
Faculteit Bètawetenschappen

Enumeration Of Self-Avoiding Walks Using Length
Tripling

Bachelor Thesis

Sarita de Berg

Mathematics

Supervisor:

Prof. Dr. R. H. Bisseling
Mathematical institute, Utrecht

June 19, 2017

Abstract

In this thesis we show a new method to enumerate self-avoiding walks. The length-tripling method, which
is based on the length-doubling method [12], uses three walks of length N to create walks of length 3N .
We compare this method to existing methods and find it theoretically is an improvement in some cases,
but we have not seen this in practice yet.

i

CONTENTS ii

Contents

1 Introduction 1

2 The length-tripling method 2
2.1 Counting combinations . 2
2.2 Calculating the first corrections . 3
2.3 Calculating the second corrections . 4
2.4 Calculating the third corrections . 4

3 Algorithms and implementation 5
3.1 Creating self-avoiding walks . 5
3.2 The first corrections . 6
3.3 The second and third corrections . 8

4 Complexity and memory use 9

5 A method using k walks 10

6 Results 11

7 Conclusion 12

A Implementation of the length-tripling method 13

References I

1 INTRODUCTION 1

1 Introduction

Enumeration of self-avoiding walks (SAWs) is an important combinatoral problem in statistical mechanics
[9]. A self-avoiding walk is a path in a lattice, where no lattice point is visited more than once. Here, a path
means that in every step we can only go to adjacent lattice points. The fundamental problem, which we
study here, is counting the number of self-avoiding walks ZN of length N . The importance of this problem
derives from the use in determining critical exponents for polymers in solution, which are believed to be the
same for SAWs on various lattices. If we look at ZN , we see it behaves as

ZN ≈ AµNNγ−1. (1)

Here, γ is a universal exponent which only depends on the dimension, µ is a connective constant which
depends on the lattice and A is a critical amplitude. For most lattices we only have approximations for µ,
for example µ ≈ 2, 63815853031 for the square lattice [7] and µ ≈ 4, 684039931 for the simple cubic lattice

[1], but for the 2D honeycomb lattice we know that µ =
√

2 +
√

2 [3].
This might be an indication as to why so little research has been done to enumerate walks on the

honeycomb lattice, compared to, for example, the square or cubic lattice. In [6] a short history of research
to enumerate SAWs on the square lattice is given. The enumeration of SAWs on the cubic lattice [14] was
first considered by Orr in 1947 [10]. He enumerated all walks up to N = 6 by hand. The introduction of
the computer of course meant it became easier to enumerate walks. It was used by Fisher and Sykes [4]
to enumerate all SAWs up to N = 9 in 1959. The following years this was extended further by Sykes and
collaborators, until they reached 19 terms in 1972 [15]. Guttmann, who also collaborated with Sykes on
reaching 19 terms, finally enumerated the walks up to 21 steps [5]. After this, some improvements were made
by MacDonald et al. [8] and using a combination of the lace expansion and the two-step method SAWs were
finally enumerated up to N = 30 by Clisby, Liang and Slade in 2007 [2]. A few years later a new method
was introducted by Schram, Barkema and Bisseling [12]: the length-doubling method, where two walks of
length N are used to enumerate all walks of length 2N . Using this method, it was possible to enumerate all
self-avoiding walks up to N = 36. This is currently the record for the simple cubic lattice.

Considering the enormous improvements made by the length-doubling method, it seems reasonable to
look at the possibility of a length-tripling method, which we will consider in this thesis. In this method we
use three walks of length N1, N2 and N3 to enumerate all self-avoiding walks of length N = N1 +N2 +N3.
We do this in a way that is applicable to every lattice and even to other graphs. Using this method we are
able to enumerate walks faster on some lattices while using less memory than previous methods.

2 THE LENGTH-TRIPLING METHOD 2

Figure 1: Construction of a walk of length N

2 The length-tripling method

In the length-tripling method, the idea is to use three walks, w1, w2 and w3 of length N1, N2 and N3

respectively, to create walks of length N = N1 + N2 + N3. We construct these walks by choosing ~0 as the
starting point of w1 and w2 and ~r as the end point of w2. Now w3 has starting point ~r and, like w1, this walk
has no fixed end point. This construction is shown in Figure 1. We can now use this construction to count
all SAWs of length N . We do this by first counting all self-avoiding combinations of w1, w2 and w3 under
these restrictions and then changing ~r to a new possible end point of w2. We again count all SAWs with the
new restrictions. We do this for all possible end points of w2. Now the sum of all these counts is the number
of SAWs of length N . The next section will explain how we can count the self-avoiding combinations of w1,
w2 and w3.

2.1 Counting combinations

We now fix ~r. We want to count all combinations of w1, w2 and w3, such that they do not intersect at any
point. Because it is very hard to determine whether walks do not intersect, we look at the ones that do and
based on this we can calculate our desired count. To clarify this we use the following notation

A = {(w1, w2, w3) : w1 ∩ w2 6= {~0}},
B = {(w1, w2, w3) : w2 ∩ w3 6= {~r}},
C = {(w1, w2, w3) : w1 ∩ w3 6= ∅}.

Because w1 and w2 always intersect at ~0 and w2 and w3 at ~r, we do not consider these to be possible
intersection points. We now define D as the complement of A ∪ B ∪ C. It follows that |D| is the number
of combinations of the three walks, such that they do not intersect each other, so this is the number we are
looking for. In figure 2 it is shown how these sets are related to each other. As shown in section 3 we can
determine |A|, |B|, |C|, |A∩B|, |A∩C|, |B∩C| and |A∩B∩C| relatively easily. Using the inclusion-exclusion
principle, see for instance [11], or by just looking at figure 2, we find that

|D| = Z1Z2Z3 − |A| − |B| − |C|+ |A ∩B|+ |B ∩ C|+ |A ∩ C| − |A ∩B ∩ C|. (2)

Here Zn is the number of SAWs of length Nn, under the start and end point restrictions described earlier.
Because the calculation of the other terms requires all walks w1, w2 and w3, we immediately find Z1, Z2

and Z3. An implementation of creating all these walks can be found in section 3.1, algorithm 1. In the next
sections we will discuss how to calculate the other terms using walks w1, w2 and w3.

2 THE LENGTH-TRIPLING METHOD 3

Figure 2: Venn diagram of combinations (w1, w2, w3)

2.2 Calculating the first corrections

The first correction terms are |A|, |B| and |C|. After we have determined all walks w1, w2 and w3, we can
calculate these terms using the same algorithm. The only difference in the calculation of these correction
terms is whether or not ~0 and ~r are considered in the calculation. In the calculation of |A|, we look at
combinations of walks w1 and w2. These walks always share their starting point ~0. This means we do not
consider ~0, but ~r is a possible intersection point. For |B|, ~0 is considered in the calculation, but ~r is not. And
lastly for |C|, we consider both ~0 and ~r in the calculation.

From here on we will look at the calculation of |A|. This is defined as the number of walks for which
w1 ∩w2 6= {~0}. So we need all intersecting combinations of w1 and w2 and then we can combine all of these
with all possible walks w3. This results in Z3 times something that looks at lot like the length-doubling
formula, as described in [12], which determines the number of self-avoiding combinations of two walks. In the
length-doubling formula, we look at all non-empty subsets S of lattice sites and for these subsets we determine
the number of walks w1 and w2 that visit the complete subset. Because all walks have finite length, only a
finite number of sites can be reached. It follows that there is only a finite number of non-empty subsets S.
We define Zn(S) as the number of walks wn that visit the entire set S. The resulting formula is

|A| = Z3 ·
∑
S 6=∅

(−1)|S|+1Z1(S)Z2(S). (3)

This formula can be understood as follows. In the sum, we first add all combinations of w1 and w2 with at
least one intersection, so |S| = 1. We do this by looking at all possible intersection points and adding the
number of combinations that visit each of those sites. Because some of these combinations have multiple
intersections, we have counted too many walks. We want to subtract all combinations that have at least two
intersections. We define Ai as the set of combinations (a, b), where a behaves as w1 and b as w2, for which a
and b visit lattice point i. We can now determine the number of combinations with at least one intersection
point, by again using the inclusion-exclusion principle, which states that∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
∑
i

|Ai| −
∑
i<j

|Ai ∩Aj |+
∑
i<j<k

|Ai ∩Aj ∩Ak|+ ...+ (−1)n+1 |A1 ∩A2 ∩ ... ∩An| . (4)

We defined the number of walks w1 to visit a set S as Z1(S) and for w2 as Z2(S). It follows that the
number of combinations (a, b) that visit S is Z1(S)Z2(S). Combining this and equation (4) we get equation
(3).

2 THE LENGTH-TRIPLING METHOD 4

2.3 Calculating the second corrections

We will now look at the calculation of the second correction terms: |A ∩ B|, |B ∩ C| and |A ∩ C|. We will
describe the calculation of |A ∩ B|, calculating |B ∩ C| and |A ∩ C| is done in a similar manner. This is
defined as the number of combinations of walks for which w1 ∩ w2 6= {~0} and w2 ∩ w3 6= {~r}. We now have
two subsets S and T of lattice sites. Here S is the subset with points of intersection of w1 and w2 and T the
subset with intersections of w2 and w3. If follows that w1 must visit all sites in S, w2 all sites in S and T
and w3 only the sites in T . These sets can of course contain some of the same points. Because the length of
the walks is finite, it follows that only a finite number of lattice points can be reached, so we have a finite
number of non-empty subsets S and T . Similarly as in calculating |A|, we want to look at all sets S and T
and add or subtract the walks visiting these sets. We get the equation

|A ∩B| =
∑
S×T

S 6=∅,T 6=∅

(−1)|S|+|T |Z1(S)Z2(S ∪ T)Z3(T). (5)

Here, we start by adding all combinations of the three walks with at least one intersection, so |S| = |T | = 1.
But doing this we count some intersecting combinations multiple times. Now consider the case where |S| = 2
and |T | = |1|. We have already counted these walks twice, which we should not have. So we we have
to subtract Z1(S)Z2(S ∪ T)Z3(T). In the equation we get (−1)|S|+|T | = (−1)2+1 = −1, so we indeed
subtract this number. The case where |T | = 2 and |S| = 1 is also subtracted, following the same reasoning.
But because walks can of course intersect more than just in S and T , we now have subtracted the case
where |S| = |T | = 2 twice. This means we have to add Z1(S)Z2(S ∪ T)Z3(T) for this case. Again we see
(−1)|S|+|T | = (−1)2+2 = 1. Following this argumentation for larger sizes of S and T we get equation (5).

2.4 Calculating the third corrections

We now look at calculating the third correction: |A∩B ∩C|. According to the definition this is the number
of combinations for which w1 ∩ w2 6= {~0}, w2 ∩ w3 6= {~r} and w1 ∩ w3 6= ∅. To keep track of the different
intersections we need three subsets of lattice sites, S, T and U . Here S contains the intersection points of
w1 and w2, T of w2 and w3 and U of w1 and w3. Because both S and U consider sites of w1, we need this
walk to visit all sites in both S and U . The same holds for w2, this walk has to visit S and T . And lastly w3

must visit T and U . We again have a finite number of these subsets and look at all of those sets and add or
subtract them. This results in the equation

|A ∩B ∩ C| =
∑

S×T×U
S 6=∅,T 6=∅,U 6=∅

(−1)|S|+|T |+|U |+1Z1(S ∪ U)Z2(S ∪ T)Z3(T ∪ U). (6)

The argumentation for this formula is about the same as for equation (5). The only difference is we now
have three sets. This means that after adding |S| = |T | = |U | = 1, we have to subtract the cases where one
of these cardinalities equals two and then add the cases where two of the cardinalities equal two. After this,
we subtract the combinations where |S| = |T | = |U | = 2. Continuing this reasoning we find equation (6).

3 ALGORITHMS AND IMPLEMENTATION 5

3 Algorithms and implementation

In this section we will discuss the algorithms used to do the calculations described in section 2.1. We will also
discuss the implementation of the algorithms in the program. The implementation used in the program, is
based on SAWdoubler [13], a program for counting walks using length doubling. To do all of our calculations,
we first need to find all possible walks w1, w2 and w3. We will describle how to do this in the next section.

3.1 Creating self-avoiding walks

To describe a walk, we need a unique numbering for the lattice sites. We will use the same numbering in
our entire program. The reason for this is that in the length-tripling method we need to create new trees
for all different ~r, but using the same numbering we can reuse the tree with walks w1. To determine what
numbering works best for our problem, we first look at how we are going to store the walks. We do this
using a tree data structure, just like described in [13]. In this tree we store all sites visited by a walk. Before
we add a walk to the tree, we first sort the visited sites in increasing order. Suppose a walk of length N
visits the set of sites {s1, s2, ..., sN}, with si < sj for i < j. We now add the walk to the tree, such that
si = parent(si+1). The only special site is the root of the tree, this node has site number -1. We cannot use
the node with site number zero as the root of the tree, because this is not the starting point of all walks.

At every node we need to store some information, this is

• site, site number of the node;
• count, number of SAWs with this node as its highest site;
• child, first child of the node;
• sibling, next sibling when creating the tree, later next node with the same site number;
• parent, parent of the node;
• stamp, time stamp.

In the tree, the siblings are implemented as a linked list using sibling. The siblings are sorted by increasing
site number, which makes searching for a child with a specific site number a bit faster. Later, when calculating
the correction terms, sibling is used to find the next node with the same site number. When creating the
tree stamp is not used, when traversing the tree it is used as a time stamp in the algorithm. The variable
count is also used when traversing the tree to keep track of how many walks visit the set we consider.

We of course want to use as little memory as possible, so we want to make sure we can reuse a lot of
nodes in the tree when adding new walks. The sites closest to the root are used most often, so we want to
give these sites a low number. We also want a way to number the sites that is applicable to every lattice.
We do this by using a breadth-first search starting at the middle of the lattice, which we call ~0. This is the
point we also use as the start of w1 and w2. The nodes are numbered in the order we encounter them in the
BFS, this way the nodes closest to ~0 have lowest site numbers.

Algorithm 1 Recursive algorithm to create all walks of length N

function FillTree(N, i,R, visited, T , end)
if i = N then

if end = −1 or R[i] = end then
Sort(R) . sort in increasing order
InsertTree(R, T)

else
for all r ∈ Adj(R[i]) do

if not visited[r] then . we cannot visit the same site twice in a walk
R[i+ 1]← r
visited[r]← true
FillTree(N, i+ 1, R, visited, T , end)

visited[R[i]]← false

3 ALGORITHMS AND IMPLEMENTATION 6

Figure 3: The bound goes up in the tree, during which we choose whether or not to add bound to the set S.

After we have numbered the sites, we have to create the trees. To do this we use algorithm 1, which is
based on the Go function described in [13]. Before calling the function we add the root to the tree, which
has -1 as site number. After this we call FillTree(N, 0, R, visited, T , end). Here N is the length of the walks
we want to create, R is an array of length N + 1 where R[0] is the starting point, the array visited is initially
false for all values except for the starting point and T only contains the root node. The integer end indicates
whether or not the walks need to have the same end point, if this is −1 all end points are allowed, otherwise
only walks with the specified end point are added.

In the algorithm we first check the length of the walk created. If this is N and we meet the end point
condition we add the sorted walk to the tree. If this is not the case, we look at all sites adjacent to r. Sites
we have not visited yet we add to R and then we recursively fill R further.

3.2 The first corrections

Now that we have created the trees, we know the number of walks Z1, Z2 and Z3, but as we have seen
before, this is not enough. We need |A|, |B| and |C|, for which we use equation (3). To calculate the different
values for Z1(S) and Z2(S) we traverse up and down the tree, while adding sites to S. To clarify this we
define bound as the maximum site that can still be included when expanding S. In figure 3 we can see what
happens. The numbers on the left are site numbers. In this picture four walks of length 3 are shown. The
crosses are the sites visited by the walks, for example the first walk starts in 0 and visits sites 1, 3 and 4. The
sites of course do not have to be visited in this order. Because w3 does not have 0 as starting point, it can
also be the case that the lowest site number with a cross is not the starting point of the walk. Now suppose
bound = 5, there are three options: include bound in S and continue expanding S, not include bound in S
and continue expanding, include bound in S as its final site. After this the bound goes up to lower numbered
sites, until we reach 0. This way we get all possible sets S.

In algorithm 2 we see how this is implemented. We use a bin data structure to show which nodes are
active. If a node is active it means the site number of this site is included in S. The first call of the algorithm,
in this case for calculating |A|, is CorrectFirstTerms(T1, T2, Bins1, Bins2, A, r), where T1 and T2 are the
trees that belong to the two walks we consider and Bins1 and Bins2 contain all nodes with count greater
than zero, which actually are the leaves of the trees. The A shows we want to calculate |A|, not |B| or |C|.
Finally r is the site number of ~r. The algorithms works as follows.

First, we determine the highest active site number, which becomes the bound. After this we check if it is
possible to expand S further, if it is not we return zero. If it is possible to add more sites, we have the three
previously described options.

The first option is to look at supersets S′ ⊇ S that do not include bound. Because there are no site
numbers smaller than zero, we can only do this if bound 6= 0. We call algorithm 3 with the variable false,
which means we do not include bound in the supersets. In this function we look at all nodes with site number
bound. If the parent pv of a node v is active and we do not include bound in S′, we add the count of the
node to the count of its parent to get the number of walks that visit all sites in S and

3 ALGORITHMS AND IMPLEMENTATION 7

follow the same path through the tree from the root to pv. If the parent is not active we replace the count
of pv by that of v and make the pv active by inserting it in the bin and giving it the current time stamp.
After we have updated the counts we recursively expand S further and add the result to Z. We add this
number because no sites are added to S, so the the sign in equation 3 is not changed.

The next option is to look at supersets that do include bound. We can only include r in S if we are
looking at |A| or |C|, so we first check if this condition holds. After this, we first have to make all nodes
smaller than bound inactive. We do this by increasing the time variable and emptying the bins. Now we can
use UpdateCounts again, but this time incl is true because we do include bound in supersets. This means
that for all nodes v with site number bound we replace the count of its parent by that of v and make the
parent active. We recursively expand S further, but instead of adding we subtract this number, because we
have added one site to S.

Finally we look at the contribution of S′ = S∪ bound. To do this we need the total number of walks in T1
and T2 that visit S′. We find this by adding all counts of nodes with site number bound in the two different
trees. We multiply these two counts like in equation (3) and add this to Z.

Algorithm 2 Recursive algorithm that calculates the first correction terms

function CorrectFirstTerms(T1, T2, Bins1, Bins2,mode, r, time)
Z ← 0
bound←max[i : Bins1[i] 6= ∅ or Bins2[i] 6= ∅] . find max active site
if bound = −1 or (bound = 0 and mode = A) then . we cannot include zero if mode is 1

return Z

if bound 6= 0 then . if bound = 0 we can only include bound in S but no more sites

. Contribution for S′) S with bound /∈ S′
UpdateCounts(Bins1, bound, false, time) . false because we do not include bound
UpdateCounts(Bins2, bound, false, time)
Z ← Z + CorrectFirstTerms(T1, T2, N,Bins1, Bins2,mode, r, time)
Restore the counts

. Contribution for S′) S with bound ∈ S′
if bound 6= r or mode = A or mode = C then

time← time+ 1
for s = 0 to bound− 1 do . empty the bins

Bins1[s] = ∅
Bins2[s] = ∅

UpdateCounts(Bins1, bound, true, time) . true because we include bound
UpdateCounts(Bins2, bound, true, time)
Z ← Z −CorrectFirstTerms(T1, T2, N,Bins1, Bins2,mode, r, time)
Restore the counts

. Contribution for S′ = S ∪ {bound}
if bound 6= r or mode = A or mode = C then

Z1← 0 . total walks of type 1
Z2← 0 . total walks of type 2
for all v ∈ Bins1[bound] do

Z1← Z1 + v.count

for all w ∈ Bins2[bound] do
Z2← Z2 + w.count

Z ← Z + Z1 · Z2

return Z

3 ALGORITHMS AND IMPLEMENTATION 8

Algorithm 3 Algorithm to change the counts in the tree to match the number of walks visiting the set

function UpdateCounts(Bins, bound, incl, time) . incl is whether or not we include bound in the set
for v ∈ Bins[bound] do

pv ← v.parent
if not incl and pv.stamp = time then . parent is active

pv.count← pv.count+ v.count
else

pv.count← v.count
InsertBin(pv,Bins, time)
pv.stamp← time

3.3 The second and third corrections

The algorithms for calculating the second and third corrections have a lot in common with algorithm 2. The
big difference is of course that we have two or three sets instead of one. This means there are a lot more
options when traversing the tree. We use the same bound for the three trees and everytime we arrive at a
new site we choose whether or not to add it to S and/or T and/or U . When determining whether or not a
site is active, we use a different timer for each set. The consequences of adding a site to one of the sets and
which timer(s) we have to check can easily be understood by looking at equation (5) and (6). For example,
when calculating |A∩B| assume that we want to add a site to T . It follows that w2, which has to visit S∪T ,
must include the site, so we call UpdateCounts with the variable true and check the timers of S and T .
We also do this for w3, but w1 does not have to visit this site so for this walk we call UpdateCounts with
the variable false. When calculating the second correction there are exactly nine different options, they are:

1. Not including bound in S and T and continue expanding;
2. Including bound in S, but not in T and continue expanding;
3. Including bound in T , but not in S and continue expanding;
4. Including bound in S and T and continue expanding;
5. Including bound in S as its final site and not in T and continue expanding;
6. Including bound in S as its final site and in T and continue expanding;
7. Including bound in T as its final site and not in S and continue expanding;
8. Including bound in T as its final site and in S and continue expanding;
9. Close both sets if they have not been closed yet and add the number of walks

We see here we only add walks when we close S and T , of course one of these might already be closed before
this. This means we only add each combination of sets S and T once. Of course a lot of these options are
not always possible, for example we cannot add any more sites to S if we have already closed this set. When
calculating the third corrections there are even more options, because in that case we have a third set U .
The implementation of these algorithms can be found in appendix A.

4 COMPLEXITY AND MEMORY USE 9

4 Complexity and memory use

So far we have seen it is possible to do length tripling, but the question remains if it is better than previously
used methods. Better can mean two things in this case: it can be faster and/or use less memory.

We first consider the complexity of different methods. The number of walks of length N grows as

ZN ≈ AµNNγ−1, where the factor µN dominates. Here µ =
√

2 +
√

2 [3] for the honeycomb lattice,
µ ≈ 2, 63815853031 for the square lattice [7] and µ ≈= 4, 684039931 for the simple cubic lattice [1]. The
naive method, enumerating brute forse using a backtracking algorithm, therefore takes O(µN) time. Using
the two-step method Clisby, Liang and Slade [2] we were able to reduce this to about O(4, 0N) for the simple
cubic lattice. In the length-doubling method [12] walks of length N are used to create walks of length 2N .
First all walks of length N are enumerated and then for each SAW we look at all subsets S of lattice sites
visited by this walk. For each SAW there are 2N of those subsets, so the total complexity is O(2NµN) which
compares favorably to O(µ2N) when µ > 2. This is the case for the square and simple cubic lattice.

Now we take a closer look at the length-tripling method. Suppose all three walks are of length N . We look
at the different stages of our program and determine their complexity. First we create T1, which takes O(µN)
time. After that we can fix ~r, so all coming steps have to be done for all different ~r. This means we have
to multiply the complexities by the number of possible sites ~r. On the square lattice there is a maximum of
about 4N2 reachable sites and on the simple cubic lattice this is about 8N3. If we look at other dimensions,
we see that for dimention d we get 2dNd. Now we can create the two other trees, which also takes O(µN)
time. After that we use the length-doubling formula three times, so we get O(2NµN). When calculating the
second correction we look at all possible subsets S and combine these with all possible subsets T for each
walk. It follows that this step is O(2N2NµN) = O(4NµN). Finally, we look at the third corrections. In this
case we have three subsets we can combine, so we get O(2N2N2NµN) = O(8NµN). All together this means
we have a complexity of O(2dNd8NµN). When d is small of course 2dNd does not play a big part. We see
that this compares favorably to O(µ3N) if µ >

√
8, which is the case for the simple cubic lattice. However,

if we compare it to the length-method we find it does not always compare favorably when µ >
√

8. For

example, if we look at the simple cubic lattice we get O(
√

2
N · √µN) = O(3, 06N) using length doubling and

O(8
1
3Nµ

1
3N) = 3, 35N using length tripling. If we want length tripling to be faster than length doubling we

need √
2 · √µ > 2 3

√
µ. (7)

If follows that the length-tripling is profitable when µ > 8, a lattice for which this holds is the FCC lattice
[14].

We now we look at the memory use of the method. Storing all walks of length N takes O(µN) memory.
It is of course possible to improve this a little by using a smart data structure, for example a tree. In our
method we only need to save three trees, which use O(µN) memory, so we still use only O(µN) memory. This
is a big improvement compared to the O(µ3N) used when using the naive method.

In conclusion, the method is definitely an improvent regarding memory use. Whether it is a faster method
than previously used method depends on the lattice on which we want to enumerate the SAWs. For small
dimentions and µ > 8, the method is also an improvement regarding complexity.

5 A METHOD USING K WALKS 10

5 A method using k walks

After doing length doubling and length tripling, the next logical step would be to combine k walks of length
N to create a walk of length kN . After doing length tripling, this seems like a realistic step, although
implementation might be difficult.

We first consider the number of corrections we need to do when combining k walks. The number of
corrections is actually the same as the number of sets we need to describe all combinations of walks, so in
our case these sets were A, B and C. We need a set for every combination of walks, so in general we have(
k
2

)
different sets. Every extra correction gives an extra term 2N in the complexity, so the complexity of the

last correction is
O(2(k

2)·NµN).

But if we use more walks we also need to fix points ~r1, ..., ~rk−2, where ri is the end point of wi+1 and the
starting point of wi+2. We now need to do the corrections for all combinations of these points, which means
we actually get

O((2N)(k−2)d · 2(k
2)·N · µN).

If we just look at the last part, this would mean it is an improvement compared to the naive method when

µkN > 2(k
2)·N · µN

µ >
k−1

√
2(k

2).

(8)

Here we have also omitted that we actually need to do the calculations for every correction, except for the last
one, k times. It would be very interesting to determine the best k for different µ. Of course memory use can
also be taken into consideration, when determining the best k for the problem, because when k gets larger,
less memory is used. All in all it is quite difficult to say when exactly this is going to be an improvement,
but it is definity a possibility worth considering.

6 RESULTS 11

6 Results

We first implemented the length-doubling method, which is also used to calculate |A|, |B| and |C|. Using this
method we were able to enumerate walks on the simple cubic lattice up to N = 19. After this, we run out of
memory. In table 1 we see ZN and the time used by the naive method and the length-doubling method for
some N . We see the length-doubling method is indeed a lot faster than the naive method. When looking at
the even N , we recognise the complexity we found, which is O(2NµN) for walks of length 2N . The running
time for odd lengths is always higher than expected because one of the walks has to be longer than 1

2N ,
which means we have to look at more subsets S than when using walks of length 1

2N .
We also implemented the second and third corrections. Sadly, the third correction does not give the right

result yet, so we do not know the time used by the length-tripling method. The second corrections do seem
to give the right results. However, when measuring the time used when only doing the first and second
corrections, the time used is much longer than it should be theoretically. For example, creating walks of
length 12 takes 168 seconds, which is very long compared to the 1,2 seconds when only calculating the first
corrections. This probably means we go into recursion too many times, but we have not been able to find
where this happens.

Hopefully, we will soon be able to get results for length tripling using the program.

N ZN Naive method Length doubling
8 387 966 0,62 0,02
9 1 853 886 3,3 0,03
10 8 809 878 13 0,12
11 41 934 150 Out of memory 0,16
12 198 842 742 Out of memory 0,22
13 943 974 510 Out of memory 1,1
14 4 468 911 678 Out of memory 1,4
15 21 175 146 054 Out of memory 7,2
16 100 121 875 974 Out of memory 8,8
17 473 730 252 102 Out of memory 52
18 2 237 723 684 094 Out of memory 63
19 10 576 033 219 614 Out of memory 381
20 Out of memory Out of memory

Table 1: Time used in seconds when enumerating self-avoiding walks of length N

7 CONCLUSION 12

7 Conclusion

Enumerating self-avoiding walks is a problem that has been studied a lot in the past. In this thesis we
have discussed a new method to enumerate SAWs: the length-tripling method. In this method we use three
walks of length N to create walks of length 3N . We have found that the method is a large improvement
regarding memory. The time used by the method should theoretically be an improvement to the length-
doubling method for µ > 8, but in practice it might also be an improvement for smaller µ. So far, we have
not been able to see this, because the program does not work optimally yet. The implementation of the
length-doubling method does work very well, using this we were able to enumerate all self-avoiding walks on
the simple cubic lattice up to N = 19. The problem for larger N is not time but memory, so hopefully we
will be able to enumerate up to larger N using the length-tripling method.

A IMPLEMENTATION OF THE LENGTH-TRIPLING METHOD 13

A Implementation of the length-tripling method

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;

namespace SAW
{

class saw
{

static public int N;

static void Main()
{

Stopwatch timer = new Stopwatch();
timer.Start();
int N1, N2, N3, lattice, zero;
N1 = 2;
N2 = 2;
N3 = 2;
lattice = 0;
zero = 0;
N = Math.Max(N1, N2 + N3);

List<int>[] graph;
graph = CreateGraph(lattice, ref zero);
graph = NumberBFS(graph, zero);
long walks = 0;
walks = LengthTripling(graph, N1, N2, N3);
Console.WriteLine(walks);
Console.WriteLine(timer.Elapsed);
Console.ReadLine();

}

static List<int>[] CreateGraph(int lattice, ref int zero)
{

List<int>[] graph;
switch (lattice)
{

case 0:
graph = CreateSquare();
zero = phiSq(N, N);
break;

case 1:
graph = CreateHoneycomb();
zero = phiHc(N, N / 2 + 1);
break;

case 2:
graph = CreateCubic();
zero = phiCu(N, N, N);
break;

default:
graph = new List<int>[0];
break;

}

return graph;
}

static List<int>[] CreateSquare()
{

List<int>[] AdjacencyList = new List<int>[phiSq(2 * N, 2 * N) + 1];
for (int k = 0; k < phiSq(2 * N, 2 * N) + 1; k++)

AdjacencyList[k] = new List<int>();
//First we look at the Adjacencylist for the edges of our grid
for (int i = 1; i < 2 * N; i++)
{

AdjacencyList[phiSq(i, 0)].Add(phiSq(i - 1, 0));
AdjacencyList[phiSq(i, 0)].Add(phiSq(i + 1, 0));
AdjacencyList[phiSq(i, 0)].Add(phiSq(i, 1));

AdjacencyList[phiSq(i, 2 * N)].Add(phiSq(i - 1, 2 * N));
AdjacencyList[phiSq(i, 2 * N)].Add(phiSq(i + 1, 2 * N));
AdjacencyList[phiSq(i, 2 * N)].Add(phiSq(i, 2 * N - 1));

}
for (int j = 1; j < 2 * N; j++)
{

AdjacencyList[phiSq(0, j)].Add(phiSq(0, j - 1));
AdjacencyList[phiSq(0, j)].Add(phiSq(0, j + 1));
AdjacencyList[phiSq(0, j)].Add(phiSq(1, j));

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 2
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

AdjacencyList[phiSq(2 * N, j)].Add(phiSq(2 * N, j - 1));
AdjacencyList[phiSq(2 * N, j)].Add(phiSq(2 * N, j + 1));
AdjacencyList[phiSq(2 * N, j)].Add(phiSq(2 * N - 1, j));

}

//Now we look at all the corners
AdjacencyList[phiSq(0, 0)].Add(phiSq(1, 0));
AdjacencyList[phiSq(0, 0)].Add(phiSq(0, 1));
AdjacencyList[phiSq(2 * N, 0)].Add(phiSq(2 * N - 1, 0));
AdjacencyList[phiSq(2 * N, 0)].Add(phiSq(2 * N, 1));
AdjacencyList[phiSq(0, 2 * N)].Add(phiSq(0, 2 * N - 1));
AdjacencyList[phiSq(0, 2 * N)].Add(phiSq(1, 2 * N));
AdjacencyList[phiSq(2 * N, 2 * N)].Add(phiSq(2 * N - 1, 2 * N));
AdjacencyList[phiSq(2 * N, 2 * N)].Add(phiSq(2 * N, 2 * N - 1));

//Finally we look at the middle of the grid
for (int i = 1; i < 2 * N; i++)

for (int j = 1; j < 2 * N; j++)
{

AdjacencyList[phiSq(i, j)].Add(phiSq(i - 1, j));
AdjacencyList[phiSq(i, j)].Add(phiSq(i + 1, j));
AdjacencyList[phiSq(i, j)].Add(phiSq(i, j - 1));
AdjacencyList[phiSq(i, j)].Add(phiSq(i, j + 1));

}

return AdjacencyList;
}

//Assigns a canonical numbering to every point from (0,0) to (2N, 2N) in the square lattice
static int phiSq(int i, int j)
{

return i * (2 * N + 1) + j;
}

static List<int>[] CreateHoneycomb()
{

List<int>[] AdjacencyList = new List<int>[phiHc(2 * N, N + 2) + 1];
for (int k = 0; k < phiHc(2 * N, 2 + N) + 1; k++)

AdjacencyList[k] = new List<int>();
//First we look at the Adjacencylist for the edges of our grid
for (int i = 1; i < 2 * N; i++)
{

AdjacencyList[phiHc(i, 0)].Add(phiHc(i - 1, 0));
AdjacencyList[phiHc(i, 0)].Add(phiHc(i + 1, 0));

AdjacencyList[phiHc(i, 2 + N)].Add(phiHc(i - 1, 2 + N));
AdjacencyList[phiHc(i, 2 + N)].Add(phiHc(i + 1, 2 + N));

if (i % 2 == 1)
AdjacencyList[phiHc(i, 0)].Add(phiHc(i, 1));

else
AdjacencyList[phiHc(i, 2 + N)].Add(phiHc(i, N + 1));

}
for (int j = 1; j < 2 + N; j++)
{

AdjacencyList[phiHc(0, j)].Add(phiHc(1, j));
AdjacencyList[phiHc(2 * N, j)].Add(phiHc(2 * N - 1, j));

if (j % 2 == 1)
{

AdjacencyList[phiHc(0, j)].Add(phiHc(0, j + 1));
AdjacencyList[phiHc(2 * N, j)].Add(phiHc(2 * N, j + 1));

}
else
{

AdjacencyList[phiHc(0, j)].Add(phiHc(0, j - 1));
AdjacencyList[phiHc(2 * N, j)].Add(phiHc(2 * N, j - 1));

}
}

//Now we look at all the corners
AdjacencyList[phiHc(0, 0)].Add(phiHc(1, 0));
AdjacencyList[phiHc(2 * N, 0)].Add(phiHc(2 * N - 1, 0));
AdjacencyList[phiHc(0, 2 + N)].Add(phiHc(1, 2 + N));
AdjacencyList[phiHc(2 * N, 2 + N)].Add(phiHc(2 * N - 1, 2 + N));
if (N % 2 == 0)
{

AdjacencyList[phiHc(0, 2 + N)].Add(phiHc(0, 1 + N));
AdjacencyList[phiHc(2 * N, 2 + N)].Add(phiHc(2 * N, N + 1));

}

//Finally we look at the middle of the grid

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 3
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

for (int i = 1; i < 2 * N; i++)
for (int j = 1; j < 2 + N; j++)
{

AdjacencyList[phiHc(i, j)].Add(phiHc(i - 1, j));
AdjacencyList[phiHc(i, j)].Add(phiHc(i + 1, j));
if ((i + j) % 2 == 0)

AdjacencyList[phiHc(i, j)].Add(phiHc(i, j - 1));
else

AdjacencyList[phiHc(i, j)].Add(phiHc(i, j + 1));
}

return AdjacencyList;
}

//Assigns a canonical numbering to every point from (0,0) to (2N, 1/2 N + 1) in the honeycom b
lattice

static int phiHc(int i, int j)
{

return i * (N + 3) + j;
}

static List<int>[] CreateCubic()
{

List<int>[] AdjacencyList = new List<int>[phiCu(2 * N, 2 * N, 2 * N) + 1];
for (int k = 0; k < phiCu(2 * N, 2 * N, 2 * N) + 1; k++)

AdjacencyList[k] = new List<int>();

//First we look at the Adjacencylist for the edges of our grid
for (int i = 1; i < 2 * N; i++)
{

AdjacencyList[phiCu(i, 0, 0)].Add(phiCu(i - 1, 0, 0));
AdjacencyList[phiCu(i, 0, 0)].Add(phiCu(i + 1, 0, 0));
AdjacencyList[phiCu(i, 0, 0)].Add(phiCu(i, 1, 0));
AdjacencyList[phiCu(i, 0, 0)].Add(phiCu(i, 0, 1));

AdjacencyList[phiCu(i, 2 * N, 0)].Add(phiCu(i - 1, 2 * N, 0));
AdjacencyList[phiCu(i, 2 * N, 0)].Add(phiCu(i + 1, 2 * N, 0));
AdjacencyList[phiCu(i, 2 * N, 0)].Add(phiCu(i, 2 * N - 1, 0));
AdjacencyList[phiCu(i, 2 * N, 0)].Add(phiCu(i, 2 * N, 1));

AdjacencyList[phiCu(i, 0, 2 * N)].Add(phiCu(i - 1, 0, 2 * N));
AdjacencyList[phiCu(i, 0, 2 * N)].Add(phiCu(i + 1, 0, 2 * N));
AdjacencyList[phiCu(i, 0, 2 * N)].Add(phiCu(i, 1, 2 * N));
AdjacencyList[phiCu(i, 0, 2 * N)].Add(phiCu(i, 0, 2 * N - 1));

AdjacencyList[phiCu(i, 2 * N, 2 * N)].Add(phiCu(i - 1, 2 * N, 2 * N));
AdjacencyList[phiCu(i, 2 * N, 2 * N)].Add(phiCu(i + 1, 2 * N, 2 * N));
AdjacencyList[phiCu(i, 2 * N, 2 * N)].Add(phiCu(i, 2 * N - 1, 2 * N));
AdjacencyList[phiCu(i, 2 * N, 2 * N)].Add(phiCu(i, 2 * N, 2 * N - 1));

}
for (int j = 1; j < 2 * N; j++)
{

AdjacencyList[phiCu(0, j, 0)].Add(phiCu(0, j - 1, 0));
AdjacencyList[phiCu(0, j, 0)].Add(phiCu(0, j + 1, 0));
AdjacencyList[phiCu(0, j, 0)].Add(phiCu(1, j, 0));
AdjacencyList[phiCu(0, j, 0)].Add(phiCu(0, j, 1));

AdjacencyList[phiCu(2 * N, j, 0)].Add(phiCu(2 * N, j - 1, 0));
AdjacencyList[phiCu(2 * N, j, 0)].Add(phiCu(2 * N, j + 1, 0));
AdjacencyList[phiCu(2 * N, j, 0)].Add(phiCu(2 * N - 1, j, 0));
AdjacencyList[phiCu(2 * N, j, 0)].Add(phiCu(2 * N, j, 1));

AdjacencyList[phiCu(0, j, 2 * N)].Add(phiCu(0, j - 1, 2 * N));
AdjacencyList[phiCu(0, j, 2 * N)].Add(phiCu(0, j + 1, 2 * N));
AdjacencyList[phiCu(0, j, 2 * N)].Add(phiCu(1, j, 2 * N));
AdjacencyList[phiCu(0, j, 2 * N)].Add(phiCu(0, j, 2 * N - 1));

AdjacencyList[phiCu(2 * N, j, 2 * N)].Add(phiCu(2 * N, j - 1, 2 * N));
AdjacencyList[phiCu(2 * N, j, 2 * N)].Add(phiCu(2 * N, j + 1, 2 * N));
AdjacencyList[phiCu(2 * N, j, 2 * N)].Add(phiCu(2 * N - 1, j, 2 * N));
AdjacencyList[phiCu(2 * N, j, 2 * N)].Add(phiCu(2 * N, j, 2 * N - 1));

}
for (int k = 1; k < 2 * N; k++)
{

AdjacencyList[phiCu(0, 0, k)].Add(phiCu(0, 0, k - 1));
AdjacencyList[phiCu(0, 0, k)].Add(phiCu(0, 0, k + 1));
AdjacencyList[phiCu(0, 0, k)].Add(phiCu(1, 0, k));
AdjacencyList[phiCu(0, 0, k)].Add(phiCu(0, 1, k));

AdjacencyList[phiCu(2 * N, 0, k)].Add(phiCu(2 * N, 0, k - 1));
AdjacencyList[phiCu(2 * N, 0, k)].Add(phiCu(2 * N, 0, k + 1));
AdjacencyList[phiCu(2 * N, 0, k)].Add(phiCu(2 * N - 1, 0, k));

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 4
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

AdjacencyList[phiCu(2 * N, 0, k)].Add(phiCu(2 * N, 1, k));

AdjacencyList[phiCu(0, 2 * N, k)].Add(phiCu(0, 2 * N, k - 1));
AdjacencyList[phiCu(0, 2 * N, k)].Add(phiCu(0, 2 * N, k + 1));
AdjacencyList[phiCu(0, 2 * N, k)].Add(phiCu(1, 2 * N, k));
AdjacencyList[phiCu(0, 2 * N, k)].Add(phiCu(0, 2 * N - 1, k));

AdjacencyList[phiCu(2 * N, 2 * N, k)].Add(phiCu(2 * N, 2 * N, k - 1));
AdjacencyList[phiCu(2 * N, 2 * N, k)].Add(phiCu(2 * N, 2 * N, k + 1));
AdjacencyList[phiCu(2 * N, 2 * N, k)].Add(phiCu(2 * N - 1, 2 * N, k));
AdjacencyList[phiCu(2 * N, 2 * N, k)].Add(phiCu(2 * N, 2 * N - 1, k));

}

//Now we look at the corners
AdjacencyList[phiCu(0, 0, 0)].Add(phiCu(1, 0, 0));
AdjacencyList[phiCu(0, 0, 0)].Add(phiCu(0, 1, 0));
AdjacencyList[phiCu(0, 0, 0)].Add(phiCu(0, 0, 1));

AdjacencyList[phiCu(2 * N, 0, 0)].Add(phiCu(2 * N - 1, 0, 0));
AdjacencyList[phiCu(2 * N, 0, 0)].Add(phiCu(2 * N, 1, 0));
AdjacencyList[phiCu(2 * N, 0, 0)].Add(phiCu(2 * N, 0, 1));

AdjacencyList[phiCu(0, 2 * N, 0)].Add(phiCu(1, 2 * N, 0));
AdjacencyList[phiCu(0, 2 * N, 0)].Add(phiCu(0, 2 * N - 1, 0));
AdjacencyList[phiCu(0, 2 * N, 0)].Add(phiCu(0, 2 * N, 1));

AdjacencyList[phiCu(0, 0, 2 * N)].Add(phiCu(1, 0, 2 * N));
AdjacencyList[phiCu(0, 0, 2 * N)].Add(phiCu(0, 1, 2 * N));
AdjacencyList[phiCu(0, 0, 2 * N)].Add(phiCu(0, 0, 2 * N - 1));

AdjacencyList[phiCu(2 * N, 2 * N, 0)].Add(phiCu(2 * N - 1, 2 * N, 0));
AdjacencyList[phiCu(2 * N, 2 * N, 0)].Add(phiCu(2 * N, 2 * N - 1, 0));
AdjacencyList[phiCu(2 * N, 2 * N, 0)].Add(phiCu(2 * N, 2 * N, 1));

AdjacencyList[phiCu(0, 2 * N, 2 * N)].Add(phiCu(1, 2 * N, 2 * N));
AdjacencyList[phiCu(0, 2 * N, 2 * N)].Add(phiCu(0, 2 * N - 1, 2 * N));
AdjacencyList[phiCu(0, 2 * N, 2 * N)].Add(phiCu(0, 2 * N, 2 * N - 1));

AdjacencyList[phiCu(2 * N, 0, 2 * N)].Add(phiCu(2 * N - 1, 0, 2 * N));
AdjacencyList[phiCu(2 * N, 0, 2 * N)].Add(phiCu(2 * N, 1, 2 * N));
AdjacencyList[phiCu(2 * N, 0, 2 * N)].Add(phiCu(2 * N, 0, 2 * N - 1));

AdjacencyList[phiCu(2 * N, 2 * N, 2 * N)].Add(phiCu(2 * N - 1, 2 * N, 2 * N));
AdjacencyList[phiCu(2 * N, 2 * N, 2 * N)].Add(phiCu(2 * N, 2 * N - 1, 2 * N));
AdjacencyList[phiCu(2 * N, 2 * N, 2 * N)].Add(phiCu(2 * N, 2 * N, 2 * N - 1));

//Now we look at the middle of the grid
for (int i = 1; i < 2 * N; i++)

for (int j = 1; j < 2 * N; j++)
for (int k = 1; k < 2 * N; k++)
{

AdjacencyList[phiCu(i, j, k)].Add(phiCu(i - 1, j, k));
AdjacencyList[phiCu(i, j, k)].Add(phiCu(i + 1, j, k));
AdjacencyList[phiCu(i, j, k)].Add(phiCu(i, j - 1, k));
AdjacencyList[phiCu(i, j, k)].Add(phiCu(i, j + 1, k));
AdjacencyList[phiCu(i, j, k)].Add(phiCu(i, j, k + 1));
AdjacencyList[phiCu(i, j, k)].Add(phiCu(i, j, k - 1));

}
return AdjacencyList;

}

static int phiCu(int i, int j, int k)
{

return i * (4 * N * N + 2 * N + 2) + j * (2 * N + 1) + k;
}

//Assigns a new numbering to the graph, the lowest numbers have the least steps from 0
static List<int>[] NumberBFS(List<int>[] graph, int zero)
{

//We first want to know how many vertices are reachable from zero
bool[] visited = new bool[graph.Length];
int reachable = CountBFS(graph, zero, ref visited);

List<int>[] BFSgraph = new List<int>[reachable];
for (int i = 0; i < reachable; i++)

BFSgraph[i] = new List<int>();
NewGraphBFS(graph, ref BFSgraph, zero, ref visited);
return BFSgraph;

}

//Counts how many vertices are reachable by walks of length N
static int CountBFS(List<int>[] graph, int zero, ref bool[] visited)

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 5
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

{
for (int i = 0; i < visited.Length; i++)

visited[i] = false;

int count = 0;
//In the array step we save the amount of steps it take to reach a point from zero
int[] step = new int[graph.Count()];
step[zero] = 0;

Queue<int> q = new Queue<int>();
q.Enqueue(zero);
visited[zero] = true;

while (q.Count > 0)
{

int a = q.Dequeue();
//If we need more than N steps, we are done
if (step[a] > N)

break;
count += 1;

foreach (int b in graph[a])
if (!visited[b])
{

visited[b] = true;
q.Enqueue(b);
step[b] = step[a] + 1;

}
}

return count;
}

static void NewGraphBFS(List<int>[] graph, ref List<int>[] BFSgraph, int zero, ref bool[]
visited)

{
for (int i = 0; i < visited.Length; i++)

visited[i] = false;
//The new numbering
int number = 0;
//In the array step we save the amount of steps it take to reach a point from zero
int[] step = new int[graph.Count()];
step[zero] = 0;

//In this array we save pi(i) which represents the new site number of i
int[] pi = new int[graph.Length];

Queue<int> q = new Queue<int>();
q.Enqueue(zero);
visited[zero] = true;

while (q.Count > 0)
{

int a = q.Dequeue();
//If we need more than N steps, we are done
if (step[a] > N)

break;
pi[a] = number;
number++;

foreach (int b in graph[a])
if (!visited[b])
{

visited[b] = true;
q.Enqueue(b);
step[b] = step[a] + 1;

}
}

//We now translate edges in the original numbering to the new numbering
//We first look at the special site zero
foreach (int i in graph[zero])

BFSgraph[0].Add(pi[i]);
for (int j = 0; j < pi.Length; j++)

//If pi[j] > 0, this means the site is used in the new numbering
if (pi[j] > 0)
{

foreach (int k in graph[j])
if (pi[k] > 0 || k == zero)

BFSgraph[pi[j]].Add(pi[k]);
}

}

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 6
409
410

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

432
433
434
435
436
437

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

470
471
472
473
474
475
476
477
478
479

480
481
482
483
484
485

//Recursive function that creates a tree with all walks of length N with startpoint start en
endpoint end

//If end is -1, all possible endpoints are allowed
//The variable walks shows the number of walks in the tree
static List<Node> CreateTree(int N, int start, int end, List<int>[] graph, ref long walks)
{

bool[] visited = new bool[graph.Length];
//In this array we save the walk before we add it to the tree
int[] R = new int[N + 1];
R[0] = start;

List<Node> T = new List<Node>();
Node tree = new Node();
tree.newNode(-1, 0, null, null, null);
T.Add(tree);

visited[start] = true;
if (N != 0)

FillTree(N, 0, R, visited, ref T, end, graph, ref walks);
return T;

}

static void FillTree(int N, int i, int[] R, bool[] visited, ref List<Node> T, int end,
List<int>[] graph, ref long walks)

{
if (i == N)
{

if (end == -1 || R[i] == end)
{

//We always want to have the starting point as the first element, we sort the re st
of the array

int[] Rsort = new int[R.Length];
for (int j = 0; j < R.Length; j++)

Rsort[j] = R[j];
Array.Sort(Rsort);
walks += 1;
InsertTree(Rsort, ref T);

}
}
else
{

foreach (int r in graph[R[i]])
if (!visited[r])
{

R[i + 1] = r;
visited[r] = true;
FillTree(N, i + 1, R, visited, ref T, end, graph, ref walks);

}
}
visited[R[i]] = false;

}

static void InsertTree(int[] R, ref List<Node> T)
{

Node current = T.First();

//This is the first node we have to add to the tree
Node Ri = new Node();
T.Add(Ri);
int i = 0;
while (i < R.Length)
{

//If the current node doesn't have any children, we know we have to add the rest of R
to the tree

if (current.child != null)
current = current.child;

else
{

Ri.newNode(R[i], 0, null, null, current);
current.child = Ri;
break;

}
bool found = false;
//We don't have to add a node to the tree if current or any of his siblings has the

same site number as R[i]
if (current.site == R[i])
{

i++;
found = true;

}
else

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 7
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

{
//We have to add a firstchild
if (current.site > R[i])
{

Ri.newNode(R[i], 0, null, current, current.parent);
current.parent.child = Ri;
break;

}
else while (current.sibling != null && current.sibling.site <= R[i])

{
current = current.sibling;
if (current.site == R[i])
{

i++;
found = true;
break;

}
}

}
//Because we know current node is smaller than R[i] and the next greater we know the

place in the linked list of siblings we want to insert R[i]
if (!found)
{

Ri.newNode(R[i], 0, null, current.sibling, current.parent);
current.sibling = Ri;
break;

}
}
//We have to add one to the count of the last site
if (i == R.Length - 1)

Ri.count++;
else if (i == R.Length)

current.count++;

else
{

Node previous = Ri;
for (int j = i + 1; j < R.Length - 1; j++)
{

Node r = new Node();
r.newNode(R[j], 0, null, null, previous);
T.Add(r);
previous.child = r;
previous = r;

}
Node last = new Node();
last.newNode(R[R.Length - 1], 1, null, null, previous);
T.Add(last);
previous.child = last;

}
}

//Determines the number of SAW using three walks of length N1, N2 and N3
static long LengthTripling(List<int>[] graph, int N1, int N2, int N3)
{

//The number of self avoiding walks using length tripling
long totalSAW = 0;

int bound = graph.Length - 1;

long time = 0;
long timeS = 0;
long timeT = 0;
long timeU = 0;
long D;
List<long> counts1 = new List<long>();
List<long> counts2 = new List<long>();
List<long> counts3 = new List<long>();

long walks = 0;
long Z1, Z2, Z3;
int max1 = bound; int max2 = bound; int max3 = bound;
List<Node> TreeR = CreateTree(N2, 0, -1, graph, ref walks);

walks = 0;
List<Node> T1 = CreateTree(N1, 0, -1, graph, ref walks);
Z1 = walks;
long[] countsT1 = SaveCounts(T1);
//for all end points of w2
for (int r = 1; r < bound + 1; r++)
{

//D is the number of walks with the restricted end point of w2

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 8
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

588
589

590
591
592

593
594

595
596
597

598
599
600

601
602
603
604

605
606

607
608
609
610

611
612

613
614
615
616

617
618
619

620
621
622
623

624
625
626
627
628
629
630
631

D = 0;
walks = 0;
List<Node> T2 = CreateTree(N2, 0, r, graph, ref walks);

//If there are no walks 2 that have end point r we can stop
if (walks > 0)
{

Z2 = walks;
long[] countsT2 = SaveCounts(T2);
walks = 0;
List<Node> T3 = CreateTree(N3, r, -1, graph, ref walks);
Z3 = walks;
long[] countsT3 = SaveCounts(T3);

D = Z1 * Z2 * Z3;

//The first corrections
max1 = bound; max2 = bound; counts1.Clear(); counts2.Clear(); time = 0;
Node[] Bins1 = InitBins(T1, ref max1, 1, 1);
Node[] Bins2 = InitBins(T2, ref max2, 1, 1);
D = D - Z3 * CorrectFirstTerms(T1, T2, bound, Bins1, Bins2, ref time, 1, r,

counts1, counts2);

max2 = bound; max3 = bound; counts2.Clear(); counts3.Clear(); ResetTree(T2,
countsT2); time = 0;

Bins2 = InitBins(T2, ref max2, 1, 2);
Node[] Bins3 = InitBins(T3, ref max3, 1, 2);
D = D - Z1 * CorrectFirstTerms(T2, T3, bound, Bins2, Bins3, ref time, 2, r,

counts2, counts3);

max1 = bound; max3 = bound; counts1.Clear(); counts3.Clear(); ResetTree(T1,
countsT1); ResetTree(T3, countsT3); time = 0;

Bins1 = InitBins(T1, ref max1, 1, 3);
Bins3 = InitBins(T3, ref max3, 1, 3);
D = D - Z2 * CorrectFirstTerms(T1, T3, bound, Bins1, Bins3, ref time, 3, r,

counts1, counts3);

//The second corrections
max1 = bound; max2 = bound; max3 = bound; counts1.Clear(); counts2.Clear();

counts3.Clear(); timeS = 0; timeT = 0; ResetTree(T1, countsT1); ResetTree(T2,
countsT2); ResetTree(T3, countsT3);

Bins1 = InitBins(T1, ref max1, 2, 1);
Bins2 = InitBins(T2, ref max2, 2, 1);
Bins3 = InitBins(T3, ref max3, 2, 1);
D = D + CorrectSecondTerms(T1, T2, T3, bound, -1, -1, Bins1, Bins2, Bins3, ref

timeS, ref timeT, 1, r, counts1, counts2, counts3);

max1 = bound; max2 = bound; max3 = bound; counts1.Clear(); counts2.Clear();
counts3.Clear(); timeS = 0; timeT = 0; ResetTree(T1, countsT1); ResetTree(T2,
countsT2); ResetTree(T3, countsT3);

Bins1 = InitBins(T1, ref max1, 2, 2);
Bins2 = InitBins(T2, ref max2, 2, 2);
Bins3 = InitBins(T3, ref max3, 2, 2);
D = D + CorrectSecondTerms(T2, T1, T3, bound, -1, -1, Bins2, Bins1, Bins3, ref

timeS, ref timeT, 2, r, counts2, counts1, counts3);

max1 = bound; max2 = bound; max3 = bound; counts1.Clear(); counts2.Clear();
counts3.Clear(); timeS = 0; timeT = 0; ResetTree(T1, countsT1); ResetTree(T2,
countsT2); ResetTree(T3, countsT3);

Bins1 = InitBins(T1, ref max1, 2, 3);
Bins2 = InitBins(T2, ref max2, 2, 3);
Bins3 = InitBins(T3, ref max3, 2, 3);
D = D + CorrectSecondTerms(T3, T1, T2, bound, -1, -1, Bins3, Bins1, Bins2, ref

timeS, ref timeT, 3, r, counts3, counts1, counts2);

//The third corrections
max1 = bound; max2 = bound; max3 = bound; counts1.Clear(); counts2.Clear();

counts3.Clear(); timeS = 0; timeT = 0; timeU = 0; ResetTree(T1, countsT1);
ResetTree(T2, countsT2); ResetTree(T3, countsT3);

Bins1 = InitBins(T1, ref max1, 3, 1);
Bins2 = InitBins(T2, ref max2, 3, 2);
Bins3 = InitBins(T3, ref max3, 3, 3);
D = D - CorrectThirdTerms(T1, T2, T3, bound, -1, -1, -1, Bins1, Bins2, Bins3, ref

timeS, ref timeT, ref timeU, r, counts1, counts2, counts3);
ResetTree(T1, countsT1);

totalSAW += D;
}

}
return totalSAW;

}

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 9
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

661
662
663

664
665
666
667
668

669
670

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

707

//Stores the counts of the tree in an array
static long[] SaveCounts(List<Node> Tree)
{

long[] counts = new long[Tree.Count()];
int i = 0;
foreach (Node node in Tree)
{

counts[i] = node.count;
i++;

}
return counts;

}

//Resets the counts of the tree
static void ResetTree(List<Node> Tree, long[] counts)
{

int i = 0;
foreach (Node node in Tree)
{

node.count = counts[i];
node.stamp1 = -1;
node.stamp2 = -1;
node.stamp3 = -1;
i++;

}
}

//Calculates the first order correction terms
//If both walks have the same start or end point r we don't use this point as a possible

intersection point
//The int mode indicates which term we are going to calculate: 1 for |A|, 2 for |B|, 3 for | C|
//We have to restore the counts later, so we save them in counts1 and counts2
static long CorrectFirstTerms(List<Node> T1, List<Node> T2, int maxsite, Node[] Bins1, Node[]

Bins2, ref long time, int mode, int r, List<long> counts1, List<long> counts2)
{

long Z = 0;

int bound = -1;
//We find the highest site number for which the time stamp is time, so the highest activ e

site
for (int i = maxsite; i >= 0; i--)

if ((Bins1[i] != null && Bins1[i].stamp1 == time) || (Bins2[i] != null && Bins2
[i].stamp1 == time))

{
bound = i;
break;

}

if (bound == -1 || (bound == 0 && mode == 1))
return Z;

//If bound = 0 we can only include bound in S and no more sites
if (bound != 0)
{

counts1.Clear();
counts2.Clear();
int max = 0;
//We first look at the contribution for supersets of S not including bound
UpdateCounts(Bins1, counts1, bound, false, time, ref max);
UpdateCounts(Bins2, counts2, bound, false, time, ref max);

Z = Z + CorrectFirstTerms(T1, T2, bound - 1, Bins1, Bins2, ref time, mode, r, counts1,
counts2);

RestoreCounts(counts1, Bins1[bound]);
RestoreCounts(counts2, Bins2[bound]);
counts1.Clear();
counts2.Clear();

if (bound != r || (mode == 1 || mode == 3))
{

//empty bins and make nodes inactive by increasing the time stamp
time += 1;
for (int s = 0; s < bound; s++)
{

Bins1[s] = null;
Bins2[s] = null;

}
max = 0;
UpdateCounts(Bins1, counts1, bound, true, time, ref max);
UpdateCounts(Bins2, counts2, bound, true, time, ref max);
Z = Z - CorrectFirstTerms(T1, T2, max, Bins1, Bins2, ref time, mode, r, counts1,

counts2);
RestoreCounts(counts1, Bins1[bound]);

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 10
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

723
724
725

726

727

728

729
730
731
732
733

734
735

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

757

758
759
760
761
762

763

764
765
766

767
768
769
770
771
772
773

774
775

RestoreCounts(counts2, Bins2[bound]);
}

}
//We now look at the contribution of S including bound
if (bound != r || (mode == 1 || mode == 3))
{

long Z1 = CalcCount(Bins1[bound]);
long Z2 = CalcCount(Bins2[bound]);
Z = Z + Z1 * Z2;

}
return Z;

}

//Calculates the second order correction terms
//T1 is the tree we are going to intersect with, so suppose we want |A cap B| than T1 is fro m

w2, T2 from w1 and T3 from w3
//S is the intersection set of T1 and T2 and T of T1 and T3
//The int mode also shows which tree we are going to intersect with, so in this case that is 2
//If we close S before T or T before S, smax or tmax is the final site add to S or T, this i s

-1 if it has not been closed
//TimeS and timeT are the timestamps for S and T, they are the number of include operations we

have done
static long CorrectSecondTerms(List<Node> T1, List<Node> T2, List<Node> T3, int maxsite, int

smax, int tmax, Node[] Bins1, Node[] Bins2, Node[] Bins3,
ref long timeS, ref long timeT, int mode, int r, List<long> counts1, List<long> counts2,

List<long> counts3)
{

long Z = 0;

int bound = -1;
//We find the highest site number for which the time stamp is time, so the highest activ e

site
for (int i = maxsite; i >= 0; i--)

if ((Bins1[i] != null && CheckTime(timeS, timeT, 1, Bins1[i])) || (Bins2[i] != null &&
Bins2[i].stamp1 == timeS || (Bins3[i] != null && Bins3[i].stamp2 == timeT)))

{
bound = i;
break;

}

//If we are in mode 1 or 2 we can only add 0 to T, if S has not been closed we can stop
if (bound == -1 || (bound == 0 && (mode == 1 || mode == 2) && smax <= 0))

return Z;

//If bound = 0 we can only add bound to T
if (bound != 0)
{

int max = 0;
//We first look at the contribution of supersets S and T not including bound
Node site1, site2, site3;
counts1.Clear(); counts2.Clear(); counts3.Clear();
site1 = Bins1[bound]; site2 = Bins2[bound]; site3 = Bins3[bound];
UpdateCounts2(Bins1, counts1, bound, false, timeS, timeT, 1, ref max);
UpdateCounts2(Bins2, counts2, bound, false, timeS, timeT, 2, ref max);
UpdateCounts2(Bins3, counts3, bound, false, timeS, timeT, 3, ref max);
Z = Z + CorrectSecondTerms(T1, T2, T3, bound - 1, smax, tmax, Bins1, Bins2, Bins3, ef

timeS, ref timeT, mode, r, counts1, counts2, counts3);
RestoreCounts(counts1, site1); RestoreCounts(counts2, site2); RestoreCounts(counts3,

site3);

if (smax <= 0 && Bins2[bound] != null)
{

//Now we look at supersets where S does contain bound but T does not
Z = Z - CorrectSec(T1, T2, T3, smax, tmax, Bins1, Bins2, Bins3, ref timeS, ref

timeT, mode, r, counts1, counts2, counts3, bound, 0, 0, 1);
//We now consider the case where bound is the final site added to S and we do no t

add bound to T
if (tmax <= 0)
{

Z = Z + CorrectSec(T1, T2, T3, bound, tmax, Bins1, Bins2, Bins3, ref timeS, ref
timeT, mode, r, counts1, counts2, counts3, bound, 0, 2, 1);

}
}

if (tmax <= 0 && !(bound == r && (mode == 2 || mode == 3)) && Bins3[bound] != null)
{

//Now we look at supersets where T does contain bound but S does not
Z = Z - CorrectSec(T1, T2, T3, smax, tmax, Bins1, Bins2, Bins3, ref timeS, ref

timeT, mode, r, counts1, counts2, counts3, bound, 0, 1, 0);

//We now consider the case where bound is the final site added to T and we do no t
add bound to S

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 11
776
777
778

779
780
781
782

783
784
785

786
787

788

789
790

791

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813

814

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838

839
840

841
842
843
844

if (smax <= 0)
{

Z = Z + CorrectSec(T1, T2, T3, smax, bound, Bins1, Bins2, Bins3, ref timeS, ref
timeT, mode, r, counts1, counts2, counts3, bound, 0, 1, 2);

}
}

if (smax <= 0 && (tmax <= 0 && !(bound == r && (mode == 2 || mode == 3))) && Bins3
[bound] != null && Bins2[bound] != null)

{
//We now look at supersets where both S and T contain bound
Z = Z + CorrectSec(T1, T2, T3, smax, tmax, Bins1, Bins2, Bins3, ref timeS, ref

timeT, mode, r, counts1, counts2, counts3, bound, 0, 0, 0);

//We now consider the case where bound is the final site added to S and we do ad d
bound to T

Z = Z - CorrectSec(T1, T2, T3, bound, tmax, Bins1, Bins2, Bins3, ref timeS, ref
timeT, mode, r, counts1, counts2, counts3, bound, 0, 2, 0);

//We now consider the case where bound is the final site added to T and we do ad d
bound to S

Z = Z - CorrectSec(T1, T2, T3, smax, bound, Bins1, Bins2, Bins3, ref timeS, ref
timeT, mode, r, counts1, counts2, counts3, bound, 0, 0, 2);

}
}

if (tmax > 0 || !(bound == r && (mode == 2 || mode == 3)))
{

long Z1, Z2, Z3;
if (smax <= 0)

smax = bound;
if (tmax <= 0)

tmax = bound;
Z1 = CalcCount(Bins1[bound]);
Z2 = CalcCount(Bins2[smax]);
Z3 = CalcCount(Bins3[tmax]);
Z = Z + Z1 * Z2 * Z3;

}
return Z;

}

//Function that updates the counts and calculates the result of the recursion of the
correctionterms

//incl1, incl2, incl3 show how we want to update the count: 0 for true, 1 for false and 2 fo r
not updating

static long CorrectSec(List<Node> T1, List<Node> T2, List<Node> T3, int smax, int tmax, Node[]
Bins1, Node[] Bins2, Node[] Bins3,

ref long timeS, ref long timeT, int mode, int r, List<long> counts1, List<long> counts2,
List<long> counts3, int bound, int incl1, int incl2, int incl3)

{
long result = 0;
if (incl2 != 1) timeS++;
if (incl3 != 1) timeT++;
for (int s = 0; s < bound; s++)
{

Bins1[s] = null;
if (incl2 != 1)

Bins2[s] = null;
if (incl3 != 1)

Bins3[s] = null;
}
int max = 0;
counts1.Clear(); counts2.Clear(); counts3.Clear();
Node site1 = Bins1[bound]; Node site2 = Bins2[bound]; Node site3 = Bins3[bound];
if (incl1 != 1) UpdateCounts2(Bins1, counts1, bound, true, timeS, timeT, 1, ref max);
else UpdateCounts2(Bins1, counts1, bound, false, timeS, timeT, 1, ref max);
if (incl2 != 1) UpdateCounts2(Bins2, counts2, bound, true, timeS, timeT, 2, ref max);
else UpdateCounts2(Bins2, counts2, bound, false, timeS, timeT, 2, ref max);
if (incl3 != 1) UpdateCounts2(Bins3, counts3, bound, true, timeS, timeT, 3, ref max);
else UpdateCounts2(Bins3, counts3, bound, false, timeS, timeT, 3, ref max);

if (incl1 != 1 && incl2 != 1 && incl3 != 1)
result = CorrectSecondTerms(T1, T2, T3, max, smax, tmax, Bins1, Bins2, Bins3, ref

timeS, ref timeT, mode, r, counts1, counts2, counts3);
else

result = CorrectSecondTerms(T1, T2, T3, bound - 1, smax, tmax, Bins1, Bins2, Bins3, ref
timeS, ref timeT, mode, r, counts1, counts2, counts3);

RestoreCounts(counts1, site1);
RestoreCounts(counts2, site2);
RestoreCounts(counts3, site3);

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 12
845
846
847
848
849
850

851

852

853
854
855
856
857

858
859

860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

882

883
884
885
886
887
888
889
890

891

892
893
894
895

896

897

898
899
900

901
902
903
904

905

return result;
}

//Calculates the third order correction terms
//S is the intersection set of T1 and T2, T of T2 and T3 and U of T1 and T3
//If we close one of the sets, smax, tmax or is the final site added to that set, this is -1 if

it has not been closed
static long CorrectThirdTerms(List<Node> T1, List<Node> T2, List<Node> T3, int maxsite, int

smax, int tmax, int umax, Node[] Bins1, Node[] Bins2, Node[] Bins3,
ref long timeS, ref long timeT, ref long timeU, int r, List<long> counts1, List<long>

counts2, List<long> counts3)
{

long Z = 0;

int bound = -1;
//We find the highest site number for which the time stamp is time, so the highest activ e

site
for (int i = maxsite; i >= 0; i--)

if ((Bins1[i] != null && CheckTime2(timeS, timeT, timeU, 1, Bins1[i])) || (Bins2[i] !=
null && CheckTime2(timeS, timeT, timeU, 2, Bins2[i])) || (Bins3[i] != null &&
CheckTime2(timeS, timeT, timeU, 3, Bins3[i])))

{
bound = i;
break;

}

//If S has not been closed yet and bound is zero, we can stop
if (bound == -1 || (bound == 0 && smax <= 0))

return Z;

//1: S and U, 2: S and T, 3: T and U
//If bound = 0 we can only add bound to T and/or U
if (bound != 0)
{

int max = 0;
//We first look at the contribution of supersets S, T and U not including bound
Node site1, site2, site3;
counts1.Clear(); counts2.Clear(); counts3.Clear();
site1 = Bins1[bound]; site2 = Bins2[bound]; site3 = Bins3[bound];
UpdateCounts3(Bins1, counts1, bound, false, timeS, timeT, timeU, 1, ref max);
UpdateCounts3(Bins2, counts2, bound, false, timeS, timeT, timeU, 2, ref max);
UpdateCounts3(Bins3, counts3, bound, false, timeS, timeT, timeU, 3, ref max);
Z = Z + CorrectThirdTerms(T1, T2, T3, bound - 1, smax, tmax, umax, Bins1, Bins2, Bin s3,

ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3);
RestoreCounts(counts1, site1); RestoreCounts(counts2, site2); RestoreCounts(counts3,

site3);

//We cannot add any more sites if two sets are close
if ((smax <= 0 && (tmax <= 0 || umax <= 0)) || (tmax <= 0 && umax <= 0))
{

//Now bound is added to S, but not to T and U, in the second case as final site
if (smax <= 0 && Bins1[bound] != null && Bins2[bound] != null)
{

Z = Z - CorrectThree(T1, T2, T3, smax, tmax, umax, Bins1, Bins2, Bins3, ref
timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 0, 1, 1);

Z = Z + CorrectThree(T1, T2, T3, bound, tmax, umax, Bins1, Bins2, Bins3, ref
timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 2, 1, 1);

//We also add bound to T
if (tmax <= 0 && bound != r && Bins3 != null)
{

Z = Z + CorrectThree(T1, T2, T3, smax, tmax, umax, Bins1, Bins2, Bins3, ref
timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 0, 0, 1);
Z = Z - CorrectThree(T1, T2, T3, bound, tmax, umax, Bins1, Bins2, Bins3,

ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 2, 0,
1);

Z = Z - CorrectThree(T1, T2, T3, smax, bound, umax, Bins1, Bins2, Bins3,
ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 0, 2,
1);

//We can only close both sets if U has not been closed yet
if (umax <= 0)

Z = Z + CorrectThree(T1, T2, T3, bound, bound, umax, Bins1, Bins2,
Bins3, ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound,
2, 2, 1);

//We also add bound to U
if (umax <= 0)
{

Z = Z - CorrectThree(T1, T2, T3, smax, tmax, umax, Bins1, Bins2, Bin s3,
ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 0, 0,

0);
Z = Z + CorrectThree(T1, T2, T3, bound, tmax, umax, Bins1, Bins2,

Bins3, ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound,
2, 0, 0);

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 13
906

907

908

909

910

911
912
913
914
915
916

917

918

919
920

921
922
923
924
925
926

927

928
929
930
931

932

933

934
935
936

937
938
939
940
941
942

943

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959

Z = Z + CorrectThree(T1, T2, T3, smax, bound, umax, Bins1, Bins2,
Bins3, ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound,
0, 2, 0);

Z = Z + CorrectThree(T1, T2, T3, smax, tmax, bound, Bins1, Bins2,
Bins3, ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound,
0, 0, 2);

Z = Z - CorrectThree(T1, T2, T3, bound, bound, umax, Bins1, Bins2,
Bins3, ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound,
2, 2, 0);

Z = Z - CorrectThree(T1, T2, T3, bound, tmax, bound, Bins1, Bins2,
Bins3, ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound,
2, 0, 2);

Z = Z - CorrectThree(T1, T2, T3, smax, bound, bound, Bins1, Bins2,
Bins3, ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound,
0, 2, 2);

}
}
//We do not add bound to T, but we do add it to U
if (umax <= 0 && Bins3[bound] != null)
{

Z = Z + CorrectThree(T1, T2, T3, smax, tmax, umax, Bins1, Bins2, Bins3, ref
timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 0, 1, 0);
Z = Z - CorrectThree(T1, T2, T3, bound, tmax, umax, Bins1, Bins2, Bins3,

ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 2, 1,
0);

Z = Z - CorrectThree(T1, T2, T3, smax, tmax, bound, Bins1, Bins2, Bins3,
ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 0, 1,
2);

if (tmax <= 0)
Z = Z + CorrectThree(T1, T2, T3, bound, tmax, bound, Bins1, Bins2,

Bins3, ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound,
2, 1, 2);

}
}
//We add bound to T, first without closing it then with
if (tmax <= 0 && bound != r && Bins2[bound] != null && Bins3[bound] != null)
{

Z = Z - CorrectThree(T1, T2, T3, smax, tmax, umax, Bins1, Bins2, Bins3, ref
timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 1, 0, 1);

Z = Z + CorrectThree(T1, T2, T3, smax, bound, umax, Bins1, Bins2, Bins3, ref
timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 1, 2, 1);

//We also add bound to U
if (umax <= 0 && Bins1[bound] != null)
{

Z = Z + CorrectThree(T1, T2, T3, smax, tmax, umax, Bins1, Bins2, Bins3, ref
timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 1, 0, 0);
Z = Z - CorrectThree(T1, T2, T3, smax, bound, umax, Bins1, Bins2, Bins3,

ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 1, 2,
0);

Z = Z - CorrectThree(T1, T2, T3, smax, tmax, bound, Bins1, Bins2, Bins3,
ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 1, 0,
2);

//We can only close the two sets if S has not been closed yet
if (smax <= 0)

Z = Z + CorrectThree(T1, T2, T3, smax, bound, bound, Bins1, Bins2,
Bins3, ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound,
1, 2, 2);

}
}
//We only add bound to U
if (umax <= 0 && Bins1[bound] != null && Bins3[bound] != null)
{

Z = Z - CorrectThree(T1, T2, T3, smax, tmax, umax, Bins1, Bins2, Bins3, ref
timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 1, 1, 0);

Z = Z + CorrectThree(T1, T2, T3, smax, tmax, bound, Bins1, Bins2, Bins3, ref
timeS, ref timeT, ref timeU, r, counts1, counts2, counts3, bound, 1, 1, 2);

}
}

}

if (tmax > 0 || bound != r)
{

long Z1, Z2, Z3;
int final1 = bound;
int final2 = bound;
int final3 = bound;
if (smax > 0)
{

if (umax > 0)
final1 = Math.Min(smax, umax);

else if (tmax > 0)
final2 = Math.Min(smax, tmax);

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 14
960
961
962
963
964
965
966
967
968
969
970
971
972

973

974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992

993
994

995
996

997
998
999
1000

1001
1002

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

}
if (tmax > 0 && umax > 0)

final3 = Math.Min(tmax, umax);
Z1 = CalcCount(Bins1[final1]);
Z2 = CalcCount(Bins2[final2]);
Z3 = CalcCount(Bins3[final3]);

Z = Z + Z1 * Z2 * Z3;
}
return Z;

}

static long CorrectThree(List<Node> T1, List<Node> T2, List<Node> T3, int smax, int tmax, int
umax, Node[] Bins1, Node[] Bins2, Node[] Bins3,

ref long timeS, ref long timeT, ref long timeU, int r, List<long> counts1, List<long>
counts2, List<long> counts3, int bound, int inclS, int inclT, int inclU)

{
long result = 0;
if (inclS != 1) timeS++;
if (inclT != 1) timeT++;
if (inclU != 1) timeU++;
//If we add bound to the sets that belong to a walk we have to empty the bins
for (int s = 0; s < bound; s++)
{

if (inclS != 1 || inclU != 1)
Bins1[s] = null;

if (inclS != 1 || inclT != 1)
Bins2[s] = null;

if (inclT != 1 || inclU != 1)
Bins3[s] = null;

}
int max = 0;
counts1.Clear(); counts2.Clear(); counts3.Clear();
Node site1 = Bins1[bound]; Node site2 = Bins2[bound]; Node site3 = Bins3[bound];
if (inclS != 1 || inclU != 1) UpdateCounts3(Bins1, counts1, bound, true, timeS, timeT,

timeU, 1, ref max);
else UpdateCounts3(Bins1, counts1, bound, false, timeS, timeT, timeU, 1, ref max);
if (inclS != 1 || inclT != 1) UpdateCounts3(Bins2, counts2, bound, true, timeS, timeT,

timeU, 2, ref max);
else UpdateCounts3(Bins2, counts2, bound, false, timeS, timeT, timeU, 2, ref max);
if (inclT != 1 || inclU != 1) UpdateCounts3(Bins3, counts3, bound, true, timeS, timeT,

timeU, 3, ref max);
else UpdateCounts3(Bins3, counts3, bound, false, timeS, timeT, timeU, 3, ref max);

if ((inclS != 1 && (inclT != 1 || inclU != 1)) || (inclT != 1 && inclU != 1))
result = CorrectThirdTerms(T1, T2, T3, max, smax, tmax, umax, Bins1, Bins2, Bins3, ef

timeS, ref timeT, ref timeU, r, counts1, counts2, counts3);
else

result = CorrectThirdTerms(T1, T2, T3, bound - 1, smax, tmax, umax, Bins1, Bins2,
Bins3, ref timeS, ref timeT, ref timeU, r, counts1, counts2, counts3);

RestoreCounts(counts1, site1);
RestoreCounts(counts2, site2);
RestoreCounts(counts3, site3);

return result;
}

//Initialises the bins
//First max is the max reachable site, at the end it is the maximum non -empty bin
//Term shows for which term we want to initialise the bins
//Mode is only used when calculating the second terms to show which mode we are in
static Node[] InitBins(List<Node> Tree, ref int max, int term, int mode)
{

Node[] bins = new Node[max + 1];
max = 0;
foreach (Node node in Tree)

node.sibling = null;
foreach (Node node in Tree)
{

if (node.count > 0)
{

if (term == 1) InsertBin(node, bins, 0);
else if (term == 2) InsertBin2(node, bins, 0, 0, mode);
else if (term == 3) InsertBin3(node, bins, 0, 0, 0, mode);
if (node.site > max)

max = node.site;
}

}
return bins;

}

static void InsertBin(Node node, Node[] bin, long stamp)

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 15
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095

1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

{
int s = node.site;
if (bin[s] != null && bin[s].stamp1 != stamp)

bin[s] = null;
node.stamp1 = stamp;
node.sibling = bin[s];
bin[s] = node;

}

static void InsertBin2(Node node, Node[] bin, long timeS, long timeT, int mode)
{

int s = node.site;
if (bin[s] != null && !CheckTime(timeS, timeT, mode, bin[s]))

bin[s] = null;
node.stamp1 = timeS;
node.stamp2 = timeT;
node.sibling = bin[s];
bin[s] = node;

}

static void InsertBin3(Node node, Node[] bin, long timeS, long timeT, long timeU, int mode)
{

int s = node.site;
if (bin[s] != null && !CheckTime2(timeS, timeT, timeU, mode, bin[s]))

bin[s] = null;
node.stamp1 = timeS;
node.stamp2 = timeT;
node.stamp3 = timeU;
node.sibling = bin[s];
bin[s] = node;

}

//The bool incl states whether or not bound is included in supersets
static void UpdateCounts(Node[] bins, List<long> counts, int bound, bool incl, long time, ref

int max)
{

Node v = bins[bound];
Node pv;
while (v != null)
{

pv = v.parent;
counts.Add(pv.count);
//We only want to add the count if we do not want to include bound in supersets
if (pv.site != -1)
{

if (!incl && pv.stamp1 == time)
pv.count += v.count;

else
{

pv.count = v.count;
if (pv.site > max)

max = pv.site;
InsertBin(pv, bins, time);
pv.stamp1 = time;

}
}
v = v.sibling;

}
}

//Mode is 1 when we look at bins1, 2 when looking at bins2 and 3 when looking at bins3
static void UpdateCounts2(Node[] bins, List<long> counts, int bound, bool incl, long timeS,

long timeT, int mode, ref int max)
{

Node v = bins[bound];
Node pv;
while (v != null)
{

pv = v.parent;
counts.Add(pv.count);
//We only want to add the count if we do not want to include bound in supersets
if (pv.site != -1)
{

if (!incl && CheckTime(timeS, timeT, mode, pv))
pv.count += v.count;

else
{

pv.count = v.count;
if (pv.site > max)

max = pv.site;
InsertBin2(pv, bins, timeS, timeT, mode);
pv.stamp1 = timeS;

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 16
1115
1116
1117
1118
1119
1120
1121
1122
1123

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

pv.stamp2 = timeT;
}

}
v = v.sibling;

}
}

//Mode is 1 when we look at bins1, 2 when looking at bins2 and 3 when looking at bins3
static void UpdateCounts3(Node[] bins, List<long> counts, int bound, bool incl, long timeS,

long timeT, long timeU, int mode, ref int max)
{

Node v = bins[bound];
Node pv;
while (v != null)
{

pv = v.parent;
counts.Add(pv.count);
//We only want to add the count if we do not want to include bound in supersets
if (pv.site != -1)
{

if (!incl && CheckTime2(timeS, timeT, timeU, mode, pv))
pv.count += v.count;

else
{

pv.count = v.count;
if (pv.site > max)

max = pv.site;
InsertBin3(pv, bins, timeS, timeT, timeU, mode);
pv.stamp1 = timeS;
pv.stamp2 = timeT;
pv.stamp3 = timeU;

}
}
v = v.sibling;

}
}

static bool CheckTime(long timeS, long timeT, int mode, Node v)
{

switch (mode)
{

case 1:
if (v.stamp1 == timeS && v.stamp2 == timeT) return true;
else return false;

case 2:
if (v.stamp1 == timeS) return true;
else return false;

case 3:
if (v.stamp2 == timeT) return true;
else return false;

}
return false;

}

static bool CheckTime2(long timeS, long timeT, long timeU, int mode, Node v)
{

switch (mode)
{

case 1:
if (v.stamp1 == timeS && v.stamp3 == timeU) return true;
else return false;

case 2:
if (v.stamp1 == timeS && v.stamp2 == timeT) return true;
else return false;

case 3:
if (v.stamp2 == timeT && v.stamp3 == timeU) return true;
else return false;

}
return false;

}

static void RestoreCounts(List<long> counts, Node v)
{

List<long>.Enumerator e = counts.GetEnumerator();
while (v != null)
{

e.MoveNext();
v.parent.count = e.Current;
v = v.sibling;

}
}

C:\Users\Sarita de Berg\Documents\Scriptie\SAW9\SAW3\SAW\SAW\saw.cs 17
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212

1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228

static long CalcCount(Node v)
{

long result = 0;
while (v != null)
{

result += v.count;
v = v.sibling;

}
return result;

}
}

class Node
{

public int site; //site number of node
public count; //number of saw's with this node as highest site number
public Node child, sibling, parent; //first child, next sibling also used for next node with

the same site number when traversing the tree, parent
public stamp1, stamp2, stamp3; //time stamps

public void newNode(int s, c, Node ch, Node si, Node pa)
{

site = s;
count = c;
child = ch;
sibling = si;
parent = pa;
stamp1 = -1;
stamp2 = -1;
stamp3 = -1;

}
}

}

REFERENCES I

References

[1] Nathan Clisby. Calculation of the connective constant for self-avoiding walks via the pivot algorithm.
Journal of Physics A: Mathematical and Theoretical, 46(24):245001, 2013.

[2] Nathan Clisby, Richard Liang, and Gordon Slade. Self-avoiding walk enumeration via the lace expansion.
Journal of Physics A: Mathematical and Theoretical, 40(36):10973, 2007.

[3] Hugo Duminil-Copin and Stanislav Smirnov. The connective constant of the honeycomb lattice equals√
2 +
√

2. Annals of Mathematics, 175:1653–1665, 2012.

[4] Michael E Fisher and MF Sykes. Excluded-volume problem and the ising model of ferromagnetism.
Physical Review, 114(1):45, 1959.

[5] AJ Guttmann. On the critical behaviour of self-avoiding walks. ii. Journal of Physics A: Mathematical
and General, 22(14):2807, 1989.

[6] AJ Guttmann and AR Conway. Square lattice self-avoiding walks and polygons. Annals of Combina-
torics, 5(3-4):319–345, 2001.

[7] Iwan Jensen. A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice.
Journal of Physics A: Mathematical and General, 36(21):5731, 2003.

[8] D MacDonald, S Joseph, DL Hunter, LL Moseley, N Jan, and AJ Guttmann. Self-avoiding walks on the
simple cubic lattice. Journal of Physics A: Mathematical and General, 33(34):5973, 2000.

[9] Neal Madras and Gordon Slade. The self-avoiding walk. Springer Science & Business Media, 2013.

[10] WJC Orr. Statistical treatment of polymer solutions at infinite dilution. Transactions of the Faraday
Society, 43:12–27, 1947.

[11] Fred Roberts and Barry Tesman. Applied combinatorics. CRC Press, 2009.

[12] R D Schram, G T Barkema, and R H Bisseling. Exact enumeration of self-avoiding walks. Journal of
Statistical Mechanics: Theory and Experiment, 2011(06):P06019, 2011.

[13] Raoul D Schram, Gerard T Barkema, and Rob H Bisseling. Sawdoubler: A program for counting
self-avoiding walks. Computer Physics Communications, 184(3):891–898, 2013.

[14] Raoul D Schram, Gerard T Barkema, Rob H Bisseling, and Nathan Clisby. Exact enumeration of
self-avoiding walks on bcc and fcc lattices. arXiv preprint arXiv:1703.09340, 2017.

[15] MF Sykes, AJ Guttmann, MG Watts, and PD Roberts. The asymptotic behaviour of selfavoiding walks
and returns on a lattice. Journal of Physics A: General Physics, 5(5):653, 1972.

	Introduction
	The length-tripling method
	Counting combinations
	Calculating the first corrections
	Calculating the second corrections
	Calculating the third corrections

	Algorithms and implementation
	Creating self-avoiding walks
	The first corrections
	The second and third corrections

	Complexity and memory use
	A method using k walks
	Results
	Conclusion
	Implementation of the length-tripling method
	References

