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Emergent constraints are one of the tools to reduce uncertainty in climate model projec-
tions. These are physically explainable empirical relationships between characteristics
of the current climate and long-term behavior that emerge in ensembles of climate
models, where the long-term behavior is constrained using observations. So far, no
general mathematical framework describing emergent constraints has been proposed.
In this work, we introduce a classification for emergent constraints, depending on the
process under consideration: we distinguish between emergent constraints that model
variability, mean state or feedback strength. In addition we present a mathematical
framework making use of linear response theory and apply this description to a set
of conceptual (climate) models. We specifically focus on an emergent constraint that was
previously found for the snow-albedo feedback. We conclude by discussing if and how
this framework can be applied to GCMs.

1. Introduction
Decreasing the uncertainty in climate projections is one of the most important chal-

lenges in climate modeling. On the one hand, uncertainty can be reduced by producing
more and more sophisticated numerical climate models. The slow progress in this regard,
as illustrated by climate sensitivity which predicted range hasn’t shrunk substantially
over the last couple of decades, hints at the need for stronger methods to determine the
accuracy of existing models. One of the proposed methods to accomplish this is the use
of emergent constraints.

Emergent constraints are used to constrain future projections using current obser-
vations (Collins et al. 2012). In multimodel ensembles of complex climate models, a
linear equilibrium relation can be found between a current aspect of the climate and
some future aspect. More credibility is attached to models that match this aspect, be it
the observed variability, feedback or mean state, well over the recent period. In this way,
current observations provide a constraint to long term trends if the spread in observations
in sufficiently small (Klein & Hall 2015). Some emergent constraints, however, may be
spurious and could arise because of shared errors in a particular multimodel ensemble.
In either way, the additional credibility in some models should not naively be interpreted
as formal probabilities (Stephenson et al. 2012).

In recent years, emergent constraints have been found for a large set of climate
variables: Arctic warming, snow-albedo feedback, tropical carbon uptake and global
precipitation among others (Bracegirdle & Stephenson 2013; Hall & Qu 2006; Wenzel
et al. 2014; Allen & Ingram 2002).

A dynamical mechanism for emergent constraints is still lacking. Under which circum-
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stances are they expected to arise? A mathematical framework might be used to identify
the latter and give an indication as to where new emergent constraints might arise.

Ruelle’s response theory (RRT), a generalization of linear response to high-dimensional
chaotic dissipative dynamical systems, can be used to address the problem of pre-
dictability on different timescales (Ragone et al. 2016). With RRT, the response of
nonequilibrium systems to external perturbations can be studied. Like the fluctuation-
dissipation theorem (FDT), it uses the statistical properties of the unperturbed state
only. In contrast with FDT, it does not assume that the unperturbed statistical steady-
state is smooth. Recently, RRT has been proposed as a rigorous framework for computing
the response of the climate system and its applicability has been tested on the Lorenz 96
model and on a simplified global climate model (Ragone et al. 2016; Lucarini & Sarno
2011).

In this work, we will investigate how and under what conditions emergent constraints
appear and what this tells us about the physics of the climate system. As a starting
point, we look at the emergent constraint found in Hall & Qu (2006) between the snow-
albedo feedback on a seasonal timescale and the snow-albedo feedback over the course
of the 22nd century on a warming earth in a CMIP4 ensemble. They proposed that the
mechanism behind this emergent constraint is the maximum albedo snow can attain.
With a high maximum albedo the contrast between snow-covered and snow-free areas
is high, so that the snow-albedo feedback is higher both on a seasonal scale and on a
century scale (Qu & Hall 2007).

To get an understanding of this emergent constraint we start by reproducing it
in PlaSim, an intermediate complexity climate model. We proceed by formulating a
dynamical framework in terms of susceptibilities, making use of linear response theory.
Then, these are tested on an Ornstein-Uhlenbeck process in one and two dimensions.
Subsequently, the theory is applied to two formulations of an energy balance model.

This paper is organized as follows: section 2 describes the snow-albedo feedback
emergent constraint in PlaSim. Section 3 provides the basis for linear response theory. In
section 4 a classification scheme for emergent constraints is proposed. Section 5 describes
the applications of linear response theory to a set of toy (climate) models. Section 6
concludes with a summary and a discussion on how to generalize the method to global
circulation models.

2. Snow-albedo feedback in The Planet Simulator
Hall & Qu (2006) found a correlation between SAF on a seasonal scale and SAF as a

result of climate change. They define the SAF as:(
∂Q

∂Ts

)
SAF

= −Qt ·
∂αp
∂αs

· ∆αs
∆Ts

, (2.1)

where Qt is the incoming solar radiation as a function of time, αp is the planetary albedo,
αs is the surface albedo and Ts the surface temperature. They show the last factor ∆αs

∆Ts

shows the highest variability between models and use this for the emergent constraint. Qu
& Hall (2007) provide a physical basis: they find that in models with a high snow albedo,
the contrast between snow-covered and bare surfaces was largest and consequently the
sensitivity to changes in temperature was largest.

The snow-albedo feedback emergent constraint can be reproduced in a multi-parameter
ensemble in PlaSim. PlaSim is a numerical model of intermediate complexity, developed
at the University of Hamburg to provide a fairly realistic present climate which can still be
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simulated on a personal computer (Fraedrich et al. 2005). The atmospheric dynamics are
modelled using the primitive equations formulated for temperature, vorticity, divergence
and surface pressure. Moisture is included by transport of water vapor. The equations are
solved using the spectral method. A full set of parameterizations is used for unresolved
processed such as long and shortwave radiation with interactive clouds, boundary layer
fluxes of latent and sensible heat and horizontal and vertical diffusion.

The atmospheric dynamics are coupled to a one-layer slab model of the ocean, which in
our case has a parameterized horizontal diffusion for heat transport. The slab ocean model
includes a thermodynamic sea ice module. For the present study uses a T21 horizontal
resolution and 10 levels of vertical resolution, with a time step of 45 minutes. Daily and
seasonal cycles are included in the simulation.

To model climate change, the historical forcing in Plasim was approximated by a CO2

increase from 295 ppm at a rate of 0.3% per year in the 20th century and 1% per year
in the 21st century before it stabilised at 720 ppm. A 50-year run up was used.

Snow albedo in this model is a function of surface temperature, snow depth and
vegetation cover. The bare soil snow albedo Asnow in PlaSim is described by:

Asnow =


Amax, if Ts > 10 ◦C.

Amin + (Amax −Amin) Ts

−10◦C if 0 ◦C < Ts <10 ◦C

Amin, if Ts > 0 ◦C.

(2.2)

This equation is modified in the presence of vegetation and in the case of shallow snow
depth. See Lunkeit et al. (2011) for more details.

Figure 1: The emergent constraint on
snow-albedo feedback ∆αs

∆Ts
(from Hall &

Qu (2006), αs given in units of %)

Figure 2: Same as figure 1, but now results
from PlaSim

A set of simulations was performed with Amax varying between 0.650 and 0.900. In
figure 1 and 2 the results from Hall & Qu (2006) and PlaSim are compared. Note that
the variation of SAF in CMIP4 is significantly larger than the variation found in PlaSim,
but that the PlaSim results do fit within the other models found by Hall & Qu (2006).
Variations in other parameterizations, such as the maximum snow albedo over forested
regions, increase the spread in PlaSim SAF further (not shown).

This simulation shows that the constraint that emerges in a multi-model ensemble
with structurally different formulations of the snow response can to some extent also
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be reproduced using variations in one parameter. This provides the justification for
simplifying further to energy balance models to examine the snow-albedo feedback
emergent constraint.

3. Linear response and spectral theory
This section summarizes the mathematical tools we will use to describe emergent con-

straints. First, the basic elements of linear response theory are recapitulated and rewritten
with the help of a spectral decomposition of the operators involved in the description of
stochastic differential equations describing gradient systems. This is ultimately expanded
to a more general set of hypoelliptic and hypocoersive systems.

Let us start with an one-dimensional forced SDE whose drift term is described by a
potential:

dXt = (−V ′(Xt) + F (t))dt+
√

2β−1dWt. (3.1)

Here V (x) is a confining potential, meaning that a equilibrium solution exists for the
unforced system, and F (t) is a prescribed forcing. Furthermore, β a diffusion term, often
referred to as the inverse temperature. The associated Wiener process is indicated byWt.
When V ′(x) = −γx, the solution of the unforced problem is the well-known Ornstein-
Uhlenbeck process.

3.1. Linear response theory
The probability density function, say p̄, of the unforced system described by

dXt = −V ′(Xt)dt+
√

2β−1dWt (3.2)

satisfies the Fokker-Planck equation:

∂p̄

∂t
=
∂(V ′(x)p̄)

∂x
+
σ2

2

∂2p̄

∂x2
= L ∗(p̄), (3.3)

also defining the operator L ∗.
The first step in linear response theory is to determine the equilibrium distribution,

here indicated by p̄e of the unforced system. This is a distribution given by

p̄e(x) =
1

Z
e−βV (x), Z =

∫
R
e−βV (x) dx, (3.4)

where Z is the partition function. Linear response theory provides an expression for the
change in the expectation value of the change in an observable A, say ∆A(t) when the
system is forced, compared to the unforced case, i.e.

∆A(t) = E[A(Xt)]− E[Ae(Xt)]. (3.5)

Here, the subscript e again indicates the equilibrium of the unforced system. It follows
that

∆A(t) =

∫ t

0

RA(t− s)F (s)ds, (3.6)

where RA(t) is the response function

RA(t) =

∫ ∞
−∞

A(x) eL ∗t

(
−∂p̄e
∂x

)
dx. (3.7)



Mathematical approach to emergent constraints 5

When (3.6) is Fourier transformed to eliminate the convolution, we find

F(∆A(t)) = χ(ω)F̂ (ω), (3.8)

where χ(ω) is the susceptibility. If we take a cosine forcing, i.e.,

F (t) = F0 cosωt, (3.9)

then
F̂ (ω) = F0π(δ(ω − ω0) + δ(ω + ω0)), (3.10)

so once we know χ(ω), we can determine the response ∆A(t) with equation 3.6.

3.2. Explicit expression for χ(ω) for A(x) = x.
For A(x) = x, we find from (3.7) that

RA(t) =

∫ ∞
−∞

x eL ∗t

(
−∂p̄e
∂x

)
dx. (3.11)

By differentiating the expression for p̄e in e, we find

−∂p̄e
∂x

= βV ′(x)p̄e (3.12)

and hence (3.11) becomes

RA(t) =

∫ ∞
−∞

x eL ∗t (βV ′(x)p̄e) dx. (3.13)

Using the standard L2-inner product, the adjoint of L ∗ determined as 〈L ∗g, h〉 =
〈g,L h〉, where L is the generator of gradient system, given by

L u = V ′(x)
∂u

∂x
+ β−1 ∂

2u

∂x2
, (3.14)

where u is a test function. It is the operator appearing in the backward Kolmogorov
equation. Using this property of adjointness in (3.13), we find

〈x, eL ∗t(V ′(x)p̄e)〉 = 〈eL tx, V ′(x)p̄e〉 (3.15)

and hence

RA(t) = β

∫ ∞
−∞

eL t(x) V ′(x)p̄e dx. (3.16)

Next an inner product 〈g, h〉p̄e is defined as

〈g, h〉p̄e =

∫ ∞
−∞

ghp̄e dx. (3.17)

As a subsequent step, let λl and φl be the eigenvalues and eigenfunctions of the generator
L respectively, i.e. solutions of

L φ = −λφ. (3.18)
For the OU process, these eigenvalues and eigenfunctions are given by

λl = γl ; φl(x) =
1√
l!
Hn(

√
γβx), (3.19)

where Hn are the Hermite polynomials.
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Under the inner product 〈, 〉p̄e , the eigenvalues of the generator L are real, pos-
itive and discrete. The eigenfunctions form a complete orthonormal basis, such that
〈φn, φm〉p̄e = δnm. Now eL t(x) represents solutions u(x, t) of the problem

∂u

∂t
= L u (3.20)

with initial condition u(x, 0) = x. We can expand u into eigenfunctions as

u(x, t) =

∞∑
l=1

αlφl(x)e−λlt (3.21)

From the initial condition, we find
∞∑
l=1

αlφl(x) = x (3.22)

and using the orthonormality of the eigenvalues φl under the inner product 〈, 〉p̄e , we find

αl = 〈x, φl〉p̄e . (3.23)

On the other hand, substituting the expression for u into (3.16) gives∫ ∞
−∞

∞∑
l=1

αlφl(x)e−λltV ′(x)p̄e dx =

∞∑
l=1

βle
−λlt, (3.24)

where
βl = αl〈V ′(x), φl〉p̄e = 〈x, φl〉p̄e〈V ′(x), φl〉p̄e . (3.25)

Repeating the derivation with a general observable A(x) gives 〈A(x), φl〉p̄e〈V ′(x), φl〉p̄e .
The first term in βl denotes the projection of the observable on the eigenfunctions and
could intuitively be interpreted (for l > 0) as the amenability of the observable to change.
The second projection term in βl can be understood to be the amenability of the whole
system to change under the influence of the forcing field. Finally, the response function
can be written as

RA(t) = β

∞∑
l=1

βle
−λlt (3.26)

and the susceptibility is given by

χ(ω) = β

∞∑
l=1

βl
λl + iω

. (3.27)

The total response to the forcing F (t) = F0 cosω0 is now determined from (3.6) by

∆X(t)ω0 = 2F0β

∫ t

−∞

∞∑
l=1

βle
−λl(t−s) cos(ω0s) ds (3.28)

or in Fourier space and dropping the subscript

F (∆Xt) (ω0) = 4F0β

∞∑
l=1

βlλl
λ2
l + ω2

0

. (3.29)

Somewhat sloppy, we will often refer to the last quantity as the susceptibility, but do keep
in mind that it is actually the susceptibility times the Fourier transform of the forcing
function given by (3.10).
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3.3. Higher-dimensional systems
The previous analysis can be generalised to more dimensions. Take a vector Xt =

(xt, yt, ..)
T . Then

dXt = (−∇V (Xt) + F (t)x̂)dt+
√

2β−1dWt. (3.30)
The term F(t)x̂ denotes a forcing in the direction of the first variable. As shown in
Pavliotis (2014) the derivation of the response function follows the one-dimensional case
closely, resulting in:

Rx(t) = β

∞∑
l=1

gle
−λlt; Ry(t) = β

∞∑
l=1

hle
−λlt (3.31)

where gl = 〈x, φl〉p̄e〈dVdx , φl〉p̄e and hl only differ in the first argument:
hl = 〈y, φl〉p̄e〈dVdx , φl〉p̄e . Calculating the response is analogous to the one-dimensional
case, so that the Fourier transform of the response functions are given by

F(∆xt) = 2β

∞∑
l=1

glλl
λ2
l + ω2

0

; F(∆yt) = 2β

∞∑
l=1

hlλl
λ2
l + ω2

0

(3.32)

Note that for uncorrelated and equally large noise terms, the eigenfunctions are the
tensor products of the eigenfunctions in the one-dimensional case, while the corresponding
eigenvalues are the sum of the eigenvalues in the one-dimensional case. For Ornstein-
Uhlenbeck the eigenfunctions φl,m are given by

φl,m = φl(x)φm(y)

for φl as defined in Equation 3.19. These form an orthonormal complete basis.

3.4. Irreversible and hypoelliptic systems
Not all climate processes for which emergent constraints have been found can be

simplified to differential equations with a gradient structure. In this subsection, we
provide an generalization to irreversible processes that are not necessarily elliptic, but
instead fall into the category of hypoelliptic systems. Irreversible processes are ubiquitous
in climate: entropy is produced continuously in the presence of dissipation (Lucarini et al.
2010). For this group of systems the susceptibility can also be expressed in the form of
equation 3.29. An example is the Langevin equation. In the Langevin equation the noise
only works on the momentum variables (p).

dqt = ptdt,

dpt = −∇qV (qt)dt− γptdt+
√

2γβ−1dWt.
(3.33)

To define a unique invariant distribution ρ̄e (where ρ is used to avoid confusion with the
momentum) there should be sufficient interaction between the variables on which noise
works and variables on which it does not work. This condition is called hypoellipticity
(see Pavliotis (2014) for a formal definition). Observe that for systems without noise, the
Fokker-Planck equation reduces to the Liouville equation for which no unique invariant
measure exists. Furthermore, systems should converge exponentially fast to equilibrium,
for instance by meeting the property of hypocoercivity (Pavliotis 2014).

In the case of the Langevin equation the invariant distribution can be expressed again
as an exponential:

ρ̄e(p,q) =
1

Z
e−βH(p,q), (3.34)
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where Z is the partition function as in (3.4) and the Hamiltonian H(p, q) = 1
2 |p|

2
+V (q).

Due to the loss of reversibility, the generator is not self-adjoint in L2(ρ̄e) and we call
its adjoint Lkin. The adjoint Lkin can be seen as the generator for the time-reversed
process. As a consequence the eigenfunctions φn do not form a complete orthogonal set.
Instead, the eigenfunctions satisfy the biorthonormality relation with the eigenfunctions
ψn of Lkin:

〈φn, ψm〉ρ̄e = δnm. (3.35)
Just as in equation 3.21, the solution u of ∂u∂t = L u can be expanded in eigenfunctions.

The eigenvalues do not have to be real, however, since the generator is not self-adjoint
or equivalently since the process is irreversible. From the initial condition and using the
biorthonormality under the inner product 〈, 〉p̄e , we now find

αl = 〈x, ψl〉ρ̄e . (3.36)

The second factor in the definition of βl, the inner product between the eigenvalues
and the derivative of the potential in the direction of the forcing, in (3.25) should be
reconsidered as well. The derivative of the potential was obtained from the derivation
of the equilibrium distribution and should thus be replaced by the derivative of the
Hamiltonian for irreversible systems.

βl = 〈x, ψl〉ρ̄e〈φl,H′(x)〉ρ̄e . (3.37)

In general the Hamiltonian can be derived from the invariant measure: H = − ln(ρ̄e),
where the noise term is now included in the Hamiltonian. Redoing (3.26—3.29) for
complex eigenvalues, gives us the following expression for the ’susceptibility’:

F (∆Xt) (ω0) = 4F0β

∞∑
l=1

βl<(λl)

<(λl)
2

+ (ω2
0 −=(λl))

. (3.38)

When considering this equation as a function of ω0, the real part of the eigenvalue <(λl)
gives the width of the peak, while the imaginary part of the eigenvalue =(λl) indicates
the peak location.

4. Classification
Although a wide set of different emergent constraints have been found, we are not

aware of any attempts to classify them. Here, a classification is proposed based on a
characterization of the predictor and of the relationship between the predictor and the
predictand. Using this classification, assessment of their validity and applicability should
become easier. Furthermore, a classification is a prerequisite for a dynamical description
of emergent constraints.

In table 1, three types of emergent constraints are described. Type I encompasses
emergent constraints where the (short-term) variability in one parameter is linked to
the future predictand. This variability can be daily, seasonally or time scales of ENSO.
Type II refers to emergent constraints where the mean state of a certain variable is linked
to the predictand. In other words, not the accuracy of a response to a forcing is used as a
constraint, but the error in the mean state. The final category III contains relationships
between the strength of a feedback on different time scales. The feedback can only be
measured as a consequence of the forcing, but is not a direct response to the forcing.
These three categories are further subdivided depending on whether the predictor and
predictand describe the same (-s) observable or process or different ones (-d).
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Predictor, predictand the same Predictor, predictand different

Variability I-s I-d
Mean state II-s II-d
Feedback III-s III-d

Table 1: Different types of emergent constraints can be classified. type I constraints
link the short-time variability in a certain variable to a future predictand, while type
II constraints link (the error) in the mean state of a variable to a change over a longer
period. The final category links a short-time feedback mechanism to future feedbacks.

Emergent constraints of type I-s and III-s are the most intuitive. As long as the
variations in the predictor are of a sufficient amplitude compared to the size of the
predictand, a correlation between the predictor and predictand automatically points
towards a common physical basis, namely a common dynamical response to an external
forcing with sufficiently short time scales.

Emergent constraints of type I-d or III-d have not been described in CMIP5 models
so far. We see no particular reason for these types of emergent constraints not to exist,
so it might be interesting to also start looking for these kind of emergent constraints. In
table 2 we apply our classification to emergent constraints found in literature.

4.1. Conditions for emergent constraints
For simplicity, the conditions are all given for elliptic gradient systems. The following

equations can easily be extended for systems that are both hypoelliptic and irreversible.

4.1.1. Type I-s

Figure 3: A single term in the infinite
sum of Equation 4.1, as function of
lambda

Referring back to the theory described in
section 3, conditions for emergent constraints
can be formulated. For a type I emergent con-
straint in a system with varying parameters,
the ratio of the responses to the frequencies ω1

and ω2 should be constant over the ensemble
members ei (recall that emergent constraints
are here defined to be linear relationships),
hence we find the condition from the ratio of
the susceptibilities SR

SR(e) =
F(∆A(t))(ω2)

F(∆A(t))(ω1)
=

∑∞
l=1

βlλl

λ2
l +ω2

2∑∞
l=1

βlλl

λ2
l +ω2

1

= C,

(4.1)
where C is independent of e or the
parameter(s) generating the ensemble.

Physically, we expect that the same mechanisms to be responsible for the response at
a short and fast time scale to obtain an emergent constraint of type I-s. Mathematically,
this translates to the expectation that the system should have response times smaller
than the timescale of the forcing or equivalently: the generator should have eigenvalues
λ larger than the frequency of the forcing. Naturally, the response times 1/λ of the
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Reference Climate predictor Future climate predictand Type
Knutti et al. (2006) Seasonal cycle land tempera-

ture amplitude
Climate sensitivity II-s

Boe et al. (2009) Arctic sea ice extent trend
1979-2007

Arctic sea ice extent I-s

Clement et al. (2009) Sensitivity LLC to pacific
decal variability

Sign LLC feedback I-s

Fasullo & Trenberth
(2012)

Mid-tropospheric RH over
ocean in subsidence region

ECS II-d

Bracegirdle &
Stephenson (2013)

Arctic SAT Arctic SAT under climate
warming

II-s

Gordon & Klein (2014) Sensitivity of extra-tropical
LLC optical depth to temper-
ature

Extra-tropical LLC optical
depth response to climate
warming.

I-s

Qu et al. (2014) Sensitivity of LLC cover to
SST

LCC cover changes under
climate warming

I-s

Hall & Qu (2006); Qu
& Hall (2014)

Springtime SAF SAF under climate warming III-s

Sherwood et al. (2014) Strength cloud-scale and
large-scale lower tropospheric
mixing over oceans

ECS II-d

Su et al. (2014) RH & cloud fraction tropics ECS II-d
Wenzel et al. (2014) Short-term sensitivity of at-

mospheric carbon dioxide
Sensitivity tropical land car-
bon storage to climate warm-
ing

I-s

Tian (2015) Precipitation & mid-
tropospheric RH asymmetry
bias (for ITCZ)

ECS II-d

Trenberth & Fasullo
(2010)

SH net radiation TOA ECS II-d

Table 2: A classification of emergent constraints found in literature. Abbreviations
stand for RH: relative humidity, ITCZ: inter-tropical convergence zone, TOA: top of
atmosphere, SH: southern hemisphere, ECS: equilibrium climate sensitivity, LLC: low-
level cloud, SAF: snow-albedo feedback. SAT: surface air temperature. The last entry
is an example of a relationship that appears to have been an coincidence: no physical
mechanism was proposed and it did not appear in different ensembles, such as CMIP5
Grise et al. (2015))

dominant processes are expected to be at least smaller than the timescale of the slow
forcing 1/ω1.

This reasoning can be found back in the properties of equation 4.1. To better under-
stand it, we examine a single term in the sum that makes up the susceptibility. Figure 3
shows such a term as a function of an eigenvalue and for an arbitrary βl. The maximum
is reached when λ = ω. If the projection terms βl stay constant over an ensemble, and
indeed ω1 < λl for all l, the susceptibility to low frequencies decreases over an ensemble
when eigenvalues increase. The ratio can then only stay constant over the ensemble if the
susceptibility at high frequency also decreases; so to fulfil the condition in the case that
βl stays (relatively) constant over the ensemble, the dominant projection terms should
correspond to eigenvalues that are larger than ω2.

For the Ornstein-Uhlenbeck process, using equation 3.19, the ratio of susceptibilities
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reduces to

SR(γ) =
β1λ1

λ2
1 + ω2

2

/ β1λ1

λ2
1 + ω2

1

=
γ2 + ω2

1

γ2 + ω2
2

6= C, (4.2)

since both the observable x and the derivative of the potential are orthogonal to all
eigenfunctions other than φ1. This ratio is dependent on γ. Although linear emergent
relationships are only found in a few uninteresting limiting cases — either γ � ωi or
γ � ωi for i ∈ {1, 2} — the two susceptibilities correlate positively which we call a
nonlinear or weak emergent relationship.

4.1.2. Type I-d
In this subsection, the analysis above is repeated in the case the observable reacting to

a high-frequency forcing is unequal to the observable reacting to a low-frequency forcing.
Let us add a forcing in the x-direction and take as observables x and y. Mutatis mutandis,
a condition very similar to 4.1 is found.

F(∆A1(t))(ω2)

F(∆A2(t))(ω1)
=

∑∞
l=1

glλl

λ2
l +ω2

2∑∞
l=1

hlλl

λ2
l +ω2

1

= C, (4.3)

where gl and hl are defined as in equation 3.31.
It is not possible to find an analytic solution in terms a coupled Ornstein-Uhlenbeck

system. When coupling is introduced in the drift, but not in the noise, it is not possible
to write the 2D-eigenfunctions as tensor products of the lower-dimension eigenfunctions;
the problem is not separable.

For type I-s we found a weak restriction on the values of the eigenvalues: the eigenvalues
of the dominant terms in the susceptibility should be larger than ω2, the frequency of
the fast forcing term. In the case of a type I-d emergent constraint the projection terms
corresponding to the same eigenvalue in the numerator and denominator have different
values, so it might be more difficult to identify dominant terms. However, the same logic
is applicable and also to meet the condition of type I-d, the eigenvalues of dominant βl
are expected to be larger than ω2 if the projection terms are relatively constant over the
ensemble.

The response in one direction might have a different sign compared to the response
in the other direction. Therefore, C can either be positive or negative, in contrast to
the constant in the condition for type I-s. The sign of the constant should generally be
determinable from physical arguments.

4.1.3. Type II
Type II emergent constraints link the mean of an observable to a change in the system

under a forcing. Note that the susceptibility only contains information about the response
to a certain forcing. Even in the limit of ω → 0, it denotes the linear response of the
system, without any information on the mean state (Lucarini & Sarno 2011). So, to
derive the condition for a linear relationship the mean E[Ae(Xt)] =

∫∞
−∞ p̄eA(x) dx and

the susceptibility at frequency ω1 are used.
For emergent constraints of type II-s, the linear relationship between the response and

the mean state is not expected to pass through the origin, since the mean will in general
be nonzero. Therefore, an additional term I is added to the ratio, denoting the intercept
of the line between the mean state and the response with varying parameters. Instead,
the susceptibility is compared to the mean state and the following condition is derived,
where C should again be a constant independent of parameter(s) that is used to generate



12 F.J.M.M. Nijsse

the ensemble:
E[At]− I
F(∆A(t))

=

∫∞
−∞ p̄eA(x) dx− I∑∞

l=1
hlλl

λ2
l +ω2

1

= C. (4.4)

Again C can either be positive or negative, depending on the physics under consideration.

4.1.4. Type III
In general, a feedback is the process in which changing one quantity changes a second

quantity and the change in the second quantity in turn changes the first. These changes
can be represented by derivatives, so that feedback strength generally scales with a
derivative of the secondary quantity to the first quantity in the linear case. See for
instance the snow-albedo feedback (equation 2.1), which scales with dα

dT . At first glance,
one would gather that you can proceed as with Type I-s and use the derivative dα

dT as
an observable. Note however that linear response theory does not give the expectation
value of the observable, but the expectation value of the deviation due to the forcing. In
the case of a feedback, the susceptibility would not give the strength of the feedback, but
the sensitivity of that feedback to the forcing.

So instead, the feedback strength can be described by a ratio of susceptibilities of the
two observables under consideration. It is possible that the susceptibilities of the two
observables do not have the same phase; this phase difference can be used as a physical
check. In the case of the snow-albedo feedback the temperature is expected to start
responding first to a radiative forcing. As with the Type I emergent constraints, the
ratio of feedback strength RFS should be constant over the ensemble. Let us take the
derivative dx

dy to scale with the feedback strength, then we find the following condition:

RFS =
F(∆x(t))(ω2)/F(∆y(t))(ω2)

F(∆x(t))(ω1)/F(∆y(t))(ω1)
= C (4.5)

where the C should be independent of the ensemble member.

For type I and type III there is one assumption each that should still be made explicit.
In posing the conditions, it is assumed for type I that all variability on a seasonal scale
has the same physical mechanism as the change on the long term and for type III that the
complete feedback is present on both scales. Consequently the graph of the susceptibility
as a response to a high-frequency forcing and the susceptibility to a low-frequency forcing
passes through the origin. An additional intercept term I just as in equation 4.4 can be
added to the condition whenever this assumption is not valid.

5. Applications
In this section we test the conditions put forward in section 4 on a set of simple

dynamical models. Firstly, the OU process is examined in 1D and 2D. This provides
information on type I-s and I-d emergent constraints respectively. We continue by
examining the snow-albedo feedback emergent constraint in two different formulations of
the energy balance model, as a model of type III emergent constraints.

In terms of numerics, the eigenvalues and eigenfunctions of the generator were indi-
rectly determined using the fact that the eigenvalues of the Fokker-Planck operator L ∗

are equal to the eigenvalues of the generator and that the eigenfunctions are computed
from the transformation:

φL = p̄−1
e φL ∗ (5.1)
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The Fokker-Planck operator was discretized with use of Chang-Cooper algorithm (Chang
& Cooper 1970). Eigenvalues and eigenvectors were determined using an Implicitly
Restarted Arnoldi Method (Lehoucq et al. 1998). Explicit calculations of the trajectories
of the SDEs were performed the Runge-Kutta method for SDEs.

5.1. Ornstein-Uhlenbeck
First, the framework and code are tested with a simulation of the one-dimensional

Ornstein-Uhlenbeck (OU) process for which an analytic solution of its response exists.
Forcing F (t) = sin 2πtωi with two different frequencies ω1 = 0.001 and ω2 = 0.1 are
added in two simulations, which both end after 1/4 of the phase of the slow forcing. The
computed eigenvalues are in agreement with equation 3.19: the system responds faster
for higher contraction rates γ. The projection terms βl are invariant under a change in
γ.

(a) (b)

Figure 4: (a) Response to forcings at two different frequencies of the 1D Ornstein-
Uhlenbeck process. Shown is the average of a 3000-member simulation of trajectories
(b) The susceptibility at these frequencies, whose ratio is given in the inset figure.

To examine the correspondence between the mean of the trajectories of the SDE, aver-
aged over 3000 trajectories, and the separately calculated susceptibility, both are shown
in figure 4. The calculated susceptibilities give a good indication of the actual response.
No linear emergent relationship is found for OU. For decreasing γ the susceptibility at low
frequency increases faster than the susceptibility at high frequency. This is in agreement
the analytic solution in equation 4.2.

In the 2D system the forcing Fi(t) = sin 2πωit with the same frequencies as in the 1D
case is added in the first dimension only. The sensitivity to this forcing in the second
dimension is examined. The process is given by:

dXt =

[(
−γ1 δ
δ −γ2

)
Xt +

(
Fi(t)

0

)]
dt+

√
2β−1dWt. (5.2)

An ensemble is generated by changing the contraction rate γ1. Two ensembles are
compared: first with the cross term δ = 0.2, while in the second case a stronger coupling is
used: δ = 0.5. The contraction term in the second dimension is held constant at γ2 = 0.7.

Figure 5 shows the eigenvalues and susceptibility ratios for the 2D-simulations. In the
case of a weak coupling, δ = 0.2, all nonzero eigenvalues are larger than the forcing
frequency ω2, and therefore naturally larger than ω1. On the other hand, the stronger
coupling δ = 0.5 leads to a slowing down of the system, so that some eigenvalues are now
smaller than ω2. In these cases (γ1 < 0.5) the system does not have time to portray the
full response to a forcing, while for others (γ1 > 0.5) it does. Consequently, the strength
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(a) (b)

(c) (d)

Figure 5: Eigenvalue spectrum for (a) δ = 0.2 and (b) δ = 0.5. The dashed line
corresponds to the frequency ω2 of the fast forcing (c,d) Corresponding susceptibilities,
with their ratio in the inset figures.

of the response actually decreases for γ1 < 0.5. Directly calculating the expectation value
as the mean of 2000 stochastic trajectories confirms this image.

The projections are shown in figure 6. Although the variations in the projection terms
are significant, they appear to compensate each other and the analysis based on the
eigenvalues seems to be sufficient to explain the responses. In the case of strong coupling,
the projections and thus the eigenfunctions, vary less.

In the low-coupling system, the susceptibility ratio is almost constant and an emergent
linear relationship is found. This example stresses that the size of the the response, which
is substantially larger in the high-coupling case, does not indicate whether an emergent
relationship exists. Of course, the size of the spread of the response should be large
enough so that it can be constrained by observations.

5.2. Energy Balance model
In this subsection we turn to the snow-albedo feedback again. one emergent constraint

is examined in more detail, namely the one pertaining to the snow-albedo feedback (SAF)
first described by Hall & Qu (2006). This emergent constraint falls in category III-s.

To study this emergent constraint we modify a simple energy balance model and make
the albedo temperature-dependent. We change a parameter in the albedo function to
obtain an ensemble of runs.

With constant albedo, the energy balance model reads:

dT

dt
=

1

cT

(
Q(1− α) +A ln

C

Cref
+G− εσT 4

)
, (5.3)

where dT is the temperature change, cT the heat capacity of the earth, Q the solar
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(a) (b)

(c) (d)

Figure 6: (a,b) Projections αl and βl respectively for a weakly coupled OU 2D system
with δ = 0.2, (c,d) same for δ = 0.5.

insolation, α the albedo, C the concentration of greenhouse gases, Cref a reference
concentration, G a constant for the background greenhouse gas forcing, σ the Stephan-
Boltzmann constant, ε the earth emissivity. Their numerical values are found in table 3.
Temperature T can be calculated analytically for an equilibrium state, by setting dT = 0.
To include a seasonal variation in the model, we restrict the attention to a single
hemisphere and assume no transport of heat between the two hemispheres.

Before examining the snow-albedo feedback note that for some variables, notably the
climate sensitivity, a simple EBM can show different sensitivities to forcing from solar
insolation or greenhouse gases. For simplicity we take H = G+A lnC/ lnCref and ε = 1.

∂

∂α

∂T

∂Q
= (Q(1− α) +H)

−3/4
σ1/4

(
−1

4
+

3

4

Q(1− α)

Q(1− α) +H

)
< 0 (5.4a)

∂

∂α

∂T

∂H
=

3

16
Qσ1/4 (Q(1− α) +H))

−7/4
> 0 (5.4b)

Sensitivity to solar insolation (seasonal sensitivity) decreases for an increasing albedo,
while sensitivity to greenhouse forcing increases when albedo increases using typical
values for Q and H.

To mimic the physical mechanism behind the emergent constraint, albedo is taken to
be temperature-dependent. For low (high) temperatures, albedo is high (low). A logistic
function is used to model this:

αr(T ) = αmin +
αamp

1 + exp k(T − Th)
(5.5)

where αmin is the minimum the albedo takes, αamp is the amplitude, k is a steepness
factor and Th is the temperature at which half of the amplitude is reached. The amplitude
is the parameter that is varied to generate the ensemble. Of course, in this simple
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Constant Value Constant Value

cT 5.0× 108 J/m2/K ε 1.0
A 20.5 W/m2 σ 5.67× 10−8 W/m2/K4

Q0 342 W/m2 αmin 0.2
Qs 115 W/m2 αamp 0.05–0.5
G 150 W/m2 k 0.5
Cref 280 ppmv Th 284 K
csnow 4.0× 106 s βT 2.0× 107 s/K2

βα 2.0× 105 s

Table 3: Constants for the energy balance model.

formulation the ice-albedo feedback and snow-albedo feedback amount to the same.
For simplicity the two feedbacks together are henceforth referred to as the snow-albedo
feedback.

The seasonal snow-albedo feedback is computed in a simulation where Q0 is modulated
by adding a sine with amplitude Qs and a period of one year. The snow-albedo feedback
is then computed by dividing the amplitude of the albedo cycle by the amplitude
of the temperature cycle. A second simulation is performed in which C is increased
exponentially at a rate of 0.3% from 280 to 720 ppmv. Here the snow-albedo feedback is
computed by dividing the total albedo response by the total temperature response.

The parameter values for this simulation can be found in table 3. The parameters of
the albedo function are chosen to ensure that no bistability is present in the model, in
which case linear response theory would break down.

In the framework of linear response theory, two different forcing terms are used. For
the greenhouse gas forcing, the forcing field added to equation 5.3 is simply a constant,
features as a constant, so that the forcing is described by F1(t) = F (t) for F (t) as defined
in equation ??. In the case of a modulation in the insolation, the drift term is changed
differently; namely by adding F2(t) = (1−a(T ))F (t). Adding these terms to equation 5.3
gives:

dT =
1

cT

(
Q(1− αr(T )) +A ln

C

Cref
+ F1(t) +G− εσT 4

)
dt+

√
2β−1

T dWt, (5.6a)

dT =
1

cT

(
(Q+ F2(t))(1− αr(T )) +A ln

C

Cref
+G− εσT 4

)
dt+

√
2β−1

T dWt. (5.6b)

The noise terms represent the effect of unmodelled variables, such as the heat transport
between the two hemispheres.

5.2.1. Formulation of condition for EBM

As a type III emergent constraint, the SAF emergent constraint is described by two
observables: the albedo and the temperature which feature in the equation for the snow-
albedo feedback (equation 2.1) as dα

dT .
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RFS(αamp) =
F(∆a(t)|Q)(ω2)/F(∆T (t)|Q)(ω2)

F(∆a(t)|C)(ω1)/F(∆T (t)|C)(ω1)

=

∑∞
l=1

αlλl

λ2
l +ω2

2
/
∑∞
l=1

βlλl

λ2
l +ω2

2∑∞
l=1

γlλl

λ2
l +ω2

1
/
∑∞
l=1

δlλl

λ2
l +ω2

2

= C,

(5.7)

where
αl = 〈α, φl〉p̄e〈(1− α(T ))V ′(T ), φl〉p̄e ,
βl = 〈T, φl〉p̄e〈(1− α(T ))V ′(T ), φl〉p̄e ,
γl = 〈α, φl〉p̄e〈V ′(T ), φl〉p̄e ,
δl = 〈T, φl〉p̄e〈V ′(T ), φl〉p̄e .

(5.8)

With only one dominant term in all sums, this reduces to C = αlδl
βlγl

= 1 for any l.

(a) (b)

(c) (d)

Figure 7: (a) The relation between temperature response to the seasonal cycle and the
temperature response to greenhouse gas forcing (b) The strength of the snow-albedo
feedback to solar and greenhouse gas forcing on different time scales. In the inset:
their ratio as a function of αmax. For clarity, (a,b) are shown without noise. (c) The
susceptibilities for temperature as the observable (d) The ratio of albedo and temperature
susceptibilities and their ratio (RFS).

5.2.2. Results
In figure 7a the sensitivity of temperature to varying αamp is shown. No emergent

relationship is found for climate sensitivity, consistent with the prediction in the case
of constant albedo. In figure 7c the susceptibilities for the temperature observable are
shown. Although the match to the actual sensitivity in figure 7a is far from perfect, the
major features are represented: the peak αamp and the climate sensitivity. The seasonal
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sensitivity is represented less well. This poor correspondence can possibly be explained
by the fact that this system is not far from bistability, where linear response theory
breaks down. This is supported by the fact that the response to an unrealistically small
seasonal cycle and greenhouse gas forcing are represented well.

The emergent relationship of SAF is shown in figure 7b. In the warm regime (low
albedo, lower ’line’ in the figure), the SAF strength becomes larger for larger αamp.
The higher the maximum albedo, the steeper the logistic albedo function αr(T ). A
second effect also takes place: with higher maximum albedo it gets warmer. Consequently,
sensitivity of the albedo function is smaller. This decrease in sensitivity also takes place in
the cold regime: the colder it gets, the less sensitive the albedo gets. Considering that an
increasing αamp causes the SAF strength to decrease, this second mechanism dominates
in the cold regime.

(a) (b)

(c) (d)

(e) (f)

Figure 8: (a) Eigenvalues of the EBM depending on the amplitude of the albedo function
for the simple EBM (b) and the extended EBM. (c) Albedo projection terms for
solar forcing (αl) as defined in Equation 5.8 where the markers denote l (d) Same for
temperature βl (e,f) projections terms for GHG forcing γl and δl respectively.

The eigenvalues and projections of this system are shown in figure 8. The first nonzero
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eigenvalues are smaller than the forcing frequency, which means that the system has
no time to fully respond to the seasonal forcing. Apparently, the SAF in the final part
of the response scales with SAF on the seasonal scale, so that a linear relationship is
still found. The projections reflect the features of the response reasonably: firstly, the
albedo projection is negative while the temperature projections are all positive. This is
to be expected from the fact that with increasing GHG concentration or solar forcing the
albedo should decrease while the temperature should increase. Secondly the susceptibility
to solar forcing is smaller than to greenhouse gas forcing, especially for large αamp. In
the latter case the average albedo is larger so the forcing term (1 − α(T ))F (t) becomes
smaller, which becomes apparent when comparing figure 8c and 8e or figure 8d and 8f.

The diffusion term β in the generator was chosen somewhat arbitrarily. Changing this
parameter does not influence the eigenvalues of the simulation as expected from the
theory (Pavliotis 2014). While the projections of the eigenfunctions did change slightly,
the susceptibility ratio was not influenced significantly by a variation of the diffusion
(β ± 20%, not shown).

5.2.3. Extended EBM
In reality and in PlaSim, snow does not react instantaneously to a temperature change.

In this part we examine to what extent the spectrum and projections of the energy balance
change when adding a separate equation for snow and ice, in which albedo relaxes towards
the logistic albedo reference function αr(T ) given in equation 5.5 in a few weeks, a typical
value for the reaction time of snow (Hall & Qu 2006).

dT =
1

cT

(
Q(1− αr) +A ln

C

Cref
+G− εσT 4

)
dt+

√
2β−1

T dWt,

dα = − 1

csnow
(α− αr(T )) dt+

√
2β−1

α dWt.

(5.9)

Here csnow is a constant indicating the response time of the albedo. The drift term in the
Fokker-Planck equation corresponding to equation 5.9 is not the gradient of a potential
and therefore the system might not be reversible. Using the findings in subsection 3.4,
we notice that the eigenvalues of the system can still be computed in the same fashion
as for reversible systems.

Extending the model with an explicit albedo function does not change the dynamics
of the system significantly, nor the eigenvalues and eigenvectors. Figure 8b shows the
eigenvalues of the extended EBM to be almost exactly equal to the eigenvalues of the
nonextended model, the complex part continuing to be zero. The projections, naively
calculated without taking the adjoint into account, are very similar as well (not shown).
Thus, the inclusion of a smaller time scale does not improve the prediction of the response.

6. Summary, discussion and conclusion
In this paper we have proposed a classification for the different kinds of emergent

constraints. The primary dividing characteristic is the process under consideration, which
can be a sensitivity to a forcing (type I), a mean state (type II) or a feedback strength
(type III). A second criterion of our classification is whether the predictor and predictand
are the same quantity. If not, there should be a sufficiently strong link between the two
variables. For a weak link, an emergent relationship might still be found in simplified
climate models, but it is a question whether this relationship is strong enough to overcome
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other influences that invariably exist in GCMs. Any (linear) relationship should thus be
eyed with suspicion if the link or physical basis is too weak.

With the help of linear response theory and the spectral characteristics of the Fokker-
Planck operator and its corresponding generator, we derived expressions for conditions
of the different types of emergent constraints in terms of eigenvalues and two projections;
firstly the projection of the observable on the eigenfunctions of the generator and secondly
the projection of the forcing field on the eigenfunctions. The expressions were derived
for gradient systems and then extended to irreversible (hypoelliptic) systems, where the
observables were projected on the eigenfunctions of the adjoint of the generator instead
of on the eigenfunctions of the generator itself.

For a type I emergent constraint, the derived condition states that the ratio of
susceptibilities at the two frequencies under consideration should be constant over the
ensemble, specifically a positive constant for type I-s. Type II emergent constraint are
encountered when a linear relationship is found between the expectation value of the
observable and the susceptibility at the frequency of the change. Finally, a type III
emergent constraint has a condition posed, not on the ratio of susceptibilities of one
observable, but on the ratio of the ratio between the susceptibilities of the two observables
that make up the feedback in the system.

Two applications of framework of conditions were examined. Firstly, it was tested on
an Ornstein-Uhlenbeck system in one and two dimensions. No linear relationship was
found in 1D, and indeed the condition in terms of the susceptibility ratio for type I-s was
not met. In the 2D case a linear relationship was found, a type I-d emergent constraint.
The relationship was only present for a weak coupling between the two dimensions. The
condition for an emergent constraint type I-d was indeed met.

We continued by applying the framework to the snow-albedo feedback as found in a
multi-model ensemble by Hall & Qu (2006), a type III emergent constraint. First, it was
shown that this emergent constraint in the SAF could at least in part be reproduced by
an ensemble generated with a varying parameter in the intermediate complexity climate
model of PlaSim. From this, we continued with a modified Energy Balance Model, in
which the albedo is a function of temperature. The ratio of the feedback strengths at two
different time scales, as measured by a ratio of susceptibilities for the two observables,
did indeed deviate from a constant in the domain for which no emergent relationship was
found. Incorporating the snow response by a relaxation towards the albedo function of the
first model did not change the outcome of the calculation of susceptibilities. In contrast
to the OU process, the eigenvalues did turn out to be the determining factor, possibly
due to the fact that a feedback can be measured almost instanteneously compared to
the timescales involved. Instead, the projections varied substantially over the parameter
domain.

Further generalizations of our framework to for instance GCMs prove difficult. Firstly,
the system is not hypoelliptic anymore; the noise does not spread to all dimensions of
the system. As a consequence, the system has a (strange) attractor with dimensionality
lower than the full phase space. The invariant measure supported on this attractor is
not continuous anymore with respect to the Lebesgue measure. By invoking the Chaotic
Hypothesis we assume that the system possesses a Sinai-Ruelle-Bowen (SRB) invariant
measure which guarantees (1) the asympotitc equivalence of time and ensemble averages
and (2) the stability of the statistical properties to a weak stochastic forcing, for coarse-
grained observables (e.g. regionally or globally integrated variables) (Ragone et al. 2016;
Tantet et al. submitted for publication.). As in Ragone et al. (2016) we assume that the
Chaotic Hypothesis allows using Ruelle’s Response theory.

With the use of Ruelle’s Response theory, a susceptibility can be defined as the Fourier
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transform of the response function. Numerically, it is rather straightforward to compute
the response function by exploiting the properties of the convolution in the equation
for the response. Applying the force in the form of Dirac delta function or a Heaviside
function allows to compute the response functions as the response in a certain observable
and the derivative of the response respectively. Even so, a relatively large ensemble should
be taken to guarantee reliability of the method (Ragone et al. 2016).

Analytically, the susceptibility cannot be expressed in terms of eigenfunctions and
eigenvalues for systems with a SRB measure, as far as we know. Further examination of
the link between the eigenfunctions of eigenvalues of the system could still be of interest
in the analysis of emergent constraints though. To what extent are the same features
found for simple models compared to high-dimensional models in terms of eigenvalues
with a typical value larger than the frequency of the forcing and how do projections on
eigenfunctions change between the different models?

In a complex high-dimensional dynamical system eigenfunctions and eigenvalues can be
accessed with the help of transfer operators. The eigenfunctions that lie on the invariant
measure are then computed by making use of the ergodic nature of the climate system.
To overcome the burden of high-dimensionality, a reduced transfer operator can be
computed on a very long simulation, from which the eigenfunctions on the attractor are
approximated (Tantet 2016). However, computing the eigenvalues in the full phase space
is prohibitively computationally expensive. A forcing on the system does not generally
lie only on the attractor and should be split into a part parallel and perpendicular
to the attractor. Consequently, the eigenvectors off the attractor cannot a priori be
ignored (Lucarini & Sarno 2011). Gritsun & Lucarini (2017) showed that indeed for
some geophysical systems, specifically quasi-geostrophic flow with orographic forcing,
the fluctuation-dissipation theorem is violated and the response has no resemblance to
the unforced variability in the same range of spatial and temporal scales.

The classification of emergent constraints given above gives a hint to which kind of
emergent constraints one can look out for. Using the susceptibilities to find new emergent
constraints however does not seem to have an advantage above directly looking for
plausible correlations. An attempt to directly find an emergent constraint for climate
sensitivity by data mining in a CMIP5 ensemble proved fruitless however (Caldwell et al.
2014). Susceptibilities might provide additional information on the emergent constraint.
For example, when a susceptibility shows a resonance at a certain frequency over the
ensemble, this could suggest that the same feedback is present in all simulations.

To conclude, in this paper a classification for emergent constraints was laid out with
three different primary types. We successfully derived a set of conditions for the different
types of emergent constraints. The eigenvalue spectrum can in some special cases indicate
whether an emergent constraint is present, but often more information of the system is
needed. By using transfer operators and Ruelle’s Response theory, application to GCMs
seems possible, but is far from straightforward.
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