the interpretation of the statment “the value of a measurement of f lies is
∆”. Other propositions are constructed inductively along the iterative rules of
propositional logic generating the set BX of propositions.

At this point we can begin to formulate a propositional theory for classical
mechanics. For example our theory must contain an axiom stating that if ∆ ⊆ ∆′

then f ∈ ∆ should imply f ∈ ∆′.
One can now define a valuation at the point x ∈ X as a function Vx : ΣX →
{0, 1} defined by

Vx( f ∈ ∆) = 1 if and only if f (x) ∈ ∆. (3)

By recursive use of the truth tables of the logical connectives one can extend
this map to BX. One can now interpret a proposition to be true if its valuation
has value 1 and false if its valuation has value 0. Since this valuation map is
well defined, the law of excluded middle clearly holds.

The semantic entailment relation |=X on BX is defined by α |=X β if and
only if Vx(α) = 1 implies Vx(β) = 1 for all x ∈ X. The equivalence relation
∼X is simply defined by α ∼X β if and only if α |=X β and β |=X α. Using
this equivalence we can show that the Lindenbaum algebra LX (the algebra of
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equivalence classes of propositions of BX) is isomorphic to the power set P(X)

by the map ϕ, defined by the following inductive system

ϕ([ f ∈ ∆]) = f−1(∆), (4)

ϕ([¬α]) = ϕ([α])c, (5)

ϕ([α ∨ β]) = ϕ([α]) ∪ ϕ([β]), (6)

ϕ([α ∧ β]) = ϕ([α]) ∩ ϕ([β]). (7)

Indeed we have
( f ∈ ∆) ∼X (1 f−1(∆) = 1), (8)

where 1U is the indicator function of U and 1 f−1(∆) = 1 means 1 f−1(∆) ∈ 1.
And by use of the set operations of union, intersection and complement when
dealing with conjunction, disjunction and negation respectively, one can show
by induction on its complexity that any proposition in BX is logically equivalent
to one of the form 1U = 1 for some U ∈ P(X).
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2.2 quantum logic of birkhoff and von neumann

The crucial point in von Neumanns work in 1927 on the mathematical structure
of quantum mechanics was to describe observables by self adjoint operators
a : H → H, where H is the Hilbert space l2(X) (the vector space of functions
ψ : X → C with a norm defined by its inner product). As the operators
not necessarily commute, the Gelfand spectrum is empty which, as we shall
see, will cause some problems. To physically comprehend that the Gelfand
spectrum is indeed empty, we give the following argument. The Gelfand
spectrum expresses the compatible sets of values that observables can take.
Due to non-commuting observables, we cannot give such a specification, as is
reflected in the Heisenberg uncertainty principle. We cannot specify a value for,
say, the position, compatible with a value for momentum.

We proceed as follows. The elementary propositions in quantum logic will
be of the form a ∈ ∆. The physical meaning of such a proposition now is “a
measurement of the observable a yields a value that lies in ∆”. To evaluate
the truth of such propositions we need the quantum analogue to the points
x ∈ X: The role of configurations x ∈ X is classical mechanics is assumed by
pure states ωψ in quantum mechanics: A state is a complex-linear map ω on
B(H), the set of linear operators on H, to C, satisfying

ω(a∗a) ≥ 0, (9)

ω(1H) = 1. (10)

Here a∗ is the adjoint of a. A state is called pure if it is determined by a unit
vector ψ ∈ H in the following way

ωψ(a) = 〈ψ, aψ〉. (11)

We can now set up a valuation by saying that the elementary proposition
a ∈ ∆ is:

• true with respect to ωψ if and only if ψ ∈ Ha,∆ where Ha,∆ is the eigenspace
of a for the eigenvalues in ∆;

• false with respect to ωψ if and only if ψ ⊥ Ha,∆.

As in general H 6= Ha,∆ ∪ H⊥a,∆, there can be states which fail to assign a truth
value to a proposition.

One would now like to extend this valuation to all propositions, but this is
not straightforward anymore since for example a pure state ωψ may neither
assign a truth value to α nor to β, but it might still make α ∨ β true. As a
consequence we will extend the valuation by the following rules

• The negation ¬α is true with respect to ωψ if and only if α is false with
respect to ωψ.
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• The conjunction α ∧ β is true with respect to ωψ if and only if both α and
β are true with respect to ωψ.

• The disjunction α ∨ β is true with respect to ωψ if and only if ¬(¬α ∧ ¬β)

is true with respect to ωψ.

In particular this means that conjunctions behave classically, since (a ∈ ∆) ∧
(b ∈ ∆′) is true with respect to ωψ if and only if ψ ∈ Ha,∆ ∩ Hb,∆′ . That means
(a ∈ ∆) ∧ (b ∈ ∆′) is true with respect to ωψ if and only if (a ∈ ∆) and (b ∈ ∆′)
are both true with respect to ωψ . However, the disjunction does not behave
classically as (a ∈ ∆) ∨ (b ∈ ∆′) is true with respect to ωψ if and only if ψ ∈
Ha,∆ + Hb,∆′ 6= Ha,∆ ∪ Hb,∆′ .

We can now define the semantic entailment relation similar to the classical
case. The analogue of equation (8) is

a ∈ ∆ ∼H ea,∆ = 1. (12)

Here, ea,∆ is the projection operator on Ha,∆. Using the properties of these
projections one can show that the set of equivalence classes of propositions is
isomorphic to the set P(H) of projections on H by the map ϕ defined by

ϕ([a ∈ ∆]) = ea,∆, (13)

ϕ([¬α]) = 1− ϕ([α]), (14)

ϕ([α ∨ β]) = ϕ([α]) + ϕ([β])− ϕ([α])ϕ([β]), (15)

ϕ([α ∧ β]) = ϕ([α])ϕ([β]). (16)

Objections

To the above described quantum logic some conceptual objections can be made.
Firstly, the logical conjunction and disjunction are hard to interpret, mainly
because they do not distribute over each other. But also because, as already
mentioned, there are states in which α ∧ β is false whilst neither α nor β is false
and there are states in which α ∨ β is true whilst neither α nor β is true.

Secondly, and most troublesome, the law of excluded middle holds in the
quantum logic of Birkhoff and von Neumann. Indeed

ϕ([α ∨ ¬α]) = ϕ([α]) + 1− ϕ([α])(1− ϕ([α])) = 1, (17)

as the projections are idempotents ϕ([α])2 = ϕ([α]). This strongly contrasts
with the concept of Schrödingers cat.

A final objection to this quantum logic is the inability to assign a truth
value to some propositions. The intuitionistic logic of Brouwer and Heyting
will overcome these objections and is therefor the appropriate candidate for
quantum logic.
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2.3 quantum logic of landsman

The above objections are the reason for Landsman to develop a quantum logic
using topos theory [6]. Toposes have an internal universe to do mathematics in
and the internal logic is in most cases intuitionistic. The problems of classical
quantum logic mainly arise due to the fact that the algebra of observables is
non-commutative and as a result, the Gelfand spectrum is empty. However,
in the approach of Landsman this algebra of observables is internalized into
a specific topos and this internal algebra of observables is commutative. The
details of the internal setup are given in chapter 4. Here, we briefly describe
the topos and postulate the resulting logical structure.

The “quantum mechanical” topos is constructed from the algebra of observ-
ables A, i.e. the self adjoint operators on the complex Hilbert space of the
physical system. In fact, A is a unital C∗-algebra (see definition 14), and let
C(A) be the poset of all unital commutative C∗-subalgebras ordered by inclu-
sion. We can regard C(A) as a category in which C ∈ C(A) are objects, and
there is a unique arrow C → D if and only if C ⊆ D. The topos T(A) consists
of the functors F : C(A)→ Sets, so

T(A) = [C(A), Sets] ∼= Sh(C(A)). (18)

The isomorphism concerns C(A) equipped with the Alexandrov topology
and is defined by the map sending a functor F : C(A) → Sets to the sheaf
F̃ : O(C(A)) → Sets, where the image is defined on an upper set in the
Alexandrov topology by F̃(↑ C) = F(C).

The unital commutative C∗-subalgebras of A will be seen as the classical
context. An elementary proposition in our quantum logic will be a pair (C, e),
with C the classical context and e ∈ P(C) a projection in C. Such a pair will
define a map S(C,e) : C(A)→ P(A) by

S(C,e)(D) =

{
e if C ⊆ D

⊥ otherwise
. (19)

Now we define O(Σ) by

O(Σ) = {S : C(A)→ P(A)|S(C) ∈ P(C) and if C ⊆ D, then S(C) ≤ S(D)},
(20)

where projections e, f are partially ordered by e ≤ f if and only if e f = e. O(Σ)
inherits this partial order pointwise, i.e.

S ≤ T if and only if S(C) ≤ T(C) for all C ∈ C(A). (21)
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Since P(C), the lattice of projections in C, is Boolean, the logical structure
described by O(Σ) is defined pointwise by the rules

>(C) = 1 (the identity projection), (22)

⊥ (C) = 0 (the 0 projection), (23)

(S ∧ T)(C) = S(C) ∧ T(C), (24)

(S ∨ T)(C) = S(C) ∨ T(C), (25)

(S⇒ T)(C) =
∨
{e ∈ P(C)|∀D ⊇ C : e ≤ S(D)⊥ ∧ T(D)}, (26)

(¬S)(C) =
∨
{e ∈ P(C)|∀D ⊇ C : e ≤ S(D)⊥}. (27)

Boolean lattices are distributive, so our logical connectives ∨ and ∧ on O(Σ)
are physically meaningful since they are restricted to a context C in which the
projections commute. The structure of O(Σ) is that of a Heyting algebra and
hence is a model for intuitionistic predicate calculus.

Each S ∈ O(Σ) is equal to a disjunction of elementary proposition pairs (C, e)
by

S =
∨

C∈C(A)
S(C,S(C)). (28)

Hence O(Σ) is a good candidate for quantum logic.
For the truth valuation we define a Kripke semantics Vω : O(Σ)→ Upper(C(A)) =

O(C(A)) (because C(A) carries the Alexandrov topology), given a state ω, by

Vω(S) = {C ∈ C(A)|ω(S(C)) = 1}. (29)

Using the order preservation of S we indeed have that Vω(S) defines an upper
set, for if C ⊆ D, then S(C) ≤ S(D), so 1 = ω(S(C)) ≤ ω(S(D)) ≤ 1. This map
in fact lists the contexts C in which the classical proposition S(C) (in the logic
of Birkhoff and von Neumann) is true. In the new quantum logic, a proposition
S ∈ O(Σ) is:

• true with respect to ω if and only if Vω(S) = C(A).

• false with respect to ω if and only if Vω(S) = ∅.

So a proposition S is true if and only if ω(S(C)) = 1 for all C ∈ C(A). Using
the linearity of states, we then have that ¬S is true if and only if S is false, S∧ T
is true if and only if both S and T are true and S ∨ T is true if and only if either
S or T is true.

We wish to highlight an interesting similarity between this logical structure
developed by Landsman and the interpretation of quantum mechanics by Davis
[1]. Davis uses Boolean valued models of set theory to give a characterization of
the real numbers in terms of a commutating set of self adjoint operators using
the spectral theorem. When preforming a measurement, one assigns to some
observables a real value. Is this way it is impossible to assign a real numbers to
non commuting operators simultaneously. So one cannot measure operators
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that do not commute within one measurement. The specific set of commutating
self adjoint operators is then seen as a “reference frame”, relative to which a
measurement is done. An observer thus chooses one such a frame when doing
a measurement, which in turn determines the physics that are observed.

In the logic of Landsman, a similar thing is going on as a proposition cannot
consist only of a projection e (which, as in the quantum logic of von Neumann
and Birkhoff, corresponds to a statement about the outcome of a measurement)
and needs a specified classical context C as well. As the projections have to lie
in the Boolean algebra of projections of C, the classical context C takes on the
role of a reference frame similar to the Boolean reference frame of Davis.

Derivation of intuitionistic quantum logic

The logical structure for quantum mechanics has been postulated above and
provides, on its own, desirable properties to make it a good candidate for a
new quantum logic. We expand here on the derivation of this logical structure,
to provide a further argument for its soundness.

As in general the algebra A of observables is non-commutative, its Gelfand
spectrum cannot be computed. To overcome this problem, we consider all
commutative unital C∗-subalgebras of A which has a partial order defined by
inclusion, thus we can see it as a posetal category. The objects of this catergory
do have the desired property of being commutative, so we want to define some
map, that contains the relevant structure of A, but is defined pointwise, so
it preserves the desirable properties. We can do so by defining a functor A
from C(A) to Sets that sends objects to their corresponding set, forgetting the
algebra structure, and arrows to the inclusion map. This has thus invited us
to define the sheaf topos of C(A). We show in the first section of chapter 4

that the functor A indeed is a commutative C∗-algebra in terms of the relevant
definitions in the topos.

As a result we can obtain the Gelfand spectrum of the internalized algebra
of observables A. As we did with classical mechanics, we rely on the Gelfand
representation theorem to obtain again a notion of a quantum phase space,
i.e. of compatible observations. Due to the pointwise nature of A, we obtain
such a notion for each object C ∈ C(A). This Gelfand spectrum has an external
description, which is provided by O(Σ).

Thus the Gelfand representation theorem plays a crucial role in the process
of setting up a logic for quantum (but also classical) mechanics. The theorem is
well known and originates from the field of functional analysis. But, to apply its
concept within the quantum mechanical topos, a localic version of the theorem
is needed with a constructive proof. Johnstone formulated a localic version
[13] but with a non-constructive proof. Recently constructive proofs have been
given [14, 7]. Because of the crucial role of the Gelfand representation theorem,
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it will be studied extensively in the following chapters. Before concluding this
chapter, we provide some background on logic in sheaf toposes.
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2.4 logic in sheaf toposes

Sheaf toposes (such as T(A)) have a lot of structure that makes them convenient
to work with, especially for the construction of a first-order logic. Given some
topological space S a sheaf in Sh(S) can be defined in terms of only the topology
of S (whose structure characterizes locales), without mentioning its points. Thus
we can generalize the sheaf toposes of some topological space to a notion of
sheaf toposes, where we only have to specify a locale that does not necessarily
correspond to the topology of some space. The sheafification of a topological
space to a topos thus factors trough a sheafification of locales. In such a sheaf
topos of a locale, the internal locales have a simple external description as a
map of locales in Sets. We wish to give a brief overview of the relevant concepts
and constructs and recommend [10] for a more thorough treatment.

As we have seen C(A) is a topological space with the Alexandrov topology.
In general, for any topological space S we can consider its topology O(S) (the
set of all open subsets of S) as a lattice, partially ordered by inclusion, which
has finite meets and arbitrary joins. Furthermore, as meets and joins are given
by the set theoretic intersection and union respectively, one can show that the
infinite distributive law holds, which states that for any U ∈ O(S) and an
arbitrary family Vi ∈ O(S) we have

U ∧
∨

i

Vi =
∨

i

(U ∧Vi). (30)

This specific lattice structure has led to the notion of frames, i.e. a frame is a
lattice with finite meets, arbitrary joins and that satisfies the infinite distributive
law. It follows that frames have a top and bottom element, by considering the
empty meet and join respectively.

A map of frames then is a map of the underlying posets that preserves
order, finite meets and arbitrary joins. Then we can construct the category
Frm of frames and maps of frames. If we have two frames O(X) and O(Y)
being the topology of some spaces X and Y, we see that a continuous map
f : X → Y induces a map of frames which is just the inverse image map
f−1 : O(Y) → O(X). As this yields an arrow in the opposite direction we
thus can define a functor from the category of topological spaces to Frmop.
Hence we define the category Loc of locales to be Frmop. Hence locales are
the same as frames (but for a locale L, the corresponding frame is written as
O(L), although there does not need to be a particular topological space L for
which the frame O(L) is a topology) and a map of locales f : X → Y is a map
of frames f−1 : O(Y) → O(X). The functor has a right adjoint, but does not
give an equivalence between the category of topological spaces and Loc, as not
all topological spaces can be recovered from their topology. For example, in the
trivial topology of a nonempty set S the topology does not give you the points
of S.
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To give the internal description of frames (or locales) in some sheaf topos
Sh(L), with L a locale, we define a category whose objects are maps of frames in
Sets that have O(L) as domain. An arrow between such objects π−1

A : O(L)→
O(A) and π−1

B : O(L) → O(B), is a map of frames f−1 : O(B) → O(A) that
satisfies

f−1 ◦ π−1
B = π−1

A . (31)

We claim this category is dual to the category of internal frames in Sh(L).
To prove the claim, let X be a locale in Sh(L) and O(X) the corresponding

frame. As O(X) is an object of the sheaf topos of L, we obtain the frame
O(A) := O(X)(L) in Sets and thereby the external description of O(X) as a
map π−1 : O(L) → O(A). Conversely, given such a map of frames, we can
define a sheaf from it as the functor that sends U ∈ O(L) to the set {V ∈
O(A)|V ≤ π−1(U)}. Indeed, if O(A) = O(X)(L), then this sheaf is precisely
O(X). Furthermore, an arrow from π−1

A to π−1
B (represented by a map of frames

f−1 : O(B) → O(A)) defines an internal map of frames φ−1 : O(Y) → O(X)

in Sh(L) with O(Y)(L) = O(B) and O(X)(L) = O(A), which thus is a natural
transformation (φ−1

U : O(Y)(U) → O(X)(U))U∈O(L), whose components are
defined by the arrow in Sets that sends y ∈ O(Y)(U) ⊆ O(B) to f−1(y).

As a result, we have a straightforward external description of the internal
frames. This is used later on to obtain the sheaf of Dedekind real numbers
in a Sheaf topos. Applying this duality to the frame of the internal Gelfand
spectrum in the quantum mechanical topos T(A), we thus recover the frame
O(Σ) to provide the external description of the Gelfand spectrum as a map of
frames π−1

Σ : O(C(A)) → O(Σ), which sends some upper set ↑ C to the map
S(C,1) (see equation (19)).

In general, a locale A is a complete Heyting algebra, as one can define an
implication and negation operator for any two elements U and V of A as
follows

U ⇒ V =
∨
{W ∈ A|W ∧U ≤ V}

¬U =
∨
{W ∈ A|W ∧U = ⊥} = (U ⇒ ⊥).

(32)

In this way, the pointwise Heyting algebra structure of O(Σ) was uncovered.
We want to conclude this section with a note on the occurrence of intuitionistic

logic. The above result about the structure of O(Σ) is an example of the well
known theorem which state that for any object A of a topos, its set of subobjects
Sub(A), seen as a poset, is a Heyting algebra [10]. This has a corresponding
internal statement. One can define the notion of a Heyting algebra object
internally and show that for any object A of the topos, its power object P(A) is
an internal Heyting algebra. Moreover, for each object B we have the canonical
isomorphism between Sub(A × B) and Hom(B, P(A)) the arrows from B to
P(A), yielding a whole family of external Heyting algebra’s.

To provide a model for classical propositional calculus, Boole considered the
powerset of some set X and defined the natural structure of Boolean algebra’s
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on it. We see now that within the universe of a topos, the powerobject of
some object X is in general not a Boolean algebra, but a Heyting algebra due
to the above theorems. In that way toposes provide models for intuitionistic
propositional caculus.



3

T H E G E L FA N D R E P R E S E N TAT I O N T H E O R E M

The Gelfand representation theorem originally is a theorem in functional analy-
sis where it is known as the Gelfand-Naimark Theorem. To properly understand
the theorem, one first needs to get acquainted with the necessary concepts of
functional analysis. For the localic version of the representation theorem, some
background on locales is given. Equipped with the necessary background, we
will set out to prove both representation theorems.

3.1 background

Functional analysis

We start out with the notion of a Banach spaces and expand from there.

Definition 1. A Banach Space is a complete normed vector space A over C. i.e.
there is a norm ||.|| on A such that every Cauchy sequence (xn)n in A has a limit
x = limn→∞ xn in A .

This notion extends naturally to that of an algebra.

Definition 2. A Banach Algebra is a Banach space A whose elements form an algebra
such that the algebra multiplication satisfies for all x, y ∈ A

||xy|| ≤ ||x||||y||. (33)

Definition 3. A Banach algebra is called unital if it has a unit element e with respect
to the multiplication. The elements of a unital Banach algebra that have inverses are
called invertible.

Note that although not necessary, it is common practice to rescale the defini-
tion of the norm such that ||e|| = 1.

Proposition 4. The set G(A) of all invertible elements of A is open.

17
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Proof. Let a ∈ A be invertible. Let b be in the open ball B(a, 1
||a−1|| ). Then

||a−1(b− a)|| ≤ ||a−1|| ||b− a|| < 1. Now for x with ||x|| < 1, e− x is invertible
with inverse just the geometric series of x: ∑∞

n=0 xn. Indeed

(e− x)
∞

∑
n=0

xn =
∞

∑
n=0

xn −
∞

∑
n=1

xn

= x0 = e.

(34)

So e− (−a−1(b− a)) is invertible. Hence b = a(e− (−a−1(b− a)) is a product
of invertible elements, hence b itself is invertible. So the entire ball B(a, 1

||a−1|| )

is contained in G(A). So G(A) is open.

Definition 5. The spectrum of x ∈ A is

σ(x) = {λ ∈ C|λe− x is not invertible}. (35)

For λ 6∈ σ(x) we define the resolvent of x to be the operator

Rx(λ) = (λe− x)−1. (36)

The spectral radius of x is

ρ(x) = sup{|λ| |λ ∈ σ(x)}. (37)

Proposition 6. Let A be a Banach algebra. Then σ(x) is nonempty for any x ∈ A.

Proof. Given x ∈ A the function Rx(λ) is analytic on C \ σ(x): Let µ, λ ∈
C \ σ(x), then

Rx(λ)(µ− λ)Rx(µ) = Rx(λ)((µe− x)− (λe− x))Rx(µ)

= Rx(λ)− Rx(µ).
(38)

So

lim
µ→λ

Rx(λ)− Rx(µ)

λ− µ
= −Rx(λ)

2. (39)

Now if σ(x) would be empty, Rx would be an entire analytic function. By
Liouville’s theorem it then must be constant. And since ||Rx(λ)|| = |λ|−1||(e−
λ−1x)−1|| → 0 as λ→ ∞, Rx is the constant 0 function, which is a contradiction
since 0 clearly is not an inverse of any element.

Notice that, by use of the geometric series, σ(x) is a closed subset of the disc
{λ| |λ| ≤ ||x||}, so ρ(x) ≤ ||x||. In fact we can be more precise.

Proposition 7. ρ(x) = limn→∞ ||xn||1/n.
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Proof. Observe that

(λe− x)
n−1

∑
j=0

λjxn−1−j = e

(
n

∑
j=1

λjxn−j −
n−1

∑
j=0

λjxn−j

)
= eλn − xn.

(40)

So if eλn − xn is invertible with inverse a, then a ∑n−1
j=0 λjxn−1−j is the inverse of

eλ− x. Hence if λ ∈ σ(x), that is, λe− x is not invertible, then λn ∈ σ(xn). So
ρ(x)n ≤ ρ(xn) ≤ ||xn|| hence ρ(x) ≤ lim infn ||xn||1/n.
For the other inequality let φ be a continuous linear functional on A. In
proposition 8 we have shown when Rx is analytic. Thus the composition
φ ◦ Rx(λ) is analytic for |λ| > ρ(x). In this region we can write φ ◦ Rx(λ) =

∑∞
n=0 λ−(n+1)φ(xn) by a Laurent series expansion around λ = ∞. This is

thus a convergent sum, hence all terms must be bounded uniformly. That
is, there is a bound Cφ ∈ R such that |λ−(n+1)φ(xn)| ≤ Cφ. By the uniform
boundedness principle we thus have a bound C > 0 such that |λ|−n||x|| ≤ C.
So lim supn ||xn||1/n ≤ ρ(x). This concludes the proof.

Banach algebras are determined by their non invertible elements in the
following sense.

Proposition 8 (Gelfand Mazur theorem). A Banach algebra in which every nonzero
element is invertible is isomorphic to C.

Proof. Suppose A is a Banach algebra in which every nonzero element is
invertible. We claim that we can write each x ∈ A as eλ for λ ∈ C. The natural
isomorphism then follows immediately.
Suppose x 6∈ eC. Then for all λ ∈ C we have eλ− x 6= 0. Hence by assumption
eλ− x is invertible for all λ ∈ C. Thus σ(x) is empty, contradicting proposition
6.

There also is a notion of spectrum for an entire commutative unital Banach
algebra.

Definition 9. Let A be a commutative unital Banach algebra. The spectrum of A,
denoted by σ(A) is the set of all nonzero homomorphisms from A to C. C(σ(A)) is
the space of continuous complex-valued functions on σ(A).

The structure of σ(A) will become clear from the following proposition.

Proposition 10. For any f ∈ σA we have f (e) = 1 and | f (x)| ≤ ||x|| for all x ∈ A.

Proof. Choose an element x ∈ A such that f (x) 6= 0. Then f (x) = f (ex) =

f (e) f (x) so indeed f (e) = 1.
For the second statement, first observe that it is equivalent to the implication
if ||x|| < |λ| then | f (x)| < |λ|. So suppose ||x|| < |λ|. As in the proof of
proposition 4 we derive that λe− x is invertible. Now notice that for invertible
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elements a ∈ A we have 1 = f (e) = f (a−1a) = f (a−1)h(a), so f (a) 6= 0. Thus
f (λe − x) = λ − f (x) 6= 0. Thus | f (x)| − |λ| ≤ |λ − f (x)| = r > 0 that is
| f (x)| < |λ|, as desired.

Now, let A∗ be the space of bounded complex valued linear functionals on
A with norm || f ||A∗ = supx∈A−0

| f (x)|
||x|| . Then the above proposition gives that

σ(A) is a subset of the closed unit ball in A∗. Imposing the weak∗ topology
as a subset of A∗, σ(A) is a topological space. Since the defining properties
of σ(A) are closed under pointwise limits, σ(A) is a closed subset of the unit
ball in A∗. Hence, we can apply the Banach-Alaoglu theorem, which gives that
σ(A) is a compact Hausdorff space.

A natural norm on C(σ(A)) is the supremum norm ||.||sup. For x ∈ A we
can define a function x̂ ∈ C(σ(A)) in a natural way.

Definition 11. Let x ∈ A. Define x̂ : σ(A)→ C by

x̂(h) = h(x) (41)

The map ΓA sending x to x̂ is called the Gelfand transform in A.

One may wonder when the Gelfand transform is isometric, as this is part
of the statement of the Gelfand-Naimark theorem. First we demonstrate how
the norm ||.|| on a commutative unital Banach algebra and the sup norm of a
Gelfand transform ||̂.||sup are related.

Lemma 12. Let A be a commutative unital Banach algebra and let x ∈ A. Then

range(x̂) = σ(x). (42)

This has the immediate consequence

||x̂||sup = ρ(x). (43)

Proof. This result will follow from the claim that x is not invertible if and only if
x̂(h) = 0 for some h ∈ C(σ(A)). Then we have, given some x̂(h) = λ ∈ C, that
λ̂e− x(h) = 0 which, by the claim, holds if and only if λe− x is not invertible.
The latter is equivalent to stating λ ∈ σ(x).
To prove the claim we will need some algebra and Zorn’s lemma. The reader
is referred to [8] for the necessary background in algebra. The proof is a
concatenation of the following equivalences.

• x is not invertible if and only if the ideal generated by x is proper.
Indeed if x is not invertible, the ideal generated by x will not contain e.
And if x is invertible, then the ideal generated by x will be A since it will
contain xx−1 = e.
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• The ideal generated by x is proper if and only if x is contained in a
maximal ideal.
This follows from Zorn’s lemma. Suppose the ideal generated by x is
proper. Define a poset of all proper ideals containing x, which is ordered
by the inclusion relation. For each chain I1 ⊆ I2 ⊆ ... in this poset, define
M =

⋃
i Ii. Clearly M is an upper bound for this chain. An M itself is an

element of the poset; M is proper because e 6∈ Ii for all i. M is an ideal and
M contains x. By Zorn’s lemma the entire poset has a maximal element,
which thus is a maximal ideal containing x. The converse is trivial.

• x is contained in a maximal ideal if and only if x̂(h) = 0 for some
h ∈ C(σ(A)).
All maximal ideals are kernels of h ∈ C(σ(A)) and all kernels of h ∈
C(σ(A)) are maximal ideals. To prove the first statement, let M ⊆ A be
a maximal ideal. By the first equivalence M cannot contain invertible
elements. So M ⊆ A \ G(A) and the latter is closed by proposition 4. So
M ⊆ M ⊆ A \ G(A), hence by maximality of M, M = M, that is, M is
closed.
Then it is easy to check that A/M is a Banach algebra with norm ||[x]|| =
in f {||x + m|| |m ∈ M}. Let I ⊆ A/M be an ideal and let π : A → A/M
be the canonical projection. Then the inverse image π−1(I) is an ideal
in A. By construction M ⊆ π−1(I) ⊆ A so by maximality of M either
π−1(I) = M, in which case I is just {0}, or π−1(I) = A in which case
I = A/M. So any y ∈ A/M has to be invertible, otherwise it would
generate a non trivial ideal by the first equivalence above. Thus by
proposition 8 we have the isomorphism φ : A/M → C. Now m ∈ M if
and only if π(m) = 0 if and only if φ ◦ π(m) = 0, so M is the kernel of
φ ◦ π. Maps in σ(A) are uniquely determined by their kernel. Indeed
suppose ker(h) = ker(h′) then for any a ∈ A, a− h(a)e ∈ ker(h). So also
h′(a− h(a)e) = 0, that is h′(a) = h(a). This proves the first statement.
To prove the second statement we first note that for any h ∈ σ(A the
kernel of h is a proper ideal since h(e) = 1 6= 0. Then we observe that the
kernel of h is a maximal ideal, since adding any element a ∈ A \ ker(h) to
the kernel would give us the entire algebra A. Indeed for b ∈ A we have
b = a h(b)

h(a) + (b− a h(b)
h(a) ). And b− a h(b)

h(a) ∈ ker(h) so indeed A = aC+ ker(h),
that is, ker(h) is a maximal ideal.

The following lemma provides a powerful tool the determine whether the
Gelfand Transform is isometric.

Lemma 13. Let A be a commutative unital Banach algebra and let x ∈ A. Then
||x̂||sup = ||x|| if and only if ||x2k || = ||x||2k

for all k ∈ N.
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Proof. Suppose ||x̂||sup = ||x||. Then ||x2k || ≤ ||x||2k
= ||x̂||2k

sup = ||x̂2k ||sup ≤
||x2k ||, where the last inequality is a direct consequence of lemma 12.
Now suppose ||x2k || = ||x||2k

for all k ∈ N. We claim ||x̂||sup = limk→∞ ||x2k ||1/2k
=

||x||. To prove the claim, we again use lemma 12 to conclude that ||x̂||sup = ρ(x).
Then by applying proposition 7 we immediately get the desired result.

To generalize the concept of complex conjugation to general algebras, we
define the involution.

Definition 14. An involution on an algebra A is an automorphism (.)∗ : A → A
such that for all x, y ∈ A and λ ∈ C

(x + y)∗ = x∗ + y∗, (λx)∗ = λx∗, (xy)∗ = y∗x∗, x∗∗ = x. (44)

An algebra which has an involution is called a ∗-algebra and a Banach ∗-algebra in
which

||xx∗|| = ||x||2 (45)

holds, is called a C∗-algebra.

In C∗-algebras we have ||x∗|| = ||x|| because ||xx∗|| = ||x||2 ≤ ||x||||x∗||, so
||x|| ≤ ||x∗|| and thus ||x∗|| ≤ ||x∗∗|| = ||x||.
Definition 15. Given Banach algebras A and B. A homomorphism φ from A to B
is a bounded linear map φ : A → B such that for all x, y ∈ A φ(xy) = φ(x)φ(y).
A ∗-homomorphism from ∗-algebra A to ∗-algebra B is a homomorphism φ such
that for all x ∈ A φ(x∗) = φ(x)∗. A ∗-homomorphism that is bijective is called a
∗-isomorphism.

Lemma 16. Commutative C∗-algebras are symmetric, i.e. for all x in a commutative
C∗-algebra x̂∗ = x̂ .

Proof. The proof of this lemma relies on two claims: The first is that a commu-
tative Banach algebra A is symmetric if and only if for x ∈ A we have x = x∗

implies x̂ is real valued. Secondly, we claim that the latter indeed holds in
commutative C∗-algebras.
To prove the first claim, suppose A is symmetric and assume x = x∗ ∈ A. Then
x̂ = x̂∗ = x̂, so x̂ is real. Now suppose x = x∗ implies x̂ is real. Given any
y ∈ A, define u = 1

2 (y + y∗) and v = 1
2i (y− y∗). Then u = u∗ and v = v∗ so

both û and v̂ are real. Hence ŷ∗ = ̂(u + iv)∗ = û− iv̂ = û + iv̂ = ŷ.
To prove the second claim, suppose x = x∗ ∈ A with A a commutative C∗-
algebra. Let h ∈ C(σ(A)). Then write x̂(h) = h(x) = α + iβ with α, β ∈ R.
Define z = x + ite with t ∈ R. Then h(z) = α + i(β + t). As a consequence of
lemma 12 |h(z)| ≤ ||z||. So in particular

|h(z)|2 = α2 + β2 + 2βt + t2 ≤ ||z||2 = ||z∗z|| = ||x2 + t2e|| ≤ ||x2||+ t2, (46)

must hold for all t. This forces β = 0 so x̂ is real valued.

We are now equipped with everything we need to state and prove the
Gelfand-Naimark Theorem.
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Stone theory

For the localic version of the Gelfand Duality, we need a slight addition to our
terminology.

Definition 17. A Stone C∗ algebra A is a Q-algebra with multiplicative unit e which
has the following properties

1. A has a partial order ≥ which satisfies a2 ≥ 0 for every a ∈ A.

2. For every a ∈ A there exists an integer n such that ne ≥ a (A is Archimedean).

3. If e ≥ na for all positive integers n, then 0 ≥ a.

4. A is complete in the well defined norm

||a|| = inf{q ∈ Q+|qe ≥ a and qe ≥ −a}. (47)

The statement that the norm is well defined follows fromA being Archimedean.
One can easily verify that this norm is indeed a proper well defined norm,
which satisfies for all a, b ∈ A and q ∈ Q

||a + b|| ≤ ||a||+ ||b||, (48)

||ab|| ≤ ||a|| ||b||, (49)

||e|| = 1, (50)

|| − a|| = ||a||, (51)

||qa|| = q||a||. (52)

Note that property (3) makes sure that ||a|| = 0 implies a = 0.
For a maximal ideal M of a Stone C∗-algebra A we can define a function
||.||M : A → R by

||a||M = inf{||b|| |(a− b) ∈ M}, (53)

which induces a norm on the quotient ring A/M. Indeed ||1||M = 1; 1− 1 =

0 ∈ M, so ||1||M ≤ 1. Now suppose ||b|| < 1 and (1− b) ∈ M. As we have
seen (1− b) is invertible for ||b|| < 1, so if (1− b) ∈ M, we must have M = A,
contradicting maximality of M. And clearly ||M + a||M = 0 if and only if a ∈ M
(here M + a denotes the equivalence class in A/M represented by a).

Accordingly, we can now define the analogue to the Gelfand transform.

Definition 18. Let A be a Stone C∗-algebra and max(A) the set of maximal ideals
of A. We denote the Hausdorff space of bounded functions from max(A) to C by
B(max(A)). The Stone Gelfand transform γA : A → B(max(A)) is defined by

γA(a) = â : max(A)→ C, (54)

with
â(M) = M + a. (55)

Note that by the Gelfand Mazur theorem (proposition 8), the right hand side of the
above equation now is identified with some complex number.
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The supnorm ||â||sup = sup{||a||M|M ∈ max(A)} then is bounded by ||a||
since 0 ∈ M for any M ∈ max(A), which implies ||a||M ≤ ||a||. The statement
that this bound is attained, i.e. that the Stone Gelfand transform is isometric, is
again a consequence of the axiom of choice. But first we need another lemma.

Lemma 19. Let A be a Stone C∗-algebra and a ∈ A with ||a|| = 1, then either e− a
or e + a is not invertible in A.

Proof. Suppose both e + a and e− a are invertible, then their product e− a2 is
invertible as well. So a 6= ±e. Furthermore, 0 ≤ a2 ≤ e||a||2 = e since ||a|| = 1.
So ||a2|| < 1, thus a2 ≤ (1− ε)e for some real 1 > ε > 0. Now the sequence

(c)m = −e
m

∑
n=0

1 · 3 · · · (2n− 3)
2n!

εn, (56)

thus forms a Cauchy sequence in A, and its limit equals the square root of
e(1 − ε). As the partial sum is decreasing for increasing m we have |a| ≤√

1− εe ≤ (1− 1
2 ε)e so ||a|| ≤ || |a| || ≤ 1− 1

2 ε < 1, a contradiction.
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3.2 the representation theorems

The Gelfand representation in functional analysis

Theorem 20 (Gelfand-Naimark). Let A be a commutative unital C∗-algebra. Then

A ∼= C(σ(A)) (57)

by the isometric ∗-isomorphism ΓA.

Proof. First, we show ΓA is isometric.
Let x ∈ A, then define y = x∗x. We show by induction that ||y2k || =

||y||2k
. Indeed y = y∗ which gives ||y2|| = ||y∗y|| = ||y||2. Then ||y2k || =

||(y2k−1
)∗y2k−1 || = ||y2k−1 ||2 = ||y||2k

, using the induction hypothesis in the last
equality.
Then using lemma 13 we have ||ŷ||sup = ||y||. Then the defining property of
C∗-algebras, equation (45), gives us that

||x∗x|| = ||x||2 = ||y|| = ||ŷ||sup = ||x̂∗x||sup = ||(|x̂|)2||sup = ||x̂||2sup. (58)

The second last equality follows from h(xx∗) = h(x)h(x∗) = h(x)h(x) = |h(x)|2
for any h ∈ σ(A). Since norms non negative we get ||x|| = ||x̂||sup. Hence ΓA
is an isometry.

Second, we show that ΓA is a ∗-isomorphism.
By lemma 16 our commutative unital C∗-algebra A is symmetric. That is x̂∗ = x̂,
so ΓA is a ∗-homomorphism.
For the injectivity of ΓA suppose x̂ = ŷ. Then ||x̂− y||sup = ||x̂− ŷ||sup = 0 =

||x− y|| since the Gelfand transform is isometric. Thus, since ||.|| is a proper
norm, we must have x− y = 0, that is x = y. Hence ΓA is injective.
Finally, we need to show that ΓA is surjective. This follows from the fact that
Im(ΓA) is closed, because ΓA is an isometry, and ΓA(A) is dense in C(σ(A)).
The latter claim about density is proved by application of the Stone-Weierstrass
theorem: Indeed, if x 6= y then x̂ 6= ŷ, so ΓA separates points; ΓA(A) is
closed under complex conjugation because A is symmetric by lemma 16; And
ΓA(A) contains all constants since λ̂e = λ for all λ ∈ C. We thus obtain
ΓA(A) = C(σ(A)). This concludes the proof.

Note that the proof relies on the axiom of choice, since in lemma 12 Zorn’s
lemma is used.

The Gelfand representation in Stone theory

Theorem 21 (Stone-Gelfand-Naimark). Let A be a Stone C∗-algebra. Then

A ∼= B(max(A)) (59)

by the isometric isomorphism γA.
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Proof. Again, we start out by showing that the Stone Gelfand transform γA is
isometric, and injectivity will immediately follow.
Let a ∈ A and assume without loss of generality that ||a|| = 1 (since other
cases can be reduced to this one by multiplication with the scalar 1/||a||).
By lemma 19 either e + a or e − a is invertible. By use of Zorn’s lemma
as in the proof of lemma 12 this noninvertible element generates a proper
ideal, which is contained in some maximal ideal M. So ||a||M = 1 hence
1 = ||a||M ≤ ||â|| ≤ ||a|| = 1. That is ||â|| = ||a||.
Injectivity follows now from the fact that if â = b̂ then 0 = ||â− b|| = ||a− b||
and the norm is proper, so a = b.
Surjectivity again follows by applying the Stone-Weierstrass theorem: The
Stone Gelfand transform separates points and is isometric and A is complete,
so its image is a closed subalgebra of B(max(A)), so it must be the whole of
B(max(A)).
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3.3 gelfand duality

These theorems can be formulated as a duality, yielding the well known Gelfand
duality. The above results can be extended to a duality by considering the
converse of the notion that any continuous map f : B→ A induces a homomor-
phism C(A)→ C(B) by composition with f .

The duality arises from the fact that any homomorphism φ : C(A)→ C(B) is
induced by a unique continuous map f : B → A: Let b ∈ B and let M be the
maximal ideal containing b. M determines a homomorphism b∗ : C(B) → R

as we have seen. The composition β ◦ φ : C(A) → R then has the maximal
ideal N of C(A) as a kernel, which in turn defines a unique point a ∈ A. So
we can define f : B → A by sending b to f (b) = a. Notice that similarly f (b)
defines a homomorphism f (b)∗ . Since for any g ∈ C(A) we have g( f (b)) =
f (b)∗(g) = b∗(φ(g)) = φ(g)(b), f indeed defines a homomorphism. Now let
U = g−1(R− {0}) for g ∈ C(A). Then f−1(U) = φ(g)−1(R− {0}). So f is
continuous, thus establishing the desired result.
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A C O N S T R U C T I V E P R O O F

To derive the quantum logic proposed by Landsman, a constructive version of
the Gelfand representation theorem is needed, which can be applied internally
in the quantum mechanical topos T(A). In the literature, constructive proofs
can indeed be found. The two most used proofs are by Banaschewski and
Mulvey [14] and by Coquand and Spitters [7]. The proof of Banaschewski and
Mulvey is comprehensive, but lengthy, and refers back to numerous articles [15,
16, 17]. In their proof Barr’s theorem is used which states that if a geometric
statement can be proved from a geometric theory, using classical logic and the
axiom of choice, it can also be proved constructively [18]. The proof of Barr’s
theorem is non-constructive and one might object that this compromises the
constructivity of Banaschewski and Mulvey’s proof. However, Barr’s theorem
can be applied outside the topos to some geometric statement, thus providing
the existence of a constructive proof of that statement. This constructive proof
can then be used internally to prove the statement within the topos.

Regardless, Coquand and Spitters saw the use of Barr’s theorem in the proof
of Banaschewski and Mulvay as a motivation to give an alternative proof of the
Gelfand representation theorem, by reducing the theorem to apply only to real
C∗-algebra’s as in Stone’s version of the Gelfand representation theorem. This
reduction allows for a direct and concise proof. However the proof given in [7]
is too direct and concise for our taste, so in this thesis we will work out their
proof in more detail for the quantum mechanical topos T(A).

We have to start out by defining the necessary concepts such as C∗-algebra’s
and locales in the topos T(A). From the previous section one can distill the
structure of the proof of the representation theorems: The main ingredient is
establishing that the Gelfand transform is isometric, this immediately yields
injectivity from the norm property. Finally, surjectivity follows from the Stone-
Weierstrass theorem. We will use the same structure here.

29
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4.1 internal setup

In the quantum mechanical topos T(A) we have a real numbers object that is
isomorphic to the functor R which is defined by sending an object C ∈ C(A) to
the continuous functions from C toR because T(A) is a sheaf topos (see theorem
2 of chapter VI in [10]). However, on C(A) with the Alexandrov topology, any
continuous function f to R is locally constant: Let U be an open of C(A),
that is an upper set of elements of the preorder C(A). Let C, D ∈ U with
C ≤ D and let V ∈ R be an open, such that f (C) ∈ V. Since f is continuous,
f−1(V) is open and contains C. The smallest open in C(A) containing C is
↑ C = {C′ ∈ C(A)|C ≤ C′}. Since C ≤ D we obtain f (D) ∈ V. For all ε > 0 we
can take V = ( f (C)− ε, f (C) + ε) so that f (C)− ε < f (D) < f (C) + ε. Thus
we conclude f (D) = f (C). Hence, the Dedekind reals object is given by the
constant functor R : C 7→ R.

The terminal object is the constant functor 1 : C 7→ ∗ where ∗ is a singleton.
Given an object A of T(A) we can define it to be a commutative ∗-algebra if
there are arrows

· : C× A→ A (scalar mulitplication),

+ : A× A→ A (addition),

× : A× A→ A (multiplication) and

∗ : A→ A (involution),

(60)

that satisfy the usual axioms (as in definition 14). The algebra A is unital if it has
a unit 1A : 1→ A, with 1 the terminal object, such that ×◦ (idA, 1A) ◦ 〈idA, f 〉 =
idA, where f is the unique arrow A→ 1. 0A is just the zero constant in A which
satisfies a similar condition for addition and multiplication.

Although we are working in a topos, to maintain a clear image of the con-
structions, from now on we will mostly refer the the contructed (sub)objects as
(sub)sets and just denote 1A as e. To internalize the axioms on the norm and
completeness, we start out by defining a seminorm and then formulate a notion
of Cauchy sequences and thus obtain a corresponding completeness statement.

We say a ∗-algebra A is seminormed when we have a map N : Q+ → P(A),
where P(A) is the set of subsets of A, which satisfies the conditions for all
p, q ∈ Q+, a, b ∈ A and λ ∈ C:

1. ∃r ∈ Q+ : a ∈ N(r),

2. if a ∈ N(p) and b ∈ N(q), then a + b ∈ N(p + q) and ab ∈ N(pq),

3. 0 ∈ N(q),

4. if a ∈ N(q), then a∗ ∈ N(q),

5. if q > 1, then e ∈ N(q),

6. a ∈ N(q) if and only if ∃r < q : a ∈ N(r).
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Similarly we can define a Cauchy sequence on a seminormed commutative
∗-algebra A, which is a map C : N→ P(A) that satisfies

1. ∀n ∈ N∃a ∈ A : a ∈ C(n)

2. ∀k ∈ N∃m ∈ N∀n > m∀n′ > m, we have ∀a ∈ C(n)∀b ∈ C(n′) that
a− b ∈ C(1/k).

This Cauchy sequence is said to converge to an element b ∈ A if we have

∀k ∈ N∃m ∈ N∀n > m , any a ∈ C(n) satisfies a− b ∈ C(1/k). (61)

A seminormed commutative ∗-algebra A is called complete if every Cauchy
sequence converges to a unique element b ∈ A.

The seminorm of such a complete seminormed commutative ∗-algebra A
then is a norm since if for an element a ∈ A we have ∀q ∈ Q+ : a ∈ N(q) then
by uniqueness of the convergent limits of Cauchy sequences we must have
a = 0. The norm of an element a ∈ A is the Dedekind real determined by the
upper cut N−1({a}){q ∈ Q+|a ∈ N(q)} which we shall denote by ||a||.

We thus obtain the internal definition of commutative C∗-algebra’s: a A
commutative C∗-algebra in the quantum mechanical topos T(A) is a complete
normed commutative ∗-algebra with the additional condition that a ∈ N(q) if
and only if a∗a ∈ N(q2), that is ||a∗a|| = ||a||2.

So what object is a commutative C∗-algebra in T(A)? The obvious functor to
consider is

A : C(A)→ Sets

A(C) = C

A(C → D) = C ↪→ D , the inclusion map.

(62)

Indeed, all operation in A are natural transformations, whose components
are defined pointwise by the corresponding operation in each commutative
C∗-subalgebra of A. This is also where the commutativity follows from (note
that A in general is not commutative), since all C ∈ C(A) are commutative. The
unit of A is the natural transformation, whose components are (1A)C = idC.
The norm is directly inherited from A. And finally, completeness also follows
from the completeness of each C ∈ A: A Cauchy sequence S : N → P(A)

describes a sequence (S(n))n of subobjects of A. As A is a functor, the S(n)
are natural transformations with components Cn := (S(n))C which are just
subsets of C. Axiom 2 of the internal definition of Cauchy sequences then gives
that any sequence (cn)n where cn is chosen in Cn is a Cauchy sequence in C
in the external sense. Externally, we can use the Axiom of countable choice
to choose such a sequence, and, since all C ∈ C(A) are complete, obtain it’s
limit b ∈ C. Axiom 2 now insures that this limit is independent on the choice
of the sequence and thus provides us with the internal convergence. Thus A is
complete.
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Let A be a commutative C∗ algebra and Asa = {a ∈ A|a∗ = a} the set of self
adjoint elements of A. So Asa is a complete commutative real Banach algebra.
We will prove that Asa is a real C∗-algebra. For this we rely on a theorem by
Palmer [19], which states states that a real Banach algebra B is a real C∗-algebra
if for all a, b ∈ B we have ||a||2 ≤ ||a∗a + b∗b||. We will prove the latter as a
proposition, since we will use this result later on as well.

Proposition 22. For a, b ∈ Asa we have ||a2|| ≤ ||a2 + b2||.

Proof. Define c = a + ib. Then c∗c = a2 + b2, so ||a2 + b2|| = ||c∗c|| = ||c||2,
where the last equality is a property of C∗-algebra’s. Furthermore, ||a|| =
|| c+c∗

2 || ≤
1
2 (||c||+ ||c∗||) = ||c|| as ||c∗|| = ||c||. Finally, ||a2|| = ||a∗a|| because

a is self adjoint, so ||a2|| = ||a||2 ≤ ||c||2 = ||a2 + b2||.

To conclude this subsection, we will give the internal definition of a locale
and introduce the relevant locales for the representation theorem. A Locale L is
a lattice such that for each l ∈ L and U ⊆ L

1. L contains
∨

U and
∧

U , and

2. l ∧∨U =
∨{u ∧ l|u ∈ U}.

A map of locales f : L→ M is a mapping f−1 : M→ L that preserves finite
meets and arbitrary joins. A point of a locale L is a map of locales l : 1 → L,
where 1 has the one point space topology.

A locale is said to be compact provided that for any subset U ⊆ L with∨
U = > there is a finite subset U′ ⊆ U such that

∨
U′ = >. On any locale, one

can define the binary rather below relation � by writing k � l if and only if there
is m ∈ L such that k ∧m = ⊥ and l ∨m = >, with ⊥ and > the bottom and top
elements of the lattice respectively. The binary completely below relation � is
defined by writing k � l if and only if there is a family mq indexed by rationals
0 ≤ q ≤ 1 such that m0 = k, m1 = l and mp � mq whenever p < q.

A locale L is said to be completely regular if for any l ∈ L we have

l =
∨
{k ∈ L|k � l}. (63)

The spectrum of a commutative C∗-algebra A is obtained by considering the
propositional geometric theory of multiplicative linear functionals [20, 21, 14].
The Lindenbaum locale generated by this theory is said to be the spectrum of the
commutative C∗-algebra A and is denoted by A. The elementary propositions
of this theory are a ∈ (r, s) for each a ∈ A and open rectangle (r, s) of the
complex plane. The axioms generating the Lindenbaum locale are

1. 0 ∈ (r, s) if and only if 0, the element of C lies in (r, s),

2. 1 ∈ (r, s) if and only if 1 lies in (r, s),

3. if a ∈ (r, s) and a′ ∈ (r′, s′), then a + a′ ∈ (r + r′, s + s′),
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4. a ∈ (r, s) implies λa ∈ (λr, λs) for λ ∈ C,

5. a ∈ (r, s) implies a∗ ∈ (r, s),

6. if ||a|| < 1 then a ∈ (−1, 1),

7. if (r, s)� (r′, s′) ∨ (r′′, s′′) and a ∈ (r, s), then a ∈ (r′, s′) or a ∈ (r′′, s′′),

8. a ∈ (r, s) if and only if
∨

(r′,s′)�(r,s) a ∈ (r′, s′), and

9. if aa′ ∈ (r, s), then
∨

i a ∈ (ri, si) ∧ a′ ∈ (r′i , s′i) for every family of pairs
((ri, si), (r′i , s′i))i whose product family ((ri, si)× (r′i , s′i))i covers (r, s) in C.

The locale MFn(A) is thus obtained by all finite conjunctions and arbitrary
disjunctions of these propositions modulo equivalence, which are ordered by
entailment.

The locale that is used to derive the intuitionistic quantum logic [6], is of
a similar form, but we will define it from different generators, following the
notation of [7]: The locale MFn(Asa) generated by symbols D(a) for a ∈ Asa

and relations

1. D(1) = >

2. D(−a2) = ⊥

3. D(a + b) ≤ D(a) ∨ D(b)

4. D(a) ∧ D(−a) = ⊥

5. D(ab) = (D(a) ∧ D(b)) ∨ (D(−a) ∧ D(−b))

6. D(a) =
∨

q∈Q+ D(a− r)

for all a, b ∈ Asa. Observe that the multiplicative linear functionals of norm ≤ 1
on A or Asa are models of the above theories, hence they form the points of the
corresponding locales. The proposition D(a) can be interpreted as the open
set {φ ∈ MFn|φ(a) > 0}. Notice that since Q is dense, MFn(Asa) is completely
regular, by axiom 6.

We wish to show that the locales MFn(A) and MFn(Asa) are also compact.
To do so, we must first gain more insight in their structure. We interpret the
element a ∈ (r, s) in MFn(A) by the element

D(a1 − r1) ∧ D(s1 − a1) ∧ D(a2 − r2) ∧ D(s2 − a2) (64)

where a = a1 + ia2 with a1, a2 self adjoint, and (r, s) = (r1 + ir2, s1 + is2). Let
F be a model of MFn(A). Then we can assign to this model a multiplicative
linear functional f [20], by

r < f (a) < s , whenever F |= a ∈ (r, s). (65)
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Conversely, let f be a multiplicative linear functional. Then we determine a
model F by making a ∈ (r, s) true whenever r < f (a) < s. To check whether
this correspondence is an isomorphism, we need to observe that axioms 1-5
express that f indeed is a linear functional, axiom 6 demands the norm of
the functional to be bounded by 1 and axiom 7 and 8 express the lower and
upper cuts are open and have a corresponding Dedekind real. The details are
worked out in [21]. As for axiom 9 thus makes MFn(A) a closed sublocale
of the dual space A∗ of multiplicative linear functionals on A. The above
correspondence embeds MFn(A) into the closed unit ball of the dual space A∗.
By a constructive version of Alaoglu’s [20] theorem, the latter is compact. As
MFn(A) is a closed sublocale, it is compact as well.

Now we define the Gelfand transform by sending and element a ∈ Asa to the
map of locales â : MFn(Asa)→ R defined by

â−1(r, s) = D(a− r) ∧ D(s− a). (66)

Finally, we need to define a norm on the space R(MFn(Asa)) of maps of locales
from MFn(Asa) to R. We do so by assigning to â the Dedekind real ||â|| defined
by the upper cut {q ∈ Q|D(q− a) ∧ D(q + a) = 1}. This defines a seminorm.
We have to show that this is a proper norm as this is crucial to show that the
Gelfand transform is injective and separates points. Fortunately, the bottom
element of R(MFn(Asa) is the map 0 : MFn(Asa) → R defined by 0−1 which
sends every open interval (r, s) in R to the bottom element ⊥ of MFn(Asa).
Now, we will see later on that for any upper real r, D(−r) = ⊥ so we have
0 = 0̂ in R(MFn(Asa)). For any q ∈ Q+ we have D(q− 0) ∧ D(0 + q) = 1 so
indeed ||0̂|| = 0. Once we have proven the isometry of the Gelfand transform
we have that ||â|| = 0 implies ||a|| = 0, which in turn implies a = 0. That is all
that is needed.

Now we can set out to prove the localic Gelfand respresentation theorem 21

internally with respect to the quantum topos T(A).
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4.2 isometry

The approach to showing that the Gelfand transform defined previously is
isometric is to define an ordering on Asa with respect to the set of all squares P.
Clearly P is closed under multiplication, we show that it is also closed under
addition, which we prove together with some other fundamental properties
concerning squares.

Proposition 23. Let a ∈ Asa. If ||1− a|| ≤ 1 then a is a square.

Proof. We will construct a sequence (bn)n in Asa and a sequence (qn)n in
Q, where n ∈ N, and prove that the sequence ((bn)2) converges to a by
completeness. The sequence (bn)n is constructed by the Taylor series for√

a =
√

1− (1− a) around 1− a = 0. Observe that the Taylor series is given
by √

1− (1− a) = 1− 1− a
2
− (1− a)2

8
− (1− a)3

16
− 5(1− a)4

128
− ... (67)

So we define a0 = 0 and an =
(1−a)+a2

n−1
2 = 1− bn, and that we wish to show

that the sequence ((1− an)2)n converges to a.
The sequence (qn)n in Q has to estimate the norm of an. Observe that we have

||an|| ≤ (1 + ||an−1||2)/2. So define q0 = 0 and qn =
1+q2

n−1
2 . Then by induction

we immediately have ||an|| ≤ qn for all n. Now we have

(1− an)
2 − a = (1− a + a2

n)− 2an

= 2(an+1 − an).
(68)

Furthermore, notice that

2(an+1 − an) = (1− a) + a2
n − (1− a)− a2

n−1

= a2
n − a2

n−1.
(69)

So we can show by double induction that ||an+1 ± an|| ≤ qn+1 ± qn. Indeed for
n = 0 we have ||a1|| ≤ 1/2 = q1. Suppose it holds for n− 1, then we have

||an+1 − an|| = ||a2
n − a2

n−1||/2

= ||(an + an−1)(an − an−1)||/2

≤ ||an + an−1|| ||an − an−1||/2

≤ (qn + qn−1)(qn − qn−1)/2

= (1 + q2
n − (1 + q2

n−1)/2

= qn+1 − qn.

(70)

For the first inequality we used the property of Banach algebra’s given by
equation (33) and the second inequality is the double induction hypothesis.
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As a consequence, we have

||(1− an)
2 − a|| ≤ 2(rn+1 − rn) = (1− rn)

2, (71)

which converges to 0 when rn converges to 1. So we have to show that qn

converges to 1. By induction we have qn ≤ 1. So suppose k ∈ N, then there
always are n ∈ N such that qn ≤ 1− 1/k. For such n, we have

1− qn−1 =
1− q2

n
2

= (1− qn)(1 + qn)/2

≤ (1− qn)(1−
1
2k

).

(72)

And clearly we have qn−1 ≤ qn so we have 1− qn + 1 ≤ (1− 1
2k )

n+1. So choose
m ∈ N such that (1− 1

2k )
m ≤ 1

k , and let n ≥ m. If qn ≥ 1− 1
k then 1− qn ≤ 1

k . If
qn ≤ 1− 1

k , then, by the above 1− qn ≤ (1− 1
2k )

n ≤ (1− 1
2k )

m ≤ 1
k . Hence qn

indeed converges to 1 and this concludes the proof.

Proposition 24. For a ∈ Asa we have ||a|| ≤ 1 and ||1− a|| ≤ 1 if and only if both
x and 1− x are squares.

Proof. Notice that the if part is just proposition 23. For the only if part, suppose
a and 1− a are squares, say x = u2 and 1− a = v2. Then u2 + v2 = 1, hence
||a|| = ||u2|| ≤ ||u2 + v2|| = 1 by proposition 22. Similar for 1− a.

Proposition 25. A sum of two squares is a square.

Proof. Suppose a, b ∈ Asa are squares. We can assume ||a|| ≤ 1 and ||b|| ≤ 1
by multiplication with a scalar. So by proposition 23 both 1− a and 1− b are
squares. Thus, by proposition 24 ||1− a|| ≤ 1 and ||1− b|| ≤ 1. Hence

||1− (x + y)
2
|| ≤ 1

2
(||1− x||+ ||1− y||) ≤ 1 (73)

Hence, by proposition 23
(x+y)

2 is a square. Since ||1− 2|| = 1, 2 is a square as
well, so x + y is a square.

Since squares are closed under multiplication and addition, P is a cone.
Observe that for all q ∈ Q+ we have q ∈ P: Write q = m/n with n, m ∈ N.
Clearly 1/n2 ∈ P, and since P is closed under addition we can add 1/n2 nm
times to itself, yielding the element q ∈ P.

The binary relation ≤ defined by a ≤ b if and only if b− a ∈ P for a, b ∈ Asa

defines a preorder on Asa. We now define for q ∈ Q and a ∈ Asa that q� a if
and only if ∃p > q such that a− p ∈ P. Notice that if 0� a for some a ∈ Asa,
then by multiplication with a scalar we can assume without loss of generality
that 1 ≤ a. Furthermore, if 1 ≤ a then clearly 0 � a. We will now show that
this ordering is related to the propositions D(a) in MFn(Asa). First, we need a
proposition.
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Proposition 26. For a, b ∈ Asa with 1 ≤ ab and 0 ≤ b we have 0� a

Proof. Since A is Archimedean, the exists an N ∈ N, such that −N ≤ a ≤ N and
an L ∈ N such that 0 ≤ c ≤ L. Define c = 1− b

L , then 0 ≤ c ≤ 1− 1
NL ≤ 1. So

1
L ≤ a b

L = a(1− c). As 0 ≤ c we have a(1− c) ≤ a(1− c)(1+ c+ c2 + ...+ cn) =

a(1− cn) for any n ∈ N. Thus, 1
L − Ncn ≤ 1

L + acn ≤ a. Now we take n big
enough so that cn ≤ 1

2NL , so 1
2L ≤ a. That is a− 1

2L ∈ P, so indeed 0� a.

We then have the following proposition

Proposition 27. Let a ∈ Asa, then D(a) = > if and only if 0� a.

Proof. We start out with the only if part. The proof depends on two claims:

1. If a ≤ b for a, b ∈ Asa, then D(a) ≤ D(b):
Indeed, suppose a ≤ b, that is b − a ∈ P, say b − a = c2. Then
D(a) = D(b − c2) ≤ D(b) ∨ D(−c2) by axiom 3 in the axioms gener-
ating MFn(Asa). So, by axiom 2, D(a) ≤ D(b) ∨⊥ = D(b).

2. For all q ∈ Q, if q > 0, then D(q) = >:
Write q = m/n with m, n ∈ N we have > = D(1) = D( 1

n + ... + 1
n ) ≤

D( 1
n ) ∨ ... ∨ D( 1

n ) = D( 1
n ) by axiom 3. So D( 1

n ) = >. By axiom 6 we
have D(m) =

∨
p∈Q+ D(m− p) ≥ D(1) = > by considering p = m− 1, so

D(m) = 1. We conclude that by axiom 5 we have D(q) = D(m)∧D( 1
n ) =

>.

Now suppose 0 � a, so there is a q ∈ Q such that a− q ∈ P, which implies
q ≤ a, so by the above > = D(q) ≤ D(a), so D(a) = >.
For the other direction a cut elimination argument is used to prove that
D(b1) ∧ ... ∧ D(bn) ≤ D(a1) ∨ ... ∨ D(ak) if and only if there is a relation
m + p = 0 where m is in the multiplicative monoid generated by b1, ..., bn

and p is in P(−a1, ...,−ak), that is the mulitplicative and additive closure of
P ∪ {−a1, ...,−ak}. The proof can be found in [22, 23, 24] but is beyond the
scope of this thesis. We only need that > = D(a) thus gives a relation m+ p = 0
with m = 1 and p = b− ac for b, c ∈ P. Thus b ≥ 0 and c ≥ 0, so ac = 1+ b ≥ 1.
Hence by application of proposition 26 we obtain 0� a.

Now we can prove

Lemma 28. For a ∈ Asa we have ||â2|| = ||â||2.

Proof. Suppose ||â||2 < q2 for q ∈ Q+, so D(q− a) ∧ D(a + q) = >. Then

D(q2 − a2) = (D(q− a) ∧ D(a + q)) ∨ (D(a− q) ∧ D(−q− a)) = >, (74)

by axiom 5. Now, as q > 0 we can assume 1 ≤ q2 + a2. So > = D(1) ≤
D(q2 + a2) for all q ∈ Q+. Hence ||â2|| ≤ ||â||2.
Now suppose ||â2|| < q2. Then D(q2 − a2) = > which gives 0 � q2 − a2 =
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(q− a)(a + q). Define u = a + q, v = q− a, then ∃s > 0 such that uv− s is a
square. So uv + u2− s is a sum of squares, hence also a square, so 0� u(u + v)
and u + v = 2q ≥ 0. So by proposition 26 we obtain 0� u and similar for v we
obtain 0� v so by proposition 27 we have ||â||2 < q2, so ||â2|| ≥ ||â||2.

From this result we finally obtain the isometry

Theorem 29. The Gelfand transform is isometric: For all a ∈ asa, ||â|| = ||a||.

Proof. Suppose ||a|| < q for q ∈ Q+. Then by proposition 23, q− a is a square
unequal to 0 (since ||a|| < q). Hence D(q − a) = >. Similarly, || − a|| < q,
so we obtain D(q − (−a)) = D(q + a) = >. We thus have ||â|| < q. So
||a|| ≥ ||â||. Now suppose ||â2|| < q, then D(q− a2) = > so by proposition
27, ∃p > 0 such that q − a2 − p is a square. Since the sum of squares is a
square, q− a2 is a square, say b2. Then a2 + b2 = q, and by proposition 22 we
have ||a2|| ≤ ||a2 + b2|| = q. We obtain ||a2|| ≤ ||â2||. Since a is self adjoint
||a2|| = ||a∗a|| = ||a||2. Combined with lemma 28 we have ||a||2 ≤ ||â||2.
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4.3 stone-weierstrass theorem

After having obtained the isometry, we immediately obtain injectivity of the
Gelfand transform as a consequence of the norm being proper, as we have also
seen in the proofs of theorems 20 and 21. What remains to be checked is that the
Gelfand transformation is surjective. We follow the previous proofs by applying
a version of the Stone-Weierstrass theorem, which admits a constructive proof
that can be found in [17]. First we will need a notion of separability.

Let M be some compact, completely regular locale and B̂ be a commutative
C∗-subalgebra of R(M). Then B̂ separates M if each open set U of M can be
expressed as

U =
∨

b̂∈B̂:b̂−1(0,∞)⊆U

b̂−1(0, ∞). (75)

Theorem 30. Let M be a compact, completely regular locale. Then any closed C∗-
subalgebra of the C∗-algebra C(M) of maps of locales from M to C, which separates M
is equal to C(M).

The proof is beyond the scope of this thesis and can be found in [17]. We
thus have to show that Âsa := {â|a ∈ Asa} separates MFn(Asa). Notice that

â−1(0, ∞) = â−1(
⋃

q∈Q+

(0, q)) =
∨

q∈Q+

D(a) ∧ D(q− a). (76)

Furthermore, by axiom 4,∨
q∈Q+

D(−a) ∧ D(−(q− a)) = D(−a) ∧ D(a) = ⊥. (77)

So ∨
q∈Q+

D(a) ∧ D(q− a) =
∨

q∈Q+

(D(a) ∧ D(q− a)) ∨ (D(−a) ∧ D(−(q− a)))

=
∨

q∈Q+

D(a(q− a))

≤
∨

q∈Q+

D(aq)

= D(a)
(78)

By axiom 5 for the second line, axioms 2 and 3 for the third line and axiom 5

again for the last equality, combined with, which we have already proved, all
q ∈ Q+ are squares.

If we can argue that the inequality in the third line actually is an equality,
we would get the desired result since MFn(Asa) is generated by the opens of
the form D(a). Then Âsa separates MFn(Asa). Since the Gelfand transform is
isometric, Âsa is closed. Thus, we can apply the constructive Stone-Weierstrass
theorem to obtain that the Gelfand transform is surjective.
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D I S C U S S I O N

Before concluding this thesis, we wish to highlight some points of discussion
and open problems. Most relevant is the issue concerning the structure of
MFn(Asa). In the previous section a map is given between the locales MFn(A)

and MFn(Asa). In [7] it is just stated without proof that this correspondence
is an isometry. However, we feel that this statement needs to be checked. The
constructive proof of the Gelfand representation theorem uses the isometry to
obtain properties of MFn(Asa) by relying on known results for MFn(A), for
example, the compactness of MFn(Asa).

The second point of concern we wish to discuss is one regarding the norm on
R(MFn(Asa)). As defined in [7], it is defined only for elements inR(MFn(Asa))

of the form â with a ∈ Asa. At that point, it has not been established that the
Gelfand transformation is a surjective mapping, so one might wonder wether
the norm is well defined on the whole of R(MFn(Asa)).

Finally, the proof of surjectivity is incomplete in this thesis. There is a usefull
version of the Stone-Weierstrass theorem present. But we have not managed to
prove that the image of the Gelfand transform Âsa indeed separates MFn(Asa)

and thereby satisfies the conditions of the theorem.
These issues should be further investigated and worked out to provide a com-

plete understanding of the Gelfand representation theorem and its applicability
to the internal commutative C∗-algebra of observables.
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C O N C L U S I O N

In this thesis we have investigated the logical structure of quantum mechanics
and have attempted to further develop the understanding of the intuitionistic
quantum logic. First, we have set out to study the origin of the quantum logic by
Birkhoff and von Neumann in classical mechanics. Inconveniences in this logic,
which mainly concern the lacking of a physical interpretation of the logical
conjunction and disjunction, have led us to the quantum logic of Landsman.

In the quantum logic of Landsman, elementary propositions now are made
up by a pair (C, e), where C is the classical context, and e a projection in C. The
logical structure is defined pointwise for each classical context C. Within such
a classical context, the projections commute. So, as the lattice of projections
in C is Boolean, and thus distributive, the logical disjunction and conjunction
are now physically meaningful. Furthermore, this logic is set up inside the
quantum mechanical topos T(A), which makes it intuitionistic. Considering
the non-deterministic nature of quantum mechanics, one might argue that an
intuitionistic quantum logic is actually well suited.

We wish to point out an interesting analogy between this quantum logical
structure and the relativistic interpretation of quantum mechanics by Davis
[1]. Davis characterizes the real numbers in terms of self adjoint operators
on a Hilbert space using Boolean valued models of set theory, which he calls
the “Boolean frame of reference”. Uncertainty principles are then seen as
a consequence of the corresponding operators not being in the same frame.
The analogy with the intuitionistic quantum logis is that propositions also
have to specify some frame of reference, which in this case comes from the
classical context C. Projections in this frame commute and thus can be measured
simultaneously.

To derive this logical structure, the Stone-Gelfand-Naimark theorem (better
known as the localic Gelfand representation theorem) is used. As we have seen
the established proofs of the Gelfand representation theorem and its localic
version are non-constructive due to the use of Zorn’s lemma. For its internal
application, a constructive proof of the localic representation theorem is needed.
In 2009, Coquand and Spitters published such a proof, which can indeed be
applied in the quantum mechanical topos. As the Gelfand representation
theorem is a crucial ingredient in the development of Landsmans quantum
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logic, we have set out to obtain a thorough understanding of the theorem and
its proofs (both constructive and non-construcitve).

In this thesis we have worked out many details of the constructive proof the
authors have left out. This has allowed us to come to a better understanding of
the proof. However, some issues concerning the proof remain unsolved and are
highlighted. We suggest these issues are further investigated in future research.
Furthermore, the intiutionistic quantum logic is relatively new and thus leads
to numerous interesting topics for future research. For example, one might
study the Heisenberg uncertainty relations in this new light, or one can turn to
philosophical debates concerning quantum mechanics, where reasonings often
use the logic of Birkhoff and von Neumann.
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