
Faculteit Bètawetenschappen

Structure based calculation of anisotropy in
homo-FRET

Bachelor thesis

Author:
Sander Gerringa

Study: Physics & Astronomy

Supervisor:
Gerhard A. Blab

Utrecht University
Molecular Biophysics group,

Debye institute for nanomaterials

June 2016

Abstract

In this thesis the influence of a structure based method on anisotropy calculation of a bio-
logical membrane will be discussed. A simulation of a homo-FRET microscopy experiment was
made in which a simple biological cell is approximated. This was used to compare the effects
of different gridsizes of a structure used to analyse the cell, as well as different intervals of the
individual grids and the influence of the inner cell. This was done on misaligned images to see
if this method could omit the need for perfect image registration in the experiment. While the
method does seem promising, it does invoke a small deviation with respect to the pixel by pixel
calculation. This might be solved by a better treatment of the G-factor of the setup in the
simulation.

1

Contents

1 Introduction 4

2 Theory 5

2.1 Fluorescence microscopy . 5

2.2 FRET . 5

2.3 Anisotropy . 5

2.4 Typical experimental setup . 6

2.5 Modeling the setup . 6

2.5.1 Lines through pixels . 7

3 Methods 15

3.1 Structure based analysis . 15

4 Results 18

5 Conclusion and Discussion 21

6 Acknowledgements 22

7 References 23

8 Appendix A Simulation code 23

8.1 Generating and calling analysis of data: . 23

8.2 Generation of Intensity and anisotropy data: . 26

8.3 Generation of masks for image generation: . 29

8.4 Calculation for area of a polygon: . 31

8.5 Calculation for a line through a pixel: . 32

8.6 Finding points of the Polygon in a pixel: . 33

8.7 Calculation for a corner in a pixel: . 33

8.8 Calculation for two line through a pixel: . 35

8.9 Generation of Gaussian noise: . 36

8.10 Calculation of sigmas from the simulation: . 36

9 Appendix B analysis code 37

9.1 Structure based analysis: . 37

9.2 Calculation of a Polygon for structure based analysis method: 39

9.3 Analysis of stepsize data: . 39

2

9.4 Analysis of gridsize data: . 40

9.5 Analysis of inner anisotropy data: . 41

9.6 Averaging of multiple datasets: . 42

9.7 Finding the deviation and its sigma of a dataset: . 44

3

1 Introduction

In microscopy of biological samples it is a common trick to attach a fluorophore to said sample,
making it easy to image through fluorescence microscopy. Due to light having a limited resolution
limit a number of techniques to overcome this have been found, one of them being Förster resonance
energy transfer (FRET). This technique uses the fact that fluorphores in close proximity to one
another are capable of energy transfer to one another instead of emitting it directly as light. If the
fluorophores would be clustered together multiple instances of this process can take place, thus it
is possible to use homo-FRET measurements as an indication of cluster sizes.

Since homo-FRET can only be measured through a (de)polarisation of emitted light it turns out
to be vitally important to have correct image registration of two images of different polarisation if
we use a pixel by pixel calculation.It is believed that by using a structure based method as opposed
to the pixel by pixel calculation the need for perfect image registration can be reduced. The aim
of this research is to characterize a structure based method for the calculation of the anisotropy of
the polarisation and compare it to the pixel based method.

4

2 Theory

2.1 Fluorescence microscopy

A flurophore is a chemical that can be excited and after excitation re-emit the excitation energy
as light. These chemicals exist in many varieties most of them emitting at a different wavelength.
In fluorescence microscopy these chemicals are attached to a sample of interest to be able to image
them.

2.2 FRET

Förster resonance energy transfer (FRET) is a process of non radiative energy transfer between two
light sensitive molecules through an electrostatic dipole-dipole interaction[1]. An excited molecule
can transfer its excitation energy to another molecule, thus losing its energy in a non radiative
process and exciting the other molecule ,see figure 1. The efficiency of this process is strongly
dependant on the distance between the two molecules (∝ 1/R6)[1]. This allows FRET to be used
as a distance measurement. These distances are very small (approximately 1-10 nm) allowing to
image way beyond the resolution limit of the light from the fluorophores.

Homo-FRET is FRET between two molecules of the same type and can only be measured by
the (de)polarisation of the emitted light[2]. The dipoles in molecules are randomly oriented, when
excited with polarised light only the molecules with a dipole oriented in the same direction as the
polarisation will be excited. For FRET the orientation of the dipoles does not matter, so if energy
is transferred it could transfer to a differently oriented fluorophor. If sufficiently slow rotating
fluorophors are used in comparison to the fluorescence lifetime then if no FRET occurs polarisation
of the emitted light should be conserved, while if FRET occurs the polarisation of the emitted light
is changed (since the molecules are randomly oriented).

2.3 Anisotropy

To quantify the change in polarisation of the emitted light it is common to use the anisotropy (r).
r is given by equation 1 [3].

r =
I‖ −GI⊥
I‖ + 2GI⊥

(1)

Here I‖ stands for the parallel intensity and I⊥ stands for the perpendicular intensity, both with
respect to the polarisation of the excitation beam. G stands for the G-factor, which is a correction
factor to account for the fact that in an experimental setup, light of different polarisation is treated
differently by the same optical elements. Thus one polarisation could be blocked slightly by a lens
while the other does not. The 2 in the denominator is a normalisation factor to account for the fact
that there are two directions perpendicular to the excitation beam. This makes the denominator
the total intensity, while the numerator is the difference in intensity of the different polarisations.

An increase in depolarisation means an increase in I⊥, which means a drop in r. Thus a drop in
anisotropy is correlated to an increase in depolarisation.

5

Figure 1: Jablonski diagram showing the concept of FRET, absorbtion occurs in the donor molecule
(blue), then either the acceptor molecule is not close enough for FRET to occur and the energy is
emitted by regular fluorescence (green) or the acceptor is close enough and FRET occurs and the
acceptor molecule emits the energy through fluorescence (red).Figure by Alex M. Mooney,licensed
under CC BY-SA 3.0 via Wikimedia Commons.

2.4 Typical experimental setup

In a typical homo-FRET experiment a setup as seen schematically in figure 2 could be used. The
excitation source is a mercury lamp, of which the light is being polarised and passed through an
excitation filter and a dichroic mirror to the sample. The emitted light from the sample passes
through the dichroic mirror and an emission filter before passing into a polarizing beam splitter.
Then both polarisations of light are being detected with a camera. The beam splitter is much
more efficient in the parallel direction, so part of the parallel beam does leak through into the
perpendicular beam. To correct this behaviour another polarizer is placed between the beam
splitter and the camera detecting the perpendicular beam. The two cameras are connected with
a trigger so they record an image at the same time. The cameras are capable of up to 2560x2560
images, but since biological cells usually are not that big and to save time and memory, usually a
smaller image of 512x512 pixels is recorded. It has to be noted that the G-factor is in general not
a single number for the entire setup but rather a different number for each pixel of the camera.

2.5 Modeling the setup

An actual experiment would involve imaging a biological cell with a membrane in which a high
concentration of fluorophores would be clustered and an inside with a lower concentration of clus-
tered fluorophores see for example figure 3. The cell is modeled by a polygon, and its membrane by
the sides of the polygon. To accurately determine which pixels belong to the cell in which amount
an algorithm to create three masks (inside,outside and membrane) was made. This required a
theoretical treatment of the ways a line (the membrane) can intersect and divide a pixel.

6

Figure 2: A schematic representation of a typical setup. Excitation light is drawn in green, emission
light is drawn in orange. PBS is the Polarising beam splitter, C1 and C2 are the cameras. Figure
adapted from [6]

2.5.1 Lines through pixels1

First we define a line using L = {(x, y)|ax+ by + c = 0}. This leads to a definition for a (normal)
distance from the line d

d(ax+ by + c = 0, (x0, y0)) =
ax0 + by0 + c√

a2 + b2
(2)

This definition generates both negative and positive distances, depending on whether the point of
interest is to the left or the right relative to the direction of the line. The coëfficients of a line
passing through two points Pl and Pm are found through

alm =
yl − ym
S

blm = −xl − xm
S

clm = −almxl − blmyl
S =

√
(yl − ym)2 + (xl − xm)2

(3)

From these coëfficients the angle of the line can simply be calculated from tan α =alm
blm

.

Now that we have the definition of a line we can consider the ways a line can intersect and
divide a pixel and find the corresponding length L and the ratio of how much of the pixel is inside
and outside the polygon modeling the cel. A pixel is hereby considered to be a square of size 1x1
surrounding a position (i, j). So x ∈ [i− 0.5, i+ 0.5[is contained within the pixel with first index
i. The simplest way to handle this problem is by considering the symmetry of the problem. We
start by only considering distances which are positive (d > 0). We can do this since d < 0 does
not change any of the values, just our definition of what we would call inside and outside of the

1The theoretical work on this was done with help from G.A. Blab and can be found in full in [4]

7

Figure 3: Example of an image of a cell recorded with an actual setup. Areas with higher intensity
are found towards the edge of the cell, while the inside has a lower intensity. Image recorded by
Kyo Beyeler.

polygon. If we then also limit the angle of the line mod(π2) we find five possible configurations of
the line intersecting a pixel, see figure 4. A further reduction is obtained when another symmetry
around α =π

4 is considered. This leaves only 2 cases, A and C. In case A the area above the line

is given by: Aabove = 0.5 + d
cosα , the area below the line is given by: Abelow = 0.5 − d

cosα and the
length of the line through the pixel is given by: L = 1

cosα , see figure 5. For case C the area below

the line is given by: Abelow = hL
2 = h2

sin(2α) , the area above is then given by:Aabove = 1 − Aabove
while the length of line through the pixel is given by L = 2h

sin(2α) , see figure 6.

This leaves one special case to be considered, the case of a vertex of the polygon being located
inside a pixel. In this case we have an inter pixel polygon Q ,see figure 7. If we know all the M
vertex points of this inter pixel polygon it’s area can be found through[5]:

A =
1

2

∣∣∣∣∣
M∑
i

(xiyi+1 − xi+1yi)

∣∣∣∣∣
The vertex points situated on the corners of the pixel are easily found, as well as the internal point,
since it is a vertex point of the polygon used to model our cell. The first and last point after the
internal point can be found by using a parametric definition of a line P = P0 + λ∆p with P0 being
the internal point, ∆p = [alm, blm]. Now λ can be found through solving:

λ = −apo,x + bpo,y + c

a∆P,x + b∆P,y

Now the smallest non-negative λ gives the desired vertex point of the internal polygon. Note that
for the last vertex point (Q5) the direction (∆p) has to be reversed. There are still two special

8

cases to be considered in this, as a λ of 0 implies that the internal point is located on the border
of a pixel, the denominator may be zero if two parallel lines are located inside the pixel.

9

A

P`

Pm
(i, j)

α

d

|d| < dB α < π
4

B

P`

Pm
(i, j)

√ 2/
2

α

π
4 − α

d

dB = 1√
2

sin(π4 − α)

C

P`

Pm

(i, j)

α

d

D

P`

Pm

(i, j)

√ 2/
2

α

α− π
4

d

dD = 1√
2

sin(α− π
4) α > π

4

E

P`

Pm

(i, j)

α

d

|d| < dD

Figure 4: Five possibilities of a lines going through a pixel; angles above π
4 or with negative d

can be dealt with by symmetry considerations. The critical angles are αB = π
4 − arcsin(2d√

2
) and

αD = arcsin(2d√
2
) + π

4 . Figure adapted from [4].

10

A

P`

Pm(i, j)

α

d

Aabove = 0.5 + d
cosα L = 1

cosα

Abelow = 0.5− d
cosα

Figure 5: Length and Areas for case A. Note that this case is not possible for |d| > 0.5; additionally,√
2d < sin(π4 + α). Figure adapted from [4].

11

C

P`

Pm

(i, j)

α
d

h

Aabove = 1− hL
2

L = 2h
sin(2α)

Abelow = hL
2 = h2

sin(2α)

Figure 6: Length and Areas for case C. The calculations involve the height h of the triangle
described by the line and a corner of the pixel. d and h must add up to the displacement necessary
to move a line of angle α from the center to the corner, or h = cos(π/4−α)√

2
− d. Figure adapted from

[4]

12

P`−1

P`

P`+1

(i, j)

Q1Q1

Q2 Q3

Q4Q5

Figure 7: Calculation for a corner inside a pixel using a new Polygon Q. Figure adapted from [4]

13

To model an experiment from a typical setup as mentioned in section 2.4, a few factors from
such a setup have to be taken into account in the simulation. First the sample, a biological cell, is
modeled by a 10 by 10 square to describe its membrane, this can be seen in figure 8. A real cell
ofcourse does not have an infinitely small width as an edge of a polygon does, to correct for this an
gaussian image filter is applied to a simulated image of the polygon. It was tried to model this more
properly by generating multiple polygons with different intensities around the main cell describing
polygon, but this proved to be too resource intensive in performing the simulations. Another aspect
of this is that the membrane in real world samples is about 10 nm thick, this is way below the
resolution limit of light microscopy, therefore it was decided to let the previous gaussian filtering be
applied such that it broadens the intensity of the membrane to the resolution limit calculated from
the specific setup’s specifications. From previous data akin to figure 3 a typical membrane intensity
of approximately 15.000 counts per pixel in the perpendicular polarisation could be determined.
For the outside this was about 500 counts, while the inside had a typical value of 10.000 counts.
Typical anisotropy values for this data were 0.3 for the membrane, 0.26 for the inside and 0 outside
the cell. In a real world setup, ofcourse signal noise is a problem. To simulate this to each simulated
image both shot noise and electronic noise was added. To each area of the polygon(inside, outside,
border) an intensity value was assigned. A comparison between a previously recorded image and
a simulated image of a cell can be seen in figure 9. It has to be noted that the image does not
seem noisy to the naked eye, this is because of the large intensities of the membrane making noise
hard to detect on the scale. In the real experiment the fluorophore mCherry was used to label the
samples. This leads to the usage of an excitation filter of 540-580 nm, an emission filter of 590-670
nm and a dichroic mirror for 585nm. The objective used was a 100x magnification, 1 Numerical
Aperture oil objective. These parameters are thus included in the model. The most important ones
to note are the numerical aperture of the objective and the emission wavelength of the fluorphore,
as those influence the resolution limit of the setup.

(a) Image recorded by Kyo Beyeler (b) Image generated by the model

Figure 8: Side by side comparison of an image of a cell recorded by the setup and an image generated
by our model without any corrections.

14

(a) Image recorded by Kyo Beyeler (b) Image generated by the model

Figure 9: Side by side comparison of an image of a cell recorded by the setup and an image generated
by our model with corrections for membrane width.

3 Methods

Using our model of an image recorded through the experimental setup, images of both polarisations
of a modeled cell can be made, and these can be used to calculate an anisotropy image using 1.
In our simulation we could control what anistropy each component (inside,outside, membrane) of
the cell would give. Using this as a baseline, the optimal results of the experiment could be set,
by calculating the anisotropy from the parallel and perpendicular intensity images on a pixel by
pixel basis. Then one of the two intensity images was purposely misaligned from the other with
the misalignment found through previous measurements from the experimental setup.[6]

On these misaligned images a structure based method of anisotropy calculation was applied,
while varying different parameters of the method as to characterize the method and find the optimal
parameters.

3.1 Structure based analysis

The structure based method used is based on the fact that in real measurements the outside of
the cell would have a very low intensity, the membrane has a very high intensity and the inside
of the cell as an intensity somewhat in between these. If we would move along a line through a
membrane we would thus expect a profile akin to figure 10.

Now if the two images are not properly registrated a misalignment of pixels occurs. The idea is to
move along a line through the membrane and average the intensity over a pixel grid around the line
and use these averaged values for the anisotropy calculation see figure 11. It is believed that this
could be accurate enough to calculate the correct anisotropy within error margins while ofsetting
the need for perfect image registration.

This would no longer calculate a full anisotropy image, but rather an anisotropy profile along the
line through the membrane.

15

Figure 10: Expected intensity profile of the membrane of a cell. The outside having very low
intensity, the membrane itself a very high intensity and the inside of the cell having an intensity
somewhere in between.

To characterize this method, two parameters can be determined.

• The size of the pixel grid over which is averaged

• The amount of pixels moved along the line for each step

Pixel grids are characterised as (X,Y) where X is the number of pixels along the line and Y is the
number of pixels perpendicular to the line. For example a (3,5) grid implies an averaging over 15
pixels, 3 pixels wide along the line and 5 pixels long perpendicular to the line. To determine an
optimum for these parameters simulations were run and analysed using this method while varying
one of the parameters. For each parameter twenty simulations of the experiment were run, for each
simulation thus an anisotropy profile was created of the simulated cel. Since the maximum of the
anisotropy was expected at the membrane, the maximum of each of these profiles was subtracted
from the maximum of a profile which was taken from the anisotropy image as calculated from the
simulated intensity images. This difference was averaged over the twenty simulations(see figure
12). Thus a measure for the deviation from the ideal value of the anisotropy was found as to
characterise the error which would be induced in an anisotropy calculation using this structure
based method as opposed to the pixel based method.

In table 1 a summary of all basic experimental parameters used in the simulations can be found.

Of note here is that in our simulation the G factor is a single number for the entire setup and
not a different number for each pixel. Only one intensity per cell area is given, this is the intensity
of the perpendicular image, the parallel image’s intensity is calculated from the desired anisotropy
using equation 1. A square cell was modeled as this is the easiest polygon to model. As emission

16

Figure 11: A representation of the structure based method applied on a parallel intensity image.
The red line indicates the line along which is moved, with the red x-es indicating the center locations
of subsequent grids. The yellow polygon indicates the grid of pixels over which is averaged.

parameter value

inside intensity 5000 counts per pixel
outside intensity 500 counts per pixel
membrane intensity 15000 counts per pixellenght of membrane
image size 512x512 pixels
pixel size 6.5 µm x 6.5 µm
inside anisotropy 0.15
outside anisotropy 0
membrane anisotropy 0.3
cell 10 µm x 10 µm square cell
cell location(top left corner) (14,15)
Numerical Aperture of the objective 1
magnification of the objective 100x
G factor 1.35
emission wavelength of fluorophor 610 nm

Table 1: Summary of all basic used experimental parameters

17

Figure 12: A shematic representation of the method used to characterize the error induced by the
structure based analysis. From two simulated intensity images (one parallel and one perpendicular
image) an anisotropy image is calculated. Then one intensity image is misaligned and from both
images a profile is created. Then an anisotropy profile is calculated from both the anisotropy
image and the intensity profiles. Finally the maxima of these profiles are subtracted to obtain the
difference between them.

wavelength 610 nm was used as this is the emission wavelength of the fluorophor used in the actual
experiment (mCherry).

4 Results

The first parameter of the structure based method which was investigated is the gridsize of the
structure used in the analysis. Gridsize as a variable is noted as (X,Y). In this measurement X=3
pixels. The deviation from the simulated ideal value for different values of the gridsize along a
straight line through the membrane can be seen in figure 13. The stability of this result is notable
as it might have been expected that larger grids (and thus more averaging) would improve the
result of the method. Remarkable is the fact that the deviation is always positive, thus always
overestimating the anisotropy. The same measurements were made using a line which was not
perpendicular to the membrane, but more diagonal, the results of this measurement can be seen
in figure 14. There is a clear decrease in stability of the method for non perpendicular lines to be
observed from this.

Second the influence of the amount of pixels moved between each step along the analysis was
measured. This was done using a constant (3,3) gridsize. The result of this measurement can be
seen in figure 15. Notable is the massive increase in deviation at stepsize 6 and 7 pixels. The
lowering of the deviation at stepsizes 8 and 9 pixels is interesting as well, this might be explained
through the idea that at these stepsizes one grid is localised more or less at the middle of the
membrane. While at stepsizes 6 and 7 pixels this grid would be located away from the center of
the membrane, thus causing a larger discrepancy with the expected value.

18

Figure 13: Plotted is the procentual deviation from the simulated value of the anisotropy of the
membrane as a function of the size of the grid used for the structure based analysis method.

Figure 14: Plotted is the procentual deviation from the simulated value of the anisotropy of the
membrane as a function of the size of the grid used for the structure based analysis method. This
was done for a line nonperpendicular to the membrane.

Finally, the influence of the inner cell anisotropy on the membrane anisotropy was characterised,
this result can be seen in figure 16. For this measurement a gridsize of (3,3) was used along
with a stepsize of 3 pixels. It is interesting to see the structure based method seems to produce
results which deviate less from the ideal value if the inner cell anisotropy is further away from the
membrane anisotropy.

19

Figure 15: Plotted is the procentual deviation from the simulated value of the anisotropy of the
membrane as a function of the amount of pixels moved along the line for the structure based analysis
method.

Figure 16: Plotted is the procentual deviation from the simulated value of the anisotropy of the
membrane as a function of the inner anisotropy of the cell.

20

5 Conclusion and Discussion

From the limited amount of measurements done to characterise our structure based method for
anisotropy calculation, it seems to incur a deviation of +1 ± 1.5% in the optimal case. Thus
overestimating the actual anisotropy. This compares favorably to the standard deviation of earlier
anisotropy measurements (≈ 6%) [6], which do face problems with image registration. As the
structure based method does not require perfect image registration, this result is highly promising.
It shows that it might be possible to do anisotropy calculations without having perfect pixel to
pixel image registration.

With regards to the size of the area averaged over in this structure based method the results seem
counterintuitive as increasing the amount of pixels averaged over does not seem to influence the
calculated anisotropy much. The fact that the standard deviation of the value does not decrease
with gridsize is also remarkable. As it is expected that as we average over N pixels the standard
deviation would decrease by a factor

√
N . This can be explained through the fact that the averaging

occurs over the intensities which are then used to calculate the anisotropy through equation 1. In
calculating the error in this calculation it turns out that the error in the intensity has only a
minor influence on the final error in the anisotropy. The fact that this calculation has to be done
thus offsets any gains in accuracy. It is shown that this result also holds for a line not perfectly
perpendicular to the membrane of the cell although there is more fluctuation in the deviation in this
case. Further research as to if the method does really hold for nonperpendicular lines is definitely
required.

It has also been shown that it seems that oversampling(in our case 2 pixels stepsize and downward)
does seem to lead to an increase in accuracy for the membrane anisotropy. As would be expected,
undersampling (in our case from 4 pixels stepsize upwards) leads to a significant reduction in
accuracy of the method, overestimating the anisotropy by up to approximately 9%. The reduction
of deviation at 8 and 9 pixels stepsize can be accounted for by realising this happens due to the
location of the grid being closer to the actual location of the membrane. This should be relatively
easy to overcome, as a different choice of starting or end point of the line through the membrane
changes the locations of the grid. It also shows it is important to make sure at least one point at
which a grid is taken is located somewhat at the location of the membrane.

Finally the influence of the inner cell anisotropy is shown to be likely irrelevant as in the measured
interval it showed very little to no influence on the measured anisotropy of the membrane. The
variation in deviation from the simulated value does increase for values of the inner anisotropy
closer to the membrane anisotropy, but only by 0.1%, well within the error margins. It has to
be noted here that if the inner cell anisotropy does get too close to the value for the membrane
anisotropy, the structure based method does break down. This is due to the fact that in this case
the expected peak from the membrane is no longer clearly defined in the intensity profile generated
by the structure based analysis.

The main points that require further attention would be the fact that only a limited number
of variables of the method were checked together with the G-factor. Since the G-factor in the
simulation is regarded as a single number for the entire setup, and not a per pixel number. Further
research would incur improving the simulation by finding the exact per pixel G-factor of a setup

21

(a) The case of stepsize 8 pixels in our simula-
tions.

(b) The case of stepsize 6 pixels in our simula-
tions.

Figure 17: Comparison of different scenarios for the different stepsizes explaining the reduction in
deviation at stepsizes 8 and 9 pixels. The red line indicates the line along which the structure based
analysis is applied, with the x-es indicating the positions of the subsequent pixel grids. It is clear
that at stepsize 6 the grids are located away from the membrane, thus calculating an less correct
anisotropy than expected.

and taking this into account. Another point is that perfectly square cells were used, ofcourse real
biological cells do not have this property, thus the method would have to be tested on measurements
on actual biological samples and compared to other methods of anisotropy calculation to determine
its viability. A final point of note is that the results of this thesis are calculated in a relative
manner, thus not taking into consideration if the compared to simulated value might be lower than
the actual entered value for the anisotropy. This could potentially mean that an increase of 1.5%
in anisotropy actually means that the method is more accurate for misaligned images as opposed
to interpreting the results as a deviation.

6 Acknowledgements

First of all massive thanks to Gerhard Blab for his supervision, guidance and help. You pushed
me to look very carefully and detailed at all parts of the project thus aiding in fixing many errors
in our simulation over time. Your humour and patience with me while explaining certain concepts
helped a lot. I would furthermore like to thank everyone in the Molecular Biophysics group for
being helpful when needed as well as just being an awesome bunch of persons with a great sense of
humour and a great taste in cake, to all off you: Thanks for the wonderful time.

22

7 References

References

[1] Volkhard Helms, ”Fluorescence Resonance Energy Transfer”, Principles of Computational Cell
Biology, Weinheim: Wiley-VCH, p. 202, ISBN 978-3-527-31555-0, 2008.

[2] Gradinaru, Claudiu C.; Marushchak, Denys O.; Samim, Masood; Krull, Ulrich J., ”Fluorescence
anisotropy: From single molecules to live cells”, The Analyst 135 (3): 4529, 2010.

[3] J.R. Lakowicz, Principles of Fluorescence Spectroscopy (3rd ed., Springer, Chapter 10-12 deal
with fluorescence polarization spectroscopy.), 2006.

[4] Gerhard A.Blab, Generation of Test Patterns for Anisotropy Imaging,Utrecht,2015.

[5] Paul Bourke, Calculating The Area And Centroid Of A Polygon,1988.

[6] Kyo Beyeler, Detect clustering in cells using Homo-FRET,thesis, Utrecht, 2015.

8 Appendix A Simulation code

This appendix contains all the Matlab code to used to generate the data used.

8.1 Generating and calling analysis of data:

Main function of the simulation, takes the relevant experimental parameters and calculates both
intensity images. From those the anisotropy image is calculated. Then the perpendicular image
is misaligned and the structure based method is applied. All data along with their errors are the
output.

1 function [dataR,datasigma,calcR,calcsigma,Ipar,Iper,R,sigmaR] =...

2 doLots(x,y,Poly,T,Sin,G,lambda,xbegin,xend,dim,stepsize)

3 %doLots:Calculates the Intensity and anisotropy images and performs a

4 %structure based analysis on it.

5 %(x,y) the position of the pixels in the image

6 %Poly a Nx2 matrix containing the vertex points of the Polygon

7 % Sin a structure containing the input signals and anisotropys

8 % T the affine transformation used for the image registration (for

9 % simulation usually the misregistration), enter whatever non

10 % affine2d object you want if you want no misalignment

11 % G the G factor of the setup

12 % lambda the wavelength of the used setup

13 %xbegin the position of the starting point for the structure based

14 % analysis

15 %xend the position of the endpoint for the structure based analysis

16 %dim the dimension of the structure used for the analysis (in pixels)

17

18 if nargin<10, help doLots; return; end

19 dx = x(2)-x(1); dy=y(2)-y(1);

20 if (abs(dx-dy) > eps), error(’square pixels required!’); return; end

23

21

22

23 %calculation of the intensity and anisotropy images

24 [Ipar,bgpar,sigmabgpar,Iper,bgper,sigmabgper,R,sigmaR] = ...

25 BlurImage(x,y,Poly,Sin,G,lambda);

26

27 %misregistration of the image and transforming the begin and end

28 %coordinates for the analysis accordingly

29 if isa(T, ’affine2d’);

30 Iper = imwarp(Iper, T,’OutputView’,imref2d(size(Ipar)));

31 coord=[xbegin,xend]/dx;

32 transformbegin=T.T’*[coord(1);coord(2);1];

33 transformend= T.T’*[coord(3);coord(4);1];

34 xbegintrans=[transformbegin(1),transformbegin(2)]*dx;

35 xendtrans=[transformend(1),transformend(2)]*dx;

36 else

37 xbegintrans=xbegin;

38 xendtrans=xend;

39 end

40 %removing some nonsensical data (might happen)

41 R(sigmaR>0.4)=0;

42 sigmaR(sigmaR>0.4)=0;

43

44 %structure based analysis of anisotropy

45 dataR=analysestruct(x,y, xbegin,xend,dim ,R,stepsize,0);

46 datasigma=analysestruct(x,y, xbegin,xend,dim ,sigmaR,stepsize,1);

47

48 %backgroundsubtraction

49 Iparcor=Ipar-bgpar;

50 Ipercor=Iper-bgper;

51

52 %correcting negative intensities (impossible)

53 indicespar=Iparcor<0;

54 indicesper=Ipercor<0;

55 Iparcor(indicespar)=-Iparcor(indicespar);

56 Ipercor(indicesper)=-Ipercor(indicesper);

57

58 % cutoff on intensity to reduce noisy image of the outside (after bg

59 % subtraction, everything with less intensity than a basic outside pixel is

60 % defininitely outside or nonsense so gets set to 1 as to provide a clean

61 % image of the anisotropy, more specifically, definite outside now has an

62 % anisotropy of 0)

63 Iparcor(Iparcor<Sin.I.Iout*dx^2)=1.35;

64 Ipercor(Ipercor<Sin.I.Iout*dx^2)=1;

65

66

67 %structure based calculation of anisotropy

68 structIpar=analysestruct(x,y,xbegin,xend,dim ,Iparcor,stepsize,0);

69 structIper=analysestruct(x,y,xbegintrans,xendtrans,dim ,Ipercor,stepsize,0);

70

71 sigmaIpar=sqrt(Iparcor);

72 sigmaIper=sqrt(Ipercor);

73

74 structsigmaIpar=analysestruct(x,y,xbegin,xend,dim ,sigmaIpar,stepsize,1);

24

75 structsigmaIpar(:,3)=structsigmaIpar(:,3)/sqrt(dim(1)*dim(2));

76

77 structsigmaIper=analysestruct(x,y,xbegin,xend,dim ,sigmaIper,stepsize,1);

78 structsigmaIper(:,3)=structsigmaIper(:,3)/sqrt(dim(1)*dim(2));

79

80

81 calcR=(structIpar(:,3)-structIper(:,3).*G)./...

82 (structIpar(:,3)+2.*structIper(:,3).*G);

83 calcsigma=sigma_sim(structIper(:,3),structsigmaIper(:,3),...

84 structIpar(:,3),structsigmaIpar(:,3),G,0.05*G,...

85 bgpar,bgper,sigmabgpar,sigmabgper);

86

87

88 %some plotting code to check the data

89

90 direction=xend-xbegin;

91

92 figure

93

94 %makes sure that if the line is vertical the plot still makes sense

95 if direction(1)<eps

96 errorbar(dataR(:,2),dataR(:,3),datasigma(:,3),’-b’)

97 xlabel(’y’)

98 ylabel(’anisotropy’)

99 title(’simulated anisotropy’)

100 else

101 errorbar(dataR(:,1),dataR(:,3),datasigma(:,3),’-b’)

102 xlabel(’x’)

103 ylabel(’anisotropy’)

104 title(’simulated anisotropy’)

105 end

106

107 figure

108

109 %makes sure that if the line is vertical the plot still makes sense

110 if direction(1)<eps

111 errorbar(dataR(:,2),calcR,calcsigma,’-b’)

112 xlabel(’y’)

113 ylabel(’anisotropy’)

114 title(’calculated anisotropy’)

115 else

116 errorbar(dataR(:,1),calcR,calcsigma,’-b’)

117 xlabel(’x’)

118 ylabel(’anisotropy’)

119 title(’calculated anisotropy’)

120 end

121

122

123 %plotting of intensity analysis, could be used for verification purposes,

124 %uncomment if desired

125 % figure

126 %

127 % %makes sure that if the line is vertical the plot still makes sense

128 % if direction(1)<eps

25

129 % errorbar(dataR(:,2),structIper(:,3),datasigma(:,3),’-b’)

130 % xlabel(’y’)

131 % ylabel(’anisotropy’)

132 % title(’Iper’)

133 % else

134 % errorbar(dataR(:,1),structIper(:,3),datasigma(:,3),’-b’)

135 % xlabel(’x’)

136 % ylabel(’anisotropy’)

137 % title(’Iper’)

138 % end

139 % figure

140 % if direction(1)<eps

141 % errorbar(dataR(:,2),structIpar(:,3),datasigma(:,3),’-b’)

142 % xlabel(’y’)

143 % ylabel(’anisotropy’)

144 % title(’Ipar’)

145 % else

146 % errorbar(dataR(:,1),structIpar(:,3),datasigma(:,3),’-b’)

147 % xlabel(’x’)

148 % ylabel(’anisotropy’)

149 % title(’Ipar’)

150 % end

151

152 end

8.2 Generation of Intensity and anisotropy data:

Function that generates both blurred intensity image, as well as the per pixel anisotropy image.
Required input is all relevant parameters of the image desired.

1 function [Itotalparnoise,bckgpar,sigmabckgpar,...

2 Itotalpernoise,bckgper,sigmabckgper,...

3 Rreconstructcorrected,sigmaR] =...

4 BlurImage(x,y,Poly,Sin,G,lambda)

5 %generates an anisotropy image using the entered anisotropy of the border,

6 %inside and outside of a cell as well as the intensity of the inside and

7 %outside of the cell (per micrometer^2) and the intensity of the cell

8 %border (per micrometer).All of this is contained in Sin, which is a

9 %structure containing two additional structures for I and R.

10 %The cell has a shape defined by a polygon Poly

11 %(this gives the vertex points of the cell),

12 %G is the G factor of the setup.

13 %x,y, give the center locations of the pixels (pixel 1 will be

14 %located at (x(1),y(1)) etc...)

15 %lambda is the used wavelength in micrometers

16

17 if nargin<6, help BlurImage; return; end

18 dx = x(2)-x(1); dy=y(2)-y(1);

19 if (abs(dx-dy) > eps), error(’square pixels required!’); return; end

20

21 %getting the variables out of the Sin structure

22 Iinper=Sin.I.Iin;

26

23 Ioutper=Sin.I.Iout;

24 Iborderper=Sin.I.Iborder;

25 Rin=Sin.R.Rin;

26 Rout=Sin.R.Rout;

27 Rborder=Sin.R.Rborder;

28

29

30

31 M=length(x);

32 N=length(y);

33

34 [Min,Mout,Mborder]= polygonImage(x, y,Poly); %calculating masks

35

36 %applying a gaussian filter to the masks to emulate the membrane not being

37 %a line and scales the intensities of the filtered border mask back to the

38 %entered intensity

39

40 NA=1; %Numerical Aperture of the setup

41 q= (0.61*lambda/NA)/dx; % resolution limit (FWHM of distribution) in pixels

42

43 sigma= sqrt((-(q/2)^2)/(2*log(0.5))); %sigma of the distribution

44

45 %stores the maximum of the non filtered mask for scaling purposes

46 max1b=max(Mborder(:));

47 max1in=max(Min(:));

48 max1out=max(Mout(:));

49

50 %filtering to simulate resolution limit

51 Min=imgaussfilt(Min,sigma);

52 Mout=imgaussfilt(Mout,sigma);

53 Mborder=imgaussfilt(Mborder,sigma);

54

55 %maximum of the filtered mask

56 max2b= max(Mborder(:));

57 max2in=max(Min(:));

58 max2out=max(Mout(:));

59

60 %scaling factor

61 relativeb= max1b/max2b;

62 relativein=max1in/max2in;

63 relativeout=max1out/max2out;

64

65 %keep track of definite outside/inside

66 borderindices=Mborder==0;

67 inindices=Min==0;

68 outindices=Mout==0;

69

70 %actual scaling

71 Mborder=(Mborder-mean(Mborder(:)))*relativeb +mean(Mborder(:));

72 Min=(Min-mean(Min(:)))*relativein +mean(Min(:));

73 Mout=(Mout-mean(Mout(:)))*relativeout +mean(Mout(:));

74

75 %makes sure the scaling does not mess with definite outside/inside

76 Mborder(borderindices)=0;

27

77 Min(inindices)=0;

78 Mout(Mout<0)=0;

79 Mout(outindices)=0;

80

81 %factor between Iparallel and Iperpendicular (based on desired anisotropy

82 %values and G-factor) is used to calculate

83 % the desired parallel intensities

84 Iinpar=(-(G+2*G*Rin)/(Rin-1))*Iinper;

85 Ioutpar=(-(G+2*G*Rout)/(Rout-1))*Ioutper;

86 Iborderpar=(-(G+2*G*Rborder)/(Rborder-1))*Iborderper;

87

88 %calculating the intensities as measured by a camera (hence the rounding)

89 Itotalpar= round((Min*Iinpar+Mout*Ioutpar+Mborder*Iborderpar));

90 Itotalper= round((Min*Iinper+Mout*Ioutper+Mborder*Iborderper));

91

92 %adding shot noise

93 scale=1*10^12;

94 Itotalparshot=scale*imnoise(Itotalpar/scale,’poisson’);

95 Itotalpershot=scale*imnoise(Itotalper/scale,’poisson’);

96

97 Itotalparnoise=zeros(M,N);

98 Itotalpernoise=zeros(M,N);

99 % generates on average 5 counts of noise and adds them =electronic noise

100 for i=1:N

101 for j=1:M

102 Itotalparnoise(i,j)=Itotalparshot(i,j)+abs(5*GaussianNoise(1));

103 end

104 end

105 for i=1:N

106 for j=1:M

107 Itotalpernoise(i,j)=Itotalpershot(i,j)+abs(5*GaussianNoise(1));

108 end

109 end

110

111

112

113

114 %takes pixels which are over 99% outside for background calculation

115 indices=Mout>0.99*dx^2;

116

117 %background reduction/calculation

118 bckgpar=mean(Itotalparnoise(indices));

119 bckgper=mean(Itotalpernoise(indices));

120

121 %number of pixels used for calculating the background

122 [number,~]=size(Mout(indices));

123 sigmabckgpar=bckgpar/sqrt(number);

124 sigmabckgper=bckgper/sqrt(number);

125

126 %background subtraction

127 correctedpar=Itotalparnoise-bckgpar;

128 correctedper=Itotalpernoise-bckgper;

129

130 %calculating the anisotropy

28

131 %Rreconstruct=(Itotalpar-G*Itotalper)./(Itotalpar+2*G*Itotalper);%no noise

132 %Rreconstructnoise=(Itotalparnoise-G*Itotalpernoise)./...

133 % (Itotalparnoise+2*G*Itotalpernoise);%shot + electronic noise

134 Rreconstructcorrected=(correctedpar-G.*correctedper)./...

135 (correctedpar+2*G.*correctedper); %noise+backgroundcorrection

136

137 %assuming 5% error in G for now

138 sigmaG=0.05*G;

139

140 %calculate the sigma of the anisotropy

141 sigmaR=sigma_sim(Itotalpernoise,sqrt(Itotalpernoise)...

142 ,Itotalparnoise,sqrt(Itotalparnoise),G,sigmaG,...

143 bckgpar,bckgper,sigmabckgpar,sigmabckgper);

144

145 end

8.3 Generation of masks for image generation:

Function that calculates the three masks (inside, outside, border)required to build an image of a
polygon.

1 function [Min, Mout, Mborder] = polygonImage(x, y, Poly, level)

2 % function [Min, Mout, Mborder] = polygonImage(x, y, Poly)

3 % generate three matrices describing outside, inside, and border

4 % of a polygon Poly on a pixel grid.

5 % P is a 2xN matrix of vertex coordinates

6 % x and y are the center coordinates of the pixel grid

7

8 Min=[]; Mout=[]; Mborder=[];

9 if nargin<4, level = 1; end

10 if nargin<3, help polygonImage; return; end

11 if isempty(x) || isempty(y), error(’need pixel grid data!’); return; end

12

13 if (level > 64), error(’too many recursions! Abort!’); end

14

15

16 % make sure pixels are square

17 dx = x(2)-x(1); dy=y(2)-y(1);

18 %if (abs(dx-dy) > eps), error(’square pixels required!’); return; end

19

20 NX = length(x); NY=length(y);

21

22 Min=zeros(NX,NY); Mout=Min; Mborder=Min; % initialize

23 dL = dx/sqrt(2); % maximum distance from line that may be inside pixel

24 dA = dx^2; % area of a pixel

25

26 area = polygonArea(Poly); % get orientation of polygon

27 if (area < 0) % flip

28 Poly = flipud(Poly); % reverse order -> make (mathematically) positive

29 fprintf(1,’flipped polygon to make it counter-clock-wise.\n’);

30 end

31 P=[Poly; Poly(1,:)]; % make polygon cyclic (ie P0->P1->...->PN->P0)

29

32

33 %% define outside and find limits for loop

34 xmin = find (x < (min(Poly(:,1)-dL)));

35 if ~isempty(xmin), xstart = max(xmin)+1; else xstart =1; end

36 xmax = find (x > (max(Poly(:,1)+dL))); xend = min(xmax)-1;

37 if ~isempty(xmax), xend = min(xmax)-1; else xend = NX; end

38 ymin = find (y < (min(Poly(:,2)-dL))); ystart = max(ymin)+1;

39 if ~isempty(ymin), ystart = max(ymin)+1; else ystart =1; end

40 ymax = find (y > (max(Poly(:,2)+dL))); yend = min(ymax)-1;

41 if ~isempty(ymax), yend = min(ymax)-1; else yend = NY; end

42

43 % mark outside as outside

44 Mout([xmin(:);xmax(:)],:)=1; Mout(:,[ymin(:);ymax(:)])=1;

45

46 % calculate border lines in the form ax + by + c = 0

47 NP = size(Poly,1);

48

49 L = [P(1:NP,2)-P(2:end,2) P(2:end,1)-P(1:NP,1)]; SQ = sqrt([diag(L*L’),...

50 diag(L*L’),diag(L*L’)]);

51 % a and b, normalization sqrt(a^2+b^2)

52 L = [L, -P(1:NP,2).*L(:,2)-P(1:NP,1).*L(:,1)]./SQ;

53 % reuse the factors already calculated; c = -(y0 a + x0 b)

54

55

56

57 alpha = atan2(L(:,2),L(:,1));

58 for ii = xstart:xend

59 for jj = ystart:yend

60 distances = L * [x(ii); y(jj); 1]; % calculate distance pixel -> lines

61

62 pxl_inside = all(distances > dL); % def -> inside is positive L

63 pxl_outside = any(distances < -dL);

64

65 if (pxl_outside)

66 Mout(ii,jj) = 1;

67 elseif (pxl_inside)

68 Min(ii,jj) = 1;

69 else

70 % now for the interesting part

71 NL_idx = find(abs(distances)<dL); % how many lines are close?

72 NL = length(NL_idx);

73 switch (NL)

74 case 0 % this should not happen

75 warning(’ERROR. Divide by cucumber. Please reinstall universe!’);

76 Mborder(ii,jj) = -1;

77 case 1 % default - we are close to the line

78 [pxl_in, pxl_out, pxl_border] = ...

79 linePixel(distances(NL_idx)./dx, alpha(NL_idx));

80 Min(ii,jj) = pxl_in;

81 Mout(ii,jj) = pxl_out;

82 Mborder(ii,jj) = pxl_border;

83 otherwise % corner, or other complications

84 Pts_idx = pointsPixel(Poly, [x(ii), y(jj)], dx/2);

85 NPts = length(Pts_idx);

30

86 if (NPts == 1) && (NL == 2) %% a corner!

87 [pxl_in, pxl_out, pxl_border] = ...

88 cornerPixel(Poly(mod([-2 -1 0]+Pts_idx,NP)+1,:), ...

89 [x(ii), y(jj)], dx);

90 Min(ii,jj) = pxl_in;

91 Mout(ii,jj) = pxl_out;

92 Mborder(ii,jj) = pxl_border;

93 else % time to supersample!

94 %fprintf(1,’supersample at (%.2f, %.2f): NL = %d,...

95 %NPts = %d.\n’,...

96 % x(ii), y(jj), NL, NPts);

97 [pxl_in, pxl_out, pxl_border] = polygonImage(...

98 x(ii)+dx*[-0.25, 0.25], y(jj)+dx*[-0.25, 0.25], ...

99 Poly, level+1);

100 Min(ii,jj) = sum(pxl_in(:));

101 Mout(ii,jj) = sum(pxl_out(:));

102 Mborder(ii,jj) = sum(pxl_border(:));

103 end % switch

104 end % switch

105 end % inside - outside - border

106 end % for jj

107 end % for ii

108

109 if level<2 %scales the masks to the pixel size

110 Min = Min*dA; Mout = Mout*dA; Mborder = Mborder*dx;

111 else % if level >2 then we have been supersampling, since supersampling

112 % divides a pixel into 2x2 pixels the area of a superssampled pixel is

113 % 0.25 the original pixel and the pixel length is 0.5 the original

114 % pixel so we scale by those amounts if we have supersampled

115 Min=Min*0.25; Mout=Mout*0.25; Mborder=Mborder*0.5;

116 end

117

118 %% EOF

8.4 Calculation for area of a polygon:

Subfunction that calculates the area of a polygon

1 function area = polygonArea(Poly)

2 % function area = polygonArea(Poly)

3 % return the area of the polygon described by Poly;

4 % the area may be negative, depending on the orientation of the polygon

5 % (clockwise = mathematically negative)

6

7 area = 0;

8 if (nargin<1) || (isempty(Poly)) || size(Poly,2)<2

9 return;

10 end

11

12 N = size(Poly,1);

13 P = [Poly; Poly(1,:)];

14

31

15 % replace sum with matrix multiplication

16 area = 0.5*(P(1:N,1)’*P(2:end,2) - P(2:end,1)’*P(1:N,2));

17

18 %% EOF

8.5 Calculation for a line through a pixel:

Subfunction that handles the calculation of amount of inside, outside and border contained within
a pixel for the case a line moves through the pixel.

1 function [pxl_in, pxl_out, pxl_border] = linePixel(d, angle)

2 % function [pxl_in, pxl_out, pxl_border] = linePixel(d, angle)

3

4 pxl_in=0; pxl_out=0; pxl_border=0;

5

6 if (nargin<2) || isempty(d) || isempty(angle), return; end

7

8 invert = (d<0); % in this case we need to swap inside and outside later

9

10 halfPi = pi/2; quartPi = pi/4;

11 alpha = mod(angle, halfPi);

12 d = abs(d);

13

14 if (alpha < eps) && (abs(d-0.5) < eps)

15 % this line goes along the edge of the pixel; 0 and -pi/2 are part

16 % of the pixel (left and bottom, thus (i-0.5/j-0.5)

17

18 % if d>0, the ’allowed’ angles are -pi/2 and 0

19 inside_pixel = (angle > -3*quartPi) && (angle < quartPi);

20 % avoid asking exact values - shorter than abs(angle - pi/2) < eps & ...

21

22 if xor(invert, inside_pixel)

23 % we belong

24 pxl_border = 1;

25 pxl_out = invert;

26 pxl_in = 1-pxl_out;

27 else

28 % we do not belong

29 pxl_border = 0;

30 pxl_in = invert;

31 pxl_out = 1-pxl_in;

32 end % do we belong?

33 return; % we are done!

34 end

35

36

37

38 if (alpha > quartPi), alpha = halfPi-alpha; end

39

40 if (d < sin(quartPi+alpha)/sqrt(2)) % inside the pixel!

41 dcritical = sin(quartPi-alpha)/sqrt(2);

42 if (d > dcritical) % case C

32

43 h = cos(quartPi-alpha)/sqrt(2)-d;

44 pxl_border = 2*h/sin(2*alpha);

45 pxl_out = h*pxl_border/2;

46 pxl_in = 1-pxl_out;

47 else % case A

48 pxl_border = 1/cos(alpha);

49 dArea = d*pxl_border;

50 pxl_in = 0.5 + dArea;

51 pxl_out = 0.5 - dArea;

52 end

53 else

54 pxl_border = 0; % line outside pixel

55 pxl_in = 1; pxl_out = 0;

56 end

57

58

59 if (invert) % need to switch inside and outside

60 % pxl_border is the same

61 placeholder = pxl_in;

62 pxl_in = pxl_out;

63 pxl_out = placeholder;

64 end % if invert

65

66 %% EOF

8.6 Finding points of the Polygon in a pixel:

Subfunction that finds the points of the entered polygon located inside a pixel.

1 function point_idx = pointsPixel(Poly, P, delta)

2 % function point_idx = pointsPixel(Poly, P)

3 % find points of the polygon in pixel around point P,

4 % delta is the half-size of the pixel

5 %

6 % note: we also find points on the border with the adjacent pixels to avoid

7 % a pathological situation in the decision tree (point in corner)

8

9 xP = Poly(:,1); yP = Poly(:,2);

10 point_idx = find((xP >= P(1)-delta) & (xP <= P(1)+delta) & ...

11 (yP >= P(2)-delta) & (yP <= P(2)+delta));

12

13 %% EOF

8.7 Calculation for a corner in a pixel:

Subfunction that handles the calculation of amount of inside, outside and border contained within
a pixel for the case a corner of the polygon is located inside the pixel.

1 function [pxl_in, pxl_out, pxl_border] = cornerPixel(Poly, P, dx)

2 % function [pxl_in, pxl_out, pxl_border] = cornerPixel(Poly, P, dx)

33

3 % Poly contains the three points generating the corner, only one of which is

4 % in the pixel; P is the position of the pixel center, dx the size of the pixel

5

6 pxl_in=0; pxl_out=0; pxl_border=0;

7

8 if (nargin<2) || isempty(Poly) || isempty(P), return; end

9 if (nargin<3) || isempty(dx), dx=1; end

10

11 pxlBorder=[0.5 0.5; -0.5 0.5; -0.5 -0.5; 0.5 -0.5]; % pixel borders

12 P0=(Poly(2,:)-P)/dx; % pivot point in pixel

13 P1=(Poly(1,:)-P)/dx;

14 P2=(Poly(3,:)-P)/dx;

15 dP1 = P0-P1; dP1 = dP1/norm(dP1); % [a1 b1]

16 dP2 = P2-P0; dP2 = dP2/norm(dP2); % [a2 b2]

17 Lp = polygon2Lines(pxlBorder);

18 numerator = Lp*[P0’; 1];

19 denominator1 = Lp*[dP1’; 0];

20 denominator2 = Lp*[dP2’; 0];

21 lambda1 = numerator./denominator1;

22 lambda1 = lambda1(lambda1>0);

23 lambda2 = -numerator./denominator2;

24

25 %catching the case in which the point is located on a pixel border

26 if all(lambda1<0)

27 lambda1=0;

28 else

29 lambda1 = lambda1(lambda1>=0);

30 end

31

32 if all(lambda2<0)

33 lambda2=0;

34 else

35 lambda2 = lambda2(lambda2>=0);

36 end

37 lambda1_smallest = min(lambda1);

38 lambda2_smallest = min(lambda2);

39 P1 = P0 - lambda1_smallest*dP1;

40 P2 = P0 + lambda2_smallest*dP2;

41

42 phi1 = atan2(P1(2), P1(1)); % minus x(i) and y(j) ...

43 phi2 = atan2(P2(2), P2(1));

44 %phi0 = atan2(P0(2), P0(1));

45

46 Q=P0;

47 if (max(abs(P2))- 0.5<eps) % inside; P1-[x(i) y(j)]

48 Q=[Q;P2];

49 pxl_border = norm(P2-P0);

50 end

51

52 % TODO: double check that I move the right way

53 % ie consistent with the defintion of inside/outside the main polygon!

54

55 piFourths = pi/4;

56 corners = [3 1 -1 -3 3]*piFourths; % look for first corner

34

57 %catching the case if phi2 is smaller than -3/4 pi

58 if phi2<= -3/4*pi

59 phi2=phi2+2*pi;

60 end

61

62 phi = corners(corners<phi2);

63

64 if(isempty(phi))

65 phi=(-3*piFourths);

66 end

67 phi=phi(1);

68 if (phi1>phi2) phi1 = phi1 - 2*pi; end

69

70 while phi > phi1

71 Q = [Q; [cos(phi) sin(phi)]/sqrt(2)];

72 phi = phi - pi/2;

73 end

74

75

76

77 if (max(abs(P1))-0.5<eps) % inside; P1-[x(i) y(j)]

78 Q = [Q; P1];

79 pxl_border = pxl_border + norm(P1-P0);

80 end

81

82 pxl_in = polygonArea(Q);

83 if pxl_in<0, pxl_in = pxl_in + 1; end

84 pxl_out = 1-pxl_in;

85

86 %% EOF

8.8 Calculation for two line through a pixel:

Subfunction that calculates the coëfficients of lines describing the border of a polygon.

1 function L = polygon2Lines(Poly)

2

3 L = [];

4 if (nargin<1) || (isempty(Poly)) || size(Poly,2)<2

5 return;

6 end

7

8 N = size(Poly,1);

9 P = [Poly; Poly(1,:)];

10

11 L = [P(1:N,2)-P(2:end,2) P(2:end,1)-P(1:N,1)];

12 SQ = sqrt([diag(L*L’),diag(L*L’),diag(L*L’)]); % a and b, normalization sqrt(a^2+b^2)

13

14 L = [L, -P(1:N,2).*L(:,2)-P(1:N,1).*L(:,1)]./SQ;

15 % reuse the factors already calculated; c = -(y0 a + x0 b)

16

17 %% EOF

35

8.9 Generation of Gaussian noise:

Function that generates random gaussian noise with standard deviation sigma.

1 function [output] = GaussianNoise(sigma)

2 %Generates a random deviation from 0 for the standard deviation sigma

3

4

5 u1 = rand(1);

6 u2 = rand(1);

7

8

9 z0 = sqrt(-2.0 * log(u1)) * cos(2*pi * u2);

10 z1 = sqrt(-2.0 * log(u1)) * sin(2*pi * u2);

11 output= z0 * sigma ;

12

13 end

8.10 Calculation of sigmas from the simulation:

Subfunction that calculates all the sigmas of a simulation.

1 function [sig_ani] = sigma_sim(Iper,sigmaIper,Ipar,sigmaIpar,G,sigmaG,bgpar,bgper,...

2 sigmabgpar,sigmabgper)

3 %calculatess the sigma of the anisotropy image from everything that goes in

4 %Derivatives used here are calculated with Mathematica.

5

6 a=1.69;

7 G = double(G);

8 Ipar = double(Ipar);

9 Iper = double(Iper);

10

11

12 %---derivatives and uncertainties------------------------------

13 denom = (bgpar+2.*bgper.*G -Ipar -2.*G.*Iper).^2;%denominator

14

15 d_ani_I_par = double((3.*G.*(Iper-bgper))./denom); %derivative

16 sig_I_par = double(sigmaIpar); %uncertainty

17

18 d_ani_I_per = double((3.*G.*(-Ipar+bgpar))./denom);%derivative

19 sig_I_per = double(sigmaIper);%uncertainty

20

21 d_ani_bgI_par = double((3.*G.*(Iper+bgper))./denom);%derivative

22 sig_bgI_par = sigmabgpar;%uncertainty

23

24 d_ani_bgI_per = double((3.*G.*(Ipar-bgpar))./denom);%derivative

25 sig_bgI_per = sigmabgper;%uncertainty

26

27

28 d_ani_G = double((-3.*(bgpar-Ipar).*(bgper-Iper))./denom);%derivative

29 sig_G = double(sigmaG);%uncertainty

30

36

31

32 %--

33

34 sig_ani = (((d_ani_I_par.*sig_I_par).^2 ...

35 + (d_ani_I_per.*sig_I_per).^2 ...

36 + (d_ani_bgI_par.*sig_bgI_par).^2 ...

37 + (d_ani_bgI_per.*sig_bgI_per).^2 ...

38 + (d_ani_G.*sig_G).^2 ...

39).^(1/2));

40

41 %if silly unphysical things happen, set them to 0

42 sig_ani(isnan(sig_ani))=0;

43 sig_ani(isinf(sig_ani))=0;

44

45 end

9 Appendix B analysis code

This appendix contains all the Matlab code used to analyse data generated by the simulation.

9.1 Structure based analysis:

Function that handles the structure based analysis. Outputs a list of positions and averaged values.
Takes as input the locations of the pixels, begin and endpoint for the analysis, gridsize, the image
to analyse, the stepsize and a logical which should be 1 if the image to analyse is an uncertainty
image (which changes the way the average should be taken).

1 function [imageout] = analysestruct(x,y,xbegin,xend,dim ,imagein,stepsize,logical)

2 %analyses a grid pixels of size dim along a line from xbegin to xend of

3 %imagein, note for dim that dim(2) is perpendicular to the line and dim(1)

4 %is along the line so a 3x5 grid will be 5 pixellenghts perpendicular and 3

5 %pixellenghts along the line

6 %(x,y) give the coordinates of the pixels

7 %logical is a logical that indicates if the imagein is a uncertainty image

8 %or not (changes the way in which the values are calculated)

9

10 if nargin<7, help analysestruct; return; end

11 dx = x(2)-x(1); dy=y(2)-y(1);

12 if (abs(dx-dy) > eps), error(’square pixels required!’); return; end

13

14 dx=x(2)-x(1);%lenght of pixel

15 direction=xend-xbegin; %direction of the line along which we analyze the pixels

16 directionnorm=direction/norm(direction); %normalised direction of the line

17

18 %number of steps needed to go along the line

19 steps=(direction/directionnorm)/(dx*stepsize);

20

21 imageout=[];

22 position=[0,0];%initialisation position

23 for i=1:steps

37

24

25 position=position+directionnorm*dx*stepsize;

26

27 if i==1 %make sure the first iteration uses the starting position

28 position=xbegin;

29 end

30

31 %calculates the Polygon to be used

32 Polygon=calcPoly(dx,position,directionnorm,dim);

33 %plotting the Polygon on top of the image, uncomment if verification of

34 %this is needed.

35 % figure

36 % imagesc(x,y,imagein)

37 % hold on

38 % plot(Polygon(:,1),Polygon(:,2),’-bo’)

39 % plot([xbegin(1),xend(1)],[xbegin(2),xend(2)],’-rx’)

40

41

42 Min=polygonImage(x,y,Polygon); %determines which pixels to use

43 Min=Min’;

44 %selects all inside pixels an calculates their weight factors

45 number=Min(Min>0);

46 sum1= sum(number(:));

47 weights=number/sum1;

48 sumw=sum(weights(:));

49

50

51 %check if weights are correctly calculated uses eps *100

52 %cause due to rounding errors it tends to go above eps

53 %and E-14 is acceptable

54

55 if abs(sumw-1)>eps*100

56 fprintf(1,’position:%f and sumweights:%f’,position(1),sumw)

57 error(’weights are wrong’)

58 end

59 % if there are no pixels over half inside skip this step

60 if ~isempty(number)

61 %calculates a weighted average over all pixels over half inside the Polygon

62 %if the image is an uncertainty image,

63 %switch to the proper propagation method

64 if logical

65 val=sum((double(imagein(Min>0)).^2).*weights.^2);

66 val=sqrt(val);

67 else

68 val=sum(double(imagein(Min>0)).*weights);

69 end

70 imageout=[imageout; [position,val]];

71 end

72

73 end %for

74 end

38

9.2 Calculation of a Polygon for structure based analysis method:

Subfunction that calculates a polygon based on location of the pixel, direction of te line moved
along in the structure based analysis and the desired size of the pixel grid for the analysis.

1 function [Poly] = calcPoly(dx,location,direction,dim)

2 %Calculates the vertexes of a Polygon around location, direction is the

3 %direction along which we move the Polygon for structure based analysis,

4 %dim is the size of the structure (in pixels) which we want to analyse

5 %dx is the length of a pixel side

6

7

8 %finds the direction perpendicular to the movement

9 directionperp=[direction(2),-direction(1)];

10 %scales the normalised direction to the pixel size

11 directionnorm=direction/norm(direction)*dx;

12 %scales the normalised perpendicular direction to the pixel size

13 directionperpnorm=directionperp/norm(directionperp)*dx;

14

15 %calculate the four verteces

16 x1=location+1/2*dim(1)*directionnorm+1/2*dim(2)*directionperpnorm;

17 x2=location+1/2*dim(1)*directionnorm-1/2*dim(2)*directionperpnorm;

18 x3=location-1/2*dim(1)*directionnorm-1/2*dim(2)*directionperpnorm;

19 x4=location-1/2*dim(1)*directionnorm+1/2*dim(2)*directionperpnorm;

20

21 %put them in a Polynomial

22 Poly=[x1;x2;x3;x4];

23

24 end

9.3 Analysis of stepsize data:

Function used to analyse and plot stepsize data. Input is the path of the data.

1 function [output_args] = stepsize(path)

2 %stepsize: analyses the data in path for stepsize influence and plots it

3

4 stepsizes=[0.5,1,2,3,4,5,6,7,8,9];

5 differences=[];

6 sigmas=[];

7

8 [difference,sigma]=averaging(strcat(path,’\3_3_0.5’));

9 differences=[differences;difference];

10 sigmas=[sigmas;sigma];

11

12 [difference,sigma]=averaging(strcat(path,’\3_3_1’));

13 differences=[differences;difference];

14 sigmas=[sigmas;sigma];

15

16 [difference,sigma]=averaging(strcat(path,’\3_3_2’));

17 differences=[differences;difference];

18 sigmas=[sigmas;sigma];

39

19

20 [difference,sigma]=averaging(strcat(path,’\3_3_3’));

21 differences=[differences;difference];

22 sigmas=[sigmas;sigma];

23

24 [difference,sigma]=averaging(strcat(path,’\3_3_4’));

25 differences=[differences;difference];

26 sigmas=[sigmas;sigma];

27

28 [difference,sigma]=averaging(strcat(path,’\3_3_5’));

29 differences=[differences;difference];

30 sigmas=[sigmas;sigma];

31

32 [difference,sigma]=averaging(strcat(path,’\3_3_6’));

33 differences=[differences;difference];

34 sigmas=[sigmas;sigma];

35

36 [difference,sigma]=averaging(strcat(path,’\3_3_7’));

37 differences=[differences;difference];

38 sigmas=[sigmas;sigma];

39

40 [difference,sigma]=averaging(strcat(path,’\3_3_8’));

41 differences=[differences;difference];

42 sigmas=[sigmas;sigma];

43

44 [difference,sigma]=averaging(strcat(path,’\3_3_9’));

45 differences=[differences;difference];

46 sigmas=[sigmas;sigma];

47

48 figure

49 errorbar(stepsizes,differences,sigmas,’-bx’,’linewidth’,2, ’MarkerSize’,12)

50

51 end

9.4 Analysis of gridsize data:

Function used to analyse and plot gridsize data. Input is the path of the data.

1 function [output_args] = gridsize(path)

2 %gridsize:analyses the data in path for gridsize influence and plots it

3

4 stepsizes=[3,5,7,9,11];

5 differences=[];

6 sigmas=[];

7

8 [difference,sigma]=averaging(strcat(path,’\3x3’));

9 differences=[differences;difference];

10 sigmas=[sigmas;sigma];

11

12 [difference,sigma]=averaging(strcat(path,’\3x5’));

13 differences=[differences;difference];

14 sigmas=[sigmas;sigma];

40

15

16 [difference,sigma]=averaging(strcat(path,’\3x7’));

17 differences=[differences;difference];

18 sigmas=[sigmas;sigma];

19

20 [difference,sigma]=averaging(strcat(path,’\3x9’));

21 differences=[differences;difference];

22 sigmas=[sigmas;sigma];

23

24 [difference,sigma]=averaging(strcat(path,’\3x11’));

25 differences=[differences;difference];

26 sigmas=[sigmas;sigma];

27

28

29 figure

30 errorbar(stepsizes,differences,sigmas,’-bx’,’linewidth’,2, ’MarkerSize’,12)

31 end

9.5 Analysis of inner anisotropy data:

Function used to analyse and plot inner anisotropy data. Input is the path of the data.

1 function [output_args] = innerani(path)

2 %stepsize: analyses the data in path for inner anisotropy influence and

3 %plots it

4

5 stepsizes=[0.16,0.18,0.20,0.22,0.23,0.24,0.25,0.26];

6 differences=[];

7 sigmas=[];

8

9 [difference,sigma]=averaging(strcat(path,’\0.16’));

10 differences=[differences;difference];

11 sigmas=[sigmas;sigma];

12

13 [difference,sigma]=averaging(strcat(path,’\0.18’));

14 differences=[differences;difference];

15 sigmas=[sigmas;sigma];

16

17 [difference,sigma]=averaging(strcat(path,’\0.20’));

18 differences=[differences;difference];

19 sigmas=[sigmas;sigma];

20

21 [difference,sigma]=averaging(strcat(path,’\0.22’));

22 differences=[differences;difference];

23 sigmas=[sigmas;sigma];

24

25 [difference,sigma]=averaging(strcat(path,’\0.23’));

26 differences=[differences;difference];

27 sigmas=[sigmas;sigma];

28

29 [difference,sigma]=averaging(strcat(path,’\0.24’));

30 differences=[differences;difference];

41

31 sigmas=[sigmas;sigma];

32

33 [difference,sigma]=averaging(strcat(path,’\0.25’));

34 differences=[differences;difference];

35 sigmas=[sigmas;sigma];

36

37 [difference,sigma]=averaging(strcat(path,’\0.26’));

38 differences=[differences;difference];

39 sigmas=[sigmas;sigma];

40

41

42 figure

43 errorbar(stepsizes,differences,sigmas,’-bx’,’linewidth’,2, ’MarkerSize’,12)

44

45 end

9.6 Averaging of multiple datasets:

Subfunction used to calculate the average value and sigma of 20 datasets.

1 function [verschilend, sigmaend] = averaging(path)

2 %averaging: averages the differencess between simulation and calculation

3 %and their errors for twenty datasets located at path and outputs them

4

5 verschiltotaal=[];

6 sigmatotaal=[];

7

8 [verschil,sigma]=verwerking(strcat(path,’\data1’));

9 verschiltotaal=[verschiltotaal;verschil];

10 sigmatotaal=[sigmatotaal,sigma];

11

12 [verschil,sigma]=verwerking(strcat(path,’\data2’));

13 verschiltotaal=[verschiltotaal;verschil];

14 sigmatotaal=[sigmatotaal,sigma];

15

16 [verschil,sigma]=verwerking(strcat(path,’\data3’));

17 verschiltotaal=[verschiltotaal;verschil];

18 sigmatotaal=[sigmatotaal,sigma];

19

20 [verschil,sigma]=verwerking(strcat(path,’\data4’));

21 verschiltotaal=[verschiltotaal;verschil];

22 sigmatotaal=[sigmatotaal,sigma];

23

24 [verschil,sigma]=verwerking(strcat(path,’\data5’));

25 verschiltotaal=[verschiltotaal;verschil];

26 sigmatotaal=[sigmatotaal,sigma];

27

28 [verschil,sigma]=verwerking(strcat(path,’\data6’));

29 verschiltotaal=[verschiltotaal;verschil];

30 sigmatotaal=[sigmatotaal,sigma];

31

32 [verschil,sigma]=verwerking(strcat(path,’\data7’));

42

33 verschiltotaal=[verschiltotaal;verschil];

34 sigmatotaal=[sigmatotaal,sigma];

35

36 [verschil,sigma]=verwerking(strcat(path,’\data8’));

37 verschiltotaal=[verschiltotaal;verschil];

38 sigmatotaal=[sigmatotaal,sigma];

39

40 [verschil,sigma]=verwerking(strcat(path,’\data9’));

41 verschiltotaal=[verschiltotaal;verschil];

42 sigmatotaal=[sigmatotaal,sigma];

43

44 [verschil,sigma]=verwerking(strcat(path,’\data10’));

45 verschiltotaal=[verschiltotaal;verschil];

46 sigmatotaal=[sigmatotaal,sigma];

47

48 [verschil,sigma]=verwerking(strcat(path,’\data11’));

49 verschiltotaal=[verschiltotaal;verschil];

50 sigmatotaal=[sigmatotaal,sigma];

51

52 [verschil,sigma]=verwerking(strcat(path,’\data12’));

53 verschiltotaal=[verschiltotaal;verschil];

54 sigmatotaal=[sigmatotaal,sigma];

55

56 [verschil,sigma]=verwerking(strcat(path,’\data13’));

57 verschiltotaal=[verschiltotaal;verschil];

58 sigmatotaal=[sigmatotaal,sigma];

59

60 [verschil,sigma]=verwerking(strcat(path,’\data14’));

61 verschiltotaal=[verschiltotaal;verschil];

62 sigmatotaal=[sigmatotaal,sigma];

63

64 [verschil,sigma]=verwerking(strcat(path,’\data15’));

65 verschiltotaal=[verschiltotaal;verschil];

66 sigmatotaal=[sigmatotaal,sigma];

67

68 [verschil,sigma]=verwerking(strcat(path,’\data16’));

69 verschiltotaal=[verschiltotaal;verschil];

70 sigmatotaal=[sigmatotaal,sigma];

71

72 [verschil,sigma]=verwerking(strcat(path,’\data17’));

73 verschiltotaal=[verschiltotaal;verschil];

74 sigmatotaal=[sigmatotaal,sigma];

75

76 [verschil,sigma]=verwerking(strcat(path,’\data18’));

77 verschiltotaal=[verschiltotaal;verschil];

78 sigmatotaal=[sigmatotaal,sigma];

79

80 [verschil,sigma]=verwerking(strcat(path,’\data19’));

81 verschiltotaal=[verschiltotaal;verschil];

82 sigmatotaal=[sigmatotaal,sigma];

83

84 [verschil,sigma]=verwerking(strcat(path,’\data20’));

85 verschiltotaal=[verschiltotaal;verschil];

86 sigmatotaal=[sigmatotaal,sigma];

43

87

88 verschilend=mean(verschiltotaal); % taking the mean of all the differences

89 sigmaend=mean(sigmatotaal)/sqrt(20); %taking the mean of all the sigmas

90

91

92

93 end

9.7 Finding the deviation and its sigma of a dataset:

Subfunction that finds a maximum in the simulated anisotropy data and a maximum in the
anisotropy data from the structure based analysis. Determines the difference between the two
and its sigma.

1 function [verschil, sigma] = verwerking(filename)

2 %verwerking: finds maximum in a simulated dataset and maximum in the

3 %calculated data (should also be a maximum if everything is ok)

4 %and then finds the corresponding sigmas, subtracts the calculated value

5 %of the maximum from the simulated value and determines its sigma.

6

7 %loads the file and the relevant variables containing the anisotropy data

8 file=matfile(filename);

9 calcR=file.calcR;

10 calcsigma=file.calcsigma;

11 dataR=file.dataR;

12 datasigma=file.datasigma;

13

14 %finds the maxima

15 maxR=max(dataR(:,3));

16 maxRcalc=max(calcR(:));

17 %finds the corresponding sigmas

18 sigma1=datasigma(abs(dataR-maxR)<eps);

19 sigma2=calcsigma(abs(calcR-maxRcalc)<eps);

20 %determines the difference between simulation and calculation

21 %(in procentual representation) and its sigma

22 verschil=100*(maxRcalc-maxR)/maxR;

23 sigma=sqrt((sigma1^2)*((100/maxR)^2) +...

24 (sigma2^2)*((100*maxRcalc/(maxR^2))^2));

25

26

27

28

29 end

44

	Introduction
	Theory
	Fluorescence microscopy
	FRET
	Anisotropy
	Typical experimental setup
	Modeling the setup
	Lines through pixels

	Methods
	Structure based analysis

	Results
	Conclusion and Discussion
	Acknowledgements
	References
	Appendix A Simulation code
	Generating and calling analysis of data:
	Generation of Intensity and anisotropy data:
	Generation of masks for image generation:
	Calculation for area of a polygon:
	Calculation for a line through a pixel:
	Finding points of the Polygon in a pixel:
	Calculation for a corner in a pixel:
	Calculation for two line through a pixel:
	Generation of Gaussian noise:
	Calculation of sigmas from the simulation:

	Appendix B analysis code
	Structure based analysis:
	Calculation of a Polygon for structure based analysis method:
	Analysis of stepsize data:
	Analysis of gridsize data:
	Analysis of inner anisotropy data:
	Averaging of multiple datasets:
	Finding the deviation and its sigma of a dataset:

