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Abstract

Active particles swim by themselves and are not in equilibrium on a local scale. We
characterize the self propulsion speed with the dimensionless Peclet number Pe =√

3v0/
√
DtDr, which is the relative importance of the self propulsion speed v0 with

respect to the translational and rotational diffusion with diffusion coefficients Dt and
Dr respectively. In this thesis we consider N identical active Brownian particles in a
viscous fluid such that their motion is overdamped and given by the Langevin equations.
We assume that the interaction potential between the particles is isotropic.

We derive the corresponding Fokker-Planck equation. From here we derive a
hierarchy similar to the so-called BBGKY hierarchy, which is an equation for a n-
particle distribution function in terms of the (n + 1)-particle distribution function
forming a coupled chain of equations. To obtain numerical stability, we derive in the
equation for the density that the repulsions can be viewed as an excluded volume
contribution and an additional term for an anisotropic correlation function. We show
that this equation agrees with density functional theory in equilibrium.

If we assume no correlations and a Van der Waals fluid without self propulsion,
we find numerical agreement with the normal gas-liquid binodal obtained from the
conditions of equal temperature, chemical potential and pressure. When we include a
small self propulsion speed to this model, we find the critical temperature decreases.

We show in a stability analysis that it is unlikely to find spontaneous motility
induced phase separation (MIPS), if we assume the correlation function to be isotropic.

For active particles with a potential that is isotropic, the correlation function is
found to be anisotropic. In the low-density limit in two dimensions, we were able
to calculate the 2-particle correlation function. We demonstrated this for a Weeks-
Chandler-Anderson (WCA) potential. We show that our results obtained from the
numerical evaluation of the F-P equation agree with results of simulating the equations
of motion of 1020 particles. Our results are far more accurate; we were able to
determine the asymptotic decay. For low self propulsion speeds (Pe < 1), we derived
the correlation length to be ξ0 =

√
2Dt/Dr =

√
2/3σ where σ is the particle diameter

and the numerical results agree with this analytic result.



vi

For ideal active particles near a (hard) wall with low self propulsion speeds (Pe < 1),
we derived the correlation length to be ξ =

√
Dt/Dr =

√
1/3σ. Numerical calculations

agree with this analytic result.
We conclude that the correlation length corresponding to the correlation function

of two active particles deviates by a factor
√

2 of the correlation length corresponding
to an active particle near a wall. This deviates from the universal correlation length in
equilibrium without self propulsion as shown by Carvalho and Evans (1994) using a
pole structure analysis. We can explain our factor

√
2. However, we did not compare

our derivation from the F-P equation with their pole analysis.
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Chapter 1

Introduction

1.1 Active Matter

This thesis is about the statistical physics of active matter systems. These systems
contain many (colloidal) particles in a viscous fluid. We call a system active when
the particles have some kind of self propulsion; the particles swim by themselves. An
intuitive example is a system of bacteria with a tail used to swim. Another example is
a system of colloidal Janus particles; these are colloidal spherical particles with some
coating on one hemisphere that acts as a catalyst for a chemical reaction and gives
rise to a force. Systems of living animals like schools of fish, flocks of birds or ant
colonies, can also be considered active. Active systems are not in equilibrium, because
individual particles have some self propulsion and therefore (kinetic) energy is added1

to the system. Thus the laws of thermodynamics derived in equilibrium are no longer
valid.

In this thesis, we consider a class of systems of colloidal particles in a viscous fluid,
such that their motion is overdamped; the momenta can be neglected. The particles
in the systems have some self propulsive force. The origin of the self propulsion force
will not be considered in this thesis. Our goal in this thesis is to find the distribution
functions of the system, either the one-body distribution function in an inhomogeneous
system or the two body correlation function in a homogeneous system. From this we
hope to observe the gas-liquid coexistence as in equilibrium. We also hoped to find
a new coexistence, so-called motility-induced phase separation (MIPS). This MIPS
are caused by the self propulsion, a local high density phase occurs when particles
collide and keep swimming into each other. Some work on simulations of thousands

1Of course energy is conserved. This energy was first stored as chemical energy, but was not
accessible.
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of particles exists [11], in which the equations of motion are solved for the individual
particles. In this thesis, the equations of motion are used to derive the Fokker-Planck
equation; this equation is a continuity equation for the densities. When we find a
stable inhomogeneous density profile, we have found phase separation.

In this introduction we recapitulate equilibrium results. Also, we give a qualitative
description and intuitive explanation of the changes when the system becomes active.

1.2 Phase Coexistence

Matter can exist in different phases like solid, liquid or gas. Matter in equilibrium can
phase separate under some conditions to minimize the Helmholtz free energy F (N, V, T )
as a function of the number of particles N , the volume V and the temperature T .
Two examples of phase separation are ice cubes (solid) in water (liquid) and steam
(gas) in contact with boiling water (liquid); different phases can coexist simultaneously.
When phase coexistence occurs, the different phases have the same chemical potential
µ, pressure p and temperature T , given by

µl = µg =
(
∂F (N, V, T )

∂N

)
N∗
, pl = pg = −

(
∂F (N, V, T )

∂V

)
V ∗
, Tl = Tg, (1.1)

where the subscripts denote the phase.

A Single Component Van der Waals Gas in Equilibrium

One of the simplest theories for the liquid-gas phase coexistence is due to Van der Waals.
A Van der Waals gas is a fluid with both attractions and repulsions. The repulsions
and attractions are treated differently; the repulsions are treated as some effective
excluded volume and the attractions are treated in the mean field approximation; there
are no correlations.

The Helmholtz free energy of a Van der Waals gas of N particles in a volume V
at temperature T in equilibrium in D dimensions is FVdW = NkBT

(
log NΛD

V−bN − 1
)

−
aN2/V , where b corresponds to the excluded volume between a pair of particles and a
characterizes the attractions. From Equation 1.1 the pressure p and chemical potential
µ as a function of density of a liquid ρ = ρl or the density of a gas ρ = ρg can be
obtained as:

p = kBTρ

1 − bρ
− aρ2, µ = bkBTρ

1 − bρ
+ kBT log ρΛD

1 − bρ
− 2aρ. (1.2)
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From the equality of pressures pg = pl in the gas and liquid phase, we obtain

ρl = 1 − bρg
2b +

√
a(1 − bρg)(1 + bρg)2 − 4bkBT

2b
√
a
√

1 − bρg
. (1.3)

Using this and pl = pg, we can obtain the numerical value for the gas density ρg and
liquid density ρl at given T , b and as provide T < Tc the critical temperature. These
equations can also be solved to yield a transcendental equation for ρl and ρg as in [7].
The critical temperature and density can be determined by solving (∂p

∂ρ
)T=Tc = 0 and

(∂2p
∂ρ2 )T=Tc = 0, which results [14, Eq 4.68] in

ρc = 1
3b, kBTc = 8a

27b. (1.4)

Above the critical temperature, the system will not separate in a low density phase
and a high density phase. We name this a fluid phase; the gas cannot be distinguished
from the liquid. Note that Tc = 0 in absence of any attractions, a = 0. This implies
that any finite T satisfies T > Tc and hence no gas-liquid phase coexistence is possible
in absence of attractions.

Effects of Activity in Phase Coexistence

Phase separation has been observed in simulations the equations of motion (EOM) for
individual particles, for example in [11]; here the EOM are solved for thousands of
active particles. This has been done in equilibrium and also in active matter systems.
Two features arise in active matter systems compared to matter in equilibrium.

Fig. 1.1 We show an intuitive illustration of the destruction of the normal liquid-gas
coexistence for active particles. The particles have short ranged repulsions and long
ranged attractions. We observe 6 particles in the liquid phase and two in the gas
phase. Particles in the interface point towards the low density phase; they cannot
swim away as long as the attractions are stronger than the self propulsion. Particles in
the interface pointing towards the high density phase will (slowly) swim towards the
center.
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The first feature is that in an active matter system with a gas-liquid coexistence,
the critical temperature decreases and the density difference between the gas and
liquid reduces or even vanishes [12]; the gas-liquid coexistence can break down into
a homogeneous fluid phase. This breakdown can happen when the self propulsion is
large enough compared to the attractions; the self propulsion rips the liquid phase
apart. The self propulsion increases effectively the (kinetic) energy per active particle;
this can be interpreted as an effective increase in temperature. An illustration of this
liquid-gas coexistence is given in Figure 1.1, where particles on the interface point
away from the high density phase; particles pointing towards the high density phase
will swim (slowly) to the center, while particles pointing towards the low density phase
cannot swim away as long as the attractions are stronger than the self propulsion. The
breakdown of the phase coexistence occurs when the self propulsions are stronger than
the attractions.

The second feature is that in an active matter system without any attractions,
phase separation can be observed [12],[11]. A similar system without self propulsion in
equilibrium does not phase separate. This new phase coexistence even occurs when
the active particles only have repulsions. This phase separation can be explained by
the ‘sticking’ of particles that swim towards each other. Particles collide and pile
up; they cannot move away due to their self propulsion. The particles are unable to
pass through each other. The density becomes non uniform and this phase separation
is called motility-induced phase separation (MIPS). An illustration of this MIPS is
given in Figure 1.2, where particles on the interface point towards the high density
phase; particles that point away from the high density phase swim away instantly,
while particles pointing towards the high density phase are blocked by other particles.

Fig. 1.2 We show an intuitive illustration of the forming of MIPS. The particles are
purely repulsive, there are no attractions. We see 6 particles ‘stick’ together and
form a high density phase, while two particles are in the low density phase. Particles
in the interface point towards the high density phase, otherwise they swim away
instantaneously.

Although the density profile of MIPS (Figure 1.2) is similar to the normal gas-liquid
phase separation (Figure 1.1), the polarization and the mechanism are completely
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different. We need to include the orientations in the density profile. We introduce
the one-particle distribution function ψ(1)(r,θ) as a function of position vector r and
orientation vector of angles θ, where we defined the orientation of a particle by the
direction of the self propulsion, not necessarily the direction of motion. The total
density distribution is obtained from ψ(1) if we integrate the orientation dependence,
i.e.

ρ(r) =
∫

dθψ(1)(r,θ), (1.5)

and the polarization is defined as

Pk(r) =
∫

dθψ(1)(r,θ) cos θk
ρ(r) , (1.6)

where θk is the projection of the orientation angle to the kth Cartesian component.
In two dimensions near a wall we only consider P (r) = P1(r), θ1 = θ and possibly
θ2 = θ + π/2.

1.3 The Two-Body Correlation Function

One of the forces on interacting particles is the two-body force; the force between two
particles. In a continuum description, the two-body force becomes an internal force.
The internal force is the integral over the two-body force multiplied by the two-body
distribution ψ(2)(r1,θ1, r2,θ2, t). The two-body distribution function is defined as the
probability of finding one particle at position r2 and orientation θ2 and simultaneously
another particle at position r1 and orientation θ1. Normalizing ψ(2) with the local
densities at the same positions and time t to obtain the two-body correlation function
g(2)

ψ(2)(r1,θ1, r2,θ2, t) = ψ(1)(r1,θ1, t)ψ(1)(r2,θ2, t)g(2)(r1,θ1, r2,θ2, t). (1.7)

In a homogeneous system the two-body correlation function does not depend on the
absolute position; it only depends on the distance vector r12 = r2 − r1.
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Without self propulsion

Some approximations of the two-body correlation function in equilibrium are

g(2)(r1,θ1, r2,θ2) =1 Mean field, (1.8a)
g(2)(r1,θ1, r2,θ2) = exp[−βΦ12(r12)] Low density limit, (1.8b)
g(2)(r1,θ1, r2,θ2) =g(2)(|r12|) Isotropic fluid, (1.8c)

where Φ12(r12) is the two particle potential. In the mean field approximation inter-
actions are included, though the correlations are neglected as in Equation 1.8a. A
low density approximation is given in Equation 1.8b; intuitively, this approximation
is the Boltzmann weight of the pair potential Φ12 between the two particles. This
approximation includes correlations up to the 2nd Virial expansion. In a homogeneous
density fluid without spontaneous symmetry breaking, the correlation function of
isotropic particles only depends on the absolute distance, see Equation 1.8c.

(a) At low density, particles with self propul-
sion close to each other, will likely point to-
wards each other. Particles pointing away
from each other will instantaneously swim
away.

(b) At high density, particles with self propul-
sion can point in all directions, two particles
cannot swim away from each other; they are
blocked by the other particles.

Fig. 1.3 Illustration of the correlation function of passive particles and active particles
at low and high density. The arrows represent the orientation of the particles.

With self propulsion at low densities

At low densities, particles that swim by themselves, can ‘stick’ together, even if they
are purely repulsive. This can be explained by considering two particles (very low
density) that each have a self propulsion force and a repulsive force between them.
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If the particles have an orientation such that the self propulsion makes them swim
towards each other, they can collide. The repulsion keeps them from passing through
each other while the self propulsion keeps them together; they ‘stick’ together. An
illustration of this ‘sticking’ is in Figure 1.3a. Of course, due to rotational Brownian
forces/diffusion, the orientation of the particles changes over time. However, this
diffusion contributes on longer time scales. When they no longer point towards each
other, they swim away instantaneously and no longer ‘stick’. This effect will cause the
two-body correlation function to be orientation dependent. Particles close together
will likely swim towards each another.

With self propulsion at high densities

The low-density effect of particles, that likely point towards each other, is damped
at high densities. Consider a particle at a high density. Everywhere around this
particle, there are other particles nearby as is illustrated in Figure 1.3b, independent
of their orientations. A pair of particles that points away from each other cannot swim
away, since other particles present block them. The orientation distribution becomes
isotropic2 in a bulk high density phase, caused by diffusion in the orientation phase
space.

1.4 Outline

In Chapter 2 we introduce the equations of motion and we derive the Fokker-Plank
equation. We also derive a hierarchy similar to the BBKGY hierarchy. The equations
derived in this chapter are the base of the rest of this thesis.

In Chapter 3 the asymptotic decay of the 2-particle correlation function and 1-
particle distribution function are derived from the F-P equation. For small Peclet
numbers we can determine the correlation lengths. For large Peclet numbers our results
are inconclusive.

In Chapter 4 we consider a perturbation to a homogeneous density distribution
and determine, using the F-P equation, if there exists an unstable perturbative mode.
With this we can exclude the possibility of spontaneous phase separation.

In Chapter 5 we will show the results obtained from numerical evaluations of the F-P
equation. We determine the gas-liquid binodal in equilibrium and out-of-equilibrium.

2For particles with a potential that is isotropic.
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We compare the correlation function to simulations, and we determine the asymptotic
decay and the correlation length.

In Chapter 6 we summarize our results and draw our conclusions. The most
significant conclusion is that the correlation length is no longer universal, unlike
equilibrium.

In Chapter 7 we give an outlook.
In Appendix A most derivations required in Chapter 2 are presented.
In Appendix B we give a very brief introduction to finite element methods and

the Rutta-Kunga method. These are methods to determine a numerical solution to a
partial differential equation, which is either a boundary value problem or an initial
value problem.



Chapter 2

The Fokker-Planck Equation

In this chapter the Fokker-Planck equation is derived for an overdamped system of N
active particles. Starting with the equations of motion in Section 2.1, which comprise
a system of stochastic differential equations (SDE), partial differential equations
(PDE) for the N -particle distribution ψ[N ](rN ,θN , t) are obtained in Section 2.2. In
Section 2.3 the phase space is reduced to obtain a PDE for the n-particle distribution
ψ(n)(rn,θn, t) for n < N which depends in a hierarchical fashion on ψ(n+1). The
PDE for the orientation dependent 1-particle distribution function ψ(1) is simplified in
Section 2.4, which depends on the 2-particle distribution function ψ(2). The repulsions
are treated as an excluded volume. A closure relation for ψ(2) is given in Section 2.5,
where we use the local density approximation at low densities.

2.1 The Equations of Motion

Consider a many body problem with N active Brownian particles (ABP) that are
overdamped in a solvent with positions {ri}i≤N and orientations {θi}i≤N , as illustrated
in Figure 2.1. We assume the particles have some self propulsion force, i.e. due to
some chemical reaction; they swim by themselves. The orientation direction of the
particle is defined as the direction of the self propulsion force, not necessarily the same
as the direction of movement. We denote vectors in bold and the distance vector from
particle i to particle j by rj − ri = rij. Further, if a function depends on both the
position ri as the orientation θi of particle i, the shorthand notation for the argument
(i) = (ri,θi) is used sometimes.

The class of equations of motion described in this thesis is quite general. Included
are translational and rotational Brownian forces, translational and rotational drag,
external forces F ext and torques Γext and some self propulsion in the direction of
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Fig. 2.1 Illustration of the particles and the coordinate system. The solid arrows
within the particles indicate the direction of the self propulsive force. The gray points
represent the solvent molecules.

the particle orientation with a speed v0. For interacting particles, internal two-body
forces1 F ij and two-body torques Γij between particle i and j are also included. The
interactions depend on the distance and possibly the relative orientations. Abusing
notation, define F ij ≡ 0 and Γij ≡ 0 if i = j. The forces due to the solvent are simplified
to a drag force and Brownian noise force; we do not include the full hydrodynamics of
the solvent2.

The equations of motion (EOM) are given by the Langevin equations. The momen-
tum can be neglected in an overdamped system, i.e. ✟

✟✟✟M ∂2ri

∂t2
= −γt ∂ri

∂t
+ F other(rN ,θN )

and
✚
✚
✚

I ∂
2θi

∂t2
= −γr ∂θi

∂t
+ Γother(rN ,θN ), where M is the mass, I is the moment of inertia,

γt the translational drag coefficient and γr rotational drag coefficients. Separating the
drag term, which is the only term proportional to a first order time derivative, we

1Later we will treat the short-ranged forces as an excluded volume and only keep the long ranged
forces. A density functional theory of a Van der Waals gas will give the same result in equilibrium.

2A 3 dimensional system that is between two parallel walls where the distance between the walls
is of the order of the particle size is effectively 2 dimensional. In this 2 dimensional system we can
neglect the hydrodynamics, since the momentum of the solvent can leak away into these walls. The
momentum of the solvent cannot leak away in a 3 dimensions bulk system without walls. We do not
consider the question whether this approximation is also valid in 3 dimensions, we just assume this
model without hydrodynamics.
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obtain

∂ri
∂t

= v0e(θi)︸ ︷︷ ︸
Self propulsive force

+ Dt

kBT
F ext(ri,θi, t)︸ ︷︷ ︸

External force

+ Dt

kBT

∑
j

F ij(rij, t)︸ ︷︷ ︸
two-body force

+
√

2Dt ηi(t)︸ ︷︷ ︸
Brownian

, (2.1a)

∂θi
∂t

= Dr

kBT
Γext(ri,θi, t)︸ ︷︷ ︸

External torque

+ Dr

kBT

∑
j

Γij(rij,θi,θj, t)︸ ︷︷ ︸
Internal torque

+
√

2Dr ξi(t)︸ ︷︷ ︸
Brownian

. (2.1b)

Here kB is the Boltzmann factor, T is the temperature. We defined the diffusion
coefficients Dt = kBT/γt and Dr = kBT/γr. The Brownian noises

√
2Dtη and

√
2Drξ

are due to stochastic forces with a Gaussian distribution3 with zero mean and satisfying〈
η

(l)
i (t)η(k)

j (t′)
〉

= δijδklδ(t − t′) and
〈
ξ

(l)
i (t)ξ(k)

j (t′)
〉

= δijδklδ(t − t′), with k and l

denoting the Cartesian component of the vector [11].
We introduce the unit of length x0 =

√
Dt/Dr, unit of time t0 = 1/Dr and

unit of energy kBT . To make the differential equation dimensionless we replace
t → t/t0, rj → rj/x0, F ext → x0F ext

kBT
, F ij → x0F ij

kBT
, Γext → Γext

kBT
and Γij → Γij

kBT
.

We denote the dimensionless self propulsion speed by the so-called Peclet number
Pe =

√
1/3v0t0

x0
=

√
3 v0√

DtDr
, such that the EOM become

∂ri
∂t

=
√

3 Pe e(θi) + F ext(ri,θi, t) +
∑
j

F ij(rij, t) +
√

2 ηi(t), (2.2a)

∂θi
∂t

=Γext(ri,θi, t) +
∑
j

Γij(rij,θi,θj, t) +
√

2 ξi(t). (2.2b)

2.2 The Fokker-Planck Equation for all N Particles

The EOM (2.2) give the trajectories (ri(t),θi(t)) in time for all particles i. The
corresponding Fokker-Planck (F-P) equation is an equation which gives the evolu-
tion in time of the N -particle distribution ψ(N), where the N -particle distribution
ψ(N)({ri,θi}i≤N , t) gives the probability of finding N particles simultaneously at posi-

3The rotational Brownian force is small and therefore the distribution can be approximated as
Gaussian.
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tions {ri,θi}i≤N at time t. The corresponding F-P equation is given by:

∂tψ
[N ](rN ,θN , t) = (2.3)

−
N∑
j=1

∇rj
·
[
vj(rN ,θN , t)ψ[N ](rN ,θN , t) −Dt∇rj

ψ[N ](rN ,θN , t)
]

−
N∑
j=1

∇θj
·
[
ωj(rN ,θN , t)ψ[N ](rN ,θN , t) −Dr∇θj

ψ[N ](rN ,θN , t)
]
,

which is essentially a continuity equation for the phase space (rN ,θN). Here vj and
ωj are the drift terms in the EOM

vj =
√

3 Pe e(θi) + F ext(ri,θi, t) +
∑
j

F ij(rij, t), (2.4a)

ωj =Γext(ri,θi, t) +
∑
j

Γij(rij,θi,θj, t). (2.4b)

A motivation for expressions 2.3 and 2.4 is given in Appendix A.1.

2.3 Reduction of the Phase Space to the n-Particle
Distribution Function

Define the reduced phase space distribution function ψ(n)(rn,θn, t), which is the
probability of finding n particles at positions rn with orientation θn at time t. This
distribution is the integral over all possible configurations of the N − n other particles
up to some permutation factor and is defined as

ψ(n)(rn,θn, t) = N !
(N − n)!

∫
drN−n

∫
dθN−nψ[N ](rN ,θN , t). (2.5)
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Inserting Equation 2.5 into Equation 2.3 gives the time evolution of ψ(n)(rn,θn, t)
given by

∂ψ(n)

∂t
= −

n∑
j=1

∇rj
·
[√

3 Pe e(θj)ψ(n) + F extψ(n) +
n∑
i=1
F ijψ

(n) − ∇rj
ψ(n)

]
(2.6)

−
n∑
j=1

∇θj
·
[
Γextψ(n) +

n∑
i=1

Γijψ
(n) − ∇θj

ψ(n)
]

−
n∑
j=1

∇rj
·
∫∫

drn+1 dθn+1

[
F j,n+1ψ

(n+1)
]

−
n∑
j=1

∇θj
·
∫∫

drn+1 dθn+1

[
Γj,n+1ψ

(n+1)
]
.

We derived this hierarchic equation in Appendix A.2. This derivation and result are
similar to the Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy (BBGKY hierarchy)
[1]. In contrast to the standard BBGKY hierarchy, we started without momenta and
included orientations.

2.4 The 1-Particle Density Function

In the case n = 1, denote r1 = r and θ1 = θ, we obtain a PDE for ψ(1)(r,θ, t) given
by

∂ψ(1)

∂t
= − ∇r ·

[√
3 Pe e(θ)ψ(1) + F extψ(1) − ∇rψ

(1)
]

(2.7)

− ∇θ ·
[
Γextψ(1) − ∇θψ

(1)
]

− ∇r ·
∫∫

dr′ dθ′
[
F 12ψ

(2)
]

− ∇θ ·
∫∫

dr′ dθ′
[
Γ12ψ

(2)
]
,

where F12 = F12(r − r′), Γ12 = Γ12(r − r′) and we still need a closure relation for
ψ(2) = ψ(2)(r,θ, r′,θ′, t). A possible closure relation will be given in Section 2.5.

Fig. 2.2 Illustration of splitting the pair potential up in a short ranged and long ranged
part. We will derive the short ranged interactions as an excluded volume.
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The two-body force can be denoted as minus the gradient of a pair potential
F 12(∆r) = −∇Φ12(∆r). Split the pair potential up in Φ12 = Φshort

12 +Φlong
12 as the sum

potential due to the short ranged repulsions Φshort
12 and long ranged interactions Φlong

12 ,
see also Figure 2.2. An excluded volume approximation can be derived to obtain a more
convenient expression for

∫∫
dr2 dθ2F

short
1,2 ψ(2). In Appendix A.3 this excluded volume

approximation in equilibrium is derived in a density functional theory (DFT) framework
for comparison. In Appendix A.4 a generalization for particles with self propulsion
is derived from the Fokker-Planck equation. We find an effective enhancement of the
diffusion due to the hard core interactions for nonzero density differences and also
corrections due to the anisotropy of the correlation function. We obtain

∂ψ(1)

∂t
= − ∇r ·

[√
3 Pe e(θ)ψ(1)

︸ ︷︷ ︸
Self propulsion

+F extψ(1)

︸ ︷︷ ︸
Ext. force

− ∇rψ
(1)

(1 − bρ)2︸ ︷︷ ︸
Eff. enhanced diffusion

]
(2.8)

− ∇θ ·
[

Γextψ(1)︸ ︷︷ ︸
Ext. torque

− ∇θψ
(1)︸ ︷︷ ︸

Rot. diffusion

]

− ∇r ·
∫∫

dr′ dθ′
[
F long

12 ψ(2)
]

︸ ︷︷ ︸
Internal long-ranged forces

−∇θ ·
∫∫

dr′ dθ′
[
Γ12ψ

(2)
]

︸ ︷︷ ︸
Internal torques

− ∇r · ψ(1)
∫

dθ′
∫
B(r,σHS)

dr′ ∇r′−r
(
ψ(1)(r′,θ′, t)(u(2) − 1)

)
︸ ︷︷ ︸

Eff. force due to anisotropy of g(2)

,

where ψ(1) = ψ(1)(r,θ, t) unless other arguments are denoted, B(r, σ) is a sphere
with center r and radius σ, 2b = 2BHS

2 is the excluded volume of hard spheres,
ρ(r, t) =

∫
dθ′ψ(1)(r,θ′, t) is the local total density and we define the correlation

function g(2) and the cavity correlation function u(2) as

ψ(2)(r,θ, r′,θ′, t) =ψ(1)(r,θ, t)ψ(1)(r′,θ′, t)g(2)(r,θ, r′,θ′, t), (2.9a)
g(2)(r,θ, r′,θ′, t) = exp [−βΦ1,2(r − r′)]u(2)(r,θ, r′,θ′, t). (2.9b)

At low densities in equilibrium, g(2) = exp [−βΦ1,2(r − r′)], so u(2) = 1. So u(2)

gives high density corrections and corrections due to the self propulsion. In bulk in
equilibrium we have

∫
B(r1,σHS) dr′∇r′−r

(
ψ(1)(r′,θ′, t)(u(2) − 1)

)
≡ 0 due to rotational

invariance. In bulk with a low density in equilibrium we have the stronger condition
u(2) ≡ 1.
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2.5 The Closure: The Two-Body Correlation Func-
tion

A closure relation is needed for the two-body correlation function g(2). We use the local
density approximation and assume the absence of internal torques. Then we derive
a PDE for the two-body correlation function g(2)(r12,θ1,θ2) in Appendix A.5 from
Equation 2.6 and we obtain

0 = ∂g(2)

∂t
= − ∇r12 ·

[√
3 Pe (e(θ2) − e(θ1)) g(2)

︸ ︷︷ ︸
Self propulsion

+ 2F 12g
(2)

︸ ︷︷ ︸
Direct interactions

− 2∇r12g
(2)

︸ ︷︷ ︸
Diffusion

(2.10)

+
∫∫

dr3 dθ3(F 23 − F 13)
ψ(3)

(ρ)2︸ ︷︷ ︸
Three-body correlations

]
+ ∇2

θ1g
(2) + ∇2

θ2g
(2)

︸ ︷︷ ︸
Rotational Diffusion

.

In the low-density limit the inequality ψ(3) ≪ (ψ(1))2 holds and hence the three-body
correlations on ψ(3) can be neglected. In 2 dimensions with rotational invariance, the
correlation function g(2)(r, θ1 − φ, θ2 − φ) only depends on the absolute distance r and
relative orientations θ1 → θ1 − φ and θ2 → θ2 − φ. Then the PDE for g(2)(r, θ1, θ2) in
relative coordinates becomes closed. It is simplified in Appendix A.6 and given by

∂g(2)

∂t
= −

[
∂

∂r

(√
3 Pe (cos θ2 − cos θ1) g(2) + 2F12g

(2) − 2∂rg(2)
)

(2.11)

+ 1
r

(
2F12g

(2) − 2∂rg(2)
) ]

+ ∂2
θ1g

(2) + ∂2
θ2g

(2)

+
(√

3 Pe
r

(sin θ2 − sin θ1)
(
∂θ1g

(2) + ∂θ2g
(2)
)

+ 2
r2 (∂θ1 + ∂θ2)2 g(2)

)
.

In this low density limit this equation is linear in g(2). In Figure 2.3 an illustration
is given of the relative coordinate system. In the next chapter we will derive the
asymptotic behavior of Equation 2.11.
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Fig. 2.3 Illustration of the relative coordinate system in 2 dimensions. The arrows
within the particles indicate the direction of the self propulsive force.



Chapter 3

Analytic Expression for the
Correlation Length

In this chapter we will derive an analytic expression for the correlation length of
the two-body correlation function and the one-particle distribution near a wall. The
starting point will be Equations 2.7 and 2.11, where we are restricted to the zero
density limit in 2 dimensions. Consider only the steady state; the correlation function is
constant in time, so ∂g(2)

∂t
= 0 and g(2) = g(2)(r, θ1, θ2). We split the equation into terms

scaling with the Peclet number Pe and terms not scaling with Pe. For convenience,
multiply the equation by a factor r2/2 to obtain

0 =
√

3 Pe
2

[
− (cos θ2 − cos θ1) r2∂rg

(2) + r (sin θ2 − sin θ1)
(
∂θ1g

(2) + ∂θ2g
(2)
)]

(3.1)

+
(

1 + r2

2

)(
∂2
θ1g

(2) + ∂2
θ2g

(2)
)

− r∂r
(
r
(
F12(r)g(2) − ∂rg

(2)
))

+ 2∂θ1∂θ2g
(2).

3.1 General Expression for the Correlation Func-
tion at Distances Larger than the Range of the
Force

Next, we consider a Taylor expansion for small Pe and a Fourier expansion in θ1 and
θ2 at each distance r. In other words, we will substitute

g(2)(r, θ1, θ2) =
∑

m,n,p∈N0

Rpmn(r) Pep cos(mθ1) cos(nθ2) + Spmn(r) Pep sin(mθ1) sin(nθ2) (3.2)

+Tpmn(r) Pep cos(mθ1) sin(nθ2) + Upmn(r) Pep sin(mθ1) cos(nθ2)
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into Equation 3.1, where N0 = {0, 1, 2, ...} are the non negative integers including zero,
and where Rpmn(r), Spmn(r), Tpmn(r) and Upmn(r) denote expansion coefficients that
are to be determined. The result obtained holds for all (Pe, θ1, θ2), so independent
components are zero individually. First we define

F [X, p,m, n] =
√

3r2

4
[
X ′
p−mn−(r) +X ′

p−mn+(r) −X ′
p−m−n(r) −X ′

p−m+n(r) (3.3)

+ x(2)X ′
p−,m,1(r) − x(1)X ′

p−,1,n(r)
]

−
√

3r
4

[
n−Xp−mn−(r) − n+Xp−mn+(r) −m−Xp−m−n(r) +m+Xp−m+n(r)

]
,

where X ∈ {R, S, T, U} is shorthand notation, X ′ = ∂rX is a spatial derivative and the
notations m± = m± 1, n± = n± 1 and p− = p− 1 are used for the indices. Further, we
defined x(1) = 1 if m = 0 and X = R, T , we defined x(1) = −1 if m = 0 and X = S, U

and we defined x(1) = 0 if m ̸= 0. Similar, we defined x(2) = 1 if m = 0 and X = R,U ,
we defined x(2) = −1 if m = 0 and X = S, T and we defined x(2) = 0 if n ̸= 0.

We use Equation 3.3 and substitute Equation 3.2 into Equation 3.1 and conclude

F [R, p,m, n] = + 2mnS −
(
1 + 1

2r
2
)

(m2 + n2)R − r∂r (r (F12R − ∂rR)) , (3.4a)

F [S, p,m, n] = + 2mnR −
(
1 + 1

2r
2
)

(m2 + n2)S − r∂r (r (F12S − ∂rS)) , (3.4b)

F [T, p,m, n] = − 2mnU −
(
1 + 1

2r
2
)

(m2 + n2)T − r∂r (r (F12T − ∂rT )) , (3.4c)

F [U, p,m, n] = − 2mnT −
(
1 + 1

2r
2
)

(m2 + n2)U − r∂r (r (F12U − ∂rU)) . (3.4d)

This holds for all indices p, m and n. These indices are not explicitly denoted in
R = Rpmn(r), S = Spmn(r), T = Tpmn(r) and U = Upmn(r), since the indices within
the same equation are all the same. We notice all terms of F [X, p,m, n] are of order
p − 1 in Pe. For small Peclet numbers, we can therefore treat F [X, p,m, n] as the
inhomogeneous part of a partial differential equation. Consider first the low self
propulsion speeds, where we obtain the homogeneous equations; i.e. Pe → 0 and hence
F [X, p,m, n] → 0. We are left with 4 pairwise coupled partial differential equations,
for when (m,n) ̸= (0, 0) and the distance1 is large enough such that ∂rΦ12 ≡ 0. We

1For a WCA potential [15] at distance r > 21/6σ = 21/6√
3.
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obtain

Rpmn(r) = C+
pmnKα+

(
r

ξmn

)
+ C−

pmnKα−

(
r

ξmn

)
, (3.5a)

Spmn(r) = − C+
pmnKα+

(
r

ξmn

)
+ C−

pmnKα−

(
r

ξmn

)
, (3.5b)

Tpmn(r) = D+
pmnKα+

(
r

ξmn

)
+D−

pmnKα−

(
r

ξmn

)
, (3.5c)

Upmn(r) = D+
pmnKα+

(
r

ξmn

)
−D−

pmnKα−

(
r

ξmn

)
, (3.5d)

where ξmn =
√

2/(m2 + n2) is the correlation length in dimensionless units, it obtains
a maximum value for ξ0 := ξ01 = ξ10 =

√
2, which equals ξ0 =

√
2/3σ in terms of the

particle diameter σ, and C±
pmn and D±

pmn are integration constants. Further, Kα+ and
Kα− are the modified Bessel function which converge asymptotically independent of
the coefficient α± to Kα±(x) →

√
π/2e−x/

√
x. The diverging solutions, also modified

Bessel functions Iα±(x), are omitted since they are unphysical. The coefficients of the
Bessel functions are defined as α± =

√
m2 ± 2mn+ n2 = |m± n|.

Including Low Non-Zero Self Propulsion Speeds

The modes Rpmn(r), Spmn(r), Tpmn(r) and Upmn(r) with different indices couple if
we include non-zero self propulsion speeds. In this section we consider low non-zero
self propulsion speeds 0 < Pe < Pecrit. Numerical results will later show Pecrit ≈ 0.1.
Aside from the general solutions (Equation 3.5) obtained from the homogeneous PDE,
also particular solutions for the inhomogeneous PDE due to F [X, p,m, n] ̸= 0 become
important. This F introduces a coupling between modes with different correlation
lengths in the general solution. As in the homogeneous case, we restrict to distances
where the potential vanishes, i.e. ∂rΦ12 ≡ 0. We make the following claim regarding
Equation 3.4.
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Claim 3.1.1
a)The solutions are all of the following form:
R, S, T, U = ∑

{ξ} dξ
e−r/ξ

√
r

×Qξ(r) with dξ constants and Qξ functions with the
property that limr→∞ Qξ(r) = 1 +O(1/r), i.e. Qξ(r) converges to 1.
b)The set of exponents is a subset of the countable set {ξ} ⊂
{
√

2/
√
m2 + n2|m,n ∈ N}. Furthermore, only exponents, occurring in the

homogeneous solution or in the inhomogeneous part F [X, p,m, n], will occur.

We show this by induction.

Proof
Induction basis: All solutions of the homogeneous problem for R, S, T and U are
of the form Kα(r/(ξ0/

√
m2 + n2)), see Equation 3.5. It is straightforward to see they

satisfy both a) and b). In the lowest order in Pe, the inhomogeneous part becomes
trivial; i.e. F [X, 0,m, n] = 0. So in the lowest mode of the self propulsion speed
(p = 0), the claim is satisfied.
Induction Hypothesis: Suppose all modes up to and including order p− 1 in Pe are
of the form

R, S, T, U =
∑
{ξ}

cξ × e−r/ξ
√
r

× Pξ(r) (3.6)

with cξ constants and Pξ functions such that limr→∞ Pξ(r) = 1 +O(1/r).
Induction Step: Then the inhomogeneous part of the PDE is known, since it only
depends on lower order modes and becomes

F [X, p,m, n] =
∑

{ξ}∈Ξ0

−
√

3cξr2

4/ξ × e−r/ξ
√
r

× (1 +O(1/r)). (3.7)

Further, asymptotically for r ≫ 1 Equation 3.4 becomes

F [X, p,m, n] =✘✘✘✘✘±2mnX̃ −
(
✁1 + 1

2r
2
)

(m2 + n2)X − r∂r (✘✘✘✘rF12X) + r2∂2
rX +✘✘✘r∂rX

=r2
[
−1

2(m2 + n2)X + ∂2
rX +O(1/r)

]
, (3.8)

since only the terms with an exponential multiplied by r2 dominate for large values of
r. The other terms vanish asymptotically and are stroked out. We have to solve

∑
{ξ}∈Ξ0

c̃ξ × e−r/ξ
√
r

× (1 +O(1/r)) = −1
2(m2 + n2)X + ∂2

rX +O(1/r), (3.9)
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which is solved by

X =
∑

{ξ}∈Ξ0∪{ξ0/
√
m2+n2}

dξ × e−r/ξ
√
r

× [1 +O(1/r)]︸ ︷︷ ︸
=:Qξ(r)

. (3.10)

By induction we have proven the claim of the form of the functions. �

The Lowest Modes

Now we have another look at the lowest modes of g(r). At Pe = 0, the correlation
function is isotropic. If p = m = n = 0, we obtain the equilibrium result

R000(r) = exp[−Φ12(r)] (3.11)

as we saw before in Equation 1.8b, while all other modes with p = 0 are trivial, namely
S0mn = 0, T0mn = 0, U0mn = 0 and if (m,n) ̸= (0, 0) also R0mn = 0. At first order in
Pe (p = 1), the inhomogeneous part is only nonzero for the (m,n) = (1, 0), (0, 1) mode
of R. However, even in these modes the inhomogeneous part vanishes when ∂rΦ12 ≡ 0.
Numerically it will turn out that the (m,n) = (1, 0), (0, 1) modes will dominate at low
Peclet numbers. These modes are given by the homogeneous solutions we saw before
in Equation 3.5a:

R110(r) = −R101(r) = C ×K1(r/ξ0) (3.12)

at distances where ∂rΦ12 = 0 and with C some constant. At higher orders in Pe, the
coupling becomes too difficult for an exact analysis beyond the asymptotic limit.

High Self Propulsion Speeds

Our approach breaks down at high self propulsion speeds. Different modes couple to
each other with a coupling strength ∼ Pe. These coupled modes couple again and so
on. So the indirect coupling strength is ∼ Pen from the first modes via n− 1 different
modes to a final modes. We have thus a power law in n and the indirect coupling
strength couples exponentially. For large enough self propulsion speeds Pe > Pecrit,
either we need too many terms in the Taylor series in Pe, or the series does not converge
at all.
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Conclusion About the Correlation Length Between 2 Particles

The longest correlation length is ξ0 =
√

2/3σ in terms of the particle diameter σ,
where the factor

√
1/3 is trivial due to the units chosen. At low Peclet numbers, this

correlation length is visible in the modes cos θ1 and cos θ2, but also in other modes due
to the weak coupling between modes. At large Peclet numbers the analytic results are
inconclusive.

3.2 One Particle Near a Wall

Let us now start with Equation 2.7 for the one-body distribution function ψ(1) of ideal
torque free particles near a planar hard wall. The external force of the hard wall will
occur as a no flux boundary condition. We are left with

0 = ∂ψ(1)

∂t
(1, t) = − ∇r ·

[√
3 Pe e(θ)ψ(1)(1, t) − ∇rψ

(1)(1, t)
]

+ ∇2
θψ

(1)(1, t). (3.13)

We assume that the density profile is translationally invariant perpendicular to the
wall; i.e. ψ(1)(r,θ) = ψ(1)(x, cos θ) where x is the distance to the wall and cos θ is
the component in direction to the wall of e(θ). We obtain

√
3 Pe cos θ ∂xψ(1) =

∂2
xψ

(1) + ∂2
θψ

(1) in 2D. We make at each distance x a Fourier expansion in θ for the
density ψ(1)(x, θ) = ∑

m≥0 am(x) cosmθ where the ‘sin’ terms are suppressed because
of the symmetry. So Equation 3.13 becomes

√
3 Pe
2

[[ ∑
m≥1

cosmθ
[
a′
m−1(x) + a′

m+1(x)
] ]

+ a′
0 cos θ + a′

1

]
(3.14)

=
∑
m≥0

[
a′′
m(x) −m2am(x)

]
cosmθ.

If the self propulsion is small enough, the first line can be neglected. Then a0(x) is a
constant and am(x) = cm exp[−x/ξm] for m > 0 with correlation length ξm =

√
1/3σ/m

in terms of the particle diameter σ, where the factor
√

1/3 is trivial due to the chosen
units. The longest correlation length is ξ1 =

√
1/3σ, which deviates a factor

√
2 from

the longest correlation length ξ0 between two particles. Including the first line when
the self propulsion is large enough, gives a nontrivial coupling between modes.



Chapter 4

Stability Analysis of a
Homogeneous Density

In this chapter a stability analysis is made of systems with homogeneous density.
We investigate the decay or growth of perturbations in a system. If there exists a
homogeneous density and a class of perturbations that grow with time, we have a
strong indication of finding phase separation. If all perturbations at some density decay,
the system will not spontaneously phase separate. However, we can only conclude a
system will not spontaneously phase separate, we cannot conclude a system with a
phase separation is unstable.

4.1 Isotropic Correlation Function

We start with Equation 2.8 and restrict ourselves to a bulk system without external
forces nor torques, assumed to be homogeneous with a constant one-body distribu-
tion ψ

(1)
0 apart from a small inhomogeneous perturbation δψ(1)(r,θ, t). Substituting
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ψ(1)(r,θ, t) = ψ
(1)
0 + δψ(1)(r,θ, t) into Equation 2.8 gives

∂δψ(1)

∂t
(r,θ, t) = (4.1)

− ∇r ·
[√

3 Pe e(θ)δψ(1)(r,θ, t) − ∇rδψ
(1)(r,θ, t)

(1 − bρ0)2

]
+ ∇2

θδψ
(1)(r,θ, t)

− ψ
(1)
0 ∇r ·

∫∫
dr′ dθ′

[
F long

12 δψ(1)(r′,θ′, t)g(2)(r,θ, r′,θ′, t)
]

− ψ
(1)
0 ∇r ·

∫∫
dr′ dθ′

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭[
Γ12δψ

(1)(r′,θ′, t)g(2)(r,θ, r′,θ′, t)
]

(Torque free)

− ψ
(1)
0 ∇r ·

[
δψ(1)(r,θ, t)

∫∫
d
✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

r′ dθ′
[
F long

12 g(2)(r,θ, r′,θ′, t)
]]

(Isotropic g(2))

− ψ
(1)
0 ∇r ·

[
δψ(1)(r,θ, t)

∫∫
✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

dr′ dθ′
[
Γ12g

(2)(r,θ, r′,θ′, t)
]]

(Isotropic g(2))

− ψ
(1)
0 ∇r ·

[
δψ(1)(r,θ, t)

∫
dθ′

∫
B(r1,σHS)✭✭✭✭✭✭✭✭✭✭✭

dr′∇r′−r
(
u(2) − 1

)]
Isotropic u(2)

− ψ
(1)
0 ∇r ·

∫
dθ′

∫
B(r1,σHS)✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

dr′∇r′−r
(
δψ(1)(r′,θ′, t)(u(2) − 1)

)
u(2)(σHS) − 1 ≈ 0

+O(δψ(1))2,

where we assume a torque free system, the correlation function is isotropic, i.e.
g(2)(r,θ, r′,θ′, t) = g(2)(r − r′, t), and the cavity function u(2) = e+Φlong

12 g(2) approx-
imates u(2)(σHS) ≈ 1 at a distance σHS. We only take the terms linear in the
perturbation of the density into account. We now consider a Fourier decomposition in
both position and orientation; i.e.

δψ(1)(k,ω, t) = 1
√

2πdim r+dim θ

∫∫
dr dθδψ(1)(r,θ, t)e−ir·ke−iθ·ω, (4.2a)

e(ω) = 1
√

2πdim θ

∫
dθe(θ)e−iθ·ω, (4.2b)

where k the Fourier transformed variable of r and ω the Fourier transformed variable
of θ. We obtain

∂δψ(1)

∂t
(k,ω, t) = − ik ·

[√
3 Pe δΨ(1)(k,ω + ∗, t) − ikδψ(1)(k,ω, t)

(1 − bρ0)2

]
(4.3)

− ω2δψ(1)(k,ω, t) − ik · ψ(1)
0 F int[δψ(1),k,ω, t],
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with the Fourier transformed internal force defined as

F int[δψ(1),k,ω, t] =
∫∫∫∫

dr dθ dr2 dθ2 (4.4)[
F long

12 (r2 − r)g(2)(r2 − r, t)δψ
(1)(r2,θ2, t)e−ir·ke−iθ·ω

2πdim r+dim θ

]

and the contribution due to the self propulsion, δΨ(1)(k,ω + ∗, t), defined as

δΨ(1)(ω + ∗) :=1
2

 δψ(1)(ω + 1) + δψ(1)(ω − 1)
−iδψ(1)(ω + 1) + iδψ(1)(ω − 1)

 in 2D, (4.5a)

δΨ(1)(ω + ∗) :=1
4



−iδψ(1)
(
ω +

(1
1
))

+ iδψ(1)
(
ω +

(−1
−1
))

+
iδψ(1)

(
ω +

(−1
1
))

− iδψ(1)
(
ω +

( 1
−1
))

−δψ(1)
(
ω +

(1
1
))

− δψ(1)
(
ω +

(−1
−1
))

+
δψ(1)

(
ω +

(−1
1
))

+ δψ(1)
(
ω +

( 1
−1
))

+

2δψ(1)
(
ω +

(1
0
))

+ 2δψ(1)
(
ω +

(−1
0
))


in 3D, (4.5b)

where we suppress the arguments k and t. In the three dimensional case we use the
convention

e(θ) = (cosθ(2) sin θ(1), sin θ(2) sin θ(1), cosθ(1)). (4.6)

4.2 Unstable or Stable Perturbations to a Homo-
geneous Density

Define the M dimensional vector δψt for all times t, where each component is given by
a mode δψ(1)(k,ω, t) and different components have different (k,ω). We notice the
set of all modes is countable under assumption of a finite (possibly large) volume. We
only include the M lowest (dominant) modes in the orientation space and we require
that if mode ω is included, also mode −ω be included, where M can be arbitrarily
large. We assume only a finite number of modes gives a significant contribution and
we can neglect the other modes. The problem of Equation 4.3 is reduced to a linear
algebra problem. For every t we have

∂tδψt =
(
Dt + iAt

)
δψt (4.7)
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where Dt and At are M × M matrices. It will be straightforward to see that these
matrices are Hermitian, when these matrices are explicitly denoted. For any vector
δψt, we have

δψ∗
t (Dt + iAt) δψt

δψ∗
t δψt

= δψ∗
tD

tδψt

δψ∗
t δψt︸ ︷︷ ︸

∈[minσDt ,max σDt ]

+i
[
δψ∗

tA
tδψt

δψ∗
t δψt︸ ︷︷ ︸
∈R

]
, (4.8)

where the * denote the conjugated transposed. The domains of the terms on the right
hand side (also called Rayleigh Quotients), are straightforward when we consider that
all eigenvalue of Hermitian matrices are real valued and all vectors can be decomposed
in terms of the eigenvectors. Thus conclude for any eigenvalue λ of the matrix Dk+ iAt

with eigenvector δψt that

ℜλ =ℜδψ
∗
tλδψt

δψ∗
t δψt

= ℜδψ
∗
t (Dt + iAt) δψt

δψ∗
t δψt

(4.9)

=ℜδψ
∗
tD

tδψt

δψ∗
t δψt

≤ max σDt︸ ︷︷ ︸
max eigenvalue

.

Thus if the maximum eigenvalue of Dt is negative, the real part of any eigenvalue of
Dk+ iAt is negative. We stress we have not found any eigenvalues of Dt+ iAt explicitly,
since the eigenvectors may differ from the eigenvectors of Dt. Fortunately, we are only
interested in the sign of the real part. If this real part is negative for all densities ρ0, all
modes k ̸= 0 and all modes ω, then we can conclude that this homogeneous systems
is stable. Therefore, these systems will not spontaneously phase separate. We can
exclude the k = 0 mode since it violates particle number conservation. Although these
systems do not spontaneously phase separate, we have not excluded the posibility that
a phase separated system is also stable and possibly energetically favorable.

4.3 MIPS with Isotropic Correlation Function

Suppose the particles only have an excluded volume contribution; i.e. they do not have
any attractions (or long ranged repulsions) thus F long

12 = 0 and F int = 0 in Equation 4.3.
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Our system to solve is then given by

∂tδψk =
(
Dk + iAk

)
δψk, (4.10a)

Dk
ij =

− k2

(1−bρ0)2 − ω2
i ωi = ωj

0 otherwise
, (4.10b)

Akij =



−
√

3Pe
2 k ·

( 1
∓i
)

ωi − ωj = ±1 in 2D

−
√

3Pe
4 k ·

∓i
1
0

 ωi − ωj =
(±1

∓1
)

in 3D

−
√

3Pe
4 k ·

∓i
−1
0

 ωi − ωj =
(±1

±1
)

in 3D

−
√

3Pe
2 k ·

0
0
1

 ωi − ωj =
(±1

0
)

in 3D

0 otherwise (both 2D and 3D).

(4.10c)

It is straightforward to see both Dk and Ak are Hermitian, and that for k ̸= 0 all
eigenvalues of Dk are negative. A perturbation with k = 0 would violate total density
conservation and is not allowed. From the analysis in Section 4.2 we conclude that all
eigenvalues of Dk + iAk are negative and that the system will not spontaneously form
MIPS.

4.4 Considering the Force in the Stability Analysis

Let us have another look at the Fourier transform of the internal force, see Equation 4.4.
This internal force is a Fourier transform of a convolution, which is the product of the
Fourier transformed functions:

F int[δψ(1),k,ω, t] = F
[
F 12g

(2)
]

· F
[
δψ(1)

]
︸ ︷︷ ︸
δψ(1)(k,ω,t)

. (4.11)

The Fourier transform of the force is given by

−ik · F
[
F 12g

(2)
]

=ik · F
[
∇rΦeff

12

]
= −k2F

[
Φeff

12

]
, (4.12)

where we defined ∇rΦeff
12(r) := −F eff

12(r) := −F 12(r)g(2)(r). For physical liquids
and gases, the effective potential is smooth, bounded and has a well defined Fourier
transform. Assume the effective potential is zero if the distance is large enough (or
introduce a cutoff). Define the distance rc as the minimal distance such that ∀|r| > rc,
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Φeff
12(r) = 0. For a small wavenumber k with |k|rc ≤ π/2, we can determine the sign of

F
[
Φeff

12

]
(k) if Φ12 is purely repulsive or purely attractive and we conclude

−ik · F
[
F 12g

(2)
]

(k) ≥ 0 if ∀r12 s.t. F 12 · r12 ≤ 0 (only attractions),
−ik · F

[
F 12g

(2)
]

(k) ≤ 0 if ∀r12 s.t. F 12 · r12 ≥ 0 (only repulsions).
(4.13)

The validation of this statement is straightforward for |k|rc ≤ π/2; it follows from
the definition of the Fourier transform. When π/2 < |k|rc ≤ π we have to use the
definition of the Fourier transform and the property |Φeff

12(r)| > |Φeff
12(r′)| if and only

if |r| < |r′|. For |k| > π the statement does not hold and a counterexample can be
constructed when F 12(r)g(2)(r) is only significantly different from zero for |r| near rc.
A corresponding physical system consist of particles that approximately1 have hard
cores; thus for r < rc − ϵ the correlation function is zero for small ϵ > 0.

We emphasize that when we do not make the excluded volume approximation, we
can extend this conclusion also to the short ranged forces. A concern might be that the
potential diverges at zero distance and the Fourier transform is ill defined. However,
the effective potential will be bounded due to the correlation function.

4.5 The Stability Analysis Without the Excluded
Volume Approximation

One could argue that our result in Section 4.3 that spontaneous phase separations
will not occur, is caused by the excluded volume treatment of the short ranged forces.
However, this excluded volume treatment is not the problem, as we will argue now.
Suppose we would not have made the excluded volume treatment in a model without
attraction, then Equation 4.3 becomes

∂δψ(1)

∂t
(k,ω, t) = − ik ·

[√
3 Pe δΨ(1)(k,ω + ∗, t) − ikδψ(1)(k,ω, t)

]
(4.14)

− ω2δψ(1)(k,ω, t) − ik · ψ(1)
0 F int[δψ(1),k,ω, t],

1Approximately such that the force is well defined.
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where now Fint contributes for the (short-ranged) repulsions, i.e.

F int[δψ(1),k,ω, t] =
∫∫∫∫

dr dθ dr2 dθ2 (4.15)[
F rep

12 (r2 − r)g(2)(r2 − r, t)δψ
(1)(r2,θ2, t)e−ir·ke−iθ·ω

2πdim r+dim θ

]
.

We find a coupling between different ω and between different k modes. Let ψt be a
vector of the lowest modes in both position and orientation space. We find

∂tδψt =
(
Dt + iAt

)
δψt, (4.16a)

Dt
ij =

−k2 − ω2
i − ik · ψ(1)

0 F
[
F rep

12 g
(2)
]
ωi = ωj

0 otherwise
, (4.16b)

where Atij is similar to Equation 4.10c. For small values of |k|rc < π we use Equa-
tion 4.13 to conclude −ik ·ψ(1)

0 F
[
F long

12 g(2)
]
< 0. We use the result from Section 4.2 to

conclude that the matrix Dt + iAt does not have an eigenvalue with a positive real part
for small values of |k|. For large values of |k|, the fluctuations will be on the length
scale of a particle; here it is also not possible to find (large) domains of MIPS. We
conclude again that the system will not spontaneously phase separate to MIPS. We
conclude that this lack of spontaneous MIPS is not an artifact of the excluded volume
approximation, but is an artifact of the assumption that the correlation function is
isotropic.

4.6 Stability Analysis of a Van der Waals Gas in
Equilibrium

In Van der Waals theory in equilibrium, we could also do the same analysis as in
Section 4.2. We start with

∂tδψt =
(
Dt + iAt

)
δψt, (4.17a)

Dt
ij =

− k2

(1−bρ0)2 − ω2
i − ik · ψ(1)

0 F
[
F att

12

]
ωi = ωj

0 otherwise
, (4.17b)

Atij =0, (4.17c)
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where F att
12 are the attractions, and there are no correlations, g(2) = 1. Assume the

largest eigenvalue of Dt is given by a smallest nonzero |k| and ω2
i = 0. This assumption

has an intuitive reasoning; the phase separated system with the lowest free energy
has two large domains (thus a small |k| mode is dominant) and is isotropic (zero ωi).
At the (local) spinodal densities in a phase separated system, the densities are barely
stable and the largest eigenvalue will be zero. To find the densities, we have to solve

0 = max σDt = −ω2
i − k2

[
1

(1 − bρ)2 + ψ(1)F
[
Φatt

12

]
(k)

]
(4.18)

for 0 ̸= k → 0 and ω = 0 and we use ψ(1)F [Φatt
12 ] (k → 0) = ρ

∫
drΦatt

12 (r) = −2aρ/kBT
to simplify to 0 = 1

(1−bρ)2 − 2aρ
kBTc

. At the critical temperature, the two densities should
coincide and be maximal, thus 0 = ∂ρcbρc(1 − bρc)2. This equation is solved by the
critical density ρc = 1/3b and temperature kBTc = 8a/27b and agrees with Equation 1.4.

4.7 Stability Analysis of a Van der Waals Theory
out of Equilibrium

If we do the same analysis as in the previous Section 4.6 and include a (small) self
propulsion speed, our matrix At is no longer zero. Although the upper bound of the
real part of the eigenvalues does not change, the real part of the eigenvalues could be
smaller; the eigenvalues of Dt and Dt + iAt are not necessarily equal.

Suppose there exists an eigenvalue of Dt with positive real part. The analysis is
inconclusive; we cannot exclude phase separation. Then it is possible that the real
part of all the eigenvalues of Dt + iAt are negative. Thus all perturbations decay,
the homogeneous density is stable and phase separation will not occur spontaneously.
To find the spinodals and the critical temperature out of equilibrium, we need the
maximum real part of the eigenvalues of Dt + iAt; an upper bound is no longer
sufficient if it does not give the maximum real part of the eigenvalue. Calculating these
eigenvalues is beyond the scope of this thesis.



Chapter 5

Numerical Results

5.1 The Correlation Length of Ideal Particles Near
a Wall

In this section we describe the behavior of an active ideal 2 dimensional gas near a
hard wall on basis of Equation 2.8. In Figure 5.1 the density profile, as defined in
Equation 1.5, and polarization, as defined in Equation 1.6, are plotted. In equilibrium,
the profiles of an ideal gas near a hard wall are trivial, see Figure 5.1a. When the self
propulsive speed is taken into account, non trivial results are found in Figure 5.1b.
Near the wall, particles pile up and have a non zero polarization. Our results are
similar to [13].
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(a) In equilibrium, Pe = 0, the density and
the polarization profiles of an ideal gas are
trivial.
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(b) The solid lines are for Pe = 1, a nontrivial
profile near the wall is found. The dashed
lines are the equilibrium results.

Fig. 5.1 Shown are the density and polarization profile in equilibrium (Pe = 0) and for
an active fluid (Pe = 1).
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To explain our non trivial results, we first examine the orientation-dependent
distribution ψ(1). In Figure 5.2 the distribution is shown for fixed orientations as a
function of distance from the wall. Particles with an orientation towards the wall (blue)
will swim towards the wall and pile up against the wall; an increased probability is
found. Particles with an orientation away from the wall (red) will instantly swim away,
thus a decreased probability is found. For particles with no relative motion with respect
to the wall (green) have a slight increased probability of being found near the wall,
possibly due to the rotational diffusion of the particles that have a high probability of
pointing towards the wall.
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Fig. 5.2 The density profile for an active 2-dimensional ideal particles near a hard wall
is shown with Peclet number Pe = 1. Different lines represent different orientations.

In Figure 5.3 the asymptotic decay of the density profiles and the polarization
profiles are plotted. Different colors represent different Peclet numbers, see the caption.
The dashed lines are fits of an exponential A exp[−x/ξ] with ξ the correlation length
and A the amplitude.

In Figure 5.4 the fitting parameters are shown. In Figure 5.4a we observe that the
correlation lengths obtained from polarization profiles (red +) and the correlations
lengths obtained from the density profiles (blue ×) stay close. The data from the
polarization profiles are slightly more accurate, since the amplitudes here are also
larger. The analytic correlation length at low self propulsion speeds ξ =

√
1/3σ is

found for low Peclet numbers in terms of the particle diameter σ =
√

3
√
Dt/Dr. For

high Peclet numbers we find deviations.
In Figure 5.4b the amplitudes are shown as a function of Peclet number. For small

Peclet numbers this amplitude scales linearly for the polarizations and quadratically
for the densities. This scaling does not hold for large Peclet numbers; here we probably
see an artifact of the deviation in the correlation length.
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Fig. 5.3 Shown is the decay of the densities and polarizations of an ideal 2-dimensional
active gas near a hard wall for different Peclet numbers. The Peclet numbers 0.01
(brown), 0.03 (dark red), 0.1 (red), 0.3 (orange), 1 (yellow), 3 (cyan), 10 (blue), 30
(purple) and 100 (pink) are shown. The dashed black lines are fits of an exponential
A exp[−x/ξ] with ξ the correlation length and A the amplitude.
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(a) The correlation lengths in terms of the
particle diameter σ are shown for the densi-
ties (blue ×) and these agree with the correla-
tion lengths obtained from the polarizations
(red +). The dashed line is the analytic val-
ue for small Peclet numbers ξ =

√
1/3σ in

terms of the particle diameter σ. The factor√
1/3 is trivial due to the choice of units. In

the inset a zoom is shown.
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(b) The amplitudes of the density (blue ×)
and polarization (red +) profiles are shown.
For small Peclet numbers, the amplitude s-
cales linear for the polarization and quadrat-
ic for the densities. These scalings are il-
lustrated by the dashed line. The ampli-
tude of the polarizations appears to scale
with ∼ Pe−2 and the amplitude of the den-
sities appears to be constant for large Peclet
numbers. However, we have not found an
analytic expression.

Fig. 5.4 The correlation lengths and amplitudes obtained from the fit of particles near
a wall is illustrated as a function of Peclet number. These are shown for the densities
(blue crosses ×) and for the polarizations (red plus +).
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5.2 The Pair Correlation Function g
(2)
ρ=0 in 2D

In this section the results of the pair correlation function g(2) are described. We were
only able to calculate this function in the zero density limit in 2 dimensions.
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(b) Peclet number Pe = 30

Fig. 5.5 The two-body correlation function g
(2)
θ1,θ2(r) as a function of distance for fixed

orientations. A WCA potential with βϵ = 3 is used. The lines are obtained from the
Fokker-Planck equation, the points are obtained from simulating the EOMs of 1020
particles at a density ρσ2 = 0.01. The simulations were done by Siddharth Paliwal. In
blue the particles point towards each other, in green the particles are parallel and in
red the particles point away from each other. In the inset a zoomed image is shown.

In Figure 5.5 the pair correlation function g
(2)
θ1,θ2 is shown for three orientations of

two particles. The particles have a Weeks-Chandler-Anderson (WCA) potential1 [15]
and a dimensionless self propulsion Pe = 1, 30. At small distances, a pair of particles
that point to each other (blue) have an increased probability to be found, while a
pair of particles that point away from each other (red) have a reduced probability
to be found. The increased probability of particles pointing towards each other can
be explained as follows: the particles swim to each other and ‘stick’ together, which
increases the probability compared to long distances. They cannot pass through each
other. Rotational diffusion makes the particles turn. When the particles point in
opposite directions, they instantly swim away; the probability of finding a pair of
particles that has not swum away is low.

The results obtained from the F-P equation (full lines) agree with results from
simulations of many individual particles [8] (points) where the EOM’s are evaluated for
all particles at a low density of σ2ρ = 0.01. We stress that the results match without

1A WCA potential is purely repulsive; it’s the repulsive part of a Lennard-Jones potential.
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Fig. 5.6 The two-body correlation function g(2)
r (θ1, θ2) is shown as a function of the

orientations for fixed distances. Again a WCA potential with βϵ = 3 and Peclet number
Pe = 1 is used. It is likely to find particles close together that are pointing towards
each other. The dashed lines represent the periodic boundaries of the orientations.

any fitting procedure. Notice that the reduction of noise in simulations requires a larger
number of measurements to average and thus a larger computational time, while the
F-P equation is less sensitive to noise2. The computation of the correlation function
using simulations is similar at nonzero densities. In contrast, the computation of
the correlation function using the F-P equation becomes very hard; three particle
correlations have to be included or even another approach like Ornstein-Zernike is
required [14, Ch. 6.2.5].

We show the orientation dependence of the two-body correlation function g(2)
r (θ1, θ2)

at different fixed distances in Figure 5.6. In agreement with the previous Figure 5.5 we
conclude particles close to each other are likely to point to each other and unlikely to
point away from each other.

5.3 The Correlation Length of the Correlation Func-
tion

In Chapter 3 we found an analytic expression for the asymptotic behavior of the
correlation function. Now we fit the analytic expression to the result of the F-P

2As long as the derivatives of the distribution functions are not too big. Otherwise additional
mesh refinement are needed which increases computing time and memory usages dramatically.
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(a) Peclet number Pe = 0.01 (b) Peclet number Pe = 0.01

(c) Peclet number Pe = 1 (d) Peclet number Pe = 1

(e) Peclet number Pe = 10 (f) Peclet number Pe = 10

Fig. 5.7 The pair correlation function is shown for different orientations and different
Fourier modes, as a function of distance r for different Peclet numbers Pe. All figures
represent the zero density limit for particles in a WCA potential with βϵ = 3. The
points are the result of numerical evaluation of the F-P equation. Different colors
represent different orientations (on the left in Figure a, c or e) or different Fourier
modes (on the right in Figure b, d or f). The solid yellow lines are a fit of the data in
that range, and the dashed yellow lines are extrapolations.
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equation. We include only the lowest modes of the analytic expression, otherwise the
number of fitting parameters will be too large. The model used is only suitable for
distances where the particles do not apply a force to each other, i.e. ∂rΦ12 ≡ 0. We fit
the shape

g
(2)
∂rΦ12≡0(θ1, θ2, r) =1 +

(
C+

110 + C−
110

)
K1[r/ξ0] [cos θ2 − cos θ1] (5.1)

+
(
C+

220 + C−
220

)
K2[2r/ξ0] [cos 2θ2 + cos 2θ1]

+
(
C+

220 − C−
220

)
K2[2r/ξ0] [sin 2θ2 + sin 2θ1]

+
(
C+

211K2[
√

2r/ξ0] + C−
211K0[

√
2r/ξ0]

)
cos θ1 cos θ2

+
(
C+

211K2[
√

2r/ξ0] − C−
211K0[

√
2r/ξ0]

)
sin θ1 sin θ2

+ exp[−r/ξ0]√
r

{
E0 + E1 cos θ1 cos θ2 + E2 sin θ1 sin θ2+

+ E3(cos 2θ2 + cos 2θ1) + E4(sin 2θ2 + sin 2θ1)
}

to the pair correlation function, where the terms scaling with exp[−r/ξ0]√
r

(last two lines)
are only asymptotically correct; we do not know the exact shape due to the coupling
between the R100 mode and other modes. We used some symmetries already; mirror
symmetry implies C+

pmn = C−
pmn for m+ n odd and the exchange of particles implies

C±
pmn = (−1)m+nC±

pnm for any m,n. We will fit the parameters C±
pmn, Ei and ξ0.

In Figure 5.7 the asymptotic behavior of |gPe;θ1,θ2(r) − 1| is shown for different
orientations and different Fourier modes. For a low self propulsion speed, i.e. Pe = 0.01
in Figures 5.7a and 5.7b, our fits of the analytic shape match the data. For medium
or high self propulsion speeds, i.e. Pe = 1 in Figures 5.7c and 5.7d or Pe = 10 in
Figures 5.7e and 5.7f, the fits deviate from the data.

The deviation between the data from the F-P equation and the fit at large self
propulsion speed can have different causes; this deviation can be caused by the data or
the used fit function. Firstly, there appear to be some systematic errors in the data, i.e.
in Figure 5.7c several lines pass through 0 when r/σ ≈ 7. This passing through 0 has
no physical explanation at r/σ ≈ 7. The noise in the data for higher self propulsion
is larger, so we cannot exclude this passing through 0. Secondly, the analytic model
consist of multiple Fourier modes and modes in self-propulsion speeds, where we only
included the lowest modes, see Equation 5.1. At low self propulsion speeds, only the
lowest modes contribute and the modes are decoupled, so the analytic result is accurate.
At larger self propulsion speed, the analytic model is not accurate.

In Figure 5.8 the maximum correlation length ξ0 is shown. We show both the
analytic result as the result obtained from the fit. Again, for the low self propulsion
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Fig. 5.8 The maximum correlation length ξ0 is shown in the plot. The dashed line is
the analytic value ξ0 =

√
2/3σ in terms of the particle diameter σ, where a factor

√
1/3

is trivial due to the choise of units. The points are obtained from fitting the analytic
function, which we fitted to the data of the F-P equation. For the small self propulsion
speeds, there is agreement with the analytic value as well as a small uncertainty.

speeds the correlation length found match the analytic value ξ0 =
√

2/3σ ≈ 0.816497σ.
At the lowest self propulsion speeds, Pe = 0.01, the best correlation length is found
ξPe=0.01

0 = 0.81643(11)σ. At larger self propulsion speeds we see the errors and
uncertainties increase. This increase was expected, since we already saw in Figure 5.7
problems with the fit at larger self propulsion speeds.

5.4 Liquid-Gas Phase Coexistence in 2D

In this section we describe the results concerning the usual liquid-gas coexistence in 2
dimensions. We assumed a planar geometry and periodic boundary conditions in the
x direction, i.e. ψ(x, y, θ) = ψ(x, θ) = ψ(x+ L, θ). We started in an inhomogeneous
system, with a low-density part and a high-density part separated by an interface
normal to the x direction. Using the F-P equation 2.8 we let the system evolve to
a steady state. The obtained low density we call the gas density and the obtained
high density we call the liquid density. We confirmed the obtained densities were
independent of the initial density profile, as long as a steady state was obtained.

The resulting gas and liquid densities are show in Figure 5.9. In these calculations we
used the second virial coefficient given by b ≈ πσ2/2 and the attraction potential given
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Fig. 5.9 In this figure the obtained gas and liquid densities are shown. The red points
are obtained from density profiles in equilibrium with Pe = 0 and the blue points at a
self propulsion speed Pe = 1. The black solid line is obtained from minimizing the free
energy, that is exact in the Van der Waals theory. The dotted lines are the spinodal
densities obtained from the stability analysis in equilibrium. The black point is the
analytically obtained critical temperature and critical density. The dashed vertical line
at ρ/ρc = 3 is the maximum density allowed; otherwise the excluded volume becomes
larger than the volume available. The dashed line through the blue points is a guide
to the eye.

by the negative part of the usual 6-12 Lennard-Jones potential Φ12(r) = min[0,ΦLJ
12 (r)].

We did not include any correlations ,g(2) ≡ 1, such that at Pe = 0 the theory
should (and actually does) coincide with minimum free energy results of a Van der
Waals gas. In equilibrium we find agreement between the minimization of the free
energy and the results from the F-P equation. We did not expect to find agreement
between the critical values found and literature values of a Lennard-Jones fluid as
obtained from simulations. A Lennard-Jones system in 2 dimensions has a critical
point at (3bρc, T/ϵ) = (1.67, 0.515)3 [5]. However, we have applied an excluded volume
approximation to the repulsions in the Lennard-Jones potential. Therefore we do not
expect agreement with an exact Lennard-Jones fluid.

3Equivalently ρcσ2 = 0.355.
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Out of equilibrium we find a reduction of the critical temperature. We described in
Section 1.2 the two features of active particles regarding phase coexistence. The first
feature is the reduction of the critical temperature, because the active particles rip the
liquid apart (recall Figure 1.1). The individual particles have by there self propulsion
additional energy, which can be viewed as an effective increase in temperature. The
second feature is a new phase coexistence called MIPS (recall Figure 1.2). Therefore
an increase in critical temperature could occur. However, this increased critical
temperature is not observed nor was it expected. This feature requires the colliding
of particles, where the particles point to each other, which requires an orientation
dependent correlation function g(2)(r, θ1, θ2). However, we used g(2) ≡ 1.



Chapter 6

Conclusion

6.1 The Correlation Lengths is not Universal

The most surprising conclusion we found is that the correlation length is not universal.
We found the correlation length for particles with low nonzero self propulsion speeds.
The correlation length corresponding to the density decay of particles near a wall is
ξ =

√
1/3σ in terms of the particle diameter σ. The factor

√
1/3 is trivial due to

the chosen units. The correlation length corresponding to the two-particle correlation
function (in the zero density limit) is ξ0 =

√
2/3σ. These two correlation lengths

deviate by a factor
√

2. When there is no self propulsion, we find an amplitude that is
zero and the correlation lengths are no longer defined at vanishing density.

In equilibrium the correlation length is universal, as was showed by applying a
pole analysis to the Ornstein Zernike relation [6]. They use the OZ relation, which
is different from the approach used in this thesis. This thesis uses the F-P equation.
The comparison of the deviation in equilibrium and at low self propulsion speeds, is
therefore not straightforward and is beyond the scope of this thesis. One fundamental
difference is that in equilibrium the corresponding amplitude is a function of density,
while out of equilibrium we only consider the zero density limit and the amplitude is a
function of the self propulsion speed.
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For a brief explanation of the origin of the factor
√

2, we consider the simplified
F-P equations in 2 dimensions for g(2) and ψ(1), respectively

0 =(∇2
r1 + ∇2

r2 + ∂2
θ1 + ∂2

θ2)g(2)
Pe (r1, r2, θ1, θ2) (6.1a)

=(2∇2
r12 + ∂θ1 + ∂θ2)

[
R
g

(2)
Pe

0 (r12) +R
g

(2)
Pe

1 (r12)(cos θ̃1 − cos θ̃2) + h.o.
]
,

0 =(∇2
r + ∂2

θ )ψ
(1)
Pe (r, θ),= (∇2

r + ∂2
θ )
[
R
ψ

(1)
Pe

0 (x) +R
ψ

(1)
Pe

0 (x) cos θ + h.o.
]
, (6.1b)

where θ̃1,2 = θ1,2 − φ denotes the relative angle with φ the angular coordinate of r12.
Further, r12 is the absolute distance and x is the distance to the wall. When we solve
these equations and neglect the higher order terms we get the factor

√
2. For a full

explanation we should consider the full derivation which started with Equations 2.8
and 2.10.

6.2 Proof of Concept to find Phase Separation

We have confidence in our methods, since results obtained from different approaches
agree. Our obtained correlation function agrees with simulations. We obtained the
correct density binodal in equilibrium for a Van der Waals gas. For small self propulsion
speeds, the numerical correlation lengths obtained agree with the analytic prediction.

Our method using the F-P equation has advantages and disadvantages. Our method
gives more accurate results in the behavior of the density distribution than measuring
the result of simulations. At the zero density limit, the obtained correlation function
is far more accurate than simulations and it is possible to determine the asymptotic
decay.

Motility Induced Phase Separation

Our stability analysis shows that an orientation-dependent correlation function is
required to find MIPS. The approach we suggest is similar to finding the normal
gas-liquid phase separation. We tried to find MIPS, but we were unsuccessful.



Chapter 7

Outlook

This thesis provides both answers and new questions; more research is required. In
Section 7.1 we describe questions we think answers can be given using the current
approach with the F-P equation. In Section 7.2 we describe questions for which we
think another approach is required.

7.1 With the F-P approach

MIPS

Numerically we were not able to find MIPS.
We used a torque free isotropic WCA potential in 2 dimensions. We considered this

entire potential as the short ranged part; the long ranged part of the potential was zero.
The potential contributed thus to an excluded volume and corrections since g(2) is not
isotropic. We used the equation for the density (Equation 2.8) and assumed a planar
geometry. We used a time evaluation to obtain a steady state. We closed this equation
by using the low density correlation function, i.e. g(2) = g(2)(r12, θ̃1, θ̃2) with θ̃1,2 the
relative orientations, see Equation 2.11. Our initial density distribution consisted of
a high density phase and low density phase, but was orientation independent. We
think that by choosing an orientation-dependent density distribution in the interface
we would have had a better chance to obtain MIPS. This starting distribution is closer
to the distribution that we expect to contain MIPS, and we expect a lower diffusion of
the high density phase at the start.

We found MIPS in a quasi 1-dimensional (unphysical) system, where we stated
that we could project the gradients ∇r12 → ∂x12 and introduce a quasi one dimensional
force

∫
dyg(2)F (∥x12, y∥) → g(2)Fquasi 1D(x12). Also we think we found MIPS in 2
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dimensions when we introduced some increase of 20% to 100% to the effective force
due to anisotropy of g(2). This increase did not have any physical justification. We
made our calculations for relatively low Peclet numbers, Pe = 1, 2, 5, 10, 20, otherwise
we experienced numerical instabilities. In simulations, larger Peclet numbers Pe ∼ 50
are required to find MIPS. However, if we assume the zero density correlation function,
there is a stronger orientation dependence. So we expect lower self propulsion speeds
required for MIPS.

Torques

In our equations of motion we allowed torques. However, during the derivation we
assumed the absence of torques for reasons of simplicity, i.e. simplified some equations
and our expected phase diagram. We think that torques can be included analytically
without much effort, but numerically we expect stability problems.

Correlation Lengths at Large Self Propulsion Speeds

We have doubts about the correlation lengths obtained for the two-body correlation
function at large self propulsion speeds. At small self-propulsions speeds, we are
confident that the series in self propulsion speeds converges. At large self-propulsion
speed we are doubtful about this convergence, because there is a strong coupling
between the modes. Furthermore, the numerically obtained data do not correspond
with the analytic shape (Equation 5.1). More research should determine whether
the model should be different or whether the numerical evaluation of the differential
equations gave problems.

7.2 Different Approaches Required

3 Dimensions

In this thesis we mostly do 2-dimensional calculations, because in 3 dimensions addi-
tional degrees of freedom make the calculations harder. We can make calculations,
however, of the density distribution of an ideal gas (near a wall) in 3 dimensions. Other
3-dimensional calculations are computationally expensive.

There is also another problem: We are uncertain if it is allowed to neglect the
momentum of the fluid in 3 dimensions. Possibly, the full hydrodynamic equations
should be included. However, we simplified the solvent to only Brownian forces. In
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a 2-dimensional geometry, for example a 3 dimensional fluid between two walls, the
momentum of the solvent leaks away into the walls and the momentum can therefore
be neglected. Without the walls the momentum of the solvent should be taken into
account.

Correlation functions at non zero densities

We were not able to determine the correlation functions at nonzero densities. We do
not think this can be done with the F-P equation, since an addition integral for the
three particle correlations should be evaluated in the differential equation for g(2). This
evaluation is computationally too expensive. Perhaps a different approach like OZ can
be helpful.

The Correlation Length

The correlation length appears not to be universal when there is a low self propulsion
speed, in contrast to equilibrium. It would be interesting to research the difference in
the correlation length between this thesis and [6]. Then we would be able to explain
where this difference comes from.
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Appendix A

Derivations to obtain the
Fokker-Planck Equation

A.1 The Fokker-Planck Equation

In this section we will argue how a stochastic differential equation (SDE) can be written
as a partial differential equation (PDE). For most proofs we will refer to the book
by Pavliotis and Stuart [9]. We denote the phase space, the initial phase space, the
gradient with respect to this phase space and the equations of motion (Equation 2.2)
by

z(t) ={ri(t),θi(t)}i≤N , (A.1a)
z0 = z(t0) ={ri(t0),θi(t0)}i≤N , (A.1b)

∇z ={∇ri
,∇θi

}i≤N , (A.1c)
dzj
dt =hj(z) + γj(z)dW j

dt . (A.1d)

In our class of EOMs the vector γ(z) = γ is a constant vector and is independent of the
current phase space. All components in this vector are equal to

√
2, i.e. γj = γ =

√
2.

The term dW j

dt represents Gaussian white noise. So γj
dW j

dt contributes in our example
only for the rotational and translational Brownian forces. All non-Brownian forces are
considered in the term h(z); this term is named the drift.

Analogue to [9, Ch. 6.1] we note that this process only exists as a distribution and
the precise interpretation is an integral equation for z(t) ∈ C(R,ZN×D̃) with D̃ the
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number of degrees of freedom per particle:

z(t) = z0 +
∫ t

0
h(z(s)) ds︸ ︷︷ ︸

Drift

+ γ
∫ t

0
dW (s)︸ ︷︷ ︸

Diffusion

. (A.2)

We work with the Itô interpretation1 as defined in [9, Ch. 3].
In [9, Ch. 6.2, 6.3] the existence, uniqueness and the resulting Fokker-Planck

equation are proven, which results in the F-P equation for the N -particle density
distribution ψ[N ](z, t):

∂ψ[N ](z, t)
∂t

=L∗ψ[N ](z, t) = −∇z · (h(z)ψ[N ](z, t)) + ∇2
zψ

[N ](z, t), (A.3)

ψ[N ](z, t0) =ψ[N ]
0 (z), (A.4)

where ψ[N ]
0 is some initial distribution function.

A.2 The Reduced Phase Space of the Fokker-Planck
Equation

In this section, we will reduce the phase space of the PDE for ψ(N)(rN ,θN , t), similar
to the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy (BBGKY hierarchy) [1]. The
difference is that we have orientation dependencies, but we do not have momentum
conservation.

Define a reduced phase space distribution function ψ(n)(rn,θn, t), which is the
probability of finding n particles at positions rn with orientation θn at time t. This
distribution function is defined as some permutation factor multiplied by the integral
over all possible configurations with n particles at given positions and N − n particles
at arbitrary positions. The equation is given by

ψ(n)(rn,θn, t) = N !
(N − n)!

∫∫
drN−n dθN−nψ[N ](rN ,θN , t) (A.5)

≡
∫ N−n

r,θ
ψ[N ](rN ,θN , t),

where we denoted for notational purposes drN−n = drn+1... drN , dθN−n = dθn+1... dθN
and

∫N−n
r,θ = N !

(N−n)!
∫∫

drN−n dθN−n. We separate the ideal part in the (angular) velocity
1The Stratonovich interpretation will be the same since γ is a constant vector independent of the

phase space.
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from the two-body interactions:

vj = vid
j +

N∑
i=1
F ij(rij,θi,θj), ωj = ωid

j +
N∑
i=1

Γij(rij,θi,θj), (A.6)

where the ideal terms vid
j =

√
3 Pe e(θi) + F ext(ri,θi) and ωid

j = Γext(rj,θj) only
depend on the position and orientation of the particle itself. Then the Fokker-Planck
equation (Equation 2.3) can be written as

∂tψ
[N ] +

N∑
j=1

∇rj
·
[(
vid
j − ∇rj

)
ψ[N ]

]
+

N∑
j=1

∇θj
·
[(
ωid
j − ∇θj

)
ψ[N ]

]
(A.7)

= −
N∑
j=1

∇rj
·
[

N∑
i=1
F ijψ

[N ]
]

−
N∑
j=1

∇θj
·
[

N∑
i=1

Γijψ
[N ]
]
.

where we no longer explicitly write down all dependencies. Now integrate N − n

particles out of the equation and multiply by the permutation factor, applying
∫N−n
r,θ :=

N !
(N−n)!

∫∫
drN−n dθN−n to the equation. Split the sums up into 1 ≤ j ≤ n and

n < j ≤ N and we obtain

∫ N−n

r,θ

{
∂tψ

[N ] +
n∑
j=1

∇rj
·
[(
vid
j − ∇rj

)
ψ[N ]

]
+

n∑
j=1

∇θj
·
[(
ωid
j − ∇θj

)
ψ[N ]

] }
(A.8)

+
∫ N−n

r,θ

{
N∑

j=n+1
∇rj

·
[(
vid
j − ∇rj

)
ψ[N ]

]
+

N∑
j=n+1

∇θj
·
[(
ωid
j − ∇θj

)
ψ[N ]

] }
︸ ︷︷ ︸

=0

=
∫ N−n

r,θ

{
−

n∑
j=1

∇rj
·
[

n∑
i=1
F ijψ

[N ]
]

−
n∑
j=1

∇θj
·
[

n∑
i=1

Γijψ
[N ]
]}

+
∫ N−n

r,θ

{
−

n∑
j=1

∇rj
·
[

N∑
i=n+1

F ijψ
[N ]
]

−
n∑
j=1

∇θj
·
[

N∑
i=n+1

Γijψ
[N ]
]}

+
∫ N−n

r,θ

{
−

N∑
j=n+1

∇rj
·
[

N∑
i=1
F ijψ

[N ]
]

−
N∑

j=n+1
∇θj

·
[

N∑
i=1

Γijψ
[N ]
]}

︸ ︷︷ ︸
=0

.

The second and fifth lines each contain an integral of the divergence of a function,
which is the integral over the boundary of the function, which equals zero. In the first
and third line, all the N − n integrals only depend on ψ[N ], so the definition of ψ(n)

appears. In the fourth line, N − n− 1 integrals only depend on ψ[N ], so the definition
of ψ(n+1) appears N − n times, up to an exchange of particles. Under the assumptions
of identical classical particles, this exchange is trivial. Substitute back the definition of
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vid
j =

√
3 Pe e(θi) + F ext(ri,θi) and ωid

j = Γext(rj,θj) to obtain

∂ψ(n)

∂t
= −

n∑
j=1

∇rj
·
[(√

3 Pe e(θj)ψ(n) + F extψ(n) +
n∑
i=1
F ij − ∇rj

)
ψ(n)

]
(A.9)

−
n∑
j=1

∇θj
·
[(

Γextψ(n) +
n∑
i=1

Γij − ∇θj

)
ψ(n)

]

−
n∑
j=1

∇rj
·
∫∫

drn+1 dθn+1

[
F j,n+1ψ

(n+1)
]

−
n∑
j=1

∇θj
·
∫∫

drn+1 dθn+1

[
Γj,n+1ψ

(n+1)
]
.

A.3 Van der Waals Free Energy to the Fokker-Planck
Equation in Equilibrium

In this section a different approach is used to obtain the Fokker-Planck equation for a
passive Van der Waals gas. So we can compare the results and argue our derivations
have the correct limit. The Helmholtz free energy F (N, V, T ) is given by F = U − TS

with U(S, V,N) the internal energy, T the temperature and S the entropy. Recall
the Helmholtz free energy per unit of volume for a homogeneous (constant density)
Van der Waals gas fV dW = FV dW

V
= ρkBT

(
log ρΛD

1−bρ − 1
)

− aρ2, in D dimensions in
equilibrium. Here Λ = ~

√
2π

mkBT
is the Debye length, a = −

∫
drΦlong(r)/2 contributes

for the attractions between particles and b contributes for the (short ranged) repulsions.
The short ranged repulsions can be interpreted as an excluded volume, where b = BHS

2

the second Virial coefficient for hard spheres with diameter σHS.
In density functional theory (DFT), systems with a non-homogeneous density can

be considered. Start with the Helmholtz Free Energy functional F [ρ] where we include
an excluded volume contribution. Our density distribution ρ(r1) depends on the
position r1 with equilibrium density distribution ρ(r1). From this we will derive the
Fokker-Planck equation without self propulsions and interactions up to2 the 2nd virial
coefficient in the two-body correlation function. In units of kBT it is given by

F [ρ] =
∫

drρ(r)
(

log ρ(r)ΛD

1 − ρ(r)b − 1
)

−
∫

dr dr2K[Φlong(r2 − r)]ρ(r)ρ(r2)
2 . (A.10)

2Higher order corrections are not exact within the Van der Waals theory since the approximation
BHS

n /(BHS
2 )n−1 ≈ 1 for all n > 2 is made
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Here K is a function that only depends on the long ranged part of the pair potential
Φlong (often attractions). In the Van der Waals theory we assume no correlations and
we have K ′[Φlong] = 1. We take first a functional derivative to ρ(r) and then the spatial
gradient ∇, which gives

δF [ρ]
δρ(r1)

= log ρ(r1)ΛD

1 − ρ(r1)b
+ bρ(r1)

1 − ρ(r1)b
−
∫

dr2 K[Φlong(r1, r2)]ρ(r2), (A.11)

∇r1

(
δF [ρ]
δρ(r1)

)
= 1
ρ(r1)

∇r1ρ(r1)
(1 − bρ(r1))2 −

∫
dr2

(
F long

1,2 (r2 − r1)K ′[Φlong]
)
ρ(r2). (A.12)

When K is chosen such that the two-body correlation function g(2) = K ′ (at distances
larger than the size of the excluded volume), the last term can be interpreted as the
internal force per unit density.

On the other hand we know ∇( δF [ρ]
δρ(r1))ρ0(r) = ∇ (µ− V ext(r1)) = F ext at equilibrium

density ρ0(r). We notice that in this notation F ext and F int are forces per unit density,
so we need to multiply by ρ0(r) to obtain a total force acted on a position. We take
the position derivative to obtain the Fokker-Planck equation for a passive system and
we notice that this equilibrium result is also a steady state, so ∂tρ0 = 0. Thus, we
obtain

∂tρ0(r1) = 0 = ∇r1 ·
[
F extρ0(r1) +

∫
dr2F

long
1,2 ρ

(2)
0 (r1, r2) − ∇ρ0(r1)

(1 − bρ0(r1))2

]
, (A.13)

where ρ
(2)
0 (r1, r2) = ρ0(r1)ρ0(r2)g(2). This result holds in equilibrium, with the

orientation independent density ρ0(r1) =
∫

dθ1ψ(r1,θ1).
In the mean field approximation (or Van der Waals approximation), K ′ = g(2) ≡ 1,

so K[Φlong] = Φlong. In the low density approximation (second Virial) K ′ = g(2) ≡
exp[−βΦlong], so K = exp[−βΦlong] − 1 is the Mayer function.

A.4 The Fokker-Planck and the Excluded Volume
Contribution for the Density

In this section, we will derive a more convenient expression for
∫∫

dr2 dθ2F
short
12 ψ(2)

with F 12 = F short
12 + F long

12 (part of Equation 2.7), although we have to make some
approximations. We will end up with an excluded volume contribution which is accurate
to second order in bρ. In Appendix A.3, Equation A.13 the equilibrium result is given
for comparison.
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We assume that the short ranged potential Φshort has a well defined force leading
to some excluded volume. We define the excluded volume as V excl = 2b =

∫
drf(r)

with f(r12) = exp[−Φshort(r12)] − 1 the Mayer function, as in equilibrium Van der
Waals theory. We define the pair correlation function g(2) and u(2) with the equilibrium
second virial result scaled out, as

ψ(2)(1, 2, t) =ψ(1)(1, t)ψ(1)(2, t)g(2)(1, 2, t), (A.14a)
g(2)(1, 2, t) = exp

[
−βΦshort(r12)

]
u(2), (A.14b)

u(2) =u(2)(1, 2, t), (A.14c)

where an argument (i) is shorthand notation for (ri,θi). Further, we notice u(2) ≡ 1 in
the low density limit in equilibrium. Using basic calculus we find∫∫

dr2 dθ2
[
F short

12 (1, 2)ψ(2)(1, 2, t)
]

(A.15)

=ψ(1)(1, t)
∫∫

dr2 dθ2

[
[∇r12f(|r12|)] ×

(
ψ(1)(2, t)(1 + u(2)(1, 2, t) − 1)

) ]

=ψ(1)(1, t)
∫∫

dr2 dθ2

[
[∇r12f(|r12|)] ×(

ψ(1)(r1,θ2, t) + r12∇r1ψ
(1)(r1,θ2, t) +✘✘✘✘✘O(r12)2 + ψ(1)(2, t)(u(2)(1, 2, t) − 1)

)]
,

where we made for the term ψ(1)(2, t) = ψ(1)(r2,θ2, t) a first order approximation in
r2 near r1, which is allowed under assumptions that the short ranged interactions act
on a distance shorter then the density fluctuations (i.e. the thickness of a gas-liquid
interface) and is always allowed in the bulk3 of the system. Use partial integration and

3Homogeneous density, no external forces etc.
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coordinate changes to obtain

=ψ(1)(1, t)
∫

dθ2

{(
ψ(1)(r1,θ2, t)

∫
dr2∇r12f(|r12|)︸ ︷︷ ︸

→0

)
(A.16)

+
( [

∇r1ψ
(1)(r1,θ2, t)

] ∫
dr2 r12∇r12f(|r12|)︸ ︷︷ ︸

→2b

)

+
∫

dr2ψ
(1)(r2,θ2, t)(u(2)(1, 2, t) − 1)∇r12f(|r12|)

}

=ψ(1)(1, t)
∫

dθ2

{
2b∇r1ψ

(1)(r1,θ2, t) −
∫
B(r1,σHS)

dr2∇r12

(
ψ(1)(2, t)(u(2)(1, 2, t) − 1)

)}
,

where B(r1, σHS) is a sphere with center r1, and σHS is the radius of the short ranged
interactions (associated to an equivalent hard core).

In the case we can locally separate variables, i.e. we can split the distance and
orientation dependence as4 ψ(1)(r1,θ2, t) = ψ(1)

r (r1, t) × ψ
(1)
θ (θ2, t), we obtain

−
∫∫

dr2 dθ2
[
F short

12 (1, 2)ψ(2)(1, 2, t)
]

(A.17)

= − 2bρ
[
∇r1ψ

(1)(1, t)
]

− ψ(1)(1, t)
∫

dθ2

∫
B(r1,σHS)

dr2∇
(
ψ(1)(2, t)(u(2)(1, 2, t) − 1)

)
= ∇r1ψ

(1)(1, t)
(1 − bρ(1, t))2︸ ︷︷ ︸

Eff. enhanced diffusion

− ∇r1ψ
(1)(1, t)︸ ︷︷ ︸

Normal diffusion

+
✭✭✭✭✭✭✭✭✭✭✭✭✭✭

O((bρ(1, t))2∇r1ψ
(1)(1, t))

− ψ(1)(1, t)
∫

dθ2

∫
B(r1,σHS)

dr2∇r12

(
ψ(1)(2, t)(u(2)(1, 2, t) − 1)

)

with ρ(1, t) = ρ(r1, t) =
∫

dθψ(1)(r1,θ, t) the local density. We find an effective
enhancement in the diffusion due to the repulsions. If u(2) is anisotropic, we also find
an effective force.

We neglected cubic terms in bρ. Even in equilibrium, higher order terms in bρ will
not agree in general. In the Van der Waals approximation, the Virial coefficient Bn are
assumed to be powers of the second Virial coefficients Bn = Bn−1

2 for n > 2. Even in
the case of hard spheres in equilibrium, this approximation is not exact, see Table A.1.

4I assume this approximation is valid locally in a neighborhood for each r. It is valid if there
is locally translational invariance and the size of the particle is much smaller than the size of an
interface.
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B3/B
2
2 B4/B

3
2 B5/B

4
2 B6/B

5
2 B7/B

6
2 B8/B

7
2

2D 0.782 0.532 0.333 0.199 0.115 0.065
3D 0.625 0.287 0.110 0.038 0.013 0.004

Table A.1 An overview of higher Virial coefficients of hard spheres in terms of the
second Virial coefficient. The coefficient are taken from [3].

A.5 Translational Invariance in the Two Body Cor-
relation Function

In this section we will impose the local density approximation to obtain a Fokker-Planck
Equation for the two-body correlation function g(2). We will start with the expression
for ψ(n) in Equation 2.6, with n = 2. We will use a local density approximation
and we will assume we can neglect external forces and external torques and we have
translational and rotational invariance.

We start with a torque free, external field free system, i.e.

∂ψ(2)

∂t
= −

2∑
j=1

∇rj
·
[√

3 Pe e(θj)ψ(2) +
2∑
i=1
F ijψ

(2) − ∇rj
ψ(2)

]
(A.18)

−
2∑
j=1

∇θj
·
[
−∇θj

ψ(2)
]

−
2∑
j=1

∇rj
·
[∫∫

dr3 dθ3 F j,3ψ
(3)
]

= − ∇r1 ·
[√

3 Pe e(θ1)ψ(2) − F 12ψ
(2) − ∇r1ψ

(2) +
∫∫

dr3 dθ3F 13ψ
(3)
]

− ∇r2 ·
[√

3 Pe e(θ2)ψ(2) − F 21ψ
(2) − ∇r2ψ

(2) +
∫∫

dr3 dθ3F 23ψ
(3)
]

+ ∇2
θ1ψ

(2) + ∇2
θ2ψ

(2),

where ψ(2) = ψ(2)(1, 2, t) = ψ(2)(r1,θ1, r2,θ2, t). Impose translational invariance to
obtain ψ(2)(r12,θ1,θ2, t) only dependent on the distance of the two particles r12 =
r2 − r1, but not on the absolute position:

∂ψ(2)

∂t
= − ∇r12 ·

[√
3 Pe (e(θ2) − e(θ1))ψ(2) + 2F 12ψ

(2) − 2∇r12ψ
(2) (A.19)

+
∫∫

dr3 dθ3 (F 23 − F 13)ψ(3)
]

+ ∇2
θ1ψ

(2) + ∇2
θ2ψ

(2).
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Use the definition of the two-body correlation function g(2) in the local density approx-
imation, i.e.

ψ(2)(r12,θ1,θ2) =ψ(1) ψ(1) g(2)(r12,θ1,θ2), (A.20)

where ψ(1) is locally constant, to obtain

∂g(2)

∂t
= − ∇r12 ·

[√
3 Pe (e(θ2) − e(θ1)) g(2) + 2F 12g

(2) − 2∇r12g
(2) (A.21)

+
∫∫

dr3 dθ3 (F 23 − F 13)
ψ(3)

(ψ(1))2

]
+ ∇2

θ1g
(2) + ∇2

θ2g
(2).

A.6 Rotational Invariance in 2D at Low Densities

In this section, the Fokker-Planck Equation for g(2) is further derived. Start with
Equation A.21 in the low density limit where the inequality ψ(3) ≪ (ψ(1))2 holds. The
two-body force can be written as the gradient of the corresponding potential:

∂g(2)

∂t
= − ∇r12 ·

[√
3 Pe (e(θ2) − e(θ1)) g(2) − 2 (∇r12Φ12) g(2) − 2∇r12g

(2)
]

(A.22)

+ ∇2
θ1g

(2) + ∇2
θ2g

(2).

We consider the 2 dimensional case, thus the absolute angles (with respect to the x
axis) θ1 = θ1 and θ2 = θ2 are scalars. We introduce polar coordinates in the distance
vector (so particle 1 is at the origin), i.e. r12 = (r, φ) and recall in polar coordinates
∇r12 =

(
r̂ ∂
∂r

+ φ̂1
r
∂
∂φ

)
. We use the polar coordinates representation

e(θ) =x̂ cos θ + ŷ sin θ = r̂ cos(θ − φ) + φ̂ sin(θ − φ)

to find

∂g(2)

∂t
=∂2

θ1g
(2) + ∂2

θ2g
(2) − ∇r12 ·

[
(A.23)

r̂
(√

3 Pe (cos(θ2 − φ) − cos(θ1 − φ)) g(2) − 2 (∂rΦ12) g(2) − 2∂rg(2)
)

+ φ̂
(√

3 Pe (sin(θ2 − φ) − sin(θ1 − φ)) g(2) +
✘✘✘✘✘✘✘✘✘2
r

(
−∂φΦ12g

(2)
)

− 2
r
∂φg

(2)
)]
,

where we used Φ12 = Φ12(r) is independent of φ. For any vector A the divergence is
given by ∇ ·A = ∇ · (r̂Ar + φ̂Aφ) = 1

r
∂(rAr)
∂r

+ 1
r

∂Aφ

∂φ
in polar coordinates. We apply
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this rule and we obtain

∂g(2)

∂t
= ∂2

θ1g
(2) + ∂2

θ2g
(2) (A.24)

−
[

1
r

∂

∂r

(
r
(√

3 Pe (cos(θ2 − φ) − cos(θ1 − φ)) g(2) − 2 (∂rΦ12) g(2) − 2∂rg(2)
))

+ 1
r

∂

∂φ

(√
3 Pe (sin(θ2 − φ) − sin(θ1 − φ)) g(2) − 21

r
∂φg

(2)
) ]
.

With straightforward algebra we get

∂g(2)

∂t
=∂2

θ1g
(2) + ∂2

θ2g
(2) −

[
1
r

(
−2 (∂rΦ12) g(2) − 2∂rg(2)

)
(A.25)

+ ∂

∂r

(√
3 Pe (cos(θ2 − φ) − cos(θ1 − φ)) g(2) − 2 (∂rΦ12) g(2) − 2∂rg(2)

) ]

− 1
r

(√
3 Pe (sin(θ2 − φ) − sin(θ1 − φ)) ∂φg(2) − 21

r
∂2
φg

(2)
)
.

We impose rotation invariance in the correlation function, so the correlation func-
tion only depends on the relative orientation, but not on the absolute orientation
g(2)(r, φ, θ1, θ2) = g(2)(r, θ1 − φ, θ2 − φ) and ∂φg

(2) = −∂θ1g
(2) − ∂θ2g

(2). It is now
possible to introduce relative orientation θ1 − φ → θ1 and θ2 − φ → θ2:

∂g(2)

∂t
=∂2

θ1g
(2) + ∂2

θ2g
(2) −

[
1
r

(
−2 (∂rΦ12) g(2) − 2∂rg(2)

)
(A.26)

+ ∂

∂r

(√
3 Pe (cos θ2 − cos θ1) g(2) − 2 (∂rΦ12) g(2) − 2∂rg(2)

) ]

+
(√

3 Pe
r

(sin θ2 − sin θ1)
(
∂θ1g

(2) + ∂θ2g
(2)
)

+ 2
r2 (∂θ1 + ∂θ2)2 g(2)

)
.

We use this equation to determine the pair correlation function in the low-density limit
numerically.



Appendix B

Numerics

The numerical evaluations of partial differential equations are a major part of this
thesis. Programs exist that can do this evaluation where the user only needs limited
knowledge about the numerics. These programs can be used as a black box; a PDE
and settings are inserted in the program and the program returns numerical data. One
of these programs is COMSOL®. The goal of this appendix is to give a very brief
introduction to the methods this program uses.

A boundary value problem is a (partial) differential equation with boundary con-
ditions on all boundaries; the F-P equation for most steady state systems are often
boundary problems. In contrast, initial value problem have some boundaries with no
restrictions. An example is a system that is known at time t0, but not at time t1; there
are no restrictions on time t1.

B.1 Finite Element Methods

The goal of this section is to introduce the finite element method (FEM) and to give
the reader an intuitive idea what happens. This method computes a boundary value
problem for partial differential equations. We will not go into detail; we do not show
everything is well defined, we do not prove our statements nor will we give error
estimates. Books exist about FEMs [2], that hold several chapters to ensure everything
is well defined and introduce for instance Sobolev spaces and many different norms.
The website of the program COMSOL® we use, provides a short introduction as well
[4].
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Measure

We consider any boundary value problem that has at most a second order derivative, is
linear (or linearized) in the unknown function and has at all boundaries some boundary
condition. Both the range as well as the domain can be higher dimensional. We
examine the 1 dimensional example

h(x)∂
2u(x)
∂x2 + i(x)∂u(x)

∂x
+ j(x)u(x) =f(x) in U ⊂ R, (B.1a)

u(x0) = u0 u′(xN) = u1 U = (x0, xN) (B.1b)

where h(x), i(x), j(x) and f(x) arbitrary functions U → R and we assume everything
is well defined. We can multiply the PDE with any function v(x) ∈ V (as long as
the resulting formula are well defined1) and integrate over the domain U . Use partial
integration to get rid of second order derivatives2 and we can define the relation

⟨f, v⟩ def=
∫
U
f(x)v(x) dx (B.2)

=
∫
U

[h(x)u′′(x) + i(x)u′(x) + j(x)u(x)] v(x) dx
P.I.=
∫
U

[−h′(x)v(x) − h(x)v′(x) + i(x)v(x)]u′(x) dx+
∫
U
j(x)v(x)u(x) dx

+ h(x)v(x)u′(x)|xN
x0

def= a(u, v).

The idea behind this method is that the correct u(x) satisfies ⟨f, v⟩ = a(u, v) for all
v(x). For a finite subset of functions (i.e. continuous piecewise linear on some grid)
we state that the best uh(x) satisfies this equation for all vh(x) in the same subset of
functions. We notice a(u, v) and ⟨f, v⟩ are both bilinear in their arguments, so we will
formulate this problem as a linear algebra problem.

Shape Functions

Now we want to consider a set of shape functions Vh ⊂ V , such that Vh has a finite
basis. We take a partition of the domain; which is a set of sub-domains. In Figure B.1a
an example of a 2 dimensional partition using a triangularization is given. The mesh is
the maximal size of an element in the partition. The words mesh, grid or partition

1We do not denote nor prove the conditions required to keep everything well defined, (almost) all
examples from physics are.

2Motivation: More functions exist with a first (weak) derivative than with a second (weak)
derivative.
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in this context are often used interchangeably. Next we take the set of continuous3

piecewise polynomial functions up to some order P (or some other shape) as the set of
shape functions, such that the functions reduced to a sub-domain are polynomial.

(a) Example of a 2D triangulariza-
tion. The mesh does not have to
be uniform. Image by Hans Petter
Langtangen.

(b) Example of a finite basis. A set of basis functions
{φi(x)} is given (continuous piecewise linear functions)
for this grid. Further, uh(x) is a linear combination of
the basis function and is an approximation of u(x).

Fig. B.1 Visual illustrations for finite element method.

In our example we can take the set of piecewise linear functions. In Figure B.1b an
example of a basis and a visual representation of a function u ∈ V that is approximated
by a piecewise linear function uh ∈ Vh are illustrated.

Linear Algebra

If we define {φ0, · · · , φn} as the set of basis functions, where we constructed these
basis functions to be nonzero in a small number of sub-domains such as the example
in Figure B.1b, then we can define

Aij =a(φi, φj), Fi = ⟨f, φi⟩ , (B.3)

where A is a n × n matrix4 and F a vector with n elements. Since we reduced the
PDE to a linear algebra problem, we only have to solve the equation AU = F for the

3For continuous piecewise smooth bounded functions the weak derivative exists.
4It is common to choose the basis function to be 1 on one grid point and zero on all other, in other

words φi(xj) = δij . This way the matrix Aij is sparse and some of the proofs are simplified.
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vector U . We conclude

uh(x) =
∑
i

Uiφi(x), (B.4)

which is an approximation of u(x).

Error Estimations

A next step would be to argue that this approximation is the best approximation
within Vh, but this is not in the scope of this introduction. Further, there are a priori
and posteriori estimates for the errors ∥u− uh∥∗ under different norms, which are a
function of the mesh and order of the polynomials used. In fact, it possible to estimate
local errors and refine the mesh where the error is the worst. By refining the mesh
uniformly or non uniformly the error could be reduced. These estimates are given,
explained and proven in [2, Ch. 9]. In this thesis it was considered sufficient for
the error to be small enough, such that a refined mesh would not give a noticeable
difference.

B.2 Initial Value Problem

An initial value problem is a PDE where we know the initial condition but do not know
the final state. An example is

u′(t) =F [u(t), t] t ∈ (t0, tn), (B.5a)
u(t0) =u0, (B.5b)

where F [u(t), t] is some functional. The most simple way to solve this is numerically,
is with the Forward Euler method, which states

u(ti) = u(ti−1) + u′(ti−1)hi +O(h2
i ), (B.6)

where hi = ti − ti−1. At step i the error is O(h2
i ), so the total error is O(h) (if h = hi

for all i). There are other methods that converge faster. The fourth-order Runga-Kutta
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[10, Ch. 16.1, 16.2] method (RK4) states in 1 dimension that


u(ti) = u(ti−1) + hi

6 [k1 + 2k2 + 2k3 + k4] +O(h5
i ),

k1 = F [u(ti−1), ti−1] ,
k2 = F

[
u(ti−1) + hi

2 k1, ti−1 + hi

2

]
,

k3 = F
[
u(ti−1) + hi

2 k2, ti−1 + hi

2

]
,

k4 = F [u(ti−1) + hik3, ti] .

(B.7)

At step i the error is O(h5
i ), so the total error is O(h4), which convergences faster than

the Forward Euler method.
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Appendix C

Addendum: The Correlation
Length Beyond the Low Self
Propulsion Speed Limit

This addendum has been added July 4th 2017.

In Section 3.2 we gave an analytic expression for the one particle distribution function
for an ideal gas near a (hard) wall. This analytic expression only holds for small
Peclet numbers, Pe < Pecrit. We found the correlation length to be ξ =

√
1/3σ with

σ =
√

3x0 the particle diameter. We also found the numerical correlation length, which
we illustrated in Figure 5.4a, Section 5.1. For the two-body correlation function we
illustrated the correlation length in Figure 5.8.

Before, we were only able to make analytical derivations for small Peclet numbers.
In this addendum, we will derive an expression beyond the low Peclet number limit for
an ideal gas near a wall.

C.1 Analytical Expression for the One Particle Dis-
tribution Function away from a Wall

We start with Equation 3.13, which reduces in a planar geometry in 2 dimensions,
ψ(1)(r,θ) = ψ(1)(x, θ), near a hard wall to

√
3 Pe cos θ ∂xψ(1) = ∂2

xψ
(1) + ∂2

θψ
(1). (C.1)
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We substitute ψ(1)(x, θ)|x≫XPe = exp[−x/ξ]B(θ) for asymptotic large values of x ≫ XPe,
where B(θ) is some 2π periodic function and ξ the correlation length to be determined.
In contrast to Section 3.2, we do not make a Fourier expansion in B(θ). We obtain

0 = B′′(θ) +
[

1
ξ2 +

√
3 Pe cos θ 1

ξ

]
B(θ), (C.2)

which is solved by the Mathieu1 sine S(a, q, θ/2) and Mathieu cosine C(a, q, θ/2)
function

B(θ) = c1 C

(
4
ξ2 ,−

2
√

3 Pe
ξ

,
θ

2

)
+ c2 S

(
4
ξ2 ,−

2
√

3 Pe
ξ

,
θ

2

)
, (C.3)

where c1 and c2 are integration constant. We notice that for 0 ̸= q = −2
√

3 Pe
ξ

, only a
countable number of solutions is 2π-periodic and even in θ, these satisfy

4
ξ2 = a = ar(q) = ar

(
−2

√
3 Pe
ξ

)
(C.4)

where2 r/2 ∈ Z and ar(q) is the Mathieu Characteristic A function3. Thus we need to
solve this equation for ξ for some r/2 ∈ Z.

This equation has no analytical solutions4. For a given r in the limit Pe → 0, we
find that correlation length equals ξPe→0(r) = 2

|r|
σ√
3 ; in other words, the dominant

correlation length is the one corresponding to a smallest |r| with a nonzero amplitude in
our solution. The case r = 0 does not match the results obtained from the F-P equation.
For r = ±2, the obtained correlation length ξ and orientation dependence B(θ) match
with results obtained from the F-P equation, and thus this ξ is the correlation length.

In summery, the correlation length ξ in terms of x0 and orientation dependent
distribution function B(θ) satisfy

4
ξ2 =a2

(
−2

√
3 Pe
ξ

)
, (C.5a)

B(θ) =c1 C

(
4
ξ2 ,−

2
√

3 Pe
ξ

,
θ

2

)
+ c2 S

(
4
ξ2 ,−

2
√

3 Pe
ξ

,
θ

2

)
, (C.5b)

1See also: E. W. Weisstein, “Mathieu function.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/MathieuFunction.html.

2For r/ ∈ Z we obtain 4π-periodic function.
3The odd solutions are obtained by using the Mathieu Characteristic B function.
4Although in the limits 2

√
3 Pe
ξ ≪ 1 or 4

ξ2 ≪ 1 we can approximate ar(q) to obtain an analytic
equation.

http://mathworld.wolfram.com/MathieuFunction.html


C.2 The Correlation Length of an Ideal Gas Near a Wall 67

where we can find the integration constants c1 and c2 by demanding that the result is
real valued, 0 = ℑ[B(0)] = ℑ[B(2π)], and 2π periodic, B(0) = B(2π), and fit to the
remaining real-valued amplitude. We do not have to fit to the correlation length nor
the orientation dependence shape ∼ B(θ).

(a) (b)

(c) (d)

Fig. C.1 In this figure the orientation dependent part is of the one particle distribution
function ψ

(1)
x=X(θ) ∼ B(θ) of an ideal gas far from a wall, is shown at large distance X

for different Peclet numbers. The blue points are obtained from evaluation of the F-P
equation, the red line is obtained from the analytic expression.

C.2 The Correlation Length of an Ideal Gas Near
a Wall

In this section, we compare the obtained orientation dependent profile B(θ) and the
correlation length in Equation C.5 with those we obtained after fitting to the numerical
evaluated F-P equation. In Figure C.1 we see the orientation dependent distribution
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ψ(1)(x = X, θ) at large distance X, which agrees with the result we obtained from B(θ)
(Equation C.5).
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Fig. C.2 The correlation length is shown as a function of Peclet numbers for an ideal
gas near a wall. This figure is modified from Figure 5.4a. The main difference is
that the correlation length ξPe=100, obtained from the evaluated F-P equation, was
recalculated and an analytical obtained correlation length is included (solid line). We
obtained from the evaluated F-P equation the correlation length from both the density
(blue crosses ×) as from the polarizations (red plus +).

In Figure C.2 the correlation lengths are illustrated. This Figure is a remake of
Figure 5.4a. The correlation length ξPe=100, obtained from the fit to the evaluated F-P
equation, was recalculated and we included the analytical obtained correlation length
(Equation C.5). We find good agreement between the analytical correlation length and
the correlation length obtained from the evaluation of the F-P equation.

C.3 The Correlation Length of the Correlation Func-
tion

We have not found an analytical expression for the correlation length of the correlation
function. However, we tried ξ0 =

√
2ξ as a solution. In Figure C.3 we show the

result. This figure is a modified version of Figure 5.8. Even though we do not have an



C.3 The Correlation Length of the Correlation Function 69

0.01 0.1 1 10
0.7

0.8

0.9

1.0

Self propulsion speed Pe

C
or

re
la

tio
n

le
ng

th
Ξ 0

�Σ

Fig. C.3 The correlation length for the two body distribution function is shown as a
function of Peclet numbers. This figure is modified from Figure 5.8. We have included
the analytical expression for the correlation length ξ0 =

√
2ξ obtained from the ideal

gas near a wall (solid line). We don’t have any analytical justification for the correlation
length of the correlation function beyond the Pe → 0 limit. The points were obtained
from the numerical evaluated F-P equation.

analytical justification, the agreement is surprising for low and medium Peclet numbers.
For large Peclet numbers, we have doubts about the points - indicated by the large
error bars.



This page has been intentionally left blank


	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Active Matter
	1.2 Phase Coexistence
	1.3 The Two-Body Correlation Function
	1.4 Outline

	2 The Fokker-Planck Equation
	2.1 The Equations of Motion
	2.2 The Fokker-Planck Equation for all N Particles
	2.3 Reduction of the Phase Space to the n-Particle Distribution Function
	2.4 The 1-Particle Density Function
	2.5 The Closure: The Two-Body Correlation Function

	3 Analytic Expression for the Correlation Length
	3.1 General Expression for the Correlation Function at Distances Larger than the Range of the Force
	3.2 One Particle Near a Wall

	4 Stability Analysis of a Homogeneous Density
	4.1 Isotropic Correlation Function
	4.2 Unstable or Stable Perturbations to a Homogeneous Density
	4.3 MIPS with Isotropic Correlation Function
	4.4 Considering the Force in the Stability Analysis
	4.5 The Stability Analysis Without the Excluded Volume Approximation
	4.6 Stability Analysis of a Van der Waals Gas in Equilibrium
	4.7 Stability Analysis of a Van der Waals Theory out of Equilibrium

	5 Numerical Results
	5.1 The Correlation Length of Ideal Particles Near a Wall
	5.2 The Pair Correlation Function g=0(2) in 2D
	5.3 The Correlation Length of the Correlation Function
	5.4 Liquid-Gas Phase Coexistence in 2D

	6 Conclusion
	6.1 The Correlation Lengths is not Universal
	6.2 Proof of Concept to find Phase Separation

	7 Outlook
	7.1 With the F-P approach
	7.2 Different Approaches Required

	References
	Appendix A Derivations to obtain the Fokker-Planck Equation
	A.1 The Fokker-Planck Equation
	A.2 The Reduced Phase Space of the Fokker-Planck Equation
	A.3 Van der Waals Free Energy to the Fokker-Planck Equation in Equilibrium
	A.4 The Fokker-Planck and the Excluded Volume Contribution for the Density
	A.5 Translational Invariance in the Two Body Correlation Function
	A.6 Rotational Invariance in 2D at Low Densities

	Appendix B Numerics
	B.1 Finite Element Methods
	B.2 Initial Value Problem

	Appendix C Addendum: The Correlation Length Beyond the Low Self Propulsion Speed Limit
	C.1 Analytical Expression for the One Particle Distribution Function away from a Wall
	C.2 The Correlation Length of an Ideal Gas Near a Wall
	C.3 The Correlation Length of the Correlation Function


