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Abstract

The Bethe ansatz is used to analytically solve the Heisenberg Model with nearest neighbour interactions
for spin- 1

2
particles in an one dimensional chain. Our goal is to find out if the Bethe ansatz can be

extended to nearest and next nearest neighbour interactions and to gain insight into the system with
exact diagonalization. We find that this cannot be done. Because of certain assumptions made in the
Bethe ansatz, the method fails for next nearest neighbour interactions.
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1 INTRODUCTION 1

(a) Ferromagnet (b) Antiferromagnet

Figure 1: (1a) is a sketch of a ferromagnetic material, where the interactions favour a parallel alignment of
neighbouring spins. Figure (1b) is a sketch of an antiferromagnetic material. Here the interactions favour
anti parallel alignment of neighbouring spins.

1 Introduction

Classically, magnetism is described by the Maxwell equations1. To see how magnetism affects materials, we
look at the magnetic moments in the material, which are either created by moving charges or by the intrinsic
magnetic moment of the particles (the spin). We can classify a material by the respondence of its magnetic
moments to the magnetic field. If the magnetic moments are attracted by the magnetic field, the material is
called paramagnetic. If they are repelled by the magnetic field, the material is called diamagnetic.
When we take into account the interactions between the magnetic moments, we can make another classifi-
cation: If the magnetic moments align with each other without an external magnetic field, the material is
called ferromagnetic (figure 1a). If a material favours a configuration where neighbouring magnetic moments
are in the opposite direction, the material is called antiferromagnetic (Figure 1b).

Ferromagnetic and antiferromagnetic systems can be described with an effective Hamiltonian called the
Heisenberg model. This Hamiltonian describes the interaction between the spin of a particle and the spin of
the neighbouring particle. In the first chapter of this thesis we will derive the Heisenberg model from the
underlying electronic theory. WE also find out what the nature of the interaction between the particles is.
In the remainder of this thesis we will look for solutions of the Heisenberg model of a one dimensional chain
of spin- 1

2 particles. We will do this numerically using exact diagonalization in Mathematica and analytically
using the Bethe ansatz. This method was first used by Hans Bethe in 1931[2] to find the exact eigenvalues and
eigenvectors of the Heisenberg Hamiltonian of a one dimensional chain with spin- 1

2 particles. This approach
by Bethe was done with only nearest neighbour interactions in the Heisenberg model. We will try to extend
this approach for next nearest neighbour interactions. To get more insight into the problem we also do a
numerical exact diagonalisation of the Heisenberg model in Mathematica. We then examine the behavior of
the ground state for different ratios between the nearest neighbour and next nearest neighbour interaction.
We will find that the ground is never degenerate except at J2 = 1

2J1, where it is double degenerate. The model
with this value for J2 is known as the Majumdar-Ghosh model. We will shortly look into this model. When
we extend the Bethe ansatz to next nearest neighbour interactions in the Heisenberg model we find that this
does not work. The further reaching interactions cause the ansatz that is made to not be a valid eigenstate
of the Hamiltonian when the particles are next to each other. Because of this we cannot analytically get the
eigenvalues.

1See for example Griffiths[1] chapter 7.3
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(a) φs(~r1, ~r2

(b) φt(~r1, ~r2

Figure 2: Sketches of the spatial wave functions for the singlet and the triplet configuration of a system with
two electrons.

2 Physical origin of the Heisenberg model

In this chapter we will derive the Heisenberg model, which is used to calculate the Hamiltonian of an one
dimensional chain with interacting spin- 1

2 particles. We will first determine the interaction strength J and
then show how it turns up in the Heisenberg model. In the remainder of this thesis we will try to solve the
Heisenberg model with the Bethe ansatz.

Consider two atoms on an one dimensional chain. To describe the interaction between these two atoms
we look only at the outermost electrons. An electron is a spin- 1

2 particle and therefore it obeys the Pauli
principle, e.g. its total wave function has to be anti symmetric: ψ(x1, x2) = −ψ(x2, x1). The combination of
two spin- 1

2 wave functions gives a singlet and a triplet configuration. The singlet spin wave function is anti
symmetric and therefore its spatial wave function has to be symmetric. The spatial wave function is given
by

φs(~r1, ~r2) =
1√

2 + 2l2
[φ1(~r1)φ2(~r2) + φ1(~r2)φ2(~r1)]. (1)

Because the wave functions are not orthogonal, there is an overlap integral l = 〈φ1|φ2〉. φi(~rj) denotes the
spatial wave function of particle ~rj in state i.
The triplet spin state is symmetric, so its spatial wave function has to be anti symmetric:

φt(~r1, ~r2) =
1√

2− 2l2
[φ1(~r1)φ2(~r2)− φ1(~r2)φ2(~r1)]. (2)

Sketches for these wave functions are shown in figure (2).

The expected dominant forces in this system are the electric and the magnetic force. The magnetic
moment of an electron is very small compared to its electric forces. Therefore, we neglect the contribution of
the magnetic moment to the energy. The Hamiltonian, thus with only contributions of the Coulomb force,
is given by

Ĥ =
p̂2

1

2m
− e2

|~r1 − ~R1|
+

p̂2
2

2m
− e2

|~r2 − ~R2|
+

e2

|~r1 − ~r2|
+

e2

|~R1 − ~R2|
− e2

|~r1 − ~R2|
− e2

|~r2 − ~R1|
. (3)

Here the upper case ~R the denotes the position of the atom and the lower case ~r denotes the position of the
electron. We can now calculate the energy expectation value of respectively the singlet and the triplet state:

εs = 〈φs|Ĥ|φs〉 = 2ε0 +
U + V

1 + l2
, (4)

εt = 〈φt|Ĥ|φt〉 = 2ε0 +
U − V
1− l2

, (5)
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where ε0 is the energy of one particle that is infinitely far away from the other particle. U and V are
introduced to denote complicated integrals that arise because of all the different terms in (3).

U =

∫
d~r1d~r2φ

∗
1(~r1)φ∗2

[
e2

|~r1 − ~r2
+

e2

| ~R1 − ~R2

− e2

|~r1 − ~R2

− e2

|~r2 − ~R1

]
φ1(~r1)φ2(~r2)

V =

∫
d~r1d~r2φ

∗
1(~r1)φ∗2

[
e2

|~r1 − ~r2
+

e2

| ~R1 − ~R2

− e2

|~r1 − ~R1

− e2

|~r2 − ~R2

]
φ2(~r1)φ1(~r2).

(6)

The difference between the triplet and the singlet energy is called J and is given by

J = εt − εs = −2V − 2l2U

1− l4
. (7)

We will show that this term describes the interaction between the electrons. As we have seen, it is a result
of Pauli repulsion and electronic potentials between two electrons.2

We now want to obtain a Hamiltonian that describes the spin interactions in our system. At first, we start
with two spin- 1

2 particles. The total spin of this system is

S2 = (S1 + S2)2 = S2
1 + S2

2 + 2S1·S2 =
3

2
+ 2S1·S2, (8)

which equals 2 if the spins are in a triplet state and 0 if they’re in the singlet state. Thus we find S1·S2 = 1
4

in the triplet states and S1·S2 = − 3
4 in the singlet state.

Now we can construct a Hamiltonian:

H =
1

4
(εs + 3εt)− (εs − εt)S1·S2. (9)

This leaves the eigenvalue εs if the two particles are in the singlet state and εt if the two particles are in
one of the triplet states. We can now omit the constant 1

4 (εs + 3εt) and rewrite the Hamiltonian, using the
definition of J (7), into

H = JS1·S2. (10)

If we generalize this to N particles, we find3

H =

N∑
i,j

JijSi·Sj . (11)

At large distances, the singlet and triplet energy splitting disappears and Jij becomes zero. Thus for large
separations of two particles, it is certainly not necessary (and way to complicated) to consider their interaction
with each other in (11). We will thus only look at nearest and next nearest neighbour interactions. This
model can be used for any dimension. It has only been analytically for nearest neighbour interactions in an
one dimensional chain. This has been done using the Bethe ansatz. We will try to extend this to next nearest
neighbour interactions. The Hamiltonian for these interactions, is given by

Ĥ = J1

N∑
i=1

~Si· ~Si+1 + J2

N∑
i=1

~Si· ~Si+2, (12)

where J1 is the interaction strength for nearest neighbour interactions and J2 the interaction strength for
next nearest neighbour interactions. In figure (3) is a sketch of a one dimensional of spin- 1

2 particles. The
interaction J1 and J2 are indicated.

2The discussion above is based on chapter 26.2 of Marder[3]
3The derivation of the Heisenberg model is based on chapter 32 of Ashcroft and Mermin[4]
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Figure 3: A sketch of a one dimensional chain of spin- 1
2 particles the interactions J1 and J2 are between

every particle with its nearest and next nearest neighbours.

3 Nearest neighbour interactions

In this chapter we follow Giarmarchi’s[5] derivation of the Bethe equations for the Heisenberg model with
nearest neighbour interactions. First, we do this for the trivial case of one flipped spin and secondly, we
extend this approach to two flipped spins. Thereafter, we will extend this approach to many flipped spins.
At final, we will look at the energy behavior in the continuum limit, which will give us an exact value for the
ground state of this system.

To solve the Heisenberg model (12) analytically, we start with a system where there are only nearest neighbour
interactions, e.g. J2 = 0.
The Hamiltonian then becomes

H = J

N∑
i=1

~Si~Si+1

= J

N∑
i=1

(
Sxi S

x
i+1 + Syi S

y
i+1 + Szi S

z
i+1

)
= J

N∑
i=1

[1

2

(
S+
i S
−
i+1 + S−i S

+
i+1

)
+ Szi S

z
i+1

]
.

(13)

Here S±i are the standard spin ladder operators: S±i = Sx ± iSy.

3.1 One spin flipped

First we consider the fully polarized state |F 〉 = |↑...↑〉, which has energy H|F 〉 = L
4 |F 〉 (to simplify notation

we use ~ = 1).
We now flip one spin at site N , |ψ〉 = S−n |F 〉. The Schrödinger equation then gives

HS−n |F 〉 = J
[1

2

(
S−n+1|F 〉+ S−n−1|F 〉

)
+
(L

4
− 1
)
|F 〉
]
, (14)

where L is the length of the chain. Since adjacent up spins only contribute to an overall energy factor, but
do not interact with each other, we can view this system as the down spin being a free particle. This we can
describe with a plane wave ansatz:

ψ(x) =
1√
L
eikx. (15)

Combining this with the Schrödinger equation gives

Hψ(x) = J
[1

2

(
ψ(x+ 1) + ψ(x− 1)

)
+ (

L

4
− 1)ψ(x)

]
= J

[
cos(k) +

L

4
− 1
]
ψ(x).

(16)
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Because we can factor out the wave function (15), we see that the plane wave ansatz is an eigenstate of this
system with energy

E(k) = J
[

cos(k) +
L

4
− 1
]
. (17)

3.2 Two spins flipped

Because the Hamiltonian only has nearest neighbour interactions, two flipped spins that are not next to each
other in an otherwise polarized chain (S−n S

−
m|F 〉), will behave like two separate free particles and can thus

be described by

ψ(x1, x2) = αei(k1x1+k2x2) + βei(k1x2+k2x1), (18)

where we require the arguments of ψ(x1, x2) to be ordered: x1 ≤ x2. We now want this wave function to be
valid at all distances. The two spins only interact with each other when they are next to each other. We
want to find out whether the wave function (57) is still an eigenstate of the Hamiltonian if the two spins are
adjacent. If this is the case, we want to find relations between α, β, k1 and k2. These relations will be the
Bethe equations.
The Hamiltonian for a polarized chain with two flipped spins next to each other gives

HS−n S
−
n+1|F 〉 = J1

[1

2

(
S−n S

−
n+2|F 〉+ S−n−1S

−
n+1|F 〉

)
+

1

4
(L− 4)S−n S

−
n+1|F 〉

]
. (19)

It is also possible to write these equations as wave functions, which are

Hψ(x, x+ 1) = J1

[1

2

(
ψ(x, x+ 2) + ψ(x− 1, x+ 1)

)
+

1

4
(L− 4)ψ(x, x+ 1)

]
. (20)

ψ(x, x+ 1) can not be factored out here, which means the ansatz (57) we made, wouldn’t be an eigenstate of
the Hamiltonian. However, we can add a term which makes it possible to factor ψ(x, x+ 1) out. This added
term has to be zero everywhere, which leads to the following condition

1

2
J1

[
ψ(x+ 1, x+ 1) + ψ(x, x)

]
= J1. (21)

Using the wave function (57) and solving for α/β, gives

α

β
= −

ei
k1−k2

2 − cos
(
k1+k2

2

)
ei

k2−k1
2 − cos

(
k1+k2

2

)
= −eiΘ(k1,k2),

(22)

where Θ(k1, k2) is a phase shift, denoted by

Θ(k1, k2) = 2 arctan
sin
(
k1−k2

2

)
cos
(
k1−k2

2

)
− cos

(
k1+k2

2

) . (23)

Using periodic boundary conditions, ψ(x1, x2) = ψ(x2, x1 + L), it follows that

α = βe−ik2L = βeik1L. (24)

This condition tells us that the total momentum should be quantized:

k1 + k2 =
2πn

L
. (25)

We now have two equations for the ratio α/β (equations 22 and 24). If we combine these, we will find that

− eiΘ(k1,k2) = eik1L = e−ik2L, (26)
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which leads to the following equations:

Lk1 = 2πI1 + Θ(k1, k2),

Lk2 = 2πI2 + Θ(k2, k1),
(27)

where I1 and I2 are half integers. Now we can rewrite the wave function (57) as

ψ(x1, x2) = ei
(

Θ(k1,k2)
2 +k1x1+k2x2

)
− ei

(
Θ(k2,k1)

2 +k1x2+k2x1

)
. (28)

3.3 Many spin flips

We now take a polarized chain with L up spins. We flip N spins down at positions x1 < x2 < ... < xN and
denote this by the list {xj}. If none of the flipped spins are adjacent, the Schrödinger equation gives

Hψ({xj}) =
L

4
−N +

1

2

N∑
i=1

(
S−i−1S

+
i + S+

i S
−
i+1

)
ψ({xj}). (29)

If two flipped spins are adjacent, we have seen in the two flipped spin case above, that there are two differences:
The overall energy term is different and the movement of the spins is changed. When there is only one pair
of adjacent down spins (say at xk and xk+1), we find that

Hψ({xj}) = E0
zψ({xj})+

1

2

N∑
i 6=k,k+1

(
S−i−1S

+
i +S+

i S
−
i+1

)
ψ({xj})+

1

2

(
S−k−1S

+
k +S+

k+1S
−
k+2

)
ψ({xj})+ψ({xj}).

(30)
We want the equations (29) and (30) to be the same. To achieve this situation, we can add a term, just like
we did in the two flipped spins case. Therefore we add

1

2
ψ(..., xk+1, xk+1, ...) +

1

2
ψ(..., xk, xk, ...)− ψ(..., xk, xk+1, ...). (31)

We also want this term to be zero, which leads to the following equation

2ψ(..., xk, xk+1, ...) = ψ(..., xk+1, xk+1, ...) + ψ(..., xk, xk, ...). (32)

Just as before, we make an ansatz for the wave equation. The form is similar to the two flipped spins case.
This leads to the following ansatz:

ψ(x1, ..., xN ) =
∑
P

AP exp

[
i

N∑
j=1

kPj
xj

]
. (33)

In each exponent, every k is multiplied by the corresponding x. Thereafter, they are permuted (with permu-
tation P ) over all possible combinations, given a total of N ! terms. We can now insert this wave function
into equation (32). Here fore, we first introduce a permutation P ′ which differs from P by the exchange of
two adjacent elements P ′(j + 1) = P (j), P ′(j) = P (j + 1). We then have

ψ(..., xj +m,xj + n, ...) =
∑
{P}

e
i

∑
i6j,j+1

kPi
xi+i(kPj

+kP ′
j
)xj

×

(
AP e

i(mkPj
+nkP ′

j
)

+AP ′e
i(mkP ′

j
+nkPj

)

)
(34)

Here, the first sum is only over permutations that have P (k) < P ′(k).
It is now possible to solve (32) with this wave function. This gives

2
(
AP e

ikP ′
k +AP ′e

ikPk

)
=
(
AP +AP ′

)(
1 + e

i(kPk
+kP ′

k
))
. (35)
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Just like we have done with equation (22), we can write this as

AP
AP ′

= −1 + e
i(kPk

+kP ′
k

) − 2eikPk

1 + e
i(kPk

+kP ′
k

) − 2e
ikP ′

k

= −e−iΘ(kPk
,kP ′

k
)
. (36)

Here, Θ(kPk
, kP ′k) is the same phase shift as in (23).

This expression now fixes all coefficients AP up to an overall normalization. Every permutation can be
build up of a sequence of transpositions. To determine the normalization factor, we need to fix the identity
permutation A1,2,3,...,N . Using (36), we can write a permutation AP as a product of transpositions and the
identity permutation

AP
A1,2,3,...,N

= (−1)ηP exp

[∑
T

Θ(ki, kj)

]
, (37)

where ηP is the number of transpositions required to get to P . The T in the sum denotes all transpositions
required to get to P .
Periodic boundary conditions give us (

AP /AP ′
)
e
ikP ′1

L
= 1. (38)

This has to be satisfied for every permutation P . We can now calculate the ratio AP /AP ′ by looking at the
permutation P ′ as a ’right shift’ of all elements:

(P ′1, P
′
2, ..., P

′
N ) = (PN , P1, P2, ..., PN−1). (39)

Combining this with (36), leads to

(−1)N−1 exp

(
i

N∑
j=1

Θ(kj , kl)

)
eiklL = 1. (40)

Therefore, it follows that

Lki = 2πIi +
∑
j

Θ(ki, kj). (41)

Here, Ii are half-integer, if N is even and Ii are integers, when N is odd. These are the Bethe equations,
which couple the momenta of the spins.
Therefore, the energy of the system is just the eigenvalue of the Hamiltonian:

E = J
L

4
+ J

N∑
j

[
cos(kj)− 1

]
. (42)

4 Continuum limit

Until now, we have looked at a finite system. In this section we look at the continuous limit, so we can
come to an analytic expression for the ground state energy of our system. First, we introduce the shifted
momentum k and the wavelength λ as

k = k + π

λ = −1

2
tan

(
k/2
)
.

(43)

The energy (42) then becomes
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E =
1

4
LJ − J

∑
i

[
1 + cos(k)

]
. (44)

From now on, we will drop the over-line to simplify notation. We can define a counting function

Φ(λ) = 2L arctan(2λ)−
∑
j

2 arctan(λ− λj), (45)

which counts the number of flipped spins. In the thermodynamic limit, we can now define the density of
states

ρ(λ) =
1

2π

dΦ

dλ
. (46)

The second part of (45) can then be written as an integral:

Φ(λ) = 2L arctan(2λ)− 2

∫ ∞
−∞

dλ′ρ(λ′) arctan(λ− λ′). (47)

By differentiating this function, we can write the density of states as

2πρ(λ) =
4L

1 + 4λ2
− 2

∫ ∞
−∞

dλ′ρ(λ′)
1

1 + (λ− λ′)2
. (48)

This is an integral equation and it can be solved by a Fourier transform (Appendix A). Thus we find

ρ(λ) =
L

2 cosh(πλ)
. (49)

This density of state can be used to calculate the ground state energy, which is given by

E0 =
L|J |

4
− |J |

∑
j

[
1 + cos(kj)

]
=
L|J |

4
− |J |

∑
j

2

1 + 4λ2
j

=
L|J |

4
− |J |

∫ ∞
−∞

dλρ(λ)
2

1 + 4λ2

= L|J |
[1

4
− log(2)

]
.

(50)

The integral in the last equation is solved with Mathematica. This leads to a ground sate energy that is
approximately −0.44L|J |. This is the exact ground state for an infinitely large system. We can compare
this to the Néel state |↑↓↑↓ ... ↑↓〉 which has energy EN = −0.25J , we see that the true ground state of the
system is much more complicated then the trivially thought of Néel state.

5 Next nearest neighbour interactions

We have just derived the exact ground state for a one dimensional chain with only nearest neighbour inter-
action, but is this enough? One can imagine that in real systems, the interactions reach further than just
between nearest neighbours. The following step in the process of gaining a better model for a system, is
adding next nearest neighbour interactions with an interaction J2. We consider this interaction to be smaller
than J1 and of the same sign: 0 < J2/J1 < 1. Looking at the problem through other methods can gain
us some insight here. The Heisenberg Hamiltonian of a finite chain is just a matrix that can be solved for
its eigenvalues using an exact diagonalization. For this I used Mathematica where I implemented a six site
chain with spin- 1

2 particles that interact through the spin matrices. This gives a 26 = 64 by 64 matrix. The
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10 20 30 40 50 60
n

-3

-2

-1

1

2

3

E

Figure 4: All of the energy eigenstates of a six site Heisenberg Hamiltonian (12), the red dots are the model
with only nearest neighbour interactions J1 = 1, J2 = 0. The blue dots correspond to the energy states of
the Heisenberg Hamiltonian (12) with J1 and J2 set to 1.

code used to get these results can be found in appendix (B). The numerical results for a chain interacting
through the Heisenberg Hamiltonian (12) are shown in figure (4). A lot of degenerate energy states can be
seen. This is because of spin multiplets arising from combining spins (as we have the singlet and the triplet
configuration when there are just 2 spins). The figure shows that the ground state is not degenerate for these
values of J1 and J2.
We can now vary the ratio between J1 and J2, figure (5) shows a numerical evaluation of the exact diagonal-
ization for a spin- 1

2 chain of six sites with nearest and next nearest neighbour interactions. The five lowest
energies are plotted. This shows that the ground state is never degenerate, except at J2/J1 = 0.5. A model
with this value for J2, is known as the Majumdar-Ghosh model[6]. We will look into its special properties in
the next section.

5.1 Majumdar-Ghosh model

A system with J2 = 1
2J1 and an even number of spins, is known as the Majumdar-Ghosh chain4. A Hamil-

tonian of the form

H =
∑
i

(
SiSi+1 +

1

2
SiSi+2 +

3

8

)
, (51)

can be rewritten as

H =
1

4

∑
i

[
(Si + Si+1 + Si+2)2 − 3

4

]
. (52)

The total spin of three neighbouring sites can be constructed from 1
2 ⊗

1
2 ⊗

1
2 = 3

2 ⊕
1
2 ⊕

1
2 . Therefore, it can

either be 1
2 or 3

2 . For the ground state we want the total spin to be 1
2 , for the Hamiltonian above this value

for the total spin gives exactly zero as energy. The total spin can only be 1
2 when two of the spins form a

singlet configuration together and the other spin does not interact with them. Since this has to be true for
any position, the spins form singlet pairs. There are two configurations to form these singlet pairs:

(53)

4this derivation of the Majumdar-Ghosh chain is based on a paper Greiter[7]
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Figure 5: The five lowest energies of a six site spin- 1
2 system with nearest and next nearest neighbour

interactions J1 and J2. The ratio J2/J1 varies from 0 to 1. The numbers on the lines represent the number
of degenerate states at that line. The ground state is only degenerate at J2/J1 = 1/2.

or

(54)

where ◦ − ◦ denotes a singlet pair. In the last state, the first and the last spin form a singlet configuration
through periodic boundary conditions. As one can see, the condition that the number of spins should be even
is vital for the way the ground state forms. If there is an odd number of spins, one spin at the end of chain
would be left that cannot form a singlet pair with any of its neighbours, because all the other particles are
already in pairs together. The states in (53) and (54) explain the twofold degeneracy of the ground state at
J2/J1 = 1/2. Because of this special ground state configuration, we now have an exact ground state for the
Heisenberg model with J2 = 1

2J1. In the next subsection we will try to get a solution for general J2 using
the Bethe ansatz.

5.2 Bethe ansatz for next nearest neighbour interactions

We will now use the same approach as in the previous chapter to try to derive the Bethe equations in a
system with a Hamiltonian that has also next nearest neighbour interactions (equation 12). We will first
attempt this with a general next nearest neighbour interaction J2.
The Hamiltonian can be written as

H = J1

N∑
i=1

[1

2

(
S+
i S
−
i+1 + S−i S

+
i+1

)
+ Szi S

z
i+1

]
+ J2

N∑
i=1

[1

2

(
S+
i S
−
i+2 + S−i S

+
i+2

)
+ Szi S

z
i+2

]
. (55)

5.2.1 One spin flipped

As before, we start with the easiest case. We consider a spin chain with all spins up: |F 〉 = |↑... ↑〉. The
same ansatz for the wave function as before (15) is used and the same periodic boundary conditions apply.
The Schrödinger equation gives us
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HS−n |F 〉 = J1

[1

2

(
S−n+1|F 〉+ S−n−1|F 〉

)
+

1

4
(L− 4)S−n |F 〉

]
+ J2

[1

2

(
S−n+2|F 〉+ S−n−2|F 〉

)
+

1

4
(L− 4)S−n |F 〉

]
,

Hψ(x) = J1

[1

2

(
ψ(x+ 1) + ψ(x− 1)

)
+

1

4
(L− 4)ψ(x)

]
+ J2

[1

2

(
ψ(x+ 2) + ψ(x− 2)

)
+

1

4
(L− 4)ψ(x)

]
,

Hψ(x) = J1

[
cos(k) +

1

4
(L− 4)

]
ψ(x) + J2

[
cos(2k) +

1

4
(L− 4)

]
ψ(x),

E = J1 cos(k) + J2 cos(2k) + (
L

4
− 1)(J1 + J2).

(56)

5.2.2 Two spins flipped

Now, the same wave function ansatz, as found in the previous chapter, (57) and the same periodic boundary
conditions are used. Therefore

ψ(x1, x2) = αei(k1x1+k2x2) + βei(k1x2+k2x1),

ψ(x1, x2) = ψ(x2, x1 + L).
(57)

If the two particles are far apart, this wave function is an eigenstate of the Hamiltonian. As in the previous
chapter, the situation changes when they are adjacent. Therefore, it follows that

HS−n S
−
n+1|F 〉 = J1

∑
i

[1

2

(
S−i S

+
i+1 + S+

i S
−
i+1

)
+ Szi S

z
i+1

]
S−n S

−
n+1|F 〉

+ J2

∑
i

[1

2

(
S−i S

+
i+2 + S+

i S
−
i+2

)
+ Szi S

z
i+2

]
S−n S

−
n+1|F 〉

= J1

[1

2

(
S−n S

−
n+2 + S−n−1S

−
n+1

)
+

1

4
(L− 4)S−n S

−
n+1

]
|F 〉

+ J2

[1

2

(
S−n−2S

−
n+1 +A+B + S−n S

−
n+3

)
+

1

4
(L− 8)S−n S

−
n+1]|F 〉.

(58)

The J1 part is the same as we have seen before. Our wave function does not immediately follow, but we can
add a term that makes it possible to factor the wave function out. This added term would again need to be
zero, which gives us an extra condition. With this condition, the Bethe equations can be determined.
The J2 part should equal the case where two free spins are far away from each other. However, something
goes wrong in the terms A and B. We will examine those terms in more detail below. (The arguments for
B are along the same lines as those for A, so only A will be treated here).

A = S−n−1S
+
n+1S

−
n S
−
n+1

= S−n−1S
−
n .

(59)

The spin at position x+ 1 is moved two spaces to the left, making its position lower than that of the spin at
position x. When we made the ansatz for the wave function (15), we restricted the elements in ψ(x1, x2) to
be ordered. The term A thus becomes

A|F 〉 = ψ(x− 1, x). (60)

In the case where x1 and x2 are far apart, this part of the Hamiltonian gives a term ψ(x1, x2 − 2). We see
that in our case, x1 and x2 are switched in the wave function, because one overtakes the other. Therefore, it
is no longer possible to factor out ψ(x, x+1), which makes this state an invalid eigenstate of the Hamiltonian.
We could try the same approach as we did before, in which we added a term to factor the wave function out.
Thereafter, this added term should equal zero again. We need to add terms that form cosines with the terms
ψ(x− 2, x+ 1) and ψ(x, x+ 3) from (58). To do so, we have to add ψ(x+ 2, x+ 1) and ψ(x, x− 1). However,
these wave functions cannot exist, because there second argument is smaller than their first argument. Thus
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we see that it is impossible to factor ψ(x, x + 1) out, which means that the ansatz we have made is wrong;
it is not an eigenstate of the Hamiltonian. When we look at (58), it follows that the problematic part is
found in the part of the equation that is proportional to J2. If we set J2 to zero, it is possible to solve the
system, but there are no other values for J2 for which this holds. This means that even for the special case
with J2 = 1

2J1 there is no clear way to solve this using the Bethe ansatz. We do, however, have an exact
eigenstate for that value of J2 that we got by using the approach by Majumdar-Ghosh in section (5.1)

6 Discussion

In this thesis we have tried to solve the Heisenberg model for nearest and next nearest neighbour interactions
analytically. In order to do this, we have used the Bethe ansatz to make an ansatz for the wave function.
We then required this wave function to be true for all distances and the arguments in this wave function
to be ordered. The restriction that the wave function should be valid everywhere, combined with periodic
boundary conditions, led us to relations between the different parameters from our ansatz, which are called
the Bethe equations. When we tried to extend this approach by including next nearest neighbour interactions,
it became clear that the method fails when the two flipped particles are adjacent. The arguments of the wave
function had to be flipped, because of the restriction which states that the arguments should be ordered.
Therefore, we see that our ansatz does not fully describe the system.
There may still be some other ways to get solutions for this system. One might try perturbation theory or
try to solve the model with numerical methods like we did for a very small system in section (5)
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A Fourier transforms

With a Fourier transform we map a function f(x) in xx-space to a function g(ω) in ω-space. The Fourier
transform is given by

g(ω) =
1√
2π

∫ ∞
−∞

dxf(x)eiωx. (61)

If in physics an equation is translationally invariant in its x-space it can be usefull to Fourier transform it
to its ω-space. The wave description that is produced with this transform fits the symmetries of the system,
which can make it easier to solve the equation. After solving the equation in ω-space we can use the inverse
Fourier transform to get a solution for the original function. The inverse Fourier transform is given by

f(x) =
1√
2π

∫ ∞
−∞

dωg(ω)e−iωx. (62)

We can show that this is indeed the inverse Fourier transform by inserting the normal Fourier transform (61)
into the inverse Fourier transform (62), this gives

f(x) =
1

2π

∫ ∞
−∞

dω

∫ ∞
−∞

dx′f(x′)eiωxe−iωx
′

=

∫ ∞
−∞

dx′f(x′)
[ 1

2π

∫ ∞
−∞

dωeiω(x−x′)
]

=

∫ ∞
−∞

dx′f(x′)δ(x− x′) = f(x).

(63)

Here I used the definition of the Dirac delta function.
Some of integral equations will become easier to solve by first Fourier transforming them. We will try this
approach with the density of states in the following subsection.

A.1 Density of states

We want to solve the following equation for ρ(λ)

2πρ(λ) =
4L

1 + 4λ2
− 2

∫ ∞
−∞

dλ′

1 + (λ− λ′)2
ρ(λ′). (64)

For notational convenience, we introduce two new functions

f(λ) =
4L

1 + 4λ2
,

k(λ) =
1

1 + λ2
.

(65)

With these we can rewrite (64) as

2πρ(λ) = f(λ)− 2

∫ ∞
−∞

k(λ− λ′)ρ(λ′)dλ′

= f(λ)− 2g(λ),

(66)

where the integral is denoted by g(λ):

g(λ) =

∫ ∞
−∞

k(λ− λ′)ρ(λ′)dλ′ (67)
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g(λ) is a convolution integral, this means that its Fourier transform is a product of the Fourier transforms of
the k(λ) and ρ(λ).

G(ω) =
√

2πR(ω)K(ω), (68)

where G(ω), R(ω) and K(ω) are the Fourier transforms of respectively g(λ), ρ(λ) and k(λ)
We now also use a Fourier transform on (66), which gives us

2πR(ω) = F (ω)− 2G(ω)

= F (ω)− 2
√

2πR(ω)K(ω),
(69)

where F (ω) is the Fourier transform of f(λ). Solving for R(ω), gives

R(ω) =
F (ω)

2π +
√

8πK(ω)
. (70)

To find the density states, we first need to find the Fourier transforms for f(λ) and k(λ − λ′) and then use
an inverse Fourier transform on this equation for R(ω).
From this point on the problem is just solving integrals. I solved these integrals by using Mathematica. F (ω)
and K(ω) can be computed by taking Fourier transforms, which are given by

F (ω) =
1√
2π

∫ ∞
−∞

f(λ)e−iλωdλ

=
4L√
2π

∫ ∞
−∞

1

1 + 4λ2
e−iλωdλ

=
√

2πLe−|ω|/2.

(71)

K(ω) =
1√
2π

∫ ∞
−∞

k(λ)e−iλωdλ

=
1√
2π

∫ ∞
−∞

1

1 + λ2
e−iλωdλ

=

√
π

2
e−|ω|.

(72)

Inserting these results into the equation for the Fourier transform of the density of states (70), gives

R(ω) =

√
2πLe−|ω|/2

2π + 2πe−|ω|

=
1√
2π
L

1

e|ω|/2 + e−|ω|/2

=
L√
2π

1

2 cosh (|ω|/2)
.

(73)

Using the inverse Fourier transformation (which I again solved using Mathematica) gives us the density of
states:

ρ(λ) =
L

4π

∫ ∞
−∞

1

cosh (ω/2)
eiλωdω

=
L

2 cosh (πλ)
.

(74)



B MATHEMATICA CODE 15

B Mathematica code
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