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Abstract

The Hardy-Littlewood circle method is a widely used tool in the field of analytic number
theory. James Maynard [21] uses it to prove that there are infinitely many primes without
a certain fixed digit in their decimal expansion. His application however is slightly
different from the original approach. In this thesis the parallels and differences are
discussed between the original circle method applied to the Ternary Goldbach Problem
and the modified circle method applied to the Restricted Digit Problem. It is quite
interesting that we can solve the Restricted Digit Problem, which is a binary problem,
with the circle method. After all the Binary version of the Golbach Problem can not be
solved with it.



Contents

1 Introduction 2
1.1 Notation and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Goldbach Problem 4

3 Circle method applied to the Ternary Goldbach Problem 6
3.1 Find an expression to describe an . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Hardy and Littlewood’s approach . . . . . . . . . . . . . . . . . . . 7
3.1.2 Vinogradov’s approach . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Define major and minor arcs . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Estimate the major and minor arcs . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Minor arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Major arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 The Restricted Digit Problem 18
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Chapter 1

Introduction

Since this thesis is a comparison between two applications of the circle method, we look
into both the problems it is applied to and then give an overview of the application
of the circle method to them. First the Ternary Goldbach Problem is discussed and
afterwards we follow the same steps but then for the Restricted Digit Problem. We ex-
pect this makes it easier for the reader to compare both applications of the circle method.

In Chapter 2 you can find an introduction to the Goldbach Problem. Both the Binary
and the Ternary version of the problem are posed there. Furthermore the developments
throughout history are discussed.
In the successive chapter the circle method is explained applied to the Ternery Goldbach
Problem. We can distinguish three steps in the circle method. The first is to find an
expression for a sequence we are interested in. This step is discussed in detail in section
3.1. The next step is to define major and minor arcs, which we perform in section 3.2.
The last step is to find estimates for both the major and minor arcs in section 3.3. We
discuss an outline of the proof for sufficiently large n, but skip a lot of details and parts
of the proof that are too involved. We discuss the minor arcs a bit more in detail than
the major arcs because the minor arcs is the part that makes the difference between the
Binary and Ternary Goldbach Problem. After all, for the Ternary Goldbach Problem
we can find a usefull estimate, but for the Binary Goldbach Problem nobody managed
to do this untill now.
Chapter 4 is dedicated to the Restriced Digit Problem. The problem is introduced and
the set Ak is defined, which plays a crucial role in the proof Maynard provides. Just as
with the Goldbach Problem, some earlier works from other mathematicians is discussed
to give some context. In the last chapter we give an overview of the application of the
circle method. We look into the similarities between this application and the application
in Chapter 3. This is however not very detailed, since the proof is quite complex.
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1.1 Notation and assumptions

Throughout this thesis we assume X to be an integral power of 10 larger than 1 always
when we encounter X. The reason to assume this, is that the numbers in between the
integral powers of ten lead to a lot of technical difficulties that are irrelevant. The only
exception is figure 4.1, where X takes al integral values between 0 and 70.
Furthermore, we choose the constant k ∈ {0, 1, . . . , 9} to be fixed.
When ε is used, this denotes a very small positive constant.

Throughout this thesis, the notation e(x) is used for e2πix.
With P = {2, 3, 5, 7, ...} we denote the set of prime numbers.
Since the greatest common divisor is used multiple times, we write (a, b) = c as shorthand
notation for gcd(a, b) = c.
For functions f and g, where g takes non-negative real values, we use f � g to indicate
that there exist constants c ∈ R>0 and x0 ∈ R, such that |f(x)| < c · g(x) for all x > x0.
Analogously, we use f � g to indicate that there exist constants c ∈ R>0 and x0 ∈ R,
such that |f(x)| > c · g(x) for all x > x0.
For two real valued functions f and g, we use the notation f(x) = O(g(x)) to state that
there exist constants c ∈ R>0 and x0 ∈ R such that |f(x)| < c · |g(x)| for all x > x0.
We also use the stronger notion f(x) = o(g(x)). With this we indicate that for all ε > 0
there exists an x0 ∈ R such that |f(x)| ≤ ε · |g(x)| for all x > x0.
For all these notations for asymptotic behaviour, a subscript η indicates that the constant
c depends on a constant η.
We write a log b = r if br = a. When log x is used without specification of the base, it is
the natural logarithm, so e log x.
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Chapter 2

The Goldbach Problem

In this chapter we take a look at an introduction to the Goldbach Problem and give an
overview of the most significant results on it so far. For this, [19], Chapter 5 served as a
basis. Many of the referenced works are mentioned there, though other relevant works
are added that are not discussed in the book.

Back in 1742 Goldbach already posed the following conjecture.

Conjecture 1 (Weak Goldbach Conjecture) dingen enzo
For all odd N > 5 there exist primes p1, p2, p3 such that N = p1 + p2 + p3.

This became known as the Weak Goldbach Conjecture or the Ternary Goldbach Problem.
Euler thought this conjecture could even be formulated stronger. He posed the stronger
Conjecture 2.

Conjecture 2 (Strong Goldbach Conjecture) dingen enzo
For all even N > 4 there exist primes p1, p2 such that N = p1 + p2.

This conjecture is now called the Strong Goldbach Conjecture or the Binary Goldbach
Problem. For if Conjecture 2 would be proven, Conjecture 1 follows from it. After all,
since Conjecture 1 states that every even number N > 4 is the sum of two primes, adding
3 to it gives all odd numbers M > 7 written as the sum of three primes. We already
know that Conjecture 1 holds for N = 7, since 7 = 2 + 2 + 3. So the Weak Goldbach
Conjecture follows.

For centuries both conjectures remained unproven. In 1922 Hardy and Littlewood
[15] published a paper with their work on the problem so far. They managed to prove
Conjecture 1, for sufficiently large odd numbers N , under condition of a generalization
of the Riemann Hypothesis. They do not give a specific N0 such that the Ternary Gold-
bach Problem holds for all N > N0.
We recall that the Riemann Hypothesis states that the only positive zeros of the Riemann
ζ-function can be found at complex numbers with real part 1

2 . The Riemann ζ-function
is one particular Dirichlet L-function and it turns out that the Riemann Hypothesis
can be generalized for all Dirichlet L-functions. This is the generalization Hardy and
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Littlewood assumed.
Hardy and Littlewood used the so called circle method for their proof. Hardy and
Ramanujan [18] invented the original circle method, which is explained in general in
Chapter 3.

It took until 1937 to prove Conjecture 1 without assumption of the Generalized Rie-
mann Hypothesis. This proof still only holds for sufficiently large odd values of N . Back
then, it was Vinogradov [25] who proved it. Just ast Hardy and Littlewood, he did not
give an explicit bound for ”sufficiently large”. For his result Vinogradov modified the
method used by Hardy and Littlewood.

Although there was some progress in the years in between, only in 2012 Terence
Tao proved that every odd number greater than 1 is the sum of at most five primes.
Shortly afterwards the Weak Goldbach Conjecture was proven without lower bound and
without assumption of the Generalized Riemann Hypothesis by Harold Helfgott [12],
[13] en [14]. He used much of the work of Tao [23] for this. Helfgott accomplished his
results by lowering the lower bound as much as possible. Thereafter he used an efficient
computational method to check all the remaining cases. For the computational method,
he used [17], which we wrote togeter with David Platt.

Conjecture 2 on the other hand is still not proven. This problem is now often called
the Goldbach Problem. So when the ”Goldbach Problem” is mentioned further on, it
refers to Conjecture 2. In 1937/1938 van der Corput [7], Tchudakov [24] and Estermann
[10] proved independently that Conjecture 2 holds for almost all even numbers N . If we
define P (N) as #{n ≤ N : n even , n = p1 + p2 with (p1, p2) ∈ P}, then ”almost all”

means that the limit limn→∞
P (N)
N = 1.

Later, Chen [5] showed that every sufficiently large even number can be written as
the sum of a prime and the product of at most two primes. For this prove he used
seive methods. Just as Vinogradov, he did not give an explicit bound for ”sufficiently
large”. In 2015 however, Yamada [27] did. He proved that every even number greater
than ee

36 ≈ 1, 7 · 101872344071119348 can be written as the sum of two primes or a prime
and a product of two primes.
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Chapter 3

Circle method applied to the Ternary
Goldbach Problem

Because the aim of this thesis is to compare two applications of the circle method, we
take a closer look at this method. We now explain the circle method applied to the
Ternary Goldbach Problem stated in Conjecture 1.

We use the circle method to prove asymptotic behaviour of a sequence. We define

An =
{

(p1, p2, p3) ∈ P3 : p1 + p2 + p3 = n
}
. (3.1)

Now we define the sequence
an = #An, (3.2)

which is the sequence we want to study. So an is the amount of possible ways to write
n as the sum of three primes. The order is relevant, so for example let a 6= b 6= c, then
(a, b, c), with a+b+c = n and (a, c, b), with a+c+b = n count as two different elements
of An. If we are able to show that an ≥ 1 for all odd n > 5, we know that every number n
can be written as the sum of three primes. This proves the Ternary Goldbach Problem.
To determine asymptotic behaviour of an, we carry out the following three steps.

1. Find an expression as Fourier integral to describe an

2. Define major and minor arcs

3. Estimate the major and minor arcs

Combination of the estimates we found, gives us information about the asymptotic
behaviour for an if n goes to infinity.

3.1 Find an expression to describe an

In step 1 there is a difference in the approach of Hardy and Littlewood on the one hand
and Vinogradov’s on the other hand. In the next subsection, 3.1.1, we follow Hardy and
Littlewood’s original line of attack, for which [6] and [26] are used as a basis for the
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understanding of the circle method. In that subsection we discuss the Ternary Goldbach
Problem however, instead of Waring’s Problem. In subsection 3.1.2 we thereafter explain
how Vinogradov approached the problem, using [3] and [4]. Vinogradov’s approach is
commonly used nowadays. This line of attack is however still referred to as ”The Hardy-
Littlewood circle method”.

3.1.1 Hardy and Littlewood’s approach

We are looking for an expression to describe an (3.2) as a Fourier integral. With that in
mind, we take a look at the generating function for P,

G(y) =
∑
p∈P

yp = y2 + y3 + y5 + y7 + ....

Before we use this series to formulate an expression for an, we want to make sure it is
convergent. We know that for the geometric series

S(y) =
∞∑
n=0

yn = lim
n→∞

1− yn

1− y
=

1

1− y

holds if |y| < 1. In other words, the radius of convergence of S(y) is 1. Since P ( N, we
know that G(y) ≤ S(y) for all y, with |y| < 1. Thus we know that G(y) converges on
the unit disk D1 = {y ∈ C : |y| < 1}, just as S(y). If y ≥ 1 every term is bigger than or
equal to 1 and therefore G(y) is not convergent anymore. So we can conclude that the
radius of convergence is 1. Next, we take the third power of G(y). This gives

(G(y))3 =

∑
p1∈P

yp1

 ·
∑
p2∈P

yp2

 ·
∑
p3∈P

yp3

 (3.3)

= y2y2y2 + y3y2y2 + y2y3y2 + y2y2y3 + y3y3y2 + ...

= y6 + 3y7 + ...

=
∞∑
j=6

ajy
j ,

where aj is again the number of ways to write j as the sum of three primes. We know
that the product of two convergent power series with radius of convergence r > 0 is again
a convergent power series with radius of convergence r. Using this, we can conclude that
the radius of convergence of (G(y))3 is 1. Because of this, the singularities lie on the
unit circle. Since we are looking for asymptotic behaviour of an when n goes to infinity,
we need only to examine cases where (G(y))3 is convergent. We thus choose y to be an
element of the unit disk D1. Since we are composing an expression for an, we are only
interested in primes smaller than n. We can therefore use n as an upper bound for the
summation in G(y). We can thus choose N > n such that it functions as upper bound
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for the single summation in (G(y))3. Let us now define G̃(y) as (G(y))3 with N as upper
bound for its summation. Let bk = ak+n+1. For n > 0, we now define

F (y) =
N−n−1∑
k=6−n−1

bky
k = G̃(y) · y−n−1

=
N∑
j=6

ajy
j−n−1.

Since bk = ak+n+1, choosing k = −1 gives us b−1 = a−1+n+1 = an. Because we now
have a finite summation, it converges outside the unit circle as well. The multiplication
with y−n−1 creates however a singularity in 0. We therefore know that F (y) converges
on D1\{0}.
Since F (y) is a power series centered at 0, b−1 is the residue of F about 0, we know how
to compute it using Cauchy’s Residue Theorem, stated below.

Theorem 1 (Cauchy’s Residue Theorem ) ([20], Chapter IV, p. 173, Theorem
1.1)
Let z0 be an isolated singularity of f , and let C be a small circle oriented counterclock-
wise, centered at z0, such that f is holomorphic on C and its interior, except possibly at
z0. Then ∫

C
f(z)dz = 2πiResz0f

We choose the counter clockwise curve along the unit circle as C, which is a small counter
clockwise circle centered at 0. We have an expression for F (y) as a power series with
a positive radius of convergence and finitely many terms of negative order. So it is an
analytic function on D1\{0} and therefore holomorphic on D1\{0}.
In our case we hence get ∫

C
F (y)dy = 2πi · Res0F = 2πi · b−1.

Using the notation e(x) = e2πix, we compute

b−1 =
1

2πi

∫
C
G̃(y) · y−n−1dy

=

∫ 1

0
G̃(e2πit)(e2πit)−n−1 · e2πitdt

=

∫ 1

0
G̃(e2πit)(e−2πitn)dt

=

∫ 1

0
G̃(e(t))e(−nt)dt
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Since b−1 = an, we now have a formula to compute an. Filling in G̃, this becomes

an =

∫ 1

0

N∑
j=6

aj · e(jt) · e(−nt)dt. (3.4)

This may seem a bit weird, since we try to find an expression for an and use
∑N

j=6 aje(jt)
for it. It is however way easier to find an estimate of the sum over many coefficients
aj then finding an estimate of one specific aj . After all, looking for combinations of
three primes p1, p2, p3, such that p1 + p2 + p3 = j is way more difficult than looking for
combinations of three primes that add up to any number up to N . The latter corresponds
to finding all combinations of three primes and stop if their sum gets larger than N .
Using the steps of (3.3) in reversed order, we can rewrite (3.4) to

an =

∫ 1

0

∑
p1∈P
p1<n

e(p1t)

 ·
∑
p2∈P
p2<n

e(p2t)

 ·
∑
p3∈P
p3<n

e(p3t)

 · e(−nt)dt
=

∫ 1

0
(g(t))3 · e(−nt)dt, (3.5)

where
g(t) =

∑
p∈P
p<n

e(pt).

3.1.2 Vinogradov’s approach

A perhaps more intuitive way to approach this problem is the line of attack Vinogradov
followed. To describe the behaviour of an, we would like to have an indicator function for
An. That is a function that gives 1 if we fill in an element of the set An defined in (3.1)
and 0 otherwise. Then we can sum over this formula and thus get the number of possible
ways to write n as the sum of three primes. Using again the notation e(x) = e2πix, the
function ∫ 1

0
e(mt)dt, with m ∈ N (3.6)

displays such behaviour. For∫ 1

0
e(mt)dt =

{
[t]10 = 1− 0 if m = 0[

1
2πim · e

2πimt
]1
0

= 1
2πim · (1− 1) if m 6= 0

=

{
1 if m = 0

0 if m 6= 0
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holds. To make this formula of any use for our problem we substitute p1 + p2 + p3 − n,
with p11, p2, p3 ∈ P for m in (3.6). This gives us∫ 1

0
e ((p1 + p2 + p3 − n)t) dt =

{
1 if p1 + p2 + p3 = n

0 if p1 + p2 + p3 6= n

=

{
1 if (p1, p2, p3) ∈ An
0 otherwise.

Since we are looking for combinations of three primes that add up to n, we only need to
take a look at primes smaller than n. We can now formulate the following formula for
an.

an =
∑
p1∈P
p1<n

∑
p2∈P
p2<n

∑
p3∈P
p3<n

∫ 1

0
e ((p1 + p2 + p3 − n)t) dt

=

∫ 1

0

∑
p1∈P
p1<n

∑
p2∈P
p2<n

∑
p3∈P
p3<n

e ((p1 + p2 + p3 − n)t) dt

=

∫ 1

0

∑
p1∈P
p1<n

∑
p2∈P
p2<n

∑
p3∈P
p3<n

e(p1t) · e(p2t) · e(p3t) · e(−nt)dt

=

∫ 1

0

∑
p1∈P
p1<n

e(p1t)

 ·
∑
p2∈P
p2<n

e(p2t)

 ·
∑
p3∈P
p3<n

e(p3t)

 · e(−nt)dt
=

∫ 1

0
(g(t))3 · e(−nt)dt, (3.7)

where
g(t) =

∑
p∈P
p<n

e(pt).

Note that we now found the same formula as (3.5). Because Vinogradov’s approach is
most consistent with Maynards line of attack, we use this for the comparison.

3.2 Define major and minor arcs

In the last section we found an expression for an, but if we compute this integral directly
we do no get a convenient answer. Therefore we partition the unit circle in major and
minor arcs and sum over them. The major arcs are small arcs where (g(t))3 · e(−nt) is
large. The minor arcs contain the bulk of the circle where (g(t))3 · e(−nt) takes small
values. We therefore want to find a bound for the minor arcs which can be seen as an
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error term. The major arcs yield the main term for an.

In this section we take a look at the major and minor arcs for the Ternary Goldbach
Problem. For both this section and the next, [16], Chapter 3 and [4] are combined to
function as a basis. For the Ternary Goldbach Problem it turns out to be convenient if
we set

f(t) =
∑
p∈P
p<n

(log p)e(pt),

instead of
g(t) =

∑
p∈P
p<n

e(pt),

where log p is the natural logarithm. This makes it possible to bring in the Von Mangoldt
function that we need to estimate the major arcs. We now define R(n) to be what we
get if we fill in this new f in (3.7). This gives us

R(n) =

∫ 1

0
(f(t))3e(−nt)dt

=

∫ 1

0

∑
p1∈P
p1<n

∑
p2∈P
p2<n

∑
p3∈P
p3<n

(log p1)(log p2)(log p3)e((p1 + p2 + p3 − n)t)dt

=
∑
p1∈P
p1<n

∑
p2∈P
p2<n

∑
p3∈P
p3<n

(log p1)(log p2)(log p3)

∫ 1

0
e((p1 + p2 + p3 − n)t)dt

=
∑
p1∈P
p1<n

∑
p2∈P
p2<n

∑
p3∈P
p3<n

p1+p2+p3=n

(log p1)(log p2)(log p3)

=
∑
p1∈P

∑
p2∈P

∑
p3∈P

p1+p2+p3=n

(log p1)(log p2)(log p3). (3.8)

So R(n) as aboveal to an, which we can write as

an =
∑
p1∈P

∑
p2∈P

∑
p3∈P

p1+p2+p3=n

1,

but it is a weighted count of it. Hence if we prove that R(n) > 0 for all sufficiently large
odd n ∈ N, the Weak Goldbach Conjecture follows.

Now we make the major arcs specific. Let B ∈ R>0 be a large positive constant and
write P = (log n)B for sufficiently large n. Assuming n to be large is no problem since
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we want to find asymptotic behaviour for an if n goes to infinity.
We now define for all a, q ∈ N such that 0 < a ≤ q ≤ P and (a, q) = 1;

Ma,q =

{
t ∈ R :

∣∣∣∣t− a

q

∣∣∣∣ ≤ P

n

}
=

[
a

q
− P

n
,
a

q
+
P

n

]
.

These sets are small intervals around the fractions a
q . Set U =

(
P
n , 1 + P

n

]
which is an

interval of length 1. Since we are integrating along the unit circle in (3.8), we can shift
the interval of integration from (0, 1] to U . To make this possible, we want all of the in-
tervals Ma,q to lie inside U . This is why we check the lower bound of the interval around
the smallest fraction a

q and the upper bound of the interval around the biggest fraction a
q .

The smallest possible value of a
q is 1

P . The lower bound of the corresponding interval
is given by

1

P
− P

n
=

n− P 2

Pn
=

n
P − P
n

=

n
(logn)B

− (log n)B

n
,

which is larger than P
n for n large enough. After all n

(logn)B
− (log n)B > (log n)B for n

large enough. Therefore we know for sure that the interval lies inside U .
The biggest possible value of a

q is 1. The upper bound of the corresponding interval is

1 + P
n , which is the upper bound of U . Once again the interval lies in U . This ensures

us that there are no major arcs cut off when we integrate over U .

Now we want to make sure that none of the intervals overlap. Let two different
midpoints a

q 6=
a′

q′ be given such that a, q, a′, q′ ∈ N, 0 ≤ a ≤ q ≤ P , (a, q) = 1,

0 ≤ a′ ≤ q′ ≤ P and (a′, q′) = 1.
So aq′ − a′q 6= 0 and therefore |aq′ − a′q| ≥ 1, since a, q, a′, q′ are all integers. Now we
can conclude ∣∣∣∣aq − a′

q′

∣∣∣∣ =

∣∣∣∣aq′ − a′qqq′

∣∣∣∣ ≥ 1

qq′
≥ 1

P 2
=

1

(log n)2B
,

which is larger than 2Pn for n large enough. After all, we know that 1
(logn)2B

> 2 (logn)B

n

for n large enough. Therefore we know that the midpoints a
q and a′

q′ are so far apart

that their intervals cannot intersect since the bound of each interval is P
n away from the

midpoint. So the intervals are pairwise disjoint.

We define the set of major arcs by

M =
⋃
q≤P

⋃
0≤a≤q
(a,q)=1

Ma,q.
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We now define the set of minor arcs as m = U\M.
Using these definitions for M and m, we know that M∪m = U . Now we shift the interval
of integration from (0, 1] to U . We can hence write

R(n) =

∫ 1

0
(f(t))3 · e(−nt)dt

=

∫ 1+P
n

P
n

(f(t))3 · e(−nt)dt

=

∫
M

(f(t))3 · e(−nt)dt+

∫
m

(f(t))3 · e(−nt)dt. (3.9)

In the next section we give a suitable value of B for which we can find convenient
estimates.

3.3 Estimate the major and minor arcs

In this section we start with an investigation of the minor arcs. In subsection 3.3.1 we
give a bound for them. In subsection 3.3.2 the major arcs are discussed less extensive.
We just state the outcome without much further explanation.

3.3.1 Minor arcs

To find a good estimate for them, we start with an estimation for
∫ 1
0 |f(t)|2dt. Thereafter

we find a bound for the absolute value of f on the minor arcs. Combining these two re-
sults, we obtain an estimation for

∫
m |f |

3dt, which gives us an estimate for the minor arcs.

Since f(t) =
∑

p∈P
p≤n

(log p)e(pt), we know that f(t) = f(−t). We hence write

∫ 1

0
|f(t)|2 dt =

∫ 1

0
f(t) · f(t)dt

=

∫ 1

0

∑
p1∈P
p1<n

(log p1)e(p1t)

 ·
∑
p2∈P
p2<n

(log p2)e(−p2t)

 dt

=

∫ 1

0

∑
p1∈P
p1<n

∑
p2∈P
p2<n

(log p1)(log p2)e((p1 − p2)t)dt

=
∑
p1∈P
p1<n

∑
p2∈P
p2<n

(log p1)(log p2)

∫ 1

0
e((p1 − p2)t)dt.

13



Since
∫ 1
0 e((p1 − p2)t)dt = 1 if p1 = p2 and 0 if p1 6= p2, we get∫ 1

0
|f(t)|2 dt =

∑
p∈P
p<n

(log x)2.

To give a more specific bound, we need the Prime Number Theorem. Let π(x) = #{p ∈
P : p ≤ x}.

Theorem 2 (Prime Number Theorem) ([20], Chapter XVI, p. 449, Theorem 2.5)
π(x) ∼ x

log x .

Here π(x) ∼ x
log x means that limx→∞

π(x)
x

log x
= 1, so in particular we know that π(x) �

x
log x .

It hence follows that
∑

p∈P
p<n

1 � n
logn , so there exists a C ∈ R such that

∣∣∣∣∑p∈P
p<n

1

∣∣∣∣ <
C · n

logn . Using this in combination with the fact that log p is a strictly increasing
function, we can conclude that

∑
p∈P
p<n

(log p)2 =

∣∣∣∣∣∣∣∣
∑
p∈P
p<n

(log p)2

∣∣∣∣∣∣∣∣ ≤ (log n)2

∣∣∣∣∣∣∣∣
∑
p∈P
p<n

1

∣∣∣∣∣∣∣∣ < (log n)2 · C · n

log n
= C · n log n.

Using the previous results, we can state that∫ 1

0
|f(t)|2 dt� n log n. (3.10)

This is the first result, which holds for the whole interval U . This is the main
contribution to bound of the minor arcs. The most important step in estimating the
minor arcs however, is the following theorem.

Theorem 3 ([16], Chapter 3, p. 27, Theorem 3.1)
Suppose that (a,q) = 1, q ≤ n and |t− a

q | ≤
1
q2

. Then

f(t)� (log n)4(nq−
1
2 + n

4
5 + n

1
2 q

1
2 ).

We do not prove this theorem here. To apply this theorem, we also need the Dirichlet
Lemma, which is stated below.

Lemma 1 (Dirichlet Lemma) ([16], p. 9, lemma 2.1)
Let t denote a real number. Then for each real number X ≥ 1 there exists a rational
number a

q with (a, q) = 1, 1 ≤ q ≤ X and∣∣∣∣t− a

q

∣∣∣∣ ≤ 1

qX
.

14



We now choose Q = n
(logn)B

> 1. From the Dirichlet Lemma we know that there exists

a fraction a
q for every t ∈ U such that (a, q) = 1, 1 ≤ q ≤ Q and∣∣∣∣t− a

q

∣∣∣∣ ≤ 1

qQ
. (3.11)

Since (a, q) = 1 and q ≤ Q = n
(logn)B

< n, the first two requirements of Theorem 3 are

met. Since q ≤ Q, we also know that 1
qQ < 1

q2
. Combining this with (3.11), gives us the

third requirement of the theorem. Therefore we can now conclude that

f(t)� (log n)4(nq−
1
2 + n

4
5 + n

1
2 q

1
2 ). (3.12)

Until now we did not use the fact that we are only looking at the minor arcs, but we
use that right now. Let us take a closer look at (3.11).∣∣∣∣t− a

q

∣∣∣∣ ≤ 1

qQ
=

1
qn

(logn)B
=

(log n)B

qn
=

1

q
· P
n
≤ P

n
.

This looks like the definition for the major arcs. There is a difference however. For
the major arcs we require that 1 ≤ a ≤ q ≤ P . Since we know t ∈ U , it follows that
1 ≤ a ≤ q, but not that q ≤ P . Because we are looking at the minor arcs, we want to
make sure that t /∈M. The only way to ensure this, is to require that q > P = (log n)B.
This way a

q can not be the middle point fraction of any major arc.

Since q > (log n)B, we know that q
1
2 > (log n)

B
2 and therefore

q−
1
2 =

1

q
1
2

<
1

(log n)
B
2

= (log n)−
B
2 .

We also know that q ≤ Q = n
(logn)B

, so q
1
2 ≤

(
n

(logn)B

) 1
2

= n
1
2

(logn)
B
2

and therefore

n−
1
2 q

1
2 ≤ n−

1
2n

1
2

(log n)
B
2

= (log n)−
B
2 .

The third observation we could make, is that n−
1
5 < (log n)−

B
2 for n large enough.

Substituting these three results in (3.12), gives us

f(t)� (log n)4(nq−
1
2 + n

4
5 + n

1
2 q

1
2 )

� n(log n)4(q−
1
2 + n−

1
5 + n−

1
2 q

1
2 )

� n(log n)4(3(log n)−
B
2 )

� n(log n)4−
B
2 .
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Since f is positive, we have supt∈m |f(t)| � n(log n)4−
B
2 .

Combining this result with (3.10) and assuming B ≥ 2A+ 10 for some positive constant
A, gives us ∣∣∣∣∫

m
(f(t))3e(−nt)dt

∣∣∣∣ ≤ ∫
m
|f(t)|3dt

� sup
t∈m
|f(t)| ·

∫
m
|f(t)|2dt

� n(log n)4−
B
2 dt ·

∫
m
|f(t)|2

� n(log n)4−
2A+10

2

∫
m
|f(t)|2dt

� n(log n)−A−1 · n log n

� n2(log n)−A.

To conclude everything we did for the minor arcs, we can formulate the following
theorem.

Theorem 4 ([16], Chapter 3, p. 30, Theorem 3.2)
Suppose that A is a positive constant [...], then∫

m
|f(t)|3dt� n2(log n)−A.

We can hence write∣∣∣∣∫
m

(f(t))3e(−nt)dt
∣∣∣∣ ≤ ∫

m
|f(t)|3dt = O(n2(log n)−A). (3.13)

3.3.2 Major arcs

Now we take a quick look at the major arcs. We start with defining for n ≥ 2

S(n) =

∏
p-n

(
1 + (p− 1)−3

) ·
∏
p|n

(
1− (p− 1)−2

) , (3.14)

where p denotes the prime divisors of n. If n is an even number, one of its prime factors
is 2. This gives the term (1 − (2 − 1)−2) = 0 in the second product. So S(n) = 0 for
even n. None of the terms becomes 0 if we have an odd number n, and it turns out that
S(n) � 1 for odd n. We want to prove that an ≥ 1, so if we use the formula above in
an expression for an it is a problem if its value is zero. Since we are only interested in
odd n however, (3.14) does not become zero, so there is no problem.
After a quite involving proof, it turns out that the following theorem holds.
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Theorem 5 ([16], Chapter 3, p. 32, Theorem 3.3)
Suppose that A is a positive constant[...]. Then∫

M
f(t)3e(−tn)dt =

1

2
n2S(n) +O(n2(log n)−A)

where S satisfies (3.14).

Combining this with (3.9) and (3.13), we obtain

R(n) =
1

2
n2S(n) +O(n2(log n)−A) +O(n2(log n)−A),

which leads to the next theorem.

Theorem 6 ([16], Chapter 3, p. 33, Theorem 3.4)
Suppose that A is a positive constant and R(n) satisfies (3.8). Then

R(n) =
1

2
n2S(n) +O(n2(log n)−A)

where S satisfies (3.14).

Since S(n) � 1 for odd values of n, we know that R(n) > 0 for all odd values of n
bigger than a certain n0. So we can conclude Conjecture 1 for n large enough.
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Chapter 4

The Restricted Digit Problem

In this chapter the problem is introduced that James Maynard [21] solved. In his paper
Maynard proves the following theorem.

Theorem 7 (Restricted Digit Problem) dingen enzo
Let k ∈ {0, ..., 9}. Then there are infinitely many primes without k in their decimal
expansion.

Although it is not a generally accepted name and Maynard does not use it, we will call
this the Restricted Digit Problem from now on.
We now define

Ãk =

∑
i≥0

ni10i : ni ∈ {0, ..., 9}\{k}

 \ {∞} with k ∈ {0, ..., 9}, (4.1)

which is a slightly different notation than Maynard uses. Theorem 7 reduces to solving
the equation p = a, for a ∈ Ãk and p ∈ P.

As we have seen in Chapter 2, the Binary Goldbach Problem is an important un-
solved Problem in number theory. In the Binary Goldbach Problem we look for sums of
two primes such that n = p1 + p2, which makes it a binary problem. Similarly we are
looking for numbers for which 0 = p−a holds in the Restricted Digit Problem. So this is
a binary problem as well. We would therefore expect both problems to be in some sense
comparable. Untill now however, 2 seems impossible to solve, but Maynard did solve
7. That makes it quite an interesting result. The similarities are worked out further in
Chapter 5, where we formulate the integral used by the circle method for the Restricted
Digit Problem. First we take a closer look at Ãk.

4.1 Density of Ãk
In the last section we saw that both the Binary Goldbach problem and the Restricted
Digit Problem are binary problems. In the Goldbach Problem, both parameters are ele-
ments of P, though in the Restricted Digit Problem, one of the parameters is an element
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of P and one of Ãk.
Theorem 7 can be proved due to our understanding of Ãk. Hence we now study the
density of Ãk and compare it to the density of P. Using (4.1), we plot nk,X = #{a ∈
Ãk : a < X}. the resulting graph for k = 2 can be seen in figure 4.1.

10 20 30 40 50 60 70
x

10

20

30

40

50

n2,x

Figure 4.1: Amount of numbers smaller than X without 2 in their decimal expansion
(n2,X).

We can make similar graphs for the other values of k. This gives us an idea of the
density of Ak.
We know that there are only 9m possible numbers with m digits if each digit is an
element of {0, 1, ..., 9}\{k}. In other words #{a ∈ Ãk : a < X} = 9m if X = 10m for
some m ∈ N. That is the reason we will further assume that X is an integral power of
10. We choose such an X ∈ N and define

Ak(X) =

∑
1≥0

ni10i < X : ni ∈ {0, ..., 9}\{k}

 with k ∈ {0, ..., 9}. (4.2)

Note the upper bound in which this definition differs from the definition of Ãk we used
before. We can now rewrite 9m as

10
10 log 9m = (10m)

10 log 9 = X
10 log 9.

So
#Ak(X) = O(X

10 log 9)

for all values of X. Now define c = 10 log(10/9) ≈ 0, 046 > 0. Since

X
10 log 9 = X1−(1−10log 9) = X1−(10log 10−10log 9) = X1−10 log(10/9),

it follows that #Ak(X) is O(X1−c). We introduce the following notion.
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Definition 1 dingen enzo
A subset A of N is called sparse in N if

lim inf
X→∞

#{a ∈ A : a < X}
X

= 0.

Since

lim
X→∞

X1−c

X

exists and equals 0, we now know that

lim inf
X→∞

X1−c

X

equals 0 and therefore Ãk is a sparse subset of N. As we would like to compare Ãk with
P, we now check if P is a sparse subset of N as well. We can use the Prime Number
Theorem (2) to see that.

Again limX→∞
X

logX

X = limX→∞
X

X logX exists and equals 0, so the lim infX→∞
X

logX

X

equals 0 as well. It thus follows that P also is a sparse subset of N, but Ãk is much
sparser. In general, it is more difficult to solve a problem if it is about a sparser subset.
The reason this is not the case for the Restricted Digit Problem, is the unusually nice
Fourier structure of Ãk. This explains why the circle method can be successfully applied
to the Restricted Digit Problem and not to the Goldbach Problem. We discuss this nice
Fourier structure a bit further in section 5.3.

4.2 Previous studies of sets related to Ak(X)

Several mathematicians have been looking at the structure of Ak(X) and related sets
before. In this section we recall some of their results.

For example Erdős, Maudit and Sárközy [9] studied the distribution in residue classes
of integers in base g ≥ 2 not exceeding x. They denote by S(n) the sum of the digits of
n in basis g and define the set

U(m,r)(N) = {n ∈ N : n ≤ N,S(n) ≡ r(mod m)} (4.3)

for N,m ∈ N and r ∈ Z.
Gelfond [11] proved the following theorem about (4.3).

Theorem 8 ([9], Section 1, RU 1)
If m ∈ N is fixed with

(m, g − 1) = 1,

then for all r ∈ Z and all “small” q ∈ N the set U(m,r)(N) is well-distributed in the
residue classes modulo q.
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Since
∣∣U(m,r)

∣∣� N , the set U(m,r)(N) has a positive density and is therefore not sparse.
Maudit and Sárközy [22] wrote a paper in which they prove Theorem 9 for the sparser
set defined below. Let

Vk(N) = {n ∈ N : n ≤ N,S(n) = k} (4.4)

for k ∈ N and 0 ≤ k ≤ (g − 1)(g logN + 1).
The analogue of Theorem 8 for (4.4) turns out to be the following.

Theorem 9 ([9], Section 1, RV 1)
If g ∈ N, g ≥ 2, k ∈ N, 0 ≤ k ≤ (g − 1)(g logN + 1),

min
(
k, (g − 1)k logN − k

)
→∞,

m ∈ N and m is “small”, then Vk(N) is well-distributed in the residue classes modulo
m.

Erdős, Maudit and Sárközy derive a similar theorem for an even sparser set. They
introduce the set D of integers in base g without one or more digits in their g-ary
expansion. To construct this, let g ∈ N, g ≥ 3 and t ∈ N such that 2 ≤ t ≤ g − 1. Now
we can define

D ⊂ {0, 1, ..., g − 1} such that 0 ∈ D and |D | = t,

which has cardinality N1−ε.

The sets they study are different form Ak(X), but they are sets containing numbers
with some restrictions on their digits. When studying the Restricted Digit Problem we
make use of the property that both P and Ak(X) are well-distributed in the residue
classes modulo q ∈ {0, 1, ..., 9}.

Another related work is [1] from Banks, Conflitti and Shparlinski. They found upper
bounds for multiplicative character sums and exponential sums over sets of integers in
base g ≥ 2 with various restrictions on their digits. We shall not use character sums,
but exponential sums are used frequently. The methods they use have similarities with
the methods used by Maynard.
Banks and Shparlinski [2] wrote another paper together in which they derive asymptotic
formulas for some arithmetic properties of numbers with restricted digits. This is close
to what Maynard does.

In a later paper, Drmota and Maudit [8] define a set N as a set of non-negative
integers with relations between their digits in base q. To understand their results we
need to introduce the following notion.

Definition 2 dingen enzo
Let {xn}n∈N, with xn ∈ R for all n. Then {xn}n∈N is uniformly distributed modulo
1 if for every s, t ∈ R with 0 6< t < 1, we have that

lim
N→∞

1

N
# {j : 0 ≤ j ≤ n− 1, {xj} ∈ [s, t]} = t− s,
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where {xj} = xj − bxjcxj.

Drmota and Maudit now prove that (αn)n∈N is uniformly distributed modulo 1 for
all α ∈ C\Q.
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Chapter 5

Circle method applied to the Restricted
Digit Problem

To apply the circle method we need to formulate a suitable sequence. Since we want
to prove that there are infinitely many primes with a missing digit, we would like
to formulate a sequence that gives us the amount of primes with a missing digit up
to a fixed number X. Let Ak(X) be defined as in (4.2). Now we introduce dX =
# {(p, a) ∈ P×Ak(X) : p = a}, which we can rewrite as dX = # {p ∈ Ak(X) : p ∈ P}.
So dX is the number of primes in Ak(X) or equivalently the number of primes in ˜Ak(X)
smaller than X. So dX depends on a fixed k. If we can show that this sequence goes to
infinity for every k ∈ {0, 1, ..., 9}, Theorem 7 follows.

5.1 Find an expression to describe dX

We can construct the generating function of dX in the same way as we did before in
section 3.1.2 for the Ternary Goldbach Problem.

dX =
∑

a∈Ak(X)

∑
p∈P
p<X

∫ 1

0
e((p− a)t)dt

=

∫ 1

0

∑
a∈Ak(X)

∑
p∈P
p<X

e(pt) · e(−at)dt

=

∫ 1

0

 ∑
a∈Ak(X)

e(−at)

 ·
∑

p∈P
p<X

e(pt)

 dt (5.1)

Now we introduce some notation. Let

1Ak(X)(a) =

{
1 if a ∈ Ak(X)

0 otherwise.
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Since (3.6) has these properties, it could be used as 1. Using aforementioned definition
we define

SAk(X)(θ) =
∑
a∈N

1Ak(X)(a)e(aθ).

Analogously we define

SP(θ) =
∑
p∈N
p<X

1P(p)e(pθ).

If we plug in these definitions in (5.1), we get

dX =

∫ 1

0
SAk(X)(−t)SP(t)dt.

It turns out later that it is easier to work with a sum instead of an integral. Therefore
we rewrite this integral for dX . We divide the interval [0, 1) in X steps of size 1

X . Now
we estimate the integral in (5.1) by the following sum.

dX ≈
∑

0≤t<1

SAk(X) (−t)SP (t) · 1

X

=
1

X

∑
0≤t<X

SAk(X) (−t)SP (t) · 1

X

=
1

X

∑
0≤t<X

SAk(X)

(
−t
X

)
SP

(
t

X

)
(5.2)

This is the equivalence of the integral 3.7 for the Goldbach Problem. We see that it is
the product of two functions SA and SP since it is a binary problem.

Note that (5.2) is an approximation of dX . It turns out however that this formula is
equal to dX . To see this we use a different approach to find an expression for dX . For
this, we study the summation

1

X

∑
0≤t<X

e

(
(p− a)t

X

)
.

First we look at the case that X|(p − a). Then we know that (p−a)t
X is an integer and

therefore e
(
(p−a)t
X

)
= 0 for all t and thus the summation equals 0. Now we look at the

case that X - (p− a), so in particular p− a ∈ Z\{0}. We know that

Im
(
e

2πi(p−a)t
X

)
= sin

(
2π(p− a)t

X

)
. (5.3)
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Since sinφ = − sin(−φ) = − sin(2πm− φ) for m ∈ Z, we can rewrite (5.3) to

Im
(
e

2πi(p−a)t
X

)
= − sin

(
−2πt

p− a
X

)
= − sin

(
2π(p− a)− 2πt

p− a
X

)
= − sin

(
2π
p− a
X

(X − t)
)

= −Im
(
e

2πi(p−a)(X−t)
X

)
Now follows that∑

0<t<X
2

Im
(
e

2πi(p−a)t
X

)
= −

∑
0<t<X

2

Im
(
e

2πi(p−a)(X−t)
X

)
= −

∑
X
2
<t<X

Im
(
e

2πi(p−a)t
X

)
.

Note that e
(
(p−a)t
X

)
= 0 for t = 0 and t = X

2 if X is even. Therefore we can now

conclude that ∑
0≤t<X

Im
(
e

2πi(p−a)t
X

)
= 0.

We also know that

Re
(
e

2πi(p−a)t
X

)
= cos

(
2π(p− a)t

X

)
= sin

(
2π(p− a)t

X
+
π

2

)
.

Now we can conclude in similar way similar tot that of the imaginary part that∑
0≤t<X

Re
(
e

2πi(p−a)t
X

)
= 0.

Together this gives us
1

X

∑
0≤t<X

e

(
(p− a)t

X

)
= 0

if X - (p− a). Therefore we can now conclude that

1

X

∑
0≤t<X

e

(
(p− a)t

X

)
=

{
1 if X|(p− a)

0 if X - (p− a)
.

Since we are looking for primes in Ak(X), we only look at values for a and p such that
a, p < X. Therefore X only divides (p− a) if p− a = 0. So

1

X

∑
0≤t<X

e

(
(p− a)t

X

)
=

{
1 if p− a = 0

0 if p− a 6= 0.
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In other words, this formula gives us a 1 if we have a prime in Ak(X) and a 0 otherwise.
If we now sum over a ∈ Ak(X) and over p ∈ P with p < X, we get the number of primes
in Ak(X). This is exactly what we defined dX to be. We hence get

dX =
∑

a∈Ak(X)

∑
p∈P
p<X

1

X

∑
0≤t<X

e

(
(p− a)t

X

)

=
1

X

∑
a∈Ak(X)

∑
p∈P
p<X

∑
0≤t<X

e

(
−at
X

)
· e
(
pt

X

)

=
1

X

∑
0≤t<X

 ∑
a∈Ak(X)

e

(
−at
X

) ·
∑

p∈P
p<X

e

(
pt

X

)
=

1

X

∑
0≤t<X

SAk(X)

(
−t
X

)
SP

(
t

X

)
.

which is exactly equal to (5.2), but no longer an approximation.

5.2 Define major and minor arcs

For the Ternary Goldbach Problem we defined a constant B. Similarly we define a
constant C ∈ R>0 such that P = (logX)C , for sufficiently large X. Now let V =(
P
X , 1 + P

X

]
. We can again define for al a, q ∈ N such that 0 ≤ a ≤ q ≤ P and (a, q) = 1;

Ma,q =

{
t ∈ V :

∣∣∣∣t− a

q

∣∣∣∣ ≤ P

X

}
and let

M =
⋃
q≤P

⋃
0≤a≤q
(a,q)=1

Ma,q (5.4)

denote the set of major arcs. James Maynard does this in a slightly different manner
since we work with a sum from 0 to X for the Restricted Digit Problem instead of an
integral from 0 to 1. He defines the major arcs ([21], p. 17) as

M =

{
0 ≤ s < X :

s

X
=
a

q
+O

(
(logX)C

X

)
for some q � (logX)C

}
=
⋃
q�P

{
0 ≤ s < X :

s

X
=
a

q
+O

(
P

X

)}
. (5.5)

26



We know that P
X > 0, so

∣∣ P
X

∣∣ = P
X . Let A ∈ R>0, t = s

X and thus s = tX. Then we can
rewrite (5.5) as

M =
⋃
q�P

{
0 ≤ t < 1 :

s

X
− a

q
= D, with |D| < A ·

∣∣∣∣PX
∣∣∣∣}

=
⋃
q�P

⋃
0≤a≤q
(a,q)=1

{
0 ≤ t < 1 :

∣∣∣∣t− a

q

∣∣∣∣ < A · P
X

}
.

Now we see this is almost the same as (5.4). The only differences are that q � P instead

of q ≤ P , that t ∈ [0, 1) instead of t ∈ V and that
∣∣∣t− a

q

∣∣∣ < A · PX instead of ≤ P
X . The

reason that Maynard uses a different definition for M, is that he defined a sum from 0
to X to compute an estimation for dX instead of an integral from 0 to 1. Therefore we
use (5.5) as definition for the major arcs. With this we can define the minor arcs by
m = [0, X)\M. This ensures that M ∪ m = [0, X), which is the interval over which the
sum is taken.

Using (5.2), we can now write

dX =
1

X

∑
0≤t<X

SAk(X)

(
−t
X

)
SP

(
t

X

)

=
1

X

(∑
m

SAk(X)

(
−t
X

)
SP

(
t

X

)
+
∑
M

SAk(X)

(
−t
X

)
SP

(
t

X

))
.

5.3 Fourier Estimates of SAk(X)(θ)

As said before, the reason that we can solve the Restricted Digit Problem even though
it is a binary problem, is the exceptionally well controllable Fourier structure of Ak(X).
We derive this Fourier structure in this section.
Before we estimate the behaviour of (5.2) on the major and minor arcs, we normalize
SAk(X)(θ). We hence define

FX(t) = X−
10 log 9

∣∣∣∣∣∑
n∈N

1Ak(X)(n)e(nt)

∣∣∣∣∣ , (5.6)

which is nothing but
∣∣SAk(X)(t)

∣∣ with a factor X−10 log 9 to normalize it. Recall that
X−10 log 9 = #Ak(X).
Since we assumed X to be an integral power of 10, X = 10m for some m ∈ N. Now we
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can rewrite (5.6) as follows,

FX(t) = (10m)
10 log 1

9

∣∣∣∣∣∣
∑

n∈Ak(X)

e(nt)

∣∣∣∣∣∣
= 10

10 log 1
9m

∣∣∣∣∣∣
∑

n∈Ak(X)

e(nt)

∣∣∣∣∣∣
=

1

9m

∣∣∣∣∣∣
∑

n∈Ak(X)

e(nt)

∣∣∣∣∣∣ .
Since n ∈ Ak(X) and so n < X, we know that n =

∑m−1
j=0 nj10j . Filling in this definition

in FX gives us

FX(t) =
1

9m

∣∣∣∣∣∣
∑

n∈Ak(X)

e

m−1∑
j=0

nj10jt

∣∣∣∣∣∣
=

1

9m

∣∣∣∣∣∣
∑

n0,...,nm−1∈{0,...,9}\{k}

e

m−1∑
j=0

nj10jt

∣∣∣∣∣∣
=

1

9m

∣∣∣∣∣∣
∑

n0,...,nm−1∈{0,...,9}\{k}

e2πi·
∑m−1
j=0 nj10

jt

∣∣∣∣∣∣
=

1

9m

∣∣∣∣∣∣
∑

n0,...,nm−1∈{0,...,9}\{k}

m−1∏
j=0

e
(
nj10jt

)∣∣∣∣∣∣
=

1

9m

∣∣∣∣∣∣
∑

n0,...,nm−1∈{0,...,9}\{k}

e
(
n0100t

)
· e
(
n1101t

)
· ... · e

(
nm−110m−1t

)∣∣∣∣∣∣
=

m−1∏
j=0

∣∣∣∣∣∣19
∑

nj∈{0,...,9}\{k}

e
(
nj · 10jt

)∣∣∣∣∣∣ .
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We know that
∑n−1

k=0 ar
k = a r

n−1
r−1 for r 6= 1. Using this, we now write

FX(t) =
m−1∏
j=0

∣∣∣∣∣∣
 9∑
nj=0

1

9

(
e2πi10

jt
)nj− 1

9
e2πik10

jt

∣∣∣∣∣∣
=

m−1∏
j=0

∣∣∣∣∣∣∣
1

9

(
e2πi10

jt
)10
− 1

e2πi10jt − 1
− 1

9
e2πik10

jt

∣∣∣∣∣∣∣
=

m−1∏
j=0

∣∣∣∣ e(10j+1t)− 1

9 (e(10jt)− 1)
− 1

9
e(k · 10jt)

∣∣∣∣
Note that this is a multiplicative formula, which can be used to find an estimate for
the minor arcs. Although it is quite involved, it is with most problems possible to
estimate the major arcs in a straight forward manner. The minor arcs are the difficult
part. That is the part where the circle method gets stuck when applied to the Binary
Goldbach Problem. In the case of the Restricted Digit Problem, this multiplicative
Fourier structure of Ak(X) is the key ingredient for the bound on the minor arcs.

5.4 Estimate the major and minor arcs

In this section we give some important ingredients for the estimation of the major and
minor arcs for the Resticted Digit Problem.

5.4.1 Minor arcs

Maynard divides the minor arcs into two categories, the ”Generic minor arcs” and the
”Exceptional minor arcs”. To give the estimate for the minor arcs, we need to introduce
a few notions. Let 0 < η < 1 and let l1, l ∈ N>0 such that l1 ≤ l � η−1. Now we define
R ⊆ [η, 1]l to be a convex polytope in Rl independent of X, such that

e ∈ R ⇒
l1∑
i=1

ei ∈
[

9

25
+ ε,

17

40
− ε
]
. (5.7)

We also define the following function.

ΛR(n) =
∑

p1·...·pl(
log p1
logX

,...,
log pl
logX

)
∈R

l∏
i=1

log pi.

Using this notion we now define SR(θ) =
∑

n<X ΛR(n)e(nθ).

It turns out that the following theorem holds.
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Theorem 10 ([21], Section 8, p. 21, Lemma 8.2)
Let

E =

{
1 ≤ t < X : FX

(
t

X

)
≥ 1

x
23
80

}
[be the set of exceptional minor arcs]. Then E � X

23
40
−ε,∑

t∈E
FX

(
t

X

)
� X

23
80
−ε,

and
1

X

∑
t<X
t/∈E

∣∣∣∣FX ( t

X

)
SR

(
−t
X

)∣∣∣∣�η
1

Xη
.

Since FX is a normalized version of SAk(X), this is not the final result we need. The
denormalized and more general version can be found in the next Theorem.

Theorem 11 (Generic minor arcs) ([21], Section 6, p. 17, Proposition 6.3)
Let l �η 1 and R[...] [as defined in (5.7)]. There is some exceptional set E ⊆ [1, X]

with
#E � X

23
40 ,

such that
1

X

∑
t<X
t/∈E

∣∣∣∣SAk(X)

(
t

X

)
SR

(
−t
X

)∣∣∣∣�η
#Ak(X)

Xε
.

For the Exceptional minor arcs we again need to introduce some notation. Let δ =
(log logX)−1, and let R = R(a1, ..., al−1) be given by

R =

e ∈ Rl : ei ∈ [ai, ai + δ2] for 1 ≤ i ≤ l − 1,
l∑

j=1

ei ∈ [1− δ, 1]

 ,

for some constants a1, ..., al−1 satisfying mini(ai) ≥ η
2 and

∑l−1
i=1 < 1− η

2 and l�η 1.
LetM =M(C) denote the major arcs defined in (5.5). Using this, the following theorem
gives the estimate for the Exceptional minor arcs.

Theorem 12 (Exceptional minor arcs) ([21], Section 6, p. 17, Proposition 6.4)
Let η, l, R = R(a1, ..., al−1) and M(C) be as given [before][...]. Let a1, ..., al−1 in the

definition of R satisfy
∑l1

i=1 ai ∈ [ 9
25 + ε, 1740 − ε] for some l1 < l, and let C = C(A, η) in

the definition of M be sufficiently large in terms of A and η. Let E ⊆ [1, X] be any set

such that #E � X
23
40 . Then we have

1

X

∑
t∈E
t/∈M

SAk(X)

(
t

X

)
SR

(
−t
X

)
�η

#Ak(X)

(logX)A
.

In particular this holds for the the set of minor arcs E we defined in Theorem 10.
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5.4.2 Major arcs

For the Major arcs, Maynard finds the theorem stated below.

Theorem 13 (Major arcs) ([21], Section 6, p. 17, Proposition 6.2)
Let [η, l, R = R(a1, ..., al−1) and M be given as before.] [...] Then

1

X

∑
0≤t<X
t∈M

SAk(X)

(
t

X

)
SR

(
−t
X

)
= κ2

#Ak(X)

XA

∑
n<X

ΛR(n) +OC,η

(
#Ak(X)

(log x)C

)
.

Here κ2 is the constant given [...] [by

κ2 =

{
10(φ(10)−1)

9φ(10) if (10, a0) = 1
10
9 otherwise.]

Combination of this theorem with Theorem 11 and 12 leads in the end to

dX = #{p ∈ Ak(X)} ≥ (c+ o(1))
#A

logX

for some constant c. Maynard uses numerical integration on the base of a Markov process
to make sure that c > 0. With that Theorem 7 follows.
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Chapter 6

Conclusion

In the previous chapters we compared the circle method applied to the Goldbach Problem
and to the Restricted Digit Problem.
We know that the Weak Goldbach Conjecture leads to a ternary problem, since we look
for sums of three primes p1, p2, p3 such that n = p1 + p2 + p3. This leads to expression
(3.7) when we apply the circle method. This expression contains the product of three
functions, namely (g(t))3.
In the Binary Goldbach Problem we are looking for sums of two primes p1, p2 such that
n = p1 + p2. Therefore the expression for an turns out to contain the product of two
functions, g(t)2.
Theorem 7 is about a binary problem as well. After all we are looking for numbers
for which 0 = p − a holds. We would thus expect to find an expression containing the
product of two functions. This is indeed true, since we get

dX =

∫ 1

0

 ∑
a∈Ak(X)

e(−at)

 ·
∑

p∈P
p<X

e(pt)

 dt (6.1)

in (5.1). We see that this is the integral of the product of g(t) with another function.
Now let

h(t) =
∑

a∈Ak(X)

e(−at).

This is the function that represents the requirement that one of the parameters a is an
element of Ak(X). So we have the product of g with h in (6.1) instead of the g2 we
have for the Binary Goldbach Problem. This is what creates the difference between the
Binary Goldbach Problem and the Restricted Digit Problem.

In Chapter 3 we have seen that it is possible to find a good estimate for R(n) on
both the major and minor arcs for the Ternary Goldbach Problem. In a similar way we
can find a bound for the Binary Goldbach Problem on the major arcs. On the minor
arcs however we cannot use a similar strategy to the one used for the Ternary Goldbach
Problem. Since the Binary Goldbach Problem and the Restricted Digit Problem are
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both binary problems, we would expect them to be comparable in some way. In Chapter
5 we have seen that it is possible to find a convenient bound for the minor arcs in the
Restricted Digit Problem nonetheless. This is quite interesting, since Ak(X) is a much
sparser set than P. In general it is more difficult to solve a problem involving sparser
sets than to solve a problem involving less sparse sets, unless the sparser set has much
more structure. This is the case with Ak(X). After all its Fourier structure yields a nice
multiplicative formula, which we can use to give a bound for dX on the minor arcs. This
is an important reason why Theorem 7 is proven and Conjecture 2 not.

To use this nice multiplicative Fourier structure of Ak(X), we need to use a sum
instead of an integral to compute an estimation for dX . This leads to slightly different
major arcs. Another difference is that we need to define two kinds of minor arcs to
solve the Restricted Digit Problem, the Generic minor arcs and the exceptional minor
arcs. Altogether this leads to a quite technical and extensive proof. To make it work,
Maynard uses the Harman’s seive, Large seive and a Markov process, which are all tools
in analytic number theory.
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