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Abstract

We investigate the thermodynamic behavior of topological Kondo insulators using a

mean-field slave boson approximation and Hill thermodynamics. In particular, we focus

on SmB6 and consider the order of the topological Kondo insulator to band insulator

phase transition, and the bulk and boundary contribution of the system to the heat

capacity. We find that the order of the phase transition can be accurately predicted

using the critical exponents of the system, and is consistent with the Josephson hyper-

scaling relation. Furthermore, we find that the anomalous heat capacity of SmB6 is

probably not explained by edge states in the mean-field model.
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Public Summary

In this thesis, we investigate the properties of samarium hexaboride (SmB6). SmB6 is

the first experimentally measured Kondo insulator. This means that due to the effects of

interaction between electrons, it is insulating at low temperatures and conducting at high

temperatures. In order to explain behavior of SmB6 that was long not understood, it has

recently been proposed that SmB6 is not only a Kondo insulator, but is also topological.

This would mean that the material at low temperature, although insulating in the bulk,

would have conducting states on the surface. This is interesting as topological materials

are hoped to be a solution to current problems in the physical realization of quantum

computing devices, and there is currently no known material which is a three-dimensional

topological insulator with a fully gaped bulk.

We model SmB6 using mean-field theory: we approximate the interactions between

electrons as a background field, resulting in an effective non interacting theory. We then

investigate when the edge states appear in this model as we vary the temperature and an

important parameter of the system, the hybridization, which characterizes the strength

of the interaction between two kind of electrons in the model. This results in a phase

diagram separating the phases where the model is metallic, insulating in the bulk with

metallic surface states, and completely insulating.

In order to calculate the heat capacity of the system, and investigate the transition

between different phases, we then need thermodynamics. Thermodynamics is the for-

malism linking the microscopic properties of a system, such as the location of each

particle in te system, to macroscopic properties such as energy and temperature, using

statistical methods. Unfortunately, in most thermodynamic identities, the thermody-

namic limit is considered. In this limit, there are so many particles that the boundaries

of the system are no longer relevant. However, in the case of topological insulators, we

are interested in exactly these boundaries, as the edge states appear there. We therefore

use a trick named Hill thermodynamics to obtain the boundary contributions to the

thermodynamics separately from the bulk ones.

Applying the Hill thermodynamics, we find the model we used can probably not explain

the experimentally obtained heat capacity, implying that the heat capacity is not gov-

erned by surface effects. We furthermore find that the order of the phase transition from

insulating state with conducting edges to completely insulating, has interesting behavior

that does not seem to match previous results. This order is determined by calculating

which order of the derivative of the free energy with respect to the parameter driving

the phase transition is discontinuous. We found that both the orders in our model as the

orders found in previous results can be accurately predicted by the critical exponents of

the system. This is convenient, as critical exponents are generally easy to calculate.
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Introduction

Topological insulators are materials that are insulating in the bulk, but have conducting

edge states at the boundaries. These edge states are protected against small impurities,

since they are protected by the symmetries of the bulk Hamiltonian. This makes the

edge states of a topological insulator ideal candidates for quantum computing compo-

nents, where robustness of the quantum states are important. The topic of topological

insulators is relatively new, however, a lot of progress has been made on the subject in

the last decade. Following the rapid developments in the field, last years Nobel prize in

physics was awarded with one half to David J. Thouless, and the other half to F. Duncan

M. Haldane and J. Michael Kosterlitz, ”for theoretical discoveries of topological phase

transitions and topological phases of matter”. Although the first three-dimensional

topological insulator, bismuth antimonide, has been measured [1], no truly bulk gapped

three-dimensional topological insulator has been found. This makes the currently known

three-dimensional topological insulators less suitable for potential use in next generation

electronic devices. Therefore, the search for a three dimensional topological insulator

with a fully gapped bulk continues [2].

One of the most promising realizations of a three-dimensional topological insulator with a

fully gapped bulk is samarium hexaboride (SmB6). SmB6 is a Kondo insulator, meaning

that below a certain temperature, the Kondo temperature, the otherwise metallic system

becomes insulating. This transition is caused by a hybridization between conducting d-

electrons and localized f -electrons at low temperature, opening up a hybridization gap.

SmB6 is the first known Kondo insulator [3], and was discovered almost 50 years ago.

However, it has long had unexplained behavior. The most important of which, is that

although a gap opens up at low temperature, the resistivity does not go to infinity as the

temperature goes to zero. Instead, there is a residual conductivity. This experimental

feature was first explained by the presence of impurities in the samples but the effect did

not decrease with improving sample quality [4]. In light of the recent developments on the

field of topological insulators, Dzero et al. [5] proposed that the Kondo insulator could

be topological, and the edge states could be responsible for the residual conductivity.

Although there is still experimental controversy about whether or not SmB6 actually is a

topological insulator, SmB6 remains a strong candidate to be the first three-dimensional

topological insulator with a truly insulating bulk [6].

Besides the residual conductivity, there is an other unexplained feature of SmB6. Al-

though SmB6 is an insulator for low temperatures, the low temperature heat capacity

is reminiscent to that of a metal, as shown in figure 1.1 [7, 8]. It might seem logical to

1



Introduction 2

Figure 1.1: Experimentally measured heat capacity of SmB6. Here the black dots
in the upper graph indicate the measurements on undoped SmB6 with zero magnetic

field. Figure source: [7].

look for an explanation for this phenomenon in the direction of the topological nature

of the system. Indeed, it was shown by Kempkes et al. [9], using thermodynamics of

finite-size systems, that surface states can have a significant contribution to the heat

capacity. However, Knolle et al. proposed in reference [10], that the behavior of the

heat capacity cannot be explained by the presence of edge modes, but instead results

from the interacting nature of the system. Therefore, a mean-field model should not be

able to explain the heat capacity. We will investigate this problem using an approach

not tried so far: apply Hill thermodynamics as in reference [9] on a mean field SmB6

model, to see if the edge states can be responsible for the unexpected behavior of the

heat capacity in SmB6.

The thermodynamics used in reference [9] enables us to also investigate an other inter-

esting feature of topological insulators, namely the phase transition from a topological

phase to a trivial phase, and the order of this transition. In reference [9] it is shown that

the five most common models for topological insulators obey an universality law [9].

Although the phase diagram of Kondo insulators has been studied previously [11–13],

using different mean-field approaches, the orders of the phase transitions have not been

considered. It is therefore interesting to see whether the universality rule for the order

of the phase transition also applies to Kondo insulators, and in particular for SmB6

models. This is especially interesting since SmB6 has a much more complicated band

structure an richer phase diagram then the models studied in reference [9].

Hill thermodynamics is a formalism that makes it possible to calculate bulk and bound-

ary contributions to thermodynamic quantities [14]. This is different from the general
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thermodynamic approach, in which the thermodynamic limit is applied and the bound-

aries of the system are neglected. Leaving out the boundary is not desirable in this case

however, since we are particularly interested in exactly the influence of these bound-

aries. Therefore, it is necessary to explicitly consider thermodynamics of finite systems,

for which the Hill approach is excellently suited.

There are various models that describe Kondo insulators in general and/or SmB6 in

particular. The simplest model by Dzero et al. [15] only uses 4 bands, a spin up and

down d-electron, and a spin up and down f -electron. However, this model does not

accurately describe the way the bandgap closes, since in case of SmB6, more bands are

present. Therefore, we use the model proposed by Baruselli et al. [16], who use a 10

band model, with parameters obtained from a DFT calculation, and determine the most

important contributions following from an up to seventh nearest neighbor approach. An

additional upside of this model is that it is less likely to predict phases that do not

actually exist, as it was shown by Dzero [11], that the presence of a weak topological

insulating phase was dependent of the amount of bands taken into account.

In this thesis, we show that the order of the topological phase transition in bulk and

boundary for the model by Baruselli et al. [16] of SmB6 does not obey the universality

rule found in reference [9]. We find that the order of the phase transition can be un-

derstood by considering critical exponents. In this description, we indeed recover the

law discovered by Kempkes et al. for the systems that were investigated in this ref-

erence. The difference between these models and the model investigated in this thesis

is explained by different values of critical exponents. Furthermore, we show that the

anomalous heat capacity of SmB6 is probably not caused by the presence of the edge

states, which is in line with the proposal by Knolle et al. [10].

We will continue this thesis in chapter 2 with an overview of different kinds of materials

and from there introduce the concept of a topological insulator. Then, we will see several

examples of topological systems, and finally focus on time-reversal invariant topological

insulators, to which Kondo insulators belong, and discuss topological Kondo insulators

in general and SmB6 in particular. Next, in chapter 3 we will discuss thermodynamics

of finite-size systems, the role of Hill thermodynamics, and how it can be applied on a

specific model. In chapter 4 we will discuss what critical exponents are, and how they

can predict the order of the phase transition. Then, in chapter 5, we will present our

results and finally in chapter 6 we will discuss these results and the following conclusions.



Topological Insulators

In this thesis, we investigate topological Kondo insulators, and provide a thermodynamic

description of their topological behavior. However, before we look further into the

properties of the topological Kondo insulator, it is useful to first review the types of

insulators, and the main properties of topological materials.

2.1 Different Types of Insulators

The most basic classification of materials is based on their transport properties, which

is strongly dependent on their band structure. Using Bloch’s theorem, we can evaluate

single-electron states, and determine the dependence of the energy of these states on

the momentum. If the resulting band structure is not gapped around the Fermi energy,

the material is classified as a metal. In this case, electrons can continuously move to a

higher energy level when an electric field is applied, and thus the material is conducting.

If, on the other hand, there is a gap around the Fermi energy, the electrons have to

make an energy jump in order to reach a higher energy level. When the gap is large

enough, the material becomes insulating, and is called a band insulator. When the gap is

small, there can still be some conductance in the material, making it a semi-conductor.

This classification of metals semiconductors and insulators is depicted in figure 2.1.

Unfortunately, this classification of materials is incomplete, as it only considers single-

electron states in a periodic potential, it disregards important aspects like disorder,

interactions, finite size effects, and the topology of the bands. Taking these aspects into

account, we find a much wider range of insulators.

Firstly, let us consider the Anderson insulator. This type of insulator does not exhibit a

gap, but is insulating due to disorder, which localizes the electron states [18]. Secondly,

interaction between particles can lead to a Mott insulator. In a Mott insulator, the

repulsion between electrons is much stronger than the hopping, which again leads the

electrons to localize on different sites. Thirdly, in a so called Kondo insulator, the

conduction electrons interact with local moments. If there are as many conduction

electrons as there are local moments, every conduction electron can become bound, thus

creating an insulator. Finally, there is a special class of materials which are known as

topological insulators. A topological insulator is insulating in the bulk, but has metallic

boundary states. Although the bulk of a topological insulator seems very similar to that

of a band insulator, it is fundamentally different. The difference lies in the fact that

4



Chapter 2. Topological Insulators 5

Figure 2.1: Basic classification of materials. If the band structure is not gapped
around the Fermi energy, the material is classified as a metal. In this case, the material
is conducting. If there is a small gap around the Fermi energy, the material is a
semiconductor, and when the gap is large enough, the material becomes insulating.

Image source: [17]

the bulk band structure of a topological insulator cannot be deformed into the band

structure of a band insulator continuously, that is without closing the energy gap in the

process. We therefore say that a topological insulator is topologically different from the

band insulator, and is in a topological phase. Contrary to Landau’s approach, in which

phases are characterized in therms of broken underlying symmetries, the topological

phase is defined by the existence of certain fundamental properties that are insensitive

to smooth changes in the system’s parameters. These fundamental properties can only

change if the system passes through a quantum phase transition (a closing of the band

gap, or a change of the symmetry class) [19]. A Kondo insulator becomes an insulator due

to interactions, and can even exhibit a topological phase under certain circumstances.

Besides insulators, there also are conducting materials that do not fall into the standard

band-structure classification. Superconductors have an energy gap, but can conduct

electricity without resistance. This is caused by a phonon mediated net attractive in-

teraction between electrons. Below the critical temperature Tc, it becomes energetically

favorable for the system to form pairs of electrons instead of the Bloch single particle

states. These pairs can then conduct electricity without resistance, since scattering them

would mean breaking the pair, for which the electrons would have to cross an energy

gap to the single-particle states [20]. Because superconductors have a band gap, just

like band insulators, they may also exhibit a topological phase.
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2.2 Topological Materials

In order to better understand the topological phase and the concepts associated with

it, we will now describe several important examples of topological materials. We will

start by considering the Kitaev chain, which is a model for a one-dimensional topological

superconductor.

2.2.1 One-Dimensional Topological Superconductor: the Kitaev Chain

The Kitaev chain models a one-dimensional superconducting chain, in which each site is

either empty or filled with a spinless fermion. Although the physical realization of the

model is difficult for several reasons (one of them is that electrons, are not spinless), it

can be done by inducing superconductivity to the material by using the proximity effect

of a nearby superconductor. This method has been applied successfully to measure

signatures of Majorana bound states [21], which are the predicted edge states of this

system [22]. The model is especially useful, because the Kitaev chain has possible

applications in quantum computing. It was originally proposed as a possible realization

of quantum memory, since it offers a way to construct decoherence-protected degrees of

freedom in quantum wires [22].

The Hamiltonian describing the Kitaev chain of length N is [22]

H = −µ
N∑
n=1

(
c†ncn −

1

2

)
− t

N−1∑
n=1

(c†n+1cn + h.c.) + ∆
N−1∑
n=1

(cncn+1 + h.c.). (2.1)

Here, cn is the annihilation operator for a spinless fermion at site n, µ is the chemical

potential, t the hopping amplitude, and ∆ the superconducting pairing amplitude. We

can understand the term ∆
∑

n(cncn+1 + h.c.) as a mean field approximation of the

attractive nearest-neighbor electron-electron interaction
∑

n c
†
n+1c

†
ncncn+1.

To calculate the eigenenergies of the Kitaev chain, we need to diagonalize the Hamil-

tonian because the ∆
∑

n(cncn+1 + h.c.) term is off diagonal. It is easier, however

to first double the degrees of freedom in the system by writing: H = C†HC, where

C = (c1, c2, ...cn, c
†
1, c
†
2, ..., c

†
n), and then calculate the eigenvalues of H. In this picture,

c†1 is both a creation operator of an electron and an annihilation operator of a hole. This

symmetry is known as the particle-hole symmetry. The particle-hole symmetry implies

that the energy spectrum of the Hamiltonian is symmetric around zero. Namely, if −→u
is an eigenvector of H, one can create an eigenstate with the operator −→u C†, with corre-

sponding energy E. Creating this state should have the same effect as annihilating the
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particle hole reversed state defined by −→u ∗C. Thus, this state needs to have energy −E
and is also an eigenstate of the system.

We can also write the Hamiltonian in terms of Majorana operators γn. For this, we use

the transformation:
c†n = 1

2(γ2n−1 + iγ2n),

cn = 1
2(γ2n−1 − iγ2n).

(2.2)

Applying this transformation into equation (2.1), we find the Hamiltonian:

H = −µ i
2

N∑
n=1

γ2n−1γ2n −
i

2

N−1∑
n=1

[γ2nγ2n+1(t+ ∆) + γ2n−1γ2n+2(∆− t)] . (2.3)

Using the inverse of the transformation, we find that γn = γ†n. Thus, a Majorana mode

cannot be empty or filled in the way fermion states are. We can also see that Majorana

modes always come in pairs, a pair for each fermion. Because of this, it seems impossible

to find a single isolated Majorana mode that is not close to its partner. However, it

turns out that by tuning the parameters of the Hamiltonian, we can actually separate

two Majoranas.

We start by considering two special cases for the Hamiltonian parameters. Firstly, there

is the trivial case of isolated fermions ∆ = t = 0 and µ < 0, in which the Hamiltonian

becomes

H = −µ i
2

N∑
n=1

γ2n−1γ2n. (2.4)

In this case, the Majorana operators γ2n−1,γ2n from the same electron are paired as

depicted in the upper half of figure 2.2. The second case occurs for ∆ = t > 0, µ = 0.

Figure 2.2: Two phases in the Kitaev chain. In the trivial phase (top), the Majorana
modes (small blue spheres) of the same electron (big blue spheres) are paired together.
In the topological phase (bottom), Majorana modes of adjacent electrons are paired

together. Image source: [23].
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In this case, the Hamiltonian becomes

H = −i∆
N−1∑
n=1

γ2nγ2n+1. (2.5)

Now, the Majorana modes from different electrons are paired, as depicted in the lower

half of figure 2.2, and the two end Majorana modes (γ1 and γ2n) are not paired. In fact,

they do not appear in the Hamiltonian at all. Hence, there are two zero-energy states,

localized at the ends of the chain. It turns out that these edge states are not exclusively

there for this specific set of parameters. If we increase µ, the Majorana edge modes will

persist until µ = ±2t.

Are the two cases topologically equivalent or do they belong to different phases? In

order to answer this question, we look at the bulk Hamiltonian. In this Hamiltonian,

we eliminate the edges by imposing periodic boundary conditions and taking the limit

of an infinite number of sites. Since now translational symmetry has been restored,

we can Fourier transform the Hamiltonian to momentum space and calculate the band

structure. This results in two energy bands, one with positive and one with negative

energy,

E(k) = ±
√

(2t cos k + µ)2 + 4∆2 sin2 k. (2.6)

If we now again take t = ∆ > 0, we see that the energy gap closes exactly when

µ = ±2t. Thus, we have a quantum phase transition at this point, and we conclude that

the two cases described above indeed belong to different phases. The phase transition

occurs exactly when the Majorana edge modes disappear. We can understand this

correspondence between the bulk and the edge (called the bulk-edge correspondence) in

terms of symmetry.

Since the Hamiltonian is particle-hole symmetric, the energy spectrum has to be sym-

metric around zero energy. When µ = 0, there are two zero-energy levels, corresponding

to the two Majorana edge modes. These modes cannot move away from zero energy

individually, since that would violate the particle-hole symmetry. Thus, we would have

to couple the Majorana modes and move them away from zero energy simultaneously,

in order to get rid of the zero-energy modes. This is, however, impossible, since they are

localized far away from each other. The only way to move the modes away from zero

energy is by closing the bulk energy gap, which is exactly what happens at the quantum

phase transition.

Besides the appearance of the edge states at the closing of the energy gap, it also occurs

that the topological invariants of the system can change. Although these invariants do

not change when the Hamiltonian is varied smoothly, they can change when a phase
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transition occurs. In the case of the Kitaev chain, a topological invariant can be defined

using the Pfaffian; however, we will not do this here.

2.2.2 Two-Dimensional Chern Topological Insulators

As discussed in the previous section, we can define topological invariants that only

change when the band gap closes. These topological invariants can be used to classify

band structures. We say that structures that have the same value for a certain topological

invariant are of the same class. One topologically invariant commonly used to classify

two-dimensional band structures is the Chern number, a material with a non-trivial

Chern number is called a Chern topological insulator.

The Chern number can best be understood by means of the Berry phase [24] that

is associated with the Bloch wave functions |um(k)〉 of the system. If there are no

degeneracies, |um(k)〉 picks up a well defined Berry phase when k is transported over a

closed loop. This phase is given by the line integral over the loop of Am = i 〈um| ∇k |um〉,
which in turn is equal to the surface integral of the Berry flux ∇ × Am, over the area

enclosed by the loop. We can define the Chern invariant as the integral of the Berry

flux over the Brillouin zone,

nm =
1

2π

∫
d2k∇×Am. (2.7)

This yields us the total Chern number n, which is just the sum of the Chern invari-

ants over all occupied bands, n =
∑N

m=1 nm. It turns out that the Chern number is

integer quantized. We can develop a physical intuition about this behavior by consid-

ering a simpler example. Instead of two-dimensional band structures, we now consider

two-dimensional surfaces that are compact, edgeless and can be embedded in three di-

mensions, like a sphere and a torus, as depicted in figure 2.3. These surfaces can be

topologically classified by the number of holes that they have, also called their genus.

For example, a sphere has genus zero, and a torus has genus one. Besides counting the

holes of the surface, the genus can also be calculated by integrating over the Gaussian

curvature of the surface. The Chern number is very similar to the genus, it is an integral

over a curvature that is closely related to the Gaussian curvature [19].

A fundamental consequence of the topological classification of band structures, is the

existence of gapless conducting states at the interface between two systems with a dif-

ferent value of the topological invariant. We can understand this feature by imagining

an interface, where a system slowly interpolates as a function of the distance y between

two states with a different Chern number. Since the topological invariant is changing,

the energy gap has to vanish for some value of y. Therefore there will be gapless edge
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(a) Sphere (b) Torus

Figure 2.3: A sphere and a torus have a different genus; a torus has one hole and a
sphere has none. They are therefore topologically different.

states bound to the region where the energy gap closes [19]. Unfortunately, most edge

states are highly sensitive to disorder and therefore rarely survive on a macroscopic scale.

However, topologically protected surface states are much more robust to perturbations

of the Hamiltonian, and can be experimentally observed [25].

We have already discussed an example of topologically protected surface states, namely

the Majorana edge modes in the Kitaev chain, which were protected by the particle-hole

symmetry. How can surface states get topological protection in the Chern topologi-

cal insulator? An important difference between the Chern topological insulator and

the Kitaev chain that we presented before, is that the edge states are no longer zero-

energy states localized at the zero-dimensional boundaries. Rather, they live on the

one-dimensional edge of the system, and the corresponding state crosses the energy gap.

Because of this crossing, the edge-states are conducting and called metallic. In the case

of the two-dimensional Chern topological insulators, it turns out that the difference

between the clockwise and counterclockwise propagating edge modes is in fact a topo-

logical invariant, equal to the Chern number. Thus, it cannot change under continuous

deformations of the Hamiltonian, including changes that introduce disorder at the edges

of the system, making the edge states topologically protected [26].

2.2.3 Time-Reversal Invariant Topological Insulators

In the case of topological Kondo insulators, the edge states are protected by time-reversal

symmetry. This time-reversal symmetry also imposes that for every edge state, there is a

backwards propagating partner. Thus, the Chern number is zero for Topological Kondo

insulators, and we need a different topological invariant to define the underlying order:

the spin Chern number which is a Z2 invariant. The identification and calculation of

the bulk Z2 invariant is much more cumbersome than it is for Chern insulators. Luckily,
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topological Kondo insulators exhibit inversion symmetry, which makes it relatively easy

to calculate it’s Z2 invariant [27]. In order to understand this calculation properly, we

first need to understand what exactly is time-reversal symmetry, and how it leads to

Kramers degeneracy. We will discuss this topic in the next subsection.

2.2.3.1 Time-Reversal Symmetry

Time reversal means that we apply the transformation t → −t. In the classical case,

this means that x → x and p → −p. Since the spin is an angular momentum, spins

flip under time reversal. Quantum mechanically, we say that a Hamiltonian has time-

reversal symmetry if THT−1 = H. Here, T = eiπSyK, with Sy the total spin and K

the complex-conjugation operator, generates the time-reversal operation. In the case

of electron systems, it holds that T 2 = ei2πSy = ±1, depending on whether the total

number of electrons in the system is even or odd. For electron systems, this leads to

a constraint known as Kramers’ theorem, which plays a vital role in the protection of

edge states.

Since H and T commute, we have that for every eigenstate |Ψ〉 of the Hamiltonian,

T |Ψ〉 is also an eigenstate with the same energy. This does not necessarily mean that

all energy states are doubly degenerate. It could of course be that |Ψ〉 = T |Ψ〉. However,

in case T 2 |Ψ〉 = −1 |Ψ〉, we can use

〈TΨ|TΦ〉 = (eiπSy |Ψ∗〉)†eiπSy |Φ∗〉 = 〈Ψ∗| e−iπSyeiπSy |Φ∗〉 = 〈Ψ|Φ〉∗, (2.8)

to find:

〈TΨ|Ψ〉∗ = 〈T 2Ψ|TΨ〉 = −〈Ψ|TΨ〉 = −〈TΨ|Ψ〉∗, (2.9)

from which we can conclude that 〈TΨ|Ψ〉 = 0. Thus, |Ψ〉 6= T |Ψ〉 and we have doubly

degenerate states [26]. This is known as Kramers theorem.

We can understand this behavior in terms of spin flip. Since eigenstates of the Bloch

Hamiltonian are effective single-electron states, we see that the time-reversal operation

flips the spin of this electron, thus T |Ψ〉 6= |Ψ〉, as they have opposite spin. It is

important to notice that in the absence of spin-orbit interaction, Kramers’ degeneracy

is simply the degeneracy between up and down spins. However, in the presence of spin-

orbit interaction, its consequences are non-trivial. Interestingly, a minimal model for

a time-reversal invariant electronic insulator needs to have at least four energy bands.

For a two band model, the energy bands would have to touch at the high-symmetry Γi

points of the Brillouin zone in order to satisfy Kramers theorem, thus closing the energy

gap [28].
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Finally, we will discuss the consequences of time-reversal symmetry and Kramers theo-

rem for the band structure of the Hamiltonian, since they play an important role in the

protection of the edge states. A T -invariant Bloch Hamiltonian has to satisfy [19]

TH(k)T−1 = H(−k). (2.10)

This means that if |u(k)〉 is an eigenvector of H(k), with energy E(k), then the other

half of a so called Kramers pair T |u(k)〉 is also an eigenstate with the same eigenvalue

E(k) = E(−k) [28],

H(−k)T |u(k)〉 = TH(k)T−1T |u(k)〉 = TH(k) |u(k)〉 = TE(k) |u(k)〉 = E(k)T |u(k)〉 .
(2.11)

From this we find that the energy bands have to be symmetric with respect to inversion

in the Brillouin zone, k → −k. In d dimensions there are 2d points Γi in the Brillouin

zone that map to themselves under inversion. These points are located on the edges and

in the middle of the Brillouin zone [26]. At these points, TH(Γi)T
−1 = H(Γi). Thus,

using Kramers theorem, we find that these states exhibit a double degeneracy for the

same k.

2.2.3.2 Z2 Invariant in Two Dimensions

The Kramers degeneracy does not only hold for the bulk states, but it is also true on the

edges. This leads to a conservation of the parity of the number of edge-state Kramers

pairs. In order to see this, we will now look at a two-dimensional time-reversal symmetric

T 2 = −1 topological insulator. For a given dispersion relation, the number of edge-state

Kramers pairs is well defined for any energy in the bulk gap. For example, we see that

in figure 2.4 (A) there are three Krames pairs for every energy in the band gap. As

disscused before, due to time-reversal symmetry, the band structure is symmetric under

k → −k, and thus there is an equal number of right- and left-moving states. If we now

continuously deform the band structure to get rid of a Kramers pair, we see that we

either have to remove two pairs at the same time, as depicted in figure 2.4 (B), or try

to get rid of the pair that crosses kx = 0. However, we cannot get rid of this Kramers

pair in the same way, since this would make the states non degenerate on kx = 0, which

is a violation of Kramers theorem. Thus, we see that (without closing the bulk gap) we

can only change the number of Kramers pairs in pairs, making the parity a topological

invariant. This topological invariant is called the Z2 invariant and takes the value 1 (0)

if the parity of Kramers pairs is odd (even) [26].

We have now defined the Z2 invariant by only looking at the edges of the system.

However, its value does not depend on the type of edge, it is a topological invariant that
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(a) (b)

Figure 2.4: Schematic representation of the edge states in a two-dimensional time-
reversal symmetric topological insulator with T 2 = −1. The bulk continuum states are
depicted by the shaded regions. From (A) to (B), the system undergoes a continuous
deformation, respecting the time-reversal symmetry. Right- (left-) propagating states
are denoted by continuous (dashed) lines. Notice that crossings at k = 0 and k = ±π
cannot become avoided crossings, as this would violate the Kramers theorem. Image

source: [26].

is set by the bulk Hamiltonian. There should therefore be a topological invariant of the

bulk Hamiltonian that corresponds to it. In the presence of inversion symmetry, we can

calculate this relatively easily.

Similar to time reversal, inversion means that we apply the transformation x → −x.

Although this transformation does not flip the spin like time reversal, it does flip the

momentum. We say that a Bloch system is symmetric under inversion if there exists a

unitary operator P independent of k, such that:

P †P = 1; (2.12)

P 2 = 1; (2.13)

PH(k)P−1 = H(−k); (2.14)

PT = TP. (2.15)

Consider the time-reversal invariant momenta Γi. As discussed before, each eigenstate

|Ψ〉i at these momenta has an orthogonal Kramers pair T |Ψ〉i with the same energy.

Now, if H is inversion symmetric, we can choose |Ψ〉i to be an eigenstate for P as well,

since H(Γi) and P commute,

PH(Γi)P
−1 = H(−Γi) = H(Γi). (2.16)

Since P 2 = 1, we thus find that P |Ψ〉i = ± |Ψ〉i. Because P and T commute, we have

that the Kramers pair of |Ψ〉, T |Ψ〉 has the same parity eigenvalue [26]. In reference

[27], it has been shown that these eigenvalues can be related to the Z2 invariant ν as
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follows:

(−1)ν =
N∏
m=1

∏
i

ξ2m(Γi). (2.17)

Here, ξ2m(Γi) = ±1 is the parity eigenvalue of the 2m’th occupied band at Γi. Notice

that the values ξ2m−1(Γi) are left out. Since they have the the same value as their

Kramers pair ξ2m(Γi), including them would make the outcome trivial.

2.2.3.3 Z2 Invariant in Three Dimensions

We have now discussed the bulk-edge correspondence for two-dimensional time-reversal

-and inversion- symmetric systems. However, the topological Kondo insulator is a three-

dimensional material. In three dimensions a band structure with time-reversal symmetry

is characterized by four Z2 invariants. The surface states of three of those are not robust

in the presence of disorder, and for this reason they are referred to as weak-topological

insulators. These weak-topological insulators can be seen as a stacking in one of the

three spatial directions of the two-dimensional topological insulators that we discussed

in the previous section. If two of these layers are coupled together, the total number of

Kramer pairs becomes even, making them a simple insulator. Thus, it turns out that a

stack of even layers is equivalent to an insulator, while an odd number of layers yields

a (thicker) two-dimensional topological insulator. From this sensitivity to the parity

of the number of layers, we can conclude that the weak-topological invariants do not

characterize a robust topological phase [27].

The fourth Z2 invariant ν can be calculated using the formula (2.17) in the presence of

inversion symmetry. ν = 1 corresponds to a topological state with robust surface states,

which is called a strong-topological insulator (STI). Unlike weak-topological insulators,

a STI cannot be interpreted as a stacking of two-dimensional topological insulators. The

robust surface states of a STI form a two-dimensional topological metal. A topological

metal is not spin degenerate, like a normal metal, which has up and down spins at each

point of the Fermi surface. Rather, since time-reversal symmetry requires that states at

momenta k and −k have opposite spin, the spin has to rotate around the Fermi surface

during this operation [19].

2.2.4 The 10-Fold Way

As discussed before, we can use topological invariants to classify materials. We have

now presented several topological models that were classified by different topological

invariants. In general, we can say that topological materials are either classified by a Z2

invariant that can only assume two values, or a Z invariant that can have any integer
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symmetry dimension

class T Ξ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

Table 2.1: The ten-fold way. The symmetries are specified by the absence or presence
of time-reversal symmetry T , particle hole symmetry Ξ and chiral symmetry Π = ΞT .
±1 (0) denote the presence (absence) of symmetry, with ±1 specifying the value of Ξ2

and T 2. The symmetry classes are labeled using the notation of Altland and Zirnbauer
(1997). Data source: [19].

value. The time-reversal invariant topological insulators that we just discussed, are an

example of materials that are characterized by a non-trivial value of the Z2 invariant.

We recall that the invariant could only have two different values, the parity of Kramers

pairs was either odd or even. The Kitaev chain describes a topological superconductor

that also has a Z2 invariant; it either has edge sates or not, there are no other topological

phases. The Chern invariant, on the other hand, is an example of a Z invariant. The

difference between left- and right-propagating particles is not restricted to zero and one,

but it can have any integer value. Thus, the Chern insulator has infinitely many different

topological phases. A topological invariant is meaningful only if it is possible to connect

it to the surface states through a bulk-boundary correspondence, so that the edge states

are topologically protected. As we just discussed for both the time-reversal invariant

topological insulators and the Kitaev chain, symmetries play an important role in this

process.

The ideas described above can be used to create an elegant mathematical structure,

which generalizes the ideas of topological band theory. In this structure, classes of equiv-

alent Hamiltonians are determined by specifying the symmetries and the dimensionality.

Using the bulk-boundary correspondence, each of these classes can then be topologically

classified by either Z2, Z or 0, where 0 signifies that the class has no topological behav-

ior. This procedure leads to the periodic table of topological materials shown in table

(2.1) [29–33]. Here, we indeed recognize the entry of a time-reversal invariant T 2 = −1,

Z2 topological insulator in two and three dimensions (class AII), the Chern insulator

without symmetries in two dimensions (class A), and the one-dimensional Kitaev chain

with particle-hole symmetry (class D). This classification system is referred to as the

ten-fold way, because we distinguish ten different symmetry classes. These classes arise
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due to the three possibilities (0,+1,−1) for both time-reversal and particle-hole symme-

try, which together give 3× 3 = 9 classes, in addition to the class of materials that are

not symmetric under either a particle-hole switch or time-reversal, but are symmetric

under a combination of them.

2.3 Topological Kondo Insulators

Now that we have acquired a better idea of what topological materials are, and how

we can classify them, it is time to turn our attention to Kondo insulators. We will

first introduce the concept of Kondo insulators, then we will consider topological Kondo

insulators, and finally we will present a specific example of a possible candidate to be a

topological Kondo insulator, namely samarium hexaboride (SmB6).

2.3.1 Kondo Insulators

The interaction between conduction electrons and local moments is called the Kondo

effect. In the Kondo effect, the low temperature behavior of a single local moment can

be understood as the formation of a singlet bound state between the local moment and

a conduction electron. As described in section 2.1, a Kondo insulator is then a state

in which all the conduction electrons form a spin singlet bound state with the local

moment of an impurity. The binding energy of the Kondo singlets is responsible for the

band gap separating the conduction electrons from the conduction band and is related

to the Kondo temperature Tk. Unfortunately, this picture is not quite complete, since

in the limit where there are as much impurities as there are conduction electrons, the

interaction between the local moments cannot be ignored [34].

2.3.1.1 Anderson Lattice Model

In order to incorporate these interactions, we will use the Anderson lattice model (ALM)

[15]. This model, as well as the phenomenon of Anderson Localization, are both named

after the physicist and Nobel Prize winner Philip Anderson. Although both of them can

lead to a localization of conduction electrons, they are in fact quite different phenomena.

Anderson localization occurs due to disordered impurities, but they do not need to be

magnetic. In the ALM there is no disorder, since the impurities are placed on a lattice,

but the magnetic moment of the impurities plays an important role. In the following,

we will assume that the role of magnetic impurities is played by f -electrons (electrons

in the f shell of an atom).
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The ALM is described by a Hamiltonian that consists of three parts,

HALM = Hc +Hf +Hh. (2.18)

The first part, Hc, describes the conduction electrons. In the most general case, there can

be more than one conduction band, such that the Hamiltonian describing the conduction

electrons becomes

Hc =
∑
l,l′

∑
k,σ

ξl,l′(k)c
(l)†
kσ c

(l′)
kσ . (2.19)

Here, ξl,l′(k) is the dispersion between electrons of bands l and l′, σ is the spin index, and

c
(l)†
kσ is the creation operator of a conduction electron. The second part, Hf , describes

the f -electrons, and is given by,

Hf =
∑
i,j

∑
α,α′

εαα′ijf
†
jαfiα′ + U

∑
iαα′

f †iαfiαf
†
iα′fiα′ . (2.20)

Here, f †jα creates an f -electron on site j with pseudo spin α, εαα′ij is the hopping

amplitude, and U > 0 is the strength of the interaction between the f -electrons. Due

to the presence of strong spin-orbit coupling, α is not a spin index. Instead, it can

be generally characterized by the total angular momentum J , and its z component M .

The last part of the Hamiltonian Hh describes the hybridization between the conduction

electrons and the f -electrons,

Hh =
∑
l,i,σ

∑
j,α

(V
(l)
iσ,jαc

(l)†
iσ fjα +H.c.), (2.21)

where V
(l)
iσ,jα is the hybridization matrix element. It is important to note here that the

hybridization is responsible for the opening of the band gap. Without the hybridiza-

tion, the d- and f -bands would overlap, and the material would be metallic, as shown

schematically in figure 2.5.

2.3.1.2 Slave-Boson Approximation

We will start from the ALM model to derive an effective model that is quadratic in the

creation and annihilation operators. For this, we use the slave-boson approximation. In

this approximation, we take the limit U →∞. Since the f bands in Kondo insulators are

close to being completely filled, this corresponds to projecting out the states with two

or more f holes per site. We impose this constraint by using slave bosons, and finally

calculate the effective model by applying a mean-field approximation on the bosonic

fields.
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Figure 2.5: Schematic depiction of the band structure of a Kondo insulator. Without
hybridization the bands overlap (dashed lines), when the hybridization is included (non
dashed lines) a gap opens up at the Fermi energy, and the material becomes insulating.

First of all, we need to impose the constraint on the system. It turns out that in the case

of almost filled f -bands (which is the case we consider later for SmB6), this is most easily

done by going to the hole representation. In this representation, f †iα and c
(l)†
iσ create a

hole at site i with (pseudo) spin (α) σ. Practically, going to the hole representation

means that we transform creation operators into annihilation operators, and vice versa.

Then, we reorder the Hamiltonian in the same form as before, and, by doing so, we

observe that we have effectively only gained a minus sign. Thus, by going to the hole

representation, we find that H → −H.

We are now ready to introduce the slave bosons and impose the constraint of no more

than one f hole per site. We assume that the slave boson is filling up the place of the

f hole if it is not there, allowing us to impose the constraint by keeping the sum of the

f holes and bosons equal to one. This means that if an f hole is created, a slave boson

has to be annihilated and vice versa. Thus, we get the transformation,

f †αi → f †αibi, (2.22)

where bi is the slave boson annihilation operator. This then enables us to formulate the

constraint that projects out the doubly occupied states,

b†ibi +
∑
α

f †iαfiα = 1. (2.23)
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Due to the constraint in equation (2.23), b†ibi and f †iαfiα cannot be simultaneously

nonzero, and consequently the slave bosons drop out for the on site energy,

f †iαbib
†
ifiα = (1 + b†ibi)f

†
iαfiα = f †iαfiα. (2.24)

Applying his transformation to the Hamiltonian in the hole representation and imposing

the constraint using the Lagrange multipliers λi, we find,

H = −
∑
l,l′,k,σ

ξl,l
′

k c
(l)†
kσ c

(l′)
kσ −

∑
i,j

∑
α,α′

εαα′ijf
†
jαbjb

†
ifiα′ −

∑
i,j,α,σ,l

(V
(l)
iσ,jαf

†
jαbjc

(l)
iσ +H.c.)

+
∑
j

iλj

(
b†jbj +

∑
α

f †jαfjα − 1

)
. (2.25)

Now, we can apply a mean-field approximation, in which we replace the bi, b
†
i operators

by their expectation values, 〈bi〉 = 〈b†i 〉 = b, and iλj by λ̄, which gives us the effective

Hamiltonian,

H = −
∑
l,l′,k,σ

ξl,l
′

k c
(l)†
kσ c

(l′)
kσ − b

2
∑
i 6=j

∑
α,α′

εαα′ijf
†
jαfiα′ −

∑
i

∑
α,α′

εααiif
†
iαfiα

− b
∑

i,j,α,σ,l

(V
(l)
iσ,jαf

†
jαc

(l)
iσ +H.c.) +

∑
j

λ̄

(
b2 +

∑
α

f †jαfjα − 1

)
. (2.26)

After grouping together the f †iαfiα terms, and performing the index independent sum-

mations, we find,

Heff = −
∑
k,σ

ξl,l
′

k c
(l)†
kσ c

(l)
kσ −

∑
i,α

(εiα − λ̄)f †iαfiα − b
2
∑

i 6=j,α,α′

tijαα′f †iαfjα′

− b
∑
i,j,α,σ

(V
(l)
iσ,jαf

†
iαc

(l)
iσ +H.c.) +Ns(b

2 − 1)λ̄, (2.27)

where we have renamed the f -electron hopping to tijαα′ and Ns is the number of sites.

In order to proceed, we have to calculate the values of b and λ̄. This can be done by

minimizing the free energy associated with the effective Hamiltonian [35]. We start by

calculating the partition function Z, since the free energy F is given by F = −kBT logZ.

Following the procedure given in reference [36], we have that

Z = Tr
(
e−βHeff

)
=

∫
Ψ(0)=−Ψ(~β)

D(Ψ̄,Ψ)e−Seff/~, (2.28)



Chapter 2. Topological Insulators 20

where Seff is the Euclidean action corresponding to Heff , and is given by

Seff =

∫ ~β

0
dτ
(
Ψ̄∂τΨ +Heff

[
Ψ̄,Ψ

])
, (2.29)

and Ψ(k, τ) denotes the fermionic coherent state. In case of two conduction electrons

and two f -electrons, Ψ = (φc↑, φc↓, φf↑, φf↓). Performing a Fourier transformation to

the momentum representation, we find that Seff is given by

Seff = ~βNs(b
2 − 1)λ̄−

∫ ~β

0
dτ
∑
k

∫ ~β

0
dτ ′
∑
k′

Ψ̄(τ, k)G−1(τ, k, τ ′, k′)Ψ(τ ′, k′), (2.30)

where G−1 denotes,

G−1(τ, k, τ ′, k′) =

(
−∂τ1 + ξk bV †k

bVk −∂τ1 + (εk − λ̄1) + b2tk

)
δ(k − k′)δ(τ − τ ′). (2.31)

Here 1 denotes the unitary matrix. Since Seff is at most quadratic in Ψ, we can now

perform the path integral in equation (2.28) to find,

Z = exp
[
−βNs(b

2 − 1)λ̄+ Tr log(−G−1)/~
]
. (2.32)

Now that we have found the partition function, we can calculate the free energy,

F = −kbT
[
−βNs(b

2 − 1)λ̄+ Tr log(−G−1)/~
]
. (2.33)

Since,

∂

∂b

[
Tr log(−G−1)

]
= Tr

[
−G∂(−G−1)

∂b

]
(2.34)

= Tr

 ~β∫
0

~β∫
0

dτdτ ′
∑
k,k′

G(τ, k, τ ′, k′)
∂

∂b
G−1(τ ′, k′, τ, k)

 (2.35)

= Tr

 ~β∫
0

~β∫
0

dτdτ ′
∑
k,k′

G(τ, k, τ ′, k′)

(
0 V †k

Vk 2btk

)
δ(k − k′)δ(τ − τ ′)


(2.36)

= Tr

 ~β∫
0

dτ
∑
k

G(τ, k, τ, k)

(
0 V †k

Vk 2btk

) (2.37)

= Tr

[
~β
∑
k

G(τ, k, τ, k)

(
0 V †k

Vk 2btk

)]
, (2.38)
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where in the last step we used that G(τ, k, τ ′, k) only depends on k and τ − τ ′, we can

now minimize this free energy with respect to b to find,

0 = bNsλ̄−
∑
k

Tr
[〈
f †kck

〉
Vk

]
− b

∑
k

Tr
[〈
f †kfk

〉
tk

]
. (2.39)

Here, we have used the notation,

G(τ, τ, k, k) =


〈
c†kck

〉 〈
c†kfk

〉
〈
f †kck

〉 〈
f †kfk

〉
 . (2.40)

Similarly, minimizing with respect to λ, we find, as expected, the averaged constraint

condition,

1 = b2 +
1

Ns

∑
k,α

〈
f †kαfkα

〉
. (2.41)

As discussed before, for a Kondo insulator, we are looking specifically at the regime

where the number of holes per site is equal to the number of conduction bands Nd. This

gives the additional constraint [11],

Nd =
1

Ns

∑
k,α

〈
f †kαfkα

〉
+

1

Ns

∑
k,l,σ

〈
c

(l)†
kσ c

(l)
kσ

〉
. (2.42)

Before we can use these equations to calculate the values of b, λ and µ, we first need to

find an expression for the Green’s functions (the two-point expectation values).

2.3.1.3 Calculation of the Green’s Functions

In order to calculate the Green’s functions, we first investigate what happens when the

Hamiltonian is diagonal in the Ψk basis (H =
∑

k Ψ†kDΨk, with D a diagonal matrix).

In that case, we have that

Tr(e−βH) =

1∑
n1k1

=0

1∑
n2k1

=0

· · ·
1∑

nnkn=0

〈0|
∏
j,k

(Ψ
njk
jk )e−βH

∏
jk

(Ψ
†njk
jk ) |0〉 (2.43)

=

1∑
n1k1

=0

1∑
n2k1

=0

· · ·
1∑

nnkn=0

e
−β

∑
j,k
njkεjk

(2.44)

=
∏
j,k

 1∑
njk=0

e−βnjkεjk

 , (2.45)

(2.46)



Chapter 2. Topological Insulators 22

where εjk is the jth eigenvalue of the matrix Hk. In the same way, it holds that

Tr(Ψ†ikΨike
−βH) =

∏
j,k′ 6=i,k

 1∑
njk′=0

e−βnjk′εjk′

 1∑
nik=0

nike
−βnikεik . (2.47)

Thus, we finally find the well known Dirac distribution,

〈
Ψ†ikΨik

〉
=
Tr(Ψ†ikΨike

−βH)

Tr(e−βH)
(2.48)

=

1∑
nik=0

nike
−βnikεik

1∑
nik=0

e−βnikεik

(2.49)

=
1

1 + eβεik
. (2.50)

Unfortunately, the effective Hamiltonian we found in the previous sections is not diagonal

in (pseudo)-spin space. We therefore have to apply a change of basis. If Hk is not

diagonal for some basis Ck, we can relate this basis to another basis Ψk in which the

Hamiltonian is diagonal, by the unitary matrix of eigenvectors Sk,

Ck = SkΨk. (2.51)

For the elements of Ck this means,

Cki =
∑
α

SiαkΨαk. (2.52)

Thus, we find that for a non diagonal basis Ck,

〈
C†jkCik

〉
=

〈∑
αα′

S∗jαkΨ
†
αk
Siα′kΨα′k

〉

=
∑
αα′

S∗jαkSiα′k

〈
Ψ†αkΨα′k

〉
=
∑
α

S∗jαkSiαk

〈
Ψ†αkΨαk

〉
=
∑
α

S∗jαkSiαk
1

1 + eβεαk
, (2.53)

where we used that
〈

Ψ†αkΨα′k

〉
=
〈

Ψ†αkΨαk

〉
δα,α′ . Thus, if we have a Bloch Hamiltonian

Hk, we can now calculate the Green’s function from the eigenvalues and eigenvectors of

Hk [16]. These steps finally allow us to numerically evaluate all parts of the mean-field

equations, reducing their solution to a purely numerical problem. We will discuss the
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numerical procedure in the chapter 5.

2.3.2 Topological Kondo Insulators

The next question at this point is: when does the effective model derived above describe

a topological Kondo insulator? In order to answer this question, we can use equation

(2.17) to calculate the Z2 invariant. However, before we can apply this formula, we need

to calculate the eigenvalues of the parity operator. Since the parity of the conduction

(d) electrons is 1 and the parity of the f -electrons is -1, we have that the operator for

parity P is,

P =

(
1d

−1f

)
. (2.54)

Here, 1d(f) is the unitary matrix with the dimensionality of the amount of d(f) electron

bands in the model. We see that Heff (k) only satisfies inversion symmetry (Heff (k) =

PHeff (−k)P−1) if Vk is antisymmetric under k reversal. When we assume inversion

symmetry, this implies that Vk is zero at the high-symmetry points Γi, depicted in

figure 2.6. At these points, the Hamiltonian therefore separates into two blocks,

HΓi =

(
HΓid

HΓif

)
. (2.55)

Because of the shape of the parity operator P , this means that for an eigenstate corre-

sponding to an eigenstate of HΓid(f), the parity eigenvalue will pe positive (negative).

Looking again at formula (2.17), we conclude that the Z2 invariant ν is only non-trivial

if the sum of occupied f band Kramers pairs over all high-symmetry points is odd.

In case of two conduction electrons and two f -electrons, and a spin diagonal Hd(f), this

reduces to

(−1)ν =
∏
i

sgn(εΓid − εΓif ), (2.56)

where εΓid(f) is the eigenvalue with multiplicity two of Hd(f). Thus, in this case, a

Kondo insulator is a strong topological insulator if sgn(εΓid − εΓif ) is negative for an

odd number of high-symmetry points [15].

2.3.2.1 Surface-State Calculation

In order to check whether the calculations outlined above are correct, and edge states

indeed appear in the topologically non-trivial regime, we will calculate the band structure

of a system with boundaries. We can implement a boundary by Fourier transforming
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Figure 2.6: High-symmetry points in the Brillouin zone.

one of the components of the momentum vector to position space and making this space

finite without periodic boundary conditions. In this way, we effectively get a stack of

two-dimensional infinite planes.

In the case of two d-electron and two f -electron bands, this has been done in refer-

ence [15]. Here, the assumed dispersion relations are ξk = −2t
∑
a

cos(ka) and ε̃f =

−2tf
∑
a

cos(ka) + µf , where all energies have been taken relative to the chemical poten-

tial of the conduction electrons, which has been set to zero. We see that high-symmetry

points labeled by the same letter in figure 2.6 yield an equal contribution to the topolog-

ical invariant from equation (2.17). Assuming tf = 0.1t, µf < 0 (which has to be true

for the model to be an insulator), and t > 0, we find that the R and X points always

give a positive-signed contribution to the topological invariant. Thus, the topological

invariant is completely determined by the contribution from the Γ and M points. We

have that Γ gives a negative contribution if −6(t − tf ) < µf , and M gives a negative

contribution if −2(t− tf ) < µf . Thus we find that the material is topological if

− 6(t− tf ) < µf < −2(t− tf ). (2.57)

In order to see the edge states, we now consider a finite system, namely a stack of 32

two dimensional Kondo-insulator planes described by the Fourier transformation of the

assumed dispersion relations and a hybridization of the form

Vk =


V (σx sin kx + σz sin ky), within the planes,

iVzσz, upwards between the planes,

−iVzσz, downwards between the planes,

(2.58)

as in reference [15]. Calculating the eigenvalues of this Hamiltonian for different values

of kx, we indeed find gapless edge states as depicted in figure 2.7 for parameters in the

topological regime. This band structure is similar to the one found in reference [15]; the
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Figure 2.7: Band structure of a strong topological Kondo insulator with two fold
degeneracy in the f levels, plotted along the x axis k = kx, ky = 0. We see a Dirac
point inside the band gap as in reference [15]. The parameter values used are t = 0.7eV,

tf = 0.1t, µf = −2eV, V = 0.4eV, and Vz = 0.2eV.

slight differences are probably due to the use of different parameter values (not specified

in reference [15]).

2.3.3 Samarium Hexaboride

Samarium hexaboride SmB6, is the first material proposed to be a Kondo insulator, and

has been discovered almost fifty years ago [3]. The resistivity of SmB6 as a function

of temperature is shown in figure 2.8a. This closely resembles the resistivity one would

expect from a Kondo insulator. At high temperatures it is a metal, and with decreasing

temperature the material becomes insulating. Surprisingly, the resistivity does not di-

verge as the temperature goes to zero, there seems to be a residual conductivity as the

temperature goes to zero. This effect is not understood in the Kondo insulator model and

was originally explained by the presence of bulk impurities [3]. However, improvement

of the sample quality did not seem to reduce this conductivity [3, 4]. In 2010 Dzero et

al. [5] predicted that with the right configuration of parameters, topologically protected

metallic surface states could form in the Kondo gap, producing a natural explanation

for the saturated resistance [25]. Detailed band-structure calculations of SmB6 followed,

confirming that theoretically the material indeed had a non-trivial topological index

[37, 38]. This resulted in a large amount of experimental research trying to confirm the

existence of topological edge states in SmB6. We will briefly discuss two types of these

experiments (transport and ARPES) below.
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(a)

(b)

Figure 2.8: (A) SmB6 resistivity. As the temperature is lowered, SmB6 turns into a
Kondo insulator and the resistivity increases exponentially. However, at about 4 Kelvin
the exponential growth of resistivity halts and we are left with a residual conductivity
in the low-temperature regime. Image source: [4]. (B) Crystal structure of SmB6.

Image source: [37]

Transport studies constitute a very important tool in the search for an experimental

proof of a topological phase in SmB6. By using various sample sizes with different bulk

surface ratios these type of experiments may reveal whether the residual conductivity

is coming from the boundary or the bulk. As was reported in references [39], [40] and

[41], there is virtually no residual bulk conductivity, strongly supporting the conclusion

of topological edge states.

In addition, several angle resolved photo-emission (ARPES) studies have confirmed that

there are in-gap metallic states [2, 42–46], as shown in figure 2.9. These ARPES results

matched the theoretical prediction for the edge states from references [37, 38] remarkably

well [42]. Combined with the transport studies, this seems consistent with the prediction

of topological edge states. However, alternative explanations of the ARPES results have

been proposed by Zhu et al. [47], casting doubts on whether the measured edge states

were topological. Spin-resolved ARPES is seen as one of the most important methods to

solve the controversy [25], since it would reveal whether the edge states are indeed spin

momentum locked, as expected if the states are topological. In 2014, it was indeed shown

by Xu et al. that the surface state around the X point in the surface Brillouin zone is

spin-momentum locked [48], the results of this experiment are shown in figure 2.10. Here

we see that along a cut through the Fermi surface at kx = 0 the electrons are indeed
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Figure 2.9: Fermi surface map of SmB6 by Neupane et al. [42], using a laser based
ARPES system. A more yellow color indicates a higher intensity. Intensity contours
around the Γ and X points reflect in gap surface states that are consistent with the

theoretical predictions.

spin momentum locked in the x direction (2.10 c,d) and not in the y and z direction

(2.10 e-h), as expected from topological surface states. Although this finally seemed

to be conclusive evidence for topological edge states, new research by Hlawenka et al.

suggest that the edge states are not topological at all, but rather trivial surface states

[49]. This interpretation however, is inconsistent with results from STM measurements

of references [50], [51] and [52]. The solution of the controversy is believed to be in

spin resolved ARPES measurements of the Dirac cone around the Γ point and an STM

measurement of the quasi particle interference pattern. Unfortunately, these experiments

have not yet been preformed successfully [6].

It is worth noticing that there have been several other important results that provide

further evidence that the edge states are non-trivial. One of them is the ARPES ex-

periment mentioned before by Neupane at al. [42], where it is shown that there are not

only in-gap edge states, but that these states are also robust against thermo-cycling, as

one would expect from a topological edge state. Another important result is that the

edge states are robust against non-magnetic Y impurities, but destroyed by a similar

amount of magnetic Gd impurities [39]. This difference in impurity endurance is nat-

urally explained in the context of topological states, since magnetic impurities damage

time-reversal symmetry.
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Figure 2.10: (a) Fermi surface map of SmB6. (b) Intensity along the line C1 indicated
in a, for different energies. The red curves indicate the position of the energy ESR

and the intensity at this energy level. (c) Spin resolved intensity projected on the x
direction at ESR along the line C1. The red and blue symbols indicate the spin up and
spin down intensities respectively. (d) Spin polarization along the x direction for the
momenta on C1 at energy ESR. (e,f) Same as c, d but along the y direction instead.

(g,h) same as c, d but along the z direction. Figure source: [48].

2.3.3.1 Band Structure

Although there is still no conclusive evidence for the topological nature of the edge

states in SmB6, this material is, to date, the most promising candidate for a topological

Kondo insulator, which would be the first fully bulk-gapped, three-dimensional topolog-

ical insulator [6]. Therefore, it is important to study the theoretical models proposed

for the system, to explore further theoretical predictions that could potentially lead to

meaningful experimental results, able to settle the dispute.

The first model proposed to describe a topological Kondo insulator was discussed in

section 2.3.2.1. This model is the simplest model that we can imagine, that captures

the essential features of a Kondo insulator. It has two d-electron bands (spin up and

spin down), two f -electron bands (pseudo spin up and down), and (as we can see from

the Hamiltonian transformed to position space), only nearest-neighbor hopping is taken
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into account. Unfortunately, this does not completely capture the behavior of SmB6, as

the phase diagram is heavily dependent on the amount of f bands that are taken in to

account, as shown in figure 2.11 [11]. In these phase diagrams we indeed see a topological

phase transition from topological insulator to band insulator. In the next chapter we

will discuss how this phase transition can be detected using a thermodynamic approach

instead of calculating the changing topological invariant. In chapter 5 a similar phase

diagram is calculated for a model with 6 f -bands. Although this phase diagram shows

the same phases as the one in figure 2.11, it has a slightly different shape. The difference

is probably caused by little differences in the model and a different method for solving

the mean-field equations,as will be discussed in chapter 6.

Figure 2.11: Phase diagrams of Kondo insulators for (a) two, (b) four and (c) six
f bands. As the amount of f bands increases the weak topological insulator phase

disappears. Figure source: [11].

As shown in references [11] and [53], the inclusion of the extra f bands also causes

an increase of the parameter space in which the model predicted the existence of a
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(a) (b)

(c) (d)

Figure 2.12: (A)Band structure of the model proposed in reference [37]. The structure
does not have a gap. (B) Due to a shift in the on-site f -electron energy a gap arises,
this can be seen more clearly in the zoomed-in image shown in (C). (D) Edge states

appearing for the finite model of n=64 layers.

strong topological insulator. We have independently reproduced the band structure

that corresponds to the model proposed by Tetsuya Takimoto in reference [37], which

includes four d- and four f -bands, as shown in figure 2.12a. Unfortunately, the spectrum

does not exhibit a gap. However, as proposed in the reference, we modified the on-site

f -band energy levels such that εf/td = −4.06 to open up an indirect gap. The resulting

band structure is shown in figure 2.12b, where we also applied an overall energy shift to

center the gap around zero energy. In figure 2.12d, we calculated the band structure for

a finite-sized version of the model. As expected, we see the appearance of edge states.

The models in references [37] and [53] only take into account first nearest-neighbor hop-

ping in the hybridization. However, in order to give a more quantitative comparison

with experiments, a bit more effort is needed. In reference [16], six f bands an four d

bands are included and the influence of terms up to seven nearest neighbor are investi-

gated. The parameter values are chosen based on the results from ab-initio calculations

[54]. The resulting band structure agrees semi-quantitatively with experimental results

for SmB6. A minimal model that captures the main features of the system is proposed.

We have calculated the band structure for both the finite and infinite system described

by this more elaborated model, and found the results shown in figures (2.13a), (2.13b),
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(a) (b)

(c)

Figure 2.13: (A)Band structure of the minimal model proposed in reference [16] with
inclusion of all hybridization terms up to second nearest neighbor, with mean field
solutions λ = 0.53, b = 0.76 and µ = 0.15 obtained using the method outlined in
chapter (5). The structure has very small gap, as can be seen in the zoomed-in image
shown in (B). (C) Edge states appear for the finite model of n=25 layers, at both the

Γ and X points.

and (2.13c). Indeed, upon the inclusion of more bands, non-trivial edge states appear

at both the Γ and the X points.

Now that we have a model of a topological Kondo insulator, and can calculate when

this model is in a topological phase, we next need to calculate the thermodynamics of

this model in order to calculate the heat capacity and phase transitions. We will discuss

this in the next chapter.



Thermodynamics of Finite Systems

Generally, thermodynamics is used to describe a system in the thermodynamic many

particle limit, such that the boundaries of the system are no longer relevant for the

behavior of the system. In case of topological insulators however, we are interested

in precisely these boundaries. In order to still use the principles of thermodynamics in

systems where the boundaries are important, there are two different approaches available

that eventually yield the same results in first order approximation; Hill thermodynamics

and the traditional Gibbs method of effective boundary theories [55]. We will first

review some basic thermodynamic concepts. In the following section we will consider the

perhaps more intuitive Gibbs approach to include the boundaries of a system. After that,

Hill thermodynamics will be investigated and we will discuss how Hill thermodynamics

connects to the Gibbs approach as a more general form of the same physics. Finally,

we will consider how the formalism can be applied to the SmB6 model described in the

previous chapter to calculate the heat capacity, detect phase transitions and determine

their order.

3.1 Basic Thermodynamics

We will first consider the general thermodynamic formalism. The first law in thermo-

dynamics is the thermodynamic identity

dE = TdS − pdV + µdN, (3.1)

where E is the energy of the system, T the temperature, S the entropy, p the pressure,

V the volume of the system, µ the chemical potential and N the particle number. Under

the assumption that E is extensive in S, V and N this can easily be integrated to give

E = TS − pV + µN. (3.2)

Unfortunately, in case of topological insulators, the boundary of the system should not

be neglected, as this is exactly where the edge states are. This means that energy is no

longer extensive in V , since if the volume doubles, the surface does not do the same. It

is therefore no longer possible to straight forwardly perform the integration of equation

(3.1), and a different approach becomes necessary, this problem is solved by Gibbs and

Hill thermodynamics.

32
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3.2 Gibbs Effective Boundary Theory

In Gibbs effective boundary theory, the boundary of the system is threated as an ex-

tensive thermodynamic variable in itself [55, 56]. The surface is threated as a separate

thermodynamic system, with its own energy, entropy and particle number. Thus, for a

system with bulk B and boundary b, we do not only have a bulk energy EB,

EB = SBTB − νV +NBµB, (3.3)

there is also the boundary energy Eb,

Eb = SbTb − γA+Nbµb, (3.4)

where A is the surface area. If the system is in thermodynamic equilibrium, we have

that TB = Tb = T and µB = µb = µ, and the total energy E becomes

E = T (SB + Sb)− νV − γA+ µ(NB +Nb). (3.5)

We can now determine the total grand potential Φ by summing the boundary and bulk

grand potential (Φi = Ui − SiTi − µiNi),

Φ = −νV − γA. (3.6)

The corresponding thermodynamic identity reads,

dΦ = −SdT −Ndµ− νdV − γdA. (3.7)

In case of constant temperature and chemical potential, the parameters γ and ν can be

calculated by determining how the grand potential changes with different scalings. For

example, in case of a three-dimensional system, that is periodic in two dimensions and

non-periodic in the third, the grand potential can be calculated for different volumes,

while keeping the surface constant by varying the length of the system in the non-

periodic direction. Since the grand potential scales linearly with the volume, a linear

fit through these points then gives both ν and γ. A problem with this formalism, is

that it only works when the boundary and bulk are completely separated. In the case

of a system with one finite dimension, this limit means that there can be no interaction

between the top and bottom surface through the bulk, thus the separation between the

two boundaries has to be long enough. Hill thermodynamics, on the other hand, does

not impose this constraint at the start, and only yields the same results as Gibbs method

for the grand potential if the constraint is imposed explicitly.
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3.3 Hill Thermodynamics

Hill thermodynamics is based on the idea of introducing a new variable in the system, by

allowing the number of systems to vary. We consider N identical copies of the system,

each containing N particles. If we allow this number of identical copies to vary, the

thermodynamic identity for the total system reads

dEt = TdSt − pNdV + µdNt − p̂V dN , (3.8)

here, the sub-script t stands for the total system, V is the volume of a single subsystem,

and −p̂V is the thermodynamic response to a change in N . It is important to notice here

that p̂ might in principle depend on V , however, the leading therm in p̂ should always be

linear in V . If we now consider a system with constant T , V , µ we can straightforwardly

integrate equation (3.8), since it is extensive in N , to find

Et = TSt − p̂VN + µNt. (3.9)

The energy of a single subsystem can now be recovered by dividing by the number of

systems N to find

E = TS − p̂V + µN, (3.10)

here we used that S = St/N and N = Nt/N . Since this result holds for any V , T , µ,

we have effectively integrated equation (3.1) without assuming extensivity in V . This

nonextensive behavior is expressed in the parameter p̂ that can depend on V . Since p̂V

has a leading term of order V we can rewrite the energy in the more recognizable form

E = TS − pV + µN +X, (3.11)

where X is defined as (p− p̂)V [14, 55].

In the case of the system with periodic boundary conditions in all but one direction

that is large enough to separate bulk and boundary (as was discussed in the previous

section), we see that X = γA. However, Hill thermodynamics is also true if bulk and

boundary are not separated, in which case X would include more sub-linear terms.

Thus, we observe that although the Hill and Gibbs approach give the same results, Hill

thermodynamics is applicable to a wider range of systems.
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3.4 Application to SmB6

We can now apply the formalism of finite-size systems to the finite form of the models

described in section 2.3.3.1. In this case, we again have a model with periodic boundary

conditions in all but one direction (the z direction). In the non-periodic direction the

system consists of n layers. If n is large enough, there is no bulk-mediated interaction

between the upper an lower layer, and equation (3.6) can be applied. Thus the grand

potential can be separated in a boundary and a bulk contribution

Φ(T, n, l) = φ0(T )l2 + φ(T )nl2, (3.12)

where l is the number of sites in the periodic directions, φ0(T ) is the contribution of the

surface to the grand potential and φ(T ) is the volume contribution. If l is kept constant

for a calculation of the grand potential, then so is the surface. Using,

Φ(T, n, l) =
1

β
log
(

Tr
[
e−βH

])
(3.13)

=
1

β
log

∏
j,k

 1∑
njk=0

e−βnjkεjk

 (3.14)

=
1

β

∑
j,k

log
(

1 + e−βεjk
)

(3.15)

to calculate the grand potential for several values of n, φ0(T ) and φ(T ) can be determined

by making a linear fit to the function [55],

Φ(T, n, l)

l2
= φ0(T ) + φ(T )n. (3.16)

Using this grand potential, the order and location of the topological phase transition

can be calculated separately for bulk and boundary, as will be explained in the next

section.

3.5 Phase Transitions

There are several ways to classify phase transitions. The most commonly used is the

Landau classification, which is based on the principle that in a phase transition a sym-

metry of the system is broken [57]. The order parameter classifying the symmetry can

then either make a jump, making the phase transition discontinuous as in figure 3.1b,

or change smoothly, making the phase transition continuous as in figure 3.1a. An intu-

itive example of this is the transition from a non-magnetic to a magnetic system in the
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(a) (b)

Figure 3.1: (A) a continuous phase transition where the order parameter (for example
average magnetization) changes continuously with temperature. (B) a discontinuous

phase transition, the order parameter makes a jump. Image source: [36]

Heisenberg model. In a non-magnetic system, the electron spins point in random direc-

tions and the average magnetization is zero. However, as the system is cooled down, the

magnetization changes, and at zero temperature the magnetization will be maximal, all

spins will point in the same direction. In this case the symmetry between up and down

spin is broken, the electron spins are either up or down. We can imagine the average

magnetization changing in two ways. It can change from zero smoothly to its maximal

value, or it can make a jump at some point. In the Landau classification, this classi-

fies all possible types of phase transitions. Although the Landau classification was long

considered an universal method, topological phase transitions do not fit in this picture,

as no underlying symmetry of the system is broken, and no local order parameter is

present. Therefore, an older classification system, the Ehrenfest classification, becomes

relevant.

In the Ehrenfest classification schedule, phase transitions are categorized based on the

order of the derivative of the free energy with respect to the relevant thermodynamic

variable that is discontinuous [58], as shown in figure 3.2. Here, no symmetry breaking

is necessary to define a phase transition. Although this classification is just like the

Landau classification incomplete, as it does not include transitions where the free en-

ergy or a derivative diverges, it is ideally suited to classify topological phase transitions.

In reference [55] it was shown that since phase transitions are visible as discontinuities

in (the derivatives of) the grand potential, separating the bulk and boundary contribu-

tions to the grand potential as explained in the previous section, makes it possible to

calculate where topological phase transitions are and what their order is, separately for

bulk and boundary. This is especially relevant since it has been shown in reference [9]

that topological phase transitions display unexpected universalities in the order of their
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Figure 3.2: Ehrenfest classification. Here, we see a temperature driven phase transi-
tion where the second derivative of the free energy with respect to the temperature is
discontinuous, thus the transition is second order according to the Ehrenfest classifica-

tion.

phase transition. The order of the topological phase transition in bulk and boundary

was calculated for several models, revealing that the order was related to the dimen-

sionality D of the model; the edge phase transitions were all of order D and the bulk

phase transitions were all of order D + 1. In the next chapter, we will show that this

phenomenon can be understood in the framework of critical exponents.



Critical Exponents

Critical exponents are exponents that describe the behavior of various physical quantities

near a phase transition. As we will see in the following section, critical exponents are

quite general, they only depend on a couple of features of the system. We will first

consider classical phase transitions and the role of critical exponents in this case. In

the next section, we will show that these concepts can easily be translated to quantum

phase transitions, in which there are no thermal fluctuations.

4.1 Classical Phase Transitions

As discussed is the previous chapter classical phase transitions can be divided in first-

and higher-order transitions. In the case of first-order transitions, the first derivative

of the free energy is discontinuous, and a phase transition occurs trough a coexistence

of the two phases. A higher order phase transition is continuous in the first derivative

of the free energy, but discontinuous in a higher order derivative. For a higher order

phase transition, there is no phase coexistence, instead, there is a critical point at which

one phase changes into another [59]. Near this critical point, the correlation length ξ,

which is the characteristic length of a correlated region, or in other words, determines

how fast the correlation between two points vanishes with increasing distance between

them, diverges with exponent ν:

ξ ∝ |t|−ν . (4.1)

Here, t is dimensionless measure of distance from critical point. In case of a temperature

driven phase transition, t would be equal to the reduced temperature t = |T − Tc| /Tc,
where Tc is the temperature at the critical point. Analogous to the divergence in corre-

lation length, the correlation time τc, which determines how fast the correlation between

two points vanishes with increasing time, diverges with a different exponent νz,

τc ∝ ξz ∝ |t|−νz . (4.2)

Near the critical point, the only relevant length scale is the correlation length. Thus, if

we rescale all lengths in the system by a common factor b, and at the same time adjust

the external parameters such that the correlation length stays the same, the physical

properties of the system have to be unchanged. Thus, for the free energy f , depending
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on t and some other external parameter h, we have the homogeneity relation,

f(t, h) = b−df(tbyt , hbyh). (4.3)

Here yt, yh are critical exponents and d is the dimensionality of the system. We can now

reduce the amount of independent variables by fixing tbyt = 1:

f(t, h) = td/yt f̃(h/tyh/yt). (4.4)

Thus, for zero h, we have that the second derivative of f with respect to t goes as

|t|d/yt−2 = |t|−α , (4.5)

where α is a standard critical exponent. Since the correlation length changes (like all

lengths) as ξ → bξ under a rescaling, t changes as t → tbyt with a rescaling, and

t ∝ ξ−1/ν , we have that,

ν =
1

yt
. (4.6)

Combining equation (4.5) and (4.6) we find the Josephson hyper-scaling relation [59, 60],

2− α = νd. (4.7)

Since 2 − α determines the order of the phase transition, it is thus possible to predict

the order of a classical phase transition, solely based on the dimension of the system

and the value of the critical exponent ν.

4.1.1 Alternative Expression

In order to determine the critical exponents, it is sometimes useful to rewrite equation

(4.1) and (4.2) in a different way. Since the gap size ω has the dimension of inverse

time, we have ω ∝ 1/τc. Similarly, the inverse length dimension of momentum k gives

k ∝ 1/ξ. Combining this with equation (4.2) we find that near the critical point

ω ∝ kz. (4.8)

Again writing k ∝ 1/ξ and using equation (4.1) this scaling relation leads to [61],

ω(k = 0) ∝ |t|νz . (4.9)
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4.2 Quantum Phase Transitions

In the zero temperature limit, there are no thermal fluctuations and the phase transition

is dominated by quantum fluctuations. In order to gain a deeper understanding of the

difference between these zero temperature quantum phase transitions and classical phase

transitions, we look at the canonical density operator e−H/kBT . This operator looks

exactly like the time evolution operator in imaginary time τ , with the identification

1/kBT = τ = −iΘ/~ where Θ is the real time. Therefore, it is convenient to introduce

an imaginary time direction in the system, as was done in equation (2.28) and (2.29)

using the path integral formalism. At zero temperature, the imaginary time direction

is similar to an additional space dimension, since the extension in this direction then

becomes infinite. According to equation (4.2), time scales like the length to the power z.

The classical homogeneity relation of equation (4.3) can thus be rewritten for the zero

temperature case as,

f(t, h) = b−(d+z)f(tbyt , hbyh). (4.10)

Thus we see that a quantum phase transition in d space dimensions is related to a

classical phase transition in d+z space dimensions [59, 62]. This results in the Josephson

hyper-scaling relation for quantum phase transitions:

2− α = ν(d+ z). (4.11)

Looking back to the results on the order of topological phase transitions from refer-

ence [9], introduced in the previous chapter, where the order of the topological phase

transition of a D dimensional system was found to be D + 1 in the bulk and D on the

boundary, we see that this behavior is indeed accurately described by equation 4.11, in

case ν = z = 1. For the models studied in reference [9] this is indeed the case. However

for the model by Baruselli et al. [16] this is not the case, resulting in a derivation from

the universal law proposed in reference [9], as will be discussed in the next chapter.



Results

In this thesis, we use the minimal model proposed by Baruselli et al. [16], where we

include all hybridization terms, up to second nearest neighbor. We will first present

our solutions to the mean field equations as a function of both temperature and hy-

bridization, which we will need for the calculation of the heat capacity and topological

phase transition respectively. Then, we will present the bulk and boundary contribu-

tions to the heat capacity. Finally, we will discus the resulting phase transitions and

phase diagram.

5.1 Solution to the Mean-Field Equations

The solutions to the mean-field equations were calculated iteratively using a momentum

space grid. In each step of the iteration the values of λ, µ and b were adapted accordingly

with respect to the iterative equations,

λn+1 =
1

bnNs

(∑
k

Tr
[〈
f †kck

〉
(λn, µn, bn)Vk

]
+ bn

∑
k

Tr
[〈
f †kfk

〉
(λn, µn, bn)tk

])
,

(5.1)

µn+1 = µ ε R s.t.

 1

Ns

∑
k,α

〈
f †kαfkα

〉
(λn+1, µ, bn) +

1

Ns

∑
k,l,σ

〈
c

(l)†
kσ c

(l)
kσ

〉
(λn+1, µ, bn)− 4

 = 0,

(5.2)

bn+1 =

√√√√1− 1

Ns

∑
k,α

〈
f †kαfkα

〉
(λn+1, µn+1, bn), (5.3)

that were derived from the mean-field equations of section 2.3.1.2. For most values of

temperature and hybridization equation (5.2) was solved numerically using the standard

Mathematica function ArgMin. However, in some cases of low temperature and high

hybridization this was not possible with the required precision, due to both numerical

and phenomenological limitations.

The phenomenological reason is that at zero temperature, the only information the

µ equation gives is that the Fermi level solution should be in the gap, resulting in

numerical solutions randomly placed in the gap. For low but non-zero temperature

this is in principle not the case. However, there are numerical limitations when the
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(a) (b)

(c)

Figure 5.1: Solutions to the mean-field equations as a function of temperature. The
solutions were obtained with a k-space grid of 153 points.

temperature is close enough to the T = 0 limit, as the results become independent for

changes in µ up to machine precision.

Although the numerical limits can be extended by the use of a denser momentum space

grids, this also significantly lengthens the computation time of the solving algorithm,

putting a boundary on the extension of these limits.

5.1.1 As a Function of Temperature

The numerical solutions to the mean-field equations as a function of temperature using

a k-space grid of 153 points are shown in figure 5.1. Here the hybridization of SmB6

(v = 0.1) is used. We see that the solution for µ becomes unstable for low temperatures.

Furthermore, we observe that the mean field parameters change minimally with a change

of temperature.

5.1.2 As a Function of Hybridization

The numerical solutions to the mean-field equations as a function of hybridization using

a k-space grid of 53 points are shown in figure 5.2 for several temperatures. Here, we see

that the µ solution indeed becomes instable for low temperatures and high hybridization.
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(a) (b)

(c)

Figure 5.2: Solutions to the mean-field equations for different temperatures and var-
rying hybridization strength v. Blue, pink, yellow and green indicate a temperature of
0, 100, 500, 1000 Kelvin respectively. The solutions were obtained by using a k-space
grid of 53 points. Red indicates the solution for 0 Kelvin with a k-space grid of 133

points.

We also show the solution to the mean field equations for zero temperature, using a

momentum grid of 15*15*400 points. Here we see that in this case, the solution for the

chemical potential indeed becomes more stable.

5.2 Heat Capacity

In order to calculate the heat capacity, stable mean-field solutions as a function of

temperature are necessary. Therefore, we approximated the mean-field solutions to be

constant for temperatures up to 10 Kelvin. This approximation is supported by the

minimal change in b and λ at temperatures below 10 Kelvin and the realization that for

low temperatures with respect to the gap size, the value of µ is not important for the

filling, as long as it is in the gap. This approximation led to the heat capacity shown in

figure 5.3. It is important to note here, that if we convert the units of the calculated heat

capacity to the units used in figure 1.1, the results are of the same order of magnitude.

For the calculation of the bulk and boundary contribution to the heat capacity a system

of 40 to 44 layers with a periodic k-space grid of 152 points was used. We see that

the bulk contribution is falling of faster then linear with decreasing temperature, as we
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Figure 5.3: Heat capacity of SmB6 for low temperatures, split in a bulk and surface
contribution, and the sum of the two giving the total, for a system of 200 layers.

would expect since the bulk is insulating. On the edges however, we see the same kind

of behavior, which is unexpected since the edges are metallic. This is probably due to a

limited density in the periodic k-space grid.

5.3 Phase Transitions

We see three different phases in the model as the hybridization is varied from 0 to 0.4.

At low hybridization there is a metallic phase, at intermediate hybridization there is a

topological phase and at high hybridization there is a trivial band insulator phase. We

will discuss each of the transitions separately.

5.3.1 Topological Insulator to Metal

As the hybridization decreases, there is a point where the hybridization is no longer

strong enough to open up the hybridization gap, resulting in a closing of the band gap,

and the system becoming metallic. As shown in figure 5.4, the band gap does not close

by a touching of the bands, but closes indirectly instead.

5.3.2 Topological Insulator to Band Insulator

At zero temperature, the system undergoes a quantum phase transition at a hybridiza-

tion strength of about 0.36eV. At this point, λ becomes large enough, such that the
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Figure 5.4: Indirect closing of the band gap. Here we see that as the hybridization
decreases to 0.05 the band gap closes indirectly. For this figure, the mean field solutions
b=0.70, λ=0.21 and µ=0.42 obtained for T=1K and a momentum space grid of 53 points

were used.

d- and f -bands no longer overlap, and the topological invariant becomes trivial. Thus,

there exists a phase transition from a topological insulator for lower v to an insulator

at higher v. The resulting band structures around the phase transition are shown in

figure 5.5. Here, it is indeed visible that the lowest d band is shifted over the highest f

band, making only the f bands occupied at the high symmetry points, which results in

a change of the topological index.

Around this phase transition, the grand potential contribution from both surface and

boundary was calculated using Hill thermodynamics as described in section 3.4. Al-

though the solutions to the mean-field equation become more stable with increasing

density of the momentum space grid, we were unable to get a solution that was stable

enough to see a phase transition from the grand potential within the available compu-

tation time. This problem was solved near the band insulator to topological insulator

transition by making a linear approximation of µ that is in the gap, as shown in figure

5.6. For the calculation of the grand potential, the mean field equations were solved on

a momentum space grid of 53 points with a spacing δv = 0.00025. After making a linear

approximation for µ that is in the gap, as explained above, these solutions were used to

calculate the grand potential of a system with a periodic k-space grid of 152 points and

400 to 404 layers. The resulting volume contribution is shown in figure 5.7. Here, we

see a discontinuity in the third derivative, indicating a third order phase transition. The

surface contribution is shown in figure 5.8, here we see a second order phase transition.
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(a) (b)

(c) (d)

Figure 5.5: Band structure for different hybridization strengths. Pink and yellow
indicate the un-hybridized d- and f -electrons respectively, and blue indicates the hy-
bridized band structure. In (A) the band structure just before the phase transition is
shown at v = 0.358 eV. (B) is a zoom of (A) where the band gap is visible. (C) depicts
the band structure very close to the phase transition, at v = 0.363. (D) depicts the
band structure after the topological phase transition at v = 0.365, the lowest d band

here lies above the f bands, giving a trivial topological index.

Figure 5.6: µ solution of the mean field equations around the topological insulator to
band insulator phase transition. The blue and pink dots indicate the upper and lower
bound of the gap respectively. The black line is a possible linear approximation of µ

that is within the gap.
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(a) (b)

(c) (d)

Figure 5.7: Bulk contribution to the grand potential φb as a function of hybridization
v, and its derivatives. The third order derivative is discontinuous, indicating a third
order phase transition. Note; in these calculations the sign of the parameter ηx7v2
from reference [16] was switched, Although this might have caused slight numerical
deviations, the change does not alter the band structure significantly, and we do not

expect any qualitative differences.

5.3.2.1 Critical Exponents

As explained in chapter 4, the order of the phase transition can be predicted by using

the critical exponents ν and z. Using equation (4.8) and (4.9), these critical exponents

were calculated by determining the gap size for different k and t as shown in figure

(5.9a) and (5.9b). The resulting critical exponents are z = 2 and ν = 1/2. Using the

hyper-scaling relation of equation 4.7 we find,

2− α =
1

2
(d+ 2) . (5.4)

Thus we find 2− α = 2.5 in the bulk and 2− α = 2 at the boundary. This is consistent

with the third order bulk, and second order boundary phase transition we find using

Hill thermodynamics.
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(a) (b)

(c)

Figure 5.8: Surface contribution to the grand potential φA as a function of hybridiza-
tion v, and its derivatives. The second order derivative is discontinuous, indicating a
second order phase transition. Note; in these calculations the sign of the parameter
ηx7v2 from reference [16] was switched, Although this might have caused slight numer-
ical deviations, the change does not alter the band structure significantly, and we do

not expect any qualitative differences.

(a) (b)

Figure 5.9: Gap size as a function of (A) k at the critical point and (B) hybridization
at k = 0. The dots indicate the calculated gap size. In (A) a quadratic fit to the date
is plotted. Using equations (4.8) and (4.9) we find νz = 1 and z = 2. The mean-field
solutions used for these figures were obtained for zero temperature on a momentum

space grid of 53 points.
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5.3.3 Phase Diagram

Having identified the different phases of the model, we can now calculate the phase

diagram by solving the mean-field equations for different temperatures and calculating

the hybridization for which the gap closes at these temperatures. These gap closings

then give the phase transition, since the phases can only change as the gap closes. The

results are shown in figure 5.10. Here we see that the boundary between the phases barely

changes with increasing temperature. We note that for SmB6, which has a hybridization

v = 0.1, there is no temperature driven phase transition at temperatures for which the

model is valid. This absence could be since the Anderson lattice model is not valid

above the Kondo temperature, and the mean-field approximation is only valid for low

temperatures.

To calculate the transition points in figure 5.10 a momentum space grid of 53 points

was used to solve the mean-field equations, for the metal to topological Kondo insulator

transition the mean field equations were solved with δv = 0.003, and for the topological

Kondo insulator to band insulator transition the mean field equations were solved with

δv = 0.0003, in between the points, an interpolation function was used.

Figure 5.10: Phase diagram of SmB6 modeled by the model proposed by Baruselli et
al. [16]. We see a metal phase with no gap, a topological Kondo insulator (TKI) phase
with a gap and non trivial topological invariant, and a band insulator phase with a gap

and trivial topological invariant.



Discussion and Conclusion

In this thesis, we investigated thermodynamics of the proposed topological Kondo insu-

lator SmB6, using a mean-field slave boson approximation and Hill thermodynamics. In

particular, we considered the order of the topological Kondo insulator to band insulator

phase transition, and the bulk and boundary contribution of the system to the heat

capacity. We found that the order of the phase transition can be accurately predicted

using critical exponents of the system, namely a third ordered one in the bulk and a

second ordered one on the surface. Furthermore, we found that the anomalous behavior

of the heat capacity of SmB6 in experiments can probably not be explained by the edges

in a mean-field model.

By obtaining these results we used several approximations. The most obvious approxi-

mation is the slave-boson mean-field approximation. However, the starting Hamiltonian,

the Anderson lattice model is already a mean-field approximation that is only valid at

low temperatures. The validity of our results for finite temperatures are therefore ques-

tionable, as is inherent to mean-field theory. Additionally, it was shown in reference [63]

that the introduction of interactions to a system can change the order of a phase transi-

tion, and even give a first order topological phase transition. Furthermore, as discussed

previously, in reference [10], it was shown that the low temperature bulk heat capacity

can significantly change when excitons are considered. Therefore, it is interesting to

further investigate the influence of interactions on the topological phase transition in

the model used in this thesis.

Within the mean-field theory, several other approximations were made. It was assumed

that the mean-field parameters were constant through out the system, which as shown

by [64], does not have to be true for finite-size systems. Furthermore, the mean field

equations were solved on a periodic k-space grid. As shown in figure 5.2 the density of the

k-space grid influences the mean-field solutions. However, in the region of the topological

phase transition this influence is much less pronounced. In order to decrease the effect

of these approximations, even denser k-space grids can be used, and the mean-field

parameters can be allowed to vary with the distance to the edge. This would, however

significantly increase the computation time required to find solutions to the mean-field

equations. Finally, in the calculation of the grand potential, the bulk and boundary

contribution were estimated by making a linear fit. For this method to be correct, the

system needs to be large enough to prevent interaction between the boundaries. In order

to make the results more reliable, bigger system sizes can be used. However, since we

have checked that there is a close resemblance between the results obtained from the
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finite system for the bulk and the results for the infinite model, it is unlikely that this

will have much effect on the results.

The calculated heat capacity from figure 5.3 does not reproduce the experimentally

measured upturn in figure 1.1. Although this might be caused by a limited momentum

space grid that does not detect the edge states properly, recent theoretical results by

Knolle et al. [10] indicate that the upturn is indeed not a surface but instead a bulk

effect. The effect of the boundary on the heat capacity of a SmB6 sample is currently

experimentally investigated by J. P. Paglione, unfortunately the results of this research

are not yet available. We conclude that the edge states are probably not responsible for

the upturn in the heat capacity. However, a calculation with a bigger k-space grid is

necessary to fully investigate the influence of the edge states on the heat capacity in the

used mean-field model.

The phase diagram calculated from the mean field solutions in the previous chapter

differs significantly from the phase diagram previously calculated by Dzero et al. [11].

The most notable difference is that as the hybridization goes to zero, we do not find the

transition to a b = 0 solution that is described in reference [11]. Even if we solve the

mean field equations for the model used by Dzero et al., we can not detect this transition.

We therefore conclude that the origin of the difference is in the solving algorithm for

the mean-field equations. After contact with the authors and detailed comparison of

the algorithms used, we found two main differences. First of all, the definitions of the

mean-field equations are slightly different. Where we used a finite k-space grid, Dzero et

al. numerically integrated over continuous k. Although this could explain the difference,

one would then expect our solutions to converge to the solutions by Dzero et al. for

increasing density of k points. However, as we increased the k space density up to 253

points, no such convergence was found. Secondly, the solving algorithm used is different.

Where we used an iterative method where one solution generates the next one through

a rewriting of the mean field equations, Dzero et al. used a derivative based solving

algorithm, a modification of the Powell hybrid method. This difference in method could

explain the difference in result, if one of the methods finds a local stable point instead

of the global solution. Although we found a high sensitivity of the method by Dzero et

al. to starting conditions, which to supports the idea of a local minimum, it also seems

oddly coincidental that a local minimum would give such (besides the b = 0 behavior)

similar solutions. Therefore, further investigation of this problem is necessary.

Unfortunately, since for SmB6 the hybridization v is equal to 0.1, it is far away from

the phase transitions in the phase diagram of figure 5.10. This makes it extremely dif-

ficult to experimentally study the topological phase transition. This is supported by

experimental measurements of the phase diagram of SmB6 with varying temperature
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and pressure in reference [65]. Here, we see that although the pressure can influence

the hybridization [66], there is no pressure induced band insulator to topological Kondo

insulator phase transition. Therefore, it would be interesting to investigate the possi-

bility of other materials being closer to this phase transition, since the material might

cross the phase boundary by either tuning the temperature, crossing the phase bound-

ary in figure 5.10 vertically, or by indirectly tuning the hybridization of the system and

crossing the phase boundary horizontally. Unfortunately, the hybridization can not be

tuned as a single parameter. It is, however, influenced by external parameters like the

pressure, as mentioned before, and magnetization [66]. This motivates further research

on the influence of these parameters on the model. Additionally it would be interesting

to see how the model responds to the presence of bulk carbon content, as it has been

experimentally shown in reference [7] that this can systematically increase the surface

conductivity of SmB6.

Another interesting topic for further research would be to see if the topological phase

transition, and its order, can also be calculated using correlation functions. The idea

behind this is that correlation functions, similar to the grand potential, display a discon-

tinuity (in the derivative) with respect to the relevant thermodynamic parameter. This

might also provide a natural way to include interactions, as they can be incorporated

through first loop corrections to the correlation functions.
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