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Abstract

The subject of Schur–Weyl Duality relates the fields of differential geometry
and algebra as it proposes a correspondence between irreducible representa-
tions of both the Lie group GL(n,C) and the finite symmetric group Sk. The
intent of this thesis is to amass the theory needed to understand this result.
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1 Introduction

Within the field of representation theory a representation is a way to identify
the elements of any group with the endomorphisms on a linear space in such
a way that important properties of the group are preserved. Under a suitable
choice for the representation and basis this reduces the study of the group
to a problem expressable in terms of matrices, thus allowing for the tools in
the well understood field of linear algebra to be used. Under certain condi-
tions the representations of a group can be decomposed into components, the
smallest of which are called the irreducible representations. These conditions
are met for representations of the classical groups and the symmetric group.
Schur–Weyl Duality, named after Issai Schur and Hermann Weyl, then says
that the irreducible components of a representation of GL(n,C) on the k-
tensor space

⊗k Cn are uniquely related to the irreducible representations
of Sk on this same space. The goal of this thesis is to precisely state these
definitions, the Schur–Weyl Duality Theorem, and then to prove the theorem.

The material in this thesis is roughly divided over three sections. The first
two are dedicated to introducing the prerequisites and establishing the re-
sults needed in order to prove the theorem, which will be done in the fourth
section. The first section can be seen as an independent introduction to the
essentials of Lie group representations, assuming prior knowledge of topology
and group theory; the others however are intimately related and can not be
read seperately.
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2 Prerequisites

As Lie groups lie at the heart of all theoretical results presented in this thesis,
it is natural to start by working towards defining them. In order to do this,
acquaintance with the field of differential geometry is required.

2.1 Differential Geometry

One of the main objects studied in differential geometry are smooth mani-
folds, which are topological manifolds equipped with a smooth structure.
These structures allow diffeomorphisms between manifolds to be defined.
Diffeomorphisms fill the same role homeomorphisms do in topology, meaning
we can treat diffeomorphic objects as the same. As Lie groups are smooth
manifolds with an additional group structure the theory in this subsection is
essential for understanding them.

Definition 2.1. Let (M, T ) be a second-countable Hausdorff space. The
space M is said to be an n-dimensional topological manifold if for every
p ∈ M there exists an open subset U ∈ T such that p ∈ U and U is
homeomorphic to Rn.

Note that the last condition is equal to the requirement that there exists a
homeomorphism ϕ : U → Rn. Every such pair (U,ϕ) is called a coordinate
chart on M . These coordinate charts, or rather the yet to be introduced
transition maps between them, can be classified based on the properties of
their derivatives.

Definition 2.2. A function F between Euclidean spaces is of the class Ck

for k ∈ N if every component function of F has continuous partial derivatives
up to the k-th order. If this condition is met, this property is expressed as
F ∈ Ck.

Continuous function are said to be of the class C0. Another special instance
is the class C∞, which is defined as C∞ = ∩k∈N Ck. If a function belongs
to this class it is called smooth. The functions in this class give rise to the
concept of a diffeomorphism.

Definition 2.3. A diffeomorphism is a bijective function F ∈ C∞ between
open subsets of Euclidean spaces that admits an inverse F−1 ∈ C∞.
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This definition encapsulates homeomorphisms. Every diffeomorphism is also
a homeomorphism per definition, meaning that for spaces (equipped with
a suitable structure) to be diffeomorphic is a stronger condition than them
being homeomorphic. It is of importance to realise that at this point only
smooth maps and diffeomorphisms with real domain and co-domain have
been defined. These definitions will later be extended to their corresponding
maps from and to manifolds.

The transition maps mentioned before can now be introduced and classified.

Definition 2.4. Let (U,ϕ) and (V, ψ) be two coordinate charts on an n-
dimensional topological manifold. If the intersection W = U ∩ V is non-
empty, the composition ψ ◦ ϕ−1 : ϕ(W ) → ψ(W ) is called the transition
map from ϕ to ψ.

Because any topological manifold has the assumption that all coordinate
charts are homeomorphisms, all transition maps are automatically C0-maps.
In the same vein as the diffeomorphism, a stronger condition would be to
require all transition maps to be C∞-maps. This requirement defines the
final key component for the definition of a smooth manifold.

Definition 2.5. A collection A of coordinate charts is called an atlas for the
topological manifold M if for every p ∈ M there exists a coordinate chart
(U,ϕ) ∈ A so that p is in the domain of ϕ. The atlas is referred to as a
smooth atlas if all transition maps between the coordinate charts are of the
class C∞.

Equipping a topological manifold with a smooth atlas is the final step to
defining a smooth manifold.

Definition 2.6. A smooth manifold is a triple (M, T ,A), consisting of a
topological manifold (M, T ) extended to include a smooth atlas A.

Although this is the only named type of manifold that will be treated ex-
tensively in this section, there are others. They come forth from alternative
restrictions on the atlas the manifold is equipped with. Examples include
Ck-manifolds defined in the obvious way, or analytic manifolds brought on
by restricting the transition maps to Cω. In this last case ω refers to all maps
being real analytic, rather than being k-times continuously differentiable as
before. A complex manifold requires a complex analytic structure in the
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same way, after identifying Cn with R2n.

The first example of a smooth manifold, and in fact a Lie group, will be
the matrix group GL(n,R). To show that it is a smooth manifold requires
the following definition of an open submanifold.

Definition 2.7. An open submanifold N of a smooth manifold M is an open
subset of M equipped with the atlas AN = {(U,ϕ) ∈ A | U ∩N 6= ∅}. Per
restriction it is itself a topological manifold and a smooth manifold.

Lemma 2.8. The group GL(n,R) possesses the structure of a smooth man-
ifold.

Proof. Define GL(n,R) = {A ∈ M(n,R) | det−1(A) 6= 0}. As the deter-
minant function is continuous as a map from M(n,R) to R, GL(n,R) is
defined as the pre-image of an open set in R and is therefore itself open in
M(n,R). Because there is a natural diffeomorphism between M(n,R) and
Rn2

, GL(n,R) can be seen as an open subset of the latter, thus proving it is
an n2-dimensional smooth submanifold.

This proof draws from the concept of a diffeomorphism between manifolds.
This usage is justified and will follow from the extension of diffeomorphisms to
manifolds later in this subsection. As a last remark on this lemma, GL(n,C)
can be proven to be a (complex) manifold in the same manner.

Next, through the following definitions the domains and co-domains of Ck-
maps (and therefore diffeomorphisms) will be extended to allow for manifolds.

Definition 2.9. A map F : M → N between two arbitrary manifolds is
called smooth if for all p ∈M there exist smooth coordinate charts (U,ϕ) ∈
AM containing p, and (V, ψ) ∈ AN containing F (p), such that F (U) ⊆ V
and the composite map ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V ) is smooth as a map
between open subsets of Euclidean spaces.

Definition 2.10. A diffeomorphism between two manifolds M and N is a
bijective map F : M → N so that both F and its inverse F−1 are C∞-maps.
If such a map exists M and N are called diffeomorphic, written M ∼= N .

Parallel to submanifolds in Rn, smooth manifolds admit tangent spaces.
These tangent spaces will be defined abstractly through maps called deriva-
tions and will naturally lead to an analogous notion of the derivative on
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manifolds, called the differential. The reason for this construction is that
unlike the aforementioned objects, manifolds need not be embedded in an
ambient space.

Definition 2.11. For a smooth manifold M and an arbitrary point p ∈M , a
linear map v : C∞(M)→ R is called a derivation at the point p if it satisfies
v(fg) = f(p)v(g) + g(p)v(f) for all f, g ∈ C∞(M). The vector space of all
such derivations is called the tangent space to M at the point p, denoted
TpM . The derivations in this set are also referred to as tangent vectors at p.

The derivations in a tangent space can be identified with tangent vectors as
it can be shown they correspond to directional derivatives. Such an approach
is outlined in ([4], ch. 3). The definition of the differential of a smooth map
sprouts from the above definition. Although the definition is abstract, it
can be thought of as a coordinate-free generalisation of the known Jacobian
matrix.

Definition 2.12. If F is a map between two smooth manifolds M and N , the
differential of F at p is defined as the map dFp : TpM → TF (p)N that, given
a tangent vector v ∈ TpM , acts on a function f ∈ C∞(N) by dFp(v)(f) =
v(f ◦ F ).

The differential has the following properties.

Proposition 2.13. Let M , N and P be smooth manifolds, let F : M → N
and G : N → P be smooth maps, and let p ∈M .

1. dFp : TpM → TF (p)N is linear.

2. d(G ◦ F )p = dGF (p) ◦ dFp : TpM → TG◦F (p)P .

3. d(IdM)p = IdTpM : TpM → TpM .

4. If F is a diffeomorphism, then dFp : TpM → TF (p)N is an isomorphism,
and (dFp)

−1 = d(F−1)F (p).

The above properties, and the following two propositions, were taken (save
for the omission of manifolds with boundary) verbatim from ([4], pg. 55-57).
Their proofs can be found on these same pages.

Proposition 2.14. Let M be a smooth manifold, let U ⊆ M be an open
subset, and let ι : U ↪−→ M be the inclusion map. For every p ∈ U , the
differential dιp : TpU → TpM is an isomorphism.
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Proposition 2.15. If M is an n-dimensional smooth manifold, then for each
p ∈M , the tangent space TpM is n-dimensional.

In the above definitions all derivations were taken at points, therefore leading
to tangent spaces at different points. These tangent spaces can be grouped
together in the tangent bundle to the smooth manifold M , defined as a
disjoint union as follows:

TM =
∐
p∈M

TpM .

It will be stated without proof that if M is an n-dimensional smooth mani-
fold, the tangent bundle TM can be equipped with a smooth structure so
that it becomes a 2n-dimensional smooth manifold itself. The differential on
each tangent space extends naturally to the global differential on the tangent
bundle. The global differential, within the same context as before, is defined
to be the map dF : TM → TN so that dF |TpM = dFp. It behaves in the same
way as the points (2)-(4) in the above proposition for differentials prescribe.

In order to be able to properly define Lie subgroups in the next subsection,
immersed and embedded submanifolds need to be defined. The following
definitions will effectuate this.

Definition 2.16. A smooth map F : M → N between two smooth mani-
folds M and N is called a smooth immersion if its differential is injective at
each point. If F is also a topological embedding, F is said to be a smooth
embedding of M into N .

Definition 2.17. A subset S of a smooth manifold M is called an immersed
submanifold if it is equipped with a topology and a smooth atlas with respect
to which S is a topological manifold and the inclusion map ιS : S ↪−→ M is
a smooth immersion. If the topology coincides with the subspace topology
and ι is a smooth embedding, S is called an embedded submanifold.

In the following, final stage of this subsection the necessary knowledge and
tools for defining Lie algebras and the exponential map are given.

Definition 2.18. For I ⊆ R an interval, a curve on a manifold M is a
continuous map γ : I →M .

In the following definition d
dt
|s is the basis element that spans TsR.
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Definition 2.19. Let γ be a smooth curve on M . The velocity of γ at the
point s is given by γ′(s) = dγ( d

dt
|s) ∈ Tγ(s)M .

As γ′(s) is a tangent vector, it is a derivation, and it acts on a function
f ∈ C∞(M) by:

γ′(s)f = dγ( d
dt
|s)f = d

dt
|s(f ◦ γ) = (f ◦ γ)′(s),

following from the definition of the differential. Considering the right hand
expression, the action of this derivation is seen as taking the derivative of
the function f along the curve γ.

It is possible to reformulate the definition of the tangent bundle to a mani-
fold in terms of curves, and it is sometimes preferrable to make use of this
construction. This subsection will refrain from this formulation, but it can
be found in ([4], pg. 72).

Definition 2.20. Let M be a smooth manifold. A vector field on M is a
continuous map X : M → TM, X : p 7→ Xp so that Xp ∈ TpM for every
p ∈M . If X is smooth as a map from M to TM , it is called a smooth vector
field.

The set of all smooth vector fields on a smooth manifold M is denoted X(M),
and forms a vector space under pointwise addition and scalar multiplication.

If S is an immersed or embedded submanifold of M , and p is a point on
S, a vector field X on M is tangent to S at p if Xp ∈ TpS, where TpS is iden-
tified with a subspace of TpM by the isomorphism described in Proposition
2.14. The vector field X is said to be tangent to S if it is tangent to S at
every point of S. These definitions guarantee that if X is tangent to S, its
restriction to S is a vector field on S.

Definition 2.21. For X a vector field on a smooth manifold M , an integral
curve of X is a differentiable curve γ : I → R so that its velocity at each
point s ∈ I equals the value of X at γ(s), in formula: γ′(s) = Xγ(s).

This definition is the final concept needed from the field of differential geom-
etry.
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2.2 Lie Groups and Lie Theory

Every Lie group is in particular a topological group. Like the previous sub-
section started with topological manifolds, this subsection will start with the
definition of a topological group.

Definition 2.22. A topological group (H, T ) is a group H endowed with
a topology T so that both the group operation and inverse group operation
are continuous with respect to T .

The definition of a Lie group is a rephrasing of this definition with stronger
conditions. It requires H to be a smooth manifold on top of being a group,
and both operations to be smooth.

Definition 2.23. A Lie group is a smooth manifold with a group structure
so that the group operation and inverse group operation are smooth.

Lemma 2.24. If G is a smooth manifold with a group operation, and the
map χ : G×G→ G, χ : (g, h) 7→ gh−1 is smooth, then G is a Lie group.

Proof. Let χ∗(g) = χ(e, g) = g−1 denote the restriction of χ to {e}×G. It is
smooth as a restriction of a smooth map, therefore the inverse group opera-
tion is smooth. Then as a composition χ(g, χ∗(h)) = χ(g, h−1) = g(h−1)−1 =
gh is smooth as well. Hence G is a Lie group.

For G a Lie group, and g an element of G, two smooth maps can be defined
naturally. These maps are the left and right translations, both diffeomor-
phisms as maps from G to itself:

Lg(h) = gh, Rg(h) = hg.

As before, an example will be given by GL(n,R).

Lemma 2.25. The group GL(n,R) is a Lie group.

Proof. It is known that GL(n,R) is a smooth manifold. This leaves to be
proven that the inversion and multiplication of the matrices in this group
are smooth operations. Because all matrices A,B ∈ GL(n,R) have a finite
number of entries, each entry in the matrix product AB is a polynomial
with a finite number of terms depending on the entries of A and B. As a
polynomial, it is smooth. The same argument holds for the inverse of A, by
Cramer’s rule.
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Corollary 2.26. The group GL(n,C) is a Lie group.

Proof. Every complex matrix can be split into a real and imaginary compo-
nent. It then follows from the above reasoning applied to each component
that GL(n,C) is a Lie group.

In the line of expectation, Lie groups can admit Lie subgroups. Furthermore
there are analogues to the group homomorphisms and isomorphims known
from finite group theory.

Definition 2.27. If G is a Lie group, a subgroup H of G is called a Lie
subgroup of G if H allows the structure of a Lie group such that the inclusion
map ι : H → G is an immersion.

Definition 2.28. If G and H are Lie groups, a Lie group homomorphism
fromG toH is a smooth map F : G→ H that is also a group homomorphism.
If in addition F is a diffeomorphism, it is called a Lie group isomorphism.

Lie groups are often used to model symmetry. For instance, the circle group
in C can be seen as a Lie group that encodes rotations in the plane. These
symmetries are applied to sets and spaces through a Lie group action.

Definition 2.29. A left group action of a group G on a set K is a map
G×K → K, (g, k) 7→ g·k so that for all g, h ∈ G and k ∈ K, g·(h·k) = (gh)·k
and e·k = k. A right action is defined in a similar way by a map K×G→ K,
(k, g) 7→ k · g.

If G is a topological group and K is a topological manifold, an action is called
continuous if the defining map is continuous. If G is a Lie group and K is a
smooth manifold, an action is called smooth if the defining map is smooth.
Under either of these circumstances K is called a left or right G-space.

Example 2.30. The vector space Cn is a natural GL(n,C)-space through
matrix multiplication.

Next assume M is a smooth manifold, U is an open subset of M and f :
U → R is a smooth function. Every smooth vector field X ∈ X(M) defines
a new function Xf : U → R by (Xf)(p) = Xpf which is again smooth. In
the same way constructing Y Xf = Y (Xf) yields another smooth function.
This allows the following definition to be stated.
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Definition 2.31. Let M be a smooth manifold, and X, Y ∈ X(M). The
Lie bracket of X and Y is the unique vector field [X, Y ] whose associated
derivation is the commutator.

The Lie bracket has the following properties for X, Y, Z ∈ X(M) and f, g ∈
C∞(M):

1. [X, Y ]pf = Xp(Y f)− Yp(Xf).

2. It is bilinear.

3. It satisfies Jacobi’s identity: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

4. [fX, gY ] = fg[X, Y ] + (fXg)Y − (gY f)X.

Restricted to only the left-invariant vector fields on a Lie group, the Lie
bracket defines its Lie algebra. The definitions and propositions needed are
as follows.

Definition 2.32. Let Lg denote left translation on G, for every g ∈ G. Then
a vector field X on G is left-invariant if for all h ∈ G, d(Lg)h(Xh) = Xgh.

Proposition 2.33. If G is a Lie group, and X and Y are smooth left-
invariant vector fields on G, then [X, Y ] is also left-invariant.

The proof of this proposition can be found in ([4], pg. 189).

Definition 2.34. A Lie algebra is a vector space g endowed with a bracket
g× g→ g that is bilinear, antisymmetric and satisfies Jacobi’s identity.

Definition 2.35. A Lie subalgebra h of a Lie algebra g is a linear subspace
of g that is closed under the bracket. Then h with the restricted bracket is
itself a Lie algebra.

Definition 2.36. If G is a Lie group the set L(G) of all smooth left-invariant
vector fields on G is a Lie subalgebra of X(G) and therefore a Lie algebra. It
is called the Lie algebra of G.

The Lie algebra g of a Lie group G is tied to the tangent space at the unit
element of G, and has the same dimension as G. This follows from the
following theorem of which a proof can be found in ([4], pg. 191).
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Theorem 2.37. Let G be a Lie group, and g its Lie algebra. The evaluation
map ε : g→ TeG, given by ε(X) = Xe, is a vector space isomorphism. Thus
g is finite-dimensional, with dimension equal to dim(G).

There is one more important result involving Lie subalgebras. Although the
exponential map exp (·) is not yet defined, it is useful to bundle these two
characterisations.

Theorem 2.38. Let G be a Lie group, and H a Lie subgroup of G. Then
the Lie algebra h of H can be characterised as a subset of the Lie algebra g
of G in the following two ways.

1. h = {X ∈ g | Xe ∈ TeH}.

2. h = {X ∈ g | ∀t ∈ R : exp (tX) ∈ H}.

The proof follows from ([4], pg. 197, 521). Before moving on to defining the
exponential map the treatment of general Lie algebras is concluded with the
following definition.

Like for Lie groups, there are homomorphisms and isomorphisms between
Lie algebras. They are aptly called Lie algebra homomorphisms and isomor-
phisms.

Definition 2.39. A Lie algebra homomorphism between the Lie algebras
g, h is a linear map A : g → h that preserves the bracket in the sense that
A[X, Y ] = [AX,AY ]. If a Lie algebra homomorphism is invertible, it is called
a Lie algebra isomorphism.

The exponential map is a map from the Lie algebra of a Lie group into the
Lie group itself. It maps smooth vector fields in the Lie algebra to the one-
parameter subgroups generated by these vector fields, or equivalently, specific
integral curves on G. These concepts will be made precise in the last part of
this subsection.

Definition 2.40. A one-parameter subgroup of a Lie group G is a Lie group
homomorphism γ : R→ G where R is considered a Lie group under addition.

It can be shown that the one-parameter subgroups of G are exactly the
maximal integral curves with initial point e of the vector fields in L(G). This
is done in ([4], ch. 20). The one-parameter subgroup brought forth from an
X ∈ L(G) under the correspondence described is called the one-parameter
subgroup generated by X.
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Definition 2.41. Let G be a Lie group, and g its Lie algebra. The exponen-
tial map is defined as exp : g→ G, X 7→ γ(1), where γ is the one-parameter
subgroup generated by X.

The name of this map is derived from the fact that the over gl(n,R) the
exponential map is given by the matrix exponential.

Proposition 2.42. For any A ∈ gl(n,R) let:

eA =
∑∞

k=1
1
k!
Ak.

This series converges to an invertible matrix eA ∈ GL(n,R), and the one-
parameter subgroup of GL(n,R) generated by A is γ(t) = etA.

The proof of this proposition is given in ([4], pg. 517).

Let X ∈ g, s, t ∈ R and n ∈ Z. Then the exponential map has the fol-
lowing properties:

1. The exponential map is smooth.

2. exp (s+ t)X = exp (sX) exp (tX).

3. exp (X)n = exp (nX).

4. exp (X)−1 = exp (−X).

The final result presented in this subsection is the Closed Subgroup Theorem,
which grants a relatively easy way to determine if a subgroup of a Lie group
is a Lie subgroup. For a proof the reader is referred to ([4], pg. 523).

Theorem 2.43. Let G be a Lie group, and let H be a subgroup of G that is
also a closed subset of G. Then H is an embedded Lie subgroup of G.

2.3 Representation Theory

Representations of Lie groups are yet one step closer to the theory discussed
in the following sections of this thesis. In this subsection they will be defined
and briefly discussed, concluding the prerequisites section.

A preliminary result that will later be needed to extend the study of repre-
sentations to characters will be given before giving the definition of a repre-
sentation.
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Proposition 2.44. Let G be a Lie group, and Cc(G) the set of compactly
supported functions from G to C. There exists a complex linear map I :
Cc(G)→ C which satisfies the following properties:

1. If f is real valued then so is I(f); if f ≥ 0 then I(f) ≥ 0.

2. If f ≥ 0 and I(f) = 0 then f = 0.

3. For every y ∈ G: I(f(y·)) = I(f).

If J is a linear map satisfying these same properties, there exists a unique
scalar c > 0 so that J = cI. The map I(f) is written

∫
G
f(x)dx. The

measure used is the left Haar measure, which is not treated in this thesis.

The proof of this result can be found in ([1], ch. 19).

Definition 2.45. Let V be a vector space. A continuous representation of
a Lie group G is a pair (π, V ) of a continuous left action π : G × V → V
and a G-space V such that for every g ∈ G, π(g) ∈ End(V ). If V is a finite
dimensional space the representation is called finite dimensional.

The space V is called a G-module. If the group G can be seen as a subset of
End(V ) the defining representation of G acts by itself.

Representations are not restricted to Lie groups. They can also be defined
on Lie algebras. In particular, a representation of a Lie group gives rise to a
representation of its Lie algebra.

Definition 2.46. Let (π, V ) be a continuous representation of the Lie group
G. Then π∗ : g→ End(V ), the tangent map of π at e, defines a representation
of g.

There is one lemma regarding the representations of Lie algebras that will
be useful for this thesis. Its proof can be found in ([1], pg. 100).

Lemma 2.47. If G is a connected Lie group, V is a G-module and W is a
linear subspace of G, then W is G-invariant if and only if it is g-invariant.

There are specific representations that are often of interest called irreducible
representations. They are defined by their invariance under the left action
defined by the representation. Irreducible in this context means they cannot
be decomposed into smaller components. The precise definition is as follows.
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Definition 2.48. Let (π, V ) be a representation of G. An invariant subspace
W of V is a linear subspace of V such that for all g ∈ G, π(g)W ⊆ W . The
representation is called irreducible if the only invariant subspaces of V are
{0} and V itself.

Representations can be further specialised.

Definition 2.49. If (π, V ) is a representation of a Lie group G, and an inner
product on V is given, then π is called unitary if π(g) is unitary with respect
to this inner product for all g ∈ G. If no such inner product is given, but it
is known it must exist, then π is called unitarisable.

The following proposition and lemma will be given without proof. Instead, a
reference to the syllabus on Lie Groups by Erik van den Ban that does these
proofs justice will be given.

Proposition 2.50. If G is a compact Lie group and (π, V ) is a continuous
finite dimensional representation of G, then π is unitarisable. ([1], pg. 72)

Lemma 2.51. Let (π, V ) be a unitary representation of the Lie group G. If
W is an invariant subspace for π, then its orthocomplement W⊥ is a closed
invariant subspace for π. If W is closed, then V = W ⊕W⊥. ([1], pg. 73)

Corollary 2.52. Let (π, V ) be a continuous finite dimensional representa-
tion of a Lie group G. If π is unitarisable, the representation decomposes
as a finite direct sum of irreducibles. In other words, there exists a direct
sum decomposition ⊕ni=1 Vj of V into invariant subspaces Vj such that the
representation π|Vj defined by the restriction of π to Vj is irreducible.

Proof. Let V1 ⊂ V be a G-invariant subspace of V . Then by Lemma 2.51,
V = V1 ⊕ V ⊥1 . Repeat this procedure for V2 ⊂ V ⊥1 , and keep repeating it for
any following Vj until no invariant strict subspaces other than {0} exist in
any of the Vj. Then V = ⊕ni=1Vi for an n ∈ N.

Corollary 2.53. Let (π, V ) be a continuous finite dimensional representation
of a compact Lie group. Then π admits a decomposition as a finite direct sum
of irreducible representations.

Proof. Because G is compact, the representation π is unitarisable. Because
all conditions for application of the above corollary have now been met, the
representation can be decomposed as described above.
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It is worthy of note that the action of a continuous finite dimensional repre-
sentation π on a space can be expressed as a matrix. This will often be done
from this point onwards.

Definition 2.54. If (πj, Vj) for j = 1, 2 are two continuous representations
of G, and the Vj are locally convex spaces, then a continuous linear map
T : V1 → V2 is said to be equivariant or intertwining if for every g ∈ G,
T ◦ π1(g) = π2 ◦ T (g). The two representations are said to be equivalent
if there exists a topological linear isomorphism from V1 onto V2 which is
equivariant. This is denoted as π1 ∼ π2.

The space of all G-intertwining maps from V1 to V2, both of finite dimension,
will be denoted by HomG(V1, V2). If V1 = V2, it is denoted EndG(V1). If
the maps are not required to be G-intertwining the subscript G is omitted
in both cases. If a map in HomG(V1, V2) is also an isomorphism, it is called
a G-module isomorphism and V1 and V2 are isomorphic as G-modules. Fur-
thermore all invertible linear maps in the space of endomorphisms of V1 will
be referred to as GL(V1).

The following lemma is a major result in representation theory. It is named
Schur’s Lemma.

Lemma 2.55. Let (π, V ) be a finite dimensional representation of a group
G. Then the following holds.

a. If π is irreducible, then every G-intertwining endomorphism of V acts
on V by scalar multiplication. In other words, EndG(V ) = CIV .

b. Conversely, if π is unitarisable and EndG(V ) = CIV , then π is irre-
ducible.

Its proof can be found in any text on representation theory. One such source
is again ([1], pg. 75). Using the following lemma it can be rephrased in a
different form.

Lemma 2.56. Let V be a finite dimensional complex linear space and let
A,B ∈ End(V ) be two commuting elements. Then A leaves ker(B), Im(B)
and all eigenspaces of B invariant.

Proof. The proof follows by applying elementary knowledge of linear algebra.
If x ∈ ker(B), Bx = 0. Then B(Ax) = BAx = ABx = A0 = 0 so Ax ∈
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ker(B). If x ∈ Im(B) there exists a vector y in the domain of B so that
By = x. Then Ax = A(By) = ABy = BAy = B(Ay) ∈ Im(B). Finally, if x
is an eigenvector of B for the eigenvalue λ, Bx = λx. Then B(Ax) = BAx =
ABx = Aλx = λ(Ax) so Ax is an element of the same eigenspace.

Lemma 2.57. Let (ρ, V ) and (π,W ) be two irreducible finite dimensional
representations of a group G. If ρ ∼ π, dim HomG(V,W ) = 1 and if ρ � π,
dim HomG(V,W ) = 0.

Proof. First assume ρ ∼ π. Then per definition of equivalence there must
exist a G-module isomorphism T : V → W in HomG(V,W ). Let T0 ∈
HomG(V,W ) be any map. Then T−1

0 T ∈ EndG(V ) and by Schur’s Lemma
T−1

0 T = cI for a c ∈ C. Then T = cT0, thus dim HomG(V,W ) = 1.
Next assume ρ � π, and let T ∈ HomG(V,W ). Per the lemma above both
Ker(T ) ⊂ V and Im(T ) ⊂ W are G-invariant. Because of the assumed
irreducibility of ρ and π, Ker(T ) = {0} or V and Im(T ) = {0} or W . If
Ker(T ) = U , T = 0. If Ker(T ) = {0}, T is injective. Then Im(T ) 6= {0}
so Im(T ) = V . Then it must follow that T is a G-module isomorphism and
ρ ∼ π which is a contradiction, so dim HomG(V,W ) = 0.

The following definition is a powerful characterisation of a representation.
The definition is possible because as stated before, every action of π can be
described by a matrix.

Definition 2.58. Let (V, π) be a finite dimensional representation of a group
G. The function χπ : G→ C, χπ : g 7→ tr π(g) is called the character of π.

The following lemmas will bare some of the important properties of these
characters.

Lemma 2.59. If two finite dimensional representations π, ρ of a group G
are equivalent, they have the same character.

Proof. Recall that the two representations are equivalent if there exists a
topological linear isomorphism T : Vπ → Vρ so that T ◦π = ρ◦T . Because T
is an isomorphism its inverse is defined and it follows that ρ = T ◦ π ◦ T−1.
Then χρ(g) = tr ρ(g) = tr (T ◦ π(g) ◦ T−1) = tr π(g) = χπ(g) as the trace
function is conjugacy invariant.

Lemma 2.60. Every character χ of a representation π of any group is con-
stant on the conjugacy classes of the group.
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Proof. As χ(g) = tr π(g) for g ∈ G, for any h ∈ G, χ(hgh−1) = χ(hh−1g) =
χ(g) since tr (xy) = tr (yx) for all endomorphisms x, y.

A function that is constant on conjugacy classes is often called a class func-
tion.

New constructions using representations can now be introduced, and their
characters can be determined. If (π1, V1) and (π2, V2) are two representations
of a group G then the direct sum representation of the two representations
is given by (π1 ⊕ π2, V1 ⊕ V2). This representation acts on the G-space by
π(g)(v1, v2) = (π(g)v1, π(g)v2) for g ∈ G, v1 ∈ V1 and v2 ∈ V2. The char-
acter of a representation of this form is given by χπ1⊕π2 = χπ1 + χπ2 . If
the πi are finite dimensional, their tensor product defines a representation
(π1 ⊗ π2, V1 ⊗ V2) with accompanying character χπ1⊗π2 = χπ1χπ2 . Its action
is defined by:

(π1 ⊗ π2)(g)(v1 ⊗ v2) = π1(g)v1 ⊗ π2(g)v2

for v1 ∈ V1, v2 ∈ V2 and g ∈ G. Alternatively the exterior tensor representa-
tion can be defined as above, but defined by the action:

(π1 ⊗ π2)(g, h)(v1 ⊗ v2) = π1(g)v1 ⊗ π2(h)v2

for v1 ∈ V1, v2 ∈ V2 and g, h ∈ G.

Lemma 2.61. Let π and ρ be finite dimensional irreducible representations
of a compact Lie group G. Then the following statements hold.

a. If π ∼ ρ then 〈χπ, χρ〉 = 1.

b. If π � ρ then 〈χπ, χρ〉 = 0.

For 〈·, ·〉 the L2 inner product defined as 〈f, g〉 = I(fg) =
∫
G
f(x)g(x)dx for

I as in Proposition 2.44.

The proof of this lemma relies on the Schur orthogonality relations and can
be found in ([1], pg. 83).

Definition 2.62. Assume a representation π can be decomposed into ⊕ni=1δi
for an n ∈ N, for all δi irreducible. Then the multiplicity of an irreducible
representation δ in π is defined to be m(δ, π) = #{i | δi ∼ δ}.
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Lemma 2.63. The multiplicity m(δj, π) can be expressed in terms of the
characters of the representations δj and π.

Proof. By Lemma 2.61:

〈χδj , χπ〉 = 〈χδj ,
∑n

k=1 χδk〉 =
∑n

k=1〈χδj , χδk〉 =
∑n

i=1 δjk = m(δj, π),

where δjk denotes the Kronecker delta.

Definition 2.64. Let Ĝ denote the set of equivalence classes of irreducible
representations of a group G. Then any equivalence class [δ] ∈ Ĝ is identified
with one representative δ, and δ will henceforth be used to refer to any
element of this class.

As a sidenote, the shorthand nδ is often used to signify ⊕ni=1 δ.

The following lemma gives an expression for a representation in terms of
its irreducible components, unique up to equivalence.

Lemma 2.65. Let π be a finite dimensional representation of a compact
group G. Then π ∼ ⊕δ∈Ĝ m(δ, π)δ and any decomposition of π into irre-
ducibles is equivalent to the above one.

Proof. By Proposition 2.50 the representation π is unitarisable, and by Corol-
lary 2.52 it is equivalent to a direct sum ⊕ni=1 δi of irreducible representations.

Choosing one representative δ for each class in Ĝ, this expression is equiva-
lent to a direct sum of these classes. Adopting the above notation of writing
nδ for ⊕ni=1 δ, and noting that in this context n is the multiplicity of each δ
in π, the result is π ∼ ⊕δ∈Ĝ m(δ, π)δ.

Corollary 2.66. If π, ρ are two finite dimensional continuous representa-
tions of the compact group G then π ∼ ρ if and only if χπ = χρ.

Proof. The first implication follows directly from Lemma 2.59. For the re-
verse implication, assume that χπ = χρ. Then for every irreducible represen-
tation δ of G, m(δ, π) = 〈χπ, χρ〉 = 〈χρ, χπ〉 = m(δ, ρ) and therefore:

π ∼
⊕

δ∈Ĝ m(δ, π)δ ∼
⊕

δ∈Ĝ m(δ, ρ)δ ∼ ρ

And thus π ∼ ρ per transitivity.

This section is finished with the following definition and lemma.

18



Definition 2.67. Let G be a compact and commutative Lie group. A multi-
plicative character of G is a continuous group homomorphism ξ : G→ (C∗, ·).

Lemma 2.68. If ξ is a multiplicative character, then |ξ| = 1.

Proof. It will be proven that any compact subgroup H of C∗ must be a subset
of the unit circle. Then for all g ∈ G, |ξ(g)| = 1 as ξ(g) is an element of
one such compact subgroup. By compactness and the Heine-Borel Theorem
for C there exists a constant c > 0 so that for every h ∈ H, c−1 < |h| < c.
Setting k = hn for a natural number n it must follow that c−1/n < |k| < c1/n.
Taking the limit as n→∞ it becomes apparent that |k| = 1.
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3 Preparation

Some preparations need to be made to bridge the gap between the prereq-
uisites of representation theory and the proof of the Schur–Weyl Duality
Theorem. This is done in this section.

3.1 Matrix Groups

This subsection will briefly recap the definitions of the three matrix groups
relevant to this thesis. Throughout, the space of all square complex n × n
matrices will be denoted by M(n,C), and it will be seen as the same as Cn2

through the natural diffeomorphism between these spaces. The operation of
every matrix group will be composition.

The most general matrix group is the subset GL(n,C) of M(n,C) that con-
tains all invertible matrices. Although its definition was presumed to be
known from linear algebra it will be stated again, because the other two
relevant matrix groups can be described as subgroups of the general linear
group. Because a matrix is invertible if and only if its determinant does not
equal 0, GL(n,C) can be characterised using the determinant:

GL(n,C) = {A ∈ M(n,C) | det(A) 6= 0}.

The unitary group then consists of all matrices in GL(n,C) that are unitary.
For a matrix this means that its conjugate transpose equals the inverse of
the matrix:

U(n) = {A ∈ GL(n,C) | AA∗ = A∗A = In}.

Within the unitary group further distinction can be made. A matrix with
determinant 1 is sometimes called special. Using this attribute the special
unitary group can be defined as follows:

SU(n) = {A ∈ U(n) | det (A) = 1}.

These matrix groups are Lie groups (by the Closed Subgroup Theorem - that
they are closed will be shown in the next subsection) and therefore possess
topological properties. This opens many possibilities for their analysis and
will be used extensively in the next subsections.
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3.2 Complete Reducibility of the General Linear Group

For the proof of the Schur–Weyl Duality Theorem the assumption that ev-
ery finite dimensional representation of GL(n,C) is completely reducible
is needed. That is to say that every finite dimensional representation of
GL(n,C) can be decomposed into a direct sum of irreducible representa-
tions. This subsection sets out to prove this fact. To do this, some lemmas
will be needed: it needs to be proven that U(n) is compact and connected,
and that GL(n,C) is connected. Then it will be shown through the Lie al-
gebras of U(n) and GL(n,C) that every finite dimensional representation of
GL(n,C) is completely reducible.

Lemma 3.1. The Lie group U(n) is compact.

Proof. Recall that the Heine-Borel Theorem for finite dimensional vector
spaces says that as a subset of Cn2

, U(n) is compact if and only if it is closed
and bounded. These properties follow exactly from the restriction on the
matrices that belong to U(n). The operator norm of any unitary matrix A
is equal to 1:

‖A‖ = sup
v 6=0

‖Av‖
‖v‖ = sup

v 6=0

‖v‖
‖v‖ = 1.

This follows from the unitarity of A since:

‖Av‖ =
√
〈Av,Av〉 =

√
〈v,A∗Av〉 =

√
〈v, v〉 = ‖v‖.

So U(n) is bounded in Cn2
. Furthermore U(n) is the intersection of the pre-

images of {In} under the continuous maps X 7→ X∗X and Y 7→ Y Y ∗, both
seen as maps from M(n,C) to itself. As pre-images of a singleton these pre-
images are closed, and as an intersection of two closed subsets the intersection
of these pre-images is closed as well. Hence U(n) is compact.

It follows from Corollary 2.53 that all representations of U(n) are com-
pletely reducible, which opens a path to proving the complete reducibility of
GL(n,C). The course of action for this is to show that U(n) and GL(n,C)
are connected, which allows the use of Lemma 2.47.
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Lemma 3.2. The Lie group U(n) is connected.

Proof. It will be proven that there exists a continuous path between ev-
ery matrix in U(n) and the identity element I. Then for any two matrices
in U(n) there exist paths to the identity, and joining these paths together
forms a path between the matrices. It is known from topology that path-
connectedness implies connectedness, from which the statement follows.

Let A ∈ U(n). From the Spectral Theorem for normal operators it follows
there exist unitary matrices V,D so that:

A = V DV ∗ with D = diag (λ1, ..., λn).

The matrix D is taken with respect to an orthonormal basis {fj | 1 ≤ j ≤ n},
and for every j, Dfj = λjfj as D is a diagonal matrix. Because it is unitary,
for all j:

〈Dfj, Dfj〉 = 〈fj, D∗Dfj〉 = 〈fj, fj〉 = 1 and

〈Dfj, Dfj〉 = 〈λfj, λfj〉 = λjλj〈fj, fj〉 = |λj|,

from which it follows that for all j, |λj| = 1. For each j there exists a θj ∈ R
so that λj = eiθj . Let:

D(t) = diag
(
ei(1−t)θ1 , ..., ei(1−t)θn

)
and A(t) = V D(t)V ∗ for 0 ≤ t ≤ 1.

Then A(t) describes a path from A to I. In t = 0, A(0) = A. In t = 1,
A(1) = V IV ∗ = I. The entire path is contained in U(n) as for every t:

D(t)∗ = diag
(
e−i(1−t)θ1 , ..., e−i(1−t)θn

)
= D(t)−1,

and therefore A(t) ∈ U(n) as a product of unitary matrices.

Next it is proven that GL(n,C) is connected.

Lemma 3.3. The Lie group GL(n,C) is connected.

The proof is a rephrasing of the same proposition found in ([3], ch. 1).

Proof. As for U(n) this follows from the fact that there exists a path between
every matrix in GL(n,C) and the identity I. It is known that GL(1,C) is
exactly C∗, and that it is path-connected. Now let n ≥ 2 and let A ∈
GL(n,C). Then by the Jordan Normal Form Theorem there exists an upper
triangular matrix L with the eigenvalues λi (1 ≤ i ≤ n) of A on its diagonal,
and a transformation matrix T so that:
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A = TLT−1.

As det(A) 6= 0, there are no eigenvalues equal to zero, since the determinant
of a matrix equals the product of its eigenvalues. Let L(t) be the matrix L
with all of the elements above the diagonal parametrised through multipli-
cation by a factor (1− t), and define:

A(t) = TL(t)T−1 for 0 ≤ t ≤ 1.

Next let λi(t) for 1 ≤ t ≤ 2 denote the path from λi to 1 in C∗, which exists
by the path-connectedness of C∗. Then define:

A(t) = Tdiag (λ1(t), ..., λn(t))T−1 for 1 ≤ t ≤ 2.

It is claimed that A(t), 0 ≤ t ≤ 2 is a path from A to I in GL(n,C). First,
A(0) = A. As t increases over the interval [0, 1] the value Tdiag (λ1, ..., λn)T−1

is reached in t = 1. Then as t further increases over the interval [1, 2], the
value:

Tdiag (1, ..., 1)T−1 = TIT−1 = I

is reached in t = 2. For 0 ≤ t ≤ 1, A(t) ∈ GL(n,C) as the diagonal and
hence the determinant is left unchanged; for 1 ≤ t ≤ 2, A(t) ∈ GL(n,C)
as each path λi(t) lies in C∗ and therefore never takes on the value 0. The
determinant is then always non-zero, and A(t) ∈ GL(n,C).

By the connectedness of U(n) and GL(n,C), Lemma 2.47 is now within
reach. Before it can be applied to GL(n,C) to obtain the desired result a
connection between the representations of GL(n,C) and the representations
of the completely reducible group U(n) must be established. This is done
through their Lie algebras in the following two lemmas.

Lemma 3.4. If gl(n,C) denotes the Lie algebra of GL(n,C), the Lie algebra
u(n) of U(n) is given by {X ∈ gl(n,C) | X∗ = −X}.

Proof. Let U = {X ∈ gl(n,C) | X∗ = −X}. It will be proven by mutual
inclusion that U = u(n). First let X ∈ u(n). By Theorem 2.38, exp(tX) ∈
U(n) for all t ∈ R. It is known that (etX)∗(etX) = (etX

∗
)(etX) = e−tXetX = I.

Differentiating both sides to t and evaluating the result in t = 0 yields:

d
dt
|t=0 (etX

∗
)(etX) = [X∗etX

∗
etX + etX

∗
XetX ]t=0 = X∗ +X = 0.
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Hence X∗ = −X, and therefore X ∈ U . Next let X ∈ U , then X∗ = −X. It
follows directly that X ∈ u(n) as for all t ∈ R:

(etX)∗ = etX
∗

= e−tX = (etX)−1.

Therefore U ⊂ u(n), and u(n) = {X ∈ gl(n,C) | X∗ = −X}.

Moreover, as an even stronger result, the Lie algebra of GL(n,C) is the
complexification of the Lie algebra of U(n).

Lemma 3.5. The Lie algebra gl(n,C) is the complexification u(n)C of u(n).

Proof. It follows from Lemma 3.4 that iu(n) = {X ∈ gl(n,C) | X∗ = X},
and as both u(n) and iu(n) are subsets of gl(n,C) it suffices to show that
gl(n,C) ⊂ u(n) + iu(n) to conclude equality. Let X ∈ gl(n,C). Then X can
be expressed as:

X = X−X∗
2

+ X+X∗

2

where X−X∗
2
∈ u(n) and X+X∗

2
∈ iu(n). In the case of u(n) this follows as:(

X−X∗
2

)∗
= X∗−X∗∗

2
= X∗−X

2
= −

(
X−X∗

2

)
The argument for iu(n) is analogous. Therefore X ∈ u(n) + iu(n), gl(n,C)
is a subset of u(n) + iu(n) and gl(n,C) = u(n)C.

And finally the complete reducibility of GL(n,C) can be proven.

Proposition 3.6. Any finite dimensional representation of GL(n,C) is com-
pletely reducible.

Proof. Let (π, V ) be any finite dimensional representation of GL(n,C). As
U(n) is a subgroup of GL(n,C), the restriction (π|U(n), V ) defines a repre-
sentation of U(n). By Lemma 3.1, U(n) is compact and hence completely re-
ducible, so there exists a decomposition into irreducible invariant subspaces:

V = V1 ⊕ · · · ⊕ Vm

for an m ∈ N. All Vj in this decomposition are U(n)-invariant, and as U(n) is
connected, u(n)-invariant by Lemma 2.47. Because gl(n,C) = u(n)⊕ iu(n) it
follows that the Vj are gl(n,C)-invariant and by the same lemma as before,
GL(n,C)-invariant. Thus the arbitrary representation π was decomposed
into irreducible submodules.

24



As the compactness of SU(n) is a direct consequence of the compactness of
U(n) proven in Lemma 3.1, it will be stated as a corollary here.

Corollary 3.7. The Lie group SU(n) is compact.

Proof. Let det be the determinant function from M(n,C) to C. Then char-
acterise SU(n) by:

SU(n) = U(n) ∩ det−1({1}).

This definition coincides with the definition given in the previous subsection
per mutual inclusion. As sets U(n) and det−1({1}) are both closed so SU(n)
is closed as a subset of U(n). As a closed subset of a compactum, SU(n) is
compact.

3.3 Isotypic Decomposition

The decomposition of a representation into its irreducible components is only
unique up to equivalence. Because the Schur–Weyl Duality Theorem makes
claims about uniqueness of the components of a representation, more con-
straints will be needed. The answer to these constraints will manifest as the
isotypic components (also called isotypic subspaces) of a representation, and
the isotypic decomposition of a G-module is unique. This subsection will
culminate in an important rephrasing of the isotypic decomposition.

Let G be a completely reducible Lie group and let [λ] be a class in Ĝ. Then
for every δ ∈ [λ] the associated G-module is denoted Uδ. These assumptions
will be used throughout this subsection.

Let (ρ, V ) be any representation of G.

Definition 3.8. The λ-isotypic subspace of V is defined as the following
linear sum of vector spaces:

V(λ) =
∑

U⊂V, ρ|U∼λ
U .

The next proposition shows that V can be written as a direct sum of these
isotypic components, called the isotypic decomposition.
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Proposition 3.9. The G-module V can be written as the direct sum

V =
⊕

[λ]∈Ĝ
V(λ).

The proof of this proposition is based on the proof given in ([2], par. 4.1.5).

Proof. Because every irreducible component is represented in the sum it is
straightforward to see that V is contained in the linear sum of the V(λ).
For this reason it only needs to be shown that this sum is direct. Note
that because the representation is finite dimensional there can be at most a
finite number of irreducible components in a decomposition into irreducibles,
and they can be indexed by natural numbers. It will be shown by means
of induction that the sum of any finite collection of isotypic components is
direct. To this end, let {λ1, ..., λn} be an arbitrary set of representatives for

n different equivalence classes of Ĝ such that V(λi) 6= {0}. The base case of

W1 =
∑1

i=1 V(λi) = V(λ1) is trivially a direct sum. Now assume that n > 1

and the hypothesis holds for Wn−1 =
∑n−1

i=1 V(λi). Then Wn−1 = ⊕n−1
i=1 V(λi)

and Wn = Wn−1 + V(λn). For 1 ≤ i < n let Pi : Wn−1 → V(λi) be the
projection map onto the corresponding component of Wn−1, and recall that
for two vector subspaces A and B:

A+B = A⊕B ⇐⇒ A ∩B = {0}.

Arguing by contradiction, assume that there exists a non-zero element v in
Wn−1 ∩ V(λn). Then the linear span S of the orbit G · v of v under the
action of G is an invariant subspace of V and therefore a G-module. By the
assumptions on G it is finite dimensional, reducible and it is contained in
V(λn) as the latter is a G-module, meaning it is invariant. For this reason it
can be decomposed in the following way:

S = Y1 ⊕ · · · ⊕ Yr for (αk, Yk) representations so that αk ∈ [λn].

But at the same time S ⊂ Wn−1 so there must exist an i < n so that Pi(S)
is not empty. Therefore in the same way:

S = Z1 ⊕ · · · ⊕ Zq for (βj, Zj) representations so that βj ∈ [λi].

This is a contradiction as λn � λi. Thus Wn−1 ∩ V(λn) = ∅ and Wn =
⊕ni=1 V(λi).
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There is a small amount of additional information needed in order to start
rephrasing this primary decomposition in the way needed for the later sec-
tions.

For every class in Ĝ, fix one representation (λ, Uλ). Then the tensor product
HomG(Uλ, V )⊗Uλ is a G-module under the action g · (u⊗w) = u⊗ (g ·w) for
g ∈ G. This defines an action as w is an element taken from the G-module
Uλ. It will be shown the G-module HomG(Uλ, V )⊗Uλ is isomorphic to V(λ).

Proposition 3.10. For every [λ] ∈ Ĝ, V(λ)
∼= HomG(Uλ, V )⊗ Uλ by:

Sλ : HomG(Uλ, V )⊗ Uλ → V , Sλ(u⊗ w) = u(w).

Proof. It needs to be shown that Sλ is a G-module isomorphism. By the
discussion preceding this proposition it is known that the domain of Sλ is
a G-module. Under the defining action the map is G-intertwining as u ∈
HomG(Uλ, V ) is. For g ∈ G:

g · Sλ(u⊗ w) = g · u(w) = u(g · w) = Sλ(u⊗ (g · w)) = Sλ(g · (u⊗ w)).

It is shown by mutual inclusion of Im(Sλ) and V(λ) that Sλ is surjective.

Let T ∈ HomG(V,W ), then in order to prove Im(Sλ) ⊂ V(λ) it suffices to
show that T (Uλ) ⊂ V(λ). For T = 0 this is clear. Assume that T 6= 0, then
Ker(T ) ( Uλ is G-invariant and must therefore be {0}. Then T is injective
and from λ ∼ ρ|T (Uλ) it follows that T (Uλ) ⊂ V(λ), and Im(Sλ) ⊂ V(λ).

To prove V(λ) ⊂ Im(Sλ), let v ∈ V(λ). Then v decomposes as ⊕ki=1vi for
a natural number k and each vi taken from an irreducible subspace Vi ⊂ V
in such a way that ρ|Vi ∼ λ. Hence for every i there exists a G-module
isomorphism Ti : Uλ → Vi ⊂ V . For every component Vi of V , vi ∈ Vi =
Ti(Uλ) = Sλ(CTi⊗Uλ) so in particular v ∈ Im(Sλ). Therefore V(λ) ⊂ Im(Sλ).

The proof is then completed by showing Sλ is injective. This will be done by
showing the kernel is trivial.

Let V = ⊕ni=1Vi for an n ∈ N be a decomposition of V into G-invariant sub-
spaces. Then HomG(Uλ, V ) ∼= ⊕ni=1HomG(Uλ, Vi). If ρ|Vi is irreducible and
ρ|Vi � λ then HomG(Uλ, Vi) = 0 by Lemma 2.57, otherwise HomG(Uλ, Vi) = 1
by the same lemma. For every i, let Ti ∈ HomG(Uλ, Vi) be non-trivial. Then:
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HomG(Uλ, V ) ∼=
⊕

i: ρ|Vi∼λ
CTi.

Hence:

HomG(Uλ, V )⊗ Uλ ∼=
⊕

i: ρ|Vi∼λ
CTi ⊗ Uλ.

Let w ∈ ker(Sλ). It will then be shown that w must be trivial. Write:

w =
∑

i: ρ|Vi∼λ
ziTi ⊗ ui with zi ∈ C and ui ∈ Ui.

Then:

Sλ(w) =
∑

i: ρ|Vi∼λ
ziTi(ui) =

∑
i: ρ|Vi∼λ

Ti(ziui),

since Sλ is linear by the multilinearity of tensor products. Then for every i,
Ti(ziui) ∈ Vi as the Ti were chosen from HomG(Uλ, Vi). The Vi are compo-
nents of the direct sum V = ⊕ni=1Vi so for all i, Ti(ziui) = 0. Because the Ti
are non-trivial for all i it follows from ziui = 0 that either zi = 0, ui = 0 or
both equal 0. It follows that:

w =
∑

i: ρ|Vi∼λ
ziTi ⊗ ui = 0.

As Sλ is proven to be an isomorphism, the modules are isomorphic.

Recall the definition (Definition 2.62) of the multiplicity of an irreducible
representation in a representation. Using this definition the spectrum of the
representation (ρ, V ) is defined as:

Spec(ρ) = Spec(V ) = {λ | [λ] ∈ Ĝ and m(λ, ρ) 6= 0}.

The combination of Propositions 3.9 and 3.10 then results in the following
rephrasement of the decomposition:

V ∼=
⊕

λ∈Spec(ρ)

HomG(Uλ, V )⊗ Uλ.

For an element g ∈ G, the action of ρ(g) on V translates to the action I⊗λ(g)
on the summand of type λ. This is the rephrasing that was promised in the
opening of this subsection.
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3.4 The Group Algebra

The name of this subsection implies it will concern itself with algebras. As
this is indeed the case, the reader is reminded of the definition of an associa-
tive algebra.

Definition 3.11. An associative algebra A over a field F is a vector space A
equipped with an F-bilinear and associative operation A× A→ A, (a, b) 7→
a · b. It is called unital if there exists a unital element in the algebra.

The definition of a group representation extends to these algebras.

Definition 3.12. A representation (ρ, V ) of an algebra A is an algebra ho-
momorphism ρ : A → End(V ). The space V is called an A-module.

The main notion of this subsection is that every representation of a group
extends to a representation of an algebra, specifically of the group algebra of
the group.

Definition 3.13. The group algebra A[G] of G is defined to be the linear
space of all finitely supported functions from G to C equipped with the
following (convolution) operation:

(ϕ ∗ ψ) (g) =
∑
h∈G

ϕ(gh−1)ψ(h)

for ϕ, ψ ∈ A[G] and g ∈ G.

It is left to the reader to verify that this is indeed a unital associative algebra.

The group algebra will play a pivotal role in the proof of the Schur–Weyl
Duality Theorem. In this subsection the bare essentials will be presented. A
more thorough explanation can be found in ([2], par. 4.1.1).

As a vector space the group algebra A[G] has a basis of functions {δg | g ∈ G}
so that for x ∈ G, δg(x) = 1 if x = g and δg(x) = 0 otherwise. Each element
g ∈ G is identified with one such basis element δg, and each element a ∈ A[G]
can be uniquely expressed as the sum:∑

g∈G
a(g)δg
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for only a finite number of non-zero coefficients a(g).

Lemma 3.14. For all group elements g1, g2 ∈ G the convolution δg1 ∗ δg2 of
the basis elements δg1 and δg2 of A[G] equals δg1g2.

Proof. This follows directly as for g ∈ G:

(δg1 ∗ δg2) (g) =
∑
h∈G

δg1(gh
−1)δg2(h) = δg1(gg

−1
2 ) = δg1g2(g),

since δg1(gg
−1
2 ) = 1 if g = g1g2, and δg1(gg

−1
2 ) = 0 otherwise.

The correspondence between representations of G andA[G] is explained next.
If (ρ, V ) is a representation of A[G], then a representation (π, V ) of G is
constructed from ρ by:

π : G→ GL(V ), π : g 7→ ρ(δg).

Then by the above lemma for any two elements g, h ∈ G it follows that
π(gh) = ρ(δgh) = ρ(δg ∗ δh) = ρ(δg)ρ(δh) = π(g)π(h). Conversely if (π, V ) is
a representation of G then π extends uniquely to a representation (ρ, V ) of
A[G] defined in the following way:

ρ : A[G]→ End(V ), ρ : f 7→
∑
g∈G

f(g)π(g).

Showing that ρ defined in this way is a homomorphism takes more steps than
it did for π, and it is clearer to work backwards from ρ(ϕ)ρ(ψ) to ρ(ϕ ∗ ψ).

ρ(ϕ)ρ(ψ) =

(∑
x∈G

ϕ(x)π(x)

)
·

(∑
y∈G

ψ(y)π(y)

)
=
∑
x,y∈G

ϕ(x)ψ(y)π(x)π(y)

=
∑
x,y∈G

ϕ(x)ψ(y)π(xy)

=
∑
g,y∈G

ϕ(gy−1)ψ(y)π(gy−1y)

=
∑
g,y∈G

ϕ(gy−1)ψ(y)π(g)
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=
∑
g∈G

[∑
y∈G

ϕ(gy−1)ψ(y)

]
π(g)

=
∑
g∈G

(ϕ ∗ ψ)(g)π(g)

= ρ(ϕ ∗ ψ)

Outside of this explanation this correspondence will be assumed to be under-
stood, and the corresponding representations of G and A[G] will be denoted
by the same symbol. There is one other algebra construction that is needed
for the next section, and one that is in fact closely related to the group
algebra.

Definition 3.15. Let (π, V ) be a representation of a group G. Then the
span of π is the unital and associative algebra:

Span(π) = {c1π(g1) + · · ·+ ckπ(gk) | c1, ..., ck ∈ C and g1, ..., gk ∈ G}.

This definition finds its use in the next section, where it is used to construct
an algebra from a group representation where the structure of an algebra is
needed. The relation between the group algebra and the span of a represen-
tation will be clarified by the final lemma of this section.

Lemma 3.16. If (π, V ) is a representation of a group G and A[G] is the
group algebra of G, then Span(π) = π(A[G]).

Proof. From the previous discussion on the group algebra it is known that
A[G] = Span{δg | g ∈ G}. Using this definition the derivation of the equality
is straightforward:

Span(π) = Span{π(g) | g ∈ G} = Span{π(δg) | g ∈ G} = π(A[G]).

31



4 Schur–Weyl Duality

In this main section of the thesis the proof of the Schur–Weyl Duality The-
orem will be given by means of the proofs of the General Duality Theorem
and the Double Commutant Theorem. The third subsection will tie these
theorems together in the proof of the Schur–Weyl Duality Theorem.

4.1 The Double Commutant Theorem

The Double Commutant Theorem fulfills a vital role in showing the General
Duality Theorem presented in the next subsection extends to include the
specific incarnation of duality described by Schur–Weyl Duality.

Let V be any finite dimensional complex vector space, and let S be a subset
of End(V ).

Definition 4.1. The commutant of S in End(V ) is the unital and associative
algebra defined as:

Comm(S) = {x ∈ End(V ) | xs = sx for all s ∈ S}.

The Double Commutant Theorem says that for specific algebras, taking the
commutant twice results in the algebra itself.

Theorem 4.2. Let A ⊂ End(V ) be a unital associative subalgebra, and let
B = Comm(A). If V is a completely reducible A-module, Comm(B) = A.

This proof is based on the proof given in ([2], pg. 184).

Proof. By definition A ⊂ Comm(B) so it suffices to prove Comm(B) ⊂ A,
and the theorem will follow by mutual inclusion. Choose {v1, ..., vn} to be a
basis of V and let T ∈ Comm(B). It will be shown there exists an element
S ∈ A so that Svi = Tvi for all basis elements. Because S and T then act
on the basis in the same way, they must be the same endomorphism. Let
w = ⊕ni=1 vi ∈ V (n) = ⊕ni=1 V . Because V was assumed to be a completely
reducible A-module, V (n) is too, and the cyclic submodule O = A ·w has an
A-invariant complement O⊥ by the irreducibility of O. It follows that there
is a projection P : V (n) → O that commutes with the elements in A. To see
this write:
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V (n) = O ⊕O⊥,

where both components are A-invariant. On O, it is evident that P = I. Let
a ∈ A. If v ∈ O then av ∈ O so P (av) = av = aP (v). If on the other hand
v̂ ∈ O⊥, then av̂ ∈ O⊥ and P (av̂) = 0 = a·0 = aP (v̂). Therefore P ◦a = a◦P
on both O and O⊥, hence on V (n). Because the projection commutes with
A its action is given by a matrix in Comm(A) = B. Furthermore it is known
that Pw = w, and because T was chosen from Comm(B) it commutes with
P . Now:

P ◦ T (w) = T ◦ P (w) = T (w) = ⊕ni=1 Tvi ∈ O.

Because O was defined to be A · w there must exist an S ∈ A such that:

S · w = ⊕ni=1 Svi = ⊕ni=1 Tvi.

Thus S has been found, T = S and T ∈ A.

4.2 The General Duality Theorem

This subsection is started with a definition.

Definition 4.3. Let V be a (possibily infinite dimensional) complex linear
space. A representation (ρ, V ) is said to be locally regular if for all v ∈ V the
space W = Span{ρ(g)v | g ∈ G} is finite dimensional and ρ|W : G→ GL(W )
is continuous.

Let (ρ, L) be any finite dimensional locally regular representation of a com-
pletely reducible group G ⊂ GL(n,C). Next fix a representation (λ, Uλ)

for every [λ] ∈ Ĝ. From the results in Subsection 3.3 it is known that the
G-module L can be decomposed as:

L ∼=
⊕

λ∈Spec(ρ)

HomG(Uλ, L)⊗ Uλ,

with the action of ρ(g) defined by I ⊗ λ(g) on the summand of type λ.
Now assume that R ⊂ End(L) is a subalgebra satisfying the following three
conditions:

1. R induces an irreducible (defining) representation φ on L.
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2. If g ∈ G and T ∈ R then ρ(g)Tρ(g)−1 ∈ R. Accordingly, R is a
G-module for the action (g, T ) 7→ ρ(g)Tρ(g)−1.

3. The representation of G on R induced by the action described in the
second condition is locally regular.

Define the commutant RG of ρ(G) in R to be:

RG = {T ∈ R | ρ(g)T = Tρ(g) for all g ∈ G}.

Then since ρ extends to an irreducible representation of the group algebra
A[G], the tensor representation φ⊗ ρ defines a representation of RG ⊗A[G]
on L. The action of RG by φ on HomG(Uλ, L) is given by left multiplication,
and the above decomposition holds true for L as an RG ⊗ A[G]-module as
well. The action of φ⊗ρ is defined by φ⊗λ on each summand of type λ. The
General Duality Theorem states there is a duality between the representa-
tions of RG and A[G] through this decomposition. Before making this more
precise through the statement of the theorem, a supporting lemma will be
given without proof. This lemma is a consequence of Burnside’s Theorem,
which is itself a corollary to the Jacobson Density Theorem. The proof of
the lemma can be found in ([2], pg. 196).

Lemma 4.4. Let X ⊂ L be a G-invariant subspace. Then the restriction
map r 7→ r|X induces a surjective linear map RG → HomG(X,L).

The General Duality Theorem will now be stated.

Theorem 4.5. For every [λ] ∈ Ĝ, the space HomG(Uλ, L) is an irreducible
RG-module. Furthermore for any pair λ, µ ∈ Spec(ρ), if HomG(Uλ, L) ∼=
HomG(Uµ, L) then λ = µ.

This theorem says that in the decomposition above every HomG(Uλ, L) must
be an irreducible RG-module. Moreover this RG-module can only appear
once in the decomposition, and therefore it corresponds uniquely to Uλ. The
proof is a rephrasing of the proof given in ([2], pg. 196).

Proof. First it is proven that HomG(Uλ, L) is an irreducible RG-module. Let
S and T be non-zero elements of HomG(Uλ, L). It will be shown an element
r ∈ RG can be found so that rT = S. Then the only non-zero invariant
subspace of HomG(Uλ, L) must be HomG(Uλ, L) itself, demonstrating it is an
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irreducible module. Let X = TUλ, Y = SUλ. Then X and Y are isomor-
phic through a G-module isomorphism ϕ. To see this note that as ker(T )
is an invariant subspace of the irreducible module Uλ and T is non-trivial,
the kernel of T must be {0} and therefore T must be injective. It is au-
tomatically surjective onto its image X = T (Uλ), and G-intertwining per
definition. Hence X ∼= Uλ. This same reasoning holds for S and Y , and
therefore X ∼= Uλ ∼= Y . By Lemma 4.4 there exists an element u ∈ RG so
that ϕ = u|X . The composition uT : Uλ → SUλ is a G-module isomorphism.
By Lemma 2.57, there exists a scalar c ∈ C so that cuT = S. Take r = cu.

Next, assume that λ 6= µ. It will be shown that HomG(Uλ, L) and HomG(Uµ, L)
are inequivalent RG-modules. It follows from this that the modules are
equivalent if and only if λ = µ: the implication λ = µ ⇒ HomG(Uλ, L) ∼=
HomG(Uµ, L) is apparent. The reverse implication then follows from that
which is to be proven, by contraposition. Recall the definition of equivalence
from Definition 2.54, and assume that:

ψ : HomG(Uλ, L)→ HomG(Uµ, L)

is a map that meets the requirements for equivalence. Then it must be
trivial. To see this, let T ∈ HomG(Uλ, L) be non-zero and set S = ψ(T ).
Set U = TUλ + SUµ = TUλ ⊕ SUµ, the second equality following from the
irreducibility of λ, µ and the assumption that λ 6= µ. Let p : U → SUµ be
the projection map. Lemma 4.4 implies there exists an element r ∈ RG so
that r|U = p. Because pT = 0 it follows that rT = 0, hence:

0 = ψ(0) = ψ(rT ) = rψ(T ) = rS = pS = S.

This shows that S = 0, and therefore that ψ = 0.

The Schur–Weyl Duality Theorem will combine this theorem for the specific
case of GL(n,C) with the Double Commutant Theorem.

4.3 Schur–Weyl Duality

In this subsection Ck will sometimes be used to denote
⊗k Cn in order to im-

prove readability. Let (ρ,C) be the defining representation of G = GL(n,C).
Then the representation (ρk, Ck) for k ≥ 0 is the representation ⊗ki=1 ρ that
acts on Ck by:
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ρk(g)(v1 ⊗ · · · ⊗ vk) = gv1 ⊗ · · · ⊗ gvk for g ∈ GL(n,C).

Furthermore define the representation (σk, Ck) of Sk by:

σk(s)(v1 ⊗ · · · ⊗ vk) = vs−1(1) ⊗ · · · ⊗ vs−1(k) for s ∈ Sk.

Let Eλ denote HomG(Uλ, Ck), known from the preceding subsections. Within
this context the Schur–Weyl Duality Theorem is as follows.

Theorem 4.6. For every λ ∈ Spec(ρk) there are irreducible, mutually in-
equivalent Sk-modules Eλ and irreducible, mutually inequivalent GL(n,C)-
modules Uλ such that ⊗k Cn ∼=

⊕
λ∈Spec(ρk)

Eλ ⊗ Uλ

as a representation of Sk×GL(n,C). The module Eλ uniquely determines Uλ
and vice versa.

The proof relies on both the General Duality Theorem and the Double Com-
mutant Theorem. In order for the latter to be applicable, the spans A =
Span(ρk) and B = Span(σk), which in contrast to the images of the represen-
tations are unital and associative algebras, will need to be used. The proof
is an extended rephrasing of the one given in ([2], pg. 200).

Proof. It will be shown that Comm(B) = A and Comm(A) = B. Because
these algebras are then each other’s commutants, the theory from Subsection
4.2 and in particular the General Duality Theorem (Theorem 4.5) becomes
applicable. Within this context, Span(σk) will fill the role of RG, for G =
GL(n,C).

By Proposition 3.6, and because Sk is finite, both ρk and σk are completely
reducible, and Ck is a completely reducible A-module. Because σk com-
mutes with ρk, A ⊂ Comm(B). If it is shown that Comm(B) ⊂ A, then
Comm(B) = A and Comm(A) = B will follow. This is implicated by the
Double Commutant Theorem: by mutual inclusion A = Comm(B), and be-
cause the conditions for the applications of the Double Commutant Theorem
have been met, Comm(A) = B. It will now be proven that Comm(B) ⊂ A.
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Let {e1, ..., ek} be the standard basis for Cn. For an ordered k-tuple (i1, ..., ik)
with 1 ≤ ij ≤ n for all j, define |I| = k and eI = ei1 ⊗ · · · ⊗ eik . The tensors
{eI} for all such I then form a basis of Ck. The representation σk acts on
these basis elements as given in the preceding discussion:

σk(s)eI = es·I where s · I = s · (i1, ..., ik) = (is−1(1), ..., is−1(k)) for s ∈ Sk.

Now let T ∈ End(Ck), and let its action relative to the basis {eI} per basis
element be given by the matrix [tI,J ]:

TeJ =
∑
I

tI,JeI .

Setting T (σk(s)(eJ)) = σk(s)(TeJ) for s ∈ Sk, it follows that T commutes
with elements of B if and only if:

ts·I,s·J = tI,J (1)

for all I, J and all s ∈ Sk. To see this, write:

T (σk(s)eJ) = T (es·J) =
∑
I

tI,s·JeI =
∑
I

ts·I,s·Jes·I

σk(s)(TeJ) =
∑
I

tI,Jes·I .

Let (·, ·) : End(Ck) × End(Ck)→ C denote the non-degenerate bilinear form
tr(·, ·). The restriction to Comm(B) of this form is non-degenerate, as will
be demonstrated using the following projection:

P : End(Ck)→ Comm(B), P : X 7→ 1
k!

∑
s∈Sk

σk(s)Xσk(s)
−1.

Its image P (End(Ck)) is indeed a subset of Comm(B) as for all elements in
B, their action on PX = P (X) merely rearranges the terms of the sum. For
all elements PX in its image, and T ∈ Comm(B):

(PX , T ) =
1

k!

∑
s∈Sk

tr(σk(s)Xσk(s)
−1T )

=
1

k!

∑
s∈Sk

tr(σk(s)XTσk(s)
−1)

=
1

k!
k! tr(X,T )

= (X,T ),
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due to the facts that T and σk commute and the trace function is conjugation
invariant. Hence (Comm(B), T ) = 0 implies (X,T ) = 0 for all X ∈ End(Ck)
and by the non-degeneracy of (·, ·) this must imply T = 0. Therefore the
trace form is non-degenerate on Comm(B). It is known that A ⊂ Comm(B).
Thus for the reverse inclusion it suffices to show that the orthocomplement
of A in Comm(B) is trivial. Let T ∈ Comm(B) be orthogonal to A. If
g = [gi,j] ∈ GL(n,C) then ρk(g) has matrix gI,J = gi1j1 · · · gikjk relative to
the basis {eI} due to the multilinearity of the tensor product. Therefore the
orthogonality assumption is expressed as:

(T, ρk(g)) =
∑
I,J

tI,Jgi1j1 · · · gikjk = 0 (2)

for all g ∈ GL(n,C). Let fT : M(n,C) → C define the following polynomial
function:

fT (X) =
∑
I,J

tI,Jxi1j1 · · ·xikjk for X = [xi,j] ∈ M(n,C).

For det : M(n,C) → C it follows from (2) that det(X)fT (X) = 0 for all
X ∈ M(n,C) by continuity of fT . Hence fT must be identically zero, and for
all [xi,j] ∈ M(n,C): ∑

I,J

tI,Jxi1j1 · · ·xikjk = 0. (3)

It will be shown that it follows from (1) and (3) that tI,J = 0 for every pair
I, J , and therefore T = 0, concluding the proof. To achieve this, (3) will
be rewritten as a sum over representatives of equivalence classes rather than
over pairs of multi-indices.

Denote xi1j1 · · ·xikjk by xI,J and note that they can be treated as monomials
xI,J : M(n,C) → C. Let Ξ be the set of all ordered pairs (I, J) of multi-
indices of length k. Then Sk acts naturally on Ξ by s · (I, J) = (s · I, s · J)
for s ∈ Sk, and this action defines an equivalence relation ∼ on Ξ where
(I, J) ∼ (I ′, J ′) if and only if there exists an s ∈ Sk so that s ·(I, J) = (I ′, J ′).
Choose Γ to be a set of representatives of the equivalence classes in Ξ/ ∼.
Let (I, J) be any pair of multi-indices in Ξ. Then there exists a γ ∈ Γ so
that (I, J) ∈ [γ]. Since all factors in the monomial xγ commute, it is deduced
for all s ∈ Sk that xγ = xs·γ, hence the value of xγ is not dependent on the
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choice of the representative γ for the class. Furthermore it follows that the
value of the sum of the xI,J over the multi-indices (I, J) in a class [γ] equals
xγ multiplied by the number of elements in the class [γ].

If xI,J = xI′,J ′ for a second pair of multi-indices (I ′, J ′) ∈ Ξ then xI,J and
xI′,J ′ are equal as monomials over M(n,C) and must therefore consist of the
same factors xi·,j· . These factors are not necessarily in the same order, but
there must exist a permutation s ∈ Sk that orders them in the same way so
that (I, J) = s · (I ′, J ′). It follows that if xI,J = xγ and xI,J = xI′,J ′ then
(I ′, J ′) ∈ [γ]. This shows that [γ] is uniquely determined by xγ.

For γ ∈ Γ let nγ = |Sk · γ| denote the cardinality of the orbit, and therefore
the size of the equivalence class. If the coefficients tI,J of T satisfy (1) and
(3) then as tI,J = tγ for all (I, J) ∈ Sk · γ:∑

I,J

tI,Jxi1j1 · · ·xikjk =
∑
γ∈Γ

nγtγxγ = 0.

The linear independence of the set of monomials {xγ | γ ∈ Γ} then implies
that for all γ ∈ Γ, nγtγ = 0. But per definition nγ ≥ 1 so this must mean
that tγ = 0 and therefore tI,J = 0 for all (I, J) ∈ Ξ. Hence it is proven that
T = 0.

With the proof of this theorem, Schur–Weyl Duality has been established.
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5 Outlook

It has been established that there is a correspondence between the Sk-modules
and GL(n,C)-modules described in the statement of the Schur–Weyl Duality
Theorem, but not if one can be explicitly determined given the other. As
it turns out, this is possible. It is achieved through the study of the irre-
ducible characters of Sk and GL(n,C), the latter of which can be determined
through the Weyl Character Formula. A thorough treatment of this theory
and possible applications of Schur–Weyl Duality can be found in ([2], ch. 9).
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