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Abstract

We calculate the energy spectrum of a Weyl semimetal near the band touching points in
the presence of a magnetic field. In this calculation we include the effect of the anomalous
magnetic moment, coming from a vertex correction to the action. We show that this effect
breaks the spin degeneracy, which is present in all states except the chiral ground state.
Additionally, we calculate the effect of introducing a time reversal symmetry breaking
vector, which separates the two Weyl nodes in momentum space. We find that having the
vector along the direction of the magnetic field yields analytically computable states. In
contrast, having the vector perpendicular to the direction of the magnetic field requires
numerical computation of the energy levels and leads to a non-linear dispersion relation
for the ground state. This conclusion is supported by perturbation theory.

Furthermore, we consider the influence of magnetic fields on bound surface states. We
show that within a WKB approximation, a magnetic field parallel to the boundary does
not affect the surface state dispersion relation. However, the anomalous magnetic mo-
ment terms do alter the dispersion relation, as well as the region in reciprocal space in
which the dispersion relation is a solution.
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Chapter 1

Introduction

Condensed matter physics is one of the largest and most active fields of research in
physics. It encompasses a vast amount of different topics, from liquid crystals to Bose-
Einstein condenstates. Both experimentally and theoretically it is a quickly advancing
field and many Nobel prizes have been awarded for significant advancements. For in-
stance, in 2016 the Nobel prize was awarded to Thouless, Haldane and Kosterlitz for the
theoretical discovery of topological phase transitions and topological phases of matter
[1]. In this thesis we consider one such topological phase of matter, a Weyl semimetal,
classified through its conductive properties. We start off by sketching the theoretical
background. The aim of this thesis is to further our understanding of the energy states
of the semimetal under the influence of magnetic fields, more specifically when considering
interaction effects such as the anomalous magnetic moment from quantum electrodynam-
ics (QED).

1.1 Solid-state physics

In order to understand the general concepts used and calculations done in this thesis, a
short introduction to solid-state physics and semimetals is in order.

The current paradigmatic model that is used in solid-state physics is that of electronic
band structures. These bands dictate which energy states the system is allowed to take
and are found using quantum mechanical calculations of the wave function of the electrons
in the material. The allowed energies are the bands, while the energies that are forbidden
are called the band gaps. The electrons will try to minimize the energy of the system, so
they will try to occupy a lower energy band before a higher one. However, since they are
fermions, they are subject to the Pauli exclusion principle. This forbids them to occupy
the same quantum state. Thus, when one state is filled, remaining electrons will have
to occupy higher energetic states. The level to which these bands are generaly occupied
is called the Fermi level. When the Fermi level lies inside of a band gap, we call the
closest band below the gap the valence band, while we call the band above the gap the
conduction band. The size of the band gap is denoted by the parameter ∆, which is the
difference between the lowest energy of the conduction band and the highest energy of
the valence band.

To classify materials according to their conductivity, we will need to define what conduc-
tivity is. Conductivity is related to the ability for electrons to move between energetic
states, from occupied states to vacant states. Since states below the Fermi level will be
occupied, while those above it will be empty, it is natural to see that the position of the
Fermi level with regard to the energy bands is important. If the Fermi level lies inside a
band, having ∆ = 0, the energy difference between occupied states and unoccupied ones
will be very small, so it is easy to move between states, yielding high conductivity. This
situation is the case for metals. On the other hand, if the Fermi level lies in between
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Figure 1.1 – Classification of the materials by their conductance. Black indicates com-
pletely filled states, while white indicates completely empty ones. Image taken from
Wikipedia.

bands, having ∆ > 0, then the energy difference between the highest occupied state and
lowest empty state will be very large and movement will be very difficult, yielding very
low conductivity. Materials with this property are called insulators.

Furthermore, we have the classes of semimetals and semiconductors. For semiconductors,
the Fermi level lies inside of a band gap, but the gap is not as big as in the case of an
insulator. So ∆sc < ∆i. It is difficult to move to a higher energetic state, but not nearly
as hard as for an insulator. Semiconductors can be doped, in which case the Fermi level
is shifted closer to the valence band (p-type), or to the conduction band (n-type). In
the semimetal case, the Fermi level lies inside a band, so ∆sm=0, but the density of
states around the Fermi level is not as high as for a metal. In the case of the classes
of semimetals that we consider in this thesis, the valence and conduction band precisely
touch at a singular point. In this case the density of states is exactly zero at that point.
This band touching point will be considered to be at the Fermi level, or very close to it.
For a schematic view of the different classes, see Fig. 1.1.

1.2 Weyl semimetals

We will proceed by describing the different classes of topological materials and how they
relate to each other. We start with topological insulators, before moving on to Dirac and
Weyl semimetals and their properties. Furthermore, we show that the Weyl semimetal
is topologically non-trivial.

1.2.1 Topological insulators

Up until recently, the above classification of solids was thought to contain the full range
of possible materials. However, in 2005, a new class of materials was discovered by
Mele and Kane, namely the topological insulator (TI) [2]. Topological insulators are
a class of materials that behave like an insulator in bulk, having the Fermi level lie
inside a band gap, but support conducting surface states. So no current will flow in its
interior, but it can flow along its surface. However, conducting surface states are also
allowed in trivial insulators, so this property alone is not enough to make it a topological
insulator. The property that does make it a topological material is that its surface
states are topologically protected through symmetries [3]. This means that these surface
states cannot simply be destroyed through very small perturbations, given that those
perturbations do not break the protecting symmetries. A schematic overview of a typical
band structure for these TI’s is shown in Fig. 1.2.
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Figure 1.2 – Typical band structure for a topological insulator. The Fermi level lies inside
the gap, which can only be crossed by surface states. Image taken from Wikipedia.

1.2.2 Dirac and Weyl semimetals

One of the defining features of the semimetals that we consider in this thesis is that they
have a linear dispersion around their band touching point. The most general Hamiltonian
that we can write down for a two-band model, linearized around the band touching point,
is given by

H(k) = εh̵vFσ ⋅ k, (1.2.1)

where σ is the vector of Pauli matrices, k is the crystal wavevector in the first Brillouin
zone and ε = ±1, which is called the chirality. Three dimensional condensed matter
systems with a band touching point that can be described by this Hamiltonian are called
Weyl semimetals (WSM). The eigenvalues associated with this Hamiltonian are given by

E(k) = ±h̵vF
√
k2
x + k2

y + k2
z . (1.2.2)

This result is independent of the chirality.

We see that we have a band touching point at exactly k = 0, which is doubly degenerate.
This is what we call a Weyl node. Now we can look at what happens when we add a
small perturbation to the Hamiltonian. Since the Pauli matrices and the unit matrix
together form a basis for all 2 × 2 matrices, any perturbation can be expressed as a
linear combination of these matrices. Any perturbation proportional to one of the Pauli
matrices will simply shift the corresponding momentum. Any perturbation proportional
to the unit matrix will only shift the energy by a constant. From this we can then
conclude that any small pertubation added to the Hamiltonian can only move the Weyl
node around in energy-momentum space, but cannot actually destroy it and gap out the
system. As will be shown shortly, this is due to the topological nature of the Weyl node.
This stability of the node is a consequence of the von Neumann-Wigner theorem [4],
which states that we require three changeable parameters in order to be able to have a
band touching point. In the Weyl semimetal, we have all three momenta as parameters.
This also the reason why a Weyl semimetal cannot exist for lower dimensions.

We have yet to motivate the names that we have given so far, especially the Weyl part.
Looking back at the Hamiltonian for this band touching, we see that it has exactly
the form of the Weyl Hamiltonian, which is known from particle physics [5]. The only
difference here is that we have changed c, the speed of light, to vF , which is the Fermi
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velocity. The Fermi velocity is the characteristic speed in condensed matter systems and
is typically 300 times smaller than the speed of light. The quasi-particle excitations of this
Hamiltonian are then massless Weyl fermions. Since they have no mass, we know that
they have a definite chirality. This also justifies why we call ε the chirality. Depending
on the sign of the Hamiltonian, the Weyl fermions that arise as excitations will be either
right-handed (RH), corresponding to ε = 1, or left-handed (LH), corresponding to ε = −1.

However, simply having a linear band touching described by the above Hamiltonian is
not sufficient for a Weyl node to exist. The other condition that needs to be satisfied is
that either time-reversal (TR) symmetry, or inversion (I) symmetry, or both need to be
broken. Under time-reversal, we find that k→ −k and σ → −σ, hence we require Eσ(k) =
E−σ(−k). Under inversion we have k → −k, thus we require Eσ(k) = Eσ(−k). So if now
both TR and I symmetries are present in the system, we require that Eσ(k) = E−σ(k).
Switching the sign on σ in the Hamiltonian is equivalent to switching the sign of the
chirality. So we can conclude from this that in order to have both symmetries present
in the system, we must have two Weyl nodes of opposite chirality at the same point
in momentum space. This is what we call a Dirac point. From Kramer’s degeneracy
theorem [6], we find that all energies must be doubly degenerate everywhere. The only
exception being at the Dirac point, where it is four-fold degenerate. The low-energy
Hamiltonian that is associated with this is then given as

H(k) = h̵vF (−σ ⋅ k 0
0 σ ⋅ k) , (1.2.3)

where its quasi-particle excitation are then massless Dirac fermions. For this reason, a
condensed matter system that is described through this Hamiltonian is called a Dirac
semimetal. Here we can also see why we will require our Weyl nodes to be separated in
order for a stable semimetal to exist. Looking at just the Weyl Hamiltonian, we see that
we cannot add anything that will open up a gap. However, looking at the Hamiltonian
above, we see that we can add terms to the off-diagonal part, which then can actually
gap out the system.

Dirac semimetals can exist in either (2+1)-dimensions or (3+1)-dimensions, as opposed
to Weyl semimetals, which can only exist in (3+1) dimensions. Perhaps the most famous
example of a (2+1)-dimensional Dirac semimetal is graphene. When Weyl semimetals are
discussed, it is often described as a three dimensional analogue to graphene. Graphene
was first discovered in 2004 [7], for which the Nobel prize was awarded in 2010 [8]. How-
ever, this parallel is somewhat deceptive, as we will show shortly. In (2 + 1)-dimensions,
the Hamiltonian is then given as

H = ±h̵vF (kxσx + kyσy) .

Since there is no term proportional to σz, we can add a small perturbation proportional
to that to the Hamiltonian, which will then gap out the system and destroy the Dirac
point. So in order for a Dirac semimetal to be stable, we cannot allow perturbations of
this form. This can be achieved through protecting symmetries. In the case of graphene,
we have TR symmetry which protects this Dirac point [9].

From the above discussion, we see that in (3+ 1)-dimensions we have a Dirac semimetal
when both TR and I symmetries are present, and a Weyl semimetal when at least one of
these symmetries is broken. So one can view the Dirac semimetal as a special case of the
Weyl semimetal, or vice versa. Both of these states of matter have been experimentally
observed recently. The three dimensional Dirac semimetal in 2014 [10], and finally the
Weyl semimetal in 2015 [11].

1.2.3 Topological nature of Weyl semimetals

One of the many interesting properties of a Weyl semimetal is its topological nature,
which we hinted at earlier. Here we show that the Weyl nodes are topological objects,
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acting as either a source or a sink of so-called Berry flux. Whether they are a sink or
source depends on the chirality of the node. This implies, since the total Berry flux of
a semimetal has to vanish, that the Weyl nodes can only appear in pairs, with opposite
chirality.

Assume we have a system that is described by a Hamiltonian H(R(t)), where R(t) is
a time-dependent vector parameter. When R(t) undergoes a cyclic, adiabatic evolution,
such that R(0) = R(T ), the corresponding eigenstate may not return to its original value,
but rather pick up a geometrical phase factor. This factor, denoted by γn, is called the
Berry phase, and this result was shown by Berry in 1984 [12]. Writing ∣n(R)⟩ as the
eigenstates of the Hamiltonian corresponding to the n-th eigenvalue En(R), the Berry
phase can be computed as

γn = ı∮C
dR⟨n(R)∣∇R∣n(R)⟩ = ∮C

dR ⋅An(R), (1.2.4)

where we define the Berry connection An(R) = ı⟨n(R)∣∇R∣n(R)⟩. The C denotes a loop
integral over a closed curve.

From here, we can obtain the Berry curvature Ωn(R), by taking the rotation with respect
to the parameter space:

Ωn(R) = ∇R ×An(R). (1.2.5)

Recalling Stokes’ theorem, we can rewrite the formula for the Berry phase from a contour
integral over the Berry connection to a surface integral over the Berry curvature:

γn = ∫S
dS ⋅Ωn(R). (1.2.6)

If we now let this integral be over a closed manifold, then the Chern theorem tells us
that this integral will be quantized in units of 2π [13]. The number that comes out of
the integral is called the Chern number and is a measure for the amount of sources and
sinks of Berry flux within that manifold.

So far this discussion has been general and abstract, so how do we apply this to semimet-
als? The above statements hold systems dependent on an arbitrary parameter R. The
Hamiltonian for semimetals depends on k, so we take R to be our momentum wavevector
k. Thus we can write the Berry curvature in the semimetal system as

Bn(k) = ∇k ×An(k). (1.2.7)

Here we suggestively denoted the Berry curvature with a B. Now the analogue to the
magnetic field becomes obvious, but then in reciprocal space instead of real space. The
Berry connection here plays the role of the electromagnetic vector potential, while the
Berry curvature plays the role of the magnetic field.

Now that we have this expression in reciprocal space, it is a very natural next step to
calculate the Berry phase over a closed surface in that space. Since it is known that the
topology of this space is indeed a manifold, this Berry phase will then give us a Chern
number. It can be easily shown that calculating the Berry phase over a positive chiral
node gives a Chern number of +1, while that of a negative node gives −1. So this then
characterizes the topological nature of the Weyl nodes. They are analogous to magnetic
monopoles in reciprocal space, one node is the source, while the opposite note is the sink
for the Berry flux. Just like magnetic poles, they never appear alone, and one can never
destroy just one node. They are created in pairs, and get annihilated in pairs, since the
total Chern number of the reciprocal space has to remain constant, namely zero.

At this point does the analogy between graphene and Weyl semimetals breaks down.
Having a Dirac point, as opposed to two Weyl nodes, does not give any Chern number,
as the source and sink of the Berry flux are the same point. So while Weyl semimetals
are topological materials, Dirac semimetals are not.
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Figure 1.3 – Chiral imbalance due to chiral potential for undoped Weyl nodes.

1.3 Topological electromagnetic properties

Owing to its topological nature, the Weyl semimetal has quite a few interesting properties.
Here two of those properties will be explained, being the chiral magnetic effect (CME) and
the anomalous Hall effect (AHE), which arise by applying an external electromagnetic
field.

1.3.1 Chiral magnetic effect

The CME is one of the novel effects that can be measured in Weyl semimetals and is
related to the chiral anomaly found in quantum field theory. It has been predicted for
these systems in 1983 [14]. It only arises in chiral systems where a chiral charge imbalance
can occur, such as in Dirac and Weyl semimetals or a quark-gluon plasma. The effect is
the generation of an electric current along the direction of the applied external magnetic
field. If this chiral imbalance is present, the current associated with this effects is found
to be

j = e
2µ5

2π2
B, (1.3.1)

where the constant of proportionality to the magnetic field is called the CME conductivity
[15]. µ5 = µ+ − µ− denotes the chiral chemical potential. This effect is illustrated in Fig.
1.3. The CME has recently been observed in the Dirac semimetal ZrTe5 [16].

1.3.2 Anomalous Hall effect

When an external magnetic field is applied to a conductor, a voltage difference is produced
transverse to the direction of the electric current and perpendicular to the magnetic field.
This is called the Hall effect, and was discovered by Edwin Hall in 1879 [17]. Shortly
thereafter, it was found to be much stronger in magnetic conductors than in non-magnetic
conductors [18]. This stronger version of the Hall effect was then dubbed the anomalous
Hall effect. It took well over a century before this effect was well understood. This
because it relies on concepts such as the Berry phase, which was not discovered until
1984.

The AHE has its origins in two different terms [19]. The first is due to intrinsic properties
of the material, which can be related to the Berry phase effect in momentum space, and
for this reason is called the intrinsic AHE. The second is due to disorder and impurity
scattering, and is called the extrinsic AHE. In the WSM case, it has been shown that
only the intrinsic part of the AHE contributes [20]. The current that is then produced
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Figure 1.4 – Schematic of a Weyl semimetal with its conducting surface Fermi arcs. Image
taken from Ref. [22].

by the intrisic AHE is found to be

jµ = e2

2π2
εµνρσbν∂ρAσ, (1.3.2)

where bµ is the vector that separates the two Weyl nodes in energy-momentum space,
εµνρσ is the totally anti-symmetric Levi-Civita tensor and Aσ is the four-potential of
the external electromagnetic field. Interesting to note here is that the strength of the
induced current is proportional to the separation of the Weyl nodes. Moreover, we see
that this effect occurs even in the absence of a magnetic field. Indeed, having just an
external electric field is enough to give rise to this effect.

1.4 Topological surface states

Another fascinating property, which we expand upon in detail in this thesis, is the ap-
pearence of topological surface states. This is a property of topological states of mat-
ter, and they also appear on the surface of topological insulators. However, the Weyl
semimetal surface states are very different from those of a TI. Whereas usually we find a
Fermi surface, which is a topologically closed object, in Weyl semimetals we find topolog-
ically open Fermi arcs [21]. These arcs connect the projections of the Weyl nodes on the
surface of the Brillouin zone through conducting states. In order for these projections
to not be at the same point on the surface, it is insufficient to have a Weyl semimetal
with just a broken I symmetry. So for these surface states to exist, we require that we
have a WSM with broken TR symmetry. A schematic view is given in Fig. 1.4. The
region in which the Fermi arc and surface states exist are exactly the regions in the Weyl
semimetal where the Chern number is not equal to zero. However, as we will find later,
this is only true in the absence of interaction. Introducing interactions will change the
region in which the surface states exist, but will not affect the Chern number. We will
compute these surface states in chapter 4.

These Fermi arcs are a hallmark for experimentally observing Weyl semimetal states.
Using angle-resolved photoemission spectroscopy (ARPES), information can be gained
on both the energy and momenta of electrons at a surface. Using this technique, the
Fermi arc and surface states can be experimentally shown [23].
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1.5 This thesis

After this introduction to the world of semimetal physics, we will now go into detail on
some of its properties. While there are many interesting effects that can occur in this
system, we will focus on gaining a deeper understanding of the effects of magnetic fields.
Specifically, we will focus on the influence of the anomalous magnetic moment on the
energy states, both in bulk and at the surface. The anomalous magnetic moment arises
from performing a vertex correction to the action, and will turn out to have interesting
consequences.

This thesis is structured in the following way: In chapter 2 we will explicitly perform the
quantization of the Weyl Hamiltonian and its energy levels under influence of magnetic
fields. This forms the basis for the chapters thereafter. After solving the non-interacting
case, we investigate the effect of the anomalous magnetic moment on the energy levels
in bulk in chapter 3. From that we find that it breaks the spin degeneracy present in
the Landau levels. Next we introduce a term that separates the Weyl points of the two
chiralities in energy- momentum space, breaking I and/or TR symmetry. The effect of
this is studied using both analytical and numerical tools. Introducing this term will
then also break the spin degeneracies. Having thoroughly investigated the effects on
bulk states, we move the focus from bulk states to surface states in chapter 4. Here
we demand solutions in bulk have to be matched with those in a Dirac vacuum on the
interface between them, giving us states localized to the surface. These states are a
consequence of the topological nature of the Weyl semimetal. However, finding solutions
under the effect of magnetic fields turns out to be non-trivial, so appendix A is devoted to
setting up the mathematical framework for these computations, employing a first order
WKB approximation. After having obtained the results in both the bulk and at the
surface of the Weyl semimetal, chapter 5 will summarize the results obtained in this
thesis and looks ahead at the questions that remain open and could be interesting to
answer in future work.

1.5.1 A note on notation

To avoid confusion, we specify our choice of notations and definitions here. First and
foremost, as with any work that employs field-theoretical computations, Einstein notation
will be used. Any repeated indices will be implicitly summed over, unless otherwise
specified, such as when summing over a range excluding some values.

When dealing with tensors and vectors, Greek letters will indicate spacetime indices,
while roman letters will denote spatial indices.

When considering units, in general SI units will be used, unless otherwise specified. How-
ever, dimensionless equations will be useful at some point, especially when considering
numerics. When this happens, dimensionless variables will be indicated with a bar, and
it will be stated how they are made dimensionless.

We work in flat Minkowski space, where we choose our sign convention for the metric to
be (+,−,−,−).
Since we will often be working with the Dirac equation and variations thereof, we will
make extensive use of the Dirac gamma matrices γµ. The matrices obey the Clifford
algebra, which is defined by the anti-commutation relations {γµ, γν} = 2ηµν , with ηµν

the Minkowski metric. There are a couple different choices of basis that we can use.
Because chirality will be very important in this work, we shall use the chiral basis for
our Dirac matrices. Along with our choice for the metric signature, we find them to be

γ0 = ( 0 I2
I2 0

) , γi = ( 0 σi

−σi 0
) , γ5 = ıγ0γ1γ2γ3 = (−I2 0

0 I2
) .
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Chapter 2

Landau Levels

The basis for calculating the effects of a magnetic field on free, charged particles lies
in the so-called Landau quantization: the quantization of the radius of their cyclotron
orbits in a perpendicular magnetic field. This also forms the basis for much of the work
that is done later in this thesis.

In this chapter we will explicitly perform this quantization on both the non-relativistic
(Section 2.2) and relativistic (Section 2.3) Hamiltonians of the semimetal around the
Weyl points. Furthermore we calculate the so-called Landau levels, the quantized energy
levels, that result from this.

2.1 Introduction

When a uniform magnetic field is applied in a certain direction, charged particles will
move in closed orbits around the axis of the magnetic field due to the (magnetic) Lorentz
force, given by Fmag = qv ×B. These closed orbits are called cyclotron orbits.

When considering these orbits quantum mechanically, one finds that the radius of these
orbits actually becomes quantized. However, this quantization of the energy levels is only
observed when the mean thermal energy of the particles is much lower than the separation
between the energy levels. This means that kBT ≪ h̵ωc, where ωc is the cyclotron
frequency, classically defined as ωc = qB/m for a particle with mass m and charge q in a
magnetic field with strength B. Otherwise the thermal spread will obscure the difference
between the energy levels. This boils down to having very low temperatures, and very
strong magnetic fields. In general we will consider T = 0 in this thesis.

In this part the energy levels in the bulk of a Weyl semimetal with an applied mag-
netic field are investigated. The charged particles that are considered here are massless,
spin-1/2 Weyl fermions, which obey the Weyl equation. The Weyl equation is derived
from the Dirac equation, which describes relativistic, massive spin-1/2 particles, and was
formulated by Paul Dirac in 1928 [24]. The Dirac equation is given by

(ıh̵ /∂ −mc)ψ = 0, (2.1.1)

where /∂ = ∂µγµ, with γµ the Dirac matrices, which obey the Clifford algebra defined
by {γµ, γν} = 2ηµν . From this equation the eigenstates and energies can be determined.
If we couple this equation with a magnetic field, then we find quantized energy levels.
These quantized energy levels are called the Landau levels (LL), named after the Soviet
physicist Lev Landau.

In order to arrive at the Hamiltonians that we will work with, we need to keep in mind
that we are dealing with solids, so the system will be electrons on a 3D lattice, consisting
of 2 inequivalent sublattices. The Hamiltonian will be that of of a discrete lattice, with
hopping between sites on the lattice. The Hamiltonian can be rewritten as a function of
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momenta instead, as long as we keep in mind that we use the momenta corresponding
to the crystal momenta in the first Brillouin zone. To obtain the Hamiltonians below,
we make a low energy expansion around the band touching points. For a derivation in
two spatial dimensions, see section 2.1.2 in Ref. [25]. The derivation in three spatial
dimensions is analogous to this derivation.

2.2 Non-relativistic case

The calculations in this section will be along the lines of those done in Ref. [25]. In the
non-relativistic case, the Hamiltonian in absence of magnetic fields simply reads

H = p2

2mB
, (2.2.1)

where mB is not the free electron mass, but rather the band mass, also often called the
effective mass.

If we now add a magnetic field, we can make use of the principle of minimal coupling,
which is given by

p→Π = p − qA, (2.2.2)

with q the charge of the particle and A the magnetic vector potential. Note that neither
p nor A are gauge invariant quantities, but Π is. This substitution takes into account
the effects of charge distributions, but neglects higher order multipole effects. Up to
monopole order this expression is exact. Since we consider single electrons, which we
take to be monopole charges, we can consider this expression to be exact.

Since we consider electrons, which have a charge of q = −e, the Hamiltonian reads

H = (p + eA)2

2mB
≡ Π2

2mB
. (2.2.3)

If we now take the magnetic field to be uniform and in the positive z-direction, since the
magnetic field is given by B = ∇ × A, we find that A = B(−y,0,0) is a valid choice of
gauge.

Note that this is only one of the possible choices for A and is known as the Landau
gauge. Another possibility is taking A = B(0, x,0), which is also called the Landau
gauge. We can also take A = B(−y, x,0)/2, which is known as the symmetric or radial
gauge. In fact, there are infinitely many choices here: A = B(−ay, bx,0), with a + b = 1
will all give the correct result for the magnetic field. Of course, all gauges will yield the
same physical result, but not all gauges will be easy to work with, hence only two of the
infinite amount of choices have names and are generally used. Which of those is used is
generally dependent on the geometry of the system. If it is useful to retain a translational
invariance, then the Landau gauge is more suitable. If rotational invariance is present,
then the radial gauge may be a better choice.

Using the Landau gauge, we find

Πx = px − eBy, Πy = py, Πz = pz.

Note that the Hamiltonian now explicitly depends on y, so it is no longer translationally
invariant along that direction. This then implies that its associate momentum py is no
longer a good quantum number. Since the system remains invariant in the other two
directions, their associated momenta will still be good quantum numbers. From the
canonical commutation relations, we know that all momentum operators commute with
each other, but do not commute with the position operators in the same direction of the
momentum. So the only non-zero commutation relations are given by:
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[x, px] = [y, py] = [z, pz] = ıh̵.

From this, we see that the operators Πi also commute, with the exception of Πx and Πy.
Their commutation relation reads

[Πx,Πy] = [px − eBy, py]
= [px, py]
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

=0

−eB[y, py]

= −ıh̵eB.

Since their commutator is non-zero, we conclude that these are conjugate variables. Using
this commutator, we can rewrite the Hamiltonian in Eq. 2.2.3. We note that

(Πx + ıΠy)(Πx − ıΠy) = Π2
x +Π2

y + ıΠyΠx − ıΠxΠy

= Π2
x +Π2

y + ı[Πy,Πx]
= Π2

x +Π2
y − h̵eB,

yielding the Hamiltonian

H = 1

2mB

[(Πx + ıΠy)(Πx − ıΠy) + h̵eB +Π2
z] . (2.2.4)

Next we want to write this in terms of creation and annihilation operators. We define
ã� = Πx+ıΠy and ã = Πx−ıΠy. In order for them to be proper ladder operators, we require
that the commutator [a, a�] = 1, so we need to normalize them first. After normalization,
the creation and annihilation operators are defined as

a� = 1√
2h̵eB

(Πx + ıΠy), a = 1√
2h̵eB

(Πx − ıΠy). (2.2.5)

We can now introduce the magnetic length, which is a measure for the smallest radius
of the cyclotron orbit that is allowed by the uncertainty principle. It is defined as

lB =
√

h̵

eB
,

such that our ladder operators then read

a� = lB√
2h̵

(Πx + ıΠy), a = lB√
2h̵

(Πx − ıΠy). (2.2.6)

In terms of the original momenta, we can write these operators as

a� = lB√
2h̵

[(px − eBy) + ıpy], a = lB√
2h̵

[(px − eBy) − ıpy], (2.2.7)

where we see that these are simply the ladder operators for a harmonic oscillator, with
a shifted coordinate. Finally, we arrive at the following expression for the Hamiltonian:

H = 1

2mB
(2h̵2

l2B
a�a + h̵

2

l2B
+ p2

z) = h̵2

l2BmB
(a�a + 1

2
) + p2

z

2mB
. (2.2.8)

Since the Hamiltonian is now in the form of a harmonic oscillator, we know that the
eigenstates are given by ∣n, px, pz⟩ ≡ ∣n⟩⊗ ∣px⟩⊗ ∣pz⟩. Here ∣n⟩ are the harmonic oscillator
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states, which are eigenstates of the number operator a�a, such that a�a∣n⟩ = n∣n⟩ and
n ∈ N. The energies, which are the eigenvalues corresponding to the eigenstates, are then
given by

H ∣n, px, pz⟩ = ( h̵2

l2BmB
(a�a + 1

2
) + Π2

z

2mB
) ∣n, px, pz⟩

= ( h̵2

l2BmB
(n + 1

2
) + Π2

z

2mB
) ∣n, px, pz⟩

= En,pz ∣n, px, pz⟩.

In order to be able to consider effects of spin, we need to introduce a spin-structure
to the Hamiltonian. This is done for spin-1/2 particles by having the Hamiltonian be
a 2 × 2 matrix, with its corresponding eigenvalues being two component spinors. The
Hamiltonian under consideration does not have any spin effects incorporated, and will
simply be proportional to I2. We can now add a spin-field interaction term, given by
−µ ⋅B, where µ = gµBσ/2, with g the Lande g factor, µB the Bohr magneton and σ the
vector of spin-1/2 Pauli matrices. This term gives the tendency for the spins to align with
the magnetic field. If the spins are (anti-)aligned with the field, then the term as a whole
gives a negative (positive) contribution to the energy. So it is energetically favourable
for the spins to align with the magnetic field.

Since we consider a magnetic field along the z-direction, the term that gets added to the
Hamiltonian is given by −gµBσz/2. Since this term is diagonal and does not act on the
eigenstates, we simply find that this contributes to the energy levels as −gµbσ/2, where
σ = ±1. From this, we find that the full energy levels are given by

En,pz,σ =
p2
z

2mB
+ h̵2

l2BmB
(n + 1

2
) − g

2
µBBσ = p2

z

2mB
+ 2µB (n + 1

2
− σ

2
)B ≡ p2

z

2mB
+ 2µBlB.

(2.2.9)

Here we have used that µB = eh̵/2mB = h̵2/l2BmBB, and that g = 2 for electrons, which is
true in the absence of interactions, which will be accounted for in the next chapter. We
have also defined the Landau level l ≡ n+(1−σ)/2, which is a non-negative integer. Note
that, besides l = 0 which can only be constructed using the values n = 0 and σ = +1, there
are always two configurations that lead to the same value for l. This leads us to conclude
that the ground state is non-degenerate, while all other levels are doubly degenerate in
spin. There is a second degeneracy in px, which is actually an infinite degeneracy and
is present in all levels, including the lowest level. A plot of the non-relativistic energy
levels is given in Fig. 2.1.

Care needs to be taken here when taking the limit B → 0. The reason for this is that the
magnetic field quantizes the directions transverse to its direction, which allowed us to
introduce the ladder operators that we then used to compute the energy spectrum. This
quantization breaks down in the zero magnetic field limit. Instead, if we consider B = 0,
then all three components of p are good quantum numbers and the energy spectrum will
simply be given by E = (p2

x + p2
y + p2

z)/2mB .

2.3 Relativistic case

We can do the same calculation for relativistic electrons. The Hamiltonian for the rela-
tivistic case can be derived from the Dirac equation, given by

(Πµγ
µ −mvF )ψ = 0, (2.3.1)

where Πµ = ıh̵∂µ−eAµ and Aµ = (φ,A) the four-potential. In the four-potential, φ is the
scalar potential from which the electric field can be derived, and A is again the magnetic
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Figure 2.1 – Non-relativistic energy levels as a function of momentum along the magnetic
field. The values mB = µB = B = 1 were used.

vector potential. Taking m = 0 and noticing that the momentum operators are given by
pi = −ıh̵∂i, we find two Schrödinger equations, given by

ıh̵∂t (
ψ1

ψ2
) = (−Π ⋅σψ1

Π ⋅σψ2
) =H (ψ1

ψ2
) ,

where both ψ1 and ψ2 are 2 component spinors. We see that the two equations for ψ1

and ψ2 are identical, except for a minus sign. This difference in minus sign turns out
to be exactly the difference in chirality between the two different Weyl cones. Using the
parameter ε = ±1 for the chirality, we can conveniently write our full 4 × 4 Hamiltonian
as a 2× 2 Hamiltonian with a factor of ε to take the sign difference into account. In this
case our Hamiltonian reads

H = −εvFΠ ⋅σ = −εvF ( Πz Πx − ıΠy

Πx + ıΠy −Πz
) . (2.3.2)

Note that the Hamiltonian only explicitly depends on y, so px and pz are good quantum
numbers here, and the wave function will depend on those. Another thing to note is
that the relativistic Hamiltonian automatically incorporates the effects of spin, so the
magnetic moment does not need to be added here, it is already included in the Dirac
equation through the gamma matrices. The creation and annihilation operators that
we derived in the previous section still hold here, so we can immediately rewrite this
Hamiltonian as

H = −ε
√

2h̵vF
lB

( 0 a
a� 0

) − εvF pzσz. (2.3.3)

Again the eigenstates are two component spinors, given by ∣ψ⟩ = (ψ
+

ψ−
) . We now want to

solve the eigenvalue equation

H (ψ
+

ψ−
) = [−ε

√
2h̵vF
lB

( 0 a
a� 0

) − εvF pzσz](
ψ+

ψ−
) = E (ψ

+

ψ−
) .

This then gives us a set of two equations:

−ε
√

2h̵vF
lB

aψ− = (E + εvF pz)ψ+, −ε
√

2h̵vF
lB

a�ψ+ = (E − εvF pz)ψ−. (2.3.4)
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Figure 2.2 – Relativistic energy levels as a function of momentum along the magnetic
field for right handed fermions. The values vF = h̵ = lB = 1 were used here.

Solving the first one for ψ+ yields

ψ+ = − ε
√

2h̵vF
lB(E + εvF pz)

aψ−.

Substituting that into the other equation gives us

2h̵2v2
F

l2B(E + εvF pz)
a�aψ− = (E − εvF pz)ψ−.

From this we then find that

a�aψ− =
l2B(E2 − v2

F p
2
z)

2h̵2v2
F

ψ−, or (
2h̵2v2

F

l2B
a�a + v2

F p
2
z)ψ− = E2ψ−.

From this form of the equation we see that the eigenstates are again harmonic oscillator
states, since the only operator acting on the eigenstates is a number operator.

So we find that the state ψ− is proportional to the harmonic oscillator states, so we
can write ψ− = c∣n, px, pz⟩, where c is a constant that we can determine later through
normalization.

Using this, we find that the energy levels are given by:

En,pz = ±vF

¿
ÁÁÀp2

z +
2h̵2

l2B
n. (2.3.5)

We plot these energy levels in Fig. 2.2.

Since we now know ψ− and E, we can use it to find ψ+. For the sake of brevity, we define
α ≡

√
2h̵vF /lB . From Eq. 2.3.4, we know that

ψ+ = − α

E + εvF pz
aψ−.
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Inserting the found expression for ψ−, we find:

ψ+ = −εα
En,pz + εvF pz

aψ−

= −εα
En,pz + εvF pz

ac∣n, px, pz⟩

=
−εα(En,pz − εvF pz)

E2
n − v2

F p
2
z

ac∣n, px, pz⟩

=
−εEn,pz + vF pz

αn
ac∣n, px, pz⟩

= c
−εEn,pz + vF pz

α
√
n

∣n − 1, px, pz⟩.

From this we find that the eigenstates are given by

∣ψn≠0,px,pz ⟩ = c(
−εEn,pz+vF pz

α
√
n

∣n − 1, px, pz⟩
∣n, px, pz⟩

) , (2.3.6)

for n > 0, and for n = 0

∣ψn=0,px,pz ⟩ = c(
0

∣n = 0, px, pz⟩
) . (2.3.7)

We see that if we simply insert n = 0 into our equation for the energy, we find that it is
given by En=0,pz = ±vF pz. However, explicitly calculating the ground state energy using
the lowest level eigenstate shows that

H ∣ψn=0,px,pz ⟩ = −εα( 0 a
a� 0

)( 0
∣n = 0, px, pz⟩

) − εvF pzσz (
0

∣n = 0, px, pz⟩
)

= −εvF pz (
1 0
0 −1

)( 0
∣n = 0, px, pz⟩

)

= εvF pz (
0

∣n = 0, px, pz⟩
)

= εvF pz ∣ψn=0,px,pz ⟩.

So there is in fact no ambiguity in the sign of the ground state energy. Since the sign of the
ground state energy depends on the chirality ε, we call this state chiral or spin-polarized.
We shall call the ε = 1 states right-handed (RH) and the ε = −1 states left-handed (LH).
The higher states currently do not depend on the chirality. Later we shall see that they do
also depend on the chirality through effects that will be introduced in the next chapter.

For the non-zero values of n, we know that the harmonic oscillator states form an or-
thonormal basis, so we can use that to determine the normalization constant c.

We require that ⟨ψn,px,pz ∣ψn,px,pz ⟩ = c2 (1 + (−εEn,pz+vF pz)
2

α2n
) = 1.

Defining the function

f(n, pz) ≡
v2
F p

2
z + εvF pz

√
α2n + v2

F p
2
z

α2n
,

where we demand that n > 0, the normalization constant is found to be equal to

cn,pz = ±
1√
2
[1 + f(n,λpz)] , (2.3.8)
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where λ = ±1, depending on whether we consider the postive or negative energy solutions,
so λ = Sgn(En). Another way to describe this is to say that λ = +1 describes the particle
states, while λ = −1 describes the hole states.

Furthermore, looking at the limit of pz → ±∞, we see that the levels decouple again.

Writing the eigenstates as

∣ψn⟩ = (an,pz ∣n − 1, px, pz⟩
bn,pz ∣n, px, pz⟩

) ,

with the normalization constants an and bn given by

an,pz = cn,pz , bn,pz = cn,pz
−εEn,pz + vF pz

α
√
n

,

we find that if we take λ = 1, pz → ∞ gives an = 1 and bn = 0, while for pz → −∞ gives
an = 0 and bn = 1. Changing the sign of λ then also reverses the outcome of the limits.
Taking the limit of pz → 0, we find that an = bn = ±1/

√
2.

Note that the Zeeman effect is already accounted for in this calculation, as it is included
in the Dirac equation from which the used Hamiltonian is derived. This also means that
the the energy spectrum is again doubly degenerate in spin. To explicitly show this level
degeneracy, instead of considering just the Hamiltonian, we can consider the square of
the Hamiltonian, which has the eigenvalues E2. Using the commutation relation between
Πx and Πy, we can write this operator as

H2 = (Π2 − eh̵B 0
0 Π2 + eh̵B) = Π2I2 − eh̵Bσz.

This gives us the eigenvalues

E2 = p2
z + 2eh̵B (n + 1

2
) − σeh̵B = p2

z + 2eh̵Bl.

We now explicitly see again that the ground state is non-degenerate, while all other levels
are doubly degenerate.

However, we must note that the square of the Hamiltonian is equal for both the RH and
LH cases, since they only differ a minus sign in their original Hamiltonian. Also, we
expect two values of E for each cone, while we now find two values for E2. This yields
four values after taking the square root, which gives us the particle and hole states for
both chiralities. The chiral lowest Landau levels are an exception to this argument of
course.

So we conclude that taking the square of the Hamiltonian gives us the eigenvalues for
both the RH and LH system, and that the degeneracy stems from the combination of
both Weyl cones, rather than a single cone. This is because the two Weyl cones are
implicitly assumed to be located at the same position in momentum space. In the next
chapter we shall see that the degeneracy is broken when we include the effects of the
anomalous magnetic moment, since it couples to the two chiralities in a different way.

We also want to note the symmetries currently present in the system. We have two cones,
one for each chirality. We have absorbed a term that provides separation in reciprocal
space into the momentum terms, meaning that the two Weyl points are still located at
the same point in reciprocal space. This then implies that both inversion (I) and time
reversal (TR) symmetries are intact. In order to have a stable Weyl semimetal, we need
to break either of those two symmetries, which will be done in the next chapter. There
is also a third symmetry in play here: particle-hole symmetry. This symmetry gives us
a relation between the two cones of opposite chirality and is given by En(kz, ε = 1) =
En(−kz, ε = −1). This symmetry will be unaffected by either the anomalous magnetic
moment or breaking TR symmetry by moving the Weyl nodes apart in reciprocal space.
Breaking I symmetry by moving the nodes in energy space will turn out to break particle-
hole symmetry in this form.
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2.4 Conclusion

In this chapter we have shown the effect of the magnetic field on the energy levels of a
Weyl semimetal. The energy levels for both a non-relativistic and relativistic system have
been computed and the Landau levels have been explicitly constructed through Landau
quantization. We have also shown that this leads to chiral ground states, in which the
sign of the (linear) dispersion relation of the lowest Landau level is dependent on the
chirality of the cone. Finally we have shown that all states, except for the chiral ground
states, are doubly degenerate.

With this relatively simple case thoroughly analyzed, we have now built the foundation
upon which the rest of the work will continue to build in the chapters to come. In the
next chapter we will consider the effect of a vertex correction to the action on the Landau
levels. Furthermore, we explicitly break the symmetries currently present in the system
by shifting the cones in energy-momentum space.
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Chapter 3

Anomalous Effects

In this chapter we will look at the effect of the anomalous magnetic moment, which stems
from quantum electrodynamics (QED), on the energy levels in bulk. In section 3.1 we
calculate this effect for both the relativistic and non-relativistic case, and we look for the
tensorial structure of this correction term.

Up until now, we also tacitly assumed that the two Weyl nodes of the cones are at the
same point in momentum space. This, however, is not true in physical situation. Having
the two nodes at the same position can lead to the annihilation of the two Weyl nodes,
thereby gapping out the system. In section 3.2 we investigate the effect of this separation
in momentum space on the energy levels, which turns out to be non-trivial, giving rise
to some interesting effects, such as a non-linear ground state dispersion.

3.1 Anomalous magnetic moment

In the previous calculations we assumed that the g factor for electrons, which shows up
as a multiplicative factor in the magnetic moment, is exactly equal to 2. However, this
is the case only in the absence of interactions. So to account for interactions, we want
to allow the factor to have values different from its non-interacting value. To account
for that, we shall denote the factor as g = 2 + g′, where g′ is the difference from 2 and is
called the anomalous magnetic moment.

A quick note on units in this chapter to avoid confusion: ki will denote wavenumbers,
while pi will label momenta, with their relation being pi = h̵ki.

3.1.1 Non-Relativistic case

We start by adding the anomalous magnetic moment to the non-relativistic energies.
Putting back the general factor g into Eq. 2.2.9, we see that the energies are given by

En,pz,σ =
p2
z

2mB
+ 2µB (n + 1

2
)B − g

2
µBBσ. (3.1.1)

Using that g = 2 + g′, we write this as

En,pz,σ =
p2
z

2mB
+ 2µB [n + 1

2
− σ

2
(1 + g

′

2
)]B ≡ p2

z

2mB
+ 2µBl

′B. (3.1.2)

Now the values that l′ can take are no longer integers. If we look at the lowest Landau
level, given by n = 0, σ = 1, we see that l′ = −g′/4. For all the other values, we find
that l′ = k ± g′/4, where k is an integer. With this anomalous magnetic moment, the
spin degeneracy that is present in all excited states has is lifted. All values for n and σ
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Figure 3.1 – Non-relativistic energy levels as a function of the momentum along the
direction of the magnetic field with an anomalous magnetic moment term. The values
mB = µB = B = 1 and g′ = 1/2 were used here.

now give unique values for l′. The energy levels when also accounting for the anomalous
magnetic moment are given in Fig. 3.1. Clearly, all previously degenerate levels have
now split up.

3.1.2 Relativistic case

In the Hamiltonian for the relativistic case, given in Eq. 2.3.2, the non-anomalous Zeeman
effect has already been accounted for. At this point it becomes imperative to differentiate
between the massive and massless case. We work with Weyl fermions, but to illustrate
the subtle differences that arise when treating massive fermions instead of massless ones,
the massive case will be shown as well.

Massive particles

To start with the massive case, it can be found, through calculating the vertex correction,
that we have the term g′µBσµνF

µν to the Dirac equation, where Fµν is the electromag-
netic field tensor given by Fµν = ∂µAν − ∂νAµ, and σµν = ı

2
[γµ, γν] [26]. Calculating

this contraction, using that only the components F 21 = −B = −F 12 are non-zero in the
field tensor due to only considering a magnetic field in the z-direction, we find that the
equations of motion are given by

(γµ∂µ −m + g′µBBΣ3)ψ = 0,

where Σ3 = ıγ1γ2 = σz ⊗ I2.

Transforming the gradient back to momentum space, we find that we can write this
equation in its matrix form, which is given by

(g
′µBBσ3 −mI2 ıh̵∂t −σ ⋅ p
ıh̵∂t +σ ⋅ p g′µBBσ3 −mI2

)ψ = 0.

So in the massive case, we see that the term that is added through the vertex correction
couples like a mass term, which then will couple the right and left chiral states.
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Figure 3.2 – Relativistic energy levels as a function of the momentum along the direction
of the magnetic field with an anomalous Zeeman term. Black: RH fermions. Blue: LH
fermions. The values vF = lB = B = µB = g′ = 1 were used here.

Massless particles

Since we work in the massless case, we expect that the right-handed (RH) and left-handed
(LH) states remain uncoupled and that the anomalous magnetic moment will couple like
a Zeeman term instead of a mass-like term. So instead of a term proportional to σµνF

µν ,
we need to consider a term proportional to σµpν (Fµν − ∗Fµν), where ∗Fµν is the Hodge
dual of the EM tensor, defined as ∗Fµν = εµνρλFρλ/2, where εµνρλ is the totally anti-
symmetric Levi-Civita tensor [27]. The convention for the Levi-Civita tensor used here
is ε0123 = 1. Assuming absence of electric fields, this leads to both a Zeeman like term,
proportional to B ⋅σ and a Rashba spin-orbit like term, proportional to B ⋅ (σ × p).
Adding the Zeeman like term to the Hamiltonian, we find that the Hamiltonian for the
right chiral Weyl cone is given by

H = −
√

2h̵vF
lB

( 0 a
a� 0

) − (vF pz + g′µBB)σz. (3.1.3)

From this it is clear how to incorporate this into to the already calculated energies
E(n, pz): it is simply a shift of the vertical momentum pz → p′z = pz + g′µBB/vF .

Next we note that this shift is for a RH fermion. If we consider a LH fermion, going
through the calculations will reveal that the shift is instead given by pz → p′z = pz −
g′µBB/vF . This change of sign is then also what breaks the degeneracy at the relativistic
level: instead of both RH and LH giving the same value for the energies, with exception
of the lowest Landau level, the excited state energies are now shifted in momentum space.
The form of these shifted energies are plotted in Fig. 3.2.

The above can be made more precise. For this, the form of the vertex correction has
already been calculated, so we want to check that it is consistent with the statements
made above. Specifically, we consider the transverse part of the vertex correction for
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Figure 3.3 – Dimensionless magnetic moments as a function of momentum. Values for
kF ξ = 1/4. Figure adapted from Ref. [28].

massless fermions. The correction to the action, which has been calculated in Ref. [28],
is given by

−evFAµΓµtransv.(k) = −[µ1(k) ×σ] ⋅ E

vF
− [µ2(k) − εµ1(k)] ⋅B, (3.1.4)

where µ1(k) ≡ µ1(k)k, µ2(k) ≡ µ2(k)σ and ε = ±1 the chirality. Looking at Fig. 3.3, we
see that the µi depend on the momenta, but are finite in the long wavelength limit. Since
we work in the low-energy limit in this thesis, we will consider them to be constants,
which we take to be the long wavelength limits. So we define µi ≡ µi(0).
The first term on the right-hand side of the equation gives a Rashba-like spin-orbit
coupling term. Looking at the other two terms, we see a term proportional to σ ⋅ B,
which has the form of a Zeeman shift, and a term proportial to k ⋅B, which will turn out
to be a tilt term. If we consider the absence of electric fields, we can discard the Rashba
term. We want to investigate the tensorial structure of the first order correction term
given by (µ2σ −µ1k) ⋅B. To write this in its tensorial form, we shall consider the Hodge
dual of the EM tensor. In the absence of electric fields, it is given by

∗Fµν =
1

2
εµνρλF

ρλ =
⎛
⎜⎜⎜
⎝

0 Bx By Bz
−Bx 0 0 0
−By 0 0 0
−Bz 0 0 0

⎞
⎟⎟⎟
⎠
.

So we see that Bi = ∗F0i. This means that we can write σ ⋅B = σi ∗ F0i. Since ∗F00 = 0,
we can easily extend it to read σ ⋅B = σν ∗F0ν , where σ0 = I2. Similarly, we can write the
−k ⋅B term as kµ ∗Fµ0. Now we see that since ∗Fij = 0, that with a proper choice of σ0

and k0 we can write the required term as kµσν ∗Fµν . In order to not need a redefintion
of the Pauli matrices, we shall take the µ1 outside of the brackets. If we then define
k0 = µ2/µ1, we see that we can then write this as

µ1 (µ2

µ1
σ − k) ⋅B = µ1k

µσν ∗ Fµν . (3.1.5)

However, the above equation is valid for a single Weyl cone only, since we considered
only one of the two possible chiralities of the fermions. So we want to generalize it to
include both the cones. The other possible term is given by (µ2σ + µ1k) ⋅B. Since we
do not want to break the chiral symmetry, the full tensor form should give us a block
diagonal matrix, which can be written as
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M = ((µ2σ − µ1k) ⋅B 0
0 (µ2σ + µ1k) ⋅B

) .

Thus we see that the σ ⋅B term keeps the same sign, while the k ⋅B term changes its
sign. This 4 × 4 matrix can be constructed by using the Dirac gamma matrices instead
of just the Pauli matrices. In our basis we have

γ5γ0γ0 = γ5 = (−I2 0
0 I2

) , γ5γ0γi = (σi 0
0 σi

) .

From this we see that if we substitute σµ → γ5γ0γµ, that we get the desired result.
However, if we use the same convention for k0, we see that we end up with the chiralities
reversed. To counter this, we reverse the sign of k0. This then gives us the correct order
of chiralities, but also an overall minus sign, which is easily dealt with, for instance by
swapping the indices of the dual EM tensor, since it is anti-symmetric. Finally we can
write the transversal part of the vertex correction as

(µ2σ − εµ1k) ⋅B→ µ1γ
0γ5kµγν ∗ Fνµ, (3.1.6)

where kµ = (−µ2

µ1
,k).

The left-hand side of this equation is clearly time-reversal invariant, since under time-
reversal we find that B → −B, k → −k and σ → −σ. Of course the right-hand side
is then also invariant, but we want to make this explicit by looking at how the terms
transform. Since the components of ∗Fµν are the components of the magnetic field, we
see that ∗Fµν → −∗Fµν . Because under time-reversal σi → −σi, we also see that γi → −γi.
We also already found that ki → −ki. However, time-reversal transforms k0 → k0 and
γ0 → γ0. Because either we have a term kiγ0 or k0γi, we see that the combination
kµγν ∗ Fνµ is invariant under this transformation.

Finally we need to check that γ0γ5 is invariant. We see that we can write this as
ıγ1γ2γ3. All three gamma matrices get a minus sign, but because we also need to
consider the conjugation, we find that the imaginary unit also gets a minus sign, which
then leaves the whole operator invariant, so γ0γ5 → γ0γ5. From this we conclude that
γ0γ5kµγν ∗ Fνµ → γ0γ5kµγν ∗ Fνµ, meaning that the right-hand side of the equation
indeed is invariant under time-reversal, as it of course should be.

3.1.3 Effect on energy levels

Again taking E = 0 and B = Bẑ, we can now determine what the effect of the anomalous
magnetic moment is on the energy spectrum that we have calculated before. The Hamil-
tonian is given by the sum of the non-interacting Hamiltonian H0 and the Hamiltonian
corresponding to the correction H1. Taking into account both Weyl cones, we can write
it as

H =H0 +H1 = ε [−
√

2h̵vF
lB

( 0 a
a� 0

) − (vF h̵kz + εµ2B)σz + µ1BkzI2] . (3.1.7)

By using what we already know of the eigenstates of H0, we see that the µ2 term simply
gives a shift in the vertical momentum in the energy that we have already calculated,
while the µ1 term simply adds a term linear in pz to the energy. Taking into account the
effect of the ε, we find that the energy levels in this case are given by

En,pz,ε = ±vF

¿
ÁÁÀ(h̵kz + ε

µ2

vF
B)

2

+ 2h̵2

l2B
n + εµ1Bkz. (3.1.8)
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Figure 3.4 – Relativistic energy levels as a function of the momentum along the direction
of the magnetic field with the anomalous magnetic moment terms. Black: RH fermions.
Blue: LH fermions. The values h̵ = vF = B = 1, µ1 = 0.25 and µ2 = 0.85 were used.

Doing the calculation explicitly, in a similar fashion as was done earlier in this chapter,we
find the exact same result. The energy levels as function of kz and µ1 are plotted in Fig.
3.4. From the image one can see that not only does this separate the two Weyl cones in
momentum space, but it also tilts them, justifying our name for the k ⋅B term.

Finally we could consider the electric field. The reason that we have not included it in
our calculation of the energy levels is that there are no stable states. When considering
a magnetic field, the cyclotron orbits form the eigenstates. However, an electric field
does not induce similar orbits. Instead, we effectively have a linear potential that will
simply accelerate the electrons in a linear fashion. This would then induce a current,
but not stable states of single electrons. While currents and conductivity are certainly
interesting in these materials, we will not consider them in this thesis.

3.2 Separation of the Weyl nodes

In the previous calculations, we have assumed that there was no separation between the
two Weyl nodes. However, the nodes could very well be separated both in energy and
momentum. In fact, they should be separated in at least one of the two to ensure that
the Weyl points do not annihilate each other. This separation is denoted by the four-
vector bµ, where the temporal component is the separation in energy space, while the
spatial components give the separation in the momenta. A non-zero b0 breaks inversion
symmetry, while a non-zero bi breaks time-reversal symmetry. For this reason we call
this the symmetry breaking vector.

In the calculations above, we have simply absorbed the separation in the momentum
term, by defining p ≡ h̵(k − εb). We can now also do the calculations by re-inserting
the explicit dependence on initial separation. For the most part this is an easy task,
since the p0 and pz appear explicitly in the calculations. Thus they are easily shifted,
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Figure 3.5 – Relativistic energy levels as a function of the momentum along the direction
of the magnetic field with the anomalous magnetic moment terms and non-zero values
for b0 and bz. Black: RH fermions. Blue: LH fermions. The values h̵ = vF = B = 1,
µ1 = 0.25, µ2 = 0.85, b0 = 0.3 and bz = 0.5 were used.

obtaining the desired result. However, since we have used the px and py terms to form
the ladder operators, we need to take a closer look at how the bx and by terms affect
these operators. Reinserting this shift into Eq. 2.3.2, we find

H = −εvF (Π − εh̵b) ⋅σ = −εvFΠ ⋅σ + h̵vFb ⋅σ. (3.2.1)

So we find the original Hamiltonian, which we have studied already, plus the effect of the
symmetry breaking vector, which has a form reminiscent of a Zeeman effect. It is good
to note that this vector is not an operator, but simply a vector containing real numbers.

For the b0 and bz terms, we see that they shift the origin of the energy and vertical
momentum in a chirality dependent way. So from this, we expect that in the energy
versus vertical momentum plots b0 will shift the energy levels up or down, while the bz
term will shift them to the right or left. Note that b0 will make an energy difference
between the two Weyl points. This, however, is not the same as introducing an axial
chemical potential, which would effectively shift the Fermi level up or down for the two
cones, while potentially leaving the Weyl points at the same level in energy space.

Using this, we find that the energy levels are given by

En,kz,ε = ±h̵vF

¿
ÁÁÀ(kz − εbz + ε

µ2

h̵vF
B)

2

+ 2

l2B
n + εµ1B(kz − εbz) − εb0. (3.2.2)

Using this expression, we plot the energy levels as a function of pz in Fig. 3.5.

Next we explore the effects of having a time-reversal symmetry breaking vector with
components perpendicular to the magnetic field. It is fairly easy to see that, since the
bµ commute with both position and momentum operators, there is no change in the
commutator [Πx,Πy]. This then means that we can define the same ladder operators,
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but with ki instead of pi. The z part of this vector, as argued above, can very easily be
incorporated in the energy levels of the system. So the part that is truly new here and
needs to be investigated is

H1 = h̵vfb ⋅σ = h̵vF ( 0 bx − ıby
bx + ıby 0

) .

To do this, we look at the Hamiltonian in the basis of the eigenvectors we found earlier,
given by

∣ψi⟩ = (ci,1∣i − 1, px, pz⟩
ci,2∣i, px, pz⟩

) , (3.2.3)

where ∣i⟩ are again the harmonic oscillator states. Note that the normalization constants,
previously called an and bn, are not the same as computed earlier, due to having intro-
duced more terms to the Hamiltonian. The precise normalization will be determined
later, but this form will suffice to illustrate the effect.

Assume for the moment that i > 0. We already know that this basis diagonalizes the part
of the Hamiltonian excluding H1, with known eigenvalues. We can now check whether
this also is the case for H1:

Mij = ⟨i∣H1∣j⟩

= h̵vF (ci,1⟨i − 1∣, ci,2⟨i∣) (
0 bx − ıby

bx + ıby 0
)(cj,1∣j − 1⟩

cj,2∣j⟩
)

= h̵vf (ci,2(bx + ıby)⟨i∣, ci,1(bx − ıby)⟨i − 1∣) (∣j − 1⟩
∣j⟩ )

= cj,1ci,2h̵vf(bx + ıby)⟨i∣j − 1⟩ + ci,1cj,2h̵vF (bx − ıby)⟨i − 1∣j⟩
= cj,1ci,2h̵vf(bx + ıby)δi,j−1 + ci,1cj,2h̵vF (bx − ıby)δi−1,j

= cj,1ci,2h̵vf(bx + ıby)δi,j−1 + ci,1cj,2h̵vF (bx − ıby)δi,j+1.

From this we find that the matrix elements in this basis are given by

Mij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ci,1cj,2h̵vF (bx − ıby) i = j − 1

ci,2cj,1h̵vF (bx + ıby) i = j + 1

0 otherwise

(3.2.4)

From this we immediately see that this part of the Hamiltonian is not diagonal in this
basis, but actually provides off-diagonal terms. Hence in this basis the full Hamiltonian
is no longer diagonal, but rather tri-diagonal.

In order to now find the energy levels with this effect incorporated, we want to diagonalize
this infinite dimensional tri-diagonal matrix. To calculate this, the normalization factors
of the eigenstates come into play. On the diagonals, the normalization factors don’t
matter:

⟨ψi∣H ∣ψi⟩ = Ei⟨ψi∣ψi⟩ = Ei.

On the off-diagonal elements though, the factors do play a role, so we need to know their
exact form before we can perform any meaningful calculation. For this we have to revisit
the calculation of the eigenstates that we did before. However, we cannot simply use
the already found result due to the addition of terms, changing our eigenstates. So a
recalculation is in order, but the same steps of calculation can still be used.
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We know that the basis of harmonic oscillator states that were found diagonalizes a part
of the Hamiltonian, wich we shall call H0, with eigenvalues given by Eq. 3.2.2:

ε(−h̵vF kz − εµ2B + µ1kzB − b0 −αa
−αa� h̵vF kz + εµ2B + µ1kzB − b0

)(ψ
+

ψ−
) = E (ψ

+

ψ−
) . (3.2.5)

Note that the substitution kz → kz − εbz will be made later for convenience of notation.
Rewriting this, we find

ψ+ = − αa

εE + b0 + (h̵vfkz + εµ2B − µ1kzB)
ψ−.

This can then be used to explicitly find the energy levels that were found through rea-
soning above. However, that will not add anything of value to this section, so instead we
shall use this result to find the normalization factor of the eigenstates.

We know that ψ− = c∣n⟩, with c the constant of proportionality that we want to determine.
So from this we then immediately see that

ψ+ = − αc
√
n

εE + b0 + (h̵vfkz + εµ2B − µ1kzB)
∣n − 1⟩.

Normalization then demands that

c2 (1 + α2n

[εE + b0 + (h̵vfkz + εµ2B − µ1kzB)]2
) = 1.

We now also see that the b0 term here cancels the term in the expression for the energy,
since εE +b0 = ε(E + εb0), and there is a term −εb0 in the energy. So we can get rid of the
b0 term in this calculation, and keep in mind that we then use a modified energy, which
we shall denote by E′. The solution to this, though fairly complicated in structure, is
easily found through elementary algebra:

c = ± ∣(µ1B − h̵vF )kz − ε(µ2B +E′)∣
√

[(µ1B − h̵vF )kz − ε(µ2B +E′)]2 + α2n
. (3.2.6)

In order to compactly write the resulting eigenstates, especially after substituting kz →
kz − εbz, we introduce some definitions:

δn ≡ (µ1B − h̵vF )(kz − εbz) − ε(µ2B +E′
n),

γn ≡
√
δ2
n + α2n.

Note that the delta still depends on the level through the energy, where we have now
explicitly denoted its level dependence with n. This allows us to write the normalization
as cn = ±∣δn∣/γn. Since ∣δn∣/δn = Sgn(δn) = ±1, the eigenstates can be written as

∣ψn⟩ = ±
1

γn
(Sgn(δn)α

√
n∣n − 1⟩

∣δn∣∣n⟩
) , (3.2.7)

where we need to keep in mind that α depends on B. Using these normalization factors,
it is also immediately obvious that for n = 0 we have the ground state ∣ψ0⟩ = (0,±∣0⟩)T ,
since ∣δ0∣/γ0 = 1. Using the results found in Eq. 3.2.4, we can now write down the
Hamiltonian in this basis:

Hij =
α
√
jSgn(δj)∣δi∣
γiγj

h̵vF (bx + ıby)δi,j−1 +Eiδi,j +
α
√
iSgn(δi)∣δj ∣
γiγj

h̵vF (bx − ıby)δi,j+1.

(3.2.8)
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Figure 3.6 – Numerically computed energy levels of the Hamiltonian from Eq. 3.2.10 as
a function of the momentum along the direction of the magnetic field with b̄x = 2.3,
without anomalous magnetic moment. Black: right chiral states. Blue: left chiral
states.

Although it is not diagonal, it is easy to check that this matrix is still Hermitian, as is
expected of a Hamiltonian. This also ensures that our eigenvalues are real valued.

With the exact form of the Hamiltonian known, we can now attempt to diagonalize it
by finding its eigenvalues. However, this procedure will be a numerical one, and since
the matrix is in principle infinite dimension, we will need to introduce a cut-off in the
amount of terms that we consider. Later on some analytical results are derived using
perturbation theory, but those results are only valid in a regime where the bx,y are fairly
small. So numerical results are necessary in order to compute the energy spectrum for
higher values of those components. Since the energy levels do not explicitly depend on
either kx or ky, we expect that the seperations in either of these directions are equivalent,
and that only the absolute separation in this plane is what affects the energies.

3.2.1 Numerical procedure & results

For the diagonalization procedure, we do not want to construct two different matrices,
depending on whether we consider positive or negative states, but rather a single matrix.
Doing the former would lead to shifting the ground state in two different ways, effectively
splitting it up, which is incorrect. Instead we construct a matrix of the form

Hij =

⎛
⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋰
⋯ E1 b 0 ⋯
⋯ b∗ E0 a ⋯
⋯ 0 a∗ E−1 ⋯
⋰ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

,

where the E−i represent the negative energy states. The stars on the off-diagonal entries
denote complex conjugation, as we consider a Hermitian matrix. In order to be able
to perform numerical computation, the relevant variables are scaled dimensionless. Di-
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mensionless variables will be denoted with with a bar. The parameters are scaled in the
following way: kz and bz are scaled with 1/l1B , µ1 is scaled with evF l

2
B , µ2 is scaled with

evF lB and finally E and b0 are scaled with h̵vF /lB . With this scaling, the energy levels
are given by

Ēn = ±
√

(k̄z − εb̄z + εµ̄2)2 + 2n + εµ̄1(k̄z − εb̄z) − εb̄0. (3.2.9)

However, we must also then rescale the other entries of the matrix. This is done by
introducing the same scaled variables as before. The normalization factor, in its scaled
version, is now given by

cn = ±
∣δ̄n∣
γ̄n

,

where now

δ̄n = (µ̄1 − 1)(k̄z − εb̄z) − ε(µ̄2 + Ē′
n)

γ̄n =
√
δ̄2
n + 2n.

The scaled matrix that we use for numerical computations is then given by

H̄ij =
√

2jSgn(δ̄j)∣δ̄i∣
γ̄iγ̄j

(b̄x + ıb̄y)δi,j−1 + Ēiδi,j +
√

2iSgn(δ̄i)∣δ̄j ∣
γ̄iγ̄j

(b̄x − ıb̄y)δi,j+1. (3.2.10)

An interesting footnote to this scaling is that the only dependence on the magnetic
field now resides in the anomalous magnetic moment terms. Additionally, note that the
magnetic length scales with B−1/2, so it diverges for B → 0. This then implies that the
scaling term will also diverge in this limit. However, since we are only interested in the
situation where there is a non-zero magnetic field, and the behaviour without a magnetic
field is known, we simply accept that this is the case. If we wanted to take the zero field
limit, we would have to carefully look at how all the different terms scale. Of course it
is still possible, because the physical system has not changed, but one has to be a little
more careful.

We perform this numerical diagonalization on the above matrix, with a cut-off in the
dimension of the matrix. Additionally, we set all other terms to zero, so we do not
consider the anomalous magnetic moment terms or separation in any other direction
here. The energy levels under influence of a non-zero b̄x is plotted in Fig. 3.6. From
this figure it is clear that a non-zero b̄x affects the lower energetic states more strongly,
with the most obvious diference being the curvature of the lowest Landau level, which
was not present before. This behaviour is interesting, because the lowest level normally
has a linear dispersion, while now it seems to become non-linear instead. The difference
between the two chiralities is also stronger in the lower states than in the higher ones.

To see what the effect is of this bx, we can also compare it with the energy levels when
considering bx, but with all other parameters kept the same. A comparison of bx ≠ 0 and
bx = 0 is plotted in Fig. 3.7. It is interesting to note that this separation in momentum
space appears to make the band gaps smaller, as the energy levels are shifted closer to
each other.

Finally, we can include all the effects that we have calculated up until now. The result
of this is plotted in Fig. 3.8. In this figure we see all the effects we discussed up until
now combined. The levels are both shifted and tilted through the parallel component of
the TR breaking vector and anomalous magnetic moment terms, and are distorted by
the perpendicular components of the TR breaking vector.
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Figure 3.7 – Comparison of the energy levels as a function of the momentum along
the direction of the magnetic field with both a zero and a non-zero bx term, without
anomalous magnetic moment. The black curves denote the numerically computed states
for b̄x = 2. The red curves denote the analytical solutions for b̄x = 0. Both are the
solutions for right chiral fermions.

Since we, consider an infinite dimensional system, but for obvious reasons cannot do that
numerically, we need to investigate the effects of this dimensional cut-off. In Fig. 3.9 the
first five excited states are shown, which have been computed using two different cut-offs.
For the black curves, we have placed the cut-off at ten levels, while for the red curves
the cut-off is placed at five levels. The ground state and the first excited state are barely
affected by the cut-off, but the discrepancy becomes very clear for the higher levels. So
it is clear that care needs to be taken in placing the cut-off.

Taking a higher amount of computed states can reduce this numerical error to a minimum.
In Fig. 3.10 we compare the first five levels again, but now with respectively 10 and 20
computed levels before the cut-off. One can clearly see that now the first three excited
states match very well, while the error in the highest two levels are visible, but noticably
reduced in comparison with the previous example. Taking 15 and 20 levels shows that
the discrepancy is no longer visible when looking at the first five excited states. From
this we can conclude that the numerical errors introduced by a cut-off in the computed
amount of terms is very much relevant, but that it can be effectively compensated by
computing many more terms than one is interested in, since the error is mainly in the
higher terms.

Another curious thing to take a look at is the behaviour of the chiral ground state near
zero, where it curves a bit. One can wonder how this energy scales with momentum, and
whether it is still linear around this point, as it was in the case without the symmetry
breaking vector having components perpendicular to the magnetic field. Unfortunately,
we cannot do this analytically, since this curvature seems to stem from the higher order
terms: simply calculating the ground state using just the first excited states, a first order
correction if you will, does not yield the form we see when using higher order corrections.
Trying to analytically calculate it using a 11 by 11 matrix is simply too much work,
especially given the complicated form of its entries, so numerics will have to suffice here.
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Figure 3.8 – Energy levels as a function of the momentum along the direction of the
magnetic field with b̄x = 2, b̄0 = 0.5, b̄z = 0.3, µ̄1 = 0.25 and µ̄2 = 0.85. Black: right chiral
states. Blue: left chiral states.
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Figure 3.9 – Numerically computed energy levels of the Hamiltonian Eq. 3.2.10 as a
function of the momentum along the direction of the magnetic field with b̄x = 2. Different
cut-offs in the dimensions are used here. For the black curves we used 10 excited states.
For the red curves we used 5 excited states.
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Figure 3.10 – Numerically computed energy levels of the Hamiltonian Eq. 3.2.10 as
a function of the momentum along the direction of the magnetic field with b̄x = 2.
Different cut-offs in the dimensions are used here. For the black curves we used 20
excited states. For the red curves we used 10 excited states.
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Figure 3.11 – Two different fits for the behaviour of the lowest Landau level with b̄x = 1.8
near k̄z = 0. a shows a fit of the form ak̄z and b shows a fit of the form ak̄z + bk̄

3
z , where

a and b are constants.

In Fig. 3.11 we compare two fitted curves to the points, one with a purely linear fit of
the form ax, which is shown in subfig. 3.11a, and one with an added third order term
of the form ax + bx3, which is shown in subfig. 3.11b. It is clear that the added third
order term makes for a much better fit, so we can conclude from this that the behaviour
around zero is no longer linear, but also has a cubic term for this value of b̄x.

For higher values of b̄x we find that the non-linear effect becomes more pronounced. One
of the consequences of this is that above a certain value, the level actually can rise above
the Fermi level before crossing the origin and then dip below the Fermi level again briefly.
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kz

E

Figure 3.12 – Energy states as a function of the momentum along the direction of the
magnetic field for b̄x = 2.7, calculated using 50 excited states. The black and blue curves
are respectively the right and left chiralities. Both ground state curves cross the Fermi
level three times.

This effect can be clearly seen in Fig. 3.12. The higher the b̄x is, the more erratic the
curve becomes. In the absence of anomalous magnetic moment contributions, the curve
will remain anti-symmetric around the origin, thus we can attempt to decribe it using
a power series of odd powers of k̄z, where the coefficients themself can depend on the
parameter b̄x

E(k̄z) =
∞
∑

l=1,3,...

al(b̄x)k̄lz (3.2.11)

From this it is clear that larger b̄x will then require increasingly more terms in order to
describe the behaviour accurately. The values for the coefficient of the first 4 terms are
given in Fig. 3.13. From here we can also determine at which point we get the phase
transition, as this will occur when the linear coefficient changes sign. This has been
numerically determined to happen around b̄x ≈ 2.318.

As can be seen from this figure, the higher the value of b̄x, the less linear the system
behaves. Up until around b̄x = 1.5 the system can be described approximately linearly,
because we consider ∣k̄z ∣ < 1, so the higher order terms contribute less if their coefficient
is not large enough. Above that, the contributions from higher order terms can no longer
be ignored. Above b̄x = 2.6 even an approximation up to k̄5

z becomes insufficient. Taking
this to the extremes, at b̄x = 4 even an approximation with terms up to k̄21

z is not enough.
So it is clear that this system can become complicated very quickly.

In light of the phase transition that was found for the ground state, thinking about the
effect of b0, one can see that a similar effect may occur. If we make b0 large enough,
we can shift the first Landau level to actually have its minimum below the Fermi level,
creating an additional hole pocket, giving us another way to make a phase transition
occur in this system. However, we need to be careful in using b0 in the system if we want
to retain our semimetallic behaviour. Shifting the Weyl point away from the Fermi level
means that we actually have the Fermi level inside the conduction band, which simply
gives us metallic behaviour.



34 CHAPTER 3. ANOMALOUS EFFECTS

0.0 0.5 1.0 1.5 2.0 2.5
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

bx

a
n

Figure 3.13 – Values for the first four coefficients al of the power series given in Eq. 3.2.11
as function of b̄x. Blue: l = 1. Red: l = 3. Black: l = 5. Green: l = 7.

3.2.2 Perturbative results

We can also attempt to compute the ground state using perturbation theory. This allows
us to write the energy as

E0(λ) =
∞
∑
m=0

λmE
(m)
0 , (3.2.12)

where λ is our perturbation parameter, which we take to be bx for this system. The power
in brackets is the order of perturbation. Since we know that the perturbative part of
the Hamiltonian is side-diagonal, we can immediately discard a first order perturbation,
since those are given by the diagonal part of the perturbative Hamiltonian. So we will
look at a second order correction for the ground state, which is given by

E
(2)
0 = ∑

k≠0

∣⟨0∣V ∣k⟩∣2

E
(0)
0 −E(0)

k

≡ ∑
k≠0

∣V0,k ∣2

E0,k
, (3.2.13)

where V is the perturbative part of the Hamiltonian, and we define Vi,j ≡ ⟨i∣V ∣j⟩ and

Ei,j ≡ E(0)
i −E(0)

j .

For simplicity’s sake, we shall not include any anomalous effects in this calculation. We
also take by = 0. Using this, we can write our perturbative part of the Hamiltonian,
leaving out the bx, since it is our perturbation parameter λ, as

Vi,j =
√

2jSgn(δ̄j)∣δ̄i∣
γ̄iγ̄j

δi,j−1 +
√

2iSgn(δ̄i)∣δ̄j ∣
γ̄iγ̄j

δi,j+1. (3.2.14)

Since V0,j only couples to neighbouring states, we see that we can only have V0,1 and
V0,−1. So the perturbation is given by

E
(2)
0 =

∣V0,1∣2

E0,1
+

∣V0,−1∣2

E0,−1
.

Since we defined that δ0/γ0 = 1, we find that we can write

∣V0,±1∣2 =
2δ2

0

γ2
0γ

2
±1

= 2

δ2
±1 + 2

.

Next we note that E
(0)
0 = εkz and E

(0)
±n = ±

√
k2
z + 2n, and we note that
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E0,1E0,−1 = (εkz −
√
k2
z + 2)(εkz +

√
k2
z + 2) = −2,

which then allows us to write

E
(2)
0 =

E−1,0

δ2
1 + 2

+
E1,0

δ2
−1 + 2

.

We have δ±1 = −(kz + εE±1) = −(kz ± ε
√
k2
z + 2). Calculating the delta terms explicitly,

we find that δ2
±1 + 2 = 2(k2

z ± εkz
√
k2
z + 2 + 2). This allows us to write

1

δ2
±1 + 2

= 1

2

1

k2
z + 2 ± εkz

√
k2
z + 2

= 1

4

⎛
⎝

1 ∓ εkz√
k2
z + 2

⎞
⎠

= 1

4E1
(E1 ∓E0) .

Making use of the symmetry E±1 = ±E1, we can now write

E∓1 −E0

δ2
±1 + 2

= ∓E1 −E0

δ2
±1 + 2

= − 1

4E1
(E0 ±E1)(E1 ∓E0)

= ∓ 1

2E1
.

Finally we find the perturbation to be given by

E
(2)
0 =

E−1,0

δ2
1 + 2

+
E1,0

δ2
−1 + 2

= − 1

2E1
+ 1

2E1
= 0. (3.2.15)

So we conclude that the second order perturbation is also zero in the case of no anomalous
effects. We expect that this is not the case when considering anomalous effects, since the
symmetry E±n = ±En will no longer hold in that case.

The next step is to then look at the third order perturbation. This is given by

E
(3)
0 = ∑

k≠0,l≠0

V0,lVl,kVk,0

Ek,0El,0
− V0,0∑

k≠0

∣V0,k ∣2

E2
k,0

. (3.2.16)

Since V0,0 = 0, we can discard the second term immediately, so we are left to look at

E
(3)
0 = ∑

k≠0,l≠0

V0,lVl,kVk,0

Ek,0El,0
. (3.2.17)

We know that V0,l is non-zero only if l = ±1, and the same for Vk,0. However, since
V±1,±1 = 0, we can immediately deduce that the third order perturbation is also zero.
In fact, due to our form of the perturbative Hamiltonian, we see that all odd orders of
perturbations vanish, since an odd combination of Vij cannot create combinations such
that it is of the form V0,k1⋯Vki,ki+1⋯Vkn,0, since we require ∣ki − ki+1∣ = 1. The first term
that turns out to be non-zero is the fourth order correction, which is given by

E
(4)
0 = ∑

k≠0,l≠0,m≠0

V0kVklVlmVm0

E0kE0lE0m
−E(2)

0

∣V0k ∣2

E2
0k

− 2V00
V0kVklVl0
E2

0lE0k
+ V 2

00

∣V0k ∣2

E3
0k

. (3.2.18)
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Now fortunately we know that E
(2)
0 = 0 and V0,0 = 0, so we can discard all terms except the

first. Next we go over the possible combination for V0kVklVlmVm0, such that none of the
four terms is zero, and such that neither k, l or m are zero. This leaves us with only two
possiblities: V0,1V1,2V2,1V1,0 = ∣V0,1∣2∣V1,2∣2 and V0,−1V−1,−2V−2,−1V−1,0 = ∣V0,−1∣2∣V−1,−2∣2.
So we find that the fourth order correction is given by

E
(4)
0 =

∣V0,1∣2∣V1,2∣2

E2
0,1E0,2

+
∣V0,−1∣2∣V−1,−2∣2

E2
0,−1E0,−2

, (3.2.19)

and is determined by the nearest two levels. So here we also see that all even orders of
perturbation will consist of terms with products ∣Vi,i±1∣2 ∝ (b2x + b2y). This justifies our
reasoning for ignoring by in these computations, since we only concern ourselves with the
length of the vector (bx, by) instead of its direction. So anything we calculate here simply
using bx will also be valid for by. For the following computation we will assume, to avoid
getting lost in all indices and powers, that if no order of perturbation is mentioned the

unperturbed state is meant. So Ei ≡ E(0)
i . At the end it will be denoted properly again.

Writing out the expressions for the matrix elements, we get

E
(4)
0 = 8δ2

1

(δ2
1 + 2)2(δ2

2 + 4)
1

(E0 −E1)2(E0 −E2)
+ 8δ2

−1

(δ2
−1 + 2)2(δ2

−2 + 4)
1

(E0 −E−1)2(E0 −E−2)
.

Using the symmetry E−n = −En, for n > 0, we can rewrite this. If we also see that
δ±n = −ε(E0 +E±n) = −ε(E0 ±En), then we can write δ2

±n = (E0 ±En)2. This allows us to
write

E
(4)
0 = 8(E0 +E1)2

[(E0 +E1)2 + 2]2[(E0 +E2)2 + 4]
1

(E0 −E1)2(E0 −E2)

+ 8(E0 −E1)2

[(E0 −E1)2 + 2]2[(E0 −E2)2 + 4]
1

(E0 +E1)2(E0 +E2)
.

Using (E0+En)(E0−En) = E2
0−E2

n = −2n. We can finally cast the fourth order correction
to the ground state energy into a somewhat compact form:

E
(4)
0 = −1

2
[ (E0 +E1)4(E0 +E2)
[(E0 +E2)2 + 2][(E0 +E2)2 + 4]

+ (E0 −E1)4(E0 −E2)
[(E0 −E2)2 + 2][(E0 −E2)2 + 4]

] .

As much as it may not look like it, this is expression can be very much simplified. This
will be shown, but not in full detail. Instead we show some intermediate results. We first
equalize the denominator. To do this we use the following results:

[(E0 +E1)2 + 2]2[(E0 −E1)2 + 2]2 = 64E4
1 ,

[(E0 +E2)2 + 4][(E0 −E2)2 + 4] = 16E2
2 .

So the denominator becomes 1024E4
1E

2
2 . Now we calculate the products in the enumer-

ator:

[E0 ±E1]4[(E0 ∓E1)2 + 2]2 = 32E2
1(1 +E2

0 ±E0E1)
[E0 ±E2][(E0 ∓E2)2 + 4] = ±8E2.

Using these results, we conclude that
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Figure 3.14 – Values for the first two coefficients an of the power series given in Eq. 3.2.11
as function of b̄x. Blue: n = 1. Red: n = 3. Dots are numerical data points, while the
solid curves denote the perturbative results.

E
(4)
0 = −1

4

E0

E1E2
.

So after some extensive algebra, we find that this is actually a fairly simple correction:

E
(4)
0 = −1

4

E
(0)
0

E
(0)
1 E

(0)
2

= −1

4

εkz√
k2
z + 2

√
k2
z + 4

, (3.2.20)

where we have now reinserted the perturbative orders again. Thus, up to fourth order
in perturbation, the ground state energy is given by

E0(bx) = E(0) + b4xE
(4)
0 = E(0)

0

⎛
⎝

1 − b4x

4E
(0)
1 E

(0)
2

⎞
⎠
, (3.2.21)

which we expect to hold for small bx. If we now take a Taylor expansion of the fourth
order correction around pz = 0, we obtain

E
(4)
0 = − εkz

8
√

2
+ 3εk3

z

64
√

2
+O(k5

z). (3.2.22)

This is then also a good indication that we were justified in ignoring any even order of
kz in our numerical analysis, since all even powers are zero in this expansion. We can
also compare these coefficients to Fig 3.13, where we computed these coefficients as a
function of bx numerically for ε = 1. We would then expect that the linear and cubic
coefficients will be given, for small bx , by

a1 = 1 − b4x
8
√

2
, a3 =

3b4x
64

√
2

The result of the perturbation theory for the linear and cubic coefficients is plotted in
Fig. 3.14. From the figure it is clear that the perturbatively computed coefficients indeed
match the numerically calculated values for small bx. So the pertubative approach works
well for smaller bx, while it starts to deviate more and more for higher values, which
is as expected. While it is obvious that a perturbative approach is not valid for higher
values of bx, it is still a good check on the numerical calculation, giving confidence in the
obtained results, since it matches the analytical calculation in the perturbative regime
quite well.
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3.3 Conclusion

In this chapter we have computed the effects of the anomalous magnetic moment terms
and the separation of the Weyl cones in energy-momentum space on the Landau levels.
From the vertex correction, two anomalous magnetic moment terms were derived. The
first is an anomalous Zeeman shift, which simply shifted the two Weyl cones with respect
to each other. The second term had the effect of tilting the Weyl cones. The effect of
both these terms on the energy levels have been analytically computed. Both effects also
broke the level degeneracy that was present at tree level.

The second major part of this chapter has been calculating the effect of explicitly shifting
the Weyl cones in energy-momentum space in a chiral dependent way. From this, we
concluded that the effect on the energy levels is easily computed when the shift is in the
energy direction or in the direction along the magnetic field and does exactly what you
would expect: the states are unaltered, but the entire cone is simply shifted. However,
shifts in the direction perpendicular to the direction of the magnetic field give highly
non-trivial results. First of all, the harmonic oscillator basis, which is used to find the
Landau levels, is no longer diagonalizes Hamiltonian. Instead, the Hamiltonian has to
be diagonalized numerically and the energy states are then somewhat distorted and the
lowest level then gives a non-linear dispersion. This result has been verified through
perturbation theory for low values of this shift parameter.

With these results, we now have a framework to compute the energy spectrum in the
presence of a magnetic field, incorporating the anomalous magnetic moment terms, and
with a symmetry breaking vector in an arbitrary direction with respect to the orientation
of the magnetic field. In the next chapter we move away from the bulk problem and
attempt to find the energetic states at the interface between the Weyl semimetal and a
massive Dirac vacuum.
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Chapter 4

Surface States

As mentioned in the introduction, one of the interesting properties of Weyl semimetallic
materials, just like in topological insulators, is the existence of conducting surface states.
These states are generally topologically protected by symmetries and are localized at the
surface, with a wave function rapidly decaying away from the surface.

The aim of this chapter is to build a framework for computing these surface states and
their dispersion relation. We will start by computing the surface states in the absence
of any gauge fields in section 4.1. Next we show the effects of an electric field and the
influence of the Rashba-like term in section 4.2. After that we will compute them in the
presence of a uniform magnetic field. To finish, we compute the effects of the anomalous
magnetic moment on the surface state dispersion in section 4.3.

In this chapter we will work with h̵ = c = vF = 1 for most of the part, and switching to
dimensionless variables when concerning things that have to be computed numerically.
This choice was made for the reason that it makes it clear exactly what the structure of
the Hamiltonians is and where the dependences on different parameters come into play.
For the dimensionless variables we use the same scaling factors as before.

4.1 Zero electromagnetic field

In order to simulate the edge of a Weyl semimetal, we consider a Weyl semimetal bor-
dering a Dirac vacuum at x = 0. We solve the Dirac equation in both the Dirac vacuum
of mass m and in the massless Weyl semimetal with a TR symmetry breaking vector
b = bẑ, b > 0. We take a large mass for the Dirac part, which acts as a work function,
preventing the particles from leaving the semimetal freely. This model is similar to the
one used in Ref. [29]. A schematic illustration of this model is given in Fig. 4.1.

The Hamiltonian of the system then reads

H = γ0 [γ ⋅ (−ı∇+ θ(x)γ5b) + θ(−x)m] , (4.1.1)

where θ(x) is the Heaviside step function, equaling one if the argument is positive and
zero otherwise. Since we have translational invariance in the ŷ and ẑ direction, we can
insert a plane-wave ansatz for the wave functions in those directions, giving

Ψ(x) = eı(kyy+kzz)ψ(x), (4.1.2)

leaving us with a one-dimensional problem for ψ(x).
The Hamiltonian described above is explicitly dependent on the coordinate x now. Since
it is different in the both halves of the space, we cannot simply solve the system in one
go. Instead, we shall solve the equation in both halves of our space separately, and then
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x

z
Dirac vacuum Weyl material

Figure 4.1 – Model for the construction of surface states. For x < 0 we have a Dirac
vacuum with a large mass, acting as a work function. For x > 0 we have a Weyl
semimetal with a broken TR symmetry. The green curves denote the amplitude of the
wave function, which is localized at the surface.

demand the solutions to match at their boundary. Using our ansatz, we find that the
Hamiltonian can be further rewritten as

H = γ0 [−ıγ1∂x + γ2ky + γ3(kz + θ(x)γ5b) + θ(−x)m] , (4.1.3)

We will now solve these equations separately for the two regions in space before matching
them up and computing the allowed states.

4.1.1 Semimetal regime

In the semimetallic part of the space, our Hamiltonian reads

H = γ0 [−ıγ1∂x + γ2ky + γ3(kz + γ5b)] . (4.1.4)

To make this into a solvable system, we will use an exponential ansatz for ψ(x):

ψ(x) = eλixui, (4.1.5)

where ui is a constant, four-component vector. Using this ansatz, we see that ∂xψ(x) =
λiψ(x). Now our problem is reduced to a one-dimensional problem, which is solving the
differential equation

∂xψ(x) = Qψ(x) = λiψ(x), (4.1.6)

where

Q = −ıγ1 [γ0E − γ2ky − γ3(kz + γ5b)] , (4.1.7)

which we shall call the effective matrix. With the ansatz we make, this is simply an
eigenvalue equation given by Qui = λiui. Finding the eigenvalues of the above effective
matrix is straightforward and yields

±λ±> ≡
√
−E2 + k2

y + (kz ± b)2. (4.1.8)
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Since we are interested in those solutions that do not blow up in the bulk for x → ∞,
we discard the positive values, leaving us with −λ±. Hence, the solution for ψ(x) in this
regime is given by

ψ>(x) = A1e
−λ−xu>,1 +A3e

−λ+xu>,3, (4.1.9)

with the two vectors given by

u>,1 =

⎛
⎜⎜⎜⎜
⎝

0
0

ı(−ky+
√
k2y+(kz−b)2−E2)
E−kz+b

1

⎞
⎟⎟⎟⎟
⎠

, u>,3 =

⎛
⎜⎜⎜⎜
⎝

ı(ky−
√
k2y+(kz+1)2−E2)
E+kz+b

1
0
0

⎞
⎟⎟⎟⎟
⎠

.

4.1.2 Dirac vacuum

In the vacuum part, the Hamiltonian is given by

H = γ0 (−ıγ1∂x + γ2ky + γ3kz +m) . (4.1.10)

Solving this will proceed in a similar fashion to the semimetallic part. Setting Hψ(x) =
Eψ(x), we can again rewrite this into ∂xψ(x) = Qψ(x), where we have

Q = −ıγ1 (γ0E − γ2ky − γ3kz −m) . (4.1.11)

Again, if we now make the ansatz ψ(x) = eλixui, we are reduced to the eigenvalue
equation Qui = λiui. So we again want to find the eigenvalues and eigenvectors of Q.
This time, there are only two unique eigenvalues:

±λ< ≡ ±
√
−E2 + k2

y + k2
z +m2. (4.1.12)

We now require this solution to not blow up for x → −∞, so we discard the negative
solutions here, leaving just +λ<. The solution for ψ(x) in this part is then given by

, ψ<(x) = eλ<x (B3u<,3 +B4u<,4) , (4.1.13)

with the two vectors given by

u<,3 =
1

m

⎛
⎜⎜⎜
⎝

ı (ky +
√
−E2 +m2 + k2

y + k2
z)

E + kz
0
m

⎞
⎟⎟⎟
⎠
, u<,4 =

1

m

⎛
⎜⎜⎜
⎝

E − kz
ı (−ky +

√
−E2 +m2 + k2

y + k2
z)

m
0

⎞
⎟⎟⎟
⎠
.

4.1.3 Matching at the boundary

Now that we found the solutions for both regimes, we demand the full solution to be
continuous at the boundary x = 0, so ψ<(0) = ψ>(0). Since our wave function has four
components, this gives us four matching equations and hence allows us to find values for
four unknowns. However, we have a fifth unknown, namely the energy. So we need a
fifth equation to solve the system, which is provided by the normalization of the wave
function:

∫
∞

−∞
dxψ�(x)ψ(x) = 1. (4.1.14)
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We can succinctly write the four matching equations in matrix form:

M ⋅ (A1,A3,B3,B4)T = 0. (4.1.15)

As usual, this only has non-trivial solutions when Det(M) = 0. This is what will tell us
the allowed values for the energy, namely exactly those values that allow the determinant
of the matchings matrix to vanish. From the matching equations, we see that the matrix
we need to consider is given by

M = (u<,1,u<,3,−u>,3,−u>,4), (4.1.16)

So its columns consist of the normalized eigenvectors, with either a plus or minus sign.

Setting the determinant to zero and then solving for E is generally not doable by hand,
since it will contain both roots and higher powers in the energy. In general, its solutions
need to be determined numerically. However, analyical solutions can be found. One such
solution is E = −ky, existing for ∣kz ∣ < b. This shows us that a gapless, chiral surface state
exists, since E = +ky is not a solution. There is a way to have E = +ky be a solution,
which is done by switching the chiralities of the Weyl nodes. Doing so will reverse the
current. This effect can also be achieved by switching the WSM and Dirac vacuum.

With this dispersion relation and taking the limit m→∞, the matching matrix is given
by

M =
⎛
⎜⎜⎜
⎝

0 −ı −ı 0
0 1 0 −ı
ı 0 0 −1
1 0 −1 0

⎞
⎟⎟⎟
⎠
. (4.1.17)

Hence we find that A3 = −B3, A1 = A3 and B4 = ıA3. Defining A3 ≡ c, the normalization
constant, we then find the wave function to be

ψ>(x) = ce−(b+kz)x
⎛
⎜⎜⎜
⎝

ı
−1
0
0

⎞
⎟⎟⎟
⎠
+ ce−(b−kz)x

⎛
⎜⎜⎜
⎝

0
0
ı
1

⎞
⎟⎟⎟
⎠

and ψ<(x) = ce
√
k2z+m2x

⎛
⎜⎜⎜
⎝

ı
−1
ı
1

⎞
⎟⎟⎟
⎠
. (4.1.18)

Thus, we find that the components of the wave function indeed decay exponentially on
both sides of the boundary. This means that the state is localized at the surface, which
we shall call a surface state. We plot the form of the wave function Eq. 4.1.18 in Fig.
4.2. Due to the degeneracy of the eigenvalues, there are only two different decay rates
for the solution in the bulk, while there is only one for the vacuum.

A last remark on the above calculation is that care needs to be taken when taken the
limit m → ∞. Looking at the wave function that we obtained for the vacuum part, we
see that an infinite mass would lead to simply a zero wave function. For this reason you
should not take this limit until after the surface state is constructed, otherwise matching
will become impossible. In this case the mass is left in the wave function in order to
illustrate the decay into the vacuum, without having it be a step function.

4.2 With electric field

Now that the solution in absence of electromagnetic fields is known, we can start to
consider the influence of electromagnetic fields. The results of this section are derived
in Ref. [28], and are simply stated here to provide a comparison with its magnetic
counterpart in the next section. Note for this section that we have denoted the energy
as ω instead of E, to avoid confusion with the electric field, which is called E here.
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Figure 4.2 – Components of the wave function given in Eq. 4.1.18 as a function of position
x. Image for the values b = 2, kz = 1 and m = 19.

The electric field influences the bound states through the anomalous Rashba spin-orbit
coupling. This adds a term [Ē×(k−εb)]⋅σ to the Hamiltonian, where we define Ē = µ1E.
In terms of Dirac matrices, the Hamiltonian in real space reads

H = γ0γ ⋅ [−ı∇− γ5b + (Ē × b) − ıγ5(Ē ×∇)] . (4.2.1)

Using the same ansatz as before, in which the y and z directions are assumed to be
plane-waves, and introducing the notation k⊥ = (0, ky, kz), we can rewrite the above
Hamiltonian to read

H = −ıγ0(γ1 + γ2γ5Ēz − γ3γ5Ēy)∂x + γ0γ ⋅ [k⊥ − γ5b + (Ē × b) + γ5(Ē × k⊥)] . (4.2.2)

Now define the matrix in front of the partial derivative as Mx and call the eigenstates
of the Hamiltonian ω to avoid confusion with the electric field components. Then the
effective matrix in this case is given by

H̃ =M−1
x {ω − γ0γ ⋅ [k⊥ − γ5b + (Ē × b) + γ5(Ē × k⊥)]} , (4.2.3)

where the inverse of Mx is given by

M−1
x = ı

1 + Ē2
y + Ē2

z

γ0(γ1 + Ēzγ2γ5 + Ēyγ3γ5). (4.2.4)

The above equations are true for electric fields and TR breaking vectors in arbitrary
(spatial) directions. In order to not over-complicate the problem, we shall consider
only one direction for the electric field at a time, and assume that b = bẑ in all three
cases. When coupling the electric field to the Weyl semimetal, no explicit dependence on
position is introduced, so we can still make use of the exponential ansatz from the previous
section. So here the name of the game is again to find eigenvalues and eigenvectors of
the effective matrix. In the case of Ē = Ēẑ, we find that the effective matrix is given by

Q = 1

1 + Ē2
(σ ⋅ vz+ 0

0 σ ⋅ vz−
) ,

where vz± = (∓ıω ∓ Ē(kz ± b), ıĒω − (kz ± b), ky(1 + Ē2)).
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This matrix has the eigenvalues

±λz± = ±

√
(kz ± b)2 + k2

y(1 + Ē2) − ω2

1 + Ē2
. (4.2.5)

Using this to find the matching matrix and compute for which dispersion relation a van-

ishing determinant is supported, we find ω = −ky
√

1 + Ē2, existing when ∣kz ∣ < b. While
the dispersion relation is altered from the zero field case, we do not find a qualitative
difference. The dispersion relation is still linear in ky and in the same direction as be-
fore, so it has only been multiplied with a constant. This only implies that the surface
electrons have a higher velocity, but nothing else.

In the case of Ē = Ēŷ, we find that the effective matrix is given by

Q = 1

1 + Ē2
(σ ⋅ vy+ 0

0 σ ⋅ vy−
) ,

with vy+ = (∓Ēky ∓ ıω,−(1 + Ē2)(kz ± b), ky − ıĒω). This matrix has the eigenvalues

±λy± = ±

√
(kz ± b)2(1 + Ē2) + k2

y − ω2

1 + Ē2
. (4.2.6)

This then yields the same dispersion relation as in the case of no electric field: ω = −ky
when ∣kz ∣ < b. So this yields no difference with the zero field case at all.

Finally we can consider the case where Ē = Ēx̂, which is perpendicular to the surface.
In this case we find that the effective matrix is given by

Q = (σ ⋅ vx+ 0
0 σ ⋅ vx−

) ,

with vx+ = (∓ıω, Ēky ∓ (kz ± b), ky ± Ē(kz ± b)). It has the eigenvalues

±λx± = ±
√

(kz ± b)2(1 + Ē2) + k2
y(1 + Ē2) − ω2. (4.2.7)

Computing from this the surface state dispersion, we find a result very different from the
other two cases. We find the relation

ω = −
(1 − Ē2)bky + Ē(k2

y + k2
z − b2)√

(b + Ēky)2 + Ē2k2
z

,

which is valid only in the exterior of the two circles that are defined by

[ky −
b

Ē
]
2

+ [kz ±
b

2
(1 + 1

Ē2
)]

2

= b
2

4
[1 + 1

Ē2
]
2

.

Now this result is very different from the previously considered cases. We see that the
dispersion relation now also depends on kz, and is no longer linear in nature. We conclude
that an electric field perpendicular to the interface does yield very different behaviour
from the zero field case.

With these results, the effect of the electric field on the surface states including a vertex
correction have been computed. These results show us that surface states remain under
influence of electric fields. Moreover, we see that the Rashba term of the anomalous
magnetic moment can influence the dispersion relation and the region in which the sur-
face states exist. For this reason, we are interested to see if the other two terms of the
anomalous magnetic moment, the Zeeman and tilt terms, can also influence this dis-
persion relation. To investigate this, we first need to compute the surface states in the
presence of magnetic fields in absence of interactions.
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4.3 With magnetic field

In the presence of a magnetic field, we have to again use minimal substitution in the
form −ı∇ → −ı∇ + eA. We will consider a magnetic field in the ẑ direction, as before.
Because we now have a boundary at x = 0, we slightly change our gauge as used before
from A = B(−y,0,0) to A = B(0, x,0) in order to preserve translational invariance along
the ŷ direction, ensuring that ky remains a good quantum number.

Before we do any calculations, we can argue what the effects on the surface states are.
Specifically in this gauge, we see that it adds a term proportional to eBx to the Hamilto-
nian. At the boundary, which is x = 0, we note that this does not give any contribution.
Therefore, when confined to the interface, there is no change in the Hamiltonian. Hence
we expect that in the absence of interaction effects, a magnetic field parallel to the
boundary will have no effect. However, keeping in mind that we also will compute the
anomalous magnetic moment, it is still very much possible that these correction terms
will in fact alter these states.

Another way to argue that this magnetic field should not change the dispersion is to
consider how magnetic fields act on charged particles. As we know, they will tend to
form closed orbits, the cyclotron orbits. Near the surface, the particles will not be
able to make full orbits due to the surface obstructing their path, forcing them along
the boundary. This is also known as skipping orbits or extended states. The direction
they are forced in is exactly already the direction of the dispersion relation in the zero
field case. So based on this physical argument we again expect to see no change in the
dispersion due to this field.

Due to the Hamiltonian now explicitly depending on position, the exponential ansatz that
we used previously to find surface states is no longer useful. So we need to look for a new
method to solve this problem. The full solution to the Dirac equation with a magnetic
field is provided in Appendix A. As can be read there, the analytical solution only
provides us with the classically allowed harmonic oscillator states. In order to find the
exponentially decaying states, we need to look at the classically forbidden regime. This is
found making use of a WKB approximation, which constitutes a power series expansion
in gradients. We terminate this power series after first order. The full derivation and
computation of these WKB states can be found in Appendix A.2. Its results will simply
be used here.

Looking at the found results, we see that at x = 0, the computed wave functions are
actually exactly the same as in the case without magnetic fields. This automatically
means that we obtain the same matchings matrix as before and hence the same surface
state dispersion relation. This is what we already argued above. So we find a chiral,
gapless surface mode, given by E = −ky. So no change in the dispersion is found for a
magnetic field parallel to the boundary, a conclusion that is also supported in Ref. [30].

We can construct the wave function for these bound states. Because the matching matrix
and dispersions are the same as in the case without a field, we find that the matching
matrix with the disperion relation inserted is the same as in Eq. 4.1.17, and hence the
same relations hold.

So we find the wave function in both halves of the plane to be

ψ>(x) =c

¿
ÁÁÀ λ>−,0

λ>−(x)

¿
ÁÁÀα(x) + λ>−(x)

ky + λ>−,0

⎛
⎜⎜⎜⎜
⎝

0
0

−ıα(x)−λ
>
−(x)

E−kz+b
1

⎞
⎟⎟⎟⎟
⎠

e∫
x
0 dyλ>−(y)

+ c

¿
ÁÁÀ λ>+,0

λ>+(x)

¿
ÁÁÀα(x) + λ>+(x)

ky + λ>+,0

⎛
⎜⎜⎜⎜
⎝

ı
α(x)−λ>+(x)
E+kz+b

1
0
0

⎞
⎟⎟⎟⎟
⎠

e∫
x
0 dyλ>+(y),

and
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Figure 4.3 – Components of the wave function as a function of position. Image for the
values b = 2, kz = 1, B = 1 and m = 19.

ψ<(x) = c
⎛
⎜⎜⎜
⎝

ı
ı
1
1

⎞
⎟⎟⎟
⎠
e− ∫

x
0 dyλ<(y),

where we defined α(x) ≡ ky + eBx, λ>±(x) =
√
−k2

y + α(x)2 + (kz ± b)2,

λ<(x) =
√
−k2

y + k2
z + α(x)2 +m2, λ>±,0 ≡ lim

B→0
λ>± and c is just an overall constant of nor-

malization.

We see that even though the surface state dispersion relation is the same as we found
without magnetic fields, the found states are not exactly the same. Beside the exponent,
the vectors themself now also depend on position. The exponents with which the modes
decay is different and dependent on the magnetic field, so the same goes for the overall
normalization. In particular, we find for the WSM part that all four components of the
wave function decay differently, as opposed to having two pairs with the same decay as
in the previous case. This is plotted in Fig. 4.3.

4.3.1 Interaction effects

In the part above we have concluded that a magnetic field parallel to the boundary does
not influence the surface state at the tree level, which is given by the Hamiltonian

H0 = γ0 [−ıγ1∂x + γ2(ky + eBx) + γ3(kz − γ5b)] (4.3.1)

in the Weyl semimetal. Now we once again turn to a correction, which is given by the
anomalous magnetic moment. To take into account this effect, we add the following term
to the Hamiltonian:

H1 = −γ5 [γ0γ3µ2 + µ1(kz + γ5b)]B, (4.3.2)

which takes into account both the separation of the Weyl nodes in momentum space and
the interaction terms with the magnetic field. We assume here that both the magnetic
field and the separation of the nodes is in the z-direction. In matrix form, this interaction
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Hamiltonian is given by

H1 = ((µ2σz − µ1kz)B 0
0 (µ2σz + µ1kz)B

) . (4.3.3)

Zeeman term

The easier of the two terms to compute is the µ2 term, which is the Zeeman term. To
incorporate this effect, we add the term

H1 = −γ5γ0γ3µ2B (4.3.4)

to the Hamiltonian.

Inserting this term, we find that the new effective matrix Q(x) is given by

Q(x) = −ıγ1 {γ0E − γ2[ky + eBx] − γ3[kz − γ5(b + µ2B)]} (4.3.5)

So this term simply shifts our separation of the Weyl nodes by b → b + µ2B. Note that
this is of course due to our choice of the separation vector, which is in the same direction
of the magnetic field. If the two were not parallel, the effect would be very different. Now
this is a very simple substitution to make into the previous results for the surface states.
Going through the computations again we quickly find that the surface state dispersion
is still given by E = −ky, but now with a Fermi arc modified by the magnetic field as
∣kz ∣ < b + µ2B, as was to be expected.

Tilt term

The µ1 term, which we showed to be a tilt term in Fig. 3.4, is a lot less trivial to compute.
In this case the term

H1 = −γ5µ1(kz − γ5b)B (4.3.6)

has to be added to the Hamiltonian. Computing from this the effective matrix, we find
that it reads

Q(x) = −ıγ1 {γ0 [E + γ5µ1(kz − γ5b)B] − γ2[ky + eBx] − γ3[kz − γ5b]} . (4.3.7)

It is clear from this equation that the tilt term does not provide a simple shift in one of
the variables. This is mainly due to its chiral nature, since it affects the two Weyl cones
differently, as opposed to the Zeeman term, which affects them equally. Going through
the same calculations as before, we find in this case a novel dispersion relation, which is
given by

E = µ1Bb [1 − (kz
b
)

2

] − ky

¿
ÁÁÀ1 − (µ1B)2 (kz

b
)

2

. (4.3.8)

In the case where we set µ1 = 0, or equivalently, set B = 0, the regular E = −ky dispersion
relation is again recovered. In dimensionless units, the dispersion relation reads

Ē = B̄(1 − k̄2
z) − k̄y

√
1 − B̄2k̄2

z , (4.3.9)

where we have defined the dimensionless variables to be

Ē ≡ E

h̵vF b
, B̄ ≡ µ1B

h̵vF
and k̄y,z ≡

ky,z

b
.
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Figure 4.4 – Shaded in blue is the region in which we numerically determined that the
dispersion relation Eq. 4.3.9 holds for B̄ = 0.4. The green lines indicate the boundaries
for B = 0.

Unlike in the previous cases, it is not so clear in which region the dispersion relation is
valid, and hence in which region surface states are supported. The region in which it is
valid for B̄ = 0.4 is given in Fig. 4.4. Plotted here is the region in which the determinant
of the matching matrix vanishes, after substitution of the found dispersion relation, which
is done numerically. Note that the ”tips” should end exactly in a point at k̄y = 0, but do
not due to numerical rounding errors.

Additionally, we see that the velocity is also no longer linear and constant throughout
the dispersion region. We can compute the (dimensionless) velocity profile to be

v = ∇kE(k) =
⎛
⎝

0,−
√

1 − B̄2k̄2
z ,−2B̄k̄z +

B̄2k̄z k̄y√
1 − B̄2k̄2

z

⎞
⎠
. (4.3.10)

So the velocity is parallel to the surface, as is to be expected, but now does actually
depend on k̄z and k̄y. A plot of the direction of the flow overlayed on the dispersion
region is given in Fig. 4.5. As can be seen, the flow eventually converges to the k̄y axis
from all sides.

We can investigate the determinant of the matchings matrix in order to attempt to
discern what the boundaries of this region are analytically. Doing so will reveal that the
term that has to vanish is given by

0 =(1 − B̄2
)(1 − k̄2z) + 2(1 − B̄)Ē + Ē2

− (k̄y −
√

k̄2y + (1 − B̄2
)(1 − k̄z)2 + 2B̄(1 − k̄z)Ē − Ē2

)

(k̄y −
√

k̄2y + (1 − B̄2
)(1 + k̄z)2 + 2B̄(1 + k̄z)Ē − Ē2

) ,

where Ē is the dispersion relation as in Eq. 4.3.9.

Looking at the full equation, it appears impossible to derive from this the boundaries of
the region for the dispersion relation. However, they may be obtained by investigating
the square roots that appear in the equation, and checking when the term underneath
the root changes sign. So we look for the solutions of

k̄2
y + (1 − B̄2)(1 ± k̄z)2 + 2B̄(1 ± k̄z)Ē − Ē2 = 0. (4.3.11)

From this, we find that the region is bounded by two hyperbolic curves that are defined
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Figure 4.5 – Plot of the velocity field, which is indicated by the arrows, given in Eq.
4.3.10, overlayed on the region in which we numerically determined that the dispersion
relation Eq. 4.3.9 is a solution, which is shaded in blue.

by

k̄y =
k̄z ± 1

B̄k̄z

√
1 − B̄2k̄2

z . (4.3.12)

In Fig. 4.6 we have plotted these found expression for the boundaries on top of the region
for which we numerically determined the dispersion relation to be a solution. We see
that this indeed exactly gives the boundaries of the region. However, we see that the
region does not exactly end in the point like the boundaries that were derived, which we
attribute to numerical rounding errors.

The exact expression for the wave function can be obtained by substituting the found
dispersion relation into the states computed through the WKB method, but are generally
so complicated and extensive that it is not enlightening to show here.

Combined effect

Now that we have computed the effect of the individual terms on the dispersion relation,
we can consider the effect of both combined. In this case we add the full one-loop
correction term, given by

H1 = −γ5 [γ0γ3µ2 + µ1(kz + γ5b)]B,

to the Hamiltonian. With this, the effective matrix is then given by

Q(x) = −ıγ1 {γ0 [E + γ5µ1(kz − γ5b)B] − γ2[ky + eBx] − γ3[kz − γ5(b + µ2B)]} .

Once again we can apply the same methods as used above to compute the surface state
dispersion. In this instance it is given by

E = µ1Bb(1 − k2
z

b(b + µ2B)
) − ky

¿
ÁÁÀ1 − (µ1B)2 ( kz

b + µ2B
)

2

. (4.3.13)

This can again be cast into a dimensionless form. Introducing the ratio r̄ ≡ µ2/µ1b, the
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Figure 4.6 – Shaded in blue is the region in which we numerically determined that the
dispersion relation Eq. 4.3.9 holds for B̄ = 0.4. The red curves denote the analytically
found expressions for the boundaries given in Eq. 4.3.12. The green lines indicate the
boundaries for B = 0.

dispersion relation can be written as

Ē = B̄ (1 − k̄2
z

1 + r̄B̄
) − k̄y

¿
ÁÁÀ1 − B̄2

k̄2
z

(1 + r̄B̄)2
. (4.3.14)

Curiously the dispersion relation now does depend on the Zeeman parameter µ2, while it
did not when we investigated that term alone. However, any term with µ2 is multiplied
with µ1, so with µ1 = 0, we indeed see that the dispersion does not depend on µ2, even
when considering µ2 ≠ 0. The flow field in this case is almost the same as with the
previous case, but with some additional scaling factors.

Again we can check the limiting cases: taking µ2 = 0, which is equivalent to setting r̄ = 0,
we recover the dispersion as in Eq. 4.3.9. Setting µ1 = 0 gives the correct result Ē = −k̄y
for both the Zeeman and zero field cases.

The region in which it is valid for B̄ = 0.4 and r̄ = 1 is shown in Fig. 4.7. It is very
similar to the case for only µ1 ≠ 0, except slightly broadened in the k̄z direction. So it is
indeed a combination of the two, as the µ2 ≠ 0 case also caused a broadening of the band.
Again the boundaries of the dispersion region can be found by looking at the square root
terms in the determinant of the matching matrix, and are found to be given by the two
hyperbolas defined by:

k̄y =
k̄z ± (1 + r̄B̄)

B̄k̄z

√
(1 + r̄B̄)2 − B̄2k̄2

z . (4.3.15)

As with the previous case, the tips of the zone should end exactly at k̄y = 0, but do not
in the figure because of numerical rounding. Setting µ2 = 0, or equivalently r̄ = 0, will
give us the boundaries we found earlier for just µ1 ≠ 0.

Finally we can investigate the B → 0 limit. If these formulas are to be correct, then they
should allow us to recover the zero field boundaries through this limit. Taking this limit,
we see that the limit diverges everywhere, except at two special values for k̄z, namely
k̄z = ±1, at which point the limit simply goes to k̄z = ±1, which are exactly the boundaries
for the zero-field case.
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Figure 4.7 – The region in which we numerically found that the dispersion relation Eq.
4.3.14 with both µ1 ≠ 0 and µ2 ≠ 0 holds for B̄ = 0.4 and r̄ = 1 is shaded in blue. The
green lines indicate the boundaries in the absence of a magnetic field. The red curves
denote the analytical expressions for the boundaries, given in Eq. 4.3.15.

Effect Dispersion relations Boundaries

B=0 E = −ky kz = ±b

B=Bẑ E = −ky kz = ±b

µ2 ≠ 0 E = −ky kz = ±(b + µ2B)

µ1 ≠ 0 Ē = B̄ (1 − k̄2
z) − k̄y

√
1 − B̄2k̄2

z k̄y = k̄z±1
B̄k̄z

√
1 − B̄2k̄2

z

µ1 ≠ 0 and µ2 ≠ 0 Ē = B̄ (1 − k̄2z
1+r̄B̄ ) − k̄y

√
1 − B̄2k̄2z

(1+r̄B̄)2 k̄y = k̄z±(1+r̄B̄)
B̄k̄z

√
(1 + r̄B̄)2 − B̄2k̄2

z

Table 4.1 – Summary of the obtained results on the surface state dispersion relations and
the regions in which they are a solution.

Finally, a summary of the found results for the surface state dispersion relations and the
regions in which they are valid is given in Table 4.1.

4.4 Conclusion

In this chapter we have computed the effect of electromagnetic fields and the anomalous
magnetic moment on the conducting surface states on the interface between a Weyl
semimetal and a massive Dirac vacuum. We started by computing the surface state
dispersion in the absence of any gauge fields, in order to establish a general procedure
for computing these states, and to be able to compare the result with the states in
the presence of these fields. After that we show the result of an electric field and its
corresponding term in a vertex correction, which is a Rashba-like term, on the energy
states.

Next we used the WKB approximation in order to find the surface states in the presence
of a magnetic field with a direction parallel to the interface. We have shown that at
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tree level, the magnetic field does not influence the surface state dispersion. This was
expected based on the gauge coupling vanishing at the surface and a physical argument.
After that we show that the anomalous magnetic moment terms actually do influence
the dispersion relation as long as the tilt parameter µ1 is non-zero, which is a novel
result, and change the direction of flow as well as the region in which the dispersion
relation holds. We show that instead of two straight lines, the region is now bound by
two hyperbolas, which reduce to the two straight lines in the zero field limit.
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Chapter 5

Conclusion & Outlook

In this chapter we summarize the results and conclusions that were obtained during this
thesis. Afterwards we look ahead to what unanswered questions remain and could be
interesting for further research.

5.1 Results

In this thesis we have investigated the effects of magnetic fields on the energy states of
a Weyl semimetal, both in the bulk and on the interface with a Dirac vacuum. Starting
from the known effects of a magnetic field on the energy levels in bulk, giving us the
Landau levels, we have added more terms to the Hamiltonian. The first extra terms under
consideration were those corresponding to the anomalous magnetic moment, consisting of
two terms. The first term is proportional to σ ⋅B, which gives us an anomalous Zeeman
shift. This effect shifted the two Weyl cones in momentum space, breaking the spin
degeneracy that is present in the normal Landau levels. The second term is proportional
to k ⋅B, which tilts the Weyl cones, also breaking the degeneracy. Both effects could be
incorporated analytically into the expression for the energy levels.

The next effect under consideration is the explicit shifting of the Weyl cones in momentum
space, away from each other, which is necessary to form a stable Weyl semimetal, rather
than a Dirac semimetal. We have shown that shifting the cones in either energy space
or along the direction of the magnetic field yields analytically computable energy states.
In contrast, shifting the cones perpendicular to the direction of the magnetic field gives
non-trivial results, such as a non-linear dispersion relation for the lowest Landau level
and a topological phase transition. These energy states need to be computed numerically,
due to Fock space no longer being a suitable basis for these states. Perturbation theory
is then used to compute the lowest Landau level for small shift parameters, which shows
excellent agreement with the numerical results.

After the bulk problem, the effect on surface states was considered. For this we looked
at a Weyl semimetal bordering a massive Dirac vacuum, and a magnetic field parallel
to this interface. The mass was taken sufficiently large as to act as a work function
to prevent the fermions from leaving the Weyl semimetal easily. To find surface states
we solve the Dirac equation in both half-planes separately and demand continuity of
the solutions at the boundary. To solve this problem in the presence of magnetic field,
the WKB approximation for matrix Hamiltonians is used. This method of computing
is developed in the appendix and gives us a tool to calculate the wave functions of the
bound states for a general matrix Hamiltonian and allows for the addition of more terms
in the Hamiltonian, which could be useful for future work. From this we conclude that
a magnetic field along the boundary does not influence the surface state dispersion, as
expected.

We then added the anomalous magnetic moment terms like before and asked the same
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question again. Here we found that the anomalous Zeeman term on its own does not
influence the dispersion relation, but does broaden the region in which it is a solution.
The tilt term does influence the dispersion relation, and significantly alters the region in
which the solution is valid. The region changes from being bound by two straight lines
to being confined to the interior of two hyperbolic curves. Combining the two effects, we
find that the Zeeman shift then also contributes to the dispersion relation, but only in
combination with the tilt term. The region here is then similar to the one found in the
case of just the tilt, but broadened, as in the case with just Zeeman. Taking the zero
field limit on the found hyperbolic curves again reduces them to the straight lines like
before.

5.2 Outlook

As with any research project, unanswered questions still remain at the end of this thesis.
The bulk problem is now reasonably well understood, but there are still some aspects
of the bound surface states that we wanted to investigate. We have only looked at a
magnetic field parallel to the boundary, but having it perpendicular to the boundary
instead would be the logical next step. Physical intuition tells us that in this case, even
without interaction effects, the magnetic field would change the surface state dispersion
relation: in the same vein as our argument against having a parallel field not alter it,
the cyclotron orbits due to this field would now be exactly in the surface plane. Hence,
we expect it to affect the dispersion this way. However, computations in this case will
yield another difficulty: where we only had to break one translational invariance in the
case of a magnetic field along the boundary, we will need to break a second one if we put
it perpendicular to the surface. In this case, the method we developed for the surface
states will need to be improved further, but could lead to some very interesting results.
The theory on which my method is based is valid for general matrix Hamiltonians. Thus,
we expect that it should be possible to derive from that a method that allows for the
breaking of multiple translational invariances.
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Appendix A

Dirac equation with magnetic
field

In this appendix we shall explicitly show how to construct solutions for the Dirac equation
in the presence of a magnetic field. It will consist of two parts. In the first part we shall
construct the regular solutions, which are again the Landau solutions as seen before.
The second part will concern itself with the classically forbidden regime, the tunneling
solutions, which are found using the WKB approximation, as these solutions cannot be
found through analytical solutions of the Dirac equation.

A.1 Landau levels

The Dirac Hamiltonian, minimally coupled to a magnetic field reads

H = γ0 [γ ⋅ (−ı∇+ eA) +m] = (−σ ⋅ (−ı∇+ eA) m
m σ ⋅ (−ı∇+ eA)) . (A.1.1)

We take our choice of gauge to be A = B(0, x,0), such that translational invariance in the
ŷ direction is conserved and the magnetic field is uniform in the ẑ direction. Due to the
structure, we look for solutions of the form Ψ = (ψ,φ)T , leaving us with two equations:

−σ ⋅ (−ı∇+ eA)ψ +mφ = Eψ
mψ +σ ⋅ (−ı∇+ eA)φ = Eφ

Solving for φ using the first equation yields mφ = [E + σ ⋅ (−ı∇ + eA)]ψ. Inserting this
into the second equation and mulitplying both sides by the mass, we obtain

[σ ⋅ (−ı∇+ eA)]2ψ = [E2 −m2]ψ. (A.1.2)

Next we expand the square of the operator, keeping in mind that Pauli matrices do not
commute.

[σ ⋅ (−ı∇+ eA)]2 = (−ıσ ⋅ ∇ + eBxσy)2

= −∇2 + (eBx)2 − ıσ ⋅ ∇(eBxσy) − ıeBxσy(σ ⋅ ∇)
= −∇2 + (eBx)2 − ıeBxσx ⋅ σy − ıeBx{σ ⋅ ∇, σy}
= −∇2 + (eBx)2 + eBσz − 2eBxı∂y.
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So we find that the equation above is given by

[−∇2 + (eBx)2 + eBσz − 2eBxı∂y −E2 +m2]ψ = 0. (A.1.3)

Since translational invariance is only broken in the x̂ direction we can make a planewave
ansatz in the other two directions, and write the spinor as ψ = f(x)eı(kyy+kzz), with
f(x) a two-component spinor. Inserting this ansatz then reduces the above equation to
a one-dimensional equation for x:

[∂2
x − (ky + eBx)2 + (E2 − eBσz −m2 − k2

z)]f(x) = 0. (A.1.4)

Since this is a matrix equation, we expect to find a two dimensional eigenspace. Without
loss of generality, we take the basis of this space to be eigenstates of the σz operator:

f+(x) = F+(x)(
1
0
) , f−(x) = F−(x)(

0
1
) . (A.1.5)

In this way we find that σzfs(x) = sfs(x), with s = ±1. Using this, the solutions are
given by the two (scalar) functions that satisfy the equations

[∂2
x − (ky + eBx)2 + (E2 − eBs −m2 − k2

z)]Fs(x) = 0. (A.1.6)

We can reduce these equations to a known one by introducing κ =
√
eB (x + ky/eB) and

writing the equations as

(∂2
κ − κ2 + αs)Fs(κ) = 0, (A.1.7)

where αs = (E2 − eBs −m2 − k2
z)/eB.

This equation is a special case of the Hermite equation, which is also found in the har-
monic oscillator. It has solutions exactly when αs = 2n+1, with n a non-negative integer,
and its solutions are given by the Hermite functions. The solutions, after normalization
are then given by

Fs(κ) = (
√
eB

n!2n
√
π
) e−κ

2/2Hn(κ) ≡ Gn(κ). (A.1.8)

Since we require that αs = 2n + 1, we find that the eigenvalues are given by

E2 =m2 + k2
z + eBs + eB(2n + 1) =m2 + k2

z + 2eB (n + 1 + s
2

) ≡m2 + k2
z + 2eBl, (A.1.9)

where l is again the Landau index, which we require to also be a non-negative integer.
Hence, we find that there are not just two solutions, but infinitely many, labelled by the
Landau index l. This should not come as a surprise to anyone familiar with the harmonic
oscillator. We conclude that the eigenstates are given by

f
(l)
+ (κ) = (Gl−1(κ)

0
) , f

(l)
− (κ) = ( 0

Gl(κ)
) . (A.1.10)

From here we also see that the lowest Landau level is non-degenerate, since we must set
G−1(κ) = 0 to make sure that l ≥ 0. So again we find that the lowest level is chiral, or
spin-polarized, because only the s = −1 state is an eigenstate of this level.

Now that we have found one half of the solution to the Dirac equation, we can apply the
relation mφ = [E +σ ⋅ (−ı∇+ eA)]ψ to construct the full solutions. To this end, we shall
use El to denote the positive root of E2 =m2 + k2

z + 2eBl.
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We will also need a recursion relation for the Hermite functions, which is given by

∂xGn(x) = xGn(x) −
√

2(n + 1)Gn+1(x).

We start with computing σ ⋅ (−ı∇+ eA)ψ for the s = 1 state:

σ ⋅ (−ı∇+ eA)ψ(l)
+ (κ) = ( −ı∂z −ı∂x − ∂y − ıeBx

−ı∂x + ∂y + ıeBx ı∂z
)(Gl−1(κ)

0
) eı(kyy+kzz)

= ( kz −ı(∂x + ky + eBx)
−ı(∂x − ky − eBx) −kz

)(Gl−1(κ)
0

) eı(kyy+kzz)

= ( kzGl−1(κ)
−ı(∂x − ky − eBx)Gl−1(κ)

) eı(kyy+kzz)

Now we apply the recursion relation given above. First note that ∂x−ky−eBx =
√
eB(∂κ−

κ). From this follows that

√
eB(∂κ − κ)Gl−1(κ) = (κ − κ)Gl−1(κ) −

√
2eBlGl(κ) = −

√
2eBlGl(κ).

So we find that

σ ⋅ (−ı∇+ eA)ψ(l)
+ (κ) = ( kzGl−1(κ)

ı
√

2eBlGl(κ)
) eı(kyy+kzz).

The s = −1 state can be computed in a similar way:

σ ⋅ (−ı∇+ eA)ψ(l)
− (κ) = (−ı

√
2eBlGl−1(κ)
−kzGl(κ)

) eı(kyy+kzz).

Having obtained these results, we can now write down the full solutions to the Dirac
equation:

Ψ
(l)
+ =

⎛
⎜⎜⎜
⎝

Gl−1(κ)
0

1
m
(El + kz)Gl−1(κ)
ı
m

√
2eBlGl(κ)

⎞
⎟⎟⎟
⎠
eı(kyy+kzz), Ψ

(l)
− =

⎛
⎜⎜⎜
⎝

0
Gl(κ)

− ı
m

√
2eBlGl−1(κ)

1
m
(El − kz)Gl(κ)

⎞
⎟⎟⎟
⎠
eı(kyy+kzz).

(A.1.11)

These are the solutions to the positive energy states. However, we know that the negative
states also exist. Those states are simply found by flipping the sign on El:

Φ
(l)
+ =

⎛
⎜⎜⎜
⎝

Gl−1(κ)
0

1
m
(kz −El)Gl−1(κ)
ı
m

√
2eBlGl(κ)

⎞
⎟⎟⎟
⎠
eı(kyy+kzz), Φ

(l)
− =

⎛
⎜⎜⎜
⎝

0
Gl(κ)

− ı
m

√
2eBlGl−1(κ)

−1
m

(El + kz)Gl(κ)

⎞
⎟⎟⎟
⎠
eı(kyy+kzz).

(A.1.12)

A.2 WKB states

The Landau solution to the Dirac equation allows us to find exact solutions to the
equation. However, it only gives us the classically allowed harmonic oscillator states. We
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are also interested in the classically forbidden states, the tunneling states, which give
us exponentially decaying states. These are the states of interest when considering edge
modes.

Solutions in this regime cannot be found analytically, instead we apply the WKB approx-
imation, named after Wentzel, Kramers and Brillouin, who all developed this method
independently in 1926 [31, 32, 33]. This approximation is used to solve differential equa-
tions with spatially varying coefficienst, and where the highest order derivative is multi-
plied by a small number, denoted by ε. In quantum mechanics, h̵ generaly plays the role
of this parameter ε.

A.2.1 Scalar WKB

The approximation proposes the ansatz ψ(x)∝ e
1
h̵ ∑

∞
n=0 h̵

nfn(x), with usually only the first
couple orders taken into account. We can now apply this method to the Dirac equation,
specifically, the form we found from which we derived the Hermite equation:

[∂2
x − (ky + eBx)2 + (E2 − eBs −m2 − k2

z)]Fs(x) = 0.

If we now take care of the units and re-insert the factors of h̵, we can write this equation
as

h̵2∂2
xFs(x) = Q(x)Fs(x), (A.2.1)

where we define Q(x) ≡ −E2 + (py + eBx)2 + eBs +m2 + p2
z. This is exactly of the form

we need for the WKB expansion. For this we shall consider the first two terms of the
expansion and use the ansatz Fs(x) = e

1
h̵ f(x)+g(x):

∂2
xFs(x) = ∂2

xe
1
h̵ f(x)+g(x)

= ∂x {[
1

h̵
f ′(x) + g′(x)] e

1
h̵ f(x)+g(x)}

= { 1

h̵2
[f ′(x)]2 + 1

h̵
[f ′′(x) + 2f ′(x)g′(x)] + g′′(x) + [g′(x)]2} e

1
h̵ f(x)+g(x).

Ignoring h̵2 and higher terms, we find the equation

[f ′(x)]2 + h̵[f ′′(x) + 2f ′(x)g′(x)] = Q(x). (A.2.2)

Comparing orders of h̵, we find that the zeroeth order is given by

[f ′(x)]2 = Q(x). (A.2.3)

This can be easily solved by taking the square root and integrating out the derivative to
obtain

f(x) = ±∫
x

x0

√
Q(y)dy. (A.2.4)

Now that we have solved the leading order term, we can use that to solve the next order
in h̵. This equation reads

f ′′(x) + 2f ′(x)g′(x) = 0.

Rewriting this for the unknown function, we obtain
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g′(x) = −1

2

f ′′(x)
f ′(x)

.

Using that f ′(x) = ±
√
Q(x) and f ′′(x) = ±Q′(x)/2

√
Q(x), we find that

g′(x) = −1

4

Q′(x)
Q(x)

= −1

4
∂x log[Q(x)].

Integrating this equation then gives us the solution, which is given by

g(x) = −1

4
log [Q(x)] + a, (A.2.5)

where a is a constant of integration, which we will absorb into the normalization constant.
Inserting the found functions into the ansatz, we find that the approximate solution to
the equation for the first two orders are given by

Fs(x) = a1Q
−1/4(x)e

1
h̵ ∫

x
x0
dy

√
Q(y) + a2Q

−1/4(x)e−
1
h̵ ∫

x
x0
dy

√
Q(y)

. (A.2.6)

Since we require the solutions to not blow up on each side of the boundary, one of the
two exponentials will be set to zero through their constants. Since we will be interested
in a boundary at x = 0, it is an obvious choice to pick x0 = 0. Note that in order for this
to be exponentially decaying states, we require that Q(x) ≥ 0, otherwise it becomes an
oscillating state.

A.2.2 Matrix WKB

The above is valid in the case of a scalar equation. In the case of a matrix Hamiltonian,
the method becomes a bit more complicated. The method used in this section is derived
from the more general method used in Ref. [34]. In this case a slightly different ansatz
is employed:

ψ(x) = v(x)e
1
h̵ f(x). (A.2.7)

Instead of the second exponent being a scalar function, we make it a matrix function,
which we then merge with a constant vector to form a vector function. We rewrite the
Dirac equation to read h̵∂xψ(x) = Q(x)ψ(x), with Q(x) a matrix. Applying the ansatz
above, we find

h̵∂xψ(x) = h̵∂x [v(x)e
1
h̵ f(x)] = h̵v′(x)e

1
h̵ f(x) + v(x)f ′(x)e

1
h̵ f(x),

with a prime denoting a derivative with respect to x. Multiplying both sides of the
equation with e−

1
h̵ f(x), we find

h̵v′(x) + v(x)f ′(x) = Q(x)v(x).

Since v and f are still unknown, we need to apply some tricks. The first being the
spectral decomposition of Q(x), by setting Q(x) = R(x)QD(x)R−1(x), with QD(x)
being the diagonalized version of the matrix Q(x), with its eigenvalues on the diagonal,
and R(x) being the matrix with the eigenvectors of Q(x) as its columns. Next we define
another vector L(x), by the relation v(x) = R(x)L(x). Using this, we can rewrite the
righthand side of the equation as

Q(x)v(x) = R(x)QD(x)R−1(x)R(x)L(x) = R(x)QD(x)L(x).
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The lefthand side becomes

R(x)L(x)f ′(x)+h̵∂x [R(x)L(x)] f(x) = R(x)L(x)f ′(x)+h̵ [R′(x)L(x) +R(x)L′(x)] f(x).

If we now then equate the two sides and multiply from the left by R−1(x), we arrive at

QD(x)L(x) = L(x)f ′(x) + h̵ [R−1(x)R′(x)L(x) +L′(x)] f(x).

Regrouping this in terms of h̵, we find

[QD(x) − f ′(x)]L(x) − h̵ [R−1(x)R′(x)L(x) +L′(x)] f(x) = 0. (A.2.8)

So now in zeroeth order of h̵, we find the equation

[QD(x) − f ′(x)]L(x) = 0, (A.2.9)

which we know only has non-trivial solutions in the case that Det[QD(x) − f ′(x)] = 0,
meaning f ′(x) has to be equal to one of the eigenvalues of Q(x).
One order higher we find that the equation that has to be satisfied is given by

R−1(x)R′(x)L(x) +L′(x) = 0,

which then implies the following differential equation:

L′(x) = −R−1(x)R′(x)L(x). (A.2.10)

In the next sections we shall compute the solutions for the Dirac vacuum and and the
WSM parts.

A.2.3 Dirac Vacuum

For the Dirac vacuum, the matrix Q(x) is given by

Q(x) = −ıγ1 [γ0E − γ2(py + eBx) − γ3kz −m] . (A.2.11)

In order to have non-trivial solutions to the zeroeth order equation, we demand Det(QD(x)−
f ′(x)) = 0. From this we conclude that f ′(x) has to be equal to one of the eigenvalues of

the the matrix Q(x), which are given by ±λ(x) = ±
√
−E2 +m2 + (py + eBx)2 + p2

z, with
both signs being doubly degenerate.

From this we conclude that

f(x) = ±∫
x

0
dy

√
−E2 +m2 + (py + eBy)2 + p2

z, (A.2.12)

the same as in the scalar case. Furthermore, we find from this equation that for f ′(x) =
+λ, which is the case that we are interested in, L1 = L2 = 0 in order to satisfy the relation.

Now the next order is a little bit more involved. Because we are interested in the
evanescent solution, away from the classical turning points, we are going to assume
that f(x) ≠ 0. Defining α(x) ≡ py + eBx, we find that the matrix multiplying the vector
is given by

R−1(x)R′(x) = eB

2λ2(x)

⎛
⎜⎜⎜
⎝

[α(x) − λ(x)] 0 −[α(x) + λ(x)] 0
0 [α(x) + λ(x)] 0 −[α(x) − λ(x)]

−[α(x) − λ(x)] 0 [α(x) + λ(x)] 0
0 −[α(x) + λ(x)] 0 [α(x) − λ(x)]

⎞
⎟⎟⎟
⎠
.
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This immediately implies that L′1(x) = −L′3(x) and L′2(x) = −L′4(x). So the set of four
differential equations are given by

L′1(x) =
eB

2λ2(x)
{[λ(x) − α(x)]L1(x) + [λ(x) + α(x)]L3(x)} ,

L′2(x) =
eB

2λ2(x)
{−[λ(x) + α(x)]L2(x) + [−λ(x) + α(x)]L4(x)} ,

L′3(x) = −
eB

2λ2(x)
{[λ(x) − α(x)]L1(x) + [λ(x) + α(x)]L3(x)} ,

L′4(x) = −
eB

2λ2(x)
{−[λ(x) + α(x)]L2(x) + [−λ(x) + α(x)]L4(x)} .

It is at this point that we have seemingly reached a contradiction. Due to the earlier
derived condition that L1 = L2 = 0 and the coupling between the derivatives of L1&L2

and L3&L4 it can be easily shown that it only has trivial solutions, which are useless.
The solution to this problem lies in the degeneracy of the subspaces. We consider one
degenerate subspace for +λ, containing the coefficients L3 and L4, while the coefficients
L1 and L2 are outside of this space. It turns out that the coefficients outside of the
considered space are of order h̵, while those inside are of order 1, so the equations above
are deceiving, due to this difference in order.

To correct orders, we find that the equations are given by

L′1(x) = 0,

L′2(x) = 0,

L′3(x) = −
eB

2λ2(x)
[λ(x) + α(x)]L3(x),

L′4(x) = −
eB

2λ2(x)
[−λ(x) + α(x)]L4(x).

These equations can be solved fairly easily through integration, and yield results that
are again consistent with the found results:

L1 = 0,

L2 = 0,

L3 =
c3√
λ(x)

[α(x) + λ(x)]−1/2,

L4 =
c4√
λ(x)

[α(x) + λ(x)]1/2.

The two coefficients can now be determined from the condition that in the limit B → 0
it has to match the already known solution. It can be easily computed that the vectors
in the B → 0 limit are simply given by L3 = 1 & L4 = 0, or L3 = 0 & L4 = 1. So
this gives us two cases. In the first we have C3 =

√
λ0

√
py + λ0 and c4 = 0, where

λ0 ≡
√
m2 + p2

y + p2
z − ω2. The other option is given by c3 = 0 and c4 =

√
λ0/

√
py + λ0. If

we now apply the matrix R(x) to these vectors, we find that the WKB state vectors for
the Dirac vacuum are given by
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v1 =

¿
ÁÁÀ λ0(py + λ0)

λ(x)[α(x) + λ(x)]

⎛
⎜⎜⎜⎜
⎝

ı[α(x)+λ(x)]
m

pz−E
m
0
1

⎞
⎟⎟⎟⎟
⎠

, v2 =

¿
ÁÁÀλ0[α(x) + λ(x)]

λ(x)(py + λ0)

⎛
⎜⎜⎜⎜
⎝

−pz+E
m

ı[−α(x)+λ(x)]
m
1
0

⎞
⎟⎟⎟⎟
⎠

.

It is clear that these states are fairly similar in structure to the states without a magnetic
field applied, but the main difference being the factor in front, which was not present
earlier.

A.2.4 Weyl semimetal part

In order to find the solutions in the WSM half-space, we can use the same line of reasoning
as in the previous section. In the semimetallic region, the matrix Q(x) is given by

Q(x) = −ıγ1 [γ0E − γ2(py + eBx) − γ3(pz − γ5b)] . (A.2.13)

The eigenvalues of this matrix are given by ±λ± ≡ ±
√
−ω2 + (py + eBx)2 + (pz ± b)2. Note

that we now have four non-degenerate eigenvalues. From the zeroeth order equation,
and the requirement that the exponent does not blow up for x → ∞, we conclude that
f ′(x) = −λ±, and hence that

f±(x) = −∫
x

0
dyλ±(y). (A.2.14)

Furthermore, since f ′(x) now only equals one of the entries of QD(x), we conclude that
three of the four components have to vanish, instead of two as in the Dirac case. For the
next order, we can again compute the matrix M ≡ −R−1(x)R′(x), which in this case is
given by

M = (M+ 0
0 M−

) ,

where the matrices are defined as

M± ≡
eB

2λ2
±
(−α(x) + λ±(x) α(x) + λ±(x)
α(x) − λ±(x) −[α(x) + λ±(x)]

) .

Due to this structure ofM , it is evident that the upper two components of L are decoupled
from the lower two, so we can write L = (L+,L−)T . Now the differential equations under
consideration are

L′±,1(x) = γ± {[−α(x) + λ±(x)]L±,1 + [α(x) + λ±(x)]L±,2}
L′±,2(x) = γ± {−[−α(x) + λ±(x)]L±,1 − [α(x) + λ±(x)]L±,2}

where we define γ± ≡ eB/2λ2
±.

However, from the zeroeth order equations, we have already determined that L±,2 = 0.
So in order to again get a consistent set of equations, we require that the off-diagonal
coupling terms in the differential equations are again of a different order. Doing so then
allows us to write the following equations:
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L′±,1(x) = γ±[−α(x) + λ±(x)]L±,1,
L′±,2(x) = 0.

(A.2.15)

The second equation is consistent with L±,2 = 0. The first can be solved and yields

L±,1 =
c±√
λ±(x)

√
α(x) + λ±(x). (A.2.16)

In the case B = 0, we require that L±,1 = 1, so we find that the constant has to be given

by c± =
√
λ±(0)/

√
α(0) + λ±(0). This leaves us with two solutions for the WKB state

vectors:

v1 =
√

λ−,0
λ−(x)

¿
ÁÁÀα(x) + λ−(x)

py + λ−,0

⎛
⎜⎜⎜⎜
⎝

0
0

−ıα(x)−λ−(x)
E−pz+b

1

⎞
⎟⎟⎟⎟
⎠

, v2 =
√

λ+,0
λ+(x)

¿
ÁÁÀα(x) + λ+(x)

py + λ+,0

⎛
⎜⎜⎜⎜
⎝

ıα(x)−λ+(x)
E+pz+b

1
0
0

⎞
⎟⎟⎟⎟
⎠

.

Note that we did not need the exact form of the eigenvalues for the computation on the
states. So we expect that this result is a general one and valid even under addition of
more terms to the Hamiltonian. Adding more terms would change the eigenvalues, but
not the method itself.
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