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Abstract for the general public
We introduce the new concept of cascading tipping. It is defined as the event of an large change in a first, leading system, which
through a domino effect makes another, following system, also undergo a large change. A mathematical framework is created,
where we use simple models that show these phenomena. Four deterministic cascading event types are defined, called the (1)
double-fold, (2) fold-Hopf, (3) Hopf-fold, and (4) double-Hopf cascade, based on which type of change the system undergoes.
More subtle forms of cascading tipping are defined when we add small randomness (noise) to the models. Statistical analysis
is applied on cascading tipping to see what happens during such a period and to try to find a signal that could warn us if such
an event is about to happen. We apply this theory on two cases in the real climate system. The first case is concerned with
a collapse of the ocean’s overturning circulation down to a halted circulation in the northern hemisphere. Using cascading
tipping theory, our conceptual models show that in certain conditions, such an event can lead to an intensification of El-Niño
events and the oscillation associated with it. We verify this intensification using complex model output. The second case also
concerns a large change in the ocean’s overturning circulation, which may induce the onset of southern hemispheric land ice
growth. These examples suggest the theoretical possibility of such events in the climate system.
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Abstract. We introduce the new concept of cascading tip-
ping. It is defined as the event of a critical transition in a first,
leading system, altering background conditions such that an-
other critical transition in a second, following system occurs.
A mathematical framework is created, where systems with
saddle-node and Hopf bifurcations are used to investigate the
behavior of systems involving abrupt transitions. Four de-
terministic cascading event types are defined, including the
(1) double-fold, (2) fold-Hopf, (3) Hopf-fold and (4) double-
Hopf cascade. Considering stochastic systems, we discussed
the effect on the probability density function (PDF) and flick-
ering effects, allowing for more subtle critical transitions.
Statistical indicators and analysis tools for critical transitions
are discussed, including the general theory of critical slowing
down, degenerate fingerprinting and detrended fluctuation
analysis (DFA). These are applied to the concept of cascad-
ing tipping in the form of detrended cross correlation analysis
(DCCA) and a special case of extrapolation using the DFA of
the following system. Using ensemble simulation runs, these
statistical indicators are analyzed for the double-fold cascade
and the fold-Hopf cascade. The concept of cascading tipping
is applied to two climatological cases: (1) the overturning
circulation coupled to El-Niño Southern Oscillation (ENSO)
and (2) the overturning circulation coupled to southern hemi-
spheric land ice formation. For the first case, we couple two
conceptual models to show a case where a collapse of the
overturning leads to an intensification of ENSO. In the sec-
ond case, an existing conceptual box model is perturbed such
that a transition from a southern sinking towards a thermoha-
line overturning state is followed by southern hemispheric
land ice formation. These examples suggest the theoretical
possibility of such events in the climate system.

1 Introduction

Critical transitions can be found in many aspects of the
earth’s climate system. Typical examples of these transitions
in palaeoclimate records are found in the abrupt cooling of
the Younger Dryas (Livina and Lenton, 2007), the deser-
tification of the Sahel region (Kutzbach et al., 1996) and
the Eocene-Oligocene transition (Tigchelaar et al., 2011).
Also in today’s climate and future projections, potential tip-
ping points are found. The Atlantic meridional overturn-
ing circulation (AMOC) (Dijkstra and Weijer, 2005; Stom-
mel, 1961; Huisman et al., 2009), Arctic sea ice (Bathiany
et al., 2016b), monsoon patterns, atmospheric zonal flow
(Barriopedro et al., 2006), vegetation cover (Hirota et al.,
2011; Aleina et al., 2013) and more local systems like coral
reefs and permafrost are discussed in this context, both from
a theoretical point of view (Bathiany et al., 2016a), and by
using complex model data (Drijfhout et al., 2015).

Although many tipping points have been analyzed elabo-
rately in separate subsystems, less attention has been given
to the interaction between these transitions. A transition in

a first, leading, system may alter the background condi-
tions of a second, following, system (Lenton and Williams,
2013), causing it to undergo critical transition, too. For exam-
ple, when the AMOC collapses, precipitation patterns may
change such that the equilibrium structure of the vegetation
cover in the Amazon rainforest is shifted (Hirota et al., 2011;
Aleina et al., 2013). This may result in another transition,
concerned with forest growth or dieback. We refer to this
process of coupled critical transitions as ‘cascading tipping’.
There are already studies devoted to the interaction of theo-
retically stochastic coupled multistable systems in networks,
e.g. in Ashwin et al. (2017) and Creaser et al. (2017), defining
types of domino effects based on the synchrony of the tran-
sition (escape times) in the various coupled network nodes.
However, these papers focus on network dynamics and do
not yet give a general perspective on the concept of cascad-
ing tipping. This is the focus of this paper.

From a theoretical point of view, one can think of several
mechanisms in the earth’s climate that can show cascading
tipping events. An example is the influence of the overturn-
ing circulation on the trade winds (through meridional sea
surface temperature gradients), that in turn influence the in-
tensity of the El-Niño Southern Oscillation (ENSO). It is ar-
gued that a collapse of the overturning would intensify ENSO
(Lenton and Williams, 2013; Timmermann et al., 2007; Dong
and Sutton, 2007), while there are other effects that would
weaken ENSO (Timmermann et al., 2005).

Another example is the coupling between the overturning
circulation and land ice. At the Eocene-Oligocene transition,
a two-step signal is found in the δ18O isotopic ratio, which
is attributed to a deep-sea temperature drop followed by the
(slower) growth of the Antarctic Ice Sheet (AIS). The deep-
sea temperature drop can be related to a switch in overturn-
ing state, as investigated in Tigchelaar et al. (2011). The ice
sheet formation is argued to be driven by a decreased atmo-
spheric CO2 (Pearson et al., 2009). This rises the question to
which extent the switch in overturning circulation (first tip-
ping) might impact the atmospheric CO2 and therefore indi-
rectly drive the growth of the AIS (second tipping), forming
a cascading tipping event.

In the last few years, there is growing interest to formu-
late statistical indicators and early warning signals of tipping
points. A system close to critical transition shows features of
a ‘critical slowing down’, which can be mathematically de-
rived (Dakos et al., 2008; Scheffer et al., 2009), but is also
rather intuitive: in the vicinity of the tipping point, the sys-
tem slowly loses its ability to recover from small perturba-
tions. This results in increased variance, autocorrelation and
potentially also increased skewness and flickering (Scheffer
et al., 2009). To quantify the actual threshold of a critical
transition, two distinguishable methods are used. The first is
degenerate fingerprinting, which quantifies the autocorrela-
tion by fitting an autoregressive iterative function through the
time series (Held and Kleinen, 2004; Thompson and Sieber,
2011). The second, arguably more suited for non-stationary
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time series (Livina and Lenton, 2007), is detrended fluctua-
tion analysis (DFA), where the average fluctuation function
F (s) of polynomial fits in segments of size s is fit to a power
law F (s)∝ sα (Peng et al., 1994). Both these methods result
in a scalar that increases when approaching a tipping point,
and a particular threshold when the tipping point is actually
reached and the transition starts to take place.

Analyzing cascading tipping is different from regular tip-
ping analysis, as simultaneously the autocorrelation of two
time series and their interaction need to be analyzed. Podno-
bik and Stanley (2007) proposed an altered form of DFA to
assess the cross correlation between two non-stationary time
series and called this method detrended cross-correlation
analysis (DCCA). In the computation of the fluctuation func-
tion, they used cross-covariance instead of auto-covariance
and fit this to a power law. This concept is further extended
by defining a coefficient ρDCCA that accounts for the auto-
covariance of the individual time series (Zhou, 2008; Yuan
et al., 2015). However, no statistical analysis and indicators
have yet been formulated for cascading tipping events, and
an attempt to fill this gap is done in this paper.

In this paper, we introduce the concept of cascading tip-
ping. We start with a mathematical framework to define criti-
cal transitions, coupling and cascading tipping, including the
formulation of typical dynamical systems that show cascad-
ing tipping events (section 2). We continue with discussing
the statistical indicators used to analyze critical transitions,
and apply them to ensemble simulations (section 3). Then
two applications of cascading tipping in climate dynamics
are investigated: the potential cascading tipping mechanism
between the AMOC and ENSO (section 4) and between the
AMOC and the AIS, which refers to the Eocene-Oligocene
transition (section 5).

2 Mathematical framework

Critical transitions come in various forms. While transitions
in the AMOC implies the overturning to go from one equi-
librium state towards another (Stommel, 1961), a critical
transition in northern hemisphere atmospheric zonal flow
(Tantet et al., 2015; Charney and DeVore, 1979) implies
abrupt changes in the variance or probability density func-
tion (PDF). This section attempts to analyze (cascading) crit-
ical transitions in a mathematical framework. For the most
part of this analysis, we retain to a deterministic approach for
simplicity. Later in this section, we will turn to a stochastic
approach.

2.1 Bifurcating systems and critical thresholds

The simulation of abrupt change in a dynamical system as
a consequence of a small forcing involves the concept of
bifurcations. Here, we focus on two types of bifurcations,
the back-to-back saddle-node and the Hopf bifurcation, re-

flecting some of these transitions (Thompson and Stewart,
2002). Here, we analyze systems that contain these bifur-
cation points and we specify the critical thresholds to reach
these points.

2.1.1 Saddle-node bifurcations

A general form for a system that has a back-to-back saddle-
node bifurcation could be the following differential equation:

dx

dt
= a1x

3 + a2x+ a3 (1)

where ai are constants with i ∈ {1,2,3}, x a certain 1-
dimensional state variable and t time. To formulate the po-
sition of the bifurcation point in terms of the parameters ai,
we proof several characteristics of Eqn. 1 in Appendix A.
The result is that there are multiple equilibria in the system

if and only if a1 < 0, a2 > 0 and |a3|<
√

4a31a
3
2

27a41
. This means

that given the right a1 and a2, a saddle-node bifurcation can

be found at a3 =±
√
−4a31a32
27a41

.

2.1.2 Hopf bifurcations

A general form for a system that has a Hopf bifurcation could
be the following set of differential equations:

dx

dt
= a1y+ a2(a3− (x2 + y2))x

dy

dt
= b1x+ b2(b3− (x2 + y2))y

(2)

where ai and bj are constants with i, j ∈ {1,2,3}, x and y
are certain state variables and t time. In Appendix A, it is
proven that the system in Eqn. 2 reaches a stable periodic
solution when coming from a stable stationary equilibrium if
and only if a1b1 < 0 and a2a3 + b2b3 = 0.

2.2 Deterministic cascading tipping

Taking the step from single bifurcation points to cascading
critical transitions, we need to extend the dynamical systems
by defining a leading system and a following system in terms
of state variables with own differential equations. Coupling
these variables is essential to simulate the cascading effect,
but note that the coupling should not be such that the leading
and following systems are essentially one and the same sys-
tem. We will now define various types of cascading tipping
events, which in the current framework consist of combina-
tions of saddle-node and Hopf bifurcations.

2.2.1 Type 1: Double fold cascade

The most intuitive system that has the potential to undergo
a cascading tipping event is a system where both the lead-
ing and the following system have saddle-node bifurcations
(‘folds’). Analogous to system Eqn. 1, we define a general
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Figure 1. Example simulations for each cascading event type: the double-fold cascade (a), the fold-Hopf cascade (b), the Hopf-fold cascade
(c) and the double Hopf cascade (d). Black and grey lines indicate the leading systems, red and orange lines indicate the following systems.
Dotted lines indicate time before the critical threshold in the forcing φ(t) (black/grey) or coupling κ(x) (red/orange) is reached, solid lines
indicate the time after this.

form for this so-called double fold cascade as:
dx

dt
= a1x

3 + a2x+φ

dy

dt
= b1y

3 + b2y+κ(x)

(3)

where x is the leading system, y is the following system,
ai and bi are constants, κ(x) = κ1 +κ2x is a coupling term
(κ1,κ2 constants) between x and y and φ is a term which
we can make time-dependent to apply a slow forcing on the
system. When x is forced by φ(t) such that it reaches the
limit point of the back-to-back saddle-node structure, y might
also reach a limit point if the critical threshold of |κ(x)|=√

4b31b
3
2

27b41
is attained (including b1 < 0 and b2 > 0). The above

system is modelled and a resulting cascading tipping event
is shown in Fig. 1a with parameter setting {a1,a2, b1, b2}=
{−0.5,0.5,−0.5,1} and κ= 0.48x. The system shown is
forced by φ in the form of a ramp-function around the po-
sition of the bifurcation point of the leading system. This is
also the case in the other types shown in Fig. 1. The back-to-
back saddle-node structure of the leading system w.r.t. φ is
visible in Fig. 2a, already showing the extra limitpoints that
only affect the following system, of which the bifurcation
structure is shown in Fig. 2e. The latter shows the existence
of a regime (in φ) where there are four possible stable equi-
libria of the system.

A typical climatological example of such a cascading tip-
ping event is the case of a collapsing overturning circulation,
leading to a critical transition in the vegetation mass in the
Amazon rainforest. The forcing φ(t) of the leading system is
then the freshwater flux, and the coupling κ between the sys-
tems is done through precipitation patterns via the meridional
sea surface temperature (SST) gradient. Both transitions im-
ply a significant equilibrium shift, which is possible as multi-

ple equilibria exist in these systems (Stommel, 1961; Aleina
et al., 2013).

2.2.2 Type 2: Fold-Hopf cascade

The second category of cascading tipping events involves a
fold bifurcation in the leading system and a subsequent Hopf
bifurcation in the following system. Using analogous nota-
tion as in Eqn. 3, we present a general system that may pro-
duce this so-called fold-Hopf cascade:

dx

dt
= a1x

3 + a2x+φ

dy

dt
= b1z+ b2(κ(x)− (y2 + z2))y

dz

dt
= c1y+ c2(κ(x)− (y2 + z2))z

(4)

where x is again the leading system, but now y and z together
form the following system. If we make φ time-dependent
to force x such that it is forced onto another equilibrium
state, κ(x) might cross 0 such that κ(x)(b2 + c2) = 0 and
thus Hopf bifurcation is reached in (y,z). The resulting cas-
cading tipping event is illustrated in Fig. 1b with param-
eter setting {a1,a2, b1, b2, c1, c2}= {−1,1,1,1,−1,1} and
κ=−0.1 + 0.12x. The back-to-back saddle-node is visible
in Fig. 2b, but with an oscillatory regime in the upper branch
(although the leading system itself does not oscillate, visible
in the zero-amplitude). The Hopf bifurcation and subsequent
non-zero amplitudes of an oscillation are visible in Fig. 2f,
where in contrast to the bifurcation diagram of a system like
Eqn. 2, a stable stationary equilibria are found on both sides
of the Hopf bifurcation, as determined by the leading sys-
tem’s state.

An example of such a cascading event can be found in
the hypothetical case where a collapse of the overturning cir-



6 Mark M. Dekker: Cascading tipping points: on the dynamics of coupled critical transitions

−1.5

0.0

1.5

Le
ad

in
g 
Sy

st
em (a) (b) (c) (d)

−1.0 −0.5 0.0 0.5 1.0
hoi

−1.5

0.0

1.5

Fo
llo

wi
ng

 S
ys
te
m (e)

−1.0 −0.5 0.0 0.5 1.0

(f)

−1.0 −0.5 0.0 0.5 1.0

(g)

−1.0 −0.5 0.0 0.5 1.0

(h)

Forcing parameter ϕ

Figure 2. Bifurcation diagrams of the various cascading tipping types. Top: leading systems versus forcing φ(t). Bottom: following systems
versus forcing φ(t). Lines indicate stable equilibria (black solid), instable equilibria (black dashed) and oscillatory equilibria (red dashed,
non-zero amplitudes shown in pairs). Dots indicate important bifurcation points: limit points (red) Hopf bifurcation points (orange) and torus
bifurcation points (black).

culation leads to an arising or strong weakening of El-Niño
phenomena. The overturning is forced by the freshwater flux
and the coupling with the Pacific ocean is found in the trade
winds (Timmermann et al., 2007).

2.2.3 Type 3: Hopf-fold cascade

Cascading tipping category 3 involves a Hopf bifurcation in
the leading system and a subsequent fold in the following
system. Using analogous notation as before, we introduce a
general form for this so-called Hopf-fold cascade:

dx

dt
= a1y+ a2(φ− (x2 + y2))x

dy

dt
= b1x+ b2(φ− (x2 + y2))y

dz

dt
= c1z

3 + c2z+κ(x)

(5)

where (x,y) together form the leading system, and z is
the following system. Again, we can slowly increase φ
such that the leading system (x,y) crosses a Hopf bifurca-
tion (φ(t)(a2 + b2) = 0), which may result in κ(x) crossing√

4c31c
3
2

27c41
such that a fold is reached in z. The above system is

modelled and a resulting cascading tipping event is shown
in Fig. 1c with parameter setting {a1,a2, b1, b2, c1, c2}=
{0.05,1,−0.05,1,−1,1} and κ= 0.05+0.5x. Note that this
type of cascading tipping can come in various forms, which
can be explained by looking at the bifurcation diagrams of
both the leading (Fig. 2c) and the following (Fig. 2g) sys-
tem. When φ is such that an oscillation starts in the leading
system, the following system might also start oscillating a
bit (visible in Fig. 2g). However, this is due to the chang-
ing position of the stable stationary equilibrium branch in
the following system, not because of an intrinsic Hopf bi-
furcation, which within our framework means that the fol-
lowing system did not critically transit yet. If the amplitude
of the leading system becomes large enough (e.g. when φ

is increased further), the following system might be reduced
to having only one stable equilibrium (visible in Fig. 2g as
the stopping of the small oscillations in the lower branches).
However, when the oscillation in the leading system becomes
even larger, the leading system sweeps the following system
between two equilibria: in the positive phase, the following
system remains around the upper branch in Fig. 2g, in the
negative phase, it is around the lower branch.

An example of such a cascading event is the opposite of
the example used in the fold-Hopf cascade. The variabil-
ity in ENSO can in turn also affect the equilibrium state of
the MOC. If ENSO would stabilize, this has major conse-
quences for precipitation patterns and heat fluxes that affect
the meridional temperature gradient in the Atlantic. This in
turn affects the meridional overturning and potentially forces
a critical transition.

2.2.4 Type 4: Double Hopf cascade

The fourth and final category of cascading tipping discussed
here involves a Hopf bifurcation in the leading system and
a subsequent fold in the following system. Using analogous
notation as above, we introduce a general form for this so-
called double Hopf cascade:

dx

dt
= a1y+ a2(φ− (x2 + y2))x

dy

dt
= b1x+ b2(φ− (x2 + y2))y

du

dt
= c1v+ c2(κ(x)− (u2 + v2))u

dv

dt
= d1u+ d2(κ(x)− (u2 + v2))v

(6)

where (x,y) together form the leading system, and (u,v)
is the following system. If φ(t) forces (x,y) such that
it a Hopf bifurcation point is reached (φ(a2 + b2) =
0), κ(x) might alter such that κ(x)(c2 + d2) reaches
0 and a Hopf bifurcation is crossed in (u,v). The



Mark M. Dekker: Cascading tipping points: on the dynamics of coupled critical transitions 7

0 200 400 600 800 1000
Time

1

0

1

S
ta

te
s

(a)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
State

0

1

2

Fr
e
q
u
e
n
cy (b)

Figure 3. Example of stochastic tipping involving flickering. The leading system x is denoted in black, the following system is denoted in
orange (before tipping of x) and red (after tipping of x). Left: time series of x and y, right: probability density functions of y before and after
tipping.

resulting cascading tipping event is shown in Fig.
1d with parameter setting {a1,a2, b1, b2, c1, c2,d1,d2}=
{0.04,2,−0.04,2,0.4,1,−0.4,1} and κ=−0.05+2x. It can
be seen in the example that the position of the following sys-
tem w.r.t. its Hopf bifurcation is periodic and therefore has
some degree of reversibility. However, do note that (as shown
in Fig. 1d), the periodicity in the leading system can be much
slower than the one in the following system, making it tem-
porarily irreversible. The equilibrium structures of the lead-
ing and following systems are shown in Fig. 2d and h, which
indicate the presence of torus bifurcation points, reflecting
the variable amplitude of the system’s oscillations for spe-
cific values of φ.

An example of such a cascading event is the connection
of the variability in ENSO with the variability in the Indian
Ocean, or specifically, the Indian Ocean Dipole. Whenever
ENSO attains increased variability (e.g. crosses a stochas-
tic Hopf or period-doubling bifurcation), the Indian Ocean
might do the same through these teleconnections. The con-
nection between these systems is verified in coupled GCMs
(Venzke et al., 2000).

2.3 Stochastic cascading tipping

The bifurcations as described in the above deterministic sys-
tems are also possible to occur in stochastic systems, al-
though somewhat harder to predict due to the fact that inter-
nal variability (noise) rather than external forcing can make
a system cross a bifurcation point, too. More specifically,
subtle forms of tipping like flickering in regimes of multi-
ple equilibria becomes possible, without altering background
conditions. When considering cascading tipping, such an
event might look like the one in Fig. 3, where the following
system of equations is used:
dx

dt
= a1x

3 + a2x+φ(t) + ζx

dy

dt
= b1y

3 + b2y+κ(x) + ζy

(7)

which is the same system as in the case of the double fold
cascade, but with added noise terms ζx and ζy . We use the
parameters {a1,a2, b1, b2}= {−1,1,−1,1}, κ= 0.5− 0.5x
and Gaussian white noise variance 0.8 (mean 0). Here, when

the leading system x tips (black curve), the following sys-
tem y does not directly following (orange and red curve), but
comes into a state of multiple equilibria, where its variance
allows for flickering, which has its impact on the probabil-
ity density function (PDF) as seen in Fig. 3b. Although there
is no direct bifurcation point reached, this can definitely be
considered as an abrupt change or ‘critical transition’, as the
PDF changes may have drastic consequences. Flickering be-
tween multiple states is seen in various systems of the earth’s
climate.

One can think of other stochastic variations of cascading
tipping, especially when Hopf are concerned and the vari-
ance has a high magnitude with respect to the oscillation’s
amplitude. As there are a lot of individual variations without
adding to the scope of this paper, we will not go into details
here.

3 Statistical analysis of critical transitions

This section discusses the various tools to analyze single tip-
ping events and proposes statistical indicators for the analysis
of cascading tipping events.

3.1 Analyzing tipping points

We start with single tipping points. A system close to critical
transition recovers more slowly from perturbations, which in
turn increases memory in the time series. This lead to the
theory of ‘critical slowing down’ prior to bifurcation points.
The mathematical background and details are discussed in
Scheffer et al. (2009), where they mainly focus on fold bifur-
cations, although they argue that this also occurs in systems
involving Hopf bifurcations and even chaotic and spatially
extended systems. The critical slowing down is expressed in
increasing autocorrelation (often specified as the autoregres-
sive coefficient at lag 1), increasing variance and increasing
skewness. However, these indicators provide no early warn-
ing or critical threshold in the statistics of a time series what-
soever, and under certain conditions may not even be useful
(Ditlevsen and Johnsen, 2010). This leads us to more com-
plicated indicators discussed below.
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3.1.1 Degenerate fingerprinting

As critical slowing down predicts increasing autoregressive
behavior in the time series prior to a critical transition, the
memory and thus influence of previous time steps towards
later time steps is increased. After time-equidistant interpo-
lation and detrending of the data, one can fit the following
general autoregressive function to the series:

yn+1 = c · yn +σηn

or, in continuous form:

y(t) = y0 · ct

where ηn is Gaussian white noise and c= exp(−λ∆t),
where λ can be seen as the decay rate of perturbations in
previous time steps. The variable c indicates this memory,
becoming 1 when the series behaves like red noise, and be-
coming zero when the system behaves like white noise. This
method is called degenerate fingerprinting (Thompson and
Sieber, 2011). As the approaching of a bifurcation point in-
volves an increase in memory, ultimately towards red noise
behavior, the value of c is presumed to increase towards 1
when approaching a bifurcation point.

3.1.2 Detrended fluctuation analysis

A problem of degenerate fingerprinting is that it quickly cap-
tures shorter-time scale trends in the data. Detrended fluc-
tuation analysis (DFA) is another method to analyze crit-
ical transitions, but copes well with non-stationarity while
searching for long-range correlations (Peng et al., 1994; Liv-
ina and Lenton, 2007).

The procedure of DFA is as follows. First, we choose a
window size s. Then, we divide the (cumulative-summed)
time series in Ns =N/s segments that do not overlap. In
every window, the best polynomial fit of a chosen order is
calculated. A quadratic polynomial is used here. The squared
deviation from this quadratic polynomial for every window is
summed, resulting in a measure of the auto-covariance fluc-
tuating around the fit:

F 2(ν,s) =
1

s

s∑
i=1

[Y ((ν− 1)s+ i)− yν(i)]2 (8)

with Y the detrended time series, yν the best polynomial fit
in segment ν and N the length of the time series. Then, an
average is taken over all segments to obtain the fluctuation
function F (s):

F (s) =

√√√√ 1

N/s

N/s∑
ν=1

F 2(ν,s) (9)

which depends on s. We can now recognize long-range auto-
correlations by fitting the fluctuation function to a power-law
and looking at the resulting DFA-exponent α:

F (s) ∝ sα (10)

For α≤ 0.5, there is no long-term correlation (fluctuations
are white noise). However, when α > 0.5, there are long-
term correlations present. For α≥ 1.5, the fluctuations act
like red noise and the system has reached a bifurcation point.
In stationary series, α is related to the auto-correlation expo-
nent in C(s)∝ s−γ .

Livina and Lenton (2007) proposed a DFA-propagator
which is basically an empirically derived polynomial α(c)
as function of the autoregressive propagator used degenerate
fingerprinting. In the simulations done here, this turned out to
be rather noisy and unpredictable, which is why we fitted the
DFA scaling exponent explicitly for every (moving) window.

3.2 Analyzing cascading tipping points

Cascading tipping involves two systems with their own bi-
furcation structure and their proximity towards bifurcation
points. Although the leading system may be close to tipping,
the following system might still be far away from its bifur-
cation point and needs the critical transition of the leading
system to even come close to this point. This is why the gen-
eral measures for single tipping events cannot be used, nor
can regular cross (Pearson) correlation due to the fact that
the following and leading system do not have a one-to-one
relationship (that would mean they are practically the same
system), but are rather coupled in specific parameters, only
seen in long-range correlations.

3.2.1 Detrended cross-correlation analysis

When approaching a cascading tipping point, the long-range
cross-correlation between the two variables is expected to in-
crease, because x becomes more auto-correlated and is less
susceptible to noise, and therefore through the coupling in-
fluences y in a more robust way. To find long-range cross-
correlations, a method so-called detrended cross-correlation
analysis (DCCA) is developed during the past few years
(Zebende, 2011; Podnobik and Stanley, 2007; Zhang et al.,
2001; Zhou, 2008). Instead of taking the auto-covariance
(Eqn. 8) to calculate the fluctuation function, one takes the
cross-covariance:

F 2
DCCA(ν,s) =

1

s

s∑
i=1

[(X((ν− 1)s+ i)−xν(i))

· (Y ((ν− 1)s+ i)− yν(i))]2

(11)

with symbols analogous to Eqn. 8. With this function, one
can calculate the fluctuation function and subsequent power-
law scaling coefficient (Podnobik and Stanley, 2007; Zhang
et al., 2001).

A variation on this is proposed by Zebende (2011) and in-
volves the ratio between F 2

DCCA and FDFA of the two sys-
tems. Specifically, one chooses a certain segment size s and
computes:

ρDCCA =
F 2
DCCA

FDFA{x}FDFA{y}
(12)
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Figure 4. Example time series of system 13. Top: leading system x (black) and following system y (red). Bottom: DFA scaling exponent
(grey shades; red indicates running mean).

which point towards the level of the long-term cross-
correlation between variable x and y. It has values between
-1 and 1.

3.2.2 Extrapolation of the following DFA

Because we know the DFA scaling exponent has a threshold
of 1.5 that marks the position of the bifurcation point, an at-
tempt to predict cascading tipping can also be figuring out
for what state of the leading system, the following system at-
tains DFA=1.5, and whether the leading system attains this
state after a critical transition it is potentially close to. This
involves the extrapolation of the relation between the state
of the leading system and the DFA scaling exponent of the
following system.

We illustrate this with an example using the following sys-
tem:
x(t) = sin(

t

50
)−x+ ζx

dy

dt
= y3− y+κ(x) + ζy

(13)

with x the leading system, y the following system, κ(x) =
−2 + 2.2x a coupling term, ζx, ζy (Gaussian white, mean 0,
variance 0.5) noise terms and t time. The large variability in
x enables us to analyze the DFA of y at different levels of
proximity towards its bifurcation point. The critical thresh-

old of bifurcation in y is κ(+ζy) =
√
−2
13 ≈ 0.38. When x is

in the positive phase, this threshold is almost reached, forc-
ing y close to its bifurcation point. In the negative phase of
x, y leaves the multiple equilibria domain and remains in
only one stable equilibrium with a broad potential function.
These features can clearly be seen in Fig. 4, where the system
is ran with ∆t= 0.1, the Runge-Kutta fourth order integra-
tion method and a window size of 100. The distance of y
towards its bifurcation point can be seen clearly in the DFA
scaling exponent: values of 1.0-1.5 are reached in the positive
phase (pointing towards long-range auto-correlations and the
proximity of a bifurcation point) and 0.5-1.0 in the negative
phase. To assess the relation between the state of x with the
statistical indicators in y, Fig. 5 is made. The higher auto-
correlation, variance, DFA propagator and DFA scaling co-

efficient in the positive phase of x are clearly visible. This
confirms the theory of the DFA scaling exponent and its ro-
bustness.

This can also be used the other way around. When in two
time series, a relation between the state of the first time se-
ries and DFA scaling exponent can be found, it is likely that
the first could drive the second system to critical transition.
When looking at Fig. 5f, one can almost see a linear relation
between DFAy and x. Extrapolating this gives an estimate x0
for which the DFAy becomes 1.5, or in other words, the value
of the leading system for which the following system tips.
Now, if we know from single-tipping early warnings that x
is close to tipping, and we also know that the resulting lead-
ing system would go beyond x0, we know that the system
is close to cascading tipping. Although one should note that
much variability is needed to make such a prediction accu-
rate, this can be used as an early warning.

3.3 Simulations

The section above describes various diagnostic and prognos-
tic tools to analyze cascading tipping. This section is devoted
to give insight in the accuracy and the usefulness of the in-
dicators. We will do this with respect to type 1 and type 2
cascading tipping.

3.3.1 Double-fold cascading tipping

We start with the double-fold cascade. To simulate these
events and use statistical indicators, noise has to be included.
The system of equations used here is:


dx

dt
= a1x

3 + a2x+φ+ ζx

dy

dt
= b1y

3 + b2y+κ(x) + ζy

(14)

where x is the leading system, y the following system, ai and
bi constant parameters, φ a time-dependent forcing, κ(x) a x-
dependent coupling and ζx, ζy Gaussian white noise terms.
We simulate an ensemble of 10 runs with the parameter set-
ting as displayed in Tab. 1 and initial conditions (x0,y0) =
(−0.8,−1).
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Table 1. Parameters used in the ensemble of simulations in the
double-fold cascade.

Parameter Value
φ(t) 0.0012t
κ(x) 0.05 + 0.37x
a1 -0.5
a2 0.5
b1 -0.5
b2 1
tmax 500
∆t 0.5
Noise mean 0
Noise variance 0.1

The results of this ensemble is displayed in Fig. 6. Win-
dows around the bifurcation points are shaded white because
this data is misleading when one wants to know what hap-
pens before the bifurcation points. We make the distinction
between the leading-transitional period (LTP), which is the
time series before the first tipping point, and the following-
transitional period (FTP), which is the time series between
the first tipping point and the second tipping point.

In the LTP, we can clearly see the gradual increasing lead-
ing system’s variance, AR(1) coefficient and DFA scaling co-
efficient. These are all evidence of the leading system slowly
approaching a bifurcation point, towards which we force it.
There is not much evidence of long-range auto-correlations
in the time series of the following system, as its variance is
low and the DFA scaling exponent remains below 0.5, point-
ing towards that the detrended fluctuations are statistically

white noise. The AR(1) coefficient of the following system
does increase just prior to the first tipping, but also stays low.

The detrended cross correlation scaling exponent does
give > 0.5 values and gradually increases towards 1.5. This
might partly be the direct effect of the simultaneous dis-
placement of the equilibria of both the variables x and y
in the pre-transitional period and the direct influence of x
on the time derivative of y. However, as the DXA is grow-
ing throughout this period, this can also point to long-range
cross-correlations strengthening when getting closer towards
the bifurcation point of x. We also note that the range of the
ensemble is large and therefore not much can be stated to be
statistically significant.

The ρDCCA seems to attain a small positive value (around
0.3) and stays there relatively stable throughout the whole
time series. The signal is not so strong, but it seems more ro-
bust that the DXA scaling coefficient. One important aspect
of the calculation of ρDCCA as we found by experimenta-
tion, is that the trajectory is very sensitive to the segment
size s and the moving window size. The moving window de-
termines the amount of data that is available to find long-
range correlations, and the segment size has a strong impact
on the accuracy of the fits and therefore the segmented fluc-
tuations. As in this analysis, we need a temporal evolution of
the statistical indicators, we need moving windows and we
thus encounter this problem. As these indicators (DXA and
ρDCCA) have been applied successfully in simpler systems
(Zebende, 2011; Podnobik and Stanley, 2007; Zhang et al.,
2001; Zhou, 2008), more research on the sensitivity of the in-
dicators with respect to the segment size and moving window
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Figure 6. Ensemble simulations with double-fold cascading tipping events, showing (a) states of x (black) and y (red), (b) variance of x
(black) and y (red), (c) autoregressive coefficient at lag 1 of x (black) and y (red), (d) detrended fluctuation analysis scaling exponent of
x (black) and y (red), (e) detrended cross-correlation analysis scaling exponent and (f) detrended cross-correlation coefficient by Zebende
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size will probably provide more interesting and significant
results.

During the FTP, the variance, AR(1) and DFA of the lead-
ing system are strongly reduced, but the gradual increasing of
the following system’s variance, AR(1) coefficient and DFA
scaling coefficient are definitely visible, pointing towards the
approaching of a bifurcation in the following system. Also
notable is the contrast in the DFA of the following system
between before and after the tipping of x. The DFA of y went
from a white-noise regime (around 0.5) before the tipping of
x towards a regime where the detrended fluctuations point
towards long-range auto-correlations after the tipping of x
(1-1.5). This illustrates the relation between the leading sys-
tem’s state and the following system’s DFA scaling exponent,
as discussed earlier using system of equations 13.

The DXA remains relatively high, but overall no structural
development can be seen in this graph. The ρDCCA exhibits
the same behavior as in the LTP, probably for the reasons
already mentioned.

3.3.2 Fold-Hopf cascading tipping

Many statistical indicators have been applied on fold bifur-
cations specifically, because these transitions show a clear

sign of critical slowing down and increased autocorrelation
due to the irreversibility and process of going from one equi-
librium towards another. A Hopf bifurcation has a different
nature with respect to the slowing down, as there is often
no hysteresis effect. As there are many critical transitions in
climate concerned with Hopf bifurcations (Drijfhout et al.,
2015), we will now consider the fold-Hopf cascade in the
light of the statistical indicators described before. For this,
we use the following stochastic dynamical system:



dx

dt
= a1x

3 + a2x+φ+ ζx

dy

dt
= b1z+ b2(κ(x)− (y2 + z2))y+ ζy

dz

dt
= c1y+ c2(κ(x)− (y2 + z2))z+ ζz

(15)

where z is the leading system, and (x,y) form the fol-
lowing system, ai, bi, ci are constant parameters, φ a forcing
term (which we can slowly force in time) and κ(x) a cou-
pling term. Noise is added by the terms ζx, ζy and ζz . We
simulate an ensemble of 10 runs with the parameter setting
as displayed in Tab. 2 and initial conditions (x0,y0,z0) =
(−0.5,1,−1).
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Figure 7. As in Fig. 6, but for the fold-Hopf cascade.

Table 2. Parameters used in the ensemble of simulations in the fold-
Hopf cascade.

Parameter Value
φ(t) 0.002t
κ(x) −0.2 + 0.3x
a1 -1
a2 1
b1 0.1
b2 1
c1 -0.5
c2 1
tmax 500
∆t 0.5
Noise mean 0
Noise variance 0.1

The results of the ensemble are shown in Fig. 7. Here, we
do not make the distinction between the LTP and the FTP,
because in contrast to the double-fold cascade, the follow-
ing system undergoes a critical transition that is easily re-
versed and that the system either is oscillating, or is station-
ary. Noise directly starts the oscillation if it is possible, com-
pletely removing the FTP. At the start of the time series, the
following system is quickly drawn towards the equilibrium
state (x,y) = (0,0) and the leading system is fit in the neg-
ative equilibrium. During the period towards the bifurcation

point, the variance, AR(1) coefficient and DFA of the leading
system z gradually increases, as is expected as we force the
system towards its bifurcation point.

The DFA and AR(1) of the following system after the bi-
furcation are in strong contrast with before the bifurcation
point, probably due to the autoregressive nature of the oscil-
lation. The relation between the leading system’s state and
the following system’s DFA scaling exponent is also con-
firmed in this case. The DXA sharply increased just prior
to the critical transition, but throughout the whole time se-
ries, retains relatively high values. The reason behind this
might be found in the low level of noise that is taken, or other
simulation-specific parameters. It could also be that it is be-
cause the following system on average has a high, weakly
varying DFA scaling exponent on itself, which in turn might
affect the height and variability in the cross-correlation. The
ρDCCA coefficient remains positive and low, just like in the
double-fold case. Again, this can have to do with the choice
of window and segment sizes. More research is needed on to
relate this variable to cascading tipping events.

4 Application 1: Meridional overturning and ENSO

In this section, the theory of cascading tipping will be applied
on the relation between the Atlantic Meridional Overturn-
ing Circulation (AMOC) and El-Niño Southern Oscillation
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(ENSO). This will be done by building a conceptual model
and analyzing the simulations and bifurcation diagrams of
the systems, followed by the usage of complex model data
from the ESSENCE project.

The overturning circulation has multiple equilibria
(Dijkstra and Weijer, 2003; Stommel, 1961) and currently
has the potential to tip from a thermohaline (northern and
southern sinking) towards a southern sinking state. There
are two mechanisms connecting the AMOC to ENSO. The
first mechanism is concerned with oceanic waves. A colder
North Atlantic creates density anomalies that trigger oceanic
Kelvin waves to propagate southward (along the American
coast) across the equator. In West Africa, this energy radi-
ates as Rossby waves towards the north and south, which in-
duces Kelvin waves to move along the tip of south Africa
into the Indian ocean, that eventually reach the Pacific. Con-
sequently, the eastern equatorial Pacific thermocline deepens
on a timescale of decades. This deepening has a weakening
effect on the amplitude of ENSO (Timmermann et al., 2005).

The second mechanism is concerned with the trade winds.
Cooling in the northern tropical Atlantic (due to MOC weak-
ening) induces anti-cyclonic atmospheric circulation (Xie
et al., 2007) that intensifies the northerly trade winds over the
northeastern tropical Pacific. This leads to a southward dis-
placement of the Pacific ITCZ (Zhang and Delworth, 2005)
and this generates a meridional SST anomaly due to anoma-
lous heat transport and the wind-evaporation SST feedback
in the Pacific. Also, Dong and Sutton (2007) found an atmo-
spheric coupling through Rossby waves sent into the north-
east tropical Pacific. The result of the wind stress as coupling
between the two systems is an intensification of ENSO and
this mechanism is argued to be stronger than the coupling
through oceanic waves (Timmermann et al., 2005).

4.1 Model details

To apply the theory of cascading tipping to this case, a con-
ceptual model is needed where we can explicitly calculate
the bifurcation diagram. We will discuss the leading and fol-
lowing system separately below.

4.1.1 Leading system - Meridional Overturning

The model we use for the meridional overturning is the clas-
sic Stommel box model from Stommel (1961), consisting of
a polar (subscript p) and an equatorial box (subscript e), both
with a temperature T and salinity S. The state variables are
then defined as ∆T = Te−Tp and ∆S = Se−Sp. The time
evolution of these variables is as follows:
d∆T

dt
= − 1

tr
(∆T − θ0)−Q(∆ρ)∆T

d∆S

dt
=

Fs
H
S0−Q(∆ρ)∆S

(16)

where the first terms in both equations refer to tempera-
ture and salinity relaxation towards a certain mean state, and
the second term refers to density-driven meridional trans-
port. Specifically, tr is the surface temperature restoring time
scale, θ0 is the equator-to-pole atmospheric temperature dif-
ference, Q(∆ρ) is the transport function, which is calculated
from a diffusion time scale and the meridional density gradi-
ent ∆ρ, S0 is a reference salinity, and H is the ocean depth.
The parameter Fs is the freshwater flux, which can be used
as a bifurcation parameter. We also define a flow function:

Ψ := γ∆ρ/ρ0

= γ(αT∆T −αs∆S)
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which represents the MOC, with γ > 0 a certain flow param-
eter, ρ0 a reference density and αT ,αS the thermal and haline
expansion coefficients.

4.1.2 Following system - El-Niño Southern Oscillation

Concerning the El-Niño Southern Oscillation, bursting be-
havior and various oscillations within this phenomenon need
to be captured within the conceptual model. Timmermann
et al. (2003) investigated this and came up with a model
with a state vector consisting of the temperature of the west-
ern Pacific T1, the temperature of the eastern Pacific T2 and
the thermocline depth of the western Pacific h1. Their model
finds its basis in the Zebiak and Cane (1987) ENSO model,
with a two-strip and two-box approximation, and a shallow-
water model for the upper ocean with a fixed mixed layer
depth:
dT1
dt

= −α(T1−Tr)−
u(T2−T1)

L/2

dT2
dt

= −α(T2−Tr)−
w(T2−Tsub)

Hm

(17)

with 1/α a typical thermal damping timescale, Tsub the tem-
perature below the mixed layer, Hm and L the depths of the
mixed layer and basin width, respectively, w upwelling ve-
locity and u atmospheric zonal surface wind being linear to
wind stress: u/(L/2) = εβτ and w/Hm =−ζβτ . The pa-
rameters ε and β refer to the strength of zonal and vertical ad-
vection (bifurcation parameters). Wind stress τ is expressed
as (neglecting annual cycle and noise):

τ =
µ(T1−T2)

β
(18)

with µ/β parameters that control the influence of the zonal
temperature gradient on the wind stress, set to be 0.02

Pa·K−1. The subsurface temperature Tsub is parametrized as

Tsub = Tr −
Tr −Tr0

2

[
1− tanh(H +h2− z0)

h∗

]
(19)

with h2 the east equatorial Pacific thermocline depth (calcu-
lated as deviation from a reference depthH), z0 the depth for
which w becomes its characteristic value and h∗ the sharp-
ness of the thermocline. The thermocline depths are calcu-
lated as follows: h2 = h1 + bLτ

dh1
dt

= r(−h1−
bLτ

2
)

(20)

where b the efficiency of wind stress τ to drive the thermo-
cline tilt. For further details and parameter values, we refer
to Timmermann et al. (2003).

4.2 Results

We start with running the dimensional Stommel and Tim-
mermann models separately. The dimensional Stommel bi-
furcation diagrams are shown in Fig. 8a and b, clearly show-
ing a saddle-node structure. It can already be seen that for
some values of the freshwater flux Fs, the system has mul-
tiple equilibria, and for other values, only one equilibrium
remains. This means that when we are in the high-Ψ branch
and Fs is large enough, the system will critically transit to-
wards the low-Ψ branch. An example simulation of such an
event is shown in Fig. 8c.

The bifurcation diagrams of the Timmermann model for
parameters zonal advection ε and vertical advection ζ are
shown in Fig. 8d and e. There are Hopf and period-doubling
bifurcations close to the realistic values of of (ε,ζ)≈ (0.05−
0.24,1.3) (Timmermann et al., 2003). This means that under
the right forcing, this system can undergo drastic change, at-
taining or losing periodic behavior (Hopf) or changing the



Mark M. Dekker: Cascading tipping points: on the dynamics of coupled critical transitions 15

−0.03 −0.02 −0.01 0.00 0.01 0.02
26

28
(a) T1

−0.03 −0.02 −0.01 0.00 0.01 0.02
Parameter τext

15

20

25

30 (b) T2

0.000 0.002 0.004 0.006 0.008 0.010
0

5000

10000
(c) Period (days)

Figure 10. Bifurcation diagrams of the following system depending on the coupling parameter τext, for the standard values of ε= 0.1 and
ζ = 1.3.

intensity of this behavior (period-doubling). An example of
a run where such a forcing is applied after a while can be
seen in Fig. 8f, where a Hopf bifurcation is crossed.

As we know from literature (described above), the cou-
pling of the two systems is mainly through influence on the
wind stress. In Timmermann et al. (2003), the wind stress
is only dependent on zonal SST gradients in the Pacific. We
will now add a term τext that is dependent on meridional
temperature gradients in the Atlantic ∆T :

τ = τext(∆T ) +
µ

β
(T2−T1) (21)

with a negative relation between τext and Atlantic merid-
ional SST gradient ∆T as we know from literature described
above (stronger positive ∆T results in stronger easterlies,
thus negative τext). We do note that both the total Pacific
wind stress τ and specifically τext should always be nega-
tive. The total wind stress is negative because this area (at
low altitude) is strictly dominated by easterly winds, and τext
is negative because through the meridional temperature gra-
dient, it reflects the influence of the zonal mean Hadley cell
on the equatorial Pacific. Physically, the Hadley cell only in-
duces negative zonal wind stress in this region.

The equilibrium diagram of the Timmermann-2003 model
with τext as bifurcation parameter is shown in Fig. 10. In the
lower (stable) branch, a Hopf and a period doubling bifurca-
tion can be recognized. This structure of the diagram is quite
consistent for different values of ζ and ε. The parameter τext
merely repositions the Hopf and period-doubling bifurcation
points. The period of the oscillation varies with τext as can be
seen in Fig. 10c. This means that τext can modulate whether
the system is in an oscillatory or stationary state and what
the intensity is of the oscillatory state. However, the range
for which τext is realistic is of course limited; the total wind
stress τ and τext are negative (as described above). For com-
pleteness, also positive values of τext are shown in Fig. 10.
Ocean-atmosphere coupled complex model runs with differ-
ent Atlantic overturning states might prove useful to quantify
the relation between τext and ∆T more specifically.

Varying τext also changes the equilibrium diagrams with
respect to ζ and ε. Figure 9 shows the equilibrium diagrams
of all three state variables for different values of τext, with re-
spect to ζ and ε. It is visible that (as already seen in Fig. 10a)

in all cases of τext, the parameter set (ε,ζ) = (0.1,1.3) al-
lows for both a stable oscillatory equilibrium and an unstable
stationary solution. The latter involves the state where T1 =
T2 = TR (relaxation temperature, 29.5) and h1 = τext = 0,
with much higher values of T2 than usual and slightly higher
values of T1 than in stable equilibria. It is to this state to-
wards which the oscillation of El-Niño events can excite to
for a short period of time. This unstable state is visible as a
high-T , low-h1 horizontal dashed line in all panels of Fig. 10.
When decreasing τext, the difference between the states rise,
but the Hopf bifurcation points in (ε,ζ) space change, too,
meaning that with the parametrization of (0.1,1.3), our state
moves towards the edge of the oscillating domain, decreasing
the intensity of the oscillation and lowering its period. When
τext is increasing, the opposite happens. This indicates that
El-Niño intensifies when τext is increased, also for realistic
values.

Using τext to couple the Stommel and Timmermann, we
ran simulations with ∆t= 0.1, the Runge-Kutta fourth order
integration method, a freshwater forcing Fs in the form of a
ramp function and a coupling of τext expressed in terms of
∆T . The exact quantification of this modulates which effect
the collapse of the overturning has on ENSO. The results of
the simulation are shown in Fig. 11. In the first case (upper
panel), the collapse of the overturning leads to the crossing of
a period-doubling bifurcation point in the following system,
and a clear intensification of the oscillation is visible. In the
latter case (lower panel), a Hopf bifurcation is crossed in the
following system, starting an oscillation. In both cases we
can conclude that the behavior of ENSO changes drastically
if the AMOC collapses. This is an illustrative example of a
type 2 (fold-Hopf) cascading tipping event.

4.3 Verification with complex model output

To gain insight in the evolution of ENSO in the case of a col-
lapse of the overturning, we need more complex models that
include such a behavior of the overturning. ESSENCE (En-
semble SimulationS of Extreme weather events under Non-
linear Climate changE) is a project where several experi-
ments have been done with the ECHAM5/MPI-OM coupled
climate model, including hosing experiments. The temporal
resolution used is monthly data between 1950 and 2100. The
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Figure 11. Simulation run of the coupled Stommel-Timmermann model for different model configurations, where the collapse of the over-
turning flow function (black) leads to the crossing of a Hopf bifurcation (top) or period-doubling bifurcation (bottom) in ENSO. Following
variables are western tropical Pacific temperature (orange), eastern tropical Pacific temperature (red) and eastern tropical Pacific thermocline
(yellow).

spatial fields are on a curvilinear grid, with 40 vertical lev-
els in the ocean. We define the overturning strength as the
maximum Atlantic stream function at 35◦N and ENSO in-
tensity as the El-Niño 3.4 index, which is the average SST
over 170◦-120◦W and 5◦S - 5◦N.

Two ensembles of the ESSENCE project have been used
in this section; the HOSING-1 experiment ensemble and the
‘standard’ SRES-A1b ensemble. Five runs of each ensemble
are taken, specifically runs 041-045 of the HOSING-1 and
runs 021-025 of the SRES-A1b ensemble. The HOSING-1
ensemble contains a hosing experiment in the classical way,
following the procedure of Jungclaus et al. (2006). One Sv of
fresh water is added around Greenland from the end of year
2000 onwards.

The results for the evolution of the overturning are shown
in Fig. 12. It is clearly visible that the hosing experiment
destabilizes the overturning. The Atlantic stream function at
35◦N decreases by approximately 85%. The results for the
evolution of ENSO is shown in Fig. 12.

Table 3 compares the period before and after 2001, which
is the year at which the hosing starts. We use deseasonalised
data because we are interested in interannual variability, not
in seasonal variability, as El-Niño is associated with these
timescales. We use the non-anomaly statistics, as this gives
us information about the differences in the mean. We do note
that we only use five runs per ensemble, which makes the
uncertainty not statistically robust. We only state it in Tab.
3 to give an idea of the range of the variables among the
different runs.

It is visible in Tab. 3 that the variability of the El-Niño 3.4
SST increases (bold numbers) if we compare the periods of
1950-2000 and 2001-2100. This increased variability is vis-
ible in both the standard and the HOSING-1 runs. However,
the variability is increased much stronger in the HOSING-

Table 3. ENSO 3.4 SST statistics (of deseasonalised data) for the
different ensembles. The uncertainty stated is the standard deviation
among the five runs within the ensemble.

Time period Ensemble Variable Value
1950-2000 Standard SRES-A1b Mean 25.86 ± 0.046

Standard SRES-A1b Variance 1.705 ± 0.447
2001-2100 Standard SRES-A1b Mean 27.51 ± 0.032

Standard SRES-A1b Variance 2.581 ± 0.112
2001-2100 HOSING-1 Mean 27.27 ± 0.053

HOSING-1 Variance 3.21 ± 0.42
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Figure 12. Top: Evolution of the five standard SRES-A1b runs
(blue) and five HOSING-1 runs (red) in terms of the overturn-
ing. Bottom: ENSO 3.4 SST of the standard SRES-A1b ensemble
(blue) and the HOSING-1 ensemble (red). Shaded thin lines indi-
cate monthly means, thick lines indicate the deseasonalised values.

1 experiment, indicating that the collapse of the overturning
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indeed has an amplifying effect on ENSO. The large differ-
ence between the standard and hosing runs suggests that the
ENSO 3.4 index underwent stochastic critical transition in
the hosing experiment, as a consequence of the collapse of
the overturning. Further research is needed whether this is
true.

5 Application 2: Meridional overturning and land ice

At the Eocene-Oligocene transition, marine records of δ18O
indicate an abrupt increase of 1.2-1.5o/oo. Within this tran-
sition, a two-step signal can be recognized with two 40-kyr
steps, separated by a 200-kyr plateau. A persisting maximum
is attained for 400 kyr and is stepwise decreased and stabi-
lized to a value still about 1o/oo higher than before the tran-
sition (Coxall et al., 2005). The two steps are attributed to a
deep-sea temperature drop followed by the (slower) growth
of the Antarctic Ice Sheet (AIS). The deep-sea temperature
drop can have to do with a switch in overturning state, as in-
vestigated in Tigchelaar et al. (2011). The cause of the ice
sheet formation is still a matter of debate. A first hypothesis
could be the opening of ocean gateways like the Drake Pas-
sage and Tasmanian Passage, which allowed for the arising
of the Antarctic Circumpolar Current. This current strongly
cools Southern Ocean SSTs and might facilitate the origin of
the Antarctic Ice Sheet. However, timing of these gateways is
proven to be problematic (Coxall and Pearson, 2007), there is
not much evidence for a strong ACC before the mid-Miocene
(16.0–11.6 Ma) (Coxall and Pearson, 2007) and to attain sig-
nificantly decreased Antarctic continental temperatures, the
ocean heat transport would have decreased enormously (Hu-
ber and Nof, 2006).

Another explanation for the onset of the Antarctic Ice
Sheet formation is found in the reaching of a certain CO2

threshold, that would induce snow/ice-albedo and ice-sheet
height/mass balance feedbacks to initiate ice growth (Pear-
son et al., 2009; Coxall et al., 2005; DeConto and Pollard,
2003). This might have been aided by certain orbital settings
at that time (DeConto and Pollard, 2003; Coxall et al., 2005;
Coxall and Pearson, 2007).

We know that the overturning circulation has an impact
on atmospheric CO2 mixing ratios due to the fact that in a
SPP state, the stronger upwelling in the northern hemisphere
brings up more CO2, while in a TH state this is more sup-
pressed. This rises the question to which extent the switch
in overturning circulation impacts the atmospheric CO2 and
therefore indirectly drive the growth of the AIS (a second
tipping point). If this impact is strong enough, a cascading
tipping event may occur. This section is not intended to pro-
pose this as the mechanism driving the EOT, but describes
an interesting case study in the light of potential cascading
tipping events, specifically the type 1: double-fold cascading
tipping.

5.1 Model details

To conceptually analyze such an event, we use a model as
proposed in Gildor and Tziperman (2000, 2001) and (Gildor
et al., 2002) and adapted in Tigchelaar et al. (2011). The
model consists of four latitudonal boxes, has two layers in the
ocean (8 ocean boxes) and one layer in the atmosphere (4 at-
mosphere boxes). The boundaries of the boxes represent the
South Pole, 45◦S, the equator, 45◦N and the North Pole. Its
equations consists of simple frictional momentum balances,
which are hydrostatic and mass conserving. Temperature and
salinity are determined by advection, diffusion and radiative
fluxes (for which the albedo is a combined number based
on surface composition within the box). Precipitation is cal-
culated from the convergence of moisture fluxes. The over-
turning (leading system) is buoyancy driven, which means
that it can be forced with a density perturbation. The land
ice model (following system) is based on ice sheet growth
(directly proportional to precipitation) and a constant abla-
tion term. The resulting ice sheet is zonally symmetric and
has perfect plasticity. A maximum amount of ice volume is
defined for the Antarctic (south hemisphere polar box) ice
sheet to be 2.57 · 1016 m3, to prevent growth beyond realis-
tic volumes (Tigchelaar et al., 2011). There is no sea ice in
this model. Computations of δ18O are proposed in Tigchelaar
et al. (2011). Because we want to couple a collapse of the
overturning to land ice, we need to include the chemistry
module, which resolves advection, diffusion and chemical in-
teraction of three chemicals: CO2, alkalinity and phosphate
(PO4). For an overview of the equations and parameter set-
tings, we refer to Gildor and Tziperman (2001) and Gildor
et al. (2002). Because albedo is calculated as a composition
of ice, land and ocean partitions within each box, albedo-ice
feedback is included in this model and therefore CO2 can
affect ice equilibria.

Tigchelaar et al. (2011) already describes several stable
states in this model’s overturning circulation: the southern
sinking state (SPP), the northern sinking state (NPP) and
a state at which there is sinking at both poles (thermoha-
line, TH) are found to be stable depending on the parame-
ter settings. The SPP and TH state are illustrated in Fig. 13.
Southern hemispheric land ice has two stable equilibria in the
model (depending on the parameter settings): no ice, and the
fully ice-covering maximum volume.

5.2 Results

The example of the Eocene-Oligocene transition involves the
transition of the overturning circulation from a SPP state
towards a TH state and an active geochemistry. The ac-
tive chemistry resulted in a high CO2 concentration (1500
ppm) for the standard parameter settings, making ice impos-
sible to grow. The vertical diffusion coefficient Kv in the
ocean boxes can be adapted (within reason) to alter this. If
Kv is low, less CO2 is brought upward (and into the at-
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mosphere), resulting in lower atmospheric CO2 concentra-
tions. The southern hemispheric melt temperature Tmelt can
be used to tune at which atmospheric CO2 concentration ice
starts to grow.

Both parameters Kv and Tmelt need to be tuned such
that the resulting case is most realistic. This means that Kv

should be such that CO2 is brought down far enough (down
to roughly 800 ppm) by a change in overturning state. This
resulted in Kv = 1 · 10−9 m2 s−1. The Tmelt should be such
that ice feedbacks are possible at the resulting CO2 levels,
but that ice does not switch in regime merely because of
the temperature change due to the overturning switch. This
resulted in a melt temperature Tmelt of 274 K. A spin-up
run of 120,000 years was needed to let the system come
into an equilibrium SPP state. Then, a 10,000 years run is
done to adapt to an active geochemistry and the renewed val-
ues of Kv and Tmelt. After this, a 100 y-long high density
(1030 kgm−3) perturbation is applied in the upper northern
hemispheric polar ocean box. This forces a transition of the
overturning from the SPP state towards a TH state and is
shown in Fig. 14.
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Figure 13. Oceanic flow in a typical thermohaline (TH) state (a) and
southern sinking (SPP) state (b). Numbers and arrow thickness in-
dicate flow vectors from the simulation shown in Fig. 14, far before
and after the tipping.

Figures 13 and 14a clearly shows the transition of a SPP
state (where vertical transport in the northern hemisphere is
almost zero) towards a TH state in this simulation, and the
fast reaction of the system to the density perturbation. We see
that directly after the transition, the system slowly adapts to
the new state, with slightly decreasing ocean and atmospheric
temperatures and rapidly decreasing CO2 (from about 1500
ppm to 850 ppm). When CO2 reaches about 900 ppm, south-
ern hemisphere polar ice starts to grow. The decreased CO2

decreases atmospheric and oceanic temperatures in almost all
boxes, although northern hemispheric polar temperatures ef-
fectively rose with the overturning transition because there is
now downwelling (of relatively warm surface water) in this
box instead of upwelling (of cold deep water).

This is an example of a cascading tipping event, because
the ice starts growing because of a changed equilibrium
regime modulated by CO2, rather than simply decreased at-
mospheric temperatures.

5.3 Two-step signal in δ18O

Looking at the δ18O graph in Fig. 14c, one can see a strong
increase directly after the transition in the overturning cir-
culation, prior to ice formation (between t=10 and 17 kyr),
indicating the effect of an overturning transition on deep sea
temperatures. After this temperature effect is roughly settled,
ice starts forming and slowly increases the δ18O to a much
higher value. It takes about 90 kyr to grow to its maximum
size. In this model, a lag is found between overturning transi-
tion and the ice formation onset, with a size of 7 kyr. The fact
that this is so short makes the temperature and ice effects on
the δ18O overlap, removing a potential plateau in between.
As mentioned before, in the actual EOT, this plateau is about
200 kyr and the separate transitions 40 kyr, making the ef-
fects seen in this model incomparable with the actual case.
A problem with these simulations is that we did not include
precise orbital forcing, which may delay the ice formation
dramatically. For example, it could be that the CO2 remain
just above the critical threshold after the overturning switch,
but crosses the threshold much later due to orbital forcing.
Still, the model shows an interesting mechanism that could
drive a type 1 cascading tipping in climate science.

6 Summary and Conclusions

In this paper, we introduce the concept of cascading tipping.
It is defined as the event of a critical transition in a first,
leading system, altering background conditions (that is, the
regime in the equilibrium diagram) such that another critical
transition in a second, following system occurs.

We created a mathematical framework around this con-
cept, where we used back-to-back saddle-node and Hopf bi-
furcations to make simulations of critical transitions. Exact
positions of these bifurcations in terms of parameter thresh-
olds are investigated and explicitly expressed. General forms
of dynamical systems are formulated of four deterministic
cascading tipping types, including the (1) double-fold cas-
cade, the (2) fold-Hopf cascade, the (3) Hopf-fold cascade
and the (4) double-Hopf cascade. We found that the follow-
ing system’s bifurcation structures can be expressed in terms
of the forcing term in the leading system and that we can this
way predict the behavior of the following system when the
coupling is known. In the case of stochastic systems, we dis-
cussed the effect on the PDF and flickering effects, allowing
for more subtle critical transitions.

Subsequently, we discussed statistical indicators and anal-
ysis tools for critical transitions. Starting off with the general
theory of critical slowing down, we continued with degener-
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Figure 14. Simulation run of the Gildor-Tziperman model, showing a cascading tipping event; (a) Vertical transport (grey shades from North
Pole to South Pole) with ice volume (red: SH, orange: NH), (b) atmospheric (grey) and upper ocean (black) temperature of the SH polar
box with CO2 mixing ratio (red), (c) δ18O isotopic ratio (grey shades from north polar box to south polar box). Vertical dashed black line
indicators the moment of density perturbation (i.e., critical overturning transition). Vertical dashed red line indicates moment at which ice
starts to form.

ate fingerprinting and detrended fluctuation analysis (DFA),
that present early warnings for single tipping points. Indi-
cators for cascading tipping points are found in detrended
cross correlation analysis (DCCA) and a special case of ex-
trapolation using the DFA of the following system. These
tools are applied in simulations involving both the double-
fold and fold-Hopf cascades. The increased variance, AR(1)
and DFA scaling exponent are clearly found in each case of
single tipping. The cross-correlation indicators (DCCA and
ρDCCA) did not evolve much throughout the time series (ex-
cept for very close with respect to the tipping points), which
may indicate their invariance with respect to proximity to sin-
gle tipping points. Some limitations of the presented analysis
of these variables have been mentioned. Surprisingly, it turns
out to be useful and, in many conceptual cases, possible to
retrieve information from the relation between the leading
system’s state and the following system’s DFA to predict cas-
cading tipping events.

The concept of cascading tipping is applied to two clima-
tological cases. The first is concerned with the link between
the overturning circulation and ENSO. We modelled this us-
ing a coupling between the Stommel (1961) model and an
ENSO-model by Timmermann et al. (2003) through a merid-
ional temperature gradient-dependent term in the wind stress
of the ENSO-model. Through analysis of the bifurcation di-
agrams and simulations, cascading tipping events are indeed
possible in this case and the results are elaborated on in the
light of previous research.

The second application is found in the impact of the over-
turning on land ice formation, coupled through atmospheric
CO2. This case was inspired by a two-step signal in the δ18O

during the Eocene-Oligocene transition, where the switch
from a southern sinking (SPP) state to a thermohaline (TH)
state was followed by the arising of the Antarctic Ice Sheet.
Using a box model by Gildor and Tziperman (2000), we were
able to simulate a cascading tipping event as expected from
theory, but the timescales and simplicity of the simulations
make them incomparable to the actual EOT.

The mathematical framework and discussed simulations
and statistical analysis form a basis of this new concept. More
research can be done on the various types of cascading tip-
ping and also on the creation of well-suited indicators and
early warnings of such events.

The two applications highlight that there are scenarios in
which these events occur in climate and therefore highlight
the importance of this topic. As by definition, critical transi-
tions involve drastic change and consequences, the coupling
between these transitions (be it in the form of cascading tip-
ping) remains a relevant topic. Future research will point out
whether these events are likely to happen and whether this
effect is also present in other fields than climate science.

Appendix A: Proofs concerning critical thresholds

Lemma 1. The system x in Eqn. 1 has at maximum one sta-
ble equilibrium when a1 > 0.

Proof. Because Eqn. 1 is a third degree polynomail, we
know that it has at maximum three roots (by induction; a
linear function has one root and use the mean value theorem)
and at minimum one root (intermediate value theorem) for
both the cases of a1 > 0 and a1 < 0. Such roots coincide with
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equilibria, which are stable if and only if ẋ(x0 + δ)< 0 and
ẋ(x0− δ)> 0 for any small δ ∈ R. Now assume a1 > 0.

Further assume that there is only one equilibrium, at
x= x0. Then we know that ẋ(−∞)→−∞, indicating that
ẋ(x0−δ)< 0 for small arbitrary δ ∈ R. This means that x0 is
instable. Say there is a second equilibrium (x1), in a total of
two. The instability for the first equilibrium remains because
we can use the exact same reasoning. We also know that be-
cause ẋ(+∞)→+∞, it follows that ẋ(x1 +δ)> 0, indicat-
ing that also this equilibrium is instable. Now, say there are
three equilibria. We then know that the first and third are in-
stable because of the same reasoning as above. This leaves
only one equilibrium to be potentially stable.

Lemma 2. The system x in Eqn. 1 has multiple equilibria if

and only if a1 < 0, a2 > 0 and |a3|<
√
−4a31a32
27a41

.

Proof. From Lemma 1 we know that there are no multiple
equilibria in system x if a1 ≤ 0. We also know that if a1 = 0,
the system is linear, dx

dt has only one root and does there-
fore not have multiple equilibria. We conclude that a1 < 0 is
necessary to attain multiple equilibria in ẋ.

For multiple equilibria to arise, we need a regime in
which d2x

dt2 > 0, because otherwise the time propagation
of x would be monotonously decreasing and having only
one root. d2x

dt2 > 0 gives 3a1x
2 + a2 > 0, resulting in |x|>√

−a2/(3a1). Given a1 < 0 (reasoned above) and a2 6= 0

(otherwise d2x
dt2 ≤ 0 for all x), this only has real solutions if

a2 > 0. We conclude that a2 > 0 is then also necessary to
enter a domain in which multiple equilibria are possible for
x.

Now the question remains whether there are multiple equi-
libria (that is, roots) in dx

dt . For this we need to solve the sys-
tem dx

dt == 0. Using a solving algorithm software, the fol-
lowing three solutions for have been found:
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The system has multiple equilibria if and only if all roots
have non-equal real part (given a1 < 0 and a2 > 0). We

therefore need 27a41a
2
3+4a31a

3
2 > 0, or |a3|<

√
−4a31a32
27a41

.

Lemma 3. The system x and y in Eqn. 2 reaches a stable
periodic solution when coming from a stable stationary equi-
librium if and only if a1b1 < 0 and a2a3 + b2b3 = 0.

Proof. From bifurcation theory we know the equations for
x and y in Eqn.2 to be almost the normal forms for oscil-
latory systems, where sign(a1) =−sign(a2), a2 and b2 de-
termine whether the periodicity is supercritical or subcriti-
cal and a3 and b3 determine the amplitude of the oscillations
in x and y respectively. This will directly lead towards that
which is to be proven. However, I will try to prove it from
a general perspective. A Hopf bifurcation is crossed when
two complex conjugate eigenvalues cross the imaginary axis.
That is, while having a nonzero imaginary part, their real part
changes sign. To assign conditions to this, we need to com-
pute the Jacobian:

J =

(
a2(a3−x2− y2)− 2a2x

2 a1− 2a2xy
b1− 2b2xy b2(b3−x2− y2)− 2b2y

2

)
and the subsequent eigenvalues:

λ1 =
1

2
(−√(−a2a3 + 3a2x

2 + a2y
2− b2b3 + b2x

2

+3b2y
2)2− 4(−a1b1 + 2a1b2xy+ a2a3b2b3− a2a3b2x2

−3a2a3b2y
2 + 2a2b1xy− 3a2b2b3x

2− a2b2b3y2 +

3a2b2x
46a2b2x

2y2 + 3a2b2y
4) + a2a3− 3a2x

2− a2y2

+b2b3− b2x2− 3b2y
2)

λ2 =
1

2
(
√

(−a2a3 + 3a2x
2 + a2y

2− b2b3 + b2x
2

+3b2y
2)2− 4(−a1b1 + 2a1b2xy+ a2a3b2b3− a2a3b2x2

−3a2a3b2y
2 + 2a2b1xy− 3a2b2b3x

2− a2b2b3y2 +

3a2b2x
46a2b2x

2y2 + 3a2b2y
4) + a2a3− 3a2x

2− a2y2

+b2b3− b2x2− 3b2y
2)

For the eigenvalues, a solving algorithm is used. Note that
we did not implement any coupling term yet, which might
alter the third column of the Jacobian. We can see that under
the following condition, λ1 and λ2 have a nonzero imaginary
part and are subsequently complex conjugates:

G(x,y) := (−a2a3 + 3a2x
2 + a2y

2− b2b3 + b2x
2 + 3b2y

2)2

−4(−a1b1 + 2a1b2xy+ a2a3b2b3− a2a3b2x2

−3a2a3b2y
2 + 2a2b1xy− 3a2b2b3x

2− a2b2b3y2

+3a2b2x
4 + 6a2b2x

2y2 + 3a2b2y
4)< 0

If this is held, the real part needs to switch sign to actually
cross the Hopf bifurcation, indicating that

H(x,y) := a2a3− 3a2x
2− a2y2 + b2b3− b2x2− 3b2y

2

crosses zero. We will now simplify this proof by realizing
that system Eqn. 2 has a stationary solution (x,y) = (0,0)
and in case of periodic solutions, will oscillate around this
equilibrium. This indicates that the Hopf bifurcation point (if
it exists) is at (x,y) = (0,0). This means that we can simplify
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G and H:

G(0,0) = (−a2a3− b2b3)2− 4(−a1b1 + a2a3b2b3)

= a22a
2
3− 2a2a3b2b3 + b22b

2
3 + 4a1b1

= (a2a3− b2b3)2 + 4a1b1

H(0,0) = a2a3 + b2b3

For G(0,0) to become negative, this in particular means
a1b1 < 0. And for H(0,0) to be negative (which it should
be in the case of a stable equilibrium), a2a3 + b2b3 < 0 and
it crosses a Hopf bifurcation if a2a3 + b2b3 = 0.
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