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Abstract

This thesis consists of two parts. In part one we discuss the Kondo model. First we point out the
differences in physical properties between the one- and multi-channel Kondo model using a renormal-
ization group analysis. We also point out the challenges in obtaining exact solutions. Then we give
an overview of two approaches, bosonization and spin chain, for finding solutions for the one-, two-
and four-channel Kondo model. Using bosonization we review a mapping from the one- and two-
channel model to the exactly solvable resonant level model for a specific coupling strength. Following
previous work, we derive the Kondo effect for a spin chain construction with XX and Ising coupling,
showing the low energy behavior to be equivalent to the two- or four-channel Kondo model. We also
discuss why one, two and four channels are special and we point out the difficulties in extending these
approaches to other multi-channel Kondo models.
Then in part two we investigate survival of the topological edge effects of the Kitaev chain (Majorana
edge modes) after a quantum quench. We determine a stability region for the edge modes after chem-
ical potential and superconductivity quenches, by analyzing the wave functions using two measure:
inverse participation ratio and overlap. We see that this region does not cover the full topological
phase in parameter space. The Majoranas already disappear before the quenched system has reached
the phase transition.





“You can’t bully the javelin!”
Keith Beard
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Outline of the Thesis

This thesis consist of two parts. Part I contemplates the physics of the multi-channel Kondo model
and Part II considers a quantum quench for the Kitaev model. Both topics consider strongly corre-
lated quantum systems, but the approach and methods are distinct. The first part consist of analytic
and technical methods to find solution for the multi-channel Kondo model. While the second part is
a numerical lattice approach for quantum quenching the Kitaev chain.

The clear separation in the thesis is a reflection of my Master research. Initially, I focused on finding
interesting new physical results for the multi-channel Kondo model. This topic has been thoroughly
studied over the last fifty years by many of the physics brightest minds. It was therefore difficult to
obtain any novel results.
We (my supervisor and I) decided to switch towards the second topic. The quantum quench for the
Kitaev chain has not yet had as much attention by the physics community as the Kondo model.
We were able to find new interesting results for the Kitaev on quench survival of Majorana edge modes.

Both topics will be introduced extensively in the respective parts.
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Part I

Kondo Problem
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Chapter 1

Introduction to the Kondo Model

Figure 1.1: Resistivity minimum
for Au (gold). Figure from [1].

In 1934 in the Kamerlingh Onnes Laboratory (Leiden, Nether-
lands) three Dutch physicists made an interesting discovery.
When De Haas, De Boer and Van de Berg measured the low
temperature resistivity of gold (Au) they found a finite tem-
perature minimum (see Figure 1.1).[1] At the time, it was im-
possible to explain resistivity minimum in a metal theoretically.
Up to then, it was understood that the resistivity decreases as
the temperature decreases. In turned out that this peculiar be-
havior was caused by magnetic impurities. However, until the
1960’s the electrical properties due to magnetic impurities were
calculated by considering effective Heisenberg coupling, which
could not explain this low temperature minimum.
In 1964 Kondo presented a perturbative calculation that was a
good step towards unraveling the low energy behavior around
this minimum.[2] He calculated the resistivity up to third order
perturbation using the s-d model.[3] Figure 1.2 shows the s-d
system, consisting of a bath of itinerant electrons (gray) cou-
pled to a spin impurity (arrow). Kondo was not able to get a
full solution for the model. In his pertubative expansion he encountered terms that diverge for low
temperature (lnT ).

Figure 1.2: Schematic representation of the Kondo model. The gray area depicts the bulk electrons
couple to the local magnetic impurity (black arrow).

At the time, these type of divergences were unprecedented in many body systems and it took another
eleven years before the first solutions were found. In the meantime the quest for solving the model
became known as the Kondo problem, and later this model would become a test ground for newly
developed many-body techniques.
In 1975 Wilson proposed the first approach for solving the physics of the Kondo model.[4] Using nu-
merical renormalization group (NRG) he obtained the low temperature behavior of spin 1/2 Kondo

3



4 CHAPTER 1. INTRODUCTION TO THE KONDO MODEL

model. Later in 1980 Wiegmann [5] and Andrei [6] used the Bethe ansatz to get a solution for both
the high and low temperature regime, confirming Wilson results for low T .
In this thesis we will not review the work on NRG or Bethe ansatz. We will however discuss another
technique for finding solutions of the Kondo model. This technique, called bosonization, offers an
elegant way to find exact solutions for the Kondo model in certain fine tuned cases. We will also
discuss spin chain construction showing Kondo like behavior, in an attempt to find solutions for the
model.

What we have discussed above is the original one-channel Kondo model. From 1980 onwards there has
also been great interest in the multi-channel Kondo model, an extension of the original one-channel
Kondo model. In this case several electron baths are coupled to the same impurity. These baths are
not coupled directly, and the electrons from different channels can only interact via the impurity. In
Figure 1.3 we see two examples of multi-channel Kondo models. The interest in the multiple channels
was raised, because the physics described is qualitatively different from the one-channel Kondo model.
In the multi-channel Kondo model there is non-Fermi liquid behavior and due to an overscreening
effect there is a finite coupling fixed point, while the one-channel is characterized by Fermi liquid
behavior at strong coupling (we will see this in Chapter 2).[7]
Realizing the multi-channel Kondo model is experimentally very difficult. Completely separating the
baths is a real challenge. Generally finding solutions for multiple channels is also more difficult. In
one special case, two channels, we can find exact solutions using bosonization. Furthermore, it turns
out that there are spin chain constructions that exhibit multi-channel Kondo behavior, also yielding
results for the two- and four-channel case. Unfortunately, there are no other multi-channel Kondo
models solved so far. In this thesis we are trying to understand what makes these two cases special
and whether we can find extension to realize other multi-channel Kondo models.

(a)

(b)

Figure 1.3: Two- (a) and three- (b) channel Kondo models schematically depicted. The different
shades of gray denote different conduction electron baths. These baths all interact with the magnetic
impurity, but do not directly interact with each other.

The main objective of the first part of this thesis is to give an overview of the solvable multi-channel
Kondo model using two approaches, bosonization and spin chain constructions. We also discuss the
limitations of these approaches and debate whether we can find solvable multi-channel Kondo model
beyond these limitations.
In this chapter we will introduce the Kondo model along with the multiple channels. Also we will
discuss the physical justification of the Kondo model, by showing the relation to the microscopic
Anderson Impurity Model.
Then in Chapter 2 we discuss a perturbative approach to the Kondo model. We will encounter di-
vergences, which we quantify by discussing the renormalization group flow. Here we will already see
the different physical behavior between the one-channel and multi-channel Kondo model. Also we
see that this perturbative analysis breaks down because of strong coupling. In Chapter 3 we will
approach the Kondo Problem using bosonization. We will see how the one- and two-channel Kondo
model can be solved and we discuss why it is difficult to find solutions for other channels. Finally,
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Chapter 4 contains examples of spin chain constructions that have two- and four-channel Kondo like
behavior. This connection makes it possible to transfer results from (well studied) spin chains to
multi-channel Kondo models. In this chapter we will also discuss the search for spin chains that
relate other multi-channel Kondo models.

1.1 Kondo Hamiltonian

First we are going to take a look at the one-channel Kondo model. The multi-channel case is a
straightforward extension. As mentioned before, the Kondo model a is magnetic impurity model. A
bath of conduction electrons is coupled to a spin degree of freedom at the origin. Figure 1.2 displays
the bulk electrons in gray with the local magnetic impurity in the middle. Generically there can
be multiple magnetic impurities, but in this thesis we only consider one. We will also only discuss
spin 1/2 bath electrons and spin 1/2 impurities (unless otherwise stated). The three dimensional
Hamiltonian for the one-channel Kondo model is

H = H0 +Hint =
∑

~k,σ=(↑,↓)

(ε~k − µ)c†~kσ
c~kσ +

∑
i=x,y,z

σ,σ′=(↑,↓)

Jiψ
†
σ(0)τ

i
σσ′ψσ′(0)Si (1.1)

with

c~kσ =

∫
d3x ψσ(~x)e

−i~x~k; (1.2)

c†~kσ
=

∫
d3x ψ†

σ(~x)e
−i~x~k. (1.3)

Here c~kσ and c†~kσ
are respectively the spin 1/2 bath electron annihilation and creation operators in

momentum space and ψσ(~x) and ψ†
σ(~x) their counterparts in real space. The first term of (1.1) is

the non-interacting Hamiltonian with ε~k the single particle energy and µ the chemical potential. The
second term describes the interaction with the impurity spin Si, where τ i are the Pauli matrices
corresponding to spin 1/2 and Ji the coupling constants.

For the multi-channel Kondo model we simply have to add a channel index a and we find

Hmulti =

n∑
a=1

∑
~k,σ

(ε~k − µ)c†~kσa
c~kσa +

∑
i=x,y,z
σ,σ′

Jiψ
†
σa(0)τ

i
σσ′ψσ′a(0)S

i

 , (1.4)

where n is the number of channels. We see that every channel/bath is described by the free Hamil-
tonian and all baths couple at x = 0 to the spin impurity.

1.2 Kondo Model from Anderson Impurity Model

We have become familiar with the Kondo Hamiltonian in the previous section. This model is only
an effective model. In this section we will derive the Kondo model from a microscopic theory, the
Anderson impurity model (AIM). Here we give the main ingredients for this derivation. We will only
sketch the steps, the full derivation is in Appendix A.
In 1961 Anderson proposed an extension of a model by Friedel[8] to give a microscopic description of
a fermionic impurity model.[9] The AIM consists of spinful bath and impurity fermions coupled via
spin exchange. The impurity fermions also interact with each other through Coulomb coupling.

H =
∑
kσ

[
εkc

†
kσckσ + (Vkd

†
σckσ + V ∗

k c
†
kσdσ)

]
+
∑
σ

εdndσ + Und↑nd↓ . (1.5)
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The ckσ are the conduction electrons as usual with the single particle energy εk. The impurity
fermions are dσ and they couple to the conduction fermions with Vk and V ∗

k . Adding a fermion to
the impurity site comes with a cost εd, since ndσ is the number operator for the impurity. Finally U
is the Coulomb coupling.

The impurity can contain zero, one or two fermions, because there can be no spin (|0〉), an up
or down spin (|↑〉 , |↓〉) or an up and down spin (|↑↓〉). These three sectors of the Hilbert space have
energy 0, εd and 2εd + U respectively. In Figure 1.4 we see the three energy levels and the corre-
sponding states. On the other hand, in the Kondo model the impurity is described by a spin. This

Figure 1.4: Energy levels of the impurity in the AIM with corresponding particle sectors/states.

spin is either up or down, so there is always one “particle”. If we want to derive the Kondo model
from the AIM, we need the impurity to be singly occupied. Classically we would let εd go to −∞ and
let 2εd + U ∼ 1, so U → ∞. We can then shift all energies such that the impurity is singly occupied
as we see in Figure 1.4. Both the zero- and two-particle sectors are at high energy and are projected
out. Letting 2εd + U = 0 ensures particle hole symmetry, i.e. the zero- and two-particle sectors are
at the same energy. In the classical set-up the impurity would contain either an up- or a down-spin,
and there would be no spin flips.
However, quantum mechanically there can still be virtual excitations to the zero and two particle
sector (e.g. |↑〉 → |↑↓〉 → |↓〉). These excitations give rise to the Kondo coupling.

Since we are interested in the particle sectors we write the Schrödinger equation in the following
way:  H00 H01 H02

H10 H11 H12

H20 H21 H22

 |ψ0〉
|ψ1〉
|ψ2〉

 = E

 |ψ0〉
|ψ1〉
|ψ2〉

 , (1.6)

where |ψi〉 is a wave function in the i-particle sector of the Fock space. We can define projection
operators Pi projecting to the respective sectors given by

P0 = (1− nd↑)(1− nd↓), P1 = nd↑ + nd↓ − 2nd↑nd↓, P2 = nd↑nd↓ (1.7)

The entries of the matrix in (1.6) are defined as Hmn = PmHPn. Note that H20 = H02 = 0, because
in (1.5) there are no terms that create or annihilate two impurity degrees of freedom. The other
entries are given by

H00 =
∑
kσ

εkc
†
kσckσ, H11 =

∑
kσ

εkc
†
kσckσ + εd, H22 =

∑
kσ

εkc
†
kσckσ + 2εd + U (1.8)

H10 =
∑
kσ

Vkd
†
σ(1− ndσ̄)ckσ, H21 =

∑
kσ

Vkd
†
σndσ̄ckσ. (1.9)
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We can rewrite (1.6) to find an equation for the one particle state (see (A.9))

Heff |ψ1〉 =
(
H10(E −H00)

−1H01 +H11 +H12(E −H22)
−1H21

)
|ψ1〉 = E |ψ1〉 . (1.10)

Here the effective Hamiltonian Heff acts on a one particle impurity state. The first term describes
the impurity fermion being annihilated and a new impurity fermion being created. The second term
is simply the energy of the one particle state. The third term first creates a fermion with the missing
spin and then annihilates one of fermion, The first and third terms induce spin flips
Using (1.8), (1.9) and after commutation we find (see (A.16)(A.21))

H10(E −H00)
−1H01 ≈ −

∑
kk′σσ′

VkV
∗
k′
d†σckσc

†
k′σ′dσ′

εk′ − εd
; (1.11)

H12(E −H22)
−1H21 ≈ −

∑
kk′σσ′

Vk′V ∗
k

c†kσdσd
†
σ′ck′σ′

U + εd − εk′
, (1.12)

where we have assumed that |εd|, U � |H00| and E − εd → 0. To understand the latter we need to
realize that E = E0 + εd from (1.10), where E0 is the energy of the bath.
Note that we can write the fermion degree of freedom at the impurity as a spin 1/2, when acting on
the one particle Fock space.

~S =
∑
αβ

d†α
~σαβ
2
dβ . (1.13)

For a local impurity (Vk = V ) and |εd| � |εk| we can define A = − |V |2
εd

and B = |V |2
U+εd

to find (see
(A.30)):

Heff =
∑
kσ

εkc
†
kσckσ +

∑
kk′

(A+B)c†kα~σαβck′β
~S +

A−B

2
c†kσck′σ, (1.14)

The last term is a potential scattering, which vanishes if we assume particle-hole symmetry
(2εd + U = 0). The remaining Hamiltonian is of the same form as the Kondo Hamiltonian in (1.1).
Extending to multiple channels is more difficult, because we also have to suppress terms like c†k↑ack′↓bd

†
↓d↑

for a 6= b channel indices. These interactions couple different channels directly and should not be
present in the multi-channel Kondo Hamiltonian (1.4). It is impossible to consistently derive the
multi-channel Kondo model from the Anderson model.

1.3 Kondo Model from Three to One Dimension

In this section we are going to show that the three dimensional Kondo model put forward in the
previous section can effectively be described as a one dimensional model. On of the reasons we derive
this dimensional reduction is that bosonization is only applicable for one dimensional theories.
Here we will derive the 3D to 1D correspondence for a general local impurity.

Suppose we have a Hamiltonian

H = H0 + V, (1.15)

where the free Hamiltonian is

H0 =

∫
dk3

(2π)3
ξkc

†
~k
c~k (1.16)
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and the local interaction is

V =

∫
d~r V̂ (~r)ψ†(~r)ψ(~r) . (1.17)

We see that the single particle ξk = εk − µ is rotationally symmetric, because it only depends on the
norm of ~k. Furthermore in a local impurity model, such as the Kondo model, the interaction term is

V̂ (~r) = V̂ δ(r) . (1.18)

Hence the full Hamiltonian is rotationally symmetric. Therefore angular momentum is conserved and
using the spherical wave expansion[10] we can express the fermion field in terms of momentum, total
angular momentum and angular momentum in the z direction, because these are now good quantum
numbers:

ψ(~r) =

∫
dk

2π

∑
lm

ψklm(~r)cklm, (1.19)

where l is the total angular momentum and m = −l,−l + 1, . . . , l the angular momentum in the z
direction. The operator cklm is the fermion operator in this notation and ψklm(~r) is the wave function.
This coefficient can be decomposed in a radial and angular part:[11]

ψklm(~r) = Rkl(r)Ylm(φ, θ), (1.20)

where Rkl(r) are the radial functions depending only on the norm of ~r and Ylm(φ, θ) the spherical
harmonic functions depending only on the direction of ~r. The radial functions are given by the
spherical Bessel functions:[11]

Rkl(r) = 2kjl(kr) = (−1)l
2rl

kl

(
1

2
dr

)l
sin kr

r
. (1.21)

For a local interaction ψ(~r) only couples to the impurity at ~r = 0. From the right hand side of (1.21)
it is easy to see that only Rk0(r) is non-vanishing at r = 0. The spherical harmonic Y00(φ, θ) is
1√
4π

.[11]
Hence we find

ψ(0) = lim
~r→0

∫ ∞

0

dk

2π

2√
4π

sin kr

r
ck00 +O(r) (1.22)

We can drop the two zero indices from ck00, so the fermion ck only depends of the norm of the
momentum. The free Hamiltonian becomes

H0 =

∫ ∞

0

dk

2π
ξkc

†
kck. (1.23)

The full impurity Hamiltonian is now effectively one dimensional:

H =

∫ ∞

0

dk

2π
ξkc

†
kck + V̂ ψ(0)†ψ(0) (1.24)

This can easily be generalized by adding spin and channel indices, so we see that the three dimen-
sional Kondo model can be reduced to an effective one dimensional theory.

Summarizing, we have introduced a spin impurity theory known as the Kondo model for both one-
and multi-channel. This one-channel model was proposed by Kondo in 1975 as an attempt to describe
the resistivity minimum observed in some metals. In the next chapters we will discuss several ways
to solve the model. First in Chapter 2 we see that finding a perturbative solution is impossible due
to divergences. In Chapter 3 we will see that bosonization can offer exact solution is specific cases
and finally in Chapter 4 we discuss several spin chain constructions that possess Kondo like behavior.



Chapter 2

Kondo Renormalization Group

The physical properties of a system are encoded in the action. We can derive physical observables from
expectation values of operators, e.g. the energy is given by the expectation value of the Hamiltonian.
These expectation values are given by

〈Ô〉 = 1

Z

∫
d[ψ]Ôe−S , (2.1)

for an operator Ô. Here d[ψ] is path integral over the field, S is the action and Z =
∫
d[ψ]e−S the

partition function. For quadratic action these path integrals simply become Gaussian integrals, which
can be work out exactly.
However, the Kondo model (1.1) is not quadratic but contains quartic interacting terms. Therefore
the expectation values cannot be calculated exactly in this way. Nevertheless, we can treat the
interaction perturbatively given that the coupling constant is small.
Suppose the action is given by

S[ψ] = S0[ψ] + Sint[ψ] , (2.2)

where S0 is the quadratic free fermion action and the interaction part Sint is proportional to coupling
constant J � 1. We can perturbatively approximate (2.1) up to J2 as

〈Ô〉 = 1

Z

∫
d[ψ]Ôe−S0e−Sint (2.3)

=
1

Z

∫
d[ψ]Ôe−S0

(
1− Sint +

S2
int
2

)
=
Z0

Z

(
〈Ô〉0 − 〈ÔSint〉0 +

1

2
〈ÔS2

int〉0
)
, (2.4)

where Z0 is the partition function and 〈Ô〉0 is the expectation value for with respect to S0. We can
also expand 1

Z perturbatively to find

〈Ô〉 = 〈Ô〉0 −
[
〈ÔSint〉0 − 〈Ô〉0〈Sint〉0

]
+

1

2

[
〈ÔS2

int〉0 − 2〈ÔSint〉0〈Sint〉0 − 〈Ô〉0
(
〈S2

int〉0 − 2〈Sint〉20
)]

. (2.5)

This is an expansion up to second order in Sint, third order gives terms like 〈ÔS3
int〉0 with a factor

− 1
3! = − 1

6 .
In diagrammatic language the second (and higher) order term correspond to fermion loops.
Kondo did resistivity calculations using third order perturbation theory. Even though he could explain
the resistivity minimum found in some metals, he could not extend the solutions to low temperturs

9
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be cause the results blew up in this regime.
In 1970 Anderson invented a way to obtain renormalization group equations for the coupling con-
stants, known as a Poor man’s scaling.[12]
Here we are going to discuss a variation of this argument to show that the coupling constants for the
Kondo model diverge and a perturbative approach is impossible.

There is a general rule to determine whether the corrections as a result of the interactions contribute
to the physical properties of the system and can therefore let the perturbative analysis diverge.[13]
Doing a scale dimension analysis of the action, the scaling of the coupling constant (J) can be deter-
mined.
If J ∝ L−α for α > 0 the interaction is irrelevant, if J ∝ Lα the interaction is relevant and finally if
J ∝ L0 the interaction is marginal and we have to further investigate the contribution. In a bit we
will see that the Kondo model belongs to the last category.

2.1 One-Channel

We are going to look at the one-channel interactions first. To start we have to write down the Kondo
action. Recall that the Kondo Hamiltonian (1.1) is given by

Hint =
Jz
2

(
ψ†
↑(0)ψ↑(0)− ψ†

↓(0)ψ↓(0)
)
Sz +

J⊥
2

(
ψ†
↑(0)ψ↓(0)S

− + ψ†
↓(0)ψ↑(0)S

+
)
. (2.6)

where we have worked out the Pauli matrices explicitly and used S± = Sx ± iSy. Also we assume
anisotropic coupling (Jz and J⊥ = Jx = Jy).
In (1.13) we identified the spin impurity with a fermion degree of freedom, i.e. Sz = 1

2 (d
†
↑d↑ − d†↓d↓),

S+ = d†↑d↓, S− = d†↓d↑. We can rewrite (2.6) in terms of these fermions:

H0 =
∑
k,σ

(εk − µ)c†kσckσ +
∑
σ

λd†σdσ (2.7)

Hint =
Jz
4

(
ψ†
↑(0)ψ↑(0)− ψ†

↓(0)ψ↓(0)
)(

d†↑d↑ − d†↓d↓

)
+
J⊥
2

(
ψ†
↑(0)ψ↓(0)d

†
↓d↑ + ψ†

↓(0)ψ↑(0)d
†
↑d↓

)
(2.8)

Since the spin-fermion transformation requires that the fermion is singly occupied (i.e.
∑

σ d
†
σdσ = 1)

we have to add a term to the free Hamiltonian. Coleman showed that adding
∑

σ λd
†
σdσ ensures that

the fermion remains in the one particle Fock space if λ→ ∞.[14]
From this Hamiltonian we can derive the action

S = T
∑
ωn,σ

∫
dk

(2π)
c†kσ(iωn − (εk − µ))ckσ + T

∑
ωn,α

d†α(iωn − λ)dα

− Jz
4

(
ψ†
↑(0)ψ↑(0)− ψ†

↓(0)ψ↓(0)
)(

d†↑d↑ − d†↓d↓

)
− J⊥

2

(
ψ†
↑(0)ψ↓(0)d

†
↓d↑ + ψ†

↓(0)ψ↑(0)d
†
↑d↓

)
,

(2.9)

where we have replaced the time integral by the Matsubara sum with fermionic Matsubara frequencies
ωn = (2n+1)π

β (β = 1
kBT ).

From dimensional analysis we see that both d and ckσ scale as L0, therefore Jz,⊥ ∝ L0 as well and the
Kondo interactions are marginal. This means we have to further investigate whether they contribute.
Along the lines of Feynman diagrams we can define propagators and vertices. The propagators for
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ckσ and dα are given by
1

iωn−(εk−µ) ckσ
1

iωn−λ dα . (2.10)

The two interactions in (2.9) are

σ σ

αα

σαJz

4

σ −σ

σ−σ

J⊥
2

(2.11)

The two different vertices are depicted by a crossed circle (Jz) and a square (J⊥). We see that the
sign of the Jz-vertex depends on the spin of the conduction fermion (σ) and the impurity (α). Here
spin up (down) corresponds to σ, α = 1 (−1).
The momenta are left out, because the the vertices are momentum independent. This does not mean
that momentum integrals can also be dropped.

We can now return to the perturbative expansion to calculate the corrections to the four point
functions related to the vertices above. For instance

〈c†kσck′σd
†
αdα〉 = 〈c†kσck′σd

†
αdα〉0 − Γσα

12,z (2.12)

is related to the upper vertex. We have used ψσ(0) =
∑

k ckσ. The first and second order corrections
are given by Γσα

12,z, where the first order is simply the vertex in (2.11). The divergences in second
order later give rise to the renormalization group (RG) flow.
The corrections are diagrammatically given by

Γσα
12,z =

σ σ

αα

Γσ
12,⊥ =

σ −σ

σ−σ

(2.13)

We can now also say a word on the multitude of terms in (2.5). For instance the sum of the four second
order terms ensures that only certain diagrams remain. These are called one particle irreducible (1PI),
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meaning the diagram is connected after cutting one propagator. Diagrams such as the following are
suppressed

σ σ

α α

(2.14)

The diagrams that do contribute to the z-four point function are

Γσσ
12,z =

Jz
4

−


σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

−σ
−σ

σ

σ

σ

σ

 (2.15)

Γσ−σ
12,z = −Jz

4
−


σ

−σ

σ

−σ

σ

−σ

σ

−σ
σ

−σ

σ

−σ

−σ

σ

σ

−σ

σ

−σ

 (2.16)

and the perpendicular corrections are

Γσ
12,⊥ =

J⊥
2

−


−σ

σ

σ

−σ

−σ

σ

σ

−σ

σ

−σ

−σ

σ

σ

σ

σ

−σ

−σ

σ

−σ
−σ

σ

−σ

−σ

σ


(2.17)

If we take the factor from the vertices out, the spin indices can be dropped because only the vertex
operators depend on the spin. We are left with two diagrams we need to calculate:

Γ2a =

ν1 + ωn

−ωn

ω1

ω2

ω3

ω4

(2.18)

Γ2b =

ν2 + ωn

ωn

ω1

ω2

ω3

ω4

, (2.19)
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−kF kF

k

ξk

Figure 2.1: Linearization of the free energy at the Fermi surface.

where ν1 = ω1 + ω2 and ν2 = ω1 − ω4. Hence the diagrams (2.15), (2.16) and (2.17) become

Γσσ
12,z =

Jz
4

−
(
J2
z

16
Γ2a +

J2
z

16
Γ2b +

J2
⊥
4
Γ2b

)
(2.20)

Γσ−σ
12,z = −Jz

4
−
(
J2
z

16
Γ2a +

J2
z

16
Γ2b +

J2
⊥
4
Γ2a

)
(2.21)

Γσ
12,⊥ =

J⊥
2

+
JzJ⊥
4

(Γ2a − Γ2b) (2.22)

First we take a look at Γ2a:

Γ2a = −T
∑
ωn

∫
dk

2π

1

iωn + iν1 − ξk

1

−iωn − λ
= T

∑
ωn

∫
dk

2π

1

iωn + iν1 − ξk

1

iωn + λ
(2.23)

The minus sign in the middle term comes from the closed fermion loop.
We can work out the Matsubara sum using

∑
ωn
f(iωn) = β

∑l
i=1 ηF (zi)Reszif (see (B.4)), where

ηF is the Fermi-Dirac distribution and zi the poles of f .

Γ2a =

∫
dk

2π

1

ξk − iν1 + λ
(nF (ξk)− nF (−λ)) (2.24)

We let T → 0, then nF (ε) → θ(−ε). Where θ is the heavy side function. Since λ is positive nF (−λ)
goes to 1.

Γ2a = −
∫

dk

2π

1

ξk − iν1 + λ
θ(ξk) (2.25)

We have impose a cut off Λ on the energy around the Fermi surface µ =
k2
F

2m to remove the UV
divergences. The cut off allows us to linearize the momentum around the Fermi points ξk = kF

m (±k−
kF ) = vF (±k − kF ). Figure 2.1 shows the linearized spectrum. We can now substitute u = ξk. Note
that we have to add a factor 2 to account for both Fermi points (±kF ).

Γ2a = −2
1

2πvF

∫ Λ

−Λ

du
1

u− iν1 + λ
θ(u) = −2

1

2πvF

∫ Λ

0

du
1

u− iν1 + λ
(2.26)

The cut off is much larger than the λ, so the first diagram is

Γ2a = −2
1

2πvF
log

(
Λ

λ− iν1

)
. (2.27)
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Now Γ2b is similar,

Γ2b = −T
∑
ωn

∫
dk

2πvF

1

iωn + iν2 − ξk

1

iωn − λ
(2.28)

Along the same lines we obtain

Γ2b = 2
1

2πvF
log

(
Λ

λ+ iν2

)
(2.29)

Since λ� iν1, iν2 we can conclude

Γ2a = −Γ2b = −2
1

2πvF
log

(
Λ

λ

)
(2.30)

Now we can plug this into (2.20):

Γσα
12,z = σα

[
Jz
4

− 1

πvF

J2
⊥
4

log

(
Λ

λ

)]
(2.31)

Γσ
12,⊥ =

J⊥
2

− 1

πvF

JzJ⊥
2

log

(
Λ

λ

)
(2.32)

These corrections have to be independent of the cut off. Changing the cut off from Λ to Λ′ for a
general correction Γg = g(Λ)−A log

(
Λ
λ

)
gives

g(Λ)−A log

(
Λ

λ

)
= g(Λ′)−A log

(
Λ′

λ

)
(2.33)

= g(Λ′)−A log

(
Λ′

Λ

)
−A log

(
Λ

λ

)
(2.34)

Hence we see that g(Λ) = g(Λ′) − A log
(

Λ′

Λ

)
. The cut offs are strictly positive so we can write

Λ = Λ0e
l and Λ′ = Λ0e

l−δl:

g(l) = g(l − δl) +Aδl (2.35)

For small δl we obtain the RG-flow

dg(l)

dl
= A (2.36)

Applying this to (2.31) and (2.32) we get the following RG-equations:

dJ̃z(l)

dl
= J̃2

⊥ (2.37)

dJ̃⊥(l)

dl
= J̃zJ̃⊥ (2.38)

where J̃ = J
πvF

.
This flow is depicted in Figure 2.2.
In the ferromagnetic case (i.e. J̃z < 0) the perpendicular coupling flows to zero for |J̃⊥| < |J̃z|. In the
isotropic ferromagnetic case J̃z = |J̃⊥| < 0 both couplings vanish and the impurity decouples from
the bath. If |J̃⊥| > J̃z, meaning spin flipping (J̃⊥) is dominant over aligning spin (J̃z), the coupling
flows towards the anti-ferromagnetic regime.
The anti-ferromagnetic coupling always blows up as we see in Figure 2.2. Locally the system behaves
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Figure 2.2: RG-flow of the anisotropic one-channel Kondo model.

a Fermi liquid. In the strong coupling limit the RG breaks down and the coupling becomes isotropic,
this energy scale is known as the Kondo temperature (TK). In the isotropic limit we can easily solve
the RG equation:

J̃(l) =
J0

1− J̃0l
(2.39)

The coupling becomes of the order of 1 at Tk for l = 1−J̃0

J̃0
and blows up right after. Past this point

conventional RG is therefore not valid anymore.

Also higher order correction will not prevent the interaction to run to strong coupling.[15] Hence
perturbative analysis is not valid for the Kondo model and there is a need for other approaches. In
Chapter 3 we will see that with bosonization is one of those techniques, giving exact results and in
Chapter 4 we recognize the Kondo effect in spin chain constructions.

Figure 2.3: Due to the strong coupling fixed point the impurity spin traps a bath electron with
opposite spin, resulting in a singlet ground state.

Nevertheless, at this strong coupling fixed point we can say something about the ground state. For
strong anti-ferromagnetic coupling the impurity spin tends to trap a conduction fermion with opposite
spin as we see in Figure 2.3. The arrow with the circled tail is the impurity spin. This spin-couple
form as singlet 1√

2
(|↑d↓c〉+ |↓d↑c〉), with d the impurity spin and c the trapped conduction fermion

spin. The impurity is screened and excluded from the system.[15]

2.2 Multi-Channel

In this section we will see that the multi-channel Kondo model exerts qualitatively different physical
behavior than the one-channel Kondo model. In this case we will also take the two-loop corrections
into account. This two loop RG will show that there is a finite fixed point for the coupling constants.
This finite fixed point lies energetically beyond the Kondo temperature (TK). We therefore have to
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let the system first run to TK . In Figure 2.2 we see that the coupling flows to isotropy as it approaches
the strong coupling limit (TK). So here we have to consider the isotropic Kondo interaction.
The action for the isotropic n-channel Kondo model is just an extension of the one-channel case (2.9):

S =

n∑
a=1

[
T
∑
ωn,σ

∫
dk

2π
c†kσa(iωn − (εk − µ))ckσa + T

∑
ωn,α

d†α(iωn − λ)dα

− J

4

(
ψ†
↑a(0)ψ↑a(0)− ψ†

↓a(0)ψ↓a(0)
)(

d†↑d↑ − d†↓d↓

)
− J

2

(
ψ†
↑a(0)ψ↓a(0)d

†
↓d↑ + ψ†

↓a(0)ψ↑a(0)d
†
↑d↓

)]
(2.40)

From this action we find the same propagators (2.10) and vertices (2.11) as in the one-channel case,
although the conduction fermion propagators now carry a channel index.

Furthermore, we work in the large n limit, where n is the number of channels. Therefore we only
have to consider diagrams containing a bath fermion loop. These diagrams are proportional to n� 1
and therefore dominate the other corrections.
Before we calculate the two-loop contributions for the coupling constants we see that there is also
a contribution that renormalizes the impurity fermion operators. Note that we can write the free
action of the impurity as

d†αG
−1
0 dα, (2.41)

where G0 = iω− λ is the bare Green’s function. We can find a two-loop diagrams that contribute to
the total Green’s function, and from the Dyson equation we see that

G(Λ)−1 = G−1
0 − Σ(Λ) (2.42)

The self energy diagrams are given by

Σ =
∑
σ

α

σ

σ

α

α + α

−α

α

−α

α =
3nJ2

8
Σ1 (2.43)

Here the fermion loops are displayed with a thick line, meaning there is a summation over the channels.
The two loop diagram we need to calculate is

Σ1 = ω

ωm

ωn

ω − ωn + ωm

ω (2.44)

= T 2
∑

ωn,ωm

∫
dk

2π

dk′

2π

1

i(ωm − ωn) + (iω − λ)

1

iωn − ξk

1

iωm − ξk′
. (2.45)

Working out the Matsubara summations using (B.4) we obtain

Σ1 =

∫
dk

2π

dk′

2π

ηF (ξk′)

(iω − λ) + ξk′ − ξk
(ηF (−λ+ ξk + iω)− η(ξk)). (2.46)

Letting T → 0 we see that ηF (x) → θ(−x). Note that λ� 1 so ηF (−λ+ ξk + iω)− η(ξk) → θ(ξk).
We linearize the energy and find

Σ1 =
4

(2πvF )2

∫ Λ

0

dudu′
1

(iω − λ)− (u+ u′)
. (2.47)
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In the end we have to renormalize the operators, so we are only interested in terms proportional to
(iω − λ). Expanding (2.47) in this term gives

Σ1 = −(iω − λ)
1

(πvF )2

∫ Λ

0

dudu′
1

(u+ u′)2
(2.48)

= −(iω − λ)
1

(πvF )2
log(Λ), (2.49)

where all non leading order terms have been dropped. Hence the self energy is

Σ = −(iω − λ)
3nJ2

8(πvF )2
log(Λ). (2.50)

And we find

d†αG
−1dα = d†αG

−1
0

(
1− 3nJ2

8(πvF )2
log(Λ)

)
dα = d̃†αG

−1
0 d̃α, (2.51)

with d̃ = d
√
Z the renormalized operators. Here Z = 1− 3nJ2

8(πvF )2 log(Λ). The impurity operators are
now still in the unrenormalized form d. To correct for this we rescale the coupling constant J → J

Λ
to find

Jd†dc†c =
J

Z
d̃†d̃c†c (2.52)

giving an indirect contribution to the renormalization of J .
We will now determine the contributions to the direct renormalization of J . The one-loop diagrams
are given by the one-channel corrections in Section 2.1. For the two-loop corrections we are only
going to consider diagrams containing a closed fermion loop (e.g. loop not connected to external
fermion propogators). Before we calculate the two-loop contributions we can exclude some diagrams.
For instance diagrams with a tadpole fermion loop,

σ

α α

(2.53)

does not contribute, since it is proportional to
∑

σ=±1 σ = 0. Besides, if it were non-zero, it would
have been absorbed by a renormalization of the impurity propagator. Nevertheless, it means that
these fermion loop diagrams vanish:

σ

σ σ

σ′

σ

σ σ

σ

σ

σ

σ

σ

−σ

−σ −σ

σ′
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Another diagram we can encounter is

α α

σ′ σ′

σ σ

ββ (2.54)

However we already see that

ωn + ν1 ωn (2.55)

is proportional to T
∑

ωn

1
iωn+iν1−λ

1
iωn−λ = ηF (λ)

(
1

−ν1
+ 1

ν1

)
= 0. Therefore (2.54) does not con-

tribute either. Concluding the only possible two loop contributions to the vertices containing a
fermion loop are:

Γσσ
3,z =

∑
σ′

σ σ

σ σ

σ σ

σ′

σ′
+

σ σ

σ σ

−σ −σ

−σ

σ
= −nJ

3

32
Γ3 (2.56)

Γσ−σ
3,z =

∑
σ′

σ σ

−σ −σ

−σ −σ

σ′

σ′
+

σ σ

−σ −σ

σ σ

σ

−σ
= n

J3

32
Γ3 (2.57)

Γσ
3,⊥ =

σ −σ

−σ σ

−σ σ

σ′

σ′
= −nJ

3

16
Γ3 (2.58)

The summation over the channels gives the factor n, we see on the right hand side.
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We are now faced with calculating just one diagram:

Γ3 =

ω1
ω2

ω3 ω4

ωn + ν ωn

ωn + ωm + ω

ωm

(2.59)

where ν = ω2 − ω1 (bosonic Matsubara frequency), and ω = −ω4 (fermionic Matsubara frequency).
This diagram is given by:

Γ3 = (−1)2T 2
∑

ωn,ωm

∫
dk

2π

dk′

2π

1

i(ωn + ν)− λ

1

iωn − λ

1

i(ωn + ωm + ω)− ξk

1

iωm − ξk′
, (2.60)

with ξk = εk−µ and T = 1
β the temperature. Using (B.4) we can work out the Matsubara summations

and find:

Γ3

∫
dk

2π

dk′

2π

ηF (ξk′)ηF (ξk − ξk′ − iω)

(i(ω − ν) + ξk′ − ξk + λ)(iω + ξk′ − ξk + λ)

]
(2.61)

All terms containing ηF (λ) have been dropped, because this Fermi-Dirac distribution vanishes even
for finite temperatures. Furthermore, some terms cancel out and we remain with this double integral.
Using 1

AB = 1
B−A

[
1
A − 1

B

]
we find

Γ3 =

∫
dk

2π

dk′

2π

[
1

i(ω − ν) + ξk′ − ξk + λ
− 1

iω + ξk′ − ξk + λ

]
−ηB(ξk − ξk′)

iν
ηF (ξk′), (2.62)

where we have used that ηF (α + iω) = −ηB(α), with ω a fermion Matsubara frequency and ηB the
Bose-Einstein distribution.
Now we let the temperature go to zero, which gives ηF (α) → θ(−α) and ηB(α) → −θ(−α), with θ
the heavy side function. We find

Γ3 =

∫
dk

2π

dk′

2π

[
1

i(ω − ν) + ξk′ − ξk + λ
− 1

iω + ξk′ − ξk + λ

]
θ(ξk′ − ξk)

iν
θ(−ξk′) (2.63)

As we did in the one-channel case the spectrum can be linearized and the momentum integrals become
energy integrals:

Γ3 = 4

∫ Λ

−Λ

du′

2πvF

∫ Λ

−Λ

du

2πvF

[
1

i(ω − ν) + u′ − u+ λ
− 1

iω + u′ − u+ λ

]
θ(u′ − u)

iν
θ(−u′) (2.64)

For small iν we recognize 1
A−u−iν − 1

A−u = iν d
du

1
A−u and we can work out the first integral:

Γ3 = − 4

(2πvF )2

∫ 0

−Λ

du′
1

iω + u′ + Λ+ λ
(2.65)

where we have dropped the term u = u′ because it will be linear in Λ in the end, and therefore is not
leading order.
Working out the remaining integral results in

Γ3 = − 4

(2πvF )2
log

(
Λ + λ+ iω

λ+ iω

)
= − 4

(2πvF )2
log

(
Λ

λ

)
(2.66)
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We can now combine this with (2.31) and (2.32) to find

Γσα
123,z = σα

[
J

4
−
(

1

πvF

J2

4
− nJ3

32(πvF )2

)
log

(
Λ

λ

)]
(2.67)

Γσ
123,⊥ =

J

2
−
(

1

πvF

J2

2
− nJ3

16(πvF )2

)
log

(
Λ

λ

)
(2.68)

Here Γ123 denotes the vertex contributions up to third order (two loop).
Note that both contributions are the same, as they should in the isotropic limit. Recall that the self
energy also contributes to the renormalization of J :

J

Z
≈ J +

3nJ3

8(πvF )2
log(Λ) (2.69)

Expanding (2.67) up to J3 gives

1

4

[
J̃ −

(
J̃2 − nJ̃3

(
1

8
+

3

8

))
log(Λ)

]
(2.70)

=
1

4

[
J̃ −

(
J̃2 − nJ̃3

2

)
log(Λ)

]
, (2.71)

where J̃ = J
πvF

.

Figure 2.4: [Upper] Anti-ferromagnetic strong coupling limit, binding of two anti-aligning conduction
electron spins with the impurity spin. [Lower] Effective anti-ferromagnetic chain with opposite spin
and effective Kondo coupling.

And we obtain the following RG-flow

dJ̃(l)

dl
= J̃2 − n

2
J̃3 (2.72)

There is a finite coupling fixed point at J̃ = 2
n . At this stable fixed point the system is described by

a non Fermi liquid.[10, 15]
We can make the existence of this finite stable fixed point intuitively clear in the two-channel case,
following the explanation in Gianmarchi (2004).[15] First of all note that the J = 0 fixed point is
unstable as we see in Figure 2.2. Now suppose there is no finite fixed point. The system flows to the
strong coupling limit according to Figure 2.2. In this strong coupling fixed point the system favors
to anti-align the conduction spins with the impurity spin at the origin. Therefore the impurity spin
(e.g. up) binds two fermions with opposite spin (e.g. down), one for each channel. This we see in the
upper picture of Figure 2.4. The arrow with circled tail is the impurity spin and the other arrows the
bath electrons. This behaves as an effective spin down impurity, see the lower picture of Figure 2.4.
These bath electrons that are bound to the spin can still hop in and out with coupling constant t
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(tight binding chain). This results in an weak effective Kondo coupling, which in its turn would flow
to strong coupling. Hence the strong coupling limit is not stable either. Therefore one would expect
there to be a finite fixed coupling, as we saw in (2.72).

For n small (e.g. two-channel) this finite coupling fixed point is still to large and the results of
a perturbative analysis are not valid.
In the next chapter we will see that bosonization and spin chains can help us understand the
low-n-channel Kondo models better.
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Chapter 3

Bosonization for the Kondo Model

Bosonization has been developed in the late 1970s after Coleman and Mandelstam[16, 17], and Mat-
tis and Luther[18, 19] independently derived that the correlation functions for Dirac fermions can be
expressed by the correlation functions of free bosons.[10]
It has proven to be useful for solving one dimensional metals and was essential in understanding an
interacting itinerant electron system, known as the Tomanaga-Luttinger Liquid.
In this chapter we will use bosonization to find exact solutions for both one- and multi-channel Kondo
models. First, we will briefly introduce the important ingredients of bosonization. In Appendix C
there is a more comprehensive discussion. There are different conventions for defining the bosoniza-
tion framework. In this thesis we will stick with the set-up Von Delft uses, because it is elegant and
short in notation.[20] Then we will use bosonization to get exact results for the one- and two-channel
Kondo models in Sections 3.3 and 3.4. Finally, in Section 3.5 we give an outlook for bosonization and
the Kondo model.

Before we proceed to technical details of bosonization, it is important to underline that there are
special circumstances for bosonization to be applicable.
First of all, we need a finite density of states at the Fermi surface. For the one-dimensional Kondo
model we are going to discuss, this means we have to be able linearize the Hamiltonian close to the
Fermi point, i.e. describe the fermion by a Dirac theory. Furthermore bosonization is only applicable
in one dimension. Fortunately, in Section 1.3 we saw that because of rotational symmetry the three
dimensional Kondo Hamiltonian can be reduced to an effective one dimensional theory.
We underline the difference between one dimension and higher dimensions using Figure 3.1. Figure
3.1a depicts a quadratic spectrum in one dimension with a Fermi surface. Suppose we excite a fermion
from below the Fermi surface with a finite amount of energy to above the Fermi surface. We see that
the dispersions allows this fermion to hop only to one point. On the other hand, Figure 3.1b shows
a projection of a two dimensional Fermi surface. Now suppose there is fermion at ~k with |~k| < kF
excited above the Fermi surface, it can go to any unoccupied state on the dashed circle. Hence the
state is smeared out over this circle, therefore a excitation in energy does not relate one-to-one to a
momentum change. This energy-momentum relation is essential for bosonization, hence one dimen-
sion is special.

Note that in Figure 3.1a we only show k > 0, this is allowed because we integrated out the rotational
degrees of freedom leaving only a radial (positive) component. This has two major advantages. First,
it makes the definitions of the bosons simpler. Secondly, after linearization we do not have to care
about the filled Fermi sea for the right movers (i.e. linearization around +kF ) for negative k.

23
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kF

(a)

(b)

Figure 3.1: Excitations from below the Fermi surface (Ek) to above (Ek+q) for one dimension (a)
and two dimensions (b). The spectrum for two dimensions is projected in the kx, ky-plane. For one
dimension there is only one point the excited particle can go to, for two dimensions there is a whole
circle (dashed).

3.1 Bosonization Ingredients

There is a very natural way to relate a boson with fermions, because the density fermion operator
behaves as a boson. Bosonization uses this fact to construct boson operators: b ∝ ψ†ψ. We already see
that a great advantage of this boson representation is the fact that fermion density-density interaction
is quadratic in bosonic language, ψ†ψψ†ψ ∝ b†b.
More explicitely the bosonization identity, relating fermions to the new boson operators is

ψσ(x) = Fσa
−1/2e−i 2π

L (N̂σ− 1
2 δb)xe−iφσ(x), (3.1)

where a is the lattice spacing, N̂σ the fermion number operator and L the length of the system. The
factor Fσ is a Klein factor. Without the latter ψ (and ψ†) would conserve particle number (φ ∝ ψ†ψ),
while it should annihilate (create) a particle. Furthermore, it ensure the anti-commutation relations
are satisfied since:

{F †
σ , Fσ′} = 2δσσ′ and FσF

†
σ = F †

σFσ = 1 (3.2)

The boson field φσ(x) is given by

φσ(x) = ϕσ(x) + ϕ†
σ(x) = −

∑
q>0

1
√
nq

(
e−iqxbqσ + eiqxb†qσ

)
e−aq/2 (3.3)

where q = 2πnq

L with nq ∈ Z and boson operators

bqσ =
−i
√
nq

∑
k

c†k−qσckσ (3.4)

b†qσ =
i

√
nq

∑
k

c†k+qσckσ (3.5)
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The bqσ satisfies canonical commutation relations:

[bqσ, bq′σ′ ] = δqq′δσσ′ (3.6)

and φ satisfies

[φσ(x), φσ′(x′)]
L�(x−x′) a→0

= −δσσ′2πi sgn(x− x′) (3.7)

[φσ(x), ∂xφσ′(x′)]
L�(x−x′) a→0

= δσσ′2πi

[
δ(x− x′)− 1

L

]
(3.8)

Where sgn(x) is the sign function, analytically continued in 0 (i.e. sgn(0) = 0). The free linearized
fermion Hamiltonian

H0 =
∑
σ,k

vF k :c†kσckσ:=
∑
σ

∫ L/2

−L/2

dx

2π
:ψ†

σ(x)ivF∂xψσ(x):, (3.9)

in the bosonization language is (see (C.26))

H0 =
∑
σ

∫ L/2

−L/2

dx

2π

vF
2

:(∂xφσ(x))
2
:, (3.10)

where we have introduced the notion of normal ordering :O:, to take care of the divergences resulting
from the linearization.
Note that we have normalized the fermion operators ψ to 2π, for notational purposes.

3.1.1 Bosonized Kondo Hamiltonian

The bulk Hamiltonian for the Kondo model is given by the single particle energy, so (3.10) describes
the fermion bath. The Kondo interaction (2.6) we can write as

Hint = Hz +H⊥ =
Jz
2L

∑
k,k′

σ=(↑,↓)

σ :c†kσck′σ: S
z +

J⊥
4π

(
:ψ†

↑(0)ψ↓(0): S
−+ :ψ†

↓(0)ψ↑(0): S
+
)

(3.11)

where we have written the z-interaction in terms of the momentum operators and the ⊥-interaction
in terms of the spatial operators. The σ in front of the fermion operators is +1 for σ =↑ and −1
for σ =↓. Here we will translate the one-channel Kondo Hamiltonian to boson language. For the
multi-channel, we just have to add a summation over the channel numbers. Using (3.3) and (3.4) the
z-interaction becomes

Hz =
Jz
2L

∑
k,k′,σ

σ :c†kσck′σ: Sz

=
Jz
2L

∑
σ

σ

[∑
q>0

∑
k

(
c†k−qσckσ + c†k+qσckσ

)]
Sz

=
Jz
4π

∑
σ

σ∂xφσ(0)Sz (3.12)

In the last line we recognized the derivative of the boson operator φ.
We can define two new boson operators, satisfying the same commutations relations as φσ:

φρ(x) =
1√
2
(φ↑(x) + φ↓(x))

φs(x) =
1√
2
(φ↑(x)− φ↓(x)) (3.13)
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These are the charge φρ and the spin φs. Using this transformation the z-interactions becomes

Hz =
Jz

2
√
2π
∂xφs(0)Sz (3.14)

Hence the charge field decouples from the z-interactions, only the spin operators couple to the mag-
netic impurity. Intuitively this makes sense, because the Kondo interactions are spin interactions.
Also the ⊥-interaction couples only to the spin part:

H⊥ =
J⊥
4π

(:ψ†
↑(0)ψ↓(0): S

− + h.c) (3.15)

=
J⊥
4πa

(ei
√
2φs(0)S− + h.c) (3.16)

Hence the Kondo model is a boundary sine-Gordon model:

H =

∫ L/2

−L/2

dx

2π

1

2

(
:(∂xφρ(x))

2
: + :(∂xφs(x))

2
:
)
+

Jz

2
√
2π
∂xφs(0)Sz+

J⊥
4πa

(ei
√
2φs(0)S−+h.c) (3.17)

The charge carrying operators φρ do not couple to the impurity, so we can integrate these operator
out leaving only the φs. From now on we drop the index s and write φ ≡ φs.
We now use a technical trick, to further simplify the Hamiltonian Define a unitary canonical trans-
formation as

W = eiγSzφ(0) (3.18)

Letting this canonical transformation act in the following way H̃ =WHW † we obtain after working
out the commutations

H̃ =WHW † =

∫ L/2

−L/2

dx

2π

1

2
:(∂xφ(x))

2
: +

(
Jz

2
√
2π

− 2πvF γ

)
∂xφ(0)Sz+

J⊥
4πa

(ei(
√
2−γ)φ(0)S−+h.c).

(3.19)

We can still freely choose constant γ in the canonical transformation.
In the next sections this canonical transformation proofs essential in finding exact solutions for the
one- and multi-channel Kondo model.

3.2 Renormalization Group One-Channel

Before we discuss how we can derive exact solutions for the Kondo model using bosonization we
rederive the RG equation in the one-channel case. However, as we will see bosonization will make it
possible to derive an exact RG-flow for the Jz coupling

Note that if we set γ = Jz

4π2
√
2vFπ

the Sz-coupling in (3.19) disappears and the Jz dependence remains
only in sine-Gordon term. The only interaction term is the perpendicular interaction.
We can write down a full action from (3.19)

S = S0 + S⊥ (3.20)

with

S⊥ = − J⊥
4πa

∫
dτ(ei(

√
2−γ)φ(τ,0)S−(τ) + e−i(

√
2−γ)φ(τ,0)S+(τ)) (3.21)
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Notice that there is a imaginary time τ in the argument as well. φ(τ, x) and S±(τ) are the time
evolved operators.
To calculate the RG-flow we only have to treat J⊥ perturbatively.
In Appendix C.6 the boson one-loop correction are worked out yielding the following RG-equations:

dγ(l)

dl
= (

√
2− γ)3

J2
⊥v

2
F

16π2a2Λ2
(3.22)

dJ⊥(l)

dl
=

(
1− (

√
2− γ)2

2

)
J⊥ (3.23)

Remarkably these equations are now exact for γ (related to Jz) and only second order in J⊥. This
is the first nice result we obtain from bosonization. Expand both equations up to second order to
rediscover the conventional-RG equations (2.37),(2.38). Still the anti-ferromagnetic Kondo coupling
blows up, so this perturbative approach does not give a satisfactory solution.
We have to add one remark, the RG-equation for γ does not concur with the equation found by
Giamarchi.[15] He obtained (

√
2− γ) in stead of (

√
2− γ)3.

3.3 One-Channel Kondo - Toulouse Limit

We return to the canonically transformed Hamiltonian (3.19)

Hint =

(
Jz

2
√
2π

− 2πvF γ

)
∂xφ(0)Sz +

J⊥
4πa

(ei(
√
2−γ)φ(0)S− + h.c). (3.24)

If we now choose γ =
√
2 − 1 the perpendicular interaction is proportional to eiφ(0). If we compare

this with (3.1) we notice that the scaling dimension of this perpendicular term is now the same as a
fermion, i.e. the pre-factor in the exponent for the φ is the same (±1).
Note that we need a Klein factor (F ) to be able to refermionize the Hamiltonian, i.e. Feiφ(0) ∝ ψ̂(0)

with ψ̂ the new fermion operator.
We also note that the spin impurity system is a two level system. A single impurity fermion is a two
level system as well, so we can write this spin in terms of a fermion. The spin up corresponds with
occupation number one, while spin down with occupation number zero through

Sz = d†d− 1

2
, (3.25)

where d† and d are respectively the fermion creation and annihilation operators. This means that S+

and S− need to create and annihilate a fermion, so we need them to change particle number. This
can by artificially adding a Klein factor, so S+F = d† and S−F = d.
Combining both transformations results we find the ⊥ term

J⊥
4πa

eiφ(0)S− =
J⊥
4πa

eiφ(0)F 2S− =
J⊥

4π
√
a
ψ̂†(0)d. (3.26)

For the z-interaction we can reverse steps from (3.12) to find ∂xφ(0) = ψ̂†(0)ψ̂(0). The Kondo
Hamiltonian is therefore equivalent to an interacting resonant level model:

H̃ = H0 +

(
Jz

2
√
2π

− 2πvF (
√
2− 1)

)
ψ̂†(0)ψ̂(0)

(
d†d− 1

2

)
+

J⊥
4π

√
a

(
ψ̂†(0)d+ h.c.

)
(3.27)

Here the bath electrons interact with a spinless singly occupied impurity at the Fermi level, see Figure
3.2. The electron can hop in and out (J⊥-term) and interact via density-density interaction (Jz-term).
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d

k

ξk

Figure 3.2: Resonant level model. Interaction of the bath electrons at the Fermi surface with the
quantum dot (d).

Taking a closer look at the z-coupling we see that if Jz = 4π2
√
2vF (

√
2− 1), the the density-density

interaction vanishes and only hopping remains. This critical value for Jz is known as the Toulouse
limit and in the resulting resonant level model is exactly solvable.[21] Physical properties of the im-
purity is now very easy to derive. This is the most important result of the bosonization approach for
the one-channel Kondo model.
From this quadratic model it is easy to calculate physical observables.[15]

Furthermore in the interacting resonant level model one can do a perturbative analysis and find
exact results away from this fine-tuned point, as was shown by Majumbar et al.[22]

3.4 Two-Channel - Emery-Kivelson Solution

We have seen that the one-channel Kondo model can be solved with bosonization, however this is not
unique to the one-channel case. For two-channel there is an equivalent approach using bosonization,
known as the Emery-Kivelson solution.[23]
We start with an two-channel extension of the bosonized Hamiltonian (3.19):

H =

∫ L/2

−L/2

dx

2π

vF
2

(
:(∂xφ1(x))

2
: + :(∂xφ2(x))

2
:
)

+
Jz

2
√
2π

[∂xφ1(0) + ∂xφ2(0)]Sz +
J⊥
4πa

[(
ei

√
2φ1(0) + ei

√
2φ2(0)

)
S− + h.c

]
(3.28)

Again, we can do a transformation of the operators, but now we transform the operators from the
different channels.

φS =
1√
2
(φ1 + φ2) , φA =

1√
2
(φ1 − φ2) (3.29)

where S denotes the symmetric and A denotes the anti-symmetric operator. Again these operators
satisfy boson commutation relations. The Hamiltonian (3.28) then becomes

H =

∫ L/2

−L/2

dx

2π

vF
2

[
:(∂xφS(x))

2
: + :(∂xφA(x))

2
:
]
+
Jz
2π
∂xφS(0)Sz+

J⊥
2πa

[
eiφS(0) cos(φA(0))S

− + h.c
]

(3.30)

Just as in the one-channel case we can do a canonical transformations

W = eiφS(0)Sz (3.31)
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such that the factor eiφS(0) disappears in (3.30):

H̃ =WHW † = H0,S +H0,A +

[
Jz
2π

− 2πvF

]
∂xφS(0)Sz +

J⊥
2πa

[
cos(φA(0))S

− + h.c
]

(3.32)

If we now impose

J∗
z = 4π2vF , (3.33)

which is known as the Emery-Kivelson line, the z-term vanishes. Hence only the anti-symmetric part
of the boson operators couples to the impurity.
The field φA appears in e±iφA(0), again this term has the same scaling dimension of a fermion operator
(3.1). Hence we can refermionize

ψ̂(x) = Fa−1/2e−iφA(x) (3.34)

where F is the Klein factor. The impurity can be written in terms of fermion operators as d† = S+F
and d = S−F . Again we find an effective resonant level model:

H̃ = H0,S +H0,A +
J⊥

4π
√
a

[
(ψ̂†(0) + ψ̂(0))d+ d†(ψ̂†(0) + ψ̂(0))

]
(3.35)

= H0,S +H0,A +
J⊥

4π
√
a
(d† − d)(ψ̂†(0) + ψ̂(0)) (3.36)

In this case both the conduction electrons and the impurity couple as Majoranas, so only half the
degrees of freedom couples. This resonant level model is exactly solvable and well studied.[23]
Again using a perturbative approach for the interacting resonant level model one can calculate phys-
ical observables away from the Emery-Kivelson solution.[22]

In the next section we will discuss if there are other multi-channel Kondo models that can be solved
exactly using bosonization.

3.5 Beyond

We would like to extend this nice construction for two channels using bosonization to find exact
solutions for other n-channel Kondo models. It turns out to be rather difficult. Here we are going to
show why the two-channel case is so special, and why we cannot extend this approach to general n.
Again we start with the multi-channel Kondo model (1.4), in the bosonic language

H =

∫ L/2

−L/2

n∑
λ=1

dx

2π

vF
2

:(∂xφλ(x))
2
: +

n∑
λ=1

[
Jz

2
√
2π
∂xφλ(0)Sz +

J⊥
4πa

(
ei

√
2φλ(0)S− + h.c

)]
(3.37)

We require some transformation analogous to the symmetric vs. anti-symmetric (SA) transformation
for the two-channel Kondo model (3.29) such that the z interaction is proportional to one transformed
operator. In the two-channel Kondo model we saw that the z term was proportional to ∂xφS(0)Sz,
which we could then eliminate from the Hamiltonian using a canonical transformation (3.31) and the
proper choice of Jz (3.33). For the multi-channel Kondo this would relate to

∂xχ1(0)Sz (3.38)

for some choice of χ1 in
χ1

χ2

...
χn

 = O


φ1
φ2
...
φn

 (3.39)
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with O ∈ O(n) an orthogonal matrix (i.e. orthonormal rows and columns, Oᵀ = O−1). Note that
the first row of O needs to be ( 1√

n
, 1√

n
, . . . , 1√

n
), to ensure that (3.38) is satisfied.

We also need to be able to do the refermionization in the perpendicular term of the interaction,
as we did for the two-channel Kondo model (3.34). After recognizing that

φ1
φ2
...
φn

 = Oᵀ


χ1

χ2

...
χn

 (3.40)

we see consequently φi = 1√
n
χ1 ± 1√

2
χj , to make sure that we obtain the right scaling dimension

through e
±i

√
2 1√

2
χj . From this equation we see that φi and χj can not both be normalized correctly

unless n = 2.
So the two-channel Kondo model is special in this approach.

However, there is one more case where bosonization can help out. For the four-channel Kondo
model as similar approach yields an interactive solution, as was shown by Fabrizio and Gogolin in
1994.[24]
They derived that the low energy physics of four channels with spin 1/2 bath electrons is equivalent
to one-channel spin 1. Meaning we need to solve a four-channel Kondo model.
Again we can do a spin-charge-decomposition (similar to (3.13)) and canonically transform the Hamil-
tonian to find:

H = H0 +
2J⊥
πa

cos

(√
3

2
φ(0)

)
Sx (3.41)

It turns out that this corresponds to [10, 24]

HTLL,0 + 2J⊥(Ψ
†
R(0)ΨL(0) + h.c.) (3.42)

where HTLL,0 is the interacting bulk Hamiltonian of the Tomonaga-Luttinger liquid (TLL) and the
second term a local scattering of the TLL-fermions.
This identification is based on the fact that the TLL fermions are proportional to ei

√
2Kφ, where√

2K is not necessarily 1. Furthermore, in this case the Tomonaga-Luttinger parameter K is equal
to 3

4 , which means the interaction between the bath-electrons is repulsive. The impurity-TLL is well
studied, hence we can find some low energy physical properties for four-channel Kondo model in this
way.[10]

As with the Emery-Kivelson solution this approach is not extendible to other multi-channel Kondo
models. For higher channel Kondo model there are simply no transformations that bring the Hamil-
tonian in a nice refemionizable form.

Bosonization offered exact solutions for both the one- and two-channel case and gave a interactive
solution for the four-channel case in the form of a impurity Tomonaga-Luttinger liquid. However, it
appears theres is no other solvable n-channel Kondo models using bosonization.

In the next chapter we will discuss that a mapping from spin chains to Kondo models, presenting
another approach to find physical properties of the Kondo model.



Chapter 4

Spin Chains to Kondo Models

As we have seen in previous sections, the n-channel Kondo model is only solvable in some special
cases. Again it is quite remarkable that adding only a single impurity can cause such great challenges
in finding solutions. Here we present another technique to solve the Kondo model for some special
cases. We recognize the Kondo effect in a specific spin chain construction. This allows to translate
results from these well studied spin models to derive the physics of certain Kondo models. In this
chapter we will first take a look at the XX-chain and derive that it shows four-channel Kondo behavior
in the right topology (Section 4.1) as discoverd by Crampé and Trombettoni in 2013.[25]
Then we will discuss the Ising chain in Section 4.2. Inspired by the four-channel mapping, Tsvelik
came up with a mapping from Ising chains to the the two-channel Kondo model.[26]
Subsequently, Giuliano et al. merged these two mappings, by connecting the XX and Ising model
using a XY-model.[27] They concluded that the XY-chain can only produce two- and four-channel
Kondo effects. In Section 4.3 we will see what this mapping entails. Finally, in Section 4.4 we will
discuss whether we can find other n-channel Kondo behavior.

4.1 XX to Four-Channel Kondo

The XX-chain is the isotropic XY-model given by

HXX =
J

2

L−1∑
j=1

σx(j)σx(j + 1) + σy(j)σy(j + 1), (4.1)

where J is the coupling constant, L the length of the chain, and σi the spin operators given by the
Pauli matrices. If we define the spin raising and lowering operators as σ± = 1

2 (σ
x ± iσy), the XX

chain (4.1) can be rewritten as

HXX = J

L−1∑
j=1

σ+(j)σ−(j + 1) + σ−(j)σ+(j + 1), (4.2)

4.1.1 Star Junction

For the mapping to the Kondo model we combine three XX-chains. This is done by coupling the first
lattice site of the chain pairwise with XX coupling. Figure 4.1 schematically shows this star junction.
The different chains are denoted by α = 1, 2, 3 and the corresponding spin operators are σα(j). For
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σ1(1) σ1(2) σ1(3) σ1(L)

σ2(1)

σ2(2)

σ2(3)

σ2(L)

σ3(1)

σ3(2)

σ3(3)

σ3(L)

Figure 4.1: Star junction for three spin chains. The chain are pairwise coupled at the first lattice site

all three chain we have a copy of (4.2) and the coupling Hamiltonian is

Hc,XX = Jc
∑

α=1,2,3

σ+
α (1)σ

−
α+1(1) + σ−

α (1)σ
+
α+1(1) , (4.3)

where we use σ4 = σ1 so the chains are cyclic connected with Jc as coupling constant.
The full Hamiltonian now becomes:

HXX = J

L−1∑
j=1

∑
α=1,2,3

σ+
α (j)σ

−
α (j+1)+σ−

α (j)σ
+
α (j+1)+Jc

∑
α=1,2,3

σ+
α (1)σ

−
α+1(1)+σ

−
α (1)σ

+
α+1(1) (4.4)

4.1.2 Jordan-Wigner Transformation

The Kondo model is a fermion model, so we have to rewrite the spin chain in fermions. Here we
are going to use an extension of the normal Jordan-Wigner transformation (JW) to obtain effective
fermion chains.
The JW was first proposed by Pascual Jordan and Eugene Wigner in 1928 to consistently transform
spin operators on a one dimensional lattice into fermion operators. For a single chain the JW is given
by

c̃(j) =

(
j−1∏
k=1

σz(k)

)
σ−(j) (4.5)

This construction ensures that these new fermion operators satisfy canonical anti-commutation rela-
tions:

{c̃†(j), c̃(k)} = δjk. (4.6)
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In this case we have a generalization to three coupled chains. If we naively use the above JW, the
fermions in different chains would commute rather than anti-commute:

[c̃†α(j), c̃β(k)] = 0 for α 6= β (4.7)

Here we need to alter the JW with an additional factor, the Klein factor. This factor ensures anti-
commutation relations.
For three chains we can even define the Klein factor explicitly.
For these Klein factors we need an auxiliary space ' C2. Essentially this adds additional degrees of
freedom to the Hilbert space, which are not explored by the original Hamiltonian (4.4). We define
additional Pauli matrices σx(0), σy(0) and σz(0) with site number 0 that act on this space. Now we
can introduce the Klein factors

ηx = σx(0)

L∏
k=1

σz
2(k)σ

z
3(k), η

y = σy(0)

L∏
k=1

σz
1(k)σ

z
3(k), η

z = σz(0)

L∏
k=1

σz
1(k)σ

z
2(k) (4.8)

These operators satisfy the anti commutation relations:

{ηα, ηβ} = 2δαβ . (4.9)

We can check that they are self-adjoint and they also satisfy the Clifford algebra:

ηα† = η, ηxηy = iηz (4.10)

So the η’s possess the same properties as the Pauli matrices, hence they represent spin 1/2.
If we define the naive JW for the three chains as:

c̃α(j) =

(
j−1∏
k=1

σz
α(k)

)
σ−
α (j), c̃†α(j) =

(
j−1∏
k=1

σz
α(k)

)
σ+
α (j) (4.11)

Then we can write the modified JW as

cα = ηαc̃α(j) and c†α = ηαc̃†α(j), (4.12)

with α = 1, 2, 3 and η1 = ηx,η2 = ηy,η3 = ηz. Fully written out this becomes:

cα(j) = ηα

(
j−1∏
k=1

σz
α(k)

)
σ−
α (j) (4.13)

c†α(j) = ηα

(
j−1∏
k=1

σz
α(k)

)
σ+
α (j) (4.14)

We also see that

σz
α(j) = 1− 2c†α(j)cα(j) (4.15)

as usual. The inverted expressions of (4.13) and (4.14) are

σ−
α (j) = ηα

(
j−1∏
k=1

(1− 2c†α(k)cα(k))

)
cα(j)

σ+
α (j) = ηα

(
j−1∏
k=1

(1− 2c†α(k)cα(k))

)
c†α(j) (4.16)
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Note that ηx anti-commutes with c̃2(j) and c̃3(j) and commutes with c̃1(j), ηy and ηz satisfy similar
(anti-) commutation relations. Putting this all together gives the correct anti-commutation relation:

{c†α(j)cβ(k)} = δαβδjk (4.17)

We can use the JW to write the spin Hamiltonian in terms of spinless fermions.

4.1.3 Mapping

Now we return to the XX Hamiltonian (4.4) and plug in the JW (4.16). We obtain

HXX = −J
J−1∑
J=1

∑
α

c†α(j)cα(j + 1) + c†α(j + 1)cα(j)

+ iJc

[
ηz(c†1(1)c2(1)− c†2(1)c1(1)) + ηx(c†2(1)c3(1)− c†3(1)c2(1)) + ηy(c†3(1)c1(1)− c†1(1)c3(1))

]
(4.18)

Still the α indices denote the different chains, in a moment we will see that these indices can also be
interpreted as a spin degree of freedom.
We can rewrite the interaction between the chains as∑

α,β

Jc

[
ηzc†αS

z
αβcβ + ηxc†αS

x
αβcβ + ηyc†αS

y
αβcβ

]
=
∑
α,β,i

Jcη
ic†αS

i
αβcβ , (4.19)

where we have introduces Si

Sx =

0 0 0
0 0 −i
0 i 0

 , Sy =

 0 0 i
0 0 0
−i 0 0

 , Sz =

0 −i 0
i 0 0
0 0 0

 . (4.20)

Note that these matrices are an su(2) representation in three dimensions, which corresponds to spin
1. The XX Hamiltonian in fermion language is

HXX = −J
J−1∑
J=1

∑
α

c†α(j)cα(j + 1) + c†α(j + 1)cα(j) +
∑
α,β,i

Jcη
icα(1)

†Si
αβcβ(1) (4.21)

Fourier transforming the tight binding part (J), taking the continuum limit and renaming the pa-
rameters gives a Kondo-like Hamiltonian:

HXX =
∑
k,σ

(εk − µ)c†kσckσ +
∑
α,β,i

Jiη
iψα(0)

†Si
αβψβ(0) (4.22)

where ηi is the impurity spin 1/2 degree of freedom. If we compare this to (1.1) we see one difference.
In this case the conduction electrons are spin 1, since the α index in cα(j) can take three values
and they are coupled through a spin 1 matrix representation. Spin 1 conduction electrons are rather
strange and not physical, however we can now use an elegant result from Fabrizio and Zaránd.[28]
They showed that for multi-channel exchange models, such as Kondo, there is a mapping between
models with different spin and channel number. The low energy behavior of a model with conduction
electron spin s and channel number Nf is equivalent to a model with s∗ and N∗

f if

Nfs(s+ 1)(2s+ 1) = N∗
f s

∗(s∗ + 1)(2s∗ + 1). (4.23)

The impurity spin in both models is identical. Using this fact the 1-channel spin 1 Kondo model
from (4.21) has the same low energy behavior as a four-channel spin 1/2 Kondo model. Notice that
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this is the same identification we made in Section 3.5 for the bosonized four-channel Kondo model.
Hence the low energy behavior of the 3-star junction XX model and the four-channel Kondo model
are equivalent.

Therefore we can translate the low energy physical properties from the the 3-star junction XX model
to the four-channel Kondo model.

4.2 Ising Chain to Two-Channel Kondo

It turns out that the four-channel Kondo model is not unique for showing up in spin chain systems.
Here we will show that the two-channel Kondo effect is found in the Ising chain, as was shown by
Tsvelik (2013).[26]
Again we consider a 3-star junction as shown in Figure 4.1, in this case transverse field Ising chains:

HIsing =

L−1∑
j=1

3∑
α=1

[−Jσx
α(j)σ

x
α(j + 1) + hσz

α(j)] (4.24)

+ J12σ
x
1 (1)σ

x
2 (1) + J23σ

x
2 (1)σ

x
3 (1) + J31σ

x
3 (1)σ

x
1 (1) (4.25)

The first line is the bulk Hamiltonian with a nearest neighbor coupling J and spin flip term with
coupling h. In the second line we see the coupling of the first sites of the chain with Ising interaction.
Again we can rewrite the Hamiltonian using Jordan-Wigner transformations.
From (4.16) and σ± = 1

2 (σ
x ± iσy) we obtain

σx
α(j) = ηα

(
j−1∏
k=1

(1− 2c†α(k)cα(k))

)
(cα(j) + c†α(j)) (4.26)

Plugging this in into (4.25) gives

HIsing =

L−1∑
j=1

3∑
α=1

[
−J [c†α(j)− cα(j)][c

†
α(j + 1) + cα(j + 1)] + hc†α(j)cα(j)

]
(4.27)

+ iεαβγη
αJβγ [c

†
β(1) + cβ(1)][c

†
γ(1) + cγ(1)] (4.28)

where we recognized that the η’s satisfy the Clifford algebra (4.10) ηβηγ = iεαβγη
α (εαβγ is the

Levi-Civita tensor).

It is now helpful to rewrite the fermions in terms of Majoranas:

χR,α(x = ja) =
1√
2a

(ω∗cα(j) + ωc†α(j)), χL,α(x = ja) =
1√
2a

(ωcα(j) + ω∗c†α(j)) (4.29)

where ω = eiπ/4 satisfying and a the lattice spacing. If we then take the continuum limit we the bath
becomes

3∑
α=1

∫ ∞

0

dx iĴ [χR,α(x)∂xχR,α(x)− χL,α(x)∂xχL,α(x)]− (J − h)χL,α(x)χR,α(x) (4.30)

where we used χ(x = (j + 1)a) = χ(x = ja) + a∂xχ(x = ja) and Ĵ = Ja. If we impose that h = J
(critical Ising coupling) only the kinetic term remains.
The interaction term becomes

iεαβγη
αĴβγ [χR,β + χL,β ][χR,γ + χL,γ ] (4.31)



36 CHAPTER 4. SPIN CHAINS TO KONDO MODELS

Since the χR/L only lives in the positive half of the real line we can define a chiral fermion over the
full real line

χα(x) = θ(x)χR,α(x) + θ(−x)χR,α(x), (4.32)

where θ(x) is the heavy side function reguralized at θ(0) = 1
2 . So the effective Hamiltonian of the

Ising chain in terms of Majorana fermions is

Heff =

∫ ∞

−∞
dx iĴχα(x)∂xχα(x) + iεαβγη

α Ĵβγ
2
χβ(0)χγ(0) (4.33)

This might seem a lot of work to get another complicated expression. Actually this Hamiltonian has
the same low energy behavior as the two-channel Kondo model. This has been proven by Coleman
and Ioffe.[29] We will not go into detail, because it is very tedious to derive. It relies on the fact
that a spinful fermion can be represented by three Majorana fermions. In this case three Majoranas
from different chains. This paper shows that the two-channel Kondo model has the same low energy
behavior as

H2ck =

∫ ∞

−∞
dx itv ~ψ(x) · ∂xψ(x) + iJcb~S ~ψ(0)× ~ψ(0) (4.34)

where ~ψ is a three-vector with Majorana entries. If we define ~χ = (χ1, χ2, χ3)
ᵀ, we recognize that

εαβγχβ(0)χγ(0) = ~χ(0) × ~χ(0). So the effective 3-star junction Ising chain corresponds to the two-
channel Kondo model with tv = J and Jc =

Jβγ

2 .

4.3 In Between XX and Ising

We have seen that both the XX and Ising chain correspond to a multi-channel Kondo model. We can
now investigate the models in between these two fine tuned cases, following the work from Guiliano
et al. (2016).[27] Therefore we look at XY chain with a transverse field on 3-star junction:

HXY =
L−1∑
j=1

3∑
α=1

[
J

2

(
σx
α(j)σ

x
α(j + 1) + γ1σ

y
α(j)σ

y
α(j + 1)

)
+
h

2
σz
α(j)

]

+
3∑

α=1

Jα,α+1

2

(
σx
α(1)σ

x
α+1(1) + γ2σ

y
α(1)σ

y
α+1(1)

)
(4.35)

This model is in between the XX and the Ising chain. If γ1 = γ2 = 1 and h = 0 we rediscover the
XX chain and if γ1 = 0 and γ2 = 0 it becomes the Ising chain. Again we can do a Jordan-Wigner
transformation:

HXY = −
L−1∑
j=1

3∑
α=1

J

2
(1 + γ1)(c

†
α(j)cα(j + 1) + c†α(j + 1)cα(j))

+

L−1∑
j=1

3∑
α=1

J

2
(1− γ1)(c

†
α(j + 1)c†α(j) + cα(j)cα(j + 1)) +

L∑
j=1

3∑
α=1

hc†α(j)cα(j)

+

3∑
α=1

i
Jα,α+1

2
ηα+2

(
(1 + γ2)c

†
α(1)cα+1(1) + (1− γ2)c

†
α(1)c

†
α+1(1)− h.c.

)
(4.36)

We only have to consider γ1, γ2 ∈ [0, 1], for values outside this interval we can do a rescaling of
J, Jα,α+1 or do a particle hole inversion to get γ1, γ2 in the interval.
If we go to momentum space we find that the bulk spectrum is given by

E±
XY = ±

√
(h+ J(1 + γ1) cos(k))2 + (J(1− γ1) sin(k))2 with k ∈]− π, π] (4.37)
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Figure 4.2: Phase diagram for the XY model. The lines denote the parameter conditions for a
gapless XY theory. At γ1 = 0 and h/J = ±1 sits the Ising chain and these points correspond to
the two-channel Kondo model (Section 4.1). At γ1 = 1, H/J = 0 we find the XX chain, hence the
four-channel Kondo model (Section 4.2).

The Kondo model is gapless in the bulk, hence for a “spin chain-Kondo”- connection the bulk of this
JW fermion chain needs to be gapless as well. For the two bulk parameters γ1 and h we can derive
a phase diagram show in Figure 4.2, displaying the gapless regions.
If γ1 = 1 the bulk is a tight binding chain, which is gapless for all h. This corresponds the red line in
Figure 4.2 and is a XX-model with transverse field (h). If γ1 < 1 we recognize the Kitaev chain[30]
with chemical potential µ = −h, fermion hopping t = J(1+γ1) and superconductivity ∆ = J(1−γ1).
The spectrum is gapless if there exists a k for which both squares are zero. Since γ1 < 1 we need
sin(k) = 0 so k = 0, π. This gives h = ±J(1 + γ1) as a gapless lines for the XY model, these are
known as the Kitaev lines and are denoted by the blue lines in the phase diagram.
The four-channel Kondo model from Section 4.1 is the critical XX-model at h = 0. The two-channel
Kondo models from Section 4.2 are at the Kitaev lines at γ1 = 0, as we saw before these are critical
Ising models.
The remaining question is, what happens on the lines between the special point. It was shown by
Guiliano et al.[27] that these lines correspond either to the two- or four-channel Kondo model.
Using Poor Man’s Renormalization Group [12] they showed that there are two separate cases. In both
cases the Kitaev lines correspond to the two-channel Kondo model. The argument goes as follows, if
γ1 6= 1 there is no spin rotational symmetry around the z-axis in the bulk and hence the four-channel
Kondo model is less relevant here and only the two-channel remains.
Along the XX line the two cases are separated. If we tune γ2 to 1 the rotational symmetry in the
boundary term is maintained and the line corresponds to four-channel Kondo model. Again if γ2 6= 1
the symmetry is broken and the line corresponds to two-channel Kondo.

4.4 Beyond

As we have seen in the previous section there is no easy way to find a mapping to from a 3-star
junction spin chain to an non-(4,2)-channel Kondo model since the transverse field XY model can
only correspond two- or four-channel.
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One approach would be to increase number of chains and follow the derivation for the four-channel
Kondo model. For instance we take four chains, which would then correspond to the four possible
spins for a spin 3/2 bath electron (−3/2,−1/2,1/2,3/2). To get the Kondo interaction one has to find
Klein factors (F1,F2,F3,F4) for the chains, such that the product of any two is a linear combination
of three operators (η1,η2,η3) satisfying the Clifford algebra. They should also be of such a form that
we would find a representation of spin 3/2 (Sx,Sy,Sz) as we did in (4.20) for spin 1.
The combination of these properties makes it very difficult if not impossible to find these Klein fac-
tors. Possibly, using Lie algebra theory it can be proven that such a construction does not exist.

There is however another field of spinlike chains to be explored, namely the parafermions.[31] These
spinlike particles are an extension of spin 1/2 particles. The latter can only take spin values at
±1 in the complex plane (in fact ±1/2), while Zm-invariant parafermions can have spin ei

2πk
m for

k = 0, 1, . . . ,m. These systems have not been studied a lot yet, but seem to give rise to interesting
physical behavior, such as topological insulators with zero energy Marjorana modes.[32, 33]



Chapter 5

Conclusion and Discussion - Kondo
Model

In this part of the thesis we have given a view on two approaches for finding solutions for the Kondo
model. The main focus of this part of the thesis was understanding the limitations of these solutions
and trying to extend these approaches beyond these limitations.

In Chapter 1 we have introduced the one- and multi-channel Kondo model, a local magnetic impu-
rity model. We have shown that the one-channel Kondo model can be derived from the microscopic
Anderson impurity model, offering a physical framework for the model. We have also derived that
we can reduce the three-dimensional Kondo model to an effective one-dimensional theory because of
rotational symmetry around the local impurity.

Then in Chapter 2 we started with the naive perturbative analysis of the Kondo interactions. For
the one-channel Kondo model, we calculated the one-loop corrections for the coupling constant. We
obtained diverging contributions and the interactions flow to strong coupling. Therefore this pertur-
bative approach is not valid for the one channel Kondo model. For the n-channel Kondo model in
the large n limit we found a stable finite fixed coupling point in the isotropic limit at J = 2

n . Hence
the multi-channel and one-channel Kondo model exhibit different physical behavior. However, this
perturbative analysis is still not valid for low n-channel Kondo model, since the fixed point is of the
order of the Kondo temperature TK , the point were the perturbative approach breaks down. We
therefore discussed two different approaches for finding solution in the remainder of this part.

In Chapter 3 we used bosonization to solve the one- and two-channel models. By rewriting the
Dirac fermion theory in terms of bosons we observed that only the spin degrees of freedom couple
to the impurity and the charge field decouples. By doing a canonical transformation were able to
rewrite the Kondo Hamiltonian in the form of a interacting resonant level model. Finally, we imposed
Jz = 4π2

√
2vF (

√
2 − 1), the Toulouse limit, to get rid of the interaction and we saw that the one-

channel Kondo model is equivalent to the exactly solvable resonant level model. In the two-channel
case we separated the two boson field for the two channels in a symmetric and an anti-symmetric
part. The symmetric operators decouple from the impurity after doing a canonical transformation
and imposing Jz = 4π2vF . This is known as the Emery-Kivelson solution.[23] Again we recover a
resonant level model. In this case coupling Majorana impurity fermions with Majorana conduction
electrons. It was shown in the literature that perturbation theory is suitable for finding physical
properties away from these fine tuned points.[22]

Then we discussed the difficulty in finding extensions to other multi-channel Kondo models. It
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turned out that it is not possible to find other solutions along the lines of the Emery-Kivelson solu-
tion. Nevertheless, we reviewed that the four-channel Kondo model can be solved through a mapping
to an interacting conduction electron theory known as the Tomonaga-Luttinger liquid.[24] Finally in
Chapter 4 we discussed several spin chain constructions that show rich behavior in the form of the
Kondo effect. Using an extension of regular Jordan-Wigner transformations we reviewed the mapping
proposed by Crampé and Trombettoni.[25] They showed the equivalence between the four-channel
Kondo model and the XX 3-star junction. We also discussed the two-channel Kondo effect in the
Ising 3-star junction first derived by Tsvelik.[26] Ultimately, we followed a recent paper from Gogolin
et al. which describes the Kondo model in transverse field XY 3-star junction. In the limiting cases
this model is either the XX-chain or the Ising chain, containing respectively a four-channel or a two-
channel Kondo effect. Gogolin et al. showed that all gapless XY-chain are either equivalent to the
two- or four-channel Kondo model.

Therefore, we concluded that in this 3-star spin chain junction there are no possibilities for find-
ing other multi-channel Kondo behavior. Deriving other spin chain-Kondo mappings asks for other
spin chain constructions. However, for instance the 4-channel junction already comes with major
challenges when it comes to constructing suitable Klein factors for the Jordan-Wigner transforma-
tion.
We also suggested that parafermion chains might be hiding Kondo like behavior, although there is no
clear evidence pointing in this direction. These spinlike object do however seem to possess rich physics.

All in all we have seen that many bright physicist have put a lot of effort into finding solutions
to the multi-channel Kondo model. This has let to a great deal of papers discussing a variety of
techniques and mappings, of which we have only discussed two in this thesis. However, the other
techniques such as Bethe ansatz and numerical renormalization group neither offer solutions to other
multi-channel Kondo models.

Concluding, the one-, two- and four-channel Kondo models are solvable and well understood. How-
ever, extending the approaches discussed in this thesis to other multi-channel Kondo models seems
very challenging.
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Quantum Quenching the Kitaev
Chain
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Chapter 6

Introduction to Kitaev Chain and
Quantum Quench

0

τ

Figure 6.1: Example of a quantum
quench. For τ < 0 the parameters
of the system are set 1 and the pa-
rameters change to set 2 at τ = 0.

The second part of this thesis discusses quantum quenches for
the Kitaev chain. The Kitaev chain is a topological insulator,
showing topological effect in the form of a Majorana edge mode.
In this thesis we discuss the effect of a quantum quench on these
Majorana edge modes. A quantum quench is a shift in system
parameters. In Figure 6.1 we see schematic display of a quench.
At time τ < 0 the system is in set-up 1 and at time τ = 0 the
system parameters are changed to set-up 2. Experimentally,
we can for instance view a quench in chemical potential as a
change in gate voltage. The gate regulates the chemical poten-
tial in the chain. In this thesis we prepare the system in the
Majorana edge modes for time τ < 0 and discuss how this state
evolves after the quench.
The dynamical properties of the quantum quench of the Kitaev
chain have already been studied using a dynamical topologi-
cal order parameter[34], information recovery[35] and entangle-
ment spectra[36]. In this thesis we will use a different approach
by explicitly studying the wave function before and after the
quench. Furthermore, we will mostly discuss the long time av-
eraged properties of the system, i.e. we let the system relax after the quench.

In the remainder of this chapter we will introduce the Kitaev chain. Then in Chapter 7 we will
discuss the technical details of the quench for the Kitaev chain. Finally, in Chapter 8 we present the
results of quantum quenching the Kitaev chain.

6.1 Kitaev Chain

The Kitaev chain is a hot topic and widely studied over the last 15 years. The model was proposed
by Kitaev in 2001 [30] and has been taken up enthusiastically by the physics and computer science
community, because it is a likely candidate for a stable quantum bit (qbit). The experimental
realization of a qbit would greatly advance computer power and would reshape the digital world
as we know it. A quantum bit is a conventional computer bit on steroids. Nowadays computers use
conventional bits to store information. These discrete bits are binary and can be either 0 or 1. A
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quantum computer on the other hand stores informations using qbits. Theoretically these continuous
qbits can take any value in C, yielding endlessly more capacity to store information. Experimentally,
this is easier said than done.
A qbit system is a system with a two-fold degenerate ground state, i.e. |ψ0〉 and |ψ1〉 at the same
energy. From these two states the ground state can be any linear combination of the two

|α〉 = 1√
1 + |α|2

[|ψ0〉+ α |ψ1〉] , (6.1)

where α ∈ C is the degree of freedom storing the information. In a clean system a degenerate ground
state is easy to realize, but physical systems are never perfectly clean. In general the qbits are very
sensitive to decoherence, and as a result the two states hybridize and split in energy.
We can for example, following Kondo (2001) [30], consider the simplest possible qbit, a non interact-
ing spin with no Zeeman term. The two states |↑〉 and |↓〉 are at the same energy. The first form of
decoherence comes in the form of a quantum error, a spin flip δσx. This error causes the two states
to interact and hybridize (E → ±δ), hence the information is lost.
The second error, is a phase error. Suppose we have a chain of multiple qbits. At every site there is
a slight error δiσz, this changes the sign in front of |↓〉 with respect to |↑〉 at every site in a different
way. Consistently retrieving information from the qbits becomes impossible.

Kitaev proposed a scheme to get rid of these two errors.[30]
He argued that using spinless fermion qbits instead of spinlike qbits removes the quantum error. For
this spinless qbit an empty site is |ψ0〉 = |0〉 and an occupied site is |ψ1〉 = a† |0〉, where a† is the
fermion creation operator. For spinless fermions this error would correspond the creation or annihi-
lation of a fermion, which is not charge conserving. In other word a quantum error would correspond
to the operator δ(a† + a), which does not exist in any feasible theory. However, there can be two-site
errors, when a fermion hops from one qbit site to another. This can be avoided by keeping the qbit
sites far enough apart.
For the second problem we have do a mathematical trick. At every site the fermion creation and
annihilation operators are given by a†j and aj , we can define two Majoranas

ξ2j−1 = i(a†j − aj), ξ2j = (a†j + aj) . (6.2)

In the Majorana language a phase error is now given by a†jaj = 1
2 (1 + iξ2j−1ξ2j). If we move the two

Majorana sites 2j − 1 and 2j far away from each other, this error will not occur either. So there is
no Majorana interaction.

However, Majoranas are difficult to realize both experimentally and physically. In his paper Kondo
suggested a theoretical superconducting model that can produce these two fold degenerate Majo-
ranas.[30]

6.2 Kitaev Hamiltonian

The Kitaev chain is a spinless fermion chain, containing hopping and p-wave superconductivity. Note
that truly spinless fermions cannot exist, but we can realize this system by imposing strong Zeeman
interaction for spinful fermions. This projects out one of the spins (e.g. |↓〉), remaining with an
effective spinless theory (only |↑〉). Experimentally realizing a one dimensional p-wave superconductor
is very difficult.[37, 38]
The Hamiltonian of the Kitaev chain is

H = −µ
L∑

i=1

(
c†i ci −

1

2

)
− 1

2

L−1∑
i=1

(
tc†i ci+1 +∆cici+1 + h.c.

)
, (6.3)
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where µ is the chemical potential, t the hopping potential and ∆ the superconductivity parameter.
In this thesis we will assume ∆ to be real. One can also choose ∆ complex, but the phase can be
removed in a canonical transformation of the operators. The second quantized operators c†i and ci
respectively create and annihilate a fermion at lattice site i. The chain is L sites long with open
boundary conditions and note that the summation in the second term only runs up to L − 1, since
it contains ci+1 in summand. As we have seen in Part I, Chapter 4, the Jordan-Wigner transformed
XY-chain is equivalent to the Kitaev chain.
Because of the superconducting terms the Hamiltonian is not particle number conserving. These
terms (c†i+1c

†
i , cici+1) create or annihilate two fermions. Nevertheless, particle number modulo 2 is

conserved. This means there are two particle sectors for a Kitaev state, either 0 or 1 (mod 2). This
is called parity.
Because of the superconductivity terms we have to introduce Nambu vectors

~C =
(
c1, . . . , cn c

†
1, . . . , c

†
n

)ᵀ
. (6.4)

in order to write the Hamiltonian (6.3) in matrix form:

H = ~C†H ~C (6.5)

where

H =

(
D T
−T −D

)
, , D =



−µ
2

− t

4
0 . . .

− t

4
−µ
2

− t

4

0 − t

4
−µ
2

. . .
...

. . . . . .


, T =



0 −∆

4
0 . . .

∆

4
0 −∆

4

0
∆

4
0

. . .
...

. . . . . .


(6.6)

One of the consequences of going to the Nambu-vector language is doubling of the spectrum. In
Figure 6.2a we see the spectrum for 30 sites with µ = 2 and ∆ = t. Due to the particle-hole doubling
every particle eigenvalue (blue) has a hole eigenvalue (red) partner, with Ehole = −Eparticle. Hence
the spectrum of the doubled Hamiltonian is particle-hole symmetric. Note that the Hamiltonian itself
is particle-hole anti-symmetric (H → −H). Because of this redundancy in degrees of freedom we can
ignore the states with E < 0, the nonnegative energy states describe the full system.
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(a) Spectrum of Kitaev chain
in Nambu language (6.6) in the
trivial sector with µ = 2t, ∆ = t
for 30 sites.
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(b) Spectrum of Kitaev chain
in Nambu language (6.6) at the
critical point with µ = t, ∆ = t
for 30 sites.
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(c) Spectrum of Kitaev chain
in Nambu language (6.6) in the
topological sector with µ = 0.5t,
∆ = t for 30 sites.

Figure 6.2

Furthermore, we see that each of these eigenvalues Ei (Figure 6.2a) corresponds to an eigenstate ψi

of the Hamiltonian matrix (6.6). In fermion language the eigenstates of the Hamiltonian (6.3) are

Ψk = ~C†ψk. (6.7)
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Figure 6.3: [Upper chain] Split of fermions in Majoranas in the Kitaev chain. [Lower chain] Coupling
(black lines) of Majoranas in new fermions. The first (γ1) and the last Majorana (γ2L) remain
uncoupled.

These eigenstates are a superposition of creation and annihilation operators Ψk = ψ1kc
†
1 + . . . +

ψLkc
†
L + ψL+1kc1 + . . . + ψ2LkcL and therefore is neither a (delocalized) particle nor a hole. In the

next section we will see that in some cases it represents a Majorana (particle + hole). Using the
Bogoliubov-de-Gennes (BdG) we can diagonalize the Hamiltonian

H = ~C†H ~C = ~C†ψÊψ† ~C, (6.8)

where ψ = (ψ1, . . . , ψn) is the matrix of the eigenvectors and Ê the diagonal matrix with entries
E1 ≤ E2 . . . ≤ En. The eigenstates form an orthonormal basis of the Hilbert space.

6.2.1 Majorana Edge Modes

In one special nontrivial case, we can easily obtain the ground state of the Kitaev chain by hand.
Consider µ = 0 and t = ∆:

H = − t

2

L−1∑
i=1

(
c†i ci+1 + cici+1 + c†i+1ci + c†i+1c

†
i

)
(6.9)

This Hamiltonian is very suitable for introducing the notion of Majorana fermions. We define

γ2i−1 = i(c†i − ci), γ2i = c†i + ci, (6.10)

and the other way around

ci =
1

2
(γ2i + iγ2i−1), c†i =

1

2
(γ2i − iγ2i−1). (6.11)

Notice the distinction with the Majoranas defined in (6.2), here we are dealing with interacting
Majoranas on a single chain. The Majorana operators split the complex fermion ci in two real
fermions γ2i−1 and γ2i. The upper chain of Figure 6.3 depicts the fermions (blue boxes) being split
into two Majoranas. These Majorana satisfy

γ†i = γi, {γi, γj} = 2δij , γ2i = 1 (6.12)

And we can rewrite the Hamiltonian (6.9):

H =
it

2

L−1∑
i=1

γ2iγ2i+1. (6.13)

This Hamiltonian suggests that we have to pair the Majoranas from neighboring sites (γ2i and γ2i+1),
so we define new fermion operators c̃†i = 1

2 (γ2i− iγ2i+1). These new fermions correspond to the lower
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chain in Figure 6.3, the black lines depict the new coupling. In terms of these new fermions the
Hamiltonian becomes

H = t

L−1∑
i=1

(c̃†i c̃i − 1) (6.14)

For t 6= 0 the system is gapped because adding a fermion c̃†i costs energy t.
Furthermore, there are two Majoranas (γ1 and γ2L) that completely drop out of the Hamiltonian.
Hence they do not contribute to the energy. If we combine these remaining degrees of freedom into a
new fermion f† = 1

2 (γ2L − iγ1), we see that this state is at zero energy (Hf† = 0). It is a delocalized
fermion built up out of two Majoranas. These Majoranas live at of a gapped bulk, therefore we call
this a Majorana Egde Mode (MEM). Concluding, the MEM does not contribute to the energy, so the
ground state is two fold degenerate. The MEM is either occupied or empty:

|GS1〉 = |0〉 , |GS2〉 = f† |0〉 = 1

2
(γ2L − iγ1) |0〉 , (6.15)

where |0〉 is the filled Fermi sea, so all states with E < 0 filled. The second state (|GS2〉) is the
MEM. These two states live in a different particle sector, because for the MEM there is an additional
delocalized fermion present. The first ground state has zero parity, while the second (MEM) ground
state has parity one. As we mentioned before, this parity distinction protects a ground state against
hybridization (i.e. there is no physically reasonable Hamiltonian that maps |GS1〉 to |GS2〉 or vice
versa). Furthermore, note that we have constructed a delocalized fermion, satisfying the second
requirement. As put forth by Kitaev, to avoid phase errors the Majorana fermions need to be far
apart and not interacting.
This is not the only parameter set for which there is a gapped bulk system with zero energy edge
modes, but it is only case we can do by hand. In Figure 6.2c we see the spectrum for a 30-site Kitaev
chain with µ = 0.5t and ∆ = t. The system is an insulator since the bulk is gapped. The two zero
modes in the middle denote the particle-hole pair MEM. Recall that this spectrum is for the Nambu
language, so we can ignore E < 0 (filled Fermi sea for vacuum) and take only one state at E = 0.
In Figure 6.2b we see the system at the critical point (µ = ∆ = t). This point is critical, because
the system becomes gapless at this point. We also see that for µ = 2 in Figure 6.2a there is no zero
modes.
It turns out that there is a MEM for |µ| < |t|. We can therefore call the Kitaev chain a topological
insulator. In the bulk it behaves like an insulator, but at the edge there is non-trivial behavior that
is robust against smooth changes in parameters. In fact the non-trivial or topological edge effect
disappear only after the system has passed a gapless point (µ = ±t). Therefore we call the region
with MEM the topological sector and without MEM the trivial sector. In Figure 6.4 we see the phase
diagram for the Kitaev chain.

−t 0 t

topologicaltrivial trivial µ

Figure 6.4: Phase diagram for the Kitaev chain for the chemical potential µ. The topological and
trivial sectors are separated by gapless points, µ = ±t.

Before we discuss the effect of disorder on the MEM we have to make a side note. As we saw in
the example the MEMs are perfectly localized in the special case µ = 0, ∆ = t (only the sites at
the very edge are occupied). For other parameter sets we can only find numerical results. In Figure
6.5 we see the absolute value of the MEM wave function for several topological systems. Recall
that the MEM is actually the fermion comprised of two Majoranas. In this picture we only see the
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first half of the Nambu-vector, because the second half is identical. Notice that for increasing µ the
delocalization of edge modes increases as well. For an infinite system this would not be a problem,
but since numerically we are dealing with finite system sizes the delocalization affects the energy. For
µ = 0.7 (green) and µ = 0.9 (red) the two MEMs overlap in the middle of the chain and feel each
other. So as the system approaches the gapless point the two Majoranas hybridize and the energy of
the edge modes does not vanish completely. In this figure we looked at a small system (30 sites), so
this effect is very strong. Nevertheless, for all finite system sizes the edge modes have finite energy.
So we have to implement a numerical cut off 10−15, to be able to view these edge modes as zero
energy MEMs.

5 10 15 20 25 30

0.1
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0.3

0.4

0.5
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µ = 0t
µ = 0.3t
µ = 0.7t
µ = 0.9t

Figure 6.5: MEM for the Kitaev chain of 30 sites with ∆ = t = 1 for several chemical potentials (µ).
For low µ the states are localized at the edge, however as µ approaches t the edge modes pierce into
the bulk and overlap.

6.3 Disorder

A physical system is rarely perfectly clean. Here we take a quick look at the effect of disorder on
the Majorana edge modes. The disorder will be introduced in the chemical potential. The chemical
potential becomes site dependent µi = µ + δµi, with δµi the fluctuation of the chemical potential
at site i. These fluctuations are randomly picked from [−δµ, δµ]. Figure 6.6a displays the spectrum
of the same system as in Figure 6.2c, but now there is a random disorder in the chemical potential
δµ = 0.5t. The overall shape of the spectrum is not much affected, the system is still gapped and
the zero modes still exist. The bulk states on the other hand have become more localized. We see
in Figure 6.6b the absolute value of a wave function bulk state for the non-disordered (blue) and the
disordered case (red) for approximately the same energy. Disorder forces the bulk states to localize,
this is known as Anderson Localization.
On the other hand, in Figure 6.6c depicts a Majorana edge mode, again for both the non-disordered
(blue) and the disordered case (red). Here we see that the edge mode is almost unchanged by the
disorder.
This indicates that the Majorana edge modes are very robust against the effects of disorder as we
would expect in a topological system.

We have seen that the MEMs are present in a static system, even with disorder. We now wonder
what happens to the MEMs once the system is altered. How does a sudden change in parameters, a
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(a) Adding disorder in the chem-
ical potential with ∆ = t, µ =
0.2t and δµ = 0.02t.
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(b) State in the bulk without
(blue) and with (red) disorder.
The states have been moved up
(or down) by 1/2 for visibility.
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(c) MEM without (blue) and
with (red) disorder. The states
have been moved up (or down)
by 1/2 for visibility.

Figure 6.6

quantum quench, affect the MEM? In the next chapter we will work out the details of the quantum
quench for the Kitaev chain. We will also derive measures to determine the survival of the wave
function after the quench. Using these measures we will investigate the evolution of the MEM in
Chapter 8.
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Chapter 7

Technical Details Quench

We have seen that the Kitaev chain is a topological insulator with a Majorana edge mode as a ground
state for specific parameters. Also we have seen that these MEMs are very robust against static dis-
order in chemical potential. We can now wonder whether these MEMs can also withstand quantum
quenches. Do the Majorana edge modes survive a change in chemical potential or superconductivity?
A quantum quench generally pumps a lot of energy in or out of the system, so this might have a
significant effect on the MEM. Notice that the Majorana ground state is a single particle state. This
makes the quench dynamics very simple. We do not have to care about Slater determinants or Pfaffi-
ans as one would in a many body system, but we can straightforwardly calculate the time evolution
after the quench.

In this chapter we will introduce the technical details necessary for the quench. We will also discuss
how to determine the survival of a MEM after a quench.

First, the Hamiltonian of the quench is given by

H(τ) =

{
H1 if τ < 0

H2 if τ > 0
(7.1)

where H1 is in the topological sector. The initial state (|ini〉) is a MEM for H1. The time evolution
of this state after the quench is simply given by

|fin(τ)〉 = e−iτH2 |ini〉 (7.2)

This fully governs the evolution of the MEM after the quench. We will use τ for the real time in
order to avoid confusion with the hopping constant t.

7.1 Projected Overlap

We would like to define a measure for the survival of the MEM after the quench. Since a quantum
quench is very rigorous way to pump energy in or out of the system, starting with the energy of the
MEM is the first guess.
However, we have to be careful with the term energy, because the time evolved MEM is not an
eigenstate of H2. We can on the other hand use the projected overlap (PO), which is closely related
to the concept of energy:

PO = 〈fin(τ)|H2 |fin(τ)〉 (7.3)

51
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The PO seems an obvious measure for the survival of the MEM. Nevertheless, as we will prove here
the PO defined above will always remain zero for a MEM, regardless of the quenched Hamiltonian.
First of all note that

PO = 〈ini|H2 |ini〉 , (7.4)

because H2 commutes with the time evolution operator.
Recall that we can diagonalize H1 and H2 using an eigenvalue decomposition (6.5):

H1 = Γ̂E1Γ̂
† = ~C†γ̂Ê1γ̂ ~C, H2 = ΨE2Ψ

† = ~C†ψÊ1ψ ~C (7.5)

where γ and ψ are the eigenvector matrices of H1 and H2. For notational convenience we would like
to drop these ~C in quadratic terms, and we can because

Γ†
kΨj = (γ̂†k

~C)(~C†ψj) =
∑
i

(γ̂†kψ
†
iψi

~C)(~(C)†ψj) =
∑
i

γ̂†kψ
†
iΨiΨj = γ̂†kψj (7.6)

Suppose γ is the MEM for H1.

Here we are going to introduce notation only used in this section. We need these definitions to
coherently prove that the PO of the MEM vanishes.
First of all, we can split the states, both initial state and the eigenstates of the new Hamiltonian

γ =

(
φ̂

θ̂

)
, ψj =

(
φj
θj

)
(7.7)

such that φ̂ and φj act on the c†i ’s and θ̂ and θj act on ci’s in the Nambu-vector (6.7).
We will redefine the indices for notational purposes.
The j-index denotes the eigenvalue and eigenvector of the Hamiltonian (e.g. ψj is the eigenvector
with energy Ej). Figure 7.1 shows three eigenvalues with the particle-hole partners. We see that
j runs from −L to L (j = 0 does not exist). This notation makes it easier to do particle-hole

−4 −2 2 4

−0.5

0.5

E−3
E−2 E−1

E3E2E1

Figure 7.1: Particle-hole indices

transformations, because this transformation would correspond to j → −j.
Furthermore the two parts of every eigenstate (φj , θj) are both L dimensional vectors. The entries of
these vectors (φij ,θij) we will denote by i running from −L/2, . . . , L/2. This negative versus positive
index makes chain inversion simple. Note that for L even i = 0 has to be removed, and for L odd
the i’s are half-integers. In Figure 7.2 we see this lattice schematically displayed.
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Figure 7.2: Lattice indices running from −L
2 to L

2 to accommodate lattice inversion.

Now we return to (7.4) and we see that

PO = γ†ψÊ1ψ
†γ, (7.8)

where ψ is the matrix of eigenvectors.
In the following step we use some results based on symmetries of the system derived in Appendix D.
We continue by calculating

(ψ†γ)j = φ†j φ̂+ θ†j θ̂ =

L/2∑
i=−L/2

(
φ†jiφ̂i + θ†jiθ̂i

)
=

L/2∑
i=1

(
φ†ji[φ̂i − βj φ̂−i] + θ†ji[θ̂i + βj θ̂−i]

)
.(7.9)

In the last step we used that the Kitaev chain is symmetric under inversion and time reversal (D.18):

φji = −βjφj−i (7.10)
θji = βjθj−i (7.11)

Here βj = ±1 is the symmetry factor for the jth eigenvector. Using the fact that the initial state (γ)
is an MEM we see (from D.38)

φ̂i = +θ̂i near site −L/2 (7.12)
φ̂i = −θ̂i near site L/2 (7.13)

We proceed by splitting the summation over the vector index (i) to find

(ψ†γ)j =

L/2∑
i=1

φ†ji[φ̂i + βj θ̂−i] + θ†ji[φ̂i + βj θ̂−i] (7.14)

=

L/2∑
i=1

[φ†ji + θ†ji][φ̂i + βj θ̂−i] (7.15)

Now using particle-hole anti-symmetry of the Hamiltonian E−j = −Ej to see that

PO =

L∑
j=−L

Ej |(ψ†γ)j |2 =

L∑
j=0

Ej

(
|(ψ†γ)j |2 − |(ψ†γ)−j |2

)
(7.16)

and also to recognize that φ−j = θj and vice versa (D.8). Then we find |(ψ†γ)j |2 = |(ψ†γ)−j |2, so
the PO vanishes for all quenches.
So we can not use the projected overlap as a measure for survival of the MEM

7.2 Measures: Inverse Participation Ratio and Overlap

There are two measures we are now going to present, that combined can determine the survival of
the MEM rather well. The wave functions of the MEMs are by characterized two properties. First
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of all the wave functions are localized, and second this localization is at the edge of the system.
The second property is measured by the overlap of the evolved state with the initial state. We define

OVR = | 〈ini|fin(τ)〉 |4. (7.17)

If the overlap is high the weight of the wave function is at the edge. At the end of this section we
will see why we have picked the fourth order. Note that there is a maximum for the overlap at 1
if |fin〉 = |ini〉, so great similarity reflects in high overlap. Nevertheless, the OVR does not give to
full overview in some cases. Consider for instance the two wave functions in Figure 7.3. Suppose we
prepare the system in the state in Figure 7.3a and it evolves to the state in Figure 7.3b for some
quench. The overlap would be zero because the states are clearly orthogonal, even though there is
still a localized state.
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Figure 7.3: Example of two perfectly localized orthogonal states.

The second measure determines the localization. Here we are going to use the inverse participation
ration (IPR) defined by Wegner in 1980.[39] For a state ψ with value ψi on lattice site i we define

ÎPR =
∑
i

|ψi|4 (7.18)

The ÎPR of a perfectly localized state (e.g. Figure 7.3) is obviously 1. A fully delocalized constant
state ( 1√

L
, . . . , 1√

L
) has ÎPR =

∑
i

1
L2 = 1

L , which in the thermodynamic limit (L→ ∞) goes to zero.
Hence the ÎPR becomes 1 for localized states and goes to zero for delocalized states.
For the Kitaev chain we cannot have a fully localized state in the sense of Figure 7.3a or 7.3b. The
MEM for the special point (µ = 0,∆ = t) is the perfectly localized edge state and the normalized wave
function in Nambu language is given by |γ| = ( 12 , 0, . . . , 0,

1
2 ,

1
2 , 0, . . . , 0,

1
2 )

ᵀ, describing Majoranas at
both edges. The ÎPR of γ is 4

24 = 1
4 . We would like this state to have IPR equal to 1 so we define

IPR = 4ÎPR = 4
∑
i

|ψi|4 (7.19)

Finally, we give an argument for choosing the fourth order for the OVR (7.17). Using the diagonal-
ization of H2 (7.5) we see that (when acting on the one-particle Fock space)

e−iτH2 = Ψe−iτÊ2Ψ† = Γ(Γ†Ψe−iτÊ2Ψ†Γ)Γ† (7.20)
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where we have inserted ΓΓ† = I and we can write Λ(τ) = Γ†Ψe−iτÊ2Ψ†Γ. We let this act on the
initial state 1√

2
(Γ1 + iΓ−1) |0〉 to find

|fin(τ)〉 = Γα
1√
2
(Λ(τ)α1 + iΛ(τ)α−1 |0〉 (7.21)

In this notation IPR ∝ Λ4 and | 〈ini|fin(τ)〉 | ∝ Λ, hence we choose the fourth order for the overlap.
In the following chapter we will use these measures to investigate the MEM for a variety of quenches.
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Chapter 8

Results - Kitaev Chain Quantum
Quench

In this chapter we will discuss the behavior of the wave functions after the quench. Using the measures
described in Section 7.2 we explore the parameter space (µ and ∆) to determine whether the MEM
survives or dissipates into the bulk. First we consider the Kitaev chain without disorder and we
quench the chemical potential and superconductivity separately. Finally, we also implement disorder
in the chemical potential to see how this affects the MEM.

8.1 Examples Quench

Before we discuss the quenches using the measures, let us first take a look at the explicit time
evolution of the MEM. Figures 8.1 show the evolution of the MEM after two distinct quenches. In
both cases the system (100 sites) was prepared in the topological sector at the special point, µ = 0
and ∆ = t. In Figure 8.1a we quenched the chemical potential to µ = 2, the trivial sector. We see
how the wave function reacts and evolves over time to become very delocalized. In this figure we see
the absolute value of the wave function for several times. At time τ = 0 (blue) we see the MEM at
site 1 and 100. Then very quickly the localized state dissipates into the bulk, at τ = 100 (green) it is
already spread out over the whole lattice. At τ = 1000 (red) the there are still some oscillations, but
no localization. This suggests that the MEM disappears, because in the trivial sector there are no
localized edge eigenstates it can explore. In Figure 8.1b we quench the system within the topological
sector (µ = 0.5). We then observe that the system remains much more localized at the edges, even
though the change in Hamiltonian induces some dissipation into the bulk. The inset of Figure 8.1b
gives a better picture of the edge and shows that the MEM does not decay into the bulk for large
time. For τ = 1000 (red) the weight of the wave function is still at the edge.

8.2 Chemical Potential Quench

So now we have discussed two particular examples, one extreme topological to trivial quench where
the MEM disappears, and one topological to topological quench where we see that the MEM survives.
We can make these statements more concrete by considering the two measures defined in Section 7.2,
the inverse participation ratio (IPR) and the overlap (OVR). The IPR estimates the localization of
the state is, while OVR determines the resemblance to the initial state. The combination of these
two quantities gives a good indication for the survival of the original MEM.
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Figure 8.1: Examples of the evolution of a Majorana state after a quantum quench for the Kitaev
chain from the topological sector (µ = 0) (a) to the trivial sector (µ = 2) and (b) to topological sector
(µ = 0.5), with a lattice of 100 sites and ∆ = t = 1. Here we have plotted for different times the
absolute value of the wave function for the fermions only for the particles (not the holes). The inset
in (b) is a zoom at the edge of the topological-topological quench.

Here we take a look at quenches in the chemical potential. In the following sections we will use a
Kitaev chain of 100 sites. It turns out that the measures (IPR and OVR) are relatively well converge
thermodynamic limit for a system of 100 sites. There will still be some effects from the finite size,
but these are only slight fluctuations that do not change the outcomes significantly.
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Figure 8.2: The IPR and OVR (long time average) for the wave function of the MEM quenched from
µ = 0 (a) and µ0 = 0.5 (b) to µ. (100 sites and ∆ = t = 1). The inset in (b) depicts the IPR for the
initial MEM as a function of µ.



8.2. CHEMICAL POTENTIAL QUENCH 59

In Figure 8.2 we see the results for the chemical potential quenches. The system is prepared in the
topological sector. Then we prepare the state in the Majorana ground state, the MEM as we did
before. We quench to various different chemical potential (horizontal axis). By taking a long time
average (T between 10000 and 11000) for IPR and OVR we make sure the MEM has time to fully
adjust to the new system parameters. Taking the average over a time period ensures oscillations are
filtered out.

Figure 8.2a depicts IPR and OVR for a quench from µ0 = 0 (∆ = t = 1). The initial has a
maximally localized MEM ground state. Unsurprisingly, OVR is maximal for µ = 0, because a state
overlaps perfectly with itself. Also IPR is maximal for µ = 0, since this is the most localized state.
We also see that both quantities decay and flatten out as µ increases. The OVR goes to zero, while
the IPR approaches the blue solid line. This line (0.02) corresponds to the IPR of the constant wave
function (ψ = ( 1√

L
, . . . , 1√

L
)), and therefore indicates complete delocalization (CD).

For µ outside the topological sector (see Figure 6.4) the evolved MEM becomes completely delocalized
an has zero overlap with the initial state. The system in the trivial sector does not have any localized
edge state the MEM can go to, therefore it is smeared out over the whole eigenstate basis.
Interestingly, we see that the MEM also disappears for certain regions in the topological sector. We
can define thresholds for the measures: for the IPR IPRth = 0.08 (four times the CD), and for the
OVR OVRth = 0.04. If either of the measures is below these threshold, we conclude that the Ma-
jorana did not survive the quench. In this case (Figure 8.2a) the region of stability, or the region
of survival is µ ∈ [µdown, µup], with µdown = −0.75 and µup = 0.75. Hence even for |µ| > 0.75 in
the topological sector the MEM disappear. The localized states for these chemical potential are too
“orthogonal” to the original MEM and the initial state is smeared out over many new eigenstates.
Note that for both IPR and OVR the maximum is at µ = 0.
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(a) The region for MEM survival for a Kitaev chain
with 100 sites with ∆ = t = 1. For several ini-
tial chemical potentials µ0 the upper µup and lower
crossover µdown are depicted in respectively blue and
red. At these cross overs either the IPR of the
OVR reaches the threshold value (IPRth = 0.08,
OVRth = 0.04).
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(b) Part of Figure 8.3a for several lattice sizes.
Clearly 50 sites results in some finite size effects,
while the 100 sites results have converged to the ther-
modynamic limit.

Figure 8.3

Figure 8.2b shows chemical potential quenches for which OVR and IPR do not agree as good as in
the previous case. Here we prepare the system with µ0 = 0.5 and both OVR and IPR qualitatively
agree on the cross overs µup ≈ 0.9 and µdown ≈ −0.7. However, the maximums for the IPR and OVR
do coincide in this case. The OVR maximizes at µ0, which is 0.5 in this case, since there the system
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remain unchanged through the quench. However for the IPR the maximum is not at µ0. We see that
there is a balance between the memory of the initial state and IPR maximization. The inset in Figure
8.2b shows the IPR for Majorana eigenstates as a function of chemical potential (and ∆ = t = 1).
As said before the localization is maximized for µ = 0, and the IPR decays in the topological sector
to zero at the phase transition µ = t = 1.
Hence for 0 < µ < µ0 the MEM is better localized. Apparently our initial MEM tries to align with
these better localized states. On the other hand the further µ and µ0 are apart the more the MEM
dissipates into the bulk, because more eigenstates get involved. The combination of both effects
results in a maximum for IPR at µIPR ≈ 0.25.

In two specific cases (Figure 8.2a and Figure 8.2b) we have looked at the two measures after the
quench, concluding that there is a stability region for the MEMs. In Figure 8.3a we see this stability
region plotted as a function of µ0, the initial chemical potential. Using the thresholds we have calcu-
lated the lower bound µdown (red) and upper bound µup (blue) for survival of the MEM.
First, we observe that the MEM survival region is the largest for µ0 = 0. Furthermore, the green
line denotes µ = µ0 and using this line we see that a system with µ = 0 is much more stable than a
system with µ = ±0.85 at the edge of this figure. For µ = 0.8 a shift of δµ = +0.2 would already put
the system outside the MEM survival region.
Note that the diagram runs only up to µ0 = 0.85, because for this lattice size (100 sites) the local-
ization of the initial MEM is below the threshold beyond this point.
The values of µdown,up turn out to be independent of lattice, provided that the system is large enough.
In Figure 8.3b we see part of Figure 8.3a for various lattice sizes. For 50 lattice sites there is clearly
some finite size effects in the form of plateaus, but the 100 sites is almost indistinguishable from the
200 sites. We can therefore safely assume 100 sites is large enough for these analyses.
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Figure 8.4: The IPR and OVR (long time average) for the wave function of the MEM quenched from
∆0 = 1 (a) and ∆0 = 0.4 (b) to ∆. (100 sites and µ = 0, t = 1). The inset in (a) depicts the IPR for
the initial MEM as a function of ∆.
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8.3 Superconductivity Quench

We now also take a look at the superconductivity quench. Analogous to the chemical potential quench
in Figure 8.4 we see quenches for different initial condition. The first observation is that, contrary
to the chemical potential quench, the stability region does not cover negative values for ∆. Up to
now we have only considered ∆ > 0, because this term distinguishes the Kitaev chain from a simple
gapless tight binding model. Therefore at ∆ = 0 there is phase transition. However, this transition
does not separate a topological phase from a trivial phase, but on either side there is a topological
phase. In both figures we clearly see that the topological phases at both sides of the transition are
different. For the quenches in Figure 8.4a the initial state is a MEM for µ = 0 and ∆ = t = 1. If
we quench this to negative ∆ the MEM completely vanishes. We see this as well for different initial
condition ∆ = 0.5 in Figure 8.4b.
A simple explanation follows from the Hamiltonian in Majorana language (see Section 6.2.1). We
showed that for µ = 0 and t = ∆ two Majoranas, γ1 and γ2L do not contribute to the energy. If we
do the same derivation for ∆ = −t the Majoranas operators that drop out of the Hamiltonian are
γ2 and γ2L−1. The even and odd Majoranas are the two different types (see (6.10)) and changing
the sign of ∆ changes the Majorana type at both edges. The two types are orthogonal, so the MEM
vanishes when quenching from ∆0 > 0 to ∆ < 0. The localized states in both systems are orthogonal.
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Figure 8.5: The region for MEM survival for a Kitaev chain with 100 sites with µ = 0 and t = 1.
For several initial superconductivities ∆0 the upper ∆up and lower crossover ∆down are depicted in
respectively blue and red. At these cross overs either the IPR of the OVR reaches the threshold value
(IPRth = 0.08, OVRth = 0.04).

Similar to the chemical potential quench the MEM does not survive all quenches within the topological
sector. The lower bound for survival of the MEM are around ∆down = 0.1 in both cases.
Note that we see a similar distinction between Figure 8.4a and Figure 8.4b as we saw for the chemical
potential quench. Figure 8.4a is prepared in the special point (∆0 = 1), so both the IPR and OVR
are maximal for ∆ = ∆0 = 1. On the other hand in Figure 8.4b we start at ∆0 = 0.5. Obviously, the
overlap is again maximal at ∆ = ∆0 = 0.5. The IPR maximum is pulled away from ∆0, because for
∆ ∈ [0.5, 1] the available MEMs are more localized as we see in the inset of Figure 8.4a. This figure
shows the IPR for the bare MEM as a function of the superconductivity.
This inset also shows the MEM slowly disappearing for ∆ � 1. In fact for the system used in this
case (100 sites) there are no MEM in the initial system (H1) if ∆ > 25, because the IPR is below the
threshold we defined in Section 8.2. Because of this delocalization of the Majoranas for high ∆, the
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MEM does not survive quenches to high enough ∆.
We can make this more explicit by determining the upper and lower cross over superconductivity for
several initial conditions. We see the results of this analysis in Figure 8.5. As a function of initial
superconductivity (∆0) we see the the upper boundary (blue) and the lower boundary (red) for MEM
survival after the quench. We only consider ∆0 up to 4, because very high superconductivity is not
physical. Furthermore, only ∆0 > 0 is plotted here, for negative superconductivity one has to mirror
the plot in both axis.
Again some caution is required when discussing the cross overs in the topological sector (recall that
there is a MEM for |∆| > 0). As with the chemical potential quenches it turns out that we can treat
the system size of 100 sites to be close to the thermodynamic limit. Increasing the size of the system
only smoothens out the plot, i.e. takes away the jumps but does not change the shape.

8.4 Adding Disorder

In Section 6.3 we have seen that the MEM are very robust against disorder. Here we are going to
see what happens to a MEM in a disordered state, when the chemical potential is quenched. We add
the disorder in the chemical potential in the form of block disorder with width δµ. Note that there
is particle-hole symmetry in the system, so adding a disorder δµi to ci means a disorder −δµi for
c†i . This disorder shifts all energies in the spectrum up or down. Therefore we have to be careful
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Figure 8.6: Effect of disorder spectrum, shifting of the eigenvalues.

with adding to much disorder. In Figure 8.6 we see an example of a non-disordered spectrum in blue.
Adding δµi to every site shifts all the eigenvalues in spectrum, only the zero energy are pretty resilient
against this shift, as we saw before. The black arrows depict the shift for a certain disorder. The red
dots denote the new energies. In Figure 8.7 we see two spectrums for the same global parameter set
(µ = 0.5, ∆ = t = 1). Figure 8.7a displays the gapped spectrum without disorder, while in Figure
8.7b we see that disorder (δµ = 1) forced the gap to close. Hence we see that adding high disorder can
result in the closing of the gap and this has two consequences. As we saw before in a finite lattice the
“zero” eigenstates are never exactly zero, because of finite size effects, we treat them as zero below
a certain threshold. For a highly disordered system energies of the bulk states can also become of
the order of the “zero” energies, hence it is impossible to distinguish the MEM from the other small
energy states.
Secondly, finite size effects start to play a role since the system is not an insulator anymore, i.e. the
zero modes can talk to one another through the bulk.
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without disorder (µ = 0.5, ∆ = t = 1, 30 sites).
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(b) The same system as in (a) (µ = 0.5, ∆ = t =
1, 30 sites), with overcritical disorder δµ = 1.

Figure 8.7

Therefore we cannot use arbitrarily large disorder, because we have to make sure the initial system
is gapped. For ∆ = t = 1 the size of the gap to E = 0 is given by ∆gap = 1

2 |1 − µ|. In (6.6) we
see that the chemical potential enters as µ

2 , therefore half the disorder ( δµ
2 ) should be smaller than

1
2 |1 − µ| to avoid the gap to close. We choose the initial system to have chemical potential µ0 = 0,
so the maximal allowed disorder is δµ = 1. In all case we prepare the system with a certain chemical
potential µ0 and disorder distribution δµi. Then we quench by only changing the global chemical
potential, leaving the disorder distribution unaltered.
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Figure 8.8: OVR and IPR for chemical potential quench (µ), for initial system (100 site) with µ0 = 0,
∆ = t = 1 for several disorder levels (δµ).

In Figure 8.8a the IPR and OVR of chemical potential quench for δµ = 0.3 displayed. We see
that the overlap has changed very little in comparison with the non disordered case (Figure 8.2a).
On the other hand, the IPR seems to level out. This is due to another localization effect, known
as Anderson localization (AL).[40] This effect appears for instance in disordered chains with tight
binding. Deviations in chemical potential along the chain force the system to localize. The stronger
the disorder, the stronger the AL. In Figure 8.8b and 8.8c we see that for strong disorder the IPR
almost completely levels out. This suggest that the state is localized equivalently when quenched to
a topological and trivial system. Hence the localization is not due to the appearance of Majoranas
at the edge, but rather because of the disorder, Anderson localization. In all cases the energy of the
initial MEM is of the order of 10−16, which is below Mathematica working precision. As we would
expect the OVR falls of as we go away from the initial condition µ = 0.
More research needs to be done in order understand MEM survival in the presence of disorder.
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Chapter 9

Conclusion and Discussion - Kitaev
Chain Quantum Quench

In the second part of this thesis we have looked at the the quantum quench for the Kitaev chain. In
particular, analyzing the wave function of a Majorana edge mode after a quench in chemical potential
and superconductivity.
In Chapter 6 we have introduced the Kitaev chain, with it distinctive features. We reviewed the
appearance of localized zero energy Majorana edge modes in the system. And we have seen that
these topological effects manifest for certain conditions, the topological sector. Outside this sector
the system is a simple insulator, the trivial sector. These different phases are separated by a gapless
critical point. Also we have seen that these MEMs are very robust against disorder. These properties
combined make this a good candidate for a quantum computer. This made us wonder about other
experimental distortion the MEMs should overcome, for instance a sudden change in overal chemical
potential. The main question of this part is: How does the Majorana edge mode behave when the
Kitaev chain is subjected to a quantum quench? We attempted to answer this question by looking
at the wave function of the MEM after we performed a quench.
In Chapter 7 we discussed the details of the quench. The wave functions after the quench were
numerically calculated by applying the time evolution operator to the initial state for a finite size
system (100 sites). We presented measures to assess the behavior of the wave function. The overlap
determined the resemblance to the state before the quench and the inverse participation ratio esti-
mated the localization of the state.

Finally in Chapter 8 we discussed the results. First we considered two specific chemical poten-
tial quenched. In both cases the initial system was in the topological phase and we prepared the
state to be the MEM (µ = 0, ∆ = t = 1). In one case we quenched the system to the trivial
phase (µ = 2), and by looking at the wave function we observed that the MEM dissipated into the
bulk. It delocalized and did not survive this quench. In the second case we quenched the system
within topological sector (µ = 0.5). In this case there was still some dissipation into the bulk, but the
weight of the wave function was still at the edge. In this case the MEM clearly remained in the system.

We then discussed the survival of the MEM using the IPR and OVR. First we calculated these
measures explicitly for two examples of chemical potential quenches. Starting from the initial system
(µ0 = 0 and µ0 = 0.5) we derived these measures as a function of µ (chemical potential after the
quench). We observed that the MEM already seems to disappear for quenches within the topological
sector. Therefore we defined thresholds to determine the stable quench region as a function of the
initial chemical potential. We noticed that this stability region was maximal for µ0 = 0 and the with
of this region was approximately 1.5.
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Then we performed a similar analysis for the superconductivity. We determined the stability regions
for small initial superconductivity. Here the region seems to grow as the initial superconductivity
increases. Interestingly the MEM does not survive a quench from one topological sector to the other
topological sector. At ∆0 = 0 there is a phase transition between two different topological sectors,
containing different MEM types. These two types are orthogonal and the MEM cannot survive in
the other sector.

We have to mention that for both parameter quenches the finite size effects cannot be completely
ignored. These are inherent to doing a numerical analysis. Even though the evidence suggests other-
wise, the boundaries of the stability regions may be significantly different in the thermodynamic limit.

Finally, we have implemented disorder in the system. This adds a completely new dimension to
the story. Disorder can even cause localization effects in non-topological systems such as the tight
binding model. This effect is known as Anderson localization. When we add disorder to the chemical
potential we see that AL starts to battle with the edge mode localization and it is difficult to deter-
mine whether there is still MEMs.
Quenching the Kitaev chain in the presence of disorder certainly demands for more extensive research.
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Appendix A

Kondo Model from Anderson
Impurity Model

In this appendix we will show how the Kondo model (1.1) can be derived as an effective theory from
the Anderson Impurity model (AIM). The AIM is a microscopic theory, so by making this connection
we obtain the physical justification for (1.1).
The idea is as follows the Anderson model couples a spinful impurity to spinful conduction electrons.
The Anderson impurity can possess no particles (|0〉), one particle (|↑〉 , |↓〉) or two particles (|↑↓〉).
In the Kondo model the impurity is a spin, hence is is either up or down, so it is in the one particle
sector. By projecting out the zero and two particle sectors in the AIM we can derive the Kondo
impurity. In the end we let U and εd become large and E−εd go to zero. These quantities are defined
in the following part.
The Hamiltonian of the Anderson impurity model is given by

H =
∑
kσ

[
εkc

†
kσckσ + (Vkd

†
σckσ + V ∗

k c
†
kσdσ)

]
+
∑
σ

εdndσ + Und↑nd↓. (A.1)

The ckσ are the conduction electrons as usual with the single particle energy εk. The impurity
fermions are dσ and they couple to the conduction fermions with Vk and V ∗

k . Adding a impurity
fermion comes with a cost εd, since ndσ is the number operator for the impurity. Finally U couples
both spin species of the impurity.

Since we are interested in different particles sectors we can define three sectors of the Hilbert space:

|ψ〉 =

 |ψ0〉
|ψ1〉
|ψ2〉

 (A.2)

The Schrödinger equation becomes then H00 H01 H02

H10 H11 H12

H20 H21 H22

 |ψ0〉
|ψ1〉
|ψ2〉

 = E

 |ψ0〉
|ψ1〉
|ψ2〉

 . (A.3)

The Hmn are the Hamiltonians coupling the different sectors. If we define projection operators Pi

(i = 0, 1, 2) projecting to each respective sector we get

Hmn = PnHPm (A.4)
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The projection operator are explicitly given by

P0 = (1− nd↑)(1− nd↓), P1 = nd↑ + nd↓ − 2nd↑nd↓, P2 = nd↑nd↓ (A.5)

Note that H20 = H02 = 0, because in the Hamiltonian (A.2) there is no term adding or removing two
impurity fermions.
The diagonal entries are

H00 =
∑
kσ

εkc
†
kσckσ, H11 =

∑
kσ

εkc
†
kσckσ + εd, H22 =

∑
kσ

εkc
†
kσckσ + 2εd + U (A.6)

The two entries creating an impurity fermion are

H10 =
∑
kσ

Vkd
†
σ(1− ndσ̄)ckσ, H21 =

∑
kσ

Vkd
†
σndσ̄ckσ. (A.7)

Here σ̄ denotes is ↑ if σ =↓ and vice versa. We see that H10 only adds a fermion with spin σ if the
other fermion is absent and H21 only add a fermion if the other is present. Finally H01 = H†

10 and
H12 = H†

21.
From the three equation in (A.3) we can derive

Heff |ψ1〉 = H10 |ψ0〉+H11 |ψ1〉+H12 |ψ2〉 = E |ψ1〉 (A.8)(
H10(E −H00)

−1H01 +H11 +H12(E −H22)
−1H21

)
|ψ1〉 = E |ψ1〉 . (A.9)

Where we have rewritten the equations in (A.3) to find an equation for |ψ1〉.

Now we can work out the first term in (A.9):

H10(E −H00)
−1H01 =

∑
kk′σσ′

VkV
∗
k′d†σ(1− ndσ̄)ckσ(E −H00)c

†
k′σ′(1− ndσ̄′)dσ′ (A.10)

The strategy with both the first and the third term will be to get all sector dependence to the front
and remain with only terms that depend on the bulk. We go to projector language immediately
because the orthogonality of the sectors makes the derivation a lot easier.
Note that P0 + P1 + P2 = 1, so we can write

E −H00P0 = (E −H00)P0 + EP1 + EP2. (A.11)

Since the sectors are orthogonal it is easy to see that

(E −H00P0)
−1 = (E −H00)

−1P0 +
1

E
P1 +

1

E
P2. (A.12)

If we insert (A.12) in (A.10), we see that only the P0 survives:

(E −H00)
−1c†k′σ′(1− ndσ̄′)dσ′ = −(1− ndσ̄′)dσ′(E −H00)

−1c†k′σ′ (A.13)
= c†k′σ′(1− ndσ̄′)dσ′(E −H00 − εk′)−1, (A.14)

where we have used H00ck′σ′ =
∑

kσ c
†
kσckσc

†
k′σ′ = c†k′σ′(H00 + εk′) in the second line. Note that the

energy E is for a one particle state. In the end we set |εd|, U � |H00|, so E ≈ εd. Therefore we
rewrite (A.14)

(E −H00)
−1c†k′σ′(1− ndσ̄′)dσ′ = −

c†k′σ′(1− ndσ̄′)dσ′

εk′ − εd

(
1− E − εd −H00

εk′ − εd

)−1

(A.15)
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If we now let |εd| be large then using (A.12) we find:

H10(E −H00)
−1H01 = −

∑
kk′σσ′

VkV
∗
k′
d†σ(1− ndσ̄)ckσc

†
k′σ′(1− ndσ̄′)dσ′

εk′ − εd
(A.16)

Because we only consider the one particle state the ndσ̄ can be dropped in (A.16).

Next we work out the two particle virtual states in a similar fashion.

H12(E −H22)
−1H21 =

∑
kk′σσ′

Vk′V ∗
k c

†
kσndσ̄dσ(E −H22)d

†
σ′ndσ̄′ck′σ′ (A.17)

Now again we can write

(E −H22P2)
−1 =

1

E
P0 +

1

E
P0 + (E −H22)

−1P2, (A.18)

and only the P2 term remains in the product. Recall from (A.6) that H22 = H00 + 2εd + U . And
using H00ck′σ′ = ck′σ′(H00 − εk′) we find

(E −H22)
−1d†σ′ndσ̄′ck′σ′ = d†σ′ndσ̄′ck′σ′(E −H00 − 2εd − U + εk′)−1 (A.19)

= −
d†σ′ndσ̄′ck′σ′

U + εd − εk′

(
1− E − εd −H00

U + εd − εk′

)−1

. (A.20)

We have again put the second line in a form, such that we can drop the last factor to obtain the
leading order terms in 1/U and 1/εd.
Plugging in (A.20) into (A.17) we find

H12(E −H22)
−1H21 = −

∑
kk′σσ′

Vk′V ∗
k

c†kσndσ̄dσd
†
σ′ndσ̄′ck′σ′

U + εd − εk′
. (A.21)

This operator acts on the one particle sector we can work out the ndσ̄ = 1.
Plugging (A.16) and (A.21) into (A.9) gives

Heff = H00 + εd −
∑

kk′σσ′

V ∗
k Vk′

[
d†σ′ck′σ′c†kσdσ

εk − εd
+
c†kσdσd

†
σ′ck′σ′

U + εd − εk′

]
(A.22)

= H00 + εd −
∑

kk′σσ′

Akk′d†σ′ck′σ′c†kσdσ +Bkk′c†kσdσd
†
σ′ck′σ′ (A.23)

= H00 + εd +
∑

kk′σσ′

(Akk′ +Bkk′)c†kσck′σ′d†σ′dσ −Akk′δσσ′δkk′d†σ′dσ −Bkk′δσσ′c†kσck′σ′

(A.24)

= H00 + εd +
∑

kk′σσ′

(Akk′ +Bkk′)c†kσck′σ′d†σ′dσ −
∑
kk′σ

Bkk′c†kσck′σ −
∑
k

Akk (A.25)

We have introduced

Akk′ = V ∗
k Vk′

1

εk − εd
, Bkk′ = V ∗

k Vk′
1

U + εd − εk′
(A.26)

In the last line we used
∑

σσ′ δσσ′d†σ′dσ =
∑

σ ndσ = 1.

The impurity is singly occupied, so this is a two level system (either ↑ or ↓ at the impurity). This
means that we can write the impurity as a spin degree of freedom:

~S = d†α
~σαβ
2
dβ , (A.27)
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where σi’s are the Pauli matrices. Now we use the Pauli matrix identity

~σαβ~σγδ = 2δαδδβγ − δαβδγδ (A.28)

to write

c†kα~σαβck′β
~S = c†kα~σαβck′βd

†
γ

~σγδ
2
dδ = c†kσck′σ′d†σ′dσ − 1

2
c†kσck′σd

†
σ′dσ′ (A.29)

Plugging (A.29) into (A.25) gives

Heff =
∑
kσ

εkc
†
kσckσ +

∑
kk′

(Akk′ +Bkk′)c†kα~σαβck′β
~S +

Akk′ −Bkk′

2
c†kσck′σ, (A.30)

where we have dropped the constant terms. If Vk = V we see that the coupling constants (A.26) do
not depend on k (we use |εd| � εk). The first term is now the Kondo coupling, compare to (1.1) and
the second term drops out if we assume particle-hole symmetry, i.e. 2εd + U = 0.



Appendix B

Matsubara

We are going to see how to work out the Matsubara sums using contour integrals. In general a
Matsubara sum is∑

ωn

f(iωn) (B.1)

Using l’hôpital we see that the residue of Fermi/Bose distribution function at the Matsubara frequen-
cies is:

lim
ω→ωn

ω

eβω ± 1
= lim

ω→ωn

1

βeβω
=

1

∓β
, (B.2)

where the upper sign corresponds to fermions and the lower sign to bosons. Hence by introducing
contour integrals the summation in (B.1) corresponds to:

1

2πi

∮
C
dω

[
∓β 1

eβω ± 1
f(ω)

]
, (B.3)

where C is the contour integral around the imaginary line.
In stead of integrating around the the imaginary line, we can also integrate over the two real half
separated by the imaginary line. This gives the following equivalence

∑
ωn

f(iωn) = ±β
l∑

i=1

1

eβzi ± 1
Reszif(z) = ±β

l∑
i=1

ηF,B(zi)Reszif(z) (B.4)

where f(z) has l poles at zi = z1, . . . , zl. Note that we pick up an extra minus, because the contour
integral needs to be reversed and the contour direction is counter clockwise. Here ηF is the Fermi-
Dirac distribution and ηB the Bose-Einstein distribution.
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Appendix C

Bosonization

Interaction terms can make it extremely difficult to fully solve a quantum mechanical system. Terms
up to second order can be solved exactly, but taking into account higher other terms poses new
challenges. Bosonization is a technique that can help out in some cases.
Here we are going to describe a bosonization scheme, which is a way to rewrite a fermion operator ψ
in terms of boson operators. It is not straightforward to express a bosons in fermions or vice versa.
Obviously, the different statistics make a one-to-one connection impossible. Nevertheless, a fermion
density operator ρ ∝ c†c is already more boson-like, since it commutes in stead of anti-commutes.
This is the first observation of bosonization, since it relates boson operators to fermion densities
(b ∝ c†c). We already see that this makes quartic fermion interaction terms like c†cĉ†ĉ, much simpler
in boson language because they become quadratic bb̂. In this appendix we will introduce the necessary
ingredients for bosonization. For a full derivation see [20].

C.1 Bosonization Conventions

There are several different conventions for setting up the bosonization framework. Here we are going
to use the same definitions as [20].
The first remark on bosonization is: it is only applicable in one dimension. In Figure 3.1b we see
the one particle spectra for one (Figure 3.1a) and two (Figure 3.1b) dimension. For one dimension
we see that a if we excite a fermion from just below the Fermi surface (k) with small amount of
energy (δ) it can only go to one specific momentum (k + δ/vF ), where we assumed linear dispersion
close to the Fermi surface. In Figure 3.1b we look at the 2D spectrum from the top. If we excite a
fermion from below the Fermi surface (~k) with a finite amount of energy, it can go to any ~k′, such
that |~k′| = |~k|+ δ/vF , so the momentum smeared out in stead of specifically determined. In fact for
n-dimensions it is smeared out over an n− 1-sphere (Sn−1).

For the Kondo problem we can assume that we only have to consider one radial direction after
the reduction from three to one dimensions, since there is one impurity in the origin. Hence we can
drop k < 0 and consider only the right movers (later on we will see what this means).
Furthermore we need the free energy of the fermion to be linear at the Fermi surface. The linear
dispersion is ε(k) = vF k = k, where vF is the Fermi velocity.
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The fermion fields are defined as

ψη =

(
2π

L

)1/2∑
k

e−ikxckη; (C.1)

ψ†
η =

(
2π

L

)1/2∑
k

eikxc†kη. (C.2)

where η denotes the different fermion species (e.g. spin, η = (↑, ↓)) and L is the size of the system.
The operators satisfy canonical anti-commutation relations

{ckη, c†k′η′} = δηη′δkk′ , {ψη(x), ψ
†
η′(x

′)} = 2πδηη′δ(x− x′). (C.3)

where we have normalized ψ with a factor of 2π which will be useful later.
The linearized free energy is then

H0 =
∑
η,k

vF k :c†kηckη: (C.4)

=
∑
η

∫ L/2

−L/2

dx

2π
:ψ†

η(x)ivF∂xψη(x):, (C.5)

The dots (:Ô:) denote the normal ordered operator. Normal ordering means moving all creation opera-
tors to the right and annihilation operators to the left. Alternatively it is defined as :Ô:= Ô−〈0| Ô |0〉,
where the second term is the expectation value with respect to the ground state.

Before the bosonization can be introduced we have to define the ground state for n species. Sup-
pose that there are Nη particles of species η, we define the ground state as | ~N〉0, where ~N =
(N1, N2, . . . , Nn) and the subscript 0 means for all species are filled up to the Fermi surface (no
excitations). The number operator is therefore

N̂η =
∑
k

:c†kηckη:=
∑
k

[
c†kηckη − 0〈~0|c

†
kηckη |~0〉0

]
(C.6)

such that N̂η | ~N〉 = Nη | ~N〉.

C.1.1 Boson Representation

We will now define the boson operators and the connection the fermion operators, the thorough
derivation is in [20]. The boson operators are

bqη =
−i
√
nq

∑
k

c†k−qηckη (C.7)

b†qη =
i

√
nq

∑
k

c†k+qηckη (C.8)

where q = 2π
L nq > 0. These operators indeed satisfy [bqη, b

†
q′η′ ] = δηη′δqq′ , so they are bosonic.

If we take a closer look at these boson operators, we note that they both conserve particle number.
Furthermore we see that b†qη raises every particle in site k to site k+ q, if site k is occupied and k+ q

is empty. Clearly bqη induces the opposite excitation. From this we see that bqη | ~N〉0 = 0, since in
|(N1, N2, . . .)〉0 no states can be lowered under the Fermi surface. So we have found the ground state
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for bqη.
The whole ~N particle Hilbert space is now spanned by acting with combinations of creation operators
on the ground state, i.e. for all| ~N〉, there exists f ∈ R[x] a polynomial such that | ~N〉 = f(b†) | ~N〉0.
Note that the particle number is conserved, so ~N is not changed.

At this point we can also define a boson field:

ϕη(x) = −
∑
q>0

1
√
nq
e−iqxbqηe

−aq/2 (C.9)

ϕ†
η(x) = −

∑
q>0

1
√
nq
eiqxb†qηe

−aq/2. (C.10)

And the Hermitian combination

φη(x) = ϕη(x) + ϕ†
η(x) = −

∑
q>0

1
√
nq

(
e−iqxbqη + eiqxb†qη

)
e−aq/2 (C.11)

Where a > 0 is often interpreted as the lattice size, but here this infinitesimal parameter is used to
regularize the UV divergent sums.
Now we have several useful commutator:

[ϕη(x), ϕη′(x′)] = [ϕ†
η(x), ϕ

†
η′(x

′)] = 0 (C.12)

[ϕη(x), ϕ
†
η′(x

′)] = −δηη′ ln
(
1− e−i 2π

L (x−x′−ia)
)

(C.13)

L�(x−x′)
= −δηη′ ln

(
i
2π

L
(x− x′ − ia)

)
(C.14)

And

[φη(x), φη′(x′)]
L�(x−x′) a→0

= −δηη′2πiσ(x− x′) (C.15)

[φη(x), ∂xφη′(x′)]
L�(x−x′) a→0

= δηη′2πi

[
δ(x− x′)− 1

L

]
(C.16)

Where σ(x) is the sign function, analytically continued in 0 (i.e. σ(0) = 0).

C.1.2 Bosonization Identity

Now we want to write the fermion fields in terms of the boson fields. Since the boson fields conserve
particle number, we require an additional operator to ensure that ψ (ψ†) removes (adds) a fermion.
This operator is called the Klein factor (Fη). We can safely assume that Fη commutes with all boson
operators and that it acts in the following way ~N -particle state:

F †
η | ~N〉 = F †

ηf(b) | ~N〉0 = f(b)c†(Nη+1)η | ~N〉0 (C.17)

Fη | ~N〉 = Fηf(b) | ~N〉0 = f(b)cNηη | ~N〉0 (C.18)

From this definition it is easy to see that

FηF
†
η = F †

ηFη = 1 (C.19)

and

{F †
η , Fη′} = 2δηη′ , {Fη, Fη′} = {F †

η , F
†
η′} = 0, [N̂η, F

†
η′ ] = δηη′F †

η′ , [N̂η, Fη′ ] = −δηη′Fη′ (C.20)
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Combining (C.1) and (C.7) gives [bq,η, ψη(x)] = δηη′
i√
nq
eiqxψη(x), hence:

bqη′ψη(x) | ~N〉0 = δηη′
i

√
nq
eiqxψη(x) | ~N〉0 (C.21)

Since ψη(x) | ~N〉0 is an eigenstate of bqη′ there is a coherent-state representation of ψη(x) in terms of
b†qη′ , which turns out to be:

ψη(x) = Fη

(
2π

L

)1/2

e−i 2π
L (N̂η− 1

2 δb)xe−iϕ†
η(x)e−iϕη(x) (C.22)

= Fηa
−1/2e−i 2π

L (N̂η− 1
2 δb)xe−iφη(x) (C.23)

Here the Klein factor Fη makes sure the particle number is conserved. The full derivation can be
found in (CITE von delft). In the second line we have used (C.36).

C.2 Free Hamiltonian

The Hamiltonian C.4 can now also be written in terms of the boson operators. We see that

[H0η, b
†
qη] = vF qb

†
qηδηη′ , (C.24)

so b†qη is a raising operator with respect to the free energy (H0ηbqη |E〉 = (E+ vF q)b
†
qη |E〉. Therefore

we can write the Hamiltonian in terms of the boson operators as

H0 =
∑
η

(∑
q>0

vF qb
†
qηbqη +

2πvF
L

1

2
N̂η(N̂η + 1)

)
(C.25)

=
∑
η

(∫ L/2

−L/2

dx

2π

vF
2

:(∂xφη(x))
2
: +

2πvF
L

1

2
N̂η(N̂η + 1)

)
(C.26)

where 2πvF

L
1
2N̂η(N̂η + 1) is the energy of the ground state. We will assume this to vanish in most

cases, since we let L become large.

C.2.1 Heisenberg Picture

Since we have the free Hamiltonian, we can derive how the boson and fermion operators behave under
time evolutions A(τ) = eH0τAe−H0τ :

ckη(τ) = ckηe
−kτ (C.27)

c†kη(τ) = c†kηe
kτ (C.28)

bqη(τ) = bqηe
−qτ (C.29)

b†qη(τ) = b†qηe
qτ (C.30)

When we plug this in into the definitions of ψη(x, τ) (C.1) and φη(x, τ) (C.11), we see that x and
τ are only present in the combination τ + ix. The spatial and temporal coordinates can be trans-
formed using z = τ + ix and z̄ = τ − ix. Hence the operators only depend on z, so we can write
ψη(x, τ) = ψη(z) and φη(x, τ) = φη(z).
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We can also derive this more rigorously.
From (C.3) we see that the conjugated momentum of ψη(x, τ) is Πη(x, τ) =

i
2πψ

†
η(x, τ). So we can

write the Hamiltonian density from (C.5) as:

H0η =:Πη(x, τ)∂xψη(x, τ): (C.31)

From the Hamilton equations we derive

∂τψη(x, τ) = −i∂tψη(x, τ(t)) = −i dH0η

dΠη(x, τ(t))
= −i∂xψη(x, τ(t)) (C.32)

∂τψη(τ, x) + i∂xψη(τ, x) = 0 (C.33)
∂z̄ψη(z, z̄) = 0 (C.34)

where we have used ∂z̄ = ∂τ + i∂x. Consequently ψη only depends on z and only the right movers
remain.

C.3 Some Useful Identities

C.3.1 Baker-Campbell-Hausdorff

Theorem 1. Baker-Campbell-Hausdorff
Let g be the Lie algebra corresponding to the Lie group G. The linear operator adX acts on g in the
following way: adXY = [X,Y ] for X,Y ∈ g. And for A ∈ G we can denote AdAY = AY A−1.
For X,Y ∈ g (hence eX ∈ G) the following identity is known as the Baker-Campbell-Hausdorff:

AdeXY = eadXY

Or alternatively:

eXY e−X = Y + [X,Y ] +
1

2!
[X, [X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + . . .

Proof. Consider f(s)Y = esXY e−sX , then d
dsf(s)Y = XesXY e−sX − esXY e−sXX = adXf(s)Y .

So we find f ′(s) = adXf(s). Since f(0) = 1, f(s) = es adX . If we now set s to 1, we obtain the
desired result.

Corollary 2. Product of exponents
Now assume [X,Y ] is central, i.e. [X, [X,Y ]] = [Y, [X,Y ]] = 0.
Then eXeY = eX+Y+[X,Y ]/2.

Proof. We can define g(s) = esXesY .
Therefore d

dsg(s) = XesXesY + esXY esY = (X + esXY e−sX)g(s) = (X + Y + [X,Y ])g(s).
Since g(0) = 1 we now see that g(s) = esX+sY+s2[X,Y ]/2. Setting s = 1 gives the desired result.

From this we now have set of useful identities. Given that [X, [X,Y ]] = [Y, [X,Y ]] = 0 the following
holds:

eXY e−X = Y + [X,Y ] (C.35)
eXeY = eX+Y+[X,Y ]/2 (C.36)
eXeY = eY eXe[X,Y ] (C.37)
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C.3.2 Thermal Average of Exponent of Boson Operators

Theorem 3. Thermal average of exponent of boson operators
Assume H is quadratic in boson operators and we can write some boson operators as B̂ =

∑
j λjbj +

λ̄jb
†
j. Then:

〈eλB̂〉 = eλ
2〈B2〉/2 (C.38)

Proof. First we expand the exponent:

〈eλB̂〉 =
∞∑

n=0

〈(λB̂)n〉
n!

=

∞∑
n=0

〈(λB̂)2n〉
(2n)!

(C.39)

The odd terms drop out since 〈B̂2n+1〉 = 0.
Now we can apply Wick’s theorem to 〈λB̂)2n〉. There are (2n − 1)(2n − 3) . . . 1 = (2n)!

2nn! different
contractions, so:

〈eλB̂〉 =
∞∑

n=0

λ2n〈B̂2〉n

(2n)!

(2n)!

2nn!
=

∞∑
n=0

1

n!

(
λ2〈B̂2〉

2

)n

= eλ
2〈B2〉/2 (C.40)

C.3.3 Normal Ordering of Exponent φ

Theorem 4. Normal ordering of exponent φ
Let φη(z) be as defined in (C.11) then:

:eiλφη(z):=
eiλφη(z)

〈eiλφη(z)〉
(C.41)

Proof. Recall that φη(z) = ϕη(z) + ϕ†
η(z). therefore:

:eiλφη(z): = eiλϕ
†
η(z)eiλϕη(z) (C.42)

= eiλ(ϕ
†
η(z)+ϕη(z))e−λ2/2[ϕ†

η(z),ϕη(z)] using (C.36) (C.43)

= eiλφη(z)

(
L

2πa

)λ2/2

using (C.57) (C.44)

Using (C.38) we see that we can write:

〈eiλφη(z)〉 = e−λ2〈φη(z)
2〉 =

(
2πa

L

)λ2/2

using (eq:appthermalaverage) and (C.77) (C.45)

This gives the desired result.

One can easily check that a similar relation holds for eiλφη(z)e−iλφη(z
′):

:eiλφη(z)e−iλφη(z
′):=

eiλφη(z)e−iλφη(z
′)

〈eiλφη(z)e−iλφη(z′)〉
(C.46)



C.4. COMMUTATION AND ANTI-COMMUTATION RELATIONS 81

C.4 Commutation and Anti-Commutation Relations

We shall calculate several commutation relation for the boson operators and field. First of all bqη:

[bqη, b
†
q′η′ ] =

1
√
nqnq′

∑
k,k′

(
c†k−qηckηc

†
k′+q′η′ck′η′ − c†k′+q′η′ck′η′c†k−qηckη

)
(C.47)

=
1

√
nqnq′

∑
k,k′

(
c†k−qη(δηη′δkk′+q′ − c†k′+q′η′ckη)ck′η′ − c†k′+q′η′(δηη′δk′k−q − c†k−qηck′η′)ckη

)
(C.48)

=
1

√
nqnq′

∑
k

(
c†k+q′−qηckη′ − c†k+q′η′ck+qη

)
(C.49)

(C.50)

If we are not careful here, we might conclude that the commutator vanishes. In fact for q 6= q′ the
terms within the sum vanish indeed. For q = q′ the terms are not normal ordered, so they diverge.
Now we can use c†kηck′η′ =:c†kηck′η′ : +〈c†kηck′η′〉 to find:

[bqη, b
†
q′η′ ] = δηη′δqq′

1

nq

∑
k

[(
:c†kηckη: − :c†k+qηck+qη:

)
+
(
0〈~0|c

†
kηckη |~0〉0 − 0〈~0|c

†
k+qηck+qη |~0〉0

)]
(C.51)

= δηη′δqq′
1

nq

∑
k

(
0〈~0|c

†
kηckη |~0〉0 − 0〈~0|c

†
k+qηck+qη |~0〉0

)
(C.52)

In the normal ordered term we can safely shift k → k + q. For the remaining term we see that:

〈c†kηckη〉0 ≡ 0〈~0|c
†
kηckη |~0〉0 c

†
kηckη〉0 =

{
0 k ≤ 0

1 k > 0
(C.53)

∑
k

(
〈c†kηckη〉 − 〈c†k+qηck+qη〉

)
=

∑
0<k≤ 2π

L nq

1 = nq (C.54)

So indeed [bqη, b
†
q′η′ ] = δηη′δqq′ .

All other commutators vanish.

Now we are going to take a look at the commutator of ϕη(x):

[ϕη(x), ϕ
†
η′(x

′)] =
∑

q,q′>0

1
√
nqnq′

e−i(qx−q′x′)e−a(q+q′)/2[bqη, b
†
q′η′ ] (C.55)

= δηη′

∑
q>0

1

nq
e−q(i(x−x′)+a) = δηη′

∑
nq>0

1

nq
e−

2π
L nq(i(x−x′)−ia) (C.56)

= −δηη′ ln(1− e−i 2π
L ((x−x′)−ia))

L�(x−x′)
= −δηη′ ln

(
i
2π

L
(x− x′ − ia)

)
(C.57)

In (C.56) we recognized the Taylor series of ln.
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We can use this to find [φη(x)∂x′φη′(x′)] first:

[φη(x), ∂x′φη′(x′)] = ∂x′

(
[ϕη(x), ϕ

†
η′(x

′)] + [ϕ†
η(x), ϕη′(x′)]

)
(C.58)

= i
2π

L
δηη′

(
1

ei
2π
L ((x−x′)−ia) − 1

+
1

ei
2π
L ((x′−x)−ia) − 1

)
(C.59)

L�(x−x′)
= 2πi

(
a/π

(x− x′)2 − a2
− 1

L

)
(C.60)

a→0
= δηη′2πi[δ(x− x′)− 1

L
] (C.61)

In the last line we used lima→∞
a/π

x2−a2 = δ(x). If we now integrate this expression over x′ in de
neighbourhood of x we obtain

[φη(x), φη′(x′)] = −δηη′2πiθ(x− x′) + C = −δηη′πiσ(x− x′) (C.62)

Where we have set C = δηη′πi such that [φη(x), φη(x
′)] = −[φη(x

′), φη(x)] and σ(x) is again the sign
function.

C.5 Useful Correlation Functions

In this appendix we will work out some useful correlation function. We start by calculating the
correlation function 〈c†kηck′η′〉 and 〈b†qηbq′η′〉:

〈c†kηck′η′〉 =
Tr(c†kηck′η′e−βH0)

Tr(e−βH0)
(C.63)

= δηη′δkk′
e−βk

1 + e−βk
(C.64)

=
δηη′δkk′

eβk + 1
(C.65)

Where we have used (C.4)

〈b†qηbq′η′〉 =
Tr(b†qηbq′η′e−βH0)

Tr(e−βH0)
(C.66)

= δηη′

∑∞
Nη=0 〈Nη| b†qηbq′ηe−βH0η |Nη〉∑∞

Nη=0 〈Nη| e−βH0η |Nη〉
(C.67)

= δηη′δqq′

∑∞
Nη=0Nηe

−βqNη∑∞
Nη=0 e

−βqNη
(C.68)

= −δηη′δqq′
1

β
∂q ln

 ∞∑
Nη=0

e−βqNη

 (C.69)

= δηη′δqq′
1

β
∂q ln

(
1− e−βq

)
(C.70)

=
δηη′δqq′

eβq − 1
(C.71)

Where we have used (C.25), simplified | ~N〉 to |Nη〉 and assumed L→ ∞.
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We assume T → 0, so 1
eβq−1

= −θ(−q) and 1
eβq+1

= θ(−q). The φ two point function becomes

〈φη(z)φη′(0)〉 =
∑

q,q′>0

e−a(q+q′)/2

√
nqnq′

(
e−qz〈bqηb†q′η′〉+ eqz〈b†qηbq′η′〉

)
(C.72)

=
∑

q,q′>0

e−a(q+q′)/2

√
nqnq′

δηη′δqq′
(
e−qz(1− θ(−q)) + eqzθ(−q)

)
(C.73)

= δηη′

∑
q>0

e−aq

nq

(
e−qzθ(q) + eqzθ(−q)

)
(C.74)

= δηη′

∑
q>0

e−q(z+a)

nq
= −δηη′ ln(1− e−

2π
L (z+a)) (C.75)

In (C.74) we see that θ(−q) = 0, since q > 0. Finally in the last step we recognized the Taylor series
of ln.
We can define the Green’s function for the boson operators as

Gηη′(z) = −〈T φη(z)φη′(0)〉 = θ(τ)〈φη(z)φη′(0)〉 − θ(−τ)〈φη′(0)φη(z)〉 , (C.76)

where T is the time ordering operator.
Using (C.75) we see the Green’s function can be written as

Gηη′(z) = δηη′ ln(1− e−
2π
L (−σ(τ)z+a))

L�z)
= − ln

(
2π

L
(σ(τ)z + a)

)
, (C.77)

with σ(τ) is the sign function.

Finally, we look at 〈h(τ)h(τ ′)〉h where h is confined to Λ′ < k < Λ and Λ′ = e−δlΛ. We begin at
(C.75):

〈h(τ)h(τ ′)〉h =
∑

Λ′/vf<q<Λ/vf

e−q(|τ−τ ′|+a)

nq
(C.78)

=
2π

L

∑
Λ′/vf<q<Λ/vf

e−q(|τ−τ ′|+a)

q
(C.79)

=

∫ Λ/vf

Λ′/vf

dq
e−q(|τ−τ ′|+a)

q
(C.80)

=
Λ(1− e−δl)

Λ
e−Λ/vf (|τ−τ ′|+a) = e−Λ/vf |τ−τ ′|δl = F (|τ − τ ′|)δl (C.81)

where we implicitly assumed that 〈h(τ)h(τ ′)〉h is time ordered so it only depends on |τ − τ ′| and have
introduced F (|τ − τ ′|) = e−Λ/vf |τ−τ ′|.

C.6 Bosonization One-channel Renormalization Group

In Section 3.2 we look at the RG-flow using bosonization. In this appendix we go through the full
derivation of the RG-equations.
We can write down a full action from (3.19)

S = S0 + S⊥ (C.82)



84 APPENDIX C. BOSONIZATION

with

S⊥ = − J⊥
4πa

∫
dτ(ei(

√
2−γ)φ(τ,0)S−(τ) + e−i(

√
2−γ)φ(τ,0)S+(τ)) (C.83)

To calculate the RG-flow we only have to treat J⊥ perturbatively. In the end this means that we
obtain an exact flow equation for γ.
Here φ(τ, x) is the time evolved operator. In fact it only depends on τ + ix (see Appendix C.2.1).
Now we impose a cut-off on the momentum, |k| < Λ

vF
where Λ = Λ0e

l. We can then split up φ:

φ(τ, x) =

 ∑
0<q<Λ′/vF

+
∑

Λ′/vF<q<Λ/vF

[e−q(τ+ix)

(
1

√
nq
e−aq/2bq

)
+ eq(τ+ix)

(
1

√
nq
e−aq/2b†q

)]
(C.84)

= φΛ′(τ, x) + h(τ, x), (C.85)

with Λ′ = Λ0e
l−δl (δl small). We assume h(τ, x) is small with respect to φΛ′(τ, x). The partition

function then becomes

Z =

∫
d[φ] e−S0[φ]−S⊥[φ] (C.86)

=

∫
d[φΛ′ ]d[h]e−S0[φΛ′ ]−S0[h]−S⊥[φΛ′+h] (C.87)

= Zh

∫
d[φΛ′ ]e−S0[φΛ′ ]〈e−S⊥[φΛ′+h]〉h (C.88)

Where Zh =
∫
d[h]e−S0[h] and 〈. . .〉h is the expectation value with respect to S0[h].

Now we can define an effective action:

Seff[φΛ′ ] = S0[φΛ′ ]− ln
(
〈e−S⊥[φΛ′+h]〉h

)
(C.89)

S⊥�1
= S0[φΛ′ ]− ln

(
1− 〈S⊥[φΛ′ + h]〉h +

1

2
〈S⊥[φΛ′ + h]2〉h

)
(C.90)

= S0[φΛ′ ] + 〈S⊥[φΛ′ + h]〉h − 1

2

(
〈S⊥[φΛ′ + h]2〉h − 〈S⊥[φΛ′ + h]〉2h

)
(C.91)

C.6.1 First Order

The first order correction can easily be computed by calculating 〈. . . 〉h:

〈S⊥[φΛ′ + h]〉h = − J⊥
4πa

∫
dτ
(
S−(τ)ei(

√
2−γ)φΛ′ (τ,0)〈ei(

√
2−γ)h(τ,0)〉h

+ S+(τ)e−i(
√
2−γ)φΛ′ (τ,0)〈e−i(

√
2−γ)h(τ,0)〉h

)
(C.92)

= − J⊥
4πa

∫
dτ
(
S−(τ)ei(

√
2−γ)φΛ′ (τ,0) + S+(τ)e−i(

√
2−γ)φΛ′ (τ,0)

)
e−

(
√

2−γ)2

2 〈h(τ,0)2〉h

(C.93)

In the last step we used (C.38). Using (C.81) we see that:

〈h(τ, 0)2〉h = δl (C.94)

Now we rescale the integral to recover the original cut-off Λ, hence ~k → Λ′

Λ
~k, but the scalar product

~k · ~x should be invariant. Therefore τ has to be rescaled as well, τ→ Λ
Λ′ τ = e−δlτ . This gives a factor
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e

(
1− (

√
2−γ)2

2

)
δl
≈ 1 +

(
1− (

√
2−γ)2

2

)
)δl. The first order correction now becomes:

〈S⊥[φΛ′ +h]〉h = −

[
1 +

(
1− (

√
2− γ)2

2

)
δl

]
J⊥
4πa

∫
dτ
(
S−(τ)ei

√
2φΛ(τ,0) + S+(τ)e−i

√
2φΛ(τ,0)

)
(C.95)

C.6.2 Second Order

The second order correction is little bit more complicated. To shorten the expression we drop the
(x = 0) in the following expressions. We start of with

〈S⊥[φΛ′ + h]2〉h − 〈S⊥[φΛ′ + h]〉2h =
J2
⊥

16π2a2

∫
dτdτ ′

S−(τ)S−(τ ′)ei(
√
2−γ)φΛ′ (τ)ei(

√
2−γ)φΛ′ (τ ′)

[
〈ei(

√
2−γ)h(τ)ei(

√
2−γ)h(τ ′)〉h − 〈ei(

√
2−γ)h(τ)〉2h

]
+S+(τ)S+(τ ′)e−i(

√
2−γ)φΛ′ (τ)e−i(

√
2−γ)φΛ′ (τ ′)

[
〈e−i(

√
2−γ)h(τ)e−i(

√
2−γ)h(τ ′)〉h − 〈ei(

√
2−γ)h(τ)〉2h

]
+S+(τ)S−(τ ′)e−i(

√
2−γ)φΛ′ (τ)ei(

√
2−γ)φΛ′ (τ ′)

[
〈e−i(

√
2−γ)h(τ)ei(

√
2−γ)h(τ ′)〉h − 〈ei(

√
2−γ)h(τ)〉2h

]
+S−(τ)S+(τ ′)ei(

√
2−γ)φΛ′ (τ)e−i(

√
2−γ)φΛ′ (τ ′)

[
〈ei(

√
2−γ)h(τ)e−i(

√
2−γ)h(τ ′)〉h − 〈ei(

√
2−γ)h(τ)〉2h

]
(C.96)

Immediately we see that the first two terms vanish, since S+S+ = S−S− = 0. Using (C.38) we
can rewrite 〈e−i(

√
2−γ)h(τ)ei(

√
2−γ)h(τ ′)〉h = e−(

√
2−γ)2〈h(τ)2〉he(

√
2−γ)2〈h(τ)h(τ ′)〉h and 〈ei(

√
2−γ)h(τ)〉2h =

e−(
√
2−γ)2〈h(τ)2〉h . Using (C.81) to calculate 〈h(τ)2〉h = δl and 〈h(τ)h(τ ′)〉h = δlF (|τ − τ ′|) =

δle−Λ|τ−τ ′| we find

〈S⊥[φΛ′ + h]2〉h − 〈S⊥[φΛ′ + h]〉2h = (
√
2− γ)2δl

J2
⊥

16π2a2

∫
dτdτ ′F (|τ − τ ′|)[

S+(τ)S−(τ ′)e−i(
√
2−γ)φΛ′ (τ)ei(

√
2−γ)φΛ′ (τ ′) + S−(τ)S+(τ ′)ei(

√
2−γ)φΛ′ (τ)e−i(

√
2−γ)φΛ′ (τ ′)

]
(C.97)

where F (|τ − τ ′|) = e−Λ/vF (|τ−τ ′|), which is short-ranged, since Λ � 1.
So we can redefine:

τ̄ = τ − τ ′ (C.98)

T =
τ + τ ′

2
(C.99)

with |τ̄ | � |T |. For the remaining exponents of (C.97) we get (α = ±):

e−αi(
√
2−γ)(φΛ′ (τ)−φΛ′ (τ ′)) = e−αi(

√
2−γ)(φΛ′ (T+ τ̄

2 )−φΛ′ (T− τ̄
2 )) (C.100)

= e−αi(
√
2−γ)τ̄∂TφΛ′ (T ) (C.101)

≈ 1− αi(
√
2− γ)τ̄ ∂TφΛ′(T ) = −αi(

√
2− γ)τ̄ ∂TφΛ′(T ) (C.102)

Where we used the limit definition of the derivative in (C.101). The 1 in (C.102) can be dropped,
because this only gives a renormalization of the free energy. This is not interesting in this case.
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From (C.61) we can conclude that the conjugated momentum of φ(x) is Π(x) = 1
2π∂xφ(x). The

Hamilton equations using Hamiltonian (C.26) now give:

∂Tφ(T, x) = −i∂tφ(T (t), x) = −i dH0

dΠ(T (t), x)
= −i∂xφ(T, x) (C.103)

Using (C.102), (C.103) the second order correction (C.97) reads:

(
√
2− γ)3δl

J2
⊥

16π2a2

∫
dT∂xφΛ′(T, 0)[S+(T )S−(T )− S−(T )S+(T )]

(∫
dτ̄ τ̄F (τ̄)

)
(C.104)

= (
√
2− γ)3δl

J2
⊥v

2
F

8π2a2Λ2

∫
dT∂xφΛ′(T, 0)Sz(T ) (C.105)

where we used [S+, S−] = 2Sz and
∫
dτ̄ τ̄F (τ̄) =

v2
F

Λ2 .

So now

Seff[φΛ] = S0[φΛ]− (
√
2− γ)3

J2
⊥v

2
F

16π2a2Λ2
δl

∫
dτ∂xφΛ(τ, 0)S

z(τ)

−

[
1 +

(
1− (

√
2− γ)2

2

)
δl

]
J⊥
4πa

∫
dτ
(
S−(τ)ei

√
2φΛ(τ,0) + S+(τ)e−i

√
2φΛ(τ,0)

)
(C.106)

Since the action does not depend on the cut off, we find(
Jz

2
√
2π

− γ

)
(l + δl) =

(
Jz

2
√
2π

− γ

)
(l) + (

√
2− γ)3

J2
⊥v

2
F

16π2a2Λ2
δl (C.107)

J⊥(l + δl)

4πa
=

[
1 +

(
1− (

√
2− γ)2

2

)
δl

]
J⊥
4πa

(C.108)

So the RG-equation become

dγ(l)

dl
= −(

√
2− γ)3

J2
⊥v

2
F

16π2a2Λ2
(C.109)

dJ⊥(l)

dl
=

(
1− (

√
2− γ)2

2

)
J⊥ (C.110)



Appendix D

Symmetries of the Kitaev Chain

In this appendix we are going use the symmetries of the Kitaev chain to derive identities useful for
Section 7.1.

D.1 Particle-Hole Symmetry

The Kitaev chain is anti-symmetric under the interchange of particle and hole, meaning the eigenvalues
change sign under the transformation. Note that because of particle-hole pairing through the BdG
formalism the spectrum is invariant.
Let H be the BdG-Hamiltonian of some Kitaev Hamiltonian (H) and ψj some eigenstate, with Ej > 0
the eigenvalue then HPH and ψ′

j are the particle-hole inverted. The Hamiltonian (6.3) transform as
follows using:

HPH = −µ
∑
i

(
cic

†
i −

1

2

)
− 1

2

∑
i

(
t(cic

†
i+1 + ci+1c

†
i ) + ∆(c†i c

†
i+1 + ci+1ci)

)
(D.1)

= −µ
∑
i

(
−c†i ci + 1− 1

2

)
− 1

2

∑
i

(
−t(c†i+1ci + c†i ci+1)−∆(c†i+1c

†
i + cici+1)

)
(D.2)

= −H. (D.3)

Hence also HPH = −H.
So we can see that:

HPHψ
′
j = Ejψ

′
j (D.4)

−Hψ′
j = Ejψ

′
j (D.5)

Hψ′
j = −Ejψ

′
j (D.6)

(D.7)

So ψ′
j is an eigenstate of H and has opposite eigenvalue from ψj . Using (7.7) we see that:

ψj =

(
φj
θj

)
, ψ′

j =

(
θj
φj

)
(D.8)

87
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Suppose we sort the eigenvalues of H in increasing order (i.e. Ej ≤ Ej+1), then we can define ψj and
ψ−j to have opposite eigenvalues, respectively Ej and E−j . Now we can rewrite (D.8) as:

φj = θ−j (D.9)
θj = φ−j (D.10)

This discussion does not hold for E = 0 since this state is degenerate, hence the eigen space 2
dimensional. We need two state to span the eigen space, which are ψ1 and ψ−1.

D.2 Inversion + Time Reversal Symmetry

In this section we are going to look at a combination of two transformations. The Kitaev chain turns
out to be invariant under simultaneous chain inversion an time reversal. Inversion (I) maps ci to c−i

(where we have defined: c−i = cn+1−i for i > 0). Time reversal (T ) changes the direction of time.
Note that only the superconducting term cares about time direction. Time reversal means ∆ → −∆.
We can easily see that letting ci → ici and c†i → −ic†i is equal to time reversal. The Hamiltonian is
symmetric under the combination of these operations:

HITRS = IP[H] = I

[
−µ
∑
i

(
c†i ci −

1

2

)
− 1

2

∑
i

(
t(c†i ci+1 + c†i+1ci)−∆(cici+1 + c†i+1c

†
i )
)]

(D.11)

= −µ
∑
i

(
c†i ci −

1

2

)
− 1

2

∑
i

(
t(c†i ci+1 + c†i+1ci) + ∆(cici+1 + c†i+1c

†
i )
)

(D.12)
= H (D.13)

Suppose we have an eigenstate ψ of H with eigenvalue E. Then Hψ = Eψ is invariant under this
combined symmetry (inversion and time reversal). so

HψITRS = HITRSψITRS = EψITRS (D.14)

Suppose the eigenvalue E is non degenerate (this only fails for a Majorana edge mode or for a specific
parameter t = ∆ and µ = 0), then the eigenspace belonging to E is one dimensional. Since both ψ
and ψITRS are normalized and have the same eigenvalue they are equivalent modulo a phase:

ψ = eiαψITRS (D.15)

Again we can split the eigenvector in the particle and the hole part, we then see that (D.15) can be
written as:

φi = ieiαφ−i (D.16)
θi = −ieiαθ−i (D.17)

Note that H is a symmetric real matrix. Therefore the eigenvectors ψ are real (up to an overall
complex phase, which we choose to be 0). Hence α = ∓π/2 and we see that (D.16) becomes:

φi = ±φ−i (D.18)
θi = ∓θ−i (D.19)
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D.3 Condition Majorana Edge Modes

In order to see under what symmetries the Majorana edge modes (MEM) are invariant we will use
the transfer Matrix approach.
The word Majorana in Majorana edge modes already makes us suspicious that at the edge either
|ψMEM

i 〉 = φMEM
i (ci + c†i ) or |ψMEM

i 〉 = φMEM
i (ci − c†i ), where φ is as in Eq. 7.7. Alternatively one of

the following equations holds.

φMEM
i = θMEM

i (D.20)
φMEM
i = −θMEM

i (D.21)

Now we will use the transfer matrix approach to show that either (D.20) or (D.21) holds at the edges
of the the system.

D.3.1 Transfer Matrix

Before we derive the transfer matrix we rewrite the Hamiltonian (6.3) using:

ci =
1

2
(γ2i−1 + iγ2i), c†i =

1

2
(γ2i−1 − iγ2i). (D.22)

The Hamiltonian becomes:

H = −µ
2

n∑
i=1

iγ2i−1γ2i +
i

4

n−1∑
i=1

[(∆ + t)γ2iγ2i+1 + (∆− t)γ2i−1γ2i+2] . (D.23)

Again we can put this into the matrix form

H = ΓᵀHγΓ, (D.24)

where Γ =
(
γ1 γ2 . . . γ2L−1 γ2L

)ᵀ and Hγ equals

Hγ =



H0 H+ 0 . . . 0

H− H0 H+
. . .

...

0 H− H0
. . . 0

...
. . . . . . . . . H+

0 . . . 0 H− H0


, (D.25)

The block matrices are:

H0 =

(
0 iµ4

−iµ4 0

)
and H± =

(
0 i±∆−t

8

i±∆+t
8 0

)
. (D.26)

Assume |ψMEM〉 = (α1, β1, . . . , αL, βL) · Γ is a MEM localized at site 1. We then have the following
equation:

Hγ


α1

β1
...
αn

βn

 = 0. (D.27)
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Combining (D.25) and (D.27) we find:

H−

(
αi−1

βi−1

)
+H0

(
αi

βi

)
+H+

(
αi+1

βi+1

)
= 0 (D.28)

This can be rewritten into the transfer matrix form:
αi

βi
αi+1

βi+1

 = T


αi−1

βi−1

αi

βi

 , (D.29)

where T is the transfer matrix:

T =

(
0 I2

(H+)
−1H− (H+)

−1H0

)
=


0 0 1 0
0 0 0 1

∆−t
∆+t 0 − 2µ

∆+t 0

0 −∆+t
∆−t 0 2µ

∆−t

 (D.30)

This matrix has the eigenvalues:

λ± =
−µ±

√
µ2 + t2 −∆2

t+∆
(D.31)

κ± =
−µ±

√
µ2 + t2 −∆2

t−∆
(D.32)

With corresponding eigenvectors:

|λ±〉 = (1, 0, λ±, 0)ᵀ (D.33)
|κ±〉 = (0, 1, 0, κ±)ᵀ (D.34)

D.4 Zero Energy Mode in Semi Infinite Chain

We are now going to consider the chain to be semi infinite. This means that the Majoranas localized
at both edges are far enough apart, such that they do not feel each other, e.g. the wave function falls
off quickly enough.
If we now start at site 1, the MEM should be of the form (α0, β0, α1, β1)

ᵀ = (0, 0, α1, β1))
ᵀ, because

site 0 is not in the chain. We can build this state out of (D.33): an (D.34)

(α0, β0, α1, β1)
ᵀ = A(|λ+〉 − |λ−〉) +B(|κ+〉 − |κ−〉) (D.35)

Here A and B are some complex constants. We take the difference between the eigenstate to get
α0, β0 = 0.
The transfer matrix approach now allows us to find (αi, βi) by applying T i−1:

(αi−1, βi−1, αi, βi) = T i−1
[
A(|λ+〉 − |λ−〉) +B(|κ+〉 − |κ−〉)

]
(D.36)

= A((λ+)i−1 |λ+〉 − (λ−)i−1 |λ−〉) +B((κ+)i−1 |κ+〉 − (κ−)i−1 |κ−〉) (D.37)

Since we want the MEM to be localized (αi, βi) should go to zero as i becomes large. In other words,
A is non zero if |λ+|, |λ−| < 1 and B is non zero if |κ+|, |κ−| < 1. Since κ± = 1

λ∓ there is a regime
in which A is non zero and a regime where B is non zero, but they cannot both be finite.
If we assume the system is in the topological sector and ∆ > 0 then |λ+|, |λ−| < 1, so we βi = 0 and
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α 6= 0.

Now we also would like to know the Majorana mode at the other end. The only term in the Hamilto-
nian (6.3) that concerns direction is the super conductivity. Note that if we let ∆ → −∆, the chain
is mirrored. Hence we see that at the the other edge (near i = n) αi = 0 and βi 6= 0.

Now we can conclude that at edge near site 1 we have

φMEM
i = +θMEM

i near site 1 (D.38)
φMEM
i = −θMEM

i near site n (D.39)
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