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The evolution of the climate in terms of global mean surface temperature (GMST) under
anthropogenic forcing scenarios is explored with respect to the warming targets of 1.5 K
and 2 K as set in the Paris agreement. For the first time we successfully use Linear
Response Theory to combine a large number of complex climate models from the CMIP5
ensemble, allowing us to determine the GMST response to any CO2 forcing scenario. We
construct a simple stochastic model, forced by CO2 emissions, that well recovers ensemble
mean and variance of the CMIP5 GMST. The Point of No Return, the point in time when
it is too late to reach a target, is derived, and we show its dependence on cumulative
emissions, climate uncertainty, risk tolerance and stringency of efforts to combat climate
change. This yields an easy-to-communicate result to inform debate on climate change
action. Based on our assessment the 1.5 K target is not deemed reachable anymore, and
only a limited time remains to start ambitious efforts to reach the 2 K goal. In addition,
using simple economic assumptions we find optimal pathways for energy transitions to a
carbon-free era and show how they depend on the warming target.

1. Introduction

The Earth System is currently in a state of rapid change, in particular rapid warming,
that is unprecedented in the historical temperature and geological greenhouse gas
concentrations records (Pachauri et al. 2014). This change is primarily driven by
the rapid increase in atmospheric concentrations of greenhouse gases (GHG) due to
anthropogenic emissions since the industrial revolution (Pachauri et al. 2014; Myhre
et al. 2013a). Changes in natural physical and biological systems are already being
observed (Rosenzweig et al. 2008), and efforts are made to determine the “anthropogenic
impact” on particular (extreme weather) events (Haustein et al. 2016). Nowadays, the
question is not so much if the climate will change as a result of human interference
(which has led to the phrasing of the term ‘anthropocene’ (Crutzen 2002)) but by how
much it will change, and whether this will to dangerous anthropogenic interference with
the climate. The exact dynamics of the climate system in a high-GHG world (such as
brought about by unmitigated business-as-usual emission pathways) are not well known
and models differ in their predictions for which there may be fundamental reasons
(Roe and Baker 2007). In addition, researchers have attempted to identify points in the
climate system, labeled ‘tipping points’ (Lenton et al. 2008; Cai et al. 2016) or ‘critical
transitions’ (Lucarini and Bódai 2017) that could be triggered by warming above some
threshold and lead to large-scale, irreversible change with dramatic consequences for
ecosystems, human societies and economies. Lists of such elements commonly include
the Atlantic Meridional Overturning Circulation (AMOC), the land-based ice sheets
in Greenland and Antarctica, the Indian summer monsoon, and the El Niño Southern
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Oscillation (ENSO) (Lenton et al. 2008; Cai et al. 2016). How exactly the tipping would
proceed and what the respective thresholds are is often not well known (Lenton et al.
(2008), for example, use ‘expert elicitation’).

As much of the dynamics of the climate behavior is unknown and the system itself is
characterized by feedbacks, chaos and stochastic dynamics (Dijkstra 2013), the debate
on action on climate change is focused on the question of risk and how the probability
of dangerous climate change can be reduced. In the scientific and political discussion
targets on ‘allowable’ warming (in terms of change in Global Mean Surface Temperature
(GMST) relative to pre-industrial conditions) have turned out to be very salient, with
the 2 K warming threshold commonly seen as the highest justifiable threshold to avoid
the worst effects (Pachauri et al. 2014). Indeed, in the Paris Conference it was agreed
to attempt to limit warming below 1.5 ◦C (United Nations 2015). When we speak of
“targets” in this context it is to be understood as ensuring non-exceedance of the
thresholds.

In this work we want to contribute to the debate on if, and how, these targets can
be reached and what they imply on the transition the global economy would have to
undergo. In particular, taking into account the chaotic and stochastic nature of the
climate and the risk tolerance of decision makers, we want to do so in a probabilistic
fashion. Fundamentally, we ask:

If we want to limit warming to some threshold in the year 2100, while accepting a
certain risk tolerance of actually exceeding it, what is the latest point in time we have
to start to ambitiously reduce fossil fuel emissions?

The point in time when it is ‘too late’ to act in order to reach the warming target
is called the Point of No Return (PONR). Clearly, the value of PONR will depend on a
number of things, such as the climate system dynamics and the tools at our disposal to
reduce emissions. Crucially, we require a model of the global climate that is a) accurate
enough that it gives a realistic picture of the behavior of GMST under climate change
scenarios, b) is forced by fossil fuel emissions, c) is simple enough to be evaluated for a
very large number of scenarios and d) provides information about risk, i.e. it cannot be
purely deterministic.

Fulfilling these requirements sets the outline of this thesis. We start by constructing
a simple yet accurate model of GMST change. As the most comprehensive dataset
available we use model data from the CMIP5 experiments and apply Linear Response
Theory to inform the ensemble behavior (section 2). To our knowledge this is the first
attempt to tackle CMIP5 with this methodology. We then continue in section 3 to build
a simple State Space Model of seven variables that well represents CMIP5 GMST mean
and variance, giving us a simple, easy-to-use, fast-to-integrate tool that is physically
motivated, constrained by complex model data and enables us to study a variety of
interesting problems. This is what we proceed to do in section 4 where we – with no
or very few assumptions on the global economy – determine two metrics that give an
intuitive grasp on the behavior of the climate system under anthropogenic forcing: First,
the Safe Carbon Budget (SCB), the maximum permissible amount of cumulative fossil
CO2 emissions that still allows us to reach a given target on global warming, and second
the Point of No Return (PONR). We show how both metrics depend on the stochastic
nature of the climate, the risk we are willing to accept and, for the PONR, the tools at
our disposal to combat emissions.
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After finding in section 4 simple, easy-to-communicate results that still have a very
strong physical backing, we tackle in section 5 the question of determining the optimal
transition to the carbon-free era, assuming we want to meet a given target. For this we
introduce some basic economic theory and find welfare-optimizing transition pathways
under different formulations of climate damages. In section 6 we discuss our results and
conclude with an outlook on future applications of our methodology.

2. Linear Response Theory on the CMIP5 Ensemble

As part of the CMIP5 experiments† many large-scale coupled climate models were
subjected to the same forcings for a number of scenarios (Taylor et al. 2012). As all
models were designed to represent the same (physical) processes but used different
formulations, parameterizations, resolutions and implementations, the underlying idea is
that the ensemble of results from different models offers a glimpse into the (statistical)
properties of the real climate and that the drawbacks of each model compensate, with
the ensemble mean giving a better image of the “truth” than any individual model.

We extend this view and perceive each of these model runs as one possible realization of
the real climate, treating them as statistically equivalent. With this view we can apply
ideas and methods from statistical physics, namely Linear Response Theory (LRT), that
allow us to examine the behavior of the climate system via ensemble statistics.

In this section we briefly present the mathematical framework and the data used,
before we apply the theory to the data.

2.1. Linear Response Theory

Ruelle (Ruelle 1998a,b) have shown how to obtain the response of general non-
equilibrium systems to weak forcings (Linear Response Theory, LRT, in this context
thereby often called Ruelle Response Theory (RRT)). This approach was successfully
applied to a conceptual climate model (Lucarini and Sarno 2011) and to simplified GCMs
(Ragone et al. 2016; van Zalinge et al. 2017). In these studies LRT has performed well
and was able to predict the impact of arbitrary CO2 forcing scenarios on GMST. At the
core of LRT stands the expansion of statistical properties of a chosen observable φ (such
as mean and variance of GMST) under the forcing f(t) as a perturbation series

φf (t) = φ0 +

∞∑
n=1

φ
(n)
f (t) (2.1)

with unperturbed observable φ0 and perturbative terms of order n given by φnf (t). Linear
response theory cuts the series after the first term

φ
(1)
f (t) =

∫ +∞

−∞
G

(1)
φ (t′)f(t− t′)dt′ (2.2)

† Coupled Model Intercomparison Project 5
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with G
(1)
φ the first order Green’s function. With this function known the (linear) response

to any forcing can be calculated. Taking the Fourier transform of Eq. 2.2 reveals that

φ̃
(1)
f (ω) = χ

(1)
φ (ω)f̃(ω) (2.3)

⇒ Gφ(t) = F−1
(
φ̃
(1)
f (ω)

f̃(ω)

)
(2.4)

with inverse Fourier transform F−1 and susceptibility χ
(1)
φ (ω) = F

(
G

(1)
φ (t)

)
. Hence

in principle, once the time evolution of observable φ under forcing f(t) is known one
can apply Eq. 2.4 to determine the Green’s function. However, this approach involves
the practical complication that it requires taking numerical forward and inverse Fourier
transforms of timeseries, many of which may not be ‘nice’ for that purpose (e.g. not
periodic in the window considered) so the result of Eq. 2.4 may not be well-behaved.
Therefore, in practice we use the special case of a step-wise forcing f(t) = Aθ(t) with
constant A and Heaviside function θ(t). Plugging this in Eq. 2.2 the expression simplifies
to

G
(1)
φ (t) =

1

A

d

dt

[
φ
(1)
f (t)

]
(2.5)

which is much more well-behaved and will be used from now on.

2.2. Data

The backbone of our study is the CMIP5 data obtained from the German Climate
Computing Center (DKRZ)†. We use the pre-industrial control runs (labeled piControl),
the forcing scenarios with abrupt CO2 quadrupling (abrupt4xCO2) and smooth 1%
CO2 increase per year (1pctCO2). Besides those idealized experiments we use the RCP
(Representative Concentration Pathways) scenarios labeled 2.6, 4.5, 6.0 and 8.5 that
represent very moderate to very high forcing scenarios deemed to be plausible (the
numbers give the radiative forcing in W m−2 in 2100) (Taylor et al. 2012). Their forcings
(concentrations (Meinshausen et al. 2011) and emissions (van Vuuren et al. 2007; Clarke
et al. 2007; Fujino et al. 2006; Riahi et al. 2007)) are obtained from the RCP Database‡.

We focus on the annual-mean area-weighted Global Mean Surface Temperature (GMST).
For the RCP scenarios GMST is directly available from KNMI’s Climate Explorer¶. We
decide to use only those ensemble members for which the control run and at least one
perturbation run are available, leading to 34 members for the abrupt and 39 for the
smooth forcing experiment. Considering those members from the RCP runs that we also
have in the abrupt forcing run, we have 25 members for RCP2.6, 30 for RCP4.5, 19 for
RCP6.0 and 29 for RCP8.5.

For illustration we show the properties of the RCP4.5 ensemble in Fig. 1, together
with the distribution of deviations from the mean response. We consider the gaussianity
satisfactory for now and proceed to compute the linear response from the ensemble mean
of the simulations.

† World Data Center for Climate at https://cera-www.dkrz.de/ and the ESGF Node at
DKRZ at https://esgf-data.dkrz.de
‡ available at http://tntcat.iiasa.ac.at/RcpDb and http://www.pik-potsdam.de/~mmalte/rcps/

¶ http://climexp.knmi.nl
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Figure 1: Statistics of RCP4.5 ensemble. Left: Time evolution of ensemble mean (top left,
mean in blue, ±1σ in orange, ±2σ in green), standard deviation (top right), skewness
(bottom left) and excess kurtosis (bottom right). Right: Probability density distribution
of deviations from the mean response over 1850-2100, with fitted normal distribution in
orange.

2.3. Application

The CO2 concentration as a function of time for the abrupt quadrupling and smooth
CO2 increase is defined as

CCO2,abrupt(t) = C0(3θ(t) + 1) (2.6)

CCO2,smooth(t) =

{
C0 , t 6 0

C01.01t , t > 0
(2.7)

with time in years from the start of the forcing, pre-industrial CO2 concentration C0

and Heaviside function θ(t). We obtain the radiative forcing due to CO2 relative to
pre-industrial conditions from

∆F = αCO2 ln

(
CCO2(t)

C0

)
(2.8)

with αCO2 = 5.35 W m−2 (Myhre et al. 2013a). The Green’s function is computed as
outlined in section 2.1 from the abrupt forcing case as the time derivative of the response

GT (t) =
1

∆Fabrupt

d

dt
∆Tabrupt (2.9)

where ∆Fabrupt(t) = const. = ln(4C0/C0) = ln(4). As discussed, we obtain the temper-
ature evolution (i.e. the deviation from the pre-industrial state) for any forcing via the
convolution of the Green’s function and an arbitrary forcing function ∆Fany

∆Tany(t) =

∫ t

0

GT (t′)∆Fany(t− t′) dt′ (2.10)

In order to judge the quality of our approach we use equation 2.10 to compute the
response for our two scenarios. As equation 2.9 is exact we expect with ∆Fany = ∆Fabrupt
to exactly reproduce the abrupt CMIP5 response. In addition, for LRT to be useful
we have to be able to reasonably reproduce the smooth 1 % yr−1 response with



6 M. Aengenheyster

0 50 100
Years

0

1

2

3

4

5

〈∆
T
〉(

K
)

Mean

CMIP5, abrupt4x
CMIP5, 1pctyear
LRT, abrupt4x
LRT, 1pctyear

0 50 100
Years

0.0

0.2

0.4

0.6

0.8

1.0

σ
2 ∆
T

(K
2
)

Variance

Figure 2: Ensemble mean (left) and variance (right) of temperature response from CMIP5
(solid) and LRT reproduction (dashed). Year 0 gives the start of the perturbation.

∆Fany = ∆Fsmooth. We show the results in Fig. 2. We find that LRT applied to the
abrupt perturbation recovers perfectly – as required – the abrupt response and is well
able to recover the response to a smooth forcing. The fit is very good for the mean
reponse and also captures the variance quite well. This is not a trivial finding, given the
drastic difference in time evolution of the forcing, and the – until now – unanswered
question whether LRT can be applied to the CMIP5 ensemble at all.

After computing the Green’s function from the abrupt forcing scenarios and testing the
performance on the smooth forcing run we turn to the more realistic RCP scenarios. We
compute the radiative forcing according to Eq. 2.8 and temperature perturbations via
Eq. 2.10. However, in the RCP simulations CO2 does not tell the whole story. Unlike
the idealized simulations they include both non-fossil CO2 emissions and non-CO2 GHG
emissions, most notably CH4 and N2O. We include them by scaling up the radiative
forcing obtained from CO2 emissions by a factor A = 1.3 to best reproduce the RCP
temperature evolution. We show the resulting reconstruction of RCP temperatures from
CO2 concentrations, overlaid with CMIP5 data, in Fig. 3, and see the good agreement.
An alternative approach would be to use concentration timeseries for CO2, CH4 and
N2O and compute their respective radiative forcings, then summing to obtain the total.
We briefly show this in appendix A but no substantially improved agreement with the
CMIP5 ensemble is found.
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Figure 3: Reconstruction of RCP temperature evolution from concentration pathways
using CO2 only. Blue, orange and green lines gives CMIP5 data for RCP4.5, RCP6.0 and
RCP8.5, respectively, with the ensemble mean given in solid (RCP4.5), dotted (RCP6.0)
and dashed (RCP8.5) black. Reconstruction using CO2 radiative forcing in red (RCP4.5),
purple (RCP6.0) and brown (RCP8.5)

3. Building a State Space Model

We have shown in the preceding section that it is possible to apply Linear Response
Theory to the CMIP5 ensemble to obtain a Green’s function that captures the mean
response of the ensemble to changes in atmospheric CO2 concentration (and also to
CH4 and N2O, if desired). However, we want to go a step further. We are interested in
steering the climate in some sense, and this necessarily involves influencing the carbon
fluxes to the atmosphere, be they (positive) fossil fuel emissions or negative emissions,
e.g. via bioenergy with carbon capture and storage (BECCS). If and how BECCS could
be important for tackling climate change is part of an ongoing discussion (see for example
Fuss et al. (2014)), but not the topic of this thesis where we focus on fossil emissions.
We use this section to build a model that relates (positive) fossil CO2 emissions to
GMST changes. We start by describing the Carbon Model that relates emissions to
concentrations, go on to present the full model in response function form, and then
translate it to state space where we model the evolution of GMST probability density
functions (PDFs) by including stochasticity. We define suitable initial conditions and
close with the presentation of the reconstruction of CMIP5 RCP results by our simple
model.

3.1. Carbon Model

The global carbon cycle and its formulation in terms of response functions have been
studied by Joos et al. (2013) and included in the Fifth Assessment Report (Myhre et al.
2013a), the results of which we will use here. Joos et al. (2013) conduct a multi-model
study of many carbon models of varying complexity under different background states
and forcing scenarios. Their main result is the fit of a three-timescale exponential with
constant offset (Eq. 3.1) to the ensemble mean of responses to a 100 GtC emission pulse
to a present-day climate.
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GCO2(t) = a0 +

3∑
i=1

aie
− t
τi (3.1)

Coefficients ai, i = 0 . . . 3 and timescales τi, i = 1 . . . 3 are determined using least-square
fits on the multi-model mean. CO2 concentrations are then determined equivalently to
the temperature model

CCO2(t) =

∫ t

0

GCO2(t− t′) ECO2(t′) dt′ (3.2)

with instantaneous CO2 emissions ECO2. Joos et al. (2013) also give results for pulses of
different sizes (100 and 5000 GtC) administered either to a pre-industrial or present-day
world. The shapes of these response function vary substantially. As one would expect,
a very large pulse leads to saturation of natural carbon sinks and a larger fraction
remaining in the atmosphere. A similar behavior occurs when administering the pulse to
a present-day (high CO2) rather than a pre-industrial (low CO2) world. In this study we
use Joos’ ‘default’ case as we are interested in a present-day world. Note however that
for high-emission scenarios cumulative emissions are substantially higher than 100 GtC
(relative to 2015, > 700 GtC for RCP4.5 and beyond 1800 GtCfor RCP8.5 until 2100).
There the 5000 GtC case could be a better, though more pessimistic fit, as it implies
slower CO2 decay in the atmosphere.

In the previous section we noted the possibility to compute radiative forcing based
on gases other than CO2. Then also for these gases one has to construct a model relating
emissions to concentrations. This can be done but does not substantially outperform
using scaled CO2 radiative forcing only. Due to the added complexity of initial conditions
and emission scenarios for these gases we decided against this option, but briefly present
it in appendix B.

3.2. Full Response Function Model

Collecting the information from sections 2 and 3.1 we now assemble our model in
response function form.

CCO2(t) = CCO2,0 +

∫ t

0

GCO2(t′) ECO2(t− t′) dt′ (3.3a)

∆FCO2(t) = A αCO2 ln(CCO2(t)/C0) (3.3b)

∆T (t) = ∆T0 +

∫ t

0

GT (t′)∆FCO2(t− t′)dt′ (3.3c)

It relates fossil CO2 emissions ECO2 to GMST perturbation ∆T relative to pre-industrial
levels, with initial conditions for CO2 CCO2,0 and GMST perturbation ∆T0. Note that
this is quite a simple model with few “knobs to turn”. The only really free parameter is
the constant A that scales up CO2-radiative forcing to take into account non-fossil CO2

and non-CO2 GHG emissions.

In the full model we recalibrate the constant A (previously set to A = 1.3 (section
2.3)) to A = 1.48† in order to optimize the agreement with CMIP5. It is found
empirically but if we let – as a bullpark estimate – 75% of CO2 emissions be fossil and

† it becomes A = 1.2 when including CH4 and N2O
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10% of radiative forcing come from non-CO2 GHG, then fossil CO2 represents 67.5%
of radiative forcing so its contribution needs to be scaled up by A = 1/0.675 ≈ 1.48,
providing a sort of a-posteriori rational for the value of A. Internally emissions need
to be converted from GtC yr−1 to ppm yr−1 which is done using the respective molar
masses and the mass of the Earth’s atmosphere:

E(ppm yr−1) =
1

MC

Mair

matm
1012 kg GtC−1 106 ppm E(GtC yr−1) (3.4)

with Mair = 28.97 kg kmol−1 the mean molecular weight of air, MC = 12.011 kg kmol−1

the mean molecular weight of carbon and matm = 5.1352× 1018 kg the total mass of the
atmosphere, yielding E(ppm yr−1) = 0.46969 E(GtC yr−1). In Tab. 1 we summarize the
model’s ten parameters.

C0 (ppm) a0 a1 a2 a3
278 0.2173 0.2240 0.2824 0.2763
A α (W m−2) τ1 τ2 τ3

1.48 5.35 394.4 36.54 4.304

Table 1: Response Function Model Parameters. All timescales τi are in years and the
carbon model amplitudes ai are dimensionless for E in ppm yr−1.

1800 2000 2200 2400

0

20

E
(G

tC
y
r−

1
)

1800 2000 2200 2400

1

2

C
C
O
2

(p
p

m
)

×103

1800 2000 2200 2400
years

0

10

F
(W

m
−
2
) Total

From CO2

1900 2000 2100 2200 2300
years

0

10

∆
T

(K
)

Figure 4: Reconstruction of RCP results using the Reponse Function Model. In all panels,
solid lines refer to RCP4.5, dotted to RCP6.0 and dashed lines to RCP8.5. Black lines
(and red lines in the bottom left panel) show RCP data while colors (blue: RCP4.5,
orange: RCP6.0, green: RCP8.5) give our reconstruction.
Top left: Fossil CO2 emissions. Top right: CO2 concentrations from RCP and
reconstructed using GCO2. Bottom left: Total anthropogenic radiative forcing (black)
and radiative forcing from CO2 only (red) (both from RCP) and reconstructed forcing
using the relations above. Bottom right: Temperature perturbation from CMIP5 RCP
(ensemble mean) and the our reconstruction.
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In Fig. 4 we show the results obtained for RCP emissions. For very high emission
scenarios it is not possible to recover the CO2 concentrations correctly. This is because
the response is not pulse-size independent. In reality for such high emissions natural
sinks saturate. However, the up-scaling of radiative forcing is quite successful, yielding
a good temperature reconstruction.

3.3. Stochastic State Space Model

We now have successfully built a response function model that relates fossil CO2

emissions to GMST perturbations. However, the model still contains a data-based
temperature response function that is somewhat difficult to handle, and it informs only
about the mean CMIP5 response. But our main motivation is to obtain new insights on
the possible transitions to a ‘safe’, fossil-free, state. These transitions necessarily depend
strongly on the variance of the climate and on the risk we are willing to take while
making the transition. This variance is quite substantial, as evident from Fig. 3. We
have shown (Fig. 2) to be able to build a Green function not only for the temperature
mean (left) but also the variance (right). However, we have nothing comparable for the
carbon model (though we could build one), and more importantly, no information on
how the variance is transmitted from the carbon model through the radiative forcing
and the temperature model to the GMST (i.e., we do not have equations of motion for
variance). Therefore we now translate our response function model to state space and
incorporate the variance via suitable stochastic terms.

The first important step is to rewrite the response functions in a way that can be
implemented in state space which is easiest by writing them as sums of exponentials. For
the carbon model Joos et al. (2013) already do this. For the temperature model it turns
out we can well represent GT with a two-timescale exponential with a small constant
offset:

GT (t) =

2∑
i=0

bie
−t/τbi (3.5)

We let the small constant offset b0 decay over a long time scale τb0 = 400 yr that cannot
really be fit from the 140 yr abrupt forcing runs but is required to prevent a perpetual
temperature increase to constant radiative forcing with C > C0 and allow temperatures
to stabilize at some level. We obtain three ‘temperature reservoirs’ analogous to the
carbon reservoirs in the carbon model, and arrive at the seven-dimensional dynamical
system shown in Tab. 2 with parameters in Tab. 3. In the deterministic version (σC2 =
σT0 = σT2 = 0) the model reproduces the results from the Green’s function approach.
However, the major benefit is that now we can include stochasticity and model (the spread
of) uncertainty throughout the model. We introduce additive noise to the carbon model
such that the standard deviation of the model response to an emission pulse as reported by
Joos et al. (2013) is recovered. For the temperature model we introduce (small) additive
noise to recover the (small) CMIP5 control run standard deviation. We observe that in the
CMIP5 RCP runs the ensemble variance increases with rising ensemble mean. This calls
for the introduction of (substantial) multiplicative noise, which we introduce in ∆T2,
letting these random shocks decay again over an 8-year timescale. The main purpose
of this noise is to strongly increase temperature variance with mean temperature. It
affects temperature trajectories by introducing substantial shocks that are (especially at
high temperatures) almost certainly unphysical when looking at individual timeseries.
However, the focus here is on ensemble statistics.
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dCP = a0Edt

dC1 = (a1E −
1

τ1
C1)dt

dC2 = (a2E −
1

τ2
C2)dt+ σC2 dWt

dC3 = (a3E −
1

τ3
C3)dt

C = CP +

3∑
i=1

Ci

∆F = A α ln(C/C0)

d∆T0 = (b0∆F −
1

τb0
∆T0)dt+ σT0 dWt

d∆T1 = (b1∆F −
1

τb1
∆T1)dt

d∆T2 = (b2∆F −
1

τb2
∆T2)dt + σT2∆T2 dWt

∆T =

2∑
i=0

∆Ti

Table 2: Stochastic State Space Model. Carbon model on left, temperature model on the
right.

a0 a1 a2 a3 τ1 τ2 τ3
0.2173 0.2240 0.2824 0.2763 394.4 36.54 4.304

C0 (ppm) b0 b1 b2 τb0 τb1
278 0.00115176 0.10967972 0.03361102 400 1.42706247

A α (W m−2) σC2 (ppm/yr1/2) σT0 (K/yr1/2) σT2 (yr−1/2) τb2
1.48 5.35 0.65 0.015 0.13 8.02118539

Table 3: Stochastic State Space Model Parameters. All timescales are in years, the
carbon model amplitudes ai are dimensionless for E in ppm yr−1, the temperature model
amplitudes bi are in K W−1 m2 yr−1.

For the numerical integration let

Xt = (CP , C1, C2, C3, ∆T0, ∆T1, ∆T2)T (3.6)

A(Xt, t) =



a0E
a1E − 1

τ1
C1

a2E − 1
τ2
C2

a3E − 1
τ3
C3

b0(Aα ln
(
CP+C1+C2+C3

C0

)
)− 1

τb0
∆T0

b1(Aα ln
(
CP+C1+C2+C3

C0

)
)− 1

τb1
∆T1

b2(Aα ln
(
CP+C1+C2+C3

C0

)
)− 1

τb2
∆T2


, B(Xt) =



0
0
σC2

0
σT0

0
σT2∆T2


(3.7)

dXt = A(Xt, t)dt+ B(Xt) dWt (3.8)

We employ the strong order-1 Milstein scheme

Xn+1 = Xn +A(Xn, tn)∆t+ B(Xn)∆Wn +
1

2
B(Xn)B′(Xn)

(
(∆Wn)2 −∆t

)
(3.9)

B′(Xt) = (0, 0, 0, 0, 0, 0, σT2)T (3.10)

B(Xt)B′(Xt) = (0, 0, 0, 0, 0, 0, σ2
T2)TXt (3.11)
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3.4. Initial Conditions

Initial conditions are straightforward for pre-industrial conditions where we simply set

Cint = [278.05158, 0, 0, 0]T (3.12a)

∆Tint = [0, 0, 0]T (3.12b)

that is, we assign the entire pre-industrial carbon budget to the permanent reservoir and
set the remaining reservoirs to zero. This is justified as we assume that the pre-industrial
conditions are in steady-state with E = 0, C = C0, ∆F = 0 on average and hence all
non-permanent reservoirs eventually relax to zero. We may also want to start from a
later date, such as the present. Then setting initial conditions is more complicated as
available data on carbon and temperature history naturally only give total C,∆T but not
our intermediate budgets. We solve this problem by starting our model at pre-industrial
conditions and run it without noise until a specific year with historical emissions†. They
agree very closely with the RCP emission scenarios up to 2005 (from when on the sce-
narios differ). As we can see in Fig. 5 the temperature evolution of our model forced with
historical emissions closely matches the observed temperatures‡, excluding internal vari-
ability. The reconstruction of CO2 concentrations¶ is less good, mainly for three reasons.

300

400

C
C
O

2
(p

p
m

)

RCP CO2

Observations
Model

1800 1850 1900 1950 2000
year

0

1

∆
T

(K
) Observations

Model

Figure 5: Reconstruction based on historical fossil CO2

emissions

First, our model is forced by
fossil emissions while for early
times total CO2 emissions are
dominated by emissions due to
land use change (Le Quéré et al.
2016) so we observe a substantial
deviation. When approaching the
present fossil fuel emissions begin
to dominate the signal. Secondly,
as elaborated above, our model is
forced with CO2 only, incorporat-
ing other GHG such as methane
and nitrous oxide only via a
constant factor. Third, the model
is pulsesize-independent and tuned
to the present-day. We hence find
that our relation between CO2

emissions and temperature evolution is apparently quite good but the intermediate CO2

concentration – which we are not directly interested in – is fitted less well. We take the
initial conditions for starting dates other than 1765 from the reference run (Tab. 4).

† historical emissions as fossil fuel and cement production emissions from (Le Quéré et al.
2016), accessed 28th March, 2017
‡ historical GMST from https://data.giss.nasa.gov/gistemp/graphs_v3/, accessed 28th

March, 2017
¶ historical CO2 concentrations from https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html,

accessed 28th March, 2017
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Year CP C1 C2 C3 ∆T0 ∆T1 ∆T2

2000 306.251 26.833 18.914 3.579 0.074 0.296 0.444
2005 309.941 30.282 21.013 3.974 0.085 0.328 0.496
2015 319.281 39.048 26.719 5.216 0.110 0.408 0.617

Table 4: Initial conditions for several starting years

3.5. Application to RCP Scenarios

In order to test the quality of our stochastic model we start it in 1765 at pre-industrial
conditions and run it forward, comparing with CMIP5 RCP results. We show PDFs and
2σ envelopes in Fig. 6. We find that the model is well able to reproduce the CMIP5
RCP behavior under the different forcing scenarios. As these are very different in terms
of rate of change and total cumulative emissions this is not a trivial finding. In addition
RCP2.6 contains substantial negative emissions, responsible for the downward trend that
the model correctly reproduces. The mean response for RCP8.5 is underestimated, likely
because the carbon model is pulsesize-independent and hence carbon sinks are too strong
at high concentrations. Also note that the uncertainty in the carbon cycle plays a rather
minor role compared to the temperature model (Fig. 6, compare third and fourth row).
The temperature perturbation ∆T is very closely lognormally distributed while for weak
forcings (RCP2.6, RCP4.5 to some degree) the distribution is approximately normal. The
CO2 concentration is normally distributed in all cases.
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Figure 6: Stochastic State Space Model applied to RCP scenarios.
Upper two rows: Ensemble mean and 2σ envelopes of CMIP5 RCPs (blue) and
stochastic model (orange).
Lower two rows: Probability density functions for CO2 and ∆T in the years 2100
and 2300 based on 5000 ensemble members, and driven by forcing from RCP2.6 (blue),
RCP4.5 (orange), RCP6.0 (green) and RCP8.5 (red). In black we fit normal distributions
to CO2 and lognormal distributions to ∆T .
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4. Physical Transition Constraints

With the simple climate model now available we address the question of transitioning
from the present-day (2015) to a carbon-free era in such a way as to avoid catastrophic
climate change.

While many criteria can be formulated (e.g. on carbon concentration, sea level rise
etc.) and in reality the impacts (extreme event distributions, flooding due to sea
level rise, desertification, shifts in precipitation patters etc.) will likely strongly vary
geographically, the most common global criteria that are easiest to communicate are
in terms of GMST thresholds, such as done at the Paris Climate Conference in 2015,
in particular the 2 K target, understood as necessary to avoid large and irreversible
damages, including possible tipping points, and the 1.5 K target, formulated in the Paris
agreement as the more desirable target. Questions have been raised on whether the
commitments are sufficient to reach either target (Rogelj et al. 2016).

We have noted the issue of model errors and climate uncertainty due to inherent
chaos and randomness. Therefore the question is not only of the target threshold to
reach but also the risk one is willing to take to exceed it. In this section we consider two
questions:

(i) What is the maximum amount of cumulative CO2 emissions that allows us to stay
below the 1.5, and 2 K target, as a function of the risk we are willing to take?

(ii) What is the latest point in time where we have to start taking mitigating action in
order to stay below either target with a chosen risk tolerance, as a function of the
aggressiveness of the action we deem feasible?

The answer to the first question gives us an emission target that must not be exceeded.
We label this the Safe Carbon Budget (SCB), and it is a function of temperature target
and risk tolerance. The second question yields a year in which it is too late to take action.
This we call the Point of No Return (PONR), and it is a function of temperature target,
risk tolerance and the aggressiveness of the (emission reduction) strategies available.

We call the temperature target Tmax as the maximum warming allowable and describe
the risk tolerance by the parameter β, the probability of staying below a given target.
For example, Tmax = 2 K, β = 0.9 corresponds to a 90% probability of staying below
2 K warming, i.e. 90 out of 100 realizations of the stochastic model, started in 2015 and
integrated until 2100, do not exceed ∆T = 2 K in the year 2100.

For the PONR we need to define emission reduction strategies, so we require a
model on how CO2 emissions E are going to evolve in the future. Let the world economy
be described by

Y = Y0e
gt (4.1a)

En = γ0e
−rγtY (4.1b)

E = (1− a)(1−m)En (4.1c)

with Gross World Product (GWP) Y with present-day value Y0 and GWP growth rate g,
global energy use En with initial energy efficiency γ0 and rate of change rγ and crucially,
abatement and mitigation rates a and m. Parameter values are given in Tab. 5. The
mitigation rate describes the share of non-GHG producing forms of energy production
(wind, solar, water etc.), while the abatement rate gives the share of fossil energies the



16 M. Aengenheyster

emissions of which are not released, but captured and stored away (Carbon Capture and
Storage (CCS)).

Y0 (T$) g (yr−1) γ0 (tC $−1) rγ (yr−1)
73 2% 1.4× 10−4 0

Table 5: Economic Parameters for Emissions Scenarios

4.1. Safe Carbon Budget

Using the full stochastic model we integrate an 8000-member ensemble for each of
6000 emission scenarios† starting in 2015. We compute the temperature distribution
in 2100 ∆T2100 as a function of cumulative CO2 emissions EΣ . In Fig. 7 we show the
50th, 67th, 90th and 95th percentiles of ∆T2100 as function of EΣ . In black the same
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Figure 7: Tmax in 2100 such that p(∆T2100 6 Tmax) = β as a function of cumulative
emissions for different β. Black curve gives deterministic results with noise terms set to
zero. Zoom on the right with the 2 K (solid) and 1.5 K targets (dashed) as horizontal
lines. Diamonds give ‘business as usual’ with a(t) = 0,m(t) = 0.14. Note in that case
there is still substantial warming ‘in the pipeline’ as E(t = 2100) > 0.

calculation for the deterministic case without stochasticity is shown. It gives the certain
relationship between cumulative emissions and warming in 2100 in a purely deterministic
climate and approximately corresponds to the ensemble mean warming. Take a moment
to realize how vastly higher ‘business as usual’ emissions‡ and warmings are, giving a
taste for the scale of the problem.

† These scenarios are generated from Eq. 4.1c by letting a(t) = 0 andm(t) = min(1,m0+m1t),
with 0 6 m0 6 0.7 andm1 drawn from a beta distribution (α = 1.2, β = 3), with the [0,1] interval
scaled such that m = 1 latest in 2080.
‡ We here define ‘business as usual’ by keeping abatement and mitigation at current values

a = 0,m = 0.14 and using Eq. 4.1 to compute emissions.
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The relations ∆T2100 = f(EΣ) can be very well described by expressions of the
type

∆T (EΣ) = a ln

(
EΣ
b

+ 1

)
+ c (4.2)

with suitably fit coefficients a, b, c. Indeed, for this range of emissions a linear fit would
be reasonable, as done by Allen et al. (2009). However our expression also works for
cumulative emissions in the range of business as usual (when fitting parameters on
suitable emission trajectories, not shown). It is straightforward to find the allowable
emissions (the Safe Carbon Budget) for any combination of Tmax, β from Fig. 7, as
shown in Tab. 6. Note the drastic reduction in allowable emissions when enforcing the

β 0.5 0.67 0.9 0.95 Noise-free
Tmax = 1.5 K 86.67 65.56 26.66 10.49 81.21
Tmax = 2.0 K 199.03 169.64 115.13 92.29 189.53

Table 6: Safe Carbon Budget (in GtC since 2015) as function of threshold and safety
probability.

target with a higher probability (following the horizontal lines from right to left in
Fig. 7), or when moving from the deterministic, noise-free calculation to the stochastic
situation with high β. This effect is particularly drastic for the 1.5 K target where the
allowable emissions go essentially to zero for β = 0.95, given that emissions in 2015
where in the order of 9.9 GtC (Le Quéré et al. 2016). This raises grave doubts about the
practical – or even theoretical – feasibility of the 1.5 K target.

We address the sensitivity of the Safe Carbon Budget to the relevant model parameters
by varying each one by ±10% and running the calculation to see how the obtained value
(for each scenario) changes (results shown in appendix C). The biggest effects on the
SCB are found for the initial condition of the large carbon reservoirs and the radiative
forcing parameters A,α,C0 that are essentially fixed constants. The parameters of
the carbon model (ai, τi) do not have big impacts on the found SCB, on the order of
0− 8 GtC, with the larger numbers found for larger absolute values of SCB, limiting the
relative effect. Also, possible variations in these parameters are likely not independent,
potentially canceling each other.

Varying the temperature-model parameters can have quite noticeable effects, exceeding
20% for large and exceeding 50% for small values of SCB. The model is particularly
sensitive to changes in the intermediate timescale (b2, τb2). Fortunately the sensitivity to
the long timescale, which is less well constrained, is much smaller. Similar to the carbon
model, variations here are likely to offset each other to some degree.

The sensitivity of SCB to the noise amplitudes is small. It is largest for the multiplicative
noise amplitude that is responsible for much of the spread of the temperature
distribution (so increasing σT2 decreases the SCB) but smaller than the climate
parameter sensitivities.
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4.2. Point of No Return

The Point of No Return (PONR) gives the the first year where it is no longer possible
to reach a defined ‘Safe State’. For our purposes, and similar to studies like van Zalinge
et al. (2017) we define this state in terms of the probability distribution of GMST p(∆T )
in 2100:

Definition 1 (Point of No Return). The Point of No Return (PONR) is the
time tP from which on no allowed [a(t),m(t)] such that 0 6 a(t),m(t) 6 1, tP 6 t 6 tf
can be chosen to fulfill

p(∆T (tf ) 6 Tmax) > β (4.3)

Clearly there is a close connection between the Point of No Return and the Safe
Carbon Budget. Indeed, one could define a Point of No Return also in terms of the
ability to reach the Safe Carbon Budget. As there is a one-to-one relation between
cumulative emissions and warming the Point of No Return in “Carbon space” has
been defined in section 4.1. Its location in time however depends crucially on how fast a
transition to a carbon-neutral economy is feasible, i.e. the meaning of the word “allowed”
in the definition.

We resort to three crude but illustrative choices to model the abatement and mitigation
rates:

(i) Extreme Mitigation (EM): At time ta > t0, we set m = 1 , resulting in E = 0 from
then onward. This corresponds to the most extreme physically possible scenario and
therefore serves as an absolute upper bound – essentially we drop the restriction
“allowed” in the PONR definition.

(ii) Fast Mitigation (FM): From time ta onwards, both a,m increase by 0.05 per year.
This results in zero emissions in less than 20 years.

(iii) Ambitious Mitigation (AM): As FM, but the increase is 0.02 per year, which is less
extreme but still substantially faster than currently realized.

In the meantime, we are being pessimistic and assume that for t0 < t < ta we remain
with current values m = 0.14 and a = 0. In Fig. 8 we show probabilities for staying
below the 1.5 and 2.0 K thresholds in 2100 as a function of ta for EM, FM and AM,
respectively. We can see that the remaining ‘window of action’ is small, but exists. For
example, we can still reach the 2 K target with a probability of 67% when starting Fast
Mitigation in the year 2035. However, reaching the 1.5 K target appears unlikely and
is even impossible when requiring a high safety probability. The Point of No Return
for the different targets and probabilities is given in Tab. 7, showing how it is close (or
even already passed) for low thresholds and/or high safety requirements. This presents
a major result of this work. We see several things here. First, the PONR is close. It
is latest in the 2040s, and that is only when allowing for setting all CO2 emissions
to zero instantaneously. The more relevant numbers lie in the 2030s or earlier, and
considering the speed of large-scale political and economic transformations, urgent
action is warranted. Second, the PONR is passed for the 1.5 K target. We would have
five years to start the extremely ambitious FM policy to avoid 1.5 K – and that only with
67% probability. Third, note the shifts for changing Tmax, β and the policy. Switching
from 1.5 to 2 K buys an additional 15 years. Allowing a one-third, instead of one-tenth
exceedance risk, buys an additional seven years. Allowing for the more aggressive FM
policy instead of AM buys an additional ten years. Note that these timeframes are not
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Figure 8: Left: Probability of staying below ‘safe’ temperature thresholds in 2100 when
starting measures in year ta for EM (blue), FM (orange), AM (green) with targets Tmax =
2 (solid) and Tmax = 1.5 (dashed). Horizontal lines give p = 0.67 (solid), 0.90 (dashed)
and 0.95 (dotted).
Right: 67th and 90th temperature percentiles in 2100 when starting measures in year ta.
Horizontal lines give ∆T2100 = 2.0 K (solid) and 1.5 K (dashed). In thin black lines we
show the temperature in 2100 in the deterministic case of EM (dotted), FM (dash-dot)
and AM (solid).

β 0.5 0.67 0.9 0.95 noise-free
EM

Tmax = 1.5 K 2031 2028 2021 2018 2031
Tmax = 2.0 K 2047 2043 2036 2033 2046

FM
Tmax = 1.5 K 2025 2022 – – 2024
Tmax = 2.0 K 2040 2037 2030 2026 2039

AM
Tmax = 1.5 K – – – – –
Tmax = 2.0 K 2030 2026 2019 2016 2029

Table 7: Point of No Return as function of threshold and safety probability.

very large compared to political timescales. A two-term government delaying action
could easily increase the exceedance risk from 10% to 30%.

As in case of the SCB, we address the sensitivity of the PONR values to the model
parameters by varying each one by ±10% (results are shown in appendix D). The
sensitivities are generally small and in no way change our message qualitatively. The
effect of initial conditions and carbon model parameters in small, often even unnoticeable
(with the exception of the permanent carbon reservoir, due to its large size). As for
the case of the SCB we find large sensitivities to the fixed radiative forcing parameters
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A,α,C0. We find the most relevant effects of changes in the temperature model
parameters. For example, a 10% error in τb2 can move the PONR by 3-4 years. An
interesting effect is the case of rγ , the energy-saving progress (reduction in energy-
intensity of a unit of GWP) which is zero by default. Increasing it to 1% or 2% has little
or no effect on close PONR (e.g. 2020) but is capable of delaying late PONR by up to
11 years, and the effect is more substantial for the less ambitious scenarios. This is an
interesting finding in itself, showing that in the long run increasing energy efficiency can
play an important role in avoiding the PONR.

4.3. Effects of Stochasticity in GWP Growth Rate g

For the PONR computation we have used the very simple economic assumption of
constant output growth of 2 % yr−1. It is worth asking whether this is not an oversimpli-
fication and if uncertainty in future economic growth, i.e. stochasticity in the economic
model, might change our assessment. We test this by using, instead of Eq. 4.1,

dg = −(g − g0)dt+ σgdWt (4.4a)

dY = gY dt (4.4b)

3 4 5 6 7
∆T2100 (K)

Deterministic g
Stochastic g
Difference

Figure 9: Distribution of ∆T in 2100 assuming constant
g (blue) and stochastic g according to equations (4.4)

with g0 = 2 % yr−1, σg =
1.5 % yr−1 and initial values
g0, Y0. This introduces substantial
uncertainty in the state of the
global economy, and thereby also
in the fossil fuel emissions. Taking
a ‘business-as-usual’ scenario with
a = 0,m = 0.14 we find for global
output Y in the year 2100 a mean
value of µY = 397 T$ and standard
deviation σY = 54 T$. We show
the distribution of ∆T in 2100
in Fig. 9. Clearly, the GMST
distribution turns out to be very
insensitive to the noise in g. This
is of course a very encouraging
finding that increases confidence
in our results.

4.4. Using statistics over the entire time horizon

Another point worth mentioning is the fact that here we have focused exclusively on
the warming state in 2100. Our values for SCB and PONR do not ensure that the climate
is in a ‘safe’ state until then (overshoots) or afterwards (long-term adjustment). As our
emission scenarios generally include very rapid emission reduction we do find overshoots
which may occur before 2100. Also the long timescales in our model lead to adjustments
on timescales of several centuries (we do not put a lot of confidence in those long-term
results as the model parameters are not tuned to such cases and hence badly constrained).

It is easily possible to change the definitions above and enforce non-exceedance of
temperature thresholds for all timesteps. This leads to values as shown in Tab. 8 and
reduces the Safe Carbon Budgets by 15 − 20 GtC. It does not substantially change the
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picture drawn so far. The temperature exceedances induced by using Tab. 6 instead of
Tab. 8 are generally small, just the probabilities are quite sensitive, especially at small
emissions/warmings where the PDFs of ∆T are relatively narrow.

β 0.5 0.67 0.9 0.95 Noise-free
Tmax = 1.5 K 70.51 49.79 10.84 – 64.57
Tmax = 2.0 K 178.31 151.81 97.44 72.71 173.87

Table 8: Safe Carbon Budget (in GtC since 2015) as function of threshold and safety
probability when ensuring no-exceedance between 2015 and 2300.

5. Optimal Transitions

In the previous section we have used our physical climate model, and some very basic
economic assumptions. We now want to go a step further and determine what would be
the optimal (i.e. welfare-maximizing) pathways to reduce emissions such that warming
is constrained below dangerous levels, which we phrase in terms of the SCB.

In the following we give an introduction in the economic theory we are going to
use, and proceed to determine and discuss optimal transition pathways for two different
formulations of climate damages.

5.1. Economic Background

We model the world economy in the style of a very simplified Integrated Assessment
model (IAM, such as DICE (Nordhaus 1991), see also Dietz and Stern (2015); Rezai
and van der Ploeg (2016); Rezai and van der Ploeg (2017)). Global economic output Y ,
energy production En and emissions E follow Eq. 4.1, that is we keep the growth rate g
of global output constant as this simplifies the analysis and no large effect of a stochastic
g on ∆T was found (section 4.3). Global consumption as fraction c of GWP is given as

c =
C

Y
= (1−D)(1− Λ) (5.1)

that is, consumption equals output if both climate damages D and energy-related costs
Λ vanish, and both act to reduce consumption. The cost Λ associated with the different
types of energy generation, here differentiated between ‘normal’ fossil energy production,
fossil energy with abatement, and renewable energies, is expressed as

Λ =
[(

G0e
−rEt +

1

θa
A1e

−rAtaθa
)

(1−m) +H0m+
1

θm
mθmH1e

−rRt
]
γ0e
−rγt (5.2)

with the term in round brackets giving, for the non-mitigated energy fraction, the costs
of fossil fuel extraction and abatement while the remaining summands give the cost
of renewable energy usage. We see the main feature that marginal costs increase with
abatement and mitigation but decrease over time (for positive rA, rR), assuming that
technological progress will continue to reduce the cost of renewable technologies (as is
already being observed (Farmer and Lafond 2016)).

Progressing climate change is associated with damages such as those brought about by
heat waves, droughts and sea level rise. There exist several expressions in the literature
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to parameterize these damages, such as letting them depend on the carbon stock
(Dcarbon), having the benefit of simplicity, or using a more or less convex function of
global warming (Dtemp) (Dietz and Stern 2015). For the temperature damage function
we use the expression by Ackerman and Stanton (2012) that introduces substantial
convexity to represent the high damages associated with very large warmings, and show
both possible formulations in Eq. 5.3.

Dcarbon = d(C − C0) (I) (5.3a)

Dtemp = (1 + ζ1∆T
ζ2 + ζ3∆T

ζ4)−1 (II) (5.3b)

Our aim is then to maximize global discounted welfare W as a function of consumption

max
a(t),m(t)

W =

∫ ∞
0

u(c(t))Y e−SDRtdt (5.4)

u(c(t)) =
c(t)1−IIA

1− IIA (5.5)

with utility function of global consumption u(c), intergenerational inequality aversion
IIA, and social discount rate SDR = ρ + (IIA − 1)g with rate of time patience
ρ †. The benefit of the simple carbon-based damage function is that much of the
optimization problem can be solved analytically, yielding direct expressions for abatement
and mitigation fractions

a(t) =

(
P (t)erAt

A1

)εa
, 0 6 a(t) 6 1

(5.6a)

m(t) =

(
G0e

−rEt + 1
θa
A1e

−rAta(t)θa + (1− a(t))P (t)−H0

H1e−rRt

)εm
, 0 6 m(t) 6 1

(5.6b)

where the carbon price P (the price to be paid for emitting carbon) is a constant ratio
of GWP

P (t) = τU,CY (t) (5.7)

with τ a free parameter that needs to be determined based on the optimization target.
We differentiate “unconstrained” and “constrained” optimization. In the former case
τ is simply chosen such that welfare according to Eq. 5.4 is maximized, irrespective of
the warming this entails. We label this as τU . In the latter case welfare is maximized
under the constraint that warming is kept below some warming with some probability,
that is, a chosen SCB (section 4.1) is not exceeded. In this case we label the found
value τC . It is easy to see that we have τU 6 τC as the climate-combating efforts get
stricter with increasing P and the constrained policy will be at least as strict as the
unconstrained one. The equality applies when the unconstrained optimization leads to
cumulative emissions that undercut the SCB.

† This formulation for u(c) is called a CRRA (constant relative risk aversion) social utility
function, where we have the index of relative risk aversion RRA equal to IIA.
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Therefore, for each time step ti in the carbon-temperature model we have

D(C) = 1− d(C − C0) (5.8a)

Y = Y0e
gti (5.8b)

En = γ0e
−rγtiY (5.8c)

P = τU,CY (5.8d)

a =

(
PerAti

A1

)εa
(5.8e)

m =

(
G0e

−rEti + 1
θa
A1e

−rAtiaθa + (1− a)P −H0

H1e−rRti

)εm
(5.8f )

E = (1− a)(1−m)En (5.8g)

E is then fed into the climate model defined in section 3.3. The entire model with climate
and economic components has τU,C as its only free control parameter.

For a start in 2015 we let Y0 = 74 T$, E(2015) = 9.9 GtC (see (Le Quéré et al.
2016)) and an assumed a = 0,m = 0.1401 (World Energy Council 2016) which leads to

γ0 =
1

(1− a)(1−m)

E

Y
= 1.556× 10−4 tC $−1 (5.9)

We show the remaining economic parameters in Tab. 9.

g (yr−1) rγ (yr−1) rA (yr−1) rE (yr−1) rR (yr−1) A1 ($ tC−1)
0.02 0 0.0125 -0.001 0.0125 2936
θa εa θm εm H0 ($ tC−1) H1 ($ tC−1)
2 1/(θa − 1) = 1 2.8 1− /(θm − 1) = 0.56 515 1150

d (tC−1) ζ1 ζ2 ζ3 ζ4 G0 ($ tC−1)
1.9× 10−14 0.00245 2 5.021× 10−6 6.76 515

Table 9: Economic model parameters

5.2. Optimization with Carbon Damage Function

Starting with the carbon damage function, we solve for τU,C and show the solutions
for the unconstrained and constrained optimization in Fig. 10.

5.2.1. Unconstrained Optimization

We find τU by maximizing welfare without any constraints on the allowed cumulative
emissions. We obtain

τU = 1.5556 $ T$−1 (5.10)

The mitigation fraction reaches m = 1 in 2091, from when on emissions are zero.
CO2 concentrations peak in 2080 at 501 ppm and global warming rises to 2.46 K (90th

percentile of 2.76 K), beyond levels considered ‘safe’, as caused by cumulative emissions
of 269.8 GtC. The initial carbon price is 115.12 $ and reaches 630.15 $ by 2100.
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5.2.2. Constrained Optimization

Clearly, simply maximizing welfare does not limit warming to 2 K or even 1.5 K.
Therefore, we employ the additional constraint of limiting warming in 2100 to some
maximum value Tmax with prescribed probability β, that is we constrain cumulative
emissions EΣ to the SCB. This being a purely deterministic quantity simplifies our
investigation. We find the value of τC that maximizes welfare under the constraint
EΣ 6 Esafe (Tab. 10). As an example we may wish to stay below Tmax = 2 K

β 0.5 0.67 0.9 0.95 Noise-free
Tmax = 1.5 K 4.10 4.91 7.78 10.84 4.28
Tmax = 2.0 K 2.10 2.43 3.34 3.93 2.20

Table 10: Optimal value for τC (in $ T$−1) as function of threshold and safety probability.

warming with a probability of β = 90 %. This gives SCB = 115.13 GtC (Tab. 6), and
τC = 3.34 $ T$−1 (Tab. 10). We start with a carbon price of 287 $ and the fossil fuel
era ends in 2066. Our economic formulation assumes that economic actors will instantly
adapt to any carbon price. This is why the initial mitigation ratio is already 45% as the
carbon price starts so high that many actors immediately switch to renewable energies.
It may be questioned whether this is a realistic assumption, and indeed how fast a
transition is feasible. We will address this in a following section.

We examine the results for the constrained case, noise-free and with β = 0.9, for
Tmax = 2.0 K and Tmax = 1.5 K, together with the unconstrained case, in Tab. 11 and
the left column of Fig. 10. We see large differences between the scenarios. In particular

max CO2 (ppm) EΣ (GtC) tf (yr)
unconstrained 501.29 269.84 2091

constrained, Tmax = 2 K, σi = 0 462.68 189.53 2082
constrained, Tmax = 2 K,σi 6= 0 427.71 115.13 2070

constrained, Tmax = 1.5 K,σi = 0 411.43 81.21 2063
constrained, Tmax = 1.5 K,σi 6= 0 390.27 26.66 2045

P (t = 2015) ($) a(t = 2015) m(t = 2015)
unconstrained 115.12 0.039 0.275

constrained, Tmax = 2 K, σi = 0 162.93 0.055 0.332
constrained, Tmax = 2 K, σi 6= 0 247.41 0.084 0.416

constrained, Tmax = 1.5 K, σi = 0 317.06 0.108 0.474
constrained, Tmax = 1.5 K, σi 6= 0 575.96 0.196 0.643

Table 11: Key numbers for different constraints, comparing unconstrained and
constrained optimization, including stochasticity (σi = (σC , σT0, σT2) 6= 0) and without
it (σi = 0). tf gives the end of the fossil fuel era where E = 0.

the ‘unconstrained’ optimal transition is too slow to prevent high warming, and the
inclusion of stochasticity in the climate tightens the budget and calls for a faster, more
ambitious transition.
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Figure 10: Optimal Transitions with carbon damage function
Left column: Trajectories for optimization in the unconstrained (blue) and constrained
case without (orange) and with (green) stochasticity, for Tmax = 2 K, β = 0.9.
Right column: Transition pathways m (solid) and a (dashed) with β = 0.5 (blue),
0.67 (orange), 0.9 (green) and 0.95 (red) for Tmax = 1.5 (top) and 2 K (middle), and
the unconstrained case in black. The bottom panel shows the instantaneous emission
reduction (1− a)(1−m) for Tmax = 1.5 (dashed) and 2 K (solid)

5.3. Optimization with Temperature Damage Function

After showing the results for the carbon damage function we now move to the more
realistic temperature damage function. The problem now is that we do not anymore
have analytical expressions for a(t),m(t) and instead have to solve the optimization
problem numerically. In principle this enormously increases the number of optimization
parameters from one (τU , τC) to 2N where N is the number of timesteps. We treat this
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problem by using a basinhopping algorithm encapsulating the numerical optimizer†. The
enormous parameter space makes finding the solution very slow and stops us from using
very long time horizons to ensure full convergence of the integral in Eq. 5.4. The result
as shown in the left column of Fig. 11 does appear reasonable, compared with results
shown for the carbon optimization before (higher starting values and faster transition
for stricter targets) but the solution is not perfect and does not look fully converged.
Most likely the basinhopping algorithm has not been able to find the global optimum in
the enormous parameter space.

Due to the problems of finding the global optimum in a parameter space of dimension
well beyond 200, we introduce some simplifications. Prescribing some ‘reasonable’ shapes
for the transition pathways drastically reduces the parameter space so we can be much
more certain of having found the true optimum in the reduced space.

I : P (t) = P0e
gP t (5.11a)

II : a(t) = a0e
gat , m(t) = m0e

gmt (5.11b)

III : a(t) = a0 + a1t , m(t) = m0 +m1t (5.11c)

IV : a(t) = a0e
gat + a1t , m(t) = m0e

gmt +m1t (5.11d)

For case I we assume that the change to the temperature damage function does not affect
the relationship between P , and a,m (Eq. 5.6a, 5.6b), which appears reasonable for small
warmings where damages according to Dcarbon and Dtemp are very similar, while in the
cases II, III, IV we assume a,m to be independent. We can then diagnostically compute
P by inverting Eq. 5.6a:

P (t) = A1e
−rAta(t)θa−1 (5.12)

which obviously does not describe P (t) after the time where a = 1.

We compare the welfare returned by paths I − IV with the optimization in the
large parameter space. It turns out that case IV yields the best welfare of these five
cases. This appears surprising as the space is so much more restricted. However this
likely confirms our suspicion that the global optimum had not yet been found in the
large parameter space, and that the six-parameter parameterization was able to closely
approximate the true optimum. We show the optimal result from case IV in the right
column of Fig. 11.

Again tighter constraints mean earlier transitions. We notice that for the 2 K target the
lines lie very close together. With the exception of β = 0.95 it is actually beneficial not
to use up the entire budget. That is, the unconstrained optimization suggests such an
ambitious pathway that it fulfills the β = 0.9 constraint. We see the big difference when
comparing with the optimization using the carbon damage function in Fig. 10: Using
the temperature damage function leads to a substantially more ambitious transition as
the high-emission, high-warming trajectories are avoided due to more convex damages.

† We use the python library scipy.optimize
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Figure 11: Optimal transition pathways a (dashed) and m (solid) when controlling
0 6 a,m 6 1. Left: Optimization in large parameter space, Right: Optimizing
a0,m0, a1,m1, ga, gm according to equation (5.11d). Temperature thresholds 1.5 K (top)
and 2.0 K (middle) and safety probabilities as given by the respective SCBs. The
bottom row shows the instantaneous emission reduction due to abatement and mitigation
(1− a)(1−m).

5.4. Controlling Rates of Transition

In the previous section we determined optimal transition pathways that are welfare-
maximizing while being constrained to the SCB. However, there remains a serious point
of critique. We have let the starting point of the transition pathway free, i.e. we have
chosen initial a,m purely based on the most optimal value in terms of welfare but not
based on the question whether it is feasible. Under such assumptions of course there
is always a possible transition pathway that fulfills a given (positive) SCB as we could
simply start with m = 1. However, this scenario is not particularly realistic. For this
reason, we briefly consider the situation where we do not control a,m directly but their
rate of change.

Let us introduce two new state space variables for the abatement and mitigation
rate

da = Fa dt (5.13a)

dm = Fm dt (5.13b)

Their only dynamic is being forced by an external control. By setting the initial values
of a,m to present-day values and choosing the optimal Fa, Fm we get a better handle
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on feasible transitions. We start by attempting to find the global optimum in the large
parameter space with the same technique as before and by limiting 0 6 Fa, Fm 6 0.1.
This is of course a very high value but it is so different from the rates of change observed
before that we should see a clear effect.

As before we also compute the transition in a reduced parameter space. Parameterizing
the transition pathways is now a lot more difficult than before due to the sharp variations
in the rate of change. We find optimal parameter values for Fa, Fm as described by

Fa(t) = Aa +Bae
−Cat +Dae

Eat (5.14a)

Fm(t) = Am +Bme
−Cmt +Dme

Emt (5.14b)

We constrain all these parameters according to Tab. 12.

0 6 Aa 6 0.1 0 6 Ba 6 0.1 0 6 Ca 6 0.5 0 6 Da 6 0.1 0 6 Ea 6 0.08
0 6 Am 6 0.1 0 6 Bm 6 0.2 0 6 Cm 6 0.5 0 6 Dm 6 0.1 0 6 Em 6 0.08

Table 12: Constraints for Fa, Fm parameterization
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Figure 12: Optimal transition pathways a (dashed) and m (solid) when controlling 0 6
Fa, Fm 6 0.1. Left: Optimization in large parameter space, Right: Optimizing Fa, Fm
according to Eq. 5.14. Temperature thresholds 1.5 K (top) and 2.0 K (middle) and safety
probabilities as given by the respective SCBs. The bottom row shows the instantaneous
emission reduction due to abatement and mitigation (1− a)(1−m).
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In Fig. 12 we show the solutions for the full parameter space and parameterized
transition. Comparing Fig. 12 with Fig. 11 shows that the transitions are qualitatively
very similar. The pathways start from present-day values and converge as quickly
as allowed to scenarios similar to the ones shown in Fig. 11. Computing the welfare
of the two optimization results reveals that finding the global optimum again is
easier in the parameterized case, as it performs better. The exception is the case of
Tmax = 1.5 K, β = 0.95, where the optimal path appears to be an increase at the fastest
possible rate, which is higher in the full optimization.

The result shown in Fig. 12 serves as a good illustration of how the pathways in
terms of Fa, Fm quickly approach those in terms of a,m with free the initial rates
(Fig. 11). However, this very fast initial adjustment is not very feasible either, as the
maximal rates of increase obtain the unrealistic value of 0.1. In Fig. 13 we therefore
show a more realistic solution with stricter bounds on Fa, Fm. This has the consequence
that for Tmax = 1.5 K, β = 0.9, 0.95 it is no longer possible to meet the SCB, as the
‘minimal possible’ emissions are 50 GtC. Note how again for Tmax = 2 K the solutions
for β = 0.5, 0.67, 0.9 and the unconstrained case coincide and yield EΣ = 107 GtC. The
overall shape is very similar to Fig. 12, excluding the fast initial adjustment. Fig. 13
represents our best guess for a feasible optimal transition. It reaffirms our conclusion
from section 4.2 that reaching the 1.5 K target is extremely unlikely.
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Figure 13: Optimal transition pathways when controlling Fa, Fm with more realistic
bounds. All colors as in top left: β = 0.5 (blue), 0.67 (orange), 0.9 (green) and 0.95 (red)
and unconstrained solution in black. Left: Fa (dashed) and Fm (solid) for Tmax = 1.5 K
(top) and 2 K (bottom).
Right: a (dashed) and m (solid) for Tmax = 1.5 K (top) and 2.0 K (middle). The bottom
right shows (1− a)(1−m), with pathways for 1.5 K (dashed) and for 2 K (solid).
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6. Conclusion and Outlook

Concluding the thesis, we take a step back and put our findings in a larger context.
Primarily, we have done three things:

(i) We have shown that it is possible to apply Linear Response Theory to the CMIP5
ensemble, and built a simple model that gives a good representation of its statistical
properties.

(ii) We have computed two simple, easy-to-communicate metrics with a solid physical
underpinning and minimal assumptions, the Safe Carbon Budget and the Point of
No Return, that capture warming targets and risk tolerance,

(iii) Under additional assumptions on economic dynamics, we have found possible
optimal transition pathways to a carbon-free era in order to reach global warming
targets.

In this context we have in particular pointed out the strong constraints that are
put on future emissions by restricting GMST increase to below 2 K, and the near-
impossibility of reaching the 1.5 K target with remotely realistic emission scenarios.
An energy transition substantially more ambitious than assumed in RCP2.6 would be
required to stay below 1.5 K with some robust probability, and whether that is feasible
is highly doubtful. With all other RCP scenarios exceeding 2 K is virtually certain in the
near future, as we can show by the instantaneous probability of exceeding the respective
thresholds in Fig. 14. This is a sobering finding in light of the bold ambition in the Paris
agreement, and adds to the sense of urgency to act quickly in the soon-to-be-closing
window before the thresholds have been crossed.

0.0

0.5

1.0

p
(∆
T
>

1.
5

K
)

2025 2050 2075 2100 2125 2150
year

0.0

0.5

1.0

p
(∆
T
>

2.
0

K
)

unconstr.
constr., 2.0 K
constr., 1.5 K
RCP2.6
RCP4.5
RCP6.0
RCP8.5

Figure 14: Instantaneous probability to exceed 1.5 K
(top) and 2.0 K (bottom). RCP emission scenarios
are shown as dashed lines while solid lines show
the unconstrained (blue) and constrained cases (2 K
(orange) and 1.5 K (green)) from section 5.2. Dashed
horizontal lines give p = 0.1 and 0.67, respectively.

Our analysis heavily relies on the
application of LRT to the CMIP5
ensemble and this has turned out
to be very successful. Starting
from an (not particularly large)
ensemble of quite diverse models
we were able to very well recover
the ensemble mean and variance of
the global warming signal. This is
encouraging and calls for further
research into the applicability
of LRT, also to other variables
available from CMIP5, such as sea
level rise, sea ice cover, or measures
of the atmospheric and oceanic
circulation. It is likely though
that – especially considering the
rather small ensembles available
– the results will be worse for
less ‘smooth’ and well-behaved
quantities. For example, Lucarini
et al. (2016) applied LRT to spatial
patterns of a 200-member ensemble
of PLASIM. This appears out of
reach for CMIP5 unless much
larger ensembles should become
available.
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There are of course limitations to the model we have constructed. Our focus has
been to accurately represent the basic statistical properties (mean and variance) of
the CMIP5 RCP ensemble, in order to study overall warming probabilities as function
of emissions. One could argue that we implicitly assume Gaussian PDFs as we only
use the variance to judge the ‘spread’ (Fig. 6) we tune our stochastic model to. We
justify this procedure by its good prediction of variance in the idealized experiments,
the approximate gaussianity of ∆T for small warmings and until 2100†, and the fact
that the small number of model runs make it difficult to justify fitting any particular
non-Gaussian distribution. Of course, in reality the CMIP5 ensemble is most likely not
normally distributed for high emissions scenarios (see e.g. Fig. 3). Indeed the models
differ so much in their predictions for RCP8.5 beyond 2100 that one may classify them
in different groups of models, with our methods applied separately, to get a ‘high’ and
a ‘low’ response. In addition, we have focused much less on the physical realism of
the individual realizations of the stochastic process as compared to the ensemble. As
mentioned, the large multiplicative noise factor leads – especially at high mean warmings
– to an immensely volatile trajectory that in all likelihood is not physical. It might
be a worthy endeavor to investigate how this could be improved, for example to also
recover higher-order statistics or timeseries properties that we did not cover here. It may
be possible to combine various noise terms to obtain better individual timeseries. One
might also involve further methods for timeseries analysis that we did not discuss here,
such as delay differential equations or recurrent neural networks.

By our choice of model we limited ourselves to response functions represented as
sums of exponentials. Several times we noted the issue already realized in Joos et al.
(2013) that the real climate’s carbon model is not pulse-independent and hence using
a single constant response function has inherent problems, in particular when running
very different emission scenarios, because the efficiency of the natural carbon sinks to
the ocean and land reservoirs is a function both of temperature and the reservoir sizes.
Therefore, expectedly, our model has problems reproducing CO2 concentration pathways
(Fig. 4), a price we accept to pay as we focus on the temperature reproduction. In a new
work Millar et al. (2017) draw a different conclusion from studying a similar problem
and introduce in their new FAIR model response functions that dynamically adjust
parameters based on warming to represent sink saturation. Consequently, their model
gives much better results in terms of CO2 concentrations. It would be an interesting
lead for future research to conduct our analysis here (in terms of SCB, PONR and
optimal transitions) with other simple models (such as FAIR or MAGICC) to discover
similarities and differences.

In our work we have used a simple economic framework mainly to

(i) describe how emissions progress from now into the future in a ‘business-as-usual’
scenario in order to derive the PONR, and to

(ii) formulate simple expressions for climate damages, costs associated with combating
climate change, and global welfare to optimize for.

While the first item includes relatively few assumptions (mainly that economic growth
and energy efficiency are approximately constant), the second item represents a simple
view of the world with many obvious drawbacks. We have ourselves addressed the issue

† This is our main interest, and in fact, the 140-year idealized experiments hardly justify
much longer projection horizons.
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that it assumes the possibility of instantaneous adjustment to any carbon price, and
thereby any level of abatement and mitigation. Also our model is formulated purely in
terms of global output and does not consider for example capital stock, labor (Dietz and
Stern 2015) and fixed investments in fossil fuel technology (such as coal power plants).
We also do not address the issue of how the carbon price or the abatement/mitigation
ratios could be set in practice. Common options would be carbon taxes and subsidies on
renewable energies (Rezai and van der Ploeg 2016; Golosov et al. 2014) and have many
inherent problems themselves (Green paradox, free-riding, heterogeneous actors etc.).
In addition, we have also assumed that abatement and/or mitigation can indeed reach
a,m = 1, leading to a completely emission-free world. Combined with only representing
CO2 in our model this is probably (over-)optimistic, as some emission sources (land
use change, agriculture) cannot be reduced to zero. The relevant actors deciding on
emissions, such as companies, do not perform the welfare maximization we have done
here as climate damages are currently an unpriced externality. Thereby the economic
problem becomes more a political problem of which countries (resp. their governments)
have the political will to act and internalize these damages. Due to these drawbacks, the
economic part of this thesis is more an illustrative exercise than a realistic projection of
likely economic developments. We do stress, however, that many of these drawbacks do
not apply to our physical-based metrics SCB and PONR.

Putting the message of this thesis in one sentence, we argue that if no fast action
is taken the Earth is very likely to warm by more than two degrees, while 1.5 degrees of
warming are already essentially unavoidable. If this is a vision to be avoided at all costs,
it may be necessary to think about additional possibilities for action. The prolonged
negative emissions present in the RCP2.6 scenario successfully decrease the GMST
again. This hints at the potential applicability of negative emission (e.g. BECCS) or
geoengineering (e.g. sulfate injections) technologies if mitigation efforts are judged to
be insufficient. It would be interesting to think about how to include either into our
framework and how to treat them economically. For example, one might ask the question
by how much a particular geoengineering approach would delay the PONR.
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Appendix A. Radiative Forcing for non-CO2 gases

In section 2.3 we described how we compute the radiative forcing using CO2 concentra-
tion only, and here describe the alternative approach to include CH4 and N2O. Following
(Myhre et al. 2013b, Table 8.SM.1) we give the radiative forcing in W m−2 for CO2, CH4

and N2O as

∆FCO2 = αCO2 ln(CCO2/C0) (A 1)

∆FCH4 = αCH4(
√
CCH4 −

√
M0)− (f(CCH4, N00)− f(M0, N00)) (A 2)

∆FN2O = αN2O(
√
CN2O −

√
N0)− (f(M00, CN2O)− f(M00, N0)) (A 3)

f(M,N) = 0.47 ln
(
1 + 2.01× 10−5(M ·N)0.75 + 5.31× 10−15M(M ·N)1.52

)
(A 4)

where C0 is the pre-industrial (1750) CO2 concentration, M00, N00 are the present-day
(2011), and M0, N0 the pre-industrial (1750) CH4 and N2O concentrations. The total
radiative forcing for all considered contributers is then simply the sum

∆Ftot = A
∑
i

∆Fi (A 5)

with scaling constant A = 1.1 to take into account still disregards contributions (land-use
emissions, CFCs etc.).

We show the result, overlaid with RCP simulation results, in Fig. 15.
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Figure 15: Reconstruction of RCP temperature evolution from concentration pathways
using CO2, CH4, N2O. Blue, orange and green lines gives CMIP5 data for RCP4.5,
RCP6.0 and RCP8.5, respectively, with the ensemble mean given in solid (RCP4.5),
dotted (RCP6.0) and dashed (RCP8.5) black. Reconstruction using CO2 radiative forcing
and CMIP5 Green’s function in red (RCP4.5), purple (RCP6.0) and brown (RCP8.5).

The agreement when using all three gases is slightly better (in particular for the high
emissions scenario RCP 8.5) than when only using CO2.



36 M. Aengenheyster

Appendix B. Emission Model for non-CO2 gases

We mentioned in section 3.1 the possibility to model CH4 and N2O in a similar fashion
to CO2 using response functions. For some applications and research questions this may
indeed be warranted, as on short timescales their contribution may reach or exceed the
role of CO2 (Myhre et al. 2013a, Figure 8.32).

Following Myhre et al. (2013a) the response functions for CH4 and N2O are simpler
than for CO2 and can just be case as exponentials, so

GCO2(t) = a0 +

3∑
i=1

aie
t/τi (B 1)

GCH4(t) = et/τCH4 (B 2)

GN2O(t) = et/τN2O (B 3)

and the time evolutions are computed as

CCO2(t) =

∫
GCO2(t− t′) ECO2(t′) dt′ (B 4)

CCH4(t) =

∫
GCH4(t− t′) ECH4(t′) dt′ (B 5)

CN2O(t) =

∫
GN2O(t− t′) EN2O(t′) dt′ (B 6)

with the instantaneous emissions and response function for each gas. From these instan-
taneous concentrations we compute their radiative forcing (appendix A) and use it in
the temperature response function.
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Appendix C. Safe Carbon Budget Parameter Sensitivity

We show the results for the parameter sensitivity study of the SCB calculation
described in section 4.1. Sensitivities were determined for all discussed values of Tmax, β.
Here we show sample values for a small (Tmax = 1.5 K, β = 0.95), intermediate (Tmax =
1.5 K, β = 0.5), and large (Tmax = 2.0 K, β = 0.5) SCB.

Tmax, β 1.5 K, 0.95 1.5 K, 0.5 2.0 K, 0.5
undisturbed 10.49 86.67 199.03

Initial Conditions
CP –, 75.26 –, 77.41 –, 80.11
C1 7.14, -7.05 6.96, -6.94 6.87, -6.45
C2 0.85, -0.91 0.92, -0.96 0.78, -0.91
C3 -0.06, 0.01 0.0, -0.05 0.19, -0.11
∆T0 1.4, -1.46 1.92, -1.92 2.2, -1.84
∆T1 -0.01, -0.05 -0.01, -0.03 0.17, 0.01
∆T2 -0.04, -0.11 -0.0, 0.03 -0.0, -0.12

Climate Parameters
a0 0.55, -0.49 4.17, -3.81 9.14, -8.14
a1 0.41, -0.44 3.61, -3.39 7.99, -7.13
a2 0.17, -0.11 1.07, -1.01 3.0, -2.55
a3 -0.04, 0.0 0.07, -0.09 0.31, 0.08
τ1 1.59, -1.28 2.03, -1.68 2.64, -2.01
τ2 1.75, -1.73 3.0, -2.9 5.18, -4.68
τ3 -0.08, -0.07 0.01, -0.06 -0.14, 0.13
A 23.26, – 33.77, -27.0 50.61, -39.92
α 23.32, – 33.76, -27.04 50.48, -39.84
C0 –, 78.33 -86.44, 83.71 -94.33, 91.34
b0 3.24, -3.17 5.79, -5.61 8.38, -7.72
b1 5.13, -4.9 9.49, -8.8 13.99, -13.25
b2 13.36, – 16.16, -14.38 24.6, -21.48
τb0 0.92, -0.74 1.11, -0.97 1.56, -1.17
τb1 5.23, -4.97 9.53, -8.88 14.63, -13.12
τb2 15.66, – 15.83, -14.01 24.11, -21.02

Stochastic Parameters
σC2 0.1, -0.15 -0.02, -0.0 -0.02, 0.01
σT0 1.68, -2.01 0.29, -0.29 0.06, -0.42
σT2 4.08, -4.14 -1.26, 1.44 -1.96, 2.22

Table 13: Sensitivity of Safe Carbon Budget to parameter variations. Values in difference
in GtC from the undisturbed value (first row). First and second numbers give 10%
parameter decrease and increase, respectively. No value being shown implies no positive
SCB could be calculated. The fields corresponding to the radiative forcing parameters
A,α,C0 are colored in cyan, while the most sensitive climate model parameters b2, τb2
are given in orange.



38 M. Aengenheyster

Appendix D. Point of No Return Parameter Sensitivity

We show the results of the parameter sensitivity study of the PONR calculation
discussed in section 4.2. We performed the study for all scenarios listed in Tab. 7 and
show them here for sample scenarios with PONR values that are close (EM,Tmax =
1.5 K, β = 0.95), far away (EM,Tmax = 2.0 K, β = 0.5), and intermediate (EM,Tmax =
1.5 K, β = 0.5).

Tmax, β 1.5 K, 0.95 1.5 K, 0.5 2.0 K, 0.5
undisturbed 2031 2018 2047

Initial Conditions
CP 10, -12 12, – 7, -9
C1 1, -1 1, -2 0, -1
C2 1, 0 0, 0 0, 0
C3 0, 0 0, 0 0, -1
∆T0 1, 0 0, 0 0, -1
∆T1 0, 0 0, 0 0, 0
∆T2 0, 0 0, 0 0, 0

Climate Parameters
a0 1, 0 0, 0 1, -1
a1 1, 0 0, 0 1, -1
a2 1, 0 0, 0 0, -1
a3 0, 0 0, 0 0, 0
τ1 1, 0 0, 0 0, -1
τ2 1, 0 0, -1 0, -1
τ3 0, 1 0, 0 0, 0
A 6, -4 5, – 5, -5
α 5, -4 5, – 5, -5
C0 –, 12 –, 14 -13, 9
b0 1, -1 1, -1 1, -1
b1 2, -1 1, -1 1, -2
b2 3, -2 3, – 2, -3
τb0 1, 0 0, 0 0, -1
τb1 2, -1 1, -1 1, -2
τb2 3, -2 4, – 3, -3

Economic Parameters
Y0 2, -1 0, 0 2, -2
g 1, 0 0, 0 0, -1
γ0 2, -1 0, 0 2, -3
rγ 2, 3 0, 0 4, 11

Stochastic Parameters
σC2 1, 0 0, 0 0, 0
σT0 0, 0 0, 0 0, 0
σT2 0, 0 1, -1 0, 0

Table 14: Sensitivity of Point of No Return to parameter variations. Values in difference
in years from the undisturbed case (first row). First and second numbers give 10%
parameter decrease and increase, respectively. Exception is rγ (in orange) which is zero
by default. First and second numbers here give rγ = 0.01 and rγ = 0.02, respectively. No
value being shown implies no PONR was found, i.e. it is already passed. All three columns
refer to the EM scenario. The fields corresponding to the radiative forcing parameters
A,α,C0 are colored in cyan, while the most sensitive climate model parameters b2, τb2
are given in orange.


