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Summary 
This thesis is focussing on coupling social and spatial networks in models of opinion dynamics. 

The research on spatial aspects and social networks in models of opinion dynamics is limited. In order 

to complement the existing research a literature study is performed. The outcomes of the literature 

study are used to develop and implement a model of opinion dynamics in which social and spatial 

networks are coupled. The outcomes of running the model are discussed and presented. An analysis 

of the sensitivity is performed to gain a better understanding of the outcomes. From the outcomes 

and the results of the sensitivity analysis the plausibility is discussed. 

In the literature study many concepts related to opinions dynamics are discussed. From all the 

concepts combined can be concluded that geographical locations are not implemented yet in agent 

based models of opinions dynamics. Locations are only represented in cellular automata models. 

Social networks represented in models of opinion dynamics are often non-static and randomised 

during the run of the model.  

In this agent based model all agents are placed with random coordinates on a fictive map 

containing a controversial area. All agents receive a random opinion about the controversial area at 

the beginning of the run. The social network is represented by assigning a random value to agents. 

This variable is called affinity. The difference in affinity between the agents determines whether they 

are socially connected or not. The spatial network is represented by the Euclidian distance between 

agents. If the distance is smaller than a certain threshold they are considered to be spatially 

connected. The model is based on turns. Each turn for all agents the connections are assessed based 

on a random weighted draw of the spatial and social connections. After a connection is chosen the 

opinion of the agent is averaged with the opinion of the connected agent.  

Without the addition of a scenario a run of the model results after a certain number of time 

steps in a consensus with the average opinion of the whole population. A threshold was added to 

prevent agents to communicate with each other with large differences in opinions. The addition of a 

threshold resulted in different groups of opinions. A not in my backyard scenario was added in which 

all agents living within a certain distance from the controversial area receive a negative opinion each 

turn. The result of the not in my backyard scenario is a consensus with a negative opinion about the 

controversial area. In order to compensate for the negative influence of the controversial area a 

positive feedback was added for all agents living further than a certain distance from the controversial 

area. The positive feedback resulted in different and more realistic patterns. At last a scenario was 

added where the agents walk around freely across the map. The result of this scenario was a dispersed 

fluctuating distribution of opinions and it is no longer possible to distinguish different consensuses.  

The method for analysing the sensitivity was one-at-a-time. Different sensitivity measures are 

developed in order to measure the sensitivity of the parameters. Compared to the zero scenario 

almost all parameters showed significant changes in the outcomes when there is a small change in the 

parameter. Only the moving agents scenario did not show much difference.  

From the discussion of the plausibility can be concluded that not all scenarios could be 

considered as realistic. The most plausible results are caused by the combination of the NIMBY and 

positive feedback parameters. In general the model can be considered as plausible.  

This thesis shows how a model of opinion dynamics that is coupling social and spatial networks 

can be developed, implemented and analysed. This thesis demonstrates a model which is a 

representation of a number of archetypical processes that are assumed to be important for spatial 

opinion dynamics. The model developed in this thesis proves not only the possibilities of coupling 

social and spatial networks in opinions dynamics, but also the importance of adding location to such 

a model.  
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Chapter 1: Introduction and research identification 

Introduction 
A model is a representation of the real world. By studying the results of models, researchers 

can obtain a better understanding of the real world. Spatial decision support systems is one of the 

academic disciplines for which researchers are trying to create models. Because decision making in 

spatial planning can be a long and complex process it could be useful to develop a model which helps 

to understand social processes. This thesis will focus on modelling social processes within spatial 

planning. 

Problem and its context  
Spatial decision making processes often consist of multiple actors, making it a system of 

human behaviour. Systems of human behaviour can be considered as complex (Couclelis, 1988). If a 

complex system is able to adapt itself to the problems posed by the surroundings it can be called a 

‘complex adaptive system’ (Holland, 1992). The more realistic a model becomes the more complex it 

might become. According to Holland (1992) an adaptive complex system does have ‘deeper 

similarities’ that are easier to understand than basic observations suggest. By creating a model these 

deeper similarities or, underlying processes, can be examined. The goal of this thesis is not to model 

the complexity of the real world but to develop a model that represents some of the basic processes 

underlying a complex system, such as the process by which opinions are communicated among actors. 

A basic model will help understanding a complex system. Spatial planning is one of the processes 

which is considered to be complex (Ligtenberg & Bregt, 2014; Ligtenberg, Bregt, & Van Lammeren, 

2001). In the paper of Ligtenberg et al. (2001) the aspects causing the complexity are narrowed down 

to four main aspects. In the following sections the four main aspects are explained. 

Actors are the first aspect. Actors are part of a social network and influenced by other actors. 

The influences of other actors is called ‘social impact’ (Latané, 1981). The exact definition of social 

impact is described by Latané (1981) as ‘any of the great variety of changes in physiological states and 

subjective feelings, motives and emotions, cognitions and beliefs, values and behavior, that occur in 

an individual, human or animal, as a result of the real, implied, or imagined presence or actions of 

other individuals’. In a social network actors interact and influence each other. These interactions are 

constantly changing and are also adapting to these changes. 

The second aspect mentioned by Ligtenberg et al. (2001) is the spatial environment. In reality 

individuals interact and share knowledge with other individuals and most of the interactions are based 

on the location of both of the individuals. The location of the actors and the environment specific to 

their location can influence the actors themselves. Until now only little attention is paid in the 

scientific literature about the spatial environment of actors in a social network.  

Actor based processes are the third aspect causing the complexity of spatial planning. Actor 

based processes are processes performed by actors based on their motives and opinions. If the 

motives of actors change their behaviour based on these motives will also change. Because opinions 

can change and can be influenced by other actors the actor based processes are adaptive to the 

changes in opinion. 

The fourth aspect are autonomous processes. These processes are not caused by one of the 

actors but are the result of the changing environment. Autonomous processes are environmental 

aspects influencing the spatial planning process. 
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In order to obtain a better understanding of the decision making process of spatial planning it 

could be useful to understand the formation and exchange of opinions. These opinions about the 

region can slow down the spatial planning process. The concept of not-in-my-backyard (NIMBY) is a 

good example of how opinions can slow down planning projects (Dear, 1992; Wolsink, 2000). Dear 

(1992) describes NIMBY as ‘the protectionist attitudes of and oppositional tactics adopted by 

community groups facing an unwelcome development in their neighborhood’. If planners know how 

opinions develop and how they influence the actor based processes it could be possible to avoid the 

negative consequence of the NIMBY concept. In order to obtain this understanding it could be useful 

to develop a model in which the development and changes of opinions are being modelled. The social 

impact of opinions can only be modelled if the social network is being taken into account.  

A similar process by which innovation is communicated among actors of a social system is 

called innovation diffusion (Rogers, 2010). In the book of Rogers (2010) diffusion is applied on 

innovation. The process by which opinions or information are communicated in a social system can 

also be looked at as a diffusion process. Because this thesis will focus on information exchange in social 

networks the diffusion of opinions will play an important role. According to Wejnert (2002) diffusion 

consist of spatial effects, such as proximity, and the pressure of social networks. Diffusion can, 

therefore, be treated as a spatial process. 

The location of agents did not receive much attention in the scientific literature in the past. 

Because distance does play a role in a social network in the real world it is useful to create models 

where the location of agents play a role. The spatial aspects are not only influencing the social impact 

but also the other three aspects of spatial planning causing the complexity.  

There is literature available that does focus on spatial aspects of opinion dynamics. Ligtenberg, 

Beulens, Kettenis, Bregt, and Wachowicz (2009) created a model that simulates knowledge sharing in 

land use planning. The link between opinion and location was in their research based on the type of 

actor and their opinion about a location. The location of the actor itself was not taken into account in 

their research. In a more recent study of Ligtenberg and Bregt (2014) the location of actors in 

comparison to other actors were taken into account using a neighbourhood representation. In their 

research the opinions of agents are more influenced by agents within a smaller distance than agents 

located at a longer distance from the specific agent. This choice was made because it was assumed 

that actors on isolated spots are more likely to change opinions than actors living in clusters with other 

actors with the same opinion. The social networks were only partly taken into account. In order to 

simulate social networks the social distance between actors was used. The social distance compares 

the opinion of two actors and if the two opinion are similar enough (within a certain threshold) one of 

the actors can adopt the opinion of the other actor. The paper of van Voorn, Ligtenberg, and ten 

Broeke (2014) examines the use of cellular automata (CA) for modelling the social distance more 

thoroughly, but this representation of a social network is still comparatively simple. There are more 

extended simulations of a social network possible (Acemoglu & Ozdaglar, 2011). In their paper, 

Acemoglu and Ozdaglar (2011) have summarised previous researches on social network models. 

Although the models described in the paper of Acemoglu and Ozdaglar (2011) are more complex, none 

of the models takes the location of the actors into account.  

There are some basic models of opinion dynamics available. The most basic idea of opinion 

dynamics is described by Hegselmann and Krause (2002) where opinions are being averaged between 

agents. A more complex model is described by Deffuant, Neau, Amblard, and Weisbuch (2000). In their 

model the opinions can only be transferred to another actor if the difference in opinions between 

those actors is small enough. The point until where the opinions are similar enough for an exchange 
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is called a threshold. This threshold is described by other authors as confidence level (Hegselmann & 

Krause, 2002). The confidence level is based on the confidence of an actor about its opinion. In this 

kind of model the resulting opinions of the two actors is the average between the two actors. Deffuant 

et al. (2000) found out that in such a model over time only one average opinions remain if the 

threshold is high. A high threshold means that there can be a larger difference between opinions for 

an exchange. If the threshold is low it will result in multiple average opinions in the population 

between which the difference is larger than the threshold.  

The use of CA models as it is used in the paper of Ligtenberg and Bregt (2014) and in the paper 

of van Voorn et al. (2014) is not sufficient for modelling the spatial diffusion of opinions in a social 

network. A CA model does not take the interactions of agents into account and is therefore too 

simplistic for modelling the spatial diffusion of opinions within a social network. Because interacting 

agents will be modelled an Agent Based Model (ABM) will be a more useful model type than CA. The 

computational agents within an ABM are interacting in space and time (Page, 2005). In this way their 

behaviour can be observed and patterns can be explored.  

 From previous researches can be concluded that there is not much research done yet that is 

linking social networks to location in opinion dynamics. The problem being treated in this thesis is 

filling the gaps in the scientific literature by linking social networks to location in models of opinion 

dynamics. 

Research objective 
In the previous paragraph was concluded that, to better understand spatial decision-making 

processes there is clearly a need to couple models of opinion dynamics with social and spatial 

networks. In this paragraph the research objectives will be explained. The main goal of this research 

is focussing on the spatial aspects of opinion dynamics. The main research objective can be formulated 

as follows: 

Develop and demonstrate an agent based model which couples social and spatial networks 

within a model of opinion dynamics. 

In order to develop such a model existing social network models and opinion dynamics models 

must be examined. From these models will be concluded if and how the existing concepts and models 

can be used to develop an opinion dynamics model where the social network and the spatial aspects 

play a role and where research is still missing. The result of the model must be tested before relevant 

outcomes can be concluded.  

Research questions 
From the research objective the research questions can be formulated. The main research 

question will address the main research objective and is as follows: 

 

How can social networks be coupled to spatial networks in a model of opinion dynamics? 

 

In order to cover all aspects the research objective will be divided over four sub-questions. Below the 

four sub-questions are shown. 

 

- What concepts are still missing in the scientific literature to couple social- and spatial systems 

in models of opinion dynamics? 
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- Which types of models are useful for modelling the spatial opinion dynamics within a social 

network? 

- How can spatial opinion dynamics within a social network be modelled? 

- How plausible is the developed model? 

 

Because the research on location and social networks in models of opinions dynamics is limited this 

thesis will focus on filling the gaps in the literature. This will be done by developing and demonstrating 

an agent based model which couples social and spatial networks in models of opinion dynamics. 

Research methodology 
The thesis is divided in six chapters. Together, these six chapters are answering all five 

research questions. The sub research questions will help structuring the thesis for answering the main 

research question. Chapter 2, 3, and 5 will all answer one or more sub questions. In this paragraph the 

methodology of answering the research questions will be discussed.  

In Chapter 2 an extended literature study will be performed. From the literature study will be 

determined which parts in the scientific literature are still missing and are relevant for this thesis. 

Relevant aspects of modelling the spatial diffusion of opinions in a social network will be examined. 

Literature about social networks, diffusions, social impact, ABM models, spatial planning and opinion 

dynamics will be needed in order answer the first sub-question. The result will be a summary of the 

literature about those aspects in the form of a chapter. 

Chapter 3 will continue on the literature study from the previous chapter by finding relevant 

methods for modelling the spatial diffusion of opinions within a social network. With the help of 

existing literature a framework for a model will be developed. The framework will partly exist of 

existing methods and partly of newly developed aspects. The result will be a conceptual model, which 

will be used to develop a computer model. Chapter 3 will continue with the discussion of the 

development of a computer model from the conceptual model. The model will be written with a 

programming language in a suitable developing environment for computer models. In the background 

study of this thesis was explained that the type of model will be agent based. For modelling an ABM 

model the programs Netlogo (Wilensky, 2014) and GAMA ("GAMA - Platform," 2014) could be useful, 

because these programs are able to support multi agent models and are relatively easy to learn. 

Because the model will be useful for understanding underlying processes it will be a small scale model 

focussing on a fictive region where a controversial planning decision is about to be implemented such 

as a windmill farm or a nuclear power plant. The local community will have opinions about the 

implementation of the facility. The effect of controversial planning decision on the opinions is 

researched with the help of the NIMBY concept.  

 In Chapter 4 the model is evaluated by performing a sensitivity analysis. According to Crosetto, 

Tarantola, and Saltelli (2000) a sensitivity analysis is a prerequisite for building a model. Crosetto et al. 

(2000) defines sensitivity analysis as: ‘sensitivity analysis studies how the variation in the model output 

can be apportioned to different sources of variations, and how the given model depends upon the 

information fed into it’. A sensitivity analysis consist of changing the parameters of a model and 

interpreting the outcome. This type of sensitivity analysis is called one-at-a-time (OAT) and consist of 

multiple runs with slightly different parameter settings in order to examine the influence of the change 

in parameters (Saltelli, Tarantola, & Campolongo, 2000). A more complex sensitivity analysis would be 

preferable but will not be performed because of time restraints. The outcomes consist of assessable 

sensitivity measures. Because the sensitivity measures are dependent on the type of model they will 
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not be discussed in the methodology. The sensitivity measures are based on the outcome of the model 

and will be discussed in Chapter 4. 

 After the SA the plausibility of the model will be assessed in Chapter 5. Such models of 

complex adaptive systems are difficult to validate. There are no observable variables in the real world 

with which the outcome of the model can be compared. At the moment there are no methods 

available to validate a model such as proposed in this thesis. It is only possible to check whether the 

result of the model is plausible or not. This will be done by interpreting the result of the model and by 

reasoning whether the result can be motivated as plausible or not. 

Concluding remarks 
 The research on location and social networks in models of opinions dynamics is limited. This 

thesis complements the existing research by performing a literature study, developing a conceptual 

model, developing a model on a regional scale using NetLogo, performing a sensitivity analysis and 

analysing the plausibility of the developed model. The next chapter will start with finding gaps in the 

current literature.  
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Chapter 2: Literature study 

Introduction 
Many theories are related to opinion dynamics. In this chapter different theories related to 

opinion dynamics will be discussed. From these theories will be concluded what is needed and what 

is missing in order to couple social and spatial networks in a model of opinion dynamics. At the end of 

the chapter will be summarised what is missing in order to develop a small scale network model that 

couples social and spatial structures.  

Theory of planned behaviour 
 An important theory for understanding social interaction is the theory of planned behaviour 

by Ajzen (1991). According to this theory all behaviour is based on the intention of performing an 

action and the perceived behavioural control of performing an action. The actual control over a 

behaviour is the combination of the intentional behaviour and the perceived control over the 

behaviour. In the figure below is shown how the theory of planned behaviour works.  

Attitude

Subjective 

norm

Perceived 

behavioural 

control

Intention Behaviour

 
Figure 1: The theory of planned behaviour; the yellow entities are dependent on influences   

from other actors (Ajzen, 1991).  

The attitude and subjective norm are influenced by the social network an individual is part of. The 

theory of planned behaviour shows the connection between opinion formation and actual behaviour. 

An opinion is a combination of attitude and a subjective norm. The importance of understanding the 

formation of attitudes is explained by this theory, because it results in certain behaviour.  

Social impact 
Social impact is described in the paper of Latané (1981). The exact definition of social impact 

is described by Latané (1981) as ‘any of the great variety of changes in physiological states and 

subjective feelings, motives and emotions, cognitions and beliefs, values and behavior, that occur in 

an individual, human or animal, as a result of the real, implied, or imagined presence or actions of 

other individuals’. Nowak, Szamrej, and Latané (1990) show in their paper that the theory of social 

impact can be useful for simulating opinion dynamics. In this chapter the definition of social impact 

by Latané (1981) will be discussed.  
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 In his paper Latané (1981) describes three principles of social impact. The first principle of 

social impact is the notion that social impact (𝑄) is a multiplicative function of social sources. The 

formula of the first principal is as follows: 

𝑄 = 𝑓(𝑆 ∙ 𝐼 ∙ 𝑁)        (1) 

Social impact is a result of strength (𝑆), the immediacy (𝐼) and the number of sources (𝑁). The strength 

can be determined as the strength of the influence in terms of status, relationship with the target or 

power over the target. Immediacy is the distance between the source and the target in space or in 

time. The spatial aspect in this formula will be the immediacy of the sources. The number is the 

number of sources influencing the target. 

 The second principal is the notion that after the first source any other source influencing the 

target will have less influence on the target. The higher the number of sources the less the target is 

influenced by the individual sources. The formula of the second principal is as follows: 

𝑄 = 𝑠𝑁𝑡 , 𝑡 < 1      (2) 

In this formula 𝑁 is the number of sources and 𝑠 and 𝑡 are constants. The constant 𝑡 can only be 

smaller than one because the influence per source can only decrease. The total value of 𝑄 will always 

increase when the number of sources is increasing. The value of the two constants are dependent on 

the situation. They can be retrieved by plotting a hyperbolic trend line from observational data. An 

example of observational data is counting the number of yawns in a group after one member of the 

group yawns. In the case of a computer simulation it is important to understand that the influence per 

actor is decreasing with the number of influencing actors, but the constants cannot be determined in 

such a case.  

 The third principle of social impact is the notion that if a social network is influenced from an 

outside source the influence on the targets will be divided. If the sum of 𝑆, 𝐼 and 𝑁 becomes higher 

the impact on each target becomes smaller. The formula of the third principal is as follows: 

𝑄 = 𝑓 (
1

𝑆 ∙𝐼 ∙𝑁
)      (3) 

The variables 𝑆 and 𝐼 have the same meaning as in the formula of the first principle of social impact. 

In this formula 𝑁 is the number of targets in the social network and not the number of sources. The 

impact becomes smaller as one of the values of the variables becomes higher.  

 Nowak et al. (1990) used the social impact theory to develop a computer simulation of the 

change of attitudes in a population. Their research is a good example of how social impact can be used 

to model opinion dynamics. In their paper the strength was represented as persuasiveness of 

individuals. If an individual is persuasive he or she is good in persuading other individuals and thus his 

or her strength of the influence on a target is high. The persuasiveness in the research of Nowak et al. 

(1990) is not based on the abilities of an individual of persuading, but based on his or her opinion and 

how convicted he or she is to this opinion. The persuasiveness changes when the opinion and the 

intensity of that opinion is changing. The actors in the simulation do not have abilities such as social 

status or natural persuasiveness. 

 For the reversed social impact, the third principal, supportiveness instead of persuasiveness 

was used to represent the strength. If a group of immediate people have the same opinion they can 

socially support each other. The influence from actors with different opinions becomes smaller 

because of the social support of immediate actors. 
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 For the immediacy the Euclidian distance between actors was used (Nowak et al., 1990). The 

actors were represented as cells. The Euclidian distance between the cells of the source and the target 

were considered to represent the immediacy. 

 The social network was not really a part of the social impact model of Nowak et al. (1990). The 

spatial aspects were represented as Euclidian distances. A Euclidian distance is a direct representation 

of the real distance between two object and can be useful when taking the distance between agents 

into account. The agents were represented as cells in a grid. Every cell in this grid represents one 

agent, which makes the social network completely uniform.  

 

Social Learning and opinion formation 
 Another process that can be considered as a diffusion process is social learning (Acemoglu & 

Ozdaglar, 2011). Social learning can be important for opinion dynamics because social learning is 

mainly about beliefs and opinions. According to Acemoglu and Ozdaglar (2011) social learning is a 

process “whereby individuals obtain information and update their beliefs and opinions as a result of 

their own experiences, their observations of others’ actions and experiences, the communication with 

others about their beliefs and behavior, news from media sources, and propaganda and indoctrination 

from political leaders and the state”. The theory of social learning is not new and was already 

described by Bandura (1977). Social learning can be used to explain many different social aspects. In 

the case of Acemoglu and Ozdaglar (2011) social learning is linked to opinion dynamics in a social 

network. According to Acemoglu and Ozdaglar (2011) social learning is social because the information 

is received via a social network, the information needs to be socially interpreted and it can lead to 

dynamics of opinions.  

 Acemoglu and Ozdaglar (2011) distinguish three key components of opinion formation. The 

first component is that actors have priors. Priors are the opinions with which actors start. In a model, 

priors are not the result of simulations. In reality such opinions are already a result of social 

interactions. Prior opinions can also be called initial opinions when describing models (Deffuant et al., 

2000). ‘Initial’ implies that these opinions are the starting points, while ‘prior’ implies that they existed 

before the model. In this thesis ‘prior’ will be used to describe prior opinions in the real world or 

opinions that are a result of a simulation and ‘initial’ will be used to describe a starting point of a 

model. 

 The second key component of opinions formation according to Acemoglu and Ozdaglar (2011) 

is the source of information. In the case of opinions dynamics the sources of information are the other 

actors in the social network. These actors are influencing the target. Whether these influences are 

updating the opinion of the target or not is dependent on certain variables such as the initial opinion 

of the target. 

 The method of information processing is considered to be the third key component of opinion 

formation (Acemoglu & Ozdaglar, 2011). The newly received opinions from the sources of information 

should be processed by the target, if the target will be significantly influenced, in such a way that the 

prior or initial opinions will be updated. The result can be a combination of the prior opinion and the 

new information or the prior opinion can be overwritten by the new information.  

Social networks 
Social networks are about the relationships between individuals (Degenne & Forsé, 1999). 

They focus on relationships among social entities (Wasserman, 1994). A social network representation 

can have a certain structure based on the choices of the researchers. In reality an individual can have 
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many different connections to other individuals such as friends, family members, co-workers, 

neighbours or sport club members. When a social network is being modelled choices need to be made 

about the kind of connections that will be included. The number of connection types indirectly 

determines together with some other aspects the complexity of the model.  

Graphs are essential for describing social networks (Degenne & Forsé, 1999). The graph theory 

is a mathematical theory that became important for the social sciences to represent social relations. 

A graph consist of nodes and arcs (Degenne & Forsé, 1999). The image below shows a graph in which 

the arc is directed. This means that there is a social relationship from 𝐴 to 𝐵, but not vice versa. 

A B
 

Figure 2: A directed graph with   

two nodes 

If all the arcs have values, such as an opinion, it can be called a weighted directed graph. Some typical 

structures in a directed graph can be categorised. According to Degenne and Forsé (1999) a directed 

graph can contain chains, cycles, paths and circuits. A chain is a series of nodes connected in a row. A 

cycle is a chain where the first and the last node are the same node. A path is a chain where all nodes 

are connected in the same direction. A circuit is a cyclic path. The figure below shows examples of 

these four structures. 

A B C A

B

C A B C A

B

C

 

Figure 3: Examples of network structures; from left to right: chain, cycle, path and circuit 

A path is always a chain and a circuit is always a cycle, but not always vice versa. Not all nodes are 

connected directly to all nodes. There is a difference between direct connected nodes and indirect 

connected nodes. All direct connected nodes represent the direct social relationships of an individual. 

The indirect connected nodes can be considered as part of the social network of the specific individual 

even though the individual does not know these indirect relationships. An example of such a 

connection of the first order is ‘a friend of a friend’ or ‘the co-worker’s wife’. Indirect connections can 

influence direct connections which in their turn influence the specific individual.  

  The most important concepts when analysing social networks are closeness, network density, 

betweenness and centralisation (Abraham & Hassanien, 2012). Closeness defines how close an agent 

is, spatially or socially, to all other agents, directly or indirectly. An agent in the centre of a social 

network is often more closely connected to all other agents than an agent at the edge of a network 

because the average distance to all other agents is generally the shortest from the centre. The network 

density is the proportion of the number of connections in a network compared to the total number of 

connections possible (Abraham & Hassanien, 2012). The network density always has a value between 

0 and 1. The betweenness is based on the number of shortest paths going through a node. If the 

directly connected nodes are well connected to the rest of the network it means that this node is 

indirectly influential. A person with many influential connections is more likely to be influential as well. 

Centralisation measures how natural the network is divided. If the most central nodes are well 

connected, the centralisation has a high value. 
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 The concepts of closeness, network density, betweenness and centralisation are important 

for examining the connectivity of agents. The connectivity of an agent can be translated to the real 

world as the social capital of an individual (Degenne & Forsé, 1999). Social capital can be defined as 

“the ability of actors to secure benefits by virtue of membership in social networks or other social 

structures” (Portes, 2000). Social capital is based on the idea that influence does not only consist of 

money and assets but also on the connections with other individuals. More important than having 

connections is the degree of influence on other individuals. Influential actors are more likely to project 

their ideas to other actors.  

 Aggregating actors can be a useful tool for examining social networks. Degenne and Forsé 

(1999) mention two types of aggregation in social networks. The first and most logical one is the 

concept of cohesion. If a group of actors are strongly connected they can be called a ‘clique’. Within a 

clique the cohesion is high. If a clique has more or less the same opinions it is less likely that they will 

adopt another opinion because they influence each other more than they are influenced from outside. 

According to (Newman & Park, 2003) social networks differ from non-social networks because they 

show levels of clustering. A clique is such a clustering. The second type of aggregation is based on the 

connection type (Degenne & Forsé, 1999). In real life a connection between two individuals is based 

on their location in society. By dividing actors into groups based on their location in society such as 

their status, their job or their age it is possible to examine the relationships between levels in society. 

This type of aggregation is called equivalence (Degenne & Forsé, 1999).   

Multi-agent systems 
In the introduction was mentioned that the model will consist of multiple interacting agents. 

The proposed model will be an ABM. ABMs can also be called multi-agent systems (Bousquet & Le 

Page, 2004). In such models the macro-level dynamics are aggregated from the behaviour and the 

interaction of agents (Kiesling, Günther, Stummer, & Wakolbinger, 2012). The agents have a crucial 

role in a multi-agent system by behaving as independent individuals.  

The definition of an agent is discussed in the paper of Wooldridge and Jennings (1995). 

According to Wooldridge and Jennings (1995) agents have weak properties such as autonomy, social 

ability, reactivity and pro-activeness. Next to the weak properties they give a strong notion of an agent 

as ‘a computer system that in addition to having the properties identified above, is either 

conceptualised or implemented using concepts that are more usually applied to humans” (Wooldridge 

& Jennings, 1995). An agent having and sharing an opinion is an example of a concept that is usually 

applied to humans.  

There are many authors that have developed a multi-agent system for modelling social 

diffusion (Kiesling et al., 2012). According to Kiesling et al. (2012) many of these models are based on 

a model by Bass (1969), which is based on the diffusion of innovation theory by Rogers (2010). In the 

model by Bass (1969) a distinction is made between internal and external influences. The external 

influences of innovation diffusion are influences that are not communicated from agent to agent but 

from an external source such as mass-media. Word-of-mouth communication is considered to be 

internal (Kiesling et al., 2012). The model of Bass (1969) is about whether agents will adopt new 

products or not. The model can be used for any diffusion system. The probability (𝑝) that a random 

agent (𝑥) at time 𝑡 adopts a new product is linearly dependent on previous adopters as internal 

influences (𝑞) , and external influences (𝑒) (Bass, 1969). The formula of this theory will be as follows: 

𝑝(𝑡)

1 − 𝑃(𝑡)
= 𝑒 +  𝑞 ⋅ 𝑃(𝑡) (4) 
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Where 𝑃 is the cumulative distribution function of adoptions. Each timestep the cumulative set of 

internal influences is calculated to predict together with the external influences the probability that a 

single agent is adopting a new product. In the case of opinion dynamics the interactions within a social 

network is representing the internal influences. Because the original model of Bass (1969) is assuming 

that the population is homogeneous the internal influences are calculated as a simple aggregation. 

The interactions within a social network are more than an aggregation of values. Kiesling et al. (2012) 

propose a formula in which 𝑃 is replaced by an average of all adopters: 

 

𝑝𝐴
𝑡 = (𝑒 +

∑ 𝑝𝐴
𝑡−1𝑛

𝐴 = 1

𝑛
⋅ 𝑞) ⋅ (1 − 𝑝𝐴

𝑡−1) 

     

Where 𝑝𝐴
𝑡 is the probability that agent 𝐴 adopts an opinion on time step 𝑡 and 𝑛 is a set of agents. 

The opinion of an agent is dependent on a probability caused by the average opinion of the complete 

set of agents. By using this formula it is assumed that the set of agents is homogeneous. The social 

network is not taken into account.  

Bayesian and non-Bayesian networks 
According to Acemoglu and Ozdaglar (2011) two types of social network models can be 

distinguished. A difference can be made between Bayesian and non-Bayesian networks. A Bayesian 

network is based on probabilistic rules. The status of an entity in a Bayesian network can change 

according to the state of other entities. In figure 4 three entities in a Bayesian network are shown as 

an example. The Bayesian rules in this example are that 𝐶 can only be converted to green if 𝐴 and 𝐵 

are green. Since 𝐵 is red, 𝐶 cannot be converted to green. Figure 5 shows what happens when the 

entities 𝐴 and B are green.  

 

  

  

 

 

 

 

 

 

 

 

 

 

Any Bayesian network does have rules comparative to the given example. The initial status of 𝐶 only 

changes if the statusses of 𝐴 and 𝐵 are true. This can be formulated as follows: 

 

𝑃(𝐶|𝐴 ∧ 𝐵) ≠ 𝑃(𝐶|𝐵) ≠ 𝑃(𝐴|𝐶)     (6) 

A B

C

Figure 4: The entities A, B and C in a 

Bayesian network where A and B do 

not fulfil the requirements for 

changing the status of C 

Figure 5: The entities A, B and C in a 
Bayesian network where A and B 
fulfil the requirements for changing 
the status of C 

 

(5) 

A B

C
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The probability (𝑃) that 𝐶 turns green when 𝐴 and 𝐵 are green is not equal to the probability that 𝐶 

turns green when 𝐴 or 𝐵 turn green. 𝐶 can only turn green when 𝐴 and 𝐵 are green. This example 

shows the causal relationship of a common effect where two entities are influencing one entity 

together (Korb & Nicholson, 2003). There are other causal relationships possible in Bayesian networks. 

The figure below shows other examples of causal relationships within a Bayesian network.  

 

A B C A

B

C

A B

C

 

Figure 6: Bayesian network causal relationships. From left to right: causal chain; common cause; common effect. The blue 

entities are dependent (Korb & Nicholson, 2003). 

In the example the dependent entities are blue and the independent entities are green. A Bayesian 

network does only accept binary numbers. The adoption of a part of an opinions is not possible by 

using a Bayesian network. 

 There are several non-Bayesian social network models available in the literature (Acemoglu & 

Ozdaglar, 2011). The model created by Deffuant et al. (2000) is one of those non-Bayesian models. 

This model can be classified as a social network model because it represents the interaction between 

social entities. This model does not only use an average between two opinions, but also uses a 

threshold, or confidence level (Hegselmann & Krause, 2002). The formula of the model of Deffuant et 

al. (2000) is as follows: 

 

𝑃𝐴 = 𝑃𝐴 +  𝜇 ⋅ (𝑃𝐵 − 𝑃𝐴)       (7) 

 

Where 𝑃𝐴 is the opinion of an agent (𝐴) and 𝑃𝐵 the opinion of another agent (𝐵) where agent 𝐴 is 

interacting with. 𝜇 is a convergence parameter between 0 and 0.5. It determines how much two 

opinions are allowed to converge. The threshold (ℎ) must be larger than the difference between 𝑝𝐴 

and 𝑝𝐵: 

 

|𝑃𝐴 − 𝑃𝐵| < ℎ      (8) 

 

The formula for adopting the opinion of agent B is the opposite of the formula of agent A: 

 

𝑃𝐵 = 𝑃𝐵 +  𝜇 ⋅ (𝑃𝐴 − 𝑃𝐵)     (9) 

 

Deffuant et al. (2000) tried to simulate a social network by placing all agents in a two dimensional 

raster as in the model of Nowak et al. (1990), but in this model only connected agents were allowed 
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to interact. A von Neumann neighbourhood was used to define which actors were connected. In this 

way the location of agents difined there social network. 

 Another important model is the model developed by DeGroot (1974). In the model by DeGroot 

(1974) a social network is simulated by using a stochastic matrix. The stochastic matrix of a DeGroot 

model is called a trust matrix (𝑇). The values in the trust matrix represent the trust between agents. If 

the probability in the matrix is high for a certain vector it means that there is a high chance that the 

target agent will adopt the opinion of the source. Each timestep (𝑡) the opinions of all actors will be 

updated. The formula for updating the opinions each timestep is written by Golub and Jackson (2010) 

as: 

 

𝑝𝑡 = 𝑇𝑝(𝑡−1) = 𝑇𝑡𝑝 

 

Where 𝑝 is the probability or vector of beliefs. In this formula is chosen to take the symbol for 

probability (𝑝) to represent an opinion because the value of an opinion in this formula is a probability. 

Each timestep the vectors are updated with the values of the previous timestep. The update of a single 

agent is a result of the opinions of all other agents and the weight their opinion put on the target. The 

vector of beliefs between two agents 𝐴 and 𝐵 cannot be negative, thus 𝑝𝐴𝐵 ≥ 0 (DeGroot, 1974). The 

formula for updating the opinion of agent 𝐴 (𝑝𝐴) from the opinions of all other agents is as follows: 

 

𝑝𝐴
𝑡 = ∑ 𝑇𝐴𝐵𝑝𝐵

𝑡−1

𝑛

𝐵=1

  

 

The DeGroot model takes all relationships between actors into account. The trust matrix represent 

aspects such as social status, age and family relationships.  

 Figure 7 below shows an example of a small social network of three agents 𝐴, 𝐵 and 𝐶. The 

values of the vectors are showing the pressure that they put on the opinion of each other. If there is 

no pressure on one agent to another, the vector is not shown in the figure. The pressure of Agent 𝐴 

on agent 𝐵 in this example is high. Agent 𝐵 will adopt the opinion of agent 𝐴 for 80 percent. Agent 𝐵 

is thus trusting agent 𝐴 with 80 percent. If agent 𝐴 would have an opinion of 0.5 of a random opinion 

the resulting opinion of agent 𝐵 will be 0.8 ⋅ 0.5 = 0.4. Because the sum of each row of a stochastic 

matrix is equeal to 1 each agent can only put pressure on other agents for 100 percent in total. The 

percentage has to be divieded over the total number of agents. If the number of agents becomes 

higher the pressure on each agent from one particular agents become smaller.  

(11) 

(10) 
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A

B

C

0.5

0.5

0.8

0.2

1

 
Figure 7: An example of a DeGroot model visualised as a weighted directed graph 

The trust matrix of the example above would be: 

 

𝑇 = [
0 0.8 0.2

0.5 0 0.5
1 0 0

] 

 

If the agents 𝐴, 𝐵 and 𝐶 have initial values of a random opinion (𝑝0) between 0 and 1 of respectively 

0.5, 0.4, 0.8 then the initial situation can be written as:  

 

𝑝0 = [0.5 0.4 0.8] 

 

The weighted vectors pressing on each agent are calculated by averaging the weights of the vectors 

pressing on an agent together. The weighted vectors (𝑣) pressing on each agent every time step is 

then: 

 

𝑣 = [0.75 0.8 0.35] 

 

 In many cases using probabilities will result in binary opinions. Binary opinions are easier to 

compute, but are limited in modelling complex dynamics. A binary opinion can only have two options 

such as yes and no or agree and not agree. The simplicity of binary opinions result in short limited 

dynamics, because a consensus does also exist of one the two options. In some cases binary opinions 

can be really useful.  

 

Conclusions 
 Although all theories related to opinion dynamics are important, not all aspects of all theories 

can be included in the model. The model should help understanding underlying processes and should 

therefore stay relatively simple. The model should be able to handle multiple agents in a social 

network. The opinions of the agents should be dependent on their spatial location and their location 

in the social network.  

(12) 

(13) 

(14) 
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Some of the discussed models did use location as a variable. The mentioned literature used 

location in a CA model (Ligtenberg & Bregt, 2014; van Voorn et al., 2014) or as a more simple 

neighbourhood presentation (Deffuant et al., 2000). Spatial aspects in relation to actors in an ABM are 

generally missing in the literature. The location between actors is more often used, as it is already 

mentioned in the theory of social impact, as immediacy (Latané, 1981). Because immediacy can have 

multiple meanings it is more often used in a directed weighted graph as an assumption. The distance 

is then not used as a location on the earth’s surface but as an aggregation of Euclidean distance and 

social distance. An ABM model where the distance between agents is based on the actual location on 

the earth’s surface and where these locations play a role in the formation of opinions does not exist 

yet. A location is called measurable in this thesis when it can be calculated based on coordinates. The 

spatial and social network could be coupled by placing the actors on a map where they have a fixed 

location. In order to link spatial aspects with social aspects there must be a clear representation of 

spatial aspects.  

From the literature can be concluded that the following spatial aspects are missing from the 

current literature about ABM: 

 

- The distance between agents is not based on measurable locations 

- Geographical locations are not used together with an ABM 

- Opinions about an area are only represented as CA models 

 

All opinion diffusion models use a simple representation of a social network. In most models the 

population is homogeneous. All actors are behaving exactly the same when fed the same inputs. In a 

computer model cannot be avoided that actors are behaving according to the same set of rules. The 

actors are thus behaving completely rational as a computerised individual. Giving each individual its 

own set of rules is not an option because it would make the model too complex. Diversity can only be 

modelled by giving each actor different initial variables. The location of the agent can be one of those 

variables. This method is often used in social network models. In some models location is used as a 

measure for social closeness. The model of Nowak et al. (1990) is an example of such a model.  

In most models the initial variables are dependent. When the opinion of an agent is changing the 

ability of putting pressure on other individuals is also changing. This means that the position in society 

is not taken into account in such a model, but only is being focussed on how interactions between 

agents are working. None of the models used a mix of initial dependent and independent variables to 

determine the social network. Such a mix of variables is needed to represent the position of agents in 

society.  

  

- Social networks are sometimes based on location only  

- The position within a social network is only based on connections and not on initials 

- Initials are often dependent 

 Although there is much literature available on the subject of opinion dynamics there are still 

many aspects that are not researched yet. The research on social networks and spatial networks is 

limited. In none of the researches is tried to couple social and spatial networks. In this chapter is listed 

what aspects of both social and spatial networks are still missing. The development and demonstration 

of a model could help filling these gaps. 
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Chapter 3: Model development  
Introduction 

In the previous chapter was discussed what is still missing in the literature to couple social- 

and spatial networks in models of opinion dynamics. In this chapter will be discussed how the gaps in 

the literature can be filled. A model will be developed where agents are interacting. The agents will 

have an opinion about a controversial area. The controversial area is called a ‘power plant’ in the 

model, but it represents any object the agents can have an opinion about. The chapter will start with 

a discussion of a conceptual model based on underlying theories. After the conceptual model the 

actual model and the results of running the model will be discussed.  

Underlying theories of social interaction 
 According to Latané (1981) any type of social impact consist of the three variables strength, 

immediacy and number of sources. The variables can, except for the number of sources, have different 

meanings dependent on the type of social impact. In the case of this research the model should 

simulate opinion dynamics. The formation of opinions is described in the theory of social learning 

(Bandura, 1977). According to this theory there are three important aspects of opinion formation: 

priors, agents and the method of information processing. The concepts of social impact and social 

learning need to be placed in context of this research.  

 The strength of an opinion is difficult to determine. In many opinion dynamic models the 

update function is similar to the update function of Deffuant et al. (2000) where the resulting opinion 

is an average of the opinions of two interacting agents (Hegselmann & Krause, 2002; Ligtenberg & 

Bregt, 2014; Weisbuch, Deffuant, Amblard, & Nadal, 2003). There are also many models of opinion 

dynamics using binary opinions (Acemoglu & Ozdaglar, 2011; Föllmer, 1974; Martins, 2009; Martins, 

Pereira, & Vicente, 2009). Both types do not take social differences between actors into account. The 

model by van Voorn et al. (2014) is an improvement to the original Deffuant et al. (2000) model 

because they added social status as an independent variable. The strength of an opinion pressed on 

other agents is higher if the source has a high social status. Often the assumption is made that an 

opinion has more influence on a target if the opinion itself is stronger. ‘Stronger’ can mean that the 

actor has a more polarised opinion or that an actor is more convinced of its opinion. Because in this 

thesis will be attempted to model a representation of a social network the strength should at least 

depend on the differences in social status. The social status can represent any type of position in a 

social network. In order to keep the model dynamic the strength of the social impact should also be 

dependent on a dependent variable such as the strength of an opinion. The result could be a combined 

vector based on the social status and the opinion strength.  

 Immediacy can be defined as social distance or as measurable distance based on geographical 

locations. The neighbourhood in CA models is a popular method for modelling spatial information. CA 

models are limited for modelling the interaction of actors and are, therefore, not suitable for this 

research. If the geographical locations of actors are known the Euclidean distance is relatively easy to 

calculate. By using the Euclidean distance as immediacy it is possible to include spatial information as 

a variable which is influencing the communication of opinions. If the opinion is about a region the 

Euclidean distance between this region and an actor can also be used as a variable. In such a case the 

region can be seen as a source and the actor as a target. The influence of the region on a target is 

declining the further the target is located from the region. The social distance should be clearly 

distinguished from geographical distance, because this thesis is about coupling the two different 



17 

 

aspects. The social distance can be used for representing a social network. Adding specific information 

about the relationships between agents is not an option because it will make the model too complex. 

It is, however, possible to add randomly chosen links between agents in varying strengths. The 

stronger the link between two agents the more immediate they are. Figure 8 explains the difference 

between the spatial and social distance. The length of the links are representing the spatial distance 

and the thickness is representing the social distance. In this example agent B is spatially closer to agent 

A than agent C, but agent C is socially closer to agent A than agent B.  

A
B

C
 

Figure 8: An example of the difference between spatial and social distance. The length of the links represents the spatial 
distance and the thickness represents the social distance 

 The agents will be randomly located on a fictive map. The number of agents should be 

adjustable because the size of the population could influence the outcome of the model. According to 

the theory of Latané (1981), each actor is being influenced by all sources. In reality opinions can only 

be transferred if there is some sort of interaction between agents. If two actors located far from each 

other have no relational interaction there cannot be an exchange of opinions. The number of sources 

in the formula of (Latané, 1981) should be interpreted as the number of all significant sources. The 

theory does not imply that all actors should be used for the calculation of the impact, but only those 

that are considered to be a source. In the research of Nowak et al. (1990) was decided to only include 

the actors with an opposing opinion.  

 The agents should represent individuals living in an area. In order to simulate a social network 

the agents should contain information about their social location in the network. This initial 

information is called priors (Bandura, 1977). Dependent on their location in a social network actors 

have a certain social status. It is assumed that actors with a high social status will have more influence 

over other actors. Social status can be represented as a prior randomly given to each actor. This prior 

will be independent and cannot change in time. The priors are divided randomly because it should be 

possible to have a social status while the number of social relationships is low. An example is a chief 

executive officer (CEO) of a large company without many family members or friends in the region. 

Social status as implemented in this model can be called persuasiveness. Persuasiveness is a combined 

variable of aspects that raises the ability of an actor to persuade others independent of the number 

of relationships. Next to a certain social status actors can have relationships with other actors. The 

degree in which actors are socially attracted to each other will be called affinity. If two actors have a 

high affinity towards each other they have a close relationship. A low affinity means that they have no 

or a weak relationship. The affinity can be distributed by giving all actors a random affinity value. The 
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actors that have values close to each other have a high affinity towards each other. If the values differ 

significantly there is no social relationship between the two actors. Another important prior is the 

initial opinion. Each agent should already have an opinion about the region. This variable is a 

dependent variable. In the table below all variables per agents are listed with their dependency and 

an explanation of the initial values. 

The spatial network is based on the Euclidian distance between agents. The social network is 

based on the difference in affinity between agents. In figure 9 and figure 10 respectively a visualisation 

of a spatial and a social network are shown. The links in figure 9 show neighbourhoods of connected 

agents. The links in figure 10 are clearly not dependent on the location of the agents.  

Table 1: All variables per agent with their dependencies and an explanation of the initial values 

Variable Dependency Initial value 

Unique identifier Independent Each agent receives an unique number 

between 1 and the total number of 

agents 

Coordinates (x/y) Independent Random coordinates within the 

boundaries of the map and not in the 

power plant 

Opinion Dependent on other opinions Random value between 0 and 10 

Affinity Independent Random value between 0 and 100 

Initial persuasiveness Independent Random value between 0 and 10 

Power plant distance Dependent on the location The calculated distance between the 

agent and the power plant 

 

 

 

The model consist of a number of agents on a fictive map. The power plant is represented as 

a red circle. Each time the model is run all agents are randomly distributed on the map. During the 

set-up phase all variables shown in table 1 are assigned to each agent. The number of agents, the size 

Figure 9: A visualisation of a spatial network. The yellow 
lines are connections between agents based on location 

 

Figure 10: A visualisation of a social network. The orange 
lines are connections between agents based on the 
difference of affinity 
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of the neighbourhood, the minimum distance in affinity needed for agents to be connected, and the 

influence distance of the power plant are parameters of the model. These parameters can be changed 

each time the model is run. After the set up phase the model will work in time steps. Each time step 

(𝑡) the opinions of the actors will be reassessed according to the variables pressing on their opinions. 

The immediacy, the persuasiveness, the affinity, and the number of sources are influencing the 

opinion of a target with a certain probability. The probability is needed to make the model dynamic 

and to represent the uncertainty of the assumptions. As in the model of DeGroot (1974) the pressing 

variables will together be calculated as weighted vectors with a probability as weight. This probability 

is the chance that the aggregated vectorised opinion of the sources will be averaged with the current 

opinion of the target. The method of averaging of Deffuant et al. (2000) is used because it is assumed 

that an individual does not depend its opinion completely on the opinions of others. In the figure 

below is shown how each time step the opinion of a random agent will be updated.  

Time step (t)

Vectorise all 
spatially and 

socially affiliated 
opinions

A weighted 
random draw 
points out the 
 lucky  agent

Average old 
opinion with the 

 lucky  agent

 

Figure 11: conceptual scheme of update rules of a random agent during a time step 

Each time step (t) all opinions pressing on each agent are vectorised. From these vectorised opinions 

a weighted random draw will result in a ‘lucky’ agent. The opinion of the ‘lucky’ agent will be averaged 

with the currently active agent and transferred to the active agent. The source agent will not be 

influenced until it becomes active. Each turn all agents will become active. The described conceptual 

model will be used as framework to implement the actual model. It is mainly based on the theory of 

Latané (1981) and the models of Deffuant et al. (2000) and DeGroot (1974). The actual model and the 

preliminary results will be discussed in the following paragraphs. 

 

Description of the model  
The model is built in Netlogo (Wilensky, 2014). It was developed in several phases. First, the 

basic functions of the model were developed. When the basic model was working without any errors 

it was extended with several scenarios.  

Each time the model is run a new empty map is created. All agents are randomly distributed 

over an area and are placed at least 1 fictional unit away from each other. Each agent will randomly 

receive all the initial values listed in table 1. The power plant has a radius of 10 fictional units. The 

shortest distance to the power plant will be added as a variable to all agents. Each turn all agents are 

being updated according to the opinion of another agent. The opinion can have a value between 0 

and 10. The following rule is updating the opinion of agent 𝐴 (𝑃𝐴) with the opinion of agent 𝐵 (𝑃𝐵): 

𝑃𝐴
𝑡 = 𝑃𝐴

𝑡−1 ⋅ (1 − 𝑤𝐵) + (𝑃𝐵
𝑡−1 ⋅  𝑤𝑩) 

 

Where 𝑤𝐵 is the persuasiveness of agent B. The basic updating rule is taken from the model by 

Deffuant et al. (2000) and slightly changed in order to add the persuasiveness. The persuasiveness is 

(15) 
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calculated from the initial persuasiveness (𝑤𝑝 ) with a number between 0 and 10 with the following 

calculation: 

 

𝑤𝑏 =

(
100

𝐼𝑝𝑡 + 1
) ⋅  

 (𝑤𝑝 + 2) ⋅ 80
12 ⋅ 100

100
 

Resulting in a percentage between 13
1

3
 and 80. This choice is made to prevent an agent from 

completely adopting a new opinion without taking his or her prior opinion into account or rejecting 

an opinion completely. 𝐼𝑝𝑡 is the immediacy to the power plant calculated by subtracting the distance 

𝑑 to the power plant from the maximum influence distance 𝑑𝑚𝑎𝑥.  

𝐼𝑝𝑡 =
((𝑑𝑚𝑎𝑥 − 𝑑) ⋅ 80) 

𝑑𝑚𝑎𝑥 ⋅ 100 
  

Where  

𝑑 ≤  𝑑𝑚𝑎𝑥  

 

The target and the source are being chosen by the model according to the deGroot model:  

𝑝𝐴
𝑡 = ∑ 𝑇𝐴𝐵

𝑛

𝐵=1

 

The trust matrix consist of agents living close by 𝑇𝑛 or having a similar affinity 𝑇𝑎. The trust factors of 

the neighbourhood are calculated by taking the immediacy (𝑖) as a probability.  

𝑝𝐵
𝑖 = 100 − 

𝑑𝐴𝐵 ⋅  100

𝑑𝑛
  

Where 𝑑𝐴𝐵  is the distance between agent 𝐴 and agent 𝐵. 𝑑𝑛 is the neighbourhood size. The trust 

factors of the affinity (𝑎) is calculated as: 

𝑝𝐵
𝑎 = 𝑎𝑚𝑎𝑥 −

|𝑎𝐴 −  𝑎𝐵| ⋅ 90

𝑎𝑚𝑎𝑥
  

Where 𝑎𝑚𝑎𝑥 is the maximum allowed difference in affinity in order to be connected, 𝑎𝐴 is the affinity 

of agent 𝐴, and 𝑎𝐵 is the affinity of agent 𝐵. The trust matrices are combined by taking the 

probabilities as proportions.  

𝑝𝑎𝑑𝑗 =
100

(∑ 𝑝𝑖)𝑛
𝑖=1 ⋅ 𝑝

 

Where 𝑝𝑎𝑑𝑗 is the adjusted probability and 𝑝 the original probability from either the affinity or the 

immediacy. 

 Figure 12 shows an overview of four steps during the opinion updating process of a single 

agent of the basic model. During the first step all probabilities of the agents within the neighbourhood 

are collected. The second step is the collection of the probabilities of the social distance. During the 

third step the persuasiveness is corrected by the immediacy to the power plant if the agent is within 

the power plant influence distance. During the last step the opinion of agent A is updated. In this 

paragraph the basic model is explained. In the following paragraphs the results of the model will be 

explained and several scenarios will be added to the model. 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 



21 

 

 

 

A

B

B

B

B
A

B

B

B
B

A BPP

A

 

 

Figure 12: Explanation of the four steps of updating an opinion: collecting the probabilities of the spatial distance, collecting 

the probabilities of the social distance, calculating the power plant influence and updating the opinion; The circles with A and 

B represent different agents and the circle with PP represents the power plant; The red circles consisting of a red line are 

representing respectively the neighbourhood size and the power plant influence distance; blue agent: active agent; grey 

agent: a connected agent; green agent: ‘lucky agent’; ∆𝑎 = |𝑎𝐴 −  𝑎𝐵|. 
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Results 
Because all connected agents are updated each turn there will always be one consensus as 

long as all agents are connected. Agents that are not connected do not interact and will not change 

their opinion. The result is similar to the results of Deffuant et al. (2000) without a threshold where 

the interactions are completely random. The time in which a consensus is reached is dependent on 

the number of connections. If the maximum difference in affinity is set to 100 it means that all agents 

are connected to all agents. It will take approximately 10 time steps to reach a consensus where ∆𝑃 <

1. In the figure below is shown how the opinions are developing if all agents are connected. 

 

 

 

 

 

The number of collisions represents the number of times that an opinion is being updated. Each time 

step the opinion of all agents are plotted in the figure. If the social network and the neighbourhood 

size are being limited it will take longer for the population to reach a consensus. The figure below 

shows the reaching of consensus when the neighbourhood size and the social network is limited. It 

will take about 40 time steps before a consensus is reached.  

The choice with which agent an opinion will be averaged is based on a weighted draw. Because 

the choice whether an agent will average his or her opinion is not based on probabilities, the result of 

each run is similar. This choice is only dependent on whether an agent is connected or not. In large 

populations almost all agents are connected to another agent because the chance of being connected 

is higher. By taking the minimum difference in affinity (0) and the smallest neighbourhood size (1) with 

a population of 3000 the result will be a different consensus for each community. In figure 15 is shown 

how the resulting opinions are distributed.  

Figure 13: The reaching of a consensus when all agents are connected. The colour difference 
represents the opinion: dark blue: 0; light blue 10. Number of agents: 500; neighbourhood size: 
100; maximum difference in affinity: 100; influence of power plant: 50 fictional units; no 
threshold. 
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Adding a threshold 
Deffuant et al. (2000) and other models based on the model of Deffuant used a threshold in order to 

simulate the forming of different groups of opinions. In such a case there is no consensus, but different 

groups of opinions. If a threshold is added to this model similar results can be observed. The condition 

Figure 14: The reaching of a consensus with a limited number of connections. The colour 
difference represents the opinion: dark blue: 0; light blue 10. Number of agents: 500; 
neighbourhood size: 10; maximum difference in affinity: 0; influence of power plant: 50 fictional 
units; no threshold. 

 

Figure 15: The result of having the minimum number of connections with a large population size. 
The colour difference represents the opinion: dark blue: 0; light blue 10. Number of agents: 3000; 
neighbourhood size: 1; maximum difference in affinity: 0; influence of power plant: 50 fictional 
units; no threshold. 
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for agent 𝐴 and agent 𝐵 to average their opinions is exactly the same as the condition proposed by 

Deffuant et al. (2000):  

|𝑃𝐴 − 𝑃𝐵| < ℎ 

 

Figure 16 shows an example of how a run with a threshold results in two clearly visible groups with 

the same averaged opinion.  

 

 

 

 

The figure shows a third opinion of a single agent. It is possible that this agent is not connected to any 

other agents or that this agent is only connected to agents with an opinion in the upper half. 

Not in my backyard 
If it is assumed that the NIMBY effect exists and the power plant has a negative effect on the 

opinions of agents living close by, the model will have a different outcome. The NIMBY effect is added 

to the model as follows:  

𝑃𝑛𝑒𝑤 =  10 ⋅
𝑃𝑝 −  (𝑃𝑝 ⋅  𝐼𝑝𝑡)

10 − (𝑃𝑝 ⋅  𝐼𝑝𝑡)
 

if 

𝑑 ≤  𝑑𝑚𝑎𝑥 

 

Where 𝑃𝑛𝑒𝑤 is the adjusted opinion by the power plant and 𝑃𝑝 is the prior opinion. The opinions within 

distance 𝑑𝑚𝑎𝑥 of the power plant are adjusted each turn. The result of the NIMBY effect without 

thresholds is that the whole population is turning against the power plant. The result after 315 time 

steps is shown in figure 17. 

Figure 16 The result of adding a threshold to the model. The colour difference represents the 
opinion: dark blue: 0; light blue 10. Number of agents: 500; neighbourhood size: 10; maximum 
difference in affinity: 1; influence of power plant: 50 fictional units; threshold: 2. 

 

(23) 

(24) 
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If next to the NIMBY effect a threshold of 2 is added to the model it will still result in a consensus with 

some exceptions. 

 

Because some agents of the upper group are influenced by the power plant it is slowly decreasing the 

opinions of the agents belonging to the upper group. The thick decreasing line in the middle of the 

figure represents the upper group. The figure above is the result of 1640 time steps. There are some 

agents holding on to their opinions, because the difference in opinion with their connections is larger 

Figure 18: The result of adding the NIMBY-effect to the model with threshold. The colour 

difference represents the opinion: dark blue: 0; light blue 10. Number of agents: 500; 

neighbourhood size: 10; maximum difference in affinity: 0; influence of power plant: 50 fictional 

units; Threshold: 2. 

Figure 17: The result of adding the NIMBY-effect to the model. The colour difference represents 
the opinion: dark blue: 0; light blue 10. Number of agents: 500; neighbourhood size: 10; maximum 
difference in affinity: 0; influence of power plant: 50 fictional units; no threshold. 
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than the threshold. The scenario described above could be compared to a situation in which the public 

has a negative opinion about a local facility, even if it is not in their own neighbourhood. The people 

living close by are spreading their negative opinions to the public. An example of such a situation is a 

hydraulic fracking facility.  

 If the public would have a positive attitude towards a facility because it is generally accepted 

to be positive the model would have a different outcome. An example could be a windmill farm. This 

phenomena is added to the model by increasing the opinions of agents living farther away from the 

power plant than the power plant effect (𝑑max ) reaches. The adjusted opinions are calculated as 

follows:  

𝑃𝑛𝑒𝑤 =  10 ⋅
𝑃𝑝 +  (𝑃𝑝 ⋅  𝑑𝑎𝑑𝑗)

10 + (𝑃𝑝 ⋅  𝑑𝑎𝑑𝑗)
 

Where  

𝑑𝑎𝑑𝑗 =
(𝑑 −  𝑑𝑚𝑎𝑥) ⋅ 80

(𝑑𝑚𝑎𝑥𝑚𝑎𝑥 − 𝑑𝑚𝑎𝑥) ⋅ 100
 

And 

𝑑 >  𝑑𝑚𝑎𝑥 

 

The variable 𝑑𝑚𝑎𝑥𝑚𝑎𝑥 is the distance between the power plant and the furthest agent on the map. 

Running the model without a threshold results in figure 19.  

 

 

Figure 19: The result of adding the NIMBY-effect and a positive feedback from the public without 

a threshold. The colour difference represents the opinion: dark blue: 0; light blue: 10. The purple 

colours are the agents influenced by the power plant: dark purple 0; light purple: 10. Number of 

agents: 500; neighbourhood size: 10; maximum difference in affinity: 1; influence of power plant: 

50 fictional units; no threshold. 

(26) 

(27) 
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The purple colour represents all agents influenced by the power plant. The average opinion is slightly 

increasing or slightly decreasing. This is because of the edge effect. The closer the power plant is 

situated to the edge of the map the more it loses it influence. There are less agents influenced by the 

power plant if it is situated close to an edge. The edge effect is the greatest when the power plant is 

situated in a corner. It can clearly be seen that the agents living close to the power plant are pulling 

the other agents towards zero and vice versa. In figure 20 a threshold was used. 

 

Some agents are completely in favour of the power plant, some are completely against and some are 

in the middle of the spectrum. In this case most of the agents are in favour (74.2 %). The smallest 

group did not decide on a side (9.2%) and are constantly pulled to against and in favour. If the same 

situation is ran for 4000 time steps all agents are fully in favour or fully against. Figure 20 shows that 

the social network as well as the spatial aspects can have an influence on the final opinion. In general 

people living closer to power plant tend to have a more negative opinion. In the figure can be seen 

that people living close to the power plant can still be convinced to have a positive opinion and the 

other way around. These opinions are most likely caused by the social network. 

 

 

Figure 20: The result of adding the NIMBY-effect and a positive feedback from the public with a 
threshold. The colour difference represents the opinion: dark blue: 0; light blue: 10. The purple 
colours are the agents influenced by the power plant: dark purple 0; light purple: 10. Number of 
agents: 500; neighbourhood size: 10; maximum difference in affinity: 1; influence of power plant: 
50 fictional units; threshold: 2. 
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Moving agents 
The map used in the model is static and all agents have a fixed position. The model can be 

easily adjusted by letting the agents walk around freely. The rationale behind the model changes 

slightly if agents are allowed to move around. The power plant then represents a facility of which the 

public is in favour and has a negative influence on people passing by. An example could be installed 

solar panels in an old city centre on which the public discussion has a positive influence. The people 

passing by generally do not like the view of the solar panels attached to an old building. The only 

barriers the agents have are the borders of the map and the power plant. All agents start with a 

random direction. Each turn at random they change their position in a direction between 50 degrees 

to the right and 50 degrees to the left. Reaching a border or the power plant will make the agent turn 

around for 180 degrees. All other variables are based on the previous updating rules. The result of 

letting the agents move around freely is that there will not be an equilibrium. The figure 22 shows the 

result of more than 1000 time steps.  

 

 

Figure 21: The result of adding the NIMBY-effect and a positive feedback from the public with a 
threshold after running 4000 time steps. The colour difference represents the opinion: dark blue: 
0; light blue: 10. The purple colours are the agents influenced by the power plant: dark purple 0; 
light purple: 10. Number of agents: 500; neighbourhood size: 10; maximum difference in affinity: 
1; influence of power plant: 50 fictional units; threshold: 2. 
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Leaving the model running for another 6000 time steps result in figure 23. 

 

Without a threshold the result is similar to the result shown in figure 19 . 

Figure 23: The result of letting the agents move freely over the map after more than 7000 time 
steps. The colour difference represents the opinion: dark blue: 0; light blue: 10. Number of 
agents: 250; neighbourhood size: 10; maximum difference in affinity: 0; influence of power 
plant: 50 fictional units; threshold: 2. 

 

Figure 22: The result of letting the agents move freely over the map. The colour difference 
represents the opinion: dark blue: 0; light blue: 10. Number of agents: 250; neighbourhood size: 
10; maximum difference in affinity: 0; influence of power plant: 50 fictional units; threshold: 2. 
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Conclusions 
 Running the developed model results in many different outputs. The visual outcomes of the 

different scenarios differ significantly. The outputs need to be tested in order to determine the 

plausibility of the model and to draw any conclusions. In the next chapter the sensitivity of the 

parameters will be assessed.  

  

Figure 24: The result of letting the agents move freely over the map without threshold. The 
colour difference represents the opinion: dark blue: 0; light blue: 10. Number of agents: 250; 
neighbourhood size: 10; maximum difference in affinity: 0; influence of power plant: 50 fictional 
units; no threshold. 
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Chapter 4: sensitivity analysis 
Introduction 
 A sensitivity analysis is needed in order to understand the influence of changing the 

parameters of the model better. A difference must be made between ratio parameters and Boolean 

parameters. The Boolean parameters represent scenarios that are added later to the model in order 

to explore how the model behaves on different scenarios. A Boolean parameter can only be turned 

on or off. In the table below all parameters and their types are listed. The outcome of the model is 

defined as a set of sensitivity measures. These sensitivity measures will be discussed in the following 

paragraph.  

Table 2: All parameters and their types 

Parameter Type 

Number of agents Ratio 

Neighbourhood size Ratio 

Difference in affinity Ratio 

Threshold size Ratio 

Power plant influence Ratio 

Nimby effect Boolean 

Positive feedback Boolean 

Moving agents Boolean 

 

Sensitivity measures 
Determining the sensitivity measures is one of the challenges of assessing an ABM. Because 

all ABMs are different and can have different goals, the way of measuring those goals differ as well. 

The most important result of the proposed model of opinion dynamics is the pattern and dispersion 

of opinions among the population. The easiest computable measure is the average opinion. The 

average opinion shows in which side of the spectrum most of the agents are situated. The average 

opinion is easily calculated by the following calculation 

𝑃𝑎𝑣 =
1

𝑛
∑ 𝑃𝑖

𝑛

𝑖=1

 

Where 𝑃𝑎𝑣 is the average opinion of the whole population and 𝑛 is the total number of agents. Because 

from the average opinion cannot be concluded whether there is a consensus or all agents are scattered 

over the whole spectrum, there is a need for sensitivity measures that are focussing on the patterns 

of the opinion dispersion.  

 By defining a consensus the number of time steps needed to reach this consensus can be used 

as a measure. A consensus will be defined as a cluster of equal or more than 50% of the agents with a 

difference in opinions smaller than 1. A threshold of 50% is chosen because the consensus should 

always be the largest cluster. The opinions can be at most 0.5 higher or lower in order for an agent to 

be considered a part of the cluster. The percentage can be calculated as follows 

𝑛𝑝𝑟𝑜𝑝 =
𝑛𝑠𝑖𝑚𝑖𝑙𝑎𝑟

𝑛
 

Where 𝑛𝑝𝑟𝑜𝑝 is the percentage of agents in the cluster and 𝑛𝑠𝑖𝑚𝑖𝑙𝑎𝑟 is the number of agents with 

(𝑃𝐴 −  0.5 ) >  𝑃 < (0.5 +  𝑃𝐴) 

(29) 

(30) 

(31) 
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The percentage of similar agents is being calculated for all agents (𝑃𝐴). The number of time steps 

needed to reach 𝑛𝑝𝑟𝑜𝑝  ≥ 0.5 is defined as the first consensus. If no consensus is reached before the 

maximum number of time steps is reached, the first consensus is 0. 

 The average opinion and the first consensus cannot be used to examine the dispersion of 

agents or to examine different groups of opinions. Therefore the average percentage of similar agents 

is calculated for different band widths. Whether an agent is considered to be similar is dependent on 

the band width. The average percentage of agents with a similar opinion can be calculated as follows 

 

𝑁𝑎𝑣 =
1

𝑛
∑

𝑛𝑠𝑖𝑚𝑖𝑙𝑎𝑟,𝑖

𝑛

𝑛

𝑖=1

 

 

Where 𝑛𝑠𝑖𝑚𝑖𝑙𝑎𝑟 is the number of agents with 

( 𝑃𝐴 −  𝑊 ) >  𝑃 < (𝑊 +  𝑃𝐴) 

Where 𝑊 is the band width {0.5,1,2,3,4,5,6,7,8}. By making the band width variable it is possible to 

examine the dispersion of opinions across the spectrum. If all agents would be equally scattered, each 

band would contain a slightly higher percentage of agents. A consensus or groups of opinions would 

be visible because the percentage will in such a case not grow proportionally with the band width. In 

figure 26 an example of a bar graph of the consensus bands is shown. Figure 26 shows that there are 

two groups of opinions with a difference between 4 and 5.  

One more sensitivity measure was used in order to visualise the clustering patterns. The 

consensus bands only give an overview of the dispersion of one moment in time. By mapping the 

clusters on a scatterplot the patterns emerging over time can be studied. The clusters are being 

calculated with the same calculation as the first consensus. For every agents with 𝑛𝑝𝑟𝑜𝑝  ≥ 0.1 a point 

is drawn on the plot. The y axis shows the opinion of the agent and the x axis the number of time 

steps. The percentage of the total number of agents surrounding the agent is divided in 5 categories 

to show the difference in cluster density. Figure 25 shows an example of a cluster density scatter plot. 

Baselines 
 The parameters are slightly changed in order to observe the difference in outcome. Before 

the sensitivity analysis can be performed the baseline of the parameters must be determined. The 

number of agents will have 250 as baseline. 250 is the median of the total number of agents and will 

take less computation time than the maximum of 500. 250 is also a sufficient number for studying the 

influence of networks. Making the number of agents too small will make this impossible. The baseline 

of the neighbourhood size will be 15. 15 is 10% of the diameter of the maximum circle that fits within 

the fictional study area. The neighbourhood size should be big enough to have an influence but should 

not cover too much of the total area. The baseline of the difference in affinity will be 2. High values 

for the difference in affinity will result in long computation time and large influences of the social 

network. An affinity of 2 will result in an average number of connections of 5 connections per agents 

when there are 250 agents. The baseline for the threshold will also be 2. The reason of adding a 

threshold is to prevent the population of reaching a consensus. Because of the relatively large number 

of connections in this model the threshold should be small in order to prevent a consensus from 

happening. The power plant influence will be 50 because it is the median of the maximum value and 
1

3
 of the diameter of the maximum circle that fits within the study area. The scenario with the baseline 

settings will be called the zero scenario. The result of using all baseline settings is shown in figure 25 

and figure 26. All agents are clustered in two groups with a difference in opinion between 4 and 5. 

(32) 

(33) 
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More agents are in favour than against, but the average is 5.0. The first time a consensus is reached is 

after 29 time steps. 

 

 

Figure 25: Cluster density plot with the baseline settings. The different colours represent the percentages of agents 
with a similar opinion. Number of agents: 250; neighbourhood size: 15; maximum difference in affinity: 2; influence 
of power plant: 50 fictional units; threshold: 2 
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Figure 26: Dispersion bands bar graph with the baseline settings. Number of agents: 250; neighbourhood size: 
15; maximum difference in affinity: 2; influence of power plant: 50 fictional units; threshold: 2 

The number of agents 
 In order to assess the sensitivity of the number of agents the model will be run in steps of 10. 

Because the total range of the parameter is 500, not all values can be assessed. The lower values do 

not result in a consensus and result in small clustered groups. Figure 27 shows an example of a run 

with 50 agents.  
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Figure 27: dispersion bands bar graph and a cluster density plot. The different colours represent the 
percentages of agents with a similar opinion. Number of agents: 50; neighbourhood size: 15; maximum 
difference in affinity: 2; influence of power plant: 50 fictional units; threshold: 2 

The higher values always result in two groups of which one of the two contains more than 50% of the 

agents. The minimum value of the number of agents needed in order to reach a consensus is 110. The 

difference between the two groups is always between 4 and 5. Figure 28 shows the average opinion 

for the different settings of the number of agents parameter. There is no observable increase or 

decrease in the average opinion. The figure is fluctuating because the model is stochastic. 
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Figure 28: average opinion with different values for number of agents 

Figure 29 shows the number of time steps needed in order to reach the first consensus. Up to 110 

agents no consensus is reached. From this figure can be concluded that the higher the number of 

agents the fewer time steps are needed to reach a consensus. From 300 agents and more the first 

consensus is stabilising and not decreasing any further.  
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Figure 29: The number of time steps needed to form a consensus for different values 
for the number of agents 

The neighbourhood size 
Steps of 5 are chosen to assess the neighbourhood size. The maximum neighbourhood size is 

50. A neighbourhood size of more than 50 would include too many agents to distinguish the spatial 

aspects from the social aspects. The average opinion is fluctuating when the size of the neighbourhood 

changes. The fluctuation is small and does not show a significant relation with the neighbourhood size. 

The fluctuation is most likely caused by the stochastic aspects of the model. If the neighbourhood size 

is small it takes a long time before the first consensus is reached. From a neighbourhood size of 20 

and up it takes about 20 time steps to reach a consensus. Only when the size of the neighbourhood is 

small it has an effect on the number of time steps needed to reach a consensus. Figure 31 shows the 

number of time steps needed to reach a consensus for different values of the neighbourhood size.  
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Figure 30: average opinion with different values for the neighbourhood size 
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Figure 31: The number of time steps needed to form a consensus for different values for the 
neighbourhood size 

The difference in affinity 
Steps of 1 were chosen to assess the sensitivity of the difference in affinity. A small increase 

in the maximum difference in affinity can have large influence on the outcome because it affects all 

agents independent of their location directly. The maximum difference in affinity used is 30. A 

difference in affinity of 30 means that in average each agent is connected to 30 percent of the 

population. It is expected that a higher maximum difference in affinity no longer results in a different 

outcome because most agents are indirectly connected in one network. Increasing the maximum 

difference in affinity will result in a longer computation time. There is almost no influence on the 

average opinion if the maximum difference in affinity is being changed. It looks like the average 

opinion is less fluctuating for higher values of the maximum difference in affinity. This could be the 

result of the low number of time steps needed to form a consensus. This number is decreasing when 

the maximum difference in affinity is increasing. The number of time steps needed to form a 

consensus is stabilising between a maximum difference in affinity of 10 and 20 with one exception 

where no consensus was reached at all. 
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Figure 32: average opinion with different values for the maximum difference in affinity 

 

Figure 33: The number of time steps needed to form a consensus for different values for the 
difference in affinity 
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The threshold size 
The sensitivity of the threshold size was assessed by decreasing the threshold size with steps 

of 1. The sensitivity analysis of the threshold size is inversed because a high value for the threshold 

size implies that the threshold size does not alter the number of exchanges of opinions while a low 

threshold size significantly alters the number of exchanges. The maximum threshold size is 10 and the 

minimum is 1. The threshold size cannot be lower than 1 for agents to still be able to interact. A 

threshold size larger than 10 does not have any effect because it exceeds the maximum value for an 

opinion. Like the other parameters there is little influence on the average opinion. It looks like the 

number of time steps needed to form a consensus is increasing exponentially until it becomes infinite. 

The threshold size has an important influence in the number of time steps needed to form a 

consensus. If the threshold is really low it prevents the population from even reaching a consensus.  

 

 

Figure 34: average opinion with different values for the threshold size 
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Figure 35: The number of time steps needed to form a consensus for different values of 
the threshold size 

The power plant influence 
 The maximum length for the power plant influence distance is 100. The fictional world has a 

maximum width and length of 150. With a maximum size of 100 most of the area is covered. Increasing 

the power plant influence distance more will result in a scenario where all agents are influenced by 

the power plant. The area influenced by the power plant is dependent on the location of the power 

plant and the ‘edge effect’. The closer the power plant is situated near the edge of the world, the 

smaller the influence area. Because of the edge effect and the random allocation of the power plant 

there is a high stochastic factor in this parameter. The average opinion is relatively stable. As expected 

the number of time steps needed in order to reach a consensus is fluctuating. In average it becomes 

higher. It is unclear if this is the result of the fluctuation or an effect of the parameter. By increasing 

the power plant influence distance more agents are becoming harder to convince. A logical outcome 

would be a slight increase in the number of time steps needed. The figure is exactly showing a slight 

increase. 
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Figure 36: average opinion with different values for power plan influence distance. 

 

 

Figure 37: The number of time steps needed to form a consensus for different values for the 
distance of the power plant influence 
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The NIMBY effect 
The NIMBY effect is assessed by running the model with all the parameters set to the baseline 

settings and the NIMBY effect turned on. The image below shows the dispersion bands bar graph and 

the cluster density plot of the run after 500 time steps. There is a significant difference compared with 

the baseline scenario (figure 25 and figure 26). As expected the NIMBY effect causes the population 

to have a more negative opinion. The average opinion after 500 steps is 0.8 compared to 5.0 of the 

zero scenario. The density of the opinion is lower, which means that the agents have more divided 

opinions than when the NIMBY effect is turned off. The first consensus is with 26, 3 time steps earlier 

than the zero scenario. The difference in the number of time steps needed is small and could be 

explained by the stochastic nature of the model. The NIMBY effect has an important influence on the 

average opinion and the dispersion of the opinions.  
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Figure 38: dispersion bands bar graph and a cluster density plot with NIMBY effect turned on. The different colours 
represent the percentages of agents with a similar opinion. Number of agents: 50; neighbourhood size: 15; maximum 
difference in affinity: 2; influence of power plant: 50 fictional units; threshold: 2 
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Positive feedback 
 The positive feedback is just as the NIMBY effect analysed with all the baseline settings and 

the positive feedback parameter turned on. The results are shown in figure 39. The dispersion is low 

and all opinions are completely in favour of the power plant. It took relatively long to reach this 

consensus. After 86 time steps more than 50% of the population had the same opinion. After the 

consensus was reached the average opinions kept on rising until it became 10.0.  

NIMBY and positive feedback 
 Because the positive feedback and the NIMBY parameter are partly balancing out each other, 

they could be considered as one parameter. Both parameters have important influences on the 

outcome of the model. If these influences are only caused separately it will not have an added value 

to incorporate them together. Therefore, it is necessary to analyse their combined sensitivity. In figure 

40 is shown that there is a large difference between the consensus groups. There is no dispersion band 

that actually reaches the 100% while all other runs have several dispersion bands including 100% of 

the opinions. There is fluctuation in the dispersion of the positive opinions. The average opinion is 4.1, 

which is less than the average of the zero scenario. The first consensus also differs from the zero 

scenario. The first time a consensus is reached is after 55 time steps. The combined parameter of the 

positive feedback and the NIMBY are causing important differences in the outcome of the model.  

Moving agents 
 The sensitivity of the moving agents parameter is analysed in two different ways. Because of 

the completely different nature of the scenarios will it be compared with the zero scenario and with 

a scenario with the baseline settings and the NIMBY and positive feedback parameters turned on. The 

spatial effects of moving agents become more important if they are directly influenced by the power 

plant. Figure 41 shows that opinions of the agents are stable when the model is run with only the 

baseline settings and the moving agents parameter. The dispersion is low and the first consensus is 

reached after 24 time steps. The average opinion is with 4.8 also comparable with the zero scenario. 

The sensitivity of the moving agents is low when it is compared with the zero scenario. If it is compared 

with a scenario where the NIMBY and positive feedback parameters are added the results are 

different. Figure 41 shows the results of such a run. It took 142 time steps to reach a consensus for 

the first time. This consensus only held for a short time and was dispersed until more or the less 300 

time steps. The figure shows a high dispersion but it reaches an equilibrium in the end. There are no 

dispersion bands containing 100% of the agents. Because the scenario where this run is compared 

with also did not contain any dispersion bands containing all agents this could not be described as an 

effect of the moving agents parameter. The average opinion after 500 time steps is 8.6. The sensitivity 

of the moving agents parameter is dependent on the other parameters. It can be concluded that the 

sensitivity fluctuates with settings of other parameters.  
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Figure 39: dispersion bands bar graph and a cluster density plot with the positive feedback turned on. The different colours 
represent the percentages of agents with a similar opinion. Number of agents: 50; neighbourhood size: 15; maximum 
difference in affinity: 2; influence of power plant: 50 fictional units; threshold: 2 
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Figure 40: dispersion bands bar graph and a cluster density plot with positive feedback and NIMBY turned on. The different 
colours represent the percentages of agents with a similar opinion. Number of agents: 50; neighbourhood size: 15; maximum 
difference in affinity: 2; influence of power plant: 50 fictional units; threshold: 2 
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Figure 41: dispersion bands bar graph and a cluster density plot with moving agents turned on. The different colours represent 
the percentages of agents with a similar opinion. Number of agents: 50; neighbourhood size: 15; maximum difference in 
affinity: 2; influence of power plant: 50 fictional units; threshold: 2 
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Figure 42: dispersion bands bar graph and a cluster density plot with moving agents, NIMBY, and the positive feedback turned 
on. The different colours represent the percentages of agents with a similar opinion. Number of agents: 50; neighbourhood 
size: 15; maximum difference in affinity: 2; influence of power plant: 50 fictional units; threshold: 2 
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Conclusions 
 All parameters, except for the moving agents parameter when compared to the zero scenario, 

show significant changes in the sensitivity measures. The sensitivity of the moving agents parameters 

is dependent on other parameters. The differences in the sensitivity measures of all parameters that 

can have a range of values are summarised in table 3 and visualised in figure 43 and figure 44. The 

smaller the maximum difference in the average opinion the less the parameter is influenced by the 

stochastic nature of the model. If there are more runs in an analysis there is also a higher change of 

having a large difference in the average opinion. The neighbourhood size does show highest difference 

in the number of time steps needed to reach a consensus. The power plant influence shows the lowest 

difference. It can be concluded that the number of agents, neighbourhood size, and the difference in 

affinity can be considered as sensitive parameters. The threshold size is also considered as sensitive 

because changing this parameter can result in a scenario where no consensus is reached. This will 

make the difference in first consensus infinite.  

Table 3: Overview of the differences in the sensitivity measures of all ratio parameters 

 

Table 4 shows the average opinion and the first consensus of the Boolean parameters. 

Compared to the zero scenario the nimby effect, positive feedback and the last scenario show a 

significance difference in the average opinion. The positive feedback, the nimby and positive feedback, 

and the moving agents and power plant influence scenario show significant difference in the first 

consensus. Only the moving agents parameter taken separately does not show a difference in 

outcome. In combination with the NIMBY and positive feedback parameter it has the largest influence 

on the sensitivity measures. In order to fully understand the interdependency of the parameters a 

more comprehensive sensitivity analysis could be performed. To eliminate the stochastic aspects 

model, multiple runs per sensitivity analysis should be analysed. Such a sensitivity analysis did not fit 

within the timeframe of this thesis. It can be concluded that the model is sensitive to almost all 

parameters. The model is only not really sensitive to the power plant influence distance parameter. It 

can however be expected that this parameter has more effect if it is analysed in combination with 

other parameter such as the NIMBY effect and the positive feedback. For all parameters there is at 

least one sensitivity measure showing changes if the parameter is slightly changed. If the moving 

agents parameter is not being taken into account the power plant influence parameter shows the 

smallest differences.  

Table 4: Overview of the sensitivity measures of all Boolean parameters. 

Parameter Δ Average opinion Δ First consensus Average of the average opinion 

Number of agents 2.0 93 5.0 

Neighbourhood size 1.1 137 5.1 

Difference in affinity 1.2 83 4.9 

Threshold size 0.8 29 5.0 

Power plant 
influence 

0.5 11 4.9 

Parameter Average opinion First consensus 

Zero scenario 5.0 29 

Nimby effect 0.8 26 

Positive feedback 10 86 

NIMBY and positive feedback 4.1 55 

Moving agents 4.8 24 

Moving agents and power plant influence  8.6 142 
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Figure 43: The maximum difference in average opinion for all ratio parameters. 
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Figure 44: The maximum difference in number of time steps needed to reach the first 
consensus for all ratio parameters. 
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Chapter 5: Discussion on the plausibility of the model 
Introduction 

The sensitivity of the parameters does not yet explain whether the model is valid or not, but 

it does help analysing the plausibility of the parameters and the model. In order to be able to draw 

conclusions on the plausibility it must be determined if the observed results could have been expected 

when they are compared to reality. In order to do so the results of the sensitivity analysis will be used 

to elaborate on the preliminary results of the model. The model can be influenced by five ratio 

parameters. Four of the parameters can be considered to influence the model significantly.  

The number of agents  
The first parameter, the number of agents, controls the density of the population. The area 

does not change, and therefore, the number of agents within a certain distance from each other 

becomes smaller. This results in more intense interactions between agents. The time needed to reach 

a consensus is smaller in larger populations. It is difficult to say if this is realistic or not. The 

neighbourhood size becomes relatively larger, which result in the logic outcome that there is less time 

needed to reach a consensus due to the higher percentage of connections. Increasing the number of 

agents without altering the neighbourhood size cannot simply be compared to a sparse population in 

an agricultural area and a dense city. This can only be done if it is assumed that people living in a 

denser populated area know proportionally more people than people in a sparsely populated area. In 

this thesis it is not assumed that people living in denser populated areas know proportionally more 

people than people in a sparsely populated area. Increasing the number of agents without altering the 

other parameters will result in a scenario where the population is dense, but do all know each other. 

An example could be a nomadic population that is temporary settled in a small area. In such a scenario 

it is more logical that a consensus is reached more quickly. If the population density becomes too low, 

no consensus is reached because most of the agents do not interact with each other. Taking the 

interaction with the neighbourhood size into account the results can be considered to be plausible. 

Because the concept of a neighbourhood is variable it must be taken into account that the scenario 

represented by the model changes when the number of agents changes.  

Neighbourhood size 
 As explained in the previous paragraph, the neighbourhood size is strongly connected to the 

population density. If the neighbourhood size is being changed without altering the number of agents, 

it has a strong influence in the time needed to reach a consensus. This only counts for the lower values, 

because from a certain distance and longer the fastest time to reach a consensus is reached. This is 

due to the fact that from a certain distance the whole population is already indirectly connected to 

each other in two steps. From this point every agent has at least one relative in each neighbourhood. 

Increasing the neighbourhood size results in a shorter time to reach a consensus and a denser 

scatterplot. A larger neighbourhood size implies that people are more connected to people living close 

by. An example in the difference in neighbourhood size could be a neighbourhood with many gates 

and protected properties where people feel unsafe compared to a neighbourhood where people feel 

save and do know a larger proportion of their neighbours. The neighbourhood size has a direct 

proportional relation with the time needed to reach a consensus until the population is no longer 

influenced by the number of connections. These results can be fully explained and can be considered 

to be plausible.  



55 

 

The difference in affinity 
 The difference in affinity defines just as the neighbourhood size the number of connections 

per agent. If there are more connections per agent the opinions are less dispersed and there is less 

time needed to reach a consensus. For the maximum difference in affinity there is also a maximum 

value from where the time needed to reach a consensus is no longer influenced because the whole 

population will be indirectly connected. The difference in affinity represents sizes of families or other 

social institutions in comparison to the whole population. It could for example be argued that a 

community centre would result in less dispersed opinions. The difference in affinity can be considered 

to be plausible because the results can be fully explained rationally.  

Threshold size 
 The threshold size has completely different influences on the model than the previous 

discussed parameters. A threshold causes the population to have more dispersed opinions and it takes 

longer to reach a consensus. In many cases there is not one consensus, but groups of opinions that 

are too different to influence each other. The smaller the threshold size the less opinions are averaged. 

A small threshold size results in different patterns with several groups of opinions. Without a threshold 

the outcome of the model does not represent the dispersion of opinions in a population. In reality the 

dispersion of opinions is more complex than one or two groups. The threshold size is a way of making 

the dispersion of opinions more realistic. It is still a simplification of the complexity, but does show 

more realistic patterns of opinion development. It can be debated whether the threshold size is 

plausible or not. There is not yet a better alternative to model the diversity of opinion dynamics. 

Without the threshold size the results will be unrealistic. Adding a threshold makes the outcome of 

the model more plausible than not adding a threshold.  

Power plant influence 
 Without adding any scenarios the influence of the power plant is limited. It does make the 

agents close by the power plant less susceptible to influences. Because there is no difference in 

probabilities of the initial values, the only result is that it takes a little longer to reach a consensus. The 

results could only be applied to situations where the power plant represents a facility that is not 

always considered to be negative for people living close by. An example could be a parking lot. Some 

people could be happy to be able to park their cars, while others could prefer to have a playground. 

In either case the power plant does not have a large influence on its surroundings. The parameter is 

without adding a scenario not a useful addition to the model because of the small influence on the 

result. Despite this small influence it can still be considered to be plausible.  

NIMBY and positive feedback 
 The two parameters NIMBY and positive feedback are the most interesting when they are 

considered together. Separately they either cause the population to have a negative opinion or a 

positive opinion. A feedback is needed to prevent the model to result in completely unrealistic results. 

With a feedback it is still possible that there is consensus against or in favour of the power plant, but 

these are often less extreme and show a more sophisticated pattern than without a feedback 

mechanism. It sometimes happens that the negative opinions of the people living next to a power 

plant are taken over by the rest of the population. An example of such a scenario could be an 

underground CO2 storage. The scenarios in where there is no consensus, but only a thick band of 

opinions where on both sides agents are ‘pulling’ the population into a direction, could be considered 

as a comparison with reality. In reality it never happens that everyone has the same opinion and there 

will always be a range of different opinions. The two scenarios combined give the most plausible 

results from all the parameters combined, because they show complex patterns of opinions that are 
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constantly interacting. Separately the results of the parameters are unrealistic and cannot be 

considered as plausible.  

Moving agents 
 Separately, the moving agents parameter does not show much difference in the results. It 

does only change the concept of a neighbourhood because it becomes variable when the agents are 

moving around freely. The concept of location changes even more when the NIMBY and positive 

feedback parameters are active. Agents crossing the border of the power plant influence area are 

taking their opinions with them and are influencing the agents around them. In the current form the 

moving agents parameter does not represent a real situation, but could be a first step to a more 

complex model to represent opinion dynamics. Letting agents moving around on an actual map and 

letting them travel from their home to places such as work, relatives, school, and the church and back 

could give more realistic results. The moving agents scenario cannot be considered as plausible 

because it does not represent a real situation.  

Conclusions 
 In this chapter is tried to combine the results of Chapter 4 and 5 to draw conclusions about 

the plausibility of the model. In general the model can be considered as plausible because all outcomes 

and patterns can be explained by reason. Not all scenarios could be considered as realistic, but they 

do explain the influences of the parameters that are excluded. The most plausible results are caused 

by the combination of the NIMBY and positive feedback parameters. Letting the agents moving around 

freely does in the current model not give plausible results. The moving agents scenario could be the 

basis for a more realistic opinion dynamics model. 
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Chapter 6: Conclusions and discussion 
Introduction 
 During this thesis it was tried to couple spatial and social networks in an opinion dynamics 

model. In the previous chapters is explained how the model was developed and what the results of 

the model are. In this final chapter the conclusions of this thesis will be discussed. Because the model 

is explorative many different conclusions could be drawn from running the model. In this paragraph 

will be tried to structure the results and emphasise the most important results from all previous 

chapters. The final conclusions are followed by a discussion about the scientific contribution of this 

research. 

 

A summary of the findings 
 This thesis started with answering the first sub-research question “What concepts are still 

missing in the scientific literature to couple social- and spatial systems in models of opinion dynamics?” 

From the literature study could be concluded that there is much literature available about the opinion 

dynamics. There are many different methods available for modelling opinion dynamics. Few of these 

models are using a developed social or spatial network. None of the models combined a spatial and 

social network. The answer of the first sub questions can be summarised as follows. 

- The distance between agents is not based on measureable locations 

- Geographical locations are not used together with an ABM 

- Opinions about an area are only represented as CA models 

- Social networks are often based on location only  

- The position within a social network is only based on connections and not on initial values 

- Initial values are often dependent 

The second research question “Which types of models are useful for modelling the spatial 

opinion dynamics within a social network?” is answered in Chapter 3. The model is based on the theory 

of Latané (1981). The basic interactions are based on the model by Deffuant et al. (2000) and the 

model by DeGroot (1974).  

  In the same chapter is demonstrated how an opinion dynamics model can be developed that 
is coupling social and spatial networks. The model results are diverse and they show many different 
patterns. Most of these patterns look different than the patterns observed by Deffuant et al. (2000). 
In Chapter 5 the plausibility of the model is discussed. The research question “How plausible is the 

developed model?” was answered. In general can be concluded that the developed model is plausible 

given the patterns it generates. Not all parameters give plausible results, but they help understanding 

the importance of the other parameters. The most plausible scenario is the scenario where agents 

living close to the power plant receive a negative opinion each turn and agents living far from the 

power plant receive a positive opinion each turn.  

  The main research question “How can social networks be coupled to spatial networks in a 

model of opinion dynamic?” is answered in this thesis by developing, demonstrating and analysing a 

model in which a spatial and social network coexist simultaneously. The model was created by using 

the basic concepts of Deffuant et al. (2000) and placing the agents on a fictional map based on 

coordinates. The coordinates define the spatial network. The social network was added by randomly 

assigned values to the agents which determine the social network. The sensitivity analysis shows that 

both the parameters show significant difference in outcomes when the values are changed. The 

described scenarios prove the importance of using a spatial as well as a social network. 
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The additional value of the model 
 The existing models of opinions dynamics have shown similar patterns of reaching a 

consensus. The threshold concept of Deffuant et al. (2000) also shows similar results in the existing 

models. In the simplest scenario the addition of location and a social network does only control the 

number of connections and, thus, indirectly the time needed to reach a consensus. The social network 

and the location of agents become more important when other parameters are added to the model. 

It creates possibilities to model and study concepts such as the NIMBY concept. The locations and the 

social network play an important role in the distribution of opinions and their influence can be studied 

by changing the parameters controlling the spatial and social network. The model developed in this 

thesis proves the possibilities of coupling social and spatial networks in opinions dynamics as well as 

the importance of adding location to such a model.  

Discussion 
 This thesis is an explorative research in the field of opinion dynamics. Because of the nature 

of the research there are some remarks that can and must be made on the validity and the 

repeatability of the research.  

In order to perform such an explorative research many assumptions must be made that are 

difficult to verify with empirical data. Therefore is tested whether the model is plausible or not instead 

of whether it is realistic or not. The current model is a representation of a number of archetypical 

processes which are assumed to be important in spatial opinion dynamics. It cannot be used yet in an 

operational model social decision making.  

 Choices had to be made on which results should be discussed because of the high number of 

possible outcomes. Because of time restraints and to keep a clear overview a selection is made from 

all possible outcomes. It can be debated whether the results shown are the most important results or 

not. 

 The choices for the sensitivity analysis are for a large part based on time restraints. Ideally, 

the sensitivity analysis should be more comprehensive than the performed sensitivity analysis. In 

order to fully validate and understand the current model all scenarios should be analysed on their 

sensitivity. Such a sensitivity analysis could be a useful addition to this research.  

 Discussing the plausibility of the model could contain many subjective choices. It must be 

noted that the conclusions could be dependent on the researcher performing the analysis.  

 Future research could focus on improving the social and spatial network. The current model 

could be improved by adding a road network or more realistic social relationships. The social network 

is based on randomly assigned values. By studying social networks more thoroughly a more realistic 

social network could be added to the model.  
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