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A B S T R A C T

In this thesis the entanglement entropy of fermions on sublattices is studied and
contrasted with known results for bosons. By studying a (1 + 1)-dimensional
periodic lattice and generalizing the notion and theory of circulant matrices
to the broader class of phase circulant matrices, the results can be obtained
analytically, thus providing a thorough understanding of entanglement entropy
of fermion systems. To study the effect of long range coupling, a Lifshitz theory
is adapted.

To start with, known results for the boson system have been reproduced to
provide a background for the fermion results. The results for fermions show,
firstly, a significant effect of the boundary conditions on the entanglement
entropy. Secondly, a remarkable distinction between massive and massless
fermions arises in the result that massless fermions generally have a maximal
entanglement entropy. Most striking however, is the insight gained on the
effect of long range coupling on the entanglement entropy, where the results for
fermions strongly contrast the boson system: the entanglement entropy does
not generally increase when long range coupling terms are added. We propose
an explanation of this phenomenon by destructive interference. These results
provide new and profound insights on entanglement of fermion systems.
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1

I N T R O D U C T I O N

Von Neumann wrote down the mathematical fundament of non relativistic
quantum mechanics in 1932 [1]. But only later on, in 1935, it were Einstein,
Podolsky and Rosen who uncovered a feature of the quantum theory that has no
classical counterpart and is still being studied today: Quantum entanglement.
This feature entails that the overall state of a composite quantum system with
interactions between the subsystems is in general not a direct product of the
states in the individual subsystems [2]. In that same year, Schrödinger realized
“the best possible knowledge of a whole does not include the best possible
knowledge of its parts” [3]. This phenomenon about the relation between
knowledge of the system and knowledge of the subsystems was quantified
around 1995 [4, 5] in terms of an entropy called the entropy of entanglement,
or just entanglement entropy.

The current interest in quantum entanglement origins not only from theoret-
ical and philosophical curiosity, but also from applications such as quantum
cryptography [6, 7], quantum dense coding [8, 9], quantum teleportation [10]
and the very exciting field of quantum computation [11]. On a more fundamen-
tal level, quantum entanglement may be responsible for macroscopic properties
of solids [12] and can provide an order parameter for quantum phase transitions
[13, 14, 15]. The above makes a clear case for the relevance of a good, analytic
understanding of quantum entanglement.

Indeed, entanglement entropy is being studied intensively in quantum field
theory and conformal field theory (a review of these fields of study can be
found in [16] and [17] respectively). A well established result on the entropy of
entanglement is the area law, which states that in a theory with local interac-
tions, the entanglement entropy scales with the area between the considered
subsystems [18]. This law was later seen to apply in conformal field theory
as well [19], inviting the use of the AdS/CFT correspondence. Interestingly,
the use of this correspondence relates the entanglement entropy to black hole
physics, particularly, the area law results in Einsteins equation on gravity [20,
21]. Of special interest also is a class of conformal field theory which respect
the so called Lifshitz scaling symmetry [22, 23], because at quantum critical
points such physics occur [24, 25].

Often one has to rely on numerical methods to compute the measure of
entanglement. This thesis however, attempts to contribute to the development
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2 introduction

of an analytic understanding by specifying a particular composite system that
allows us to compute the quantum entanglement analytically.

Before specifying the system, we first need to have a measure of quantum
entanglement. This is provided by the von Neumann entropy [1, 5]. Suppose
we have a composite system, composed of subsystems A and B, such that its
corresponding Hilbert space can be written as H = HA ⊗ HB. The composite
system is in some state |ψ〉, which in general cannot be written as a direct
product of states in subsystems A and B. Because H = HA ⊗ HB,we can
define the reduced density matrix of subsystem A from the total density matrix
ρ = |ψ〉〈ψ|, by tracing out the the eigenstates of HB:

ρA = TrB(ρ). (1)

Given the reduced density matrix ρA, the entanglement entropy is defined by
the formula

SA = −Tr(ρA log ρA). (2)

Thus, an analytic understanding of the entanglement entropy can be obtained
by an analytic understanding of the reduced density matrix, or, more specifically,
its eigenvalues. Fortunately, a useful method has been developed to obtain
the eigenvalues of the reduced density matrix through the eigenvalues of the
two point correlation matrices [26, 27, 28]. We adapt this method and apply it
to specific systems where we can compute the eigenvalues of the correlation
matrices analytically, by use of the mathematical formalism of circulant matrices
and phase circulant matrices. This has already been done for bosons[29, 22,
23]. The main focus of this thesis is therefor to work out the same analytically
solvable model of [29], but now for fermions and contrast with the established
results of bosons. Of particular interest is the effect of adding long range
interactions on the entanglement entropy. One would expect this to enhance
the entanglement, as we have seen for bosons [22, 23]. But for fermions the
situation is more delicate, as we shall see.

The system of study (taken from [29]) is a (1 + 1)-dimensional periodic
lattice, containing N sites. The subsystem A, of which we wish to determine
the entanglement with its complement, is defined by taking NA evenly spaced
lattice points. We define p := N/NA ∈ N as the distance in number of sites
between two particles of subsystem A and ε is the lattice spacing. In figure 1

two illustrations are given of such a system with N = 12 sites for p = 2 and
p = 3. As a convention we will choose units h̄ = c = 1 throughout this
thesis, except for some parts (there it will be mentioned explicitly) where this
convention might obscure a proper dimensional analysis.

The entanglement entropy for fermionic sublattices has been studied in [30],
where it is shown that spin and fermion representations generally lead to dif-
ferent reduced density matrices, and hence different entropies of entanglement.
Some results of this study will be succesfully reproduced in this thesis. Sublat-
tice entanglement is also studied in [14, 15] to obtain an order parameter for
quantum phase transitions.
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Figure 1.: Two illustrations of the system of study for N = 12 and p = 2 (left)
or p = 3 (right). The black dots represent the subsystem A, and the
white dots represent its complement. The figure is taken from [29].

This thesis is structured as follows. First, a new mathematical formalism of
phase circulant matrices will be introduced. These phase circulant matrices are
interesting on their own, but they will provide a crucial ingredient later on in
the analytic study of the periodic fermion lattices. Then, the, already known [29,
22, 23] theory of periodic boson lattices is worked out and extended to provide
a background for the study of periodic fermion lattices in the next section.
Finally, once both theories for bosons and fermions are manifest, the results
for both will be explored and compared graphically. These results turn out to
be quite remarkable and lead to new insights, discussions and suggestions for
future research, which will conclude this thesis.





2
C I R C U L A N T A N D P H A S E C I R C U L A N T M AT R I C E S

A crucial ingredient of our study on the entanglement entropy is to be able to
compute the eigenvalues of the two point correlation matrices analytically. In
general, this not possible and numerical methods are used to determine the
eigenvalues. In our specific system however, the correlation matrices are of a
certain type which do allow us to determine the eigenvalues analytically. For
the bosonic case, the correlation matrices turn out to be circulant matrices of
which the theory is well known [31]. For the fermionic case the correlation
matrices are a slightly different type of matrix, which we call phase circulant,
of which the theory has been developed in this thesis. Apart from this physical
application, the theory of circulant and phase circulant matrices is, on its own,
interesting and will be described in this purely mathematical chapter.

2.1 circulant matrix

As the theory of circulant matrices is well known, here we only give its definition
and results relevant for this thesis. The reader is referred to [31] for a more
thorough treatment.

A circulant matrix is an N × N matrix characterized by the condition that its
entries on one row are precisely a cyclic one position shift of of the entries of
the row above it. Thus a circulant matrix is completely determined by its entries
in the first row. A circulant matrix C can thus be written as

C =



c0 c1 c2 · · · cN−1

cN−1 c0 c1 · · · cN−2

cN−2 cN−1
. . . . . .

...
...

...
. . . c0 c1

c1 c2 · · · cN−1 c0

 . (3)

One can also use the shorthand notation C = circ(c0, ..., cN−1).
The key result is that every circulant matrix C = circ(c0, ..., cN−1) has normal-

ized eigenvectors

v(m)
1√
N
(1, e2πi m

N , e4πi m
N , ..., e2(N−1)πi m

N )T, (4)
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6 circulant and phase circulant matrices

with corresponding eigenvalue

λm =
N−1

∑
l=0

cle2πi ml
N , (5)

where m ranges from 0 to N − 1. Most convenient about this result is that the
eigenvectors v(m) do not depend on the entries cl . As a consequence, all N × N
circulant matrices can be diagonalized simultaneously so they commute and
the sum or product of two circulant matrices is again a circulant matrix whose
eigenvalues are the sum or product of the eigenvalues of the two separate
matrices respectively.

2.2 phase circulant matrix

We will now generalize the notion of circulant matrices to phase circulant
matrices, where the rows are defined from the first row together with a phase
transformation: An N× N matrix P is called phase circulant with phase ϕ if it can
be written as

P =



c0 c1 c2 · · · cN−1

cN−1eiϕ c0 c1 · · · cN−2

cN−2eiϕ cN−1eiϕ . . . . . .
...

...
...

. . . c0 c1

c1eiϕ c2eiϕ · · · cN−1eiϕ c0

 , (6)

with ϕ ∈ [0, 2π). We shall denote such matrices P as P = circϕ(c0, c1, ..., cN−1).
So a phase circulant matrix with phase ϕ is circulant if and only if ϕ = 0. A
matrix is called anti-circulant if it is circulant with phase π.

Let us compute the eigenvalues and eigenvectors of phase circulant matrices.
Suppose P = circϕ(c0, c1, ..., cN−1). The eigenvalue equation then reads

Pv = λv, (7)

where v = (v0, v1, ..., vN−1)
T is the, yet to determine eigenvector, and λ the

corresponding eigenvalue. This actually gives us N equations, for i ∈ {0, ..., N−
1}:

λvi =
N−1

∑
l=i

vlcl−i + eiϕ
i−1

∑
l=0

vlcN−i+l

=
N−1−i

∑
l=0

vl+icl + eiϕ
N−1

∑
l=N−i

v−N+l+icl .

(8)

In the summations in the second line we changed the dummy variables to
l → l + i and l → −N + l + i.



2.3 physical interpretation 7

We intuitively guess the structure of v to be vi = ρi with ρ a variable. The
eigenvalue equations will further determine ρ. Inserting this guess in our
previous equation and dividing out ρi gives:

λ =
N−1−i

∑
l=0

ρlcl + ρ−Neiϕ
N−1

∑
l=N−i

ρlcl . (9)

So if we further demand
ρ−Neiϕ = 1, (10)

we get a concise eigenvalue equation. In fact, there are precisely N distinct
solutions to this equation so that the obtained eigenvectors are distinct and
span the entire solution space of P, which has at most N dimensions. This
means that we have indeed found all solutions. The solutions are

ρm = ei ϕ+2πm
N . (11)

The subscript m ∈ {0, 1, ..., N − 1} indexes the N possible solutions for ρ of
equation (10). This gives us our eigenvectors and eigenvalues:

v(m) =
1√
N
(1, ei ϕ+2πm

N , e2i ϕ+2πm
N , ..., e(N−1)i ϕ+2πm

N )T. (12)

λm =
N−1

∑
l=0

cleil ϕ+2πm
N . (13)

The prefactor of the eigenvector is to normalize v†
(m)v(m) = 1. Notice that

the eigenvectors again do not depend on the matrix coefficients ci! So phase
circulant matrices with the same phase can be diagonalized simultaneously.
Hence, similar to circulant matrices, the sum or product of phase circulant
matrices with the same phase is again a phase circulant matrix with the same
phase and phase circulant matrices with the same phase commute.

2.3 physical interpretation

As we shall see these two types of matrices and their desirable properties will
provide us with convenient tools to compute the entanglement entropy from the
correlation matrices. But on beforehand one can already derive from symmetry
arguments that the correlation matrices are bound to be of the above described
forms.

For suppose we study an infinite chain. The system has a discrete translational
symmetry. Hence one would expect the two point correlators not to depend
specifically on the site numbers of the two considered sites, but rather on the
difference of these numbers. Hence the entries ci,j of the correlation matrix
should be an explicit function of the difference (i − j). Such matrices are
called Toeplitz matrices (also reviewed in [31]) and the computation of their
eigenvalues is an entire field of study.
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Circulant matrices are a specific class of Toeplitz matrices, whose eigenvalues,
as we have seen, can be computed very easily. The authors of [29] therefor
sought a system with circulant correlation matrices. If one makes the system
periodic, i.e. a ring, then indeed the correlation matrices should be circulant.
To compute the reduced density matrix, we need to know the eigenvalues of
the correlation matrix of the corresponding subsystem. Hence, we want the
subsystem to respect a periodicity and discrete translational symmetry as well.

When considering (non-complex) bosons on a periodic lattice, one always
has periodic boundary conditions. However, fermions on a periodic lattice
need not respect periodic boundary conditions and can in general pick up
any phase for example when there is a magnetic flux trough the ring as the
Aharonov-Bohm effect demonstrates [32, 33]. This effect makes the correlation
matrices of fermions phase circulant.



3

B O S O N S

We will start with a brief explanation and derivation of the results for a system
where the particles are bosons. These results were published in [29, 22, 23]. This
chapter will provide a background for the following chapter, where fermions
are studied, and will thus enable us to compare and contrast the results and
their derivations.

The approach is the following: First, we will discretize the system and make
it periodic. Then we can compute the correlation matrices using Fourier trans-
formations. The correlation matrices can be used to determine the entanglement
entropy because their eigenvalues are related to the eigenvalues of the reduced
density matrix. Finally, a special class of systems with long range interactions,
called Lifshitz theories, and their effect on the entanglement entropy is studied.
This will give us the main results on the bosonic system which are demonstrated
in chapter 5.

3.1 discretization

Our starting point is the Lagrangian density of a (1 + 1)-dimensional massive
scalar field φ on a compact space with length L:

L = −1
2
(
(∂µφ)2 −m2φ2) . (14)

From this expression the generalized momentum π follows

π =
∂L

∂(∂0φ)
= ∂0φ. (15)

Hence the Hamiltionan becomes

H =
1
2

∫ L

0
dx
(
π(x)2 + (∂1φ(x))2 + m2φ(x)2) , (16)

with periodic boundary conditions φ(0) = φ(L). Indeed, the scalar field has to
be real, so this is the only possible boundary condition. This system has been
studied in [16] for a subsystem consisting of a single interval.

We can now discretize the system, letting only the positions xj = jε be
allowed, with j ∈ {0, 1, ..., N − 1} and ε the lattice spacing. Then we denote

9



10 bosons

φj = φ(xj) and πj = π(xj)ε. The rescaling by ε makes the πj dimensionless.
The Riemann integral now becomes a finite sum:∫ L

0
dx →

N−1

∑
j=0

ε. (17)

Finally, the spatial derivative operator ∂1 is discretized to the forward finite
difference:

∂1φ(xj) ≡ lim
ε→0

φ(xj + ε)− φ(xj)

ε
=

φ(xj+1)− φ(xj)

ε
. (18)

We choose the forward difference here, because we follow [29] where the same
choice is made. A motivation for this choice is that it ensures that there will be
nearest neighbor interactions in the theory. One could also choose to take the
centered difference, which would result in a different theory. In appendix A
the centered difference choice is worked out.

Putting the above together with the forward difference, the discretized Hamil-
tonian becomes:

H =
1
2ε

N−1

∑
j=0

(
π2

j + (φj+1 − φj)
2 + m2ε2φ2

j

)
(19)

3.2 the correlation matrices

As we will be interested in the entanglement entropy of the time independent
ground state, we can fix t = 0. The Fourier transform of the scalar field φ is
then given by

φ(xj) =
∫ dk

2π
φ̃(k)e

ikxj . (20)

Demanding periodicity φ(x) = φ(x + L) gives that the only momenta allowed
are multiples of 2π/L and the above integral becomes a sum. We denote
φ̃(2πk/L) = φ̃k for k ∈ Z. As xj = jε, we see the phases are integer multiples
of 2π

N because N = L/ε, so there are N different Fourier modes. By demanding
the field is real we get φ̃†

k = φ̃−k.
This all is similar for the momentum field, hence we obtain:

φj =
1
L

N−1

∑
k=0

φ̃keijk 2π
N ,

πj =
1
L

N−1

∑
k=0

π̃keijk 2π
N .

(21)

The prefactor 1/L arises from the change of variables k→ 2π
L k. By demanding

the field is real we get φ̃†
k = φ̃N−k, which we will denote as φ̃−k for convenience.

In this convention we have the commutation relations

[φ̃l , π̃k] = iεLδ−k,l . (22)
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All other commutations vanish. Lets plug this in the Hamiltonian:

H =
1

2εL2

N−1

∑
j=0

N−1

∑
p,k=0

eij(p+k) 2π
N

(
π̃pπ̃k

(
m2ε2 + (1 + ei(p+k) 2π

N − eip 2π
N − eik 2π

N )
)

φ̃pφ̃k

)
=

N
2εL2

N−1

∑
k=0

(
π̃†

k π̃k +

(
m2ε2 + 4 sin2(

πk
N

)

)
φ̃†

k φ̃k

)
=

1
2ε2L

N−1

∑
k=0

(
π̃†

k π̃k + ε2ω2
k φ̃†

k φ̃k

)
.

(23)

Here we used ∑N−1
j=0 eij(p+k) 2π

N = Nδp,−k and 2i sin(x) = eix − e−ix, and we
uncovered the dispersion relation

ω2
k = m2 +

4
ε2 sin2(

πk
N

). (24)

Now we introduce the annihilator operators:

ãk =
1

ε
√

2Lωk
(εωkφ̃k + iπ̃k). (25)

The creator operator is defined by complex conjugation. These satisfy the
desired commutation relations [ã†

l , ãk] = δ−k,l , using equation (22). We thus
obtain the familiar expression:

H =
N−1

∑
k=0

ωk ã†
k ãk, (26)

where we used ωN−k = ωk and φ̃kπ̃†
k = φ̃†

−kπ̃−k so ∑N−1
k=0 (φ̃†

k π̃k − φ̃kπ̃†
k ) = 0 by

relabeling the second term.
We can now invert the creator and annihilator relations to obtain expressions

for φ̃k and π̃k:

φ̃k =
(ãk + ã†

−k)√
2

√
L

ωk

π̃k =− i
(ãk − ã†

−k)√
2

ε
√

Lωk.

(27)

When deriving the correlation functions for φ-φ and π-π correlations, we
will encounter expressions of the form,

〈(ãp ± ã†
−p)(ãk ± ã†

−k)〉 = 〈ãp ãk〉+ 〈ã†
−p ã†

−k〉 ± (〈ãp ã†
−k〉+ 〈ã†

−p ãk〉). (28)

The first two terms are zero since annihilators cannot act on the vacuum and
created states are orthogonal to the vacuum. For the last two we use the
commutation relations to obtain:

〈ãp ã†
−k〉 = 〈[ãp, ã†

−k]〉+ 〈ã†
−k ãp〉

= δp,−k(1 + 〈N−k〉)
〈ã†
−p ãk〉 = δ−p,k〈Nk〉 = δp,−k〈Nk〉.

(29)
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We introduced the number operator Nk = ã†
k ãk here. For φ-π correlations we

will encounter
〈(ãp ± ã†

−p)(ãk ∓ ã†
−k)〉 = 0, (30)

because the nonzero terms now cancel. So there will be no φ-π correlation.
We are interested in the correlation matrices of the subsystem A, so the

indices of the field are multiples of p. For convenience we relabel φip → φi and
use p/N = 1/NA. The entries of the two point correlation matrix for the φ field
are

〈φiφj〉 =
1
L2

N−1

∑
p,k=0
〈φ̃pφ̃k〉e

iip 2π
NA eijk 2π

NA

=
1

2L

N−1

∑
k=0

1
ωk

(1 + 〈N−k〉+ 〈Nk〉)e
−i(i−j)k 2π

NA

=
1

2N

N−1

∑
k=0

1
εωk

(
1
2
+ 〈Nk〉)(e

i(i−j)k 2π
NA + e−i(i−j)k 2π

NA )

=
1

2N

N−1

∑
k=0

1
εωk

(1 + 2〈Nk〉) cos
(

2π(i− j)k
NA

)
.

(31)

Here we used a relabeling of k → −k and the equality 2 cos(x) = eix + e−ix.
The calculation is similar for the π field and yields:

〈πiπj〉 =
1

2N

N−1

∑
k=0

εωk(1 + 2〈Nk〉) cos
(

2π(i− j)k
NA

)
. (32)

Notice that both correlation matrices only depend on the difference (i − j).
Furthermore, cos( 2πk

NA
((i + 1)− 0)) = cos( 2πk

NA
(i− (NA − 1)), so the correlation

matrices are in fact linear combinations of circulant matrices, hence circulant
themselves.

3.3 the entanglement entropy

One might expect that the correlation functions contain all the information
about entanglement in the system. Here, we will make this intuition explicit by
using the correlation functions to determine the reduced density matrix, from
which the entanglement entropy can easily be computed (by use of equation (2)).
This procedure is well known and can be found for example in [34, 28]. Here,
some steps are highlighted that are relevant for this thesis. In this thesis we will
go into more detail in the fermionic case, where a similar procedure applies.

Our theory is quadratic, so Wick’s theorem holds and the corresponding
Hilbert space can indeed be written as a direct product of the Hilbert spaces of
the subsystems. We can write the reduced density matrix as [35]

ρA =
e−HA

Tr(e−HA)
. (33)
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Here, HA is called the modular Hamiltonian of the subsystem A. In essence the
above equation is the defining equation of HA. Once we have obtained HA we
can relate its eigenvalues to the eigenvalues of the correlation matrices by use
of

〈φiφj〉 = Tr(ρφiφj), (34)

for any bosonic field φ.
To find HA we start out by distilling the relevant information of the correlation

matrices. First, we construct a vector η of the sublattice positions φj and
momenta πj:

η = (φ0, ..., φNA−1, π0, ..., πNA−1). (35)

From this we define the 2NA × 2NA correlation matrix C by Cα,β = 〈ηαηβ〉.
By Wick’s theorem, the reduced density matrix of our Gaussian system is
completely determined by the two-point correlators, since for any operator OA
restricted to A we have

〈OA〉 = Tr(ρAOA). (36)

This is the defining property of the reduced density matrix. Wick’s theorem
then allows us to write all expectation values of operators restricted to A in
terms of the two-point correlators on A [35, 27].

We now wish to transform our basis η, preserving the commutation relations,
to get a transformed correlation matrix whose eigenvalues can be related to
the eigenvalues of the modular Hamiltonian HA. Such a transformation (that
preserves the commutation relations) is called symplectic. Fortunately, since the
correlations functions are positive-definite, we can use Williamsons theorem
[36, 37] to merge the information of the φ and π correlators. The theorem yields
a symplectic transformation S, such that the matrix C̃ = STCS is diagonal
with doubly degenerate eigenvalues. These eigenvalues are related to the
eigenvalues of the correlation matrices [29, 28, 26]: If λl are the eigenvalues
of C̃ and λφ,l and λπ,l the eigenvalues of the correlation matrices given in the
previous subsection, then

λl =
√

λφ,lλπ,l . (37)

The symplectic transformation gives us a new vector of positions and mo-
menta η̃ = Sη, and thus new annihilation operators

ãi =
(φ̃i + iπ̃†

i )√
2

. (38)

Introducing the Williamson number operator ñi = ã†
i ãi, the reduced density

matrix factorizes as [38, 26]

ρA =
NA−1⊗

l=0

(1− e−ε l )e−ε l ñl . (39)

Now all ingredients are in place to compute the entanglement entropy from the
eigenvalues of the correlation matrices.
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Since C̃ is diagonal, its eigenvalues are given by its entries on the diagonal.
That is

λl = 〈φ̃l φ̃l〉

= 〈1
2
(ãl ã† + ã†

l ãl)〉

= 〈ã†
l ãl〉+

1
2

,

(40)

using the commutation relations. This shows that the symplectic eigenvalues
are always greater than 1

2 . This bound from below will make the entanglement
entropy well defined as we shall see next. The above derivation also allows us
to relate λl and ε l .

〈ã†
l ãl〉 = Tr(ρl ã†

l ãl)

= (1− e−ε l )
∞

∑
n=0

e−ε lnn

=
1

e−ε l − 1
,

(41)

using the geometric series and the shorthand notation ρl = (1− e−ε l )e−ε l ñl ,
which is the reduced density matrix of the lth particle in this transformed basis.
So

ε l = log

(
λl +

1
2

λl − 1
2

)
. (42)

Hence

SA = −Tr(ρA log ρA)

= −
NA−1

∑
l=0

∞

∑
n=0

(1− e−ε l )e−ε ln
(
log(1− e−ε l )− ε ln)

)
=

NA−1

∑
l=0

(λl +
1
2
) log(λl +

1
2
)− (λl −

1
2
) log(λl −

1
2
).

(43)

This machinery to compute the entanglement entropy from the eigenvalues
of the correlation matrices is applicable to any Gaussian system. In most
systems these eigenvalues have to be computed numerically. But by choosing a
system wherein the eigenvalues can be determined analytically, one can obtain
analytical insight in the behavior of the entanglement entropy.

3.4 long range interactions

Intuitively one expects that adding interactions to any theory will increase the
entanglement because it are precisely the interactions that cause entanglement
in the first place. Indeed, two non interacting systems would have a total state
that is the direct product of the states on the two systems, so the entanglement
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entropy equals −1 log(1) = 0 as is immediate from equation (2). To investigate
this intuition a special class of long range interaction theories, called Lifshitz
theories, is studied. In Lifshitz theories, Lorentz symmetry is sacrificed to make
place for the Lifshitz scaling symmetry: x → λx and t → λzt. The exponent
z ∈ Z+ is called the dynamical exponent.

In particular, for the bosonic system, we will be concerned with a Hamiltonian
of the form

H =
1
2

∫ L

0
(π2 + α2((∂x)

zφ)2 + m2φ2)dx. (44)

When z = 1 we obtain the familiar massive scalar field theory described
previously for α = c the speed of light. Only when m = 0 this theory respects
the Lifshitz scaling symmettry. Whereas previously we have set h̄ = c = 1 for
simplicity, we will reintroduce SI units because the dimensional analysis now is
less straightforward. The “speed of light” α for example, has units mz/s.

The quantity S/kB, with kB the Boltzmann constant, is dimensionless, hence
we expect it to be determined by dimensionless parameters. Apart from N, p
and z the parameter including the mass and lattice spacing can be defined by
Jb = mεz/α.

In this continuous system the above described expectation of the effect of
adding long range interactions can be made explicit by studying the two point
correlators. We have [23, 39]

〈φ(0)φ(r)〉 =
∫ dk

2π

eikr

2ωk
. (45)

If m = 0 then ωk = |k|z so by use of the residue theorem we obtain for z > 1

〈φ(0)φ(r)〉 ∼ rz−1. (46)

Hence, if z increases, the long range interactions increase as well. This corre-
sponds with our intuition that adding interactions will increase the correlation.
By the from of equation (43), we thus expect also the entanglement to increase
as a function of z. Indeed, as our theory is still Gaussian, equation (43) still
applies.

Indeed, the discretization procedure remains intact, but the result will now
depend on z as the spatial derivative ∂x operator, which becomes the forward
finite difference, is now applied z times. Each application adds a neighbor
to the interaction term obtained. The result is summarized in the discretized
Hamiltonian

H =
mh̄
2

N−1

∑
j=0

π2
j +

1
J2
b

(
z

∑
n=0

(
z
n

)
(−1)nφj+z−r

)2

+ φ2
j

 , (47)

which can be shown to be the correct expression by a proof by natural induction
on z.
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Using the Fourier transform we can again compute the correlation matrices.
The previous method also applies here, since the system is still Gaussian, and
the results of equations (31) and (32) thus hold, but the dispersion relation has
changed. Using induction we obtain

ω2
k = m2 +

α2

ε2z

(
z

∑
r=0

(
z
r

)2

+ 2
z

∑
s=1

z−s

∑
r=0

(−1)s
(

z
r

)(
z

r + s

)
cos(

2πks
N

)

)

= m2 +
α2

ε2z

((
2z
z

)
+ 2

z

∑
s=1

(−1)s
(

2z
z− s

)
cos(

2πks
N

)

)
,

(48)

using Vandermonde’s identity in the second line. Now, by using the symmetry
of the binomial coefficients, we obtain

z

∑
s=1

(−1)s
(

2z
z− s

)
cos(

2πks
N

) =
z

∑
s=1

(−1)s
(

2z
z + s

)
cos(

2πks
N

). (49)

So(
2z
z

)
+ 2

z

∑
s=1

(−1)s
(

2z
z− s

)
cos(

2πks
N

) = (−1)z
2z

∑
s=0

(
2z
s

)
(−1)s cos(

2πk(z− s)
N

),

(50)
using cos(0) = 1 and shifting the dummy variable s → s + z. To further
simplify this expression, one might already suspect the binomial theorem to be
used. But first we need to make the cosine more workable. We use

cos(
2πk(z− s)

N
) =

1
2
(e

2πkz
N i(e

−2πk
N i)s + e

−2πkz
N i(e

2πk
N i)s. (51)

Then we can apply the binomial theorem

(−1)z

2

2z

∑
s=0

(
2z
s

)(
e

2πkz
N i(−e

−2πk
N i)s + e

−2πkz
N i(−e

2πk
N i)s

)
=

(−1)z

2

(
e

2πkz
N i(1− e

−2πk
N i)2z + e

−2πkz
N i(1− e

2πk
N i)2z

)
=

(−1)z

2

(
(e

πk
N i − e

−πk
N i)2z + (e

−πk
N i − e

πk
N i)2z

)
= (2 sin(

πk
N

))2z.

(52)

Thus the dispersion relation is

ω2
k = m2 +

α2

ε2z (2 sin(
πk
N

))2z, (53)

a strongly simplified result. This modification to the dispersion relation is
all that is needed to derive the results for this class of long range interaction
theories.
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F E R M I O N S

For the study of fermions we will follow a similar structure as we did for the
bosons. We start out by setting up a familiar continuous theory and discretize
it. Then we will determine the correlation matrices and successively show how
the correlation matrices determine the entanglement entropy. Then we are
ready to derive the first results. As it will turn out, these results are remarkable,
so before stating the results, a sanity check is done to ensure the machinery
works correctly. Finally, we will consider a fermionic Lifshitz theory. In the next
section, the results of both the bosonic and fermionic systems will be compared
and discussed.

4.1 discretization

Our convention for the metric is η = diag(+1,−1). We must begin by intro-
ducing two gamma matrices γ0 and γ1 satisfying the 2 dimensional Clifford
algebra:

γ0γ0 = 1, γ1γ1 = −1, γ0γ1 = −γ1γ0. (54)

The following matrices:

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
, (55)

do the job.
In these conventions the Dirac Lagrangian density of a (1 + 1)-dimensional

fermion field ψ is:
L = ψ̄

(
iγµ∂µ −m

)
ψ, (56)

where ψ̄ = ψ†γ0. The generalized momentum is

π =
∂L

∂(∂0ψ)
= iψ̄γ0 = iψ†. (57)

Hence the Hamiltionan becomes

H =
∫ L

0
dxψ̄(x)(m− iγ1∂1)ψ(x)

=
∫ L

0
dx
(

mψ̄(x)ψ(x)− 1
2

i(ψ̄(x)γ1(∂1ψ(x))− (∂1ψ̄(x))γ1ψ(x))
)

,
(58)

17
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by integration by parts. To do integration by parts properly, we must ensure
that the boundary terms indeed vanish. In fact, this will give us the boundary
conditions: The chirality projection is defined from the gamma matrices:

P± =
1± γ5

2
, (59)

with γ5 = γ0γ1 (indeed (γ5)† = γ5 and (γ5)2 = 1). That is:

P+ =

(
1 0
0 0

)
, P− =

(
0 0
0 1

)
, (60)

Thus we can conveniently write the fermion field in spinor representation:

ψ =

(
ψ+

ψ−

)
, so ψ̄ =

(
ψ†
− ψ†

+

)
. (61)

The boundary term then is of the form:

ψ̄γ1ψ
∣∣∣L
0
= ψ†

−ψ− − ψ†
+ψ+

∣∣∣L
0

= |ψ−(L)|2 − |ψ−(0)|2 − (|ψ+(L)|2 − |ψ+(0)|2),
(62)

which vanishes when

• ψ+(0) = e−2πiθ+ψ+(L), and

• ψ−(0) = e−2πiθ−ψ−(L).

Where θ± ∈ [0, 1). Notice that if m 6= 0 we must have θ+ = θ− = θ so that the
Hamiltonian density respects the periodicity of our system. This point becomes
clearer when one writes out the spinor components in the Hamiltonian density;
The terms proportional to the mass are precisely the on-site coupling terms
between the different spinor components. If these spinor components would
have different boundary conditions, the phases will not cancel out and the
Hamiltonian density no longer respects the periodicity. The fermion field
indeed can pick up such a phase 2πθ for example if there is a magnetic flux
trough the ring by the Arahonov-Bohm effect [32, 33].

Now we discretize the Hamiltonian, letting the only allowed positions be
multiples of ε. We will write ψ±,j = ψ±(jε)

√
ε (to make it dimensionless). For

the spatial derivative, we take the centered finite difference

∂1ψ±,j →
ψ±,j+1 − ψ±,j−1

2ε
. (63)

As we will see later on, the discretization of the spatial derivative will cause
significant differences between fermions and bosons (where we took the forward
finite difference). Whether we take the forward or centered difference, one can
check that it has no effect on the Lagrangian and Hamiltonian for fermions
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(see appendix A). The reason we choose the centered finite difference here,
is that it will make the following calculations less cumbersome. Note that
in the study of bosons, the choice of finite difference as discretization of the
spatial derivative does significantly alter the theory; If one would choose the
centered finite difference, there will be no nearest neighbor interactions but
only next-nearest neighbor interactions. This is also discussed in appendix A.
The discretized Hamiltonian now reads

H =
1
ε

N−1

∑
j=0

(
mε(ψ†

−,jψ+,j + ψ†
+,jψ−,j)

−1
2

i
(

ψ†
+,j(ψ+,j+1 − ψ+,j−1)− ψ†

−,j(ψ−,j+1 − ψ−,j−1)
))

=
1
ε

N−1

∑
j=0

(
mε(ψ†

−,jψ+,j + ψ†
+,jψ−,j)

−1
2

i
(

ψ†
+,jψ+,j+1 − ψ†

+,j+1ψ+,j − (ψ†
−,jψ−,j+1 − ψ†

−,j+1ψ−,j)
))

.

(64)

For the last equality we used a relabeling of j→ j± 1. The discretized boundary
conditions are

• ψ+,N = e2πiθ+ψ+,0, and

• ψ−,N = e2πiθ−ψ−,0.

Massive Fermions

For now we assume m > 0. Hence θ+ = θ− = θ. The massless Dirac field will
be studied in a later subsection.

We obtain the field equations from the Euler-Lagrange formalism:

∂L
∂ψ̄

=
(
iγµ∂µ −m

)
ψ = 0, (65)

the Dirac equation. Note that if we would choose to work with the forward
derivative, we would first have to partially integrate half of the spatial part of
the Lagrangian to maintain hermiticity after discretizing.

General solutions to the Dirac equation are of the form ck(ω)ei(kx+ωt). The
discretized spatial derivative then becomes the centered finite difference:

∂1ψj =
ψj+1 − ψj−1

2ε

=
1
2ε
(eikε − e−ikε)ψj

=
i
ε

sin(kε)ψj ≡ ik̃(k)ψj.

(66)
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Furthermore, periodicity of our lattice gives us that we must have eik(x+L) =

ei(kx+2πθ) so we relabel k→ 2π
L k, so that k ∈ Z+ θ. The period of k̃ then is N/2

if N is even, and N if N is odd. The Dirac equation thus gives the dispersion
relation:

ω2
k = m2 + k̃(k)2 = m2 +

1
ε2 sin2(

2πk
N

). (67)

Notice the factor of 2 now absorbed in the sine, compared to the bosonic
dispersion relation equation (24).

Similarly, we obtain the relation between the spinor components(
m ω− k̃

ω + k̃ m

)(
c+,k(ω)

c−,k(ω)

)
= 0. (68)

We set ωk := +
√

m2 + k̃(k)2, so the two allowed frequencies are ω = ωk and

ω = −ωk, for a given wavenumber k. Using m =
√

ω− k̃
√

ω + k̃ we find the
relation

c+,k(ω)
√

ω + k̃ = −c−,k(ω)
√

ω− k̃. (69)

We can fill in ω = +ωk to find

ck(+ωk) = a†
k

√
εL

2ωk

( √
ωk − k̃

−
√

ωk + k̃

)
, (70)

and if we fill in ω = −ωk, we find

ck(−ωk) = bk

√
εL

2ωk

(√
ωk + k̃√
ωk − k̃

)
. (71)

We have chosen the prefactor
√

εL
2ωk

such that the amplitudes ak and bk will
become the annihilation operators for the two different modes after quantization.
The reason to name the amplitude for the first mode a†

k instead of ak will
become clear when we write down the Fourier transformed Hamiltonian. This
relation between ck(+ωk) and ck(ω−), which is a direct consequence of the
Dirac equation, will cause a significant difference with the bosons.

Now we can write down the Fourier transform of the discretized ψ field. The
precise form will depend on the choice of boundary conditions for the two
spinor components.

ψ+,j =
1√
2N

N−1

∑
k−θ=0

1√
ωk

eijk 2π
N

(
a†

k eiωkt
√

ωk − k̃ + bke−iωkt
√

ωk + k̃
)

,

ψ−,j =
1√
2N

N−1

∑
k−θ=0

1√
ωk

eijk 2π
N

(
−a†

k eiωkt
√

ωk + k̃ + bke−iωkt
√

ωk − k̃
)

.

(72)

At this point we are ready to insert this in the Hamiltonian, but we can do a
simple trick, simplifying the derivation significantly; We can now safely assume
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that our fields will satisfy the Dirac equation equation (65). We can then use
the following equality by rewriting the Dirac equation:

(m− iγ1∂1)ψ = iγ0∂0ψ. (73)

So our Hamiltonian from equation (58) becomes:

H =
∫ L

0
dxψ̄iγ0∂0ψ =

∫ L

0
dxiψ†∂0ψ, (74)

which we discretize to:

H =
N−1

∑
j=0

i(ψ†
+,j∂0ψ+,j + ψ†

−,j∂0ψ−,j). (75)

Now we insert the Fourier transforms of equation (72) to obtain:

H =
1

2N

N−1

∑
j=0

N−1

∑
k−θ=0

N−1

∑
p−θ=0

1
√

ωpωk
eij(k−p) 2π

N i((
ape−iωpt

√
ωp − k̃(p) + b†

k eiωpt
√

ωp + k̃(p)
)

· (iωk)

(
a†

k eiωkt
√

ωk − k̃(k)− bke−iωkt
√

ωk + k̃(k)
)

+

(
−ape−iωpt

√
ωp + k̃(p) + b†

peiωpt
√

ωp − k̃(p)
)

·(iωk)

(
−a†

k eiωkt
√

ωk + k̃(k)− bke−iωkt
√

ωk − k̃(k)
))

=− 1
2

N−1

∑
k−θ=0

(
aka†

k(ωk − k̃)− b†
k bk(ωk + k̃)− akbke−2iωktm + b†

k a†
k e2iωktm

+ aka†
k(ωk + k̃)− b†

k bk(ωk − k̃) + akbke−2iωktm− b†
k a†

k e2iωktm
)

=
N−1

∑
k−θ=0

ωk(a†
k ak + b†

k bk − 1).

(76)

Where we used the equal time commutation relations

{ψi, ψ†
j } = δi,j, which is satisfied by

{ap, a†
k} = δp,k = {bp, b†

k},
(77)

and all other commutations are equal to zero. This shows our operators ak and
bk are indeed the proper annihilation operators, annihilating the left and right
moving mode respectively, both with momentum 2πk

N .
Let’s introduce the two number operators Na,k = a†

k ak and Nb,k = b†
k bk, count-

ing the number of modes with momentum k moving left and right respectively.
Furthermore, we have:

〈apa†
k〉 = 〈{ap, a†

k}〉 − 〈a†
k ap〉 = δp,k(1− 〈Na,k〉),

〈b†
pbk〉 = δp,k〈Nb,k〉,

(78)
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and all other correlations vanish. Now we can compute the correlators for the
spinor components. Again we choose the two sites of the correlators in our
subsystem A, so they are multiples of p, and relabel ψip → ψi.

〈ψ†
+,iψ+,j〉 =

1
2N

N−1

∑
k−θ=0

1
ωk

eik(j−i) 2π
NA ((1− 〈Na,k〉)(ωk − k̃) + 〈Nb,k〉(ωk + k̃)),

〈ψ†
+,iψ−,j〉 = 〈ψ†

−,iψ+,j〉 =
1

2N

N−1

∑
k−θ=0

m
ωk

eik(j−i) 2π
NA (〈Na,k〉+ 〈Nb,k〉 − 1),

〈ψ†
−,iψ−,j〉 =

1
2N

N−1

∑
k−θ=0

1
ωk

eik(j−i) 2π
NA ((1− 〈Na,k〉)(ωk + k̃) + 〈Nb,k〉(ωk − k̃)).

(79)

Observe that for k ∈ Z+ θ and n ∈ {1, ..., NA}

eik(NA−n) 2π
NA = e2πiθe−ikn 2π

NA (80)

So the matrices in equation (79) are Toeplitz, and in general not circulant (only
when θ = 0 are they circulant), but they are phase circulant with phase −2πθ.
As the value of θ now is restricted to be either 0 of 1/2, the correlation matrices
are either circulant or anti-circulant.

Majorana Fermions

Suppose the considered fermions are Majorana fermions. We will first modify
our Clifford algebra such that all entries are purely imaginary. This will ensure
that the Majorana condition will demand that the spinor components are real.
This can easily be achieved by setting

γ̃0 = iγ1 =

(
0 −i
i 0

)
, and γ̃1 = iγ0 =

(
0 i
i 0

)
. (81)

The charge conjugation matrices are given by

C+ = ±γ̃1, C− = ±γ̃0, such that C±γ̃µC−1
± = ±(γ̃µ)T. (82)

So the charge conjugated field is given by ψc ≡ C−ψ̄T = (ψ†)T. Solving the
Dirac equation with this Clifford algebra gives the following Fourier transform
of the fermion field:

ψ+,j =
1√
2N

N−1

∑
k−θ+=0

i√
ωk

eijk 2π
N

(
a†

k eiωkt
√

ωk − k̃ + bke−iωkt
√

ωk + k̃
)

,

ψ−,j =
1√
2N

N−1

∑
k−θ−=0

1√
ωk

eijk 2π
N

(
a†

k eiωkt
√

ωk + k̃− bke−iωkt
√

ωk − k̃
)

.

(83)
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The Majorana condition is ψc = ψ which means (ψ†)T = ψ, i.e. the fermion
field has real spinor components. So θ+ and θ− have to be either 0 or 1/2.
Furthermore, this condition will give a relation between the operators a and b.
Let us check what the Majorana condition for the + spinor component gives.

ψ†
+,j = −

1√
2N

N−1

∑
k−θ+=0

i√
ωk

e−ijk 2π
N

(
ake−iωkt

√
ωk − k̃ + b†

k eiωkt
√

ωk + k̃
)

=
1√
2N

N−1

∑
k−θ+=0

i√
ωk

eijk 2π
N

(
a−ke−iωkt

√
ωk + k̃ + b†

−ke−iωkt
√

ωk − k̃
)

,

(84)

by change of variables k → −k and using ωk = ω−k, k̃(−k) = −k̃(k). Now
using the Fourier decomposition theory we obtain bk = a−k. Hence Nb,k = Na,−k,
so for the Majorana fermions, after discretizing, the correlators of equation (79)
become:

〈ψ†
+,iψ+,j〉 =

1
2N

N−1

∑
k−θ+=0

1
ωk

eik(j−i) 2π
NA ((1− 〈Na,k〉)(ωk − k̃) + 〈Na,−k〉(ωk + k̃)),

〈ψ†
+,iψ−,j〉 = 〈ψ†

−,iψ+,j〉 =
1
N

N−1

∑
k−θ=0

m
ωk

cos(k(j− i)
2π

NA
)(〈Na,k〉 −

1
2
),

〈ψ†
−,iψ−,j〉 =

1
2N

N−1

∑
k−θ−=0

1
ωk

eik(j−i) 2π
NA ((1− 〈Na,k〉)(ωk + k̃) + 〈Na,−k〉(ωk − k̃)).

(85)

Similarly, these matrices are also phase circulant with phase −2πθ±.

Massless Fermions

If we set m = 0 the spinor components decouple and the Dirac equation actually
gives us two Weyl equations with opposite chirality. Filling in the plane wave
ansatz ψ± = ck(ω±)ei(kx−ω±t), we obtain (ω± ± k̃)ψ± = 0 thus the dispersion
relation is

ω±,k = ∓k̃(k). (86)

The discretization procedure and periodicity demand are similar to the massive
case. Then the general solution for the components of ψ is

ψ+,j =
1√
N

N−1

∑
k−θ+=0

ei(jk 2π
N −k̃t)bk, (87)

ψ−,j =
1√
N

N−1

∑
k−θ−=0

ei(jk 2π
N +k̃t)a†

k . (88)

Note that the two components may have different boundary conditions. ak
and bk are the annihilation operators of the − and + spinor components
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respectively. The use of the same characters a and b as is the massive case is
somewhat misleading, because they are not the same; the a and b are the same
operators for both the massive and massless case for those wavenumber indices
k for which k̃(k) is positive. Otherwise, the roles of a and b are interchanged
between the two cases.

The massless Hamiltonian is

H =
N−1

∑
k−θ+=0

k̃(k)b†
k bk +

N−1

∑
k−θ−=0

k̃(k)(a†
k ak − 1). (89)

Notice that the groundstate is not equal to the vacuum, because k̃ can be
negative. This, however, is just a matter of when we call a state filled or empty.
In fact, if we would redefine our annihilation operators in such a way that the
groundstate is the vacuum (that is, b†

k bk → (1− b†
k bk) whenever k̃(k) is negative,

and vice versa for ak) then we would have the same creation and annihilation
operators as in the massive case. So, physically the massless limit of the massive
theory indeed is the correct limit. However, we have chosen to adopt this new
notation for the massless case, to better understand the underlying physics.

Because the two Weyl spinors are decoupled, the correlations are easily
computed to be

〈ψ†
+,iψ+,j〉 =

1
N

N−1

∑
k−θ+=0

eik(j−i) 2π
NA 〈Nb,k〉,

〈ψ†
+,iψ−,j〉 = 〈ψ†

−,iψ+,j〉 = 0,

〈ψ†
−,iψ−,j〉 =

1
N

N−1

∑
k−θ−=0

eik(j−i) 2π
NA (1− 〈Na,k〉).

(90)

Which are, again, phase circulant with phase −2πθ±.

4.2 the entanglement entropy

The theory of phase circulant matrices developed in chapter 2 allows us to
directly obtain the eigenvalues of the correlation matrices. Thus, we will now
turn our attention to the computation of the entanglement entropy from these
eigenvalues. Similar to the bosonic theory, we will use the eigenvalues to
construct the reduced density matrix. Fortunately, this construction is less
involved, as symplectic eigenvalues are not needed here [28].

Define the correlation matrix C of all two point correlation functions between
the spinor components on the lattice sites of the subsystem:

C =

(
C++ C+−

C−+ C−−

)
, (91)

with
C±±ij = 〈ψ†

±,iψ±,j〉 , and C±∓ij = 〈ψ†
±,iψ∓,j〉. (92)
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Recall that ψj is the fermion wave function on the (jp)th lattice site of the
total system. One could also define η = (ψ+,0, ..., ψ+,NA−1, ψ−,0, ..., ψ−,NA−1) and
subsequently define C = 〈η†η〉.

The two point correlators are relevant, because they define the reduced
density matrix ρA of our subsystem A:

〈η†
i ηj〉 = TrA(ρAη†

i ηj), (93)

where ρA = TrAc(ρ) with ρ the density matrix of the total system. Again, Wick’s
theorem gives us that all expectation values are determined from these two
point correlation functions. We then can write

ρA = Ke−H, (94)

with K a normalization constant ensuring Tr(ρ) = TrA(ρA) = 1 and

H = ∑
i,j

χ†
i Hi,jχj. (95)

We have yet to determine the eigenvalues and eigenvectors of this matrix H.
Suppose φm are the eigenvectors with eigenvalue εm. Then we can decompose

χi =
2NA−1

∑
m=0

φm,icm, (96)

where φm,i is the ith component of φm and cm are new fermion operators
satisfying the standard commutation relations. Then

Hi,j =
2NA−1

∑
m=0

εmφm,iφ
†
m,j. (97)

And

H =
2NA−1

∑
m=0

εmc†
mcm. (98)

From demanding TrA(ρA) = 1, we can determine the normalization factor K
:

TrA(ρA) = KTr(e−∑m εmc†
mcm)

= K∏
m

Trm(e−εmc†
mcm)

= K∏
m
(1 + e−εm).

(99)

So

K =
2NA−1

∏
m=0

1
1 + e−εm

. (100)

We used that since H is now in diagonal form, the operator e−∑m εmc†
mcm is

a tensor product of operators e−εmc†
mcm and the trace of a tensor product is
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the product over the traces. Furthermore we used that the operators cm are
fermionic, hence obey Pauli-Dirac statistics. So the only eigenvalues of c†

mcm

are 0 and 1, which are non degenerate. We denoted Trm as the trace over the
subspace of the entire Fock space of the mth particle.

Next, we can compute the correlation matrix in terms of the eigenvalues of H
using the reduced density matrix. Suppose m 6= l, then again using the product
rule, we have

Trm,l(e−εmc†
mcm c†

l cl) = Trm(e−εmc†
mcm)Trl(c†

l cl)

= (1 + e−εm).
(101)

Furthermore,
Trl(e−ε lc†

l cl c†
l cl) = e−ε l . (102)

So

TrA(ρAη†
i ηj) = KTrA(e−∑m εmc†

mcm ∑
l

c†
l cl)φ

†
l,iφl,j

= K∑
l

TrA(e−∑m εmc†
mcm c†

l cl)φ
†
l,iφl,j

= K∑
l

e−ε l ∏
m 6=l

(1 + e−εm)φ†
l,iφl,j

= ∑
l

e−ε l

1 + e−ε l
φ†

l,iφl,j

= ∑
l

1
1 + eε l

φ†
l,iφl,j.

(103)

So φ†
m are the eigenstates of the correlation matrix C with eigenvalues λm =

1
1+eεm . Inverting this relation, we obtain

εm = ln
(

1− λm

λm

)
. (104)

So, at this point we must turn our attention to the eigenvalues λm of the
correlation matrix C. We can consider two cases:

• m = 0
From equation (90) we immediately get C±∓ = 0. Furthermore, C±±

is phase circulant with phase −2πθ±. The plus and minus spinor com-
ponents are now decoupled and the eigenvalues of C±± are given by:

λ+
m =

NA−1

∑
l=0

1
N

N−1

∑
k−θ+=0

e−ikl 2π
NA 〈Nb,k〉e

il(m+θ+)
2π
NA

=
1
p

p−1

∑
n=0
〈Nb,m̃+

〉

(105)
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Where we defined m̃+(n) = m+ θ++nNA and used ∑NA−1
l=0 eil(k−(m+θ) 2π

NA =

Na ∑
p−1
n=0 δk,m̃+

and p = N/NA. Similarly,

λ−m =
1
p

p−1

∑
n=0

(1− 〈Na,m̃−〉). (106)

Notice that the explicit θ dependence has dropped out.

• m 6= 0
Now the off-diagonal blocks C±∓ do not vanish and the diagonalization
becomes more involved. Fortunately, m 6= 0 couples the spinor compo-
nents, and specifically makes θ+ = θ− = θ as noted before. This makes the
matrices in equation (79) phase circulant with the same phase −2πθ. The
nice thing about phase circulant matrices, is that their eigenvectors (equa-
tion (12)) depend only on the phase and not on the matrix coefficients.
Let P be the matrix whose columns are the eigenvectors in equation (12).
This matrix diagonalizes all four blocks in C, hence the block diagonal
matrix with two copies of P on the diagonal puts C in the following form:

C =

(
P 0
0 P

)(
Λ++ Λ+−
Λ−+ Λ−−

)(
P† 0
0 P†

)
. (107)

The Λ matrices are the diagonal matrices with the eigenvalues of the
corresponding block of C on its diagonal. We will now give their diagonal
entries:

– Λ±± = diag(λ±±0 , ..., λ±±NA−1) where the λ±±m are given by

λ±±m =
1

2p

p−1

∑
n=0

1
ωm̃

(
(1− 〈Na,m̃〉)(ωm̃ ∓ k̃(m̃)) + 〈Nb,m̃〉(ωm̃ ± k̃(m̃))

)
.

(108)
Where we defined m̃(n) = m + θ + nNA

– Λ+− = Λ−+ = diag(λ+−
0 , ..., λ+−

NA−1) with

λ+−
m =

1
2p

p−1

∑
n=0

m
ωm̃

(〈Na,m̃〉+ 〈Nb,m̃〉 − 1), (109)

by a similar calculation.

Now we are not there yet, since although the blocks of C are now simulta-
neously diagonalized, C itself is not yet in diagonal form. However, the
problem of diagonalizing C has now been reduced to diagonalizing the
following 2× 2 matrices (see appendix B for a proof of this claim):(

λ++
m λ+−

m
λ+−

m λ−−m

)
.
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This can be done directly, as it amounts to finding the roots of a 2nd

degree polynomial. In general, the result is in general not that elegant
however. Therefor, we will study some explicit systems later on to gain
more insight. The general result is

λ±m =
1
2

(
λ++

m + λ−−m ±
√
(λ++

m + λ−−m )2 − 4(λ++
m λ−−m − (λ+−

m )2)

)
.

(110)
When we are considering the groundstate 〈Na,k〉 = 〈Nb,k〉 = 0 for all
k, observe that λ++

m + λ−−m = 1 as the k̃(m̃) terms cancel. Furthermore,
when p is even we have k̃(m+ θ + nNA) = −k̃(m+ θ +(n+ p

2 )NA), whilst
ωm̃(n) = ωm̃(n+ p

2 )
. So all terms in the sum over n cancel in equation (108),

yielding λ±± = 1/2. The θ dependence is only found in λ+−
m . The result

then becomes

λ±m =
1
2
(
1± λ+−

m
)

. (111)

Entanglement Entropy

The entanglement entropy of the subsystem A is determined by the reduced
density matrix:

SA = −Tr(ρA log ρA). (112)

We can write ρA as a tensor product because we have diagonalized H:

ρA =
2NA−1⊗

l=0

ρl , with ρl =
e−ε lc†

l cl

1 + e−ε l
. (113)

Here, ρl is restricted to the particle with momentum l. This makes ρl a re-
duced density matrix of the lth site. As Trl(ρl) = 1, also Tr(ρA) = TrA(ρA) =

∏l Trl(ρl) = 1. This gives us

ρA log(ρA) =
2NA−1⊗

l=0

ρl log(
2NA−1⊗

l=0

ρl)

=
2NA−1⊕

l=0

(
l−1⊗
n=0

ρn)⊗ ρl log(ρl)⊗ (
2NA−1⊗
n=l+1

ρn)

(114)

So for the entanglement entropy we get

SA = −∑
l
(

l−1

∏
n=0

Trn(ρn))Trl(ρl log ρl)(
2NA−1

∏
n=l+1

Trn(ρn))

= −∑
l

Trl(ρl log ρl).
(115)
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Filling in the two eigenvalues of ρl , and using the relation in equation (104) we
get:

SA = −∑
m

1
1 + e−ε l

log
1

1 + e−ε l
+

e−ε l

1 + e−ε l
log

e−ε l

1 + e−ε l

= −∑
l
(1− λ+

l ) log(1− λ+
l ) + λ+

l log λ+
l

+ (1− λ−l ) log(1− λ−l ) + λ−l log λ−l

(116)

with λ±l from equations (105) and (106) (m = 0) or equation (110) (m 6= 0).
If we study the massless groundstate, the entanglement entropy takes on a

particular form. For the case m = 0 we need to consider the Hamiltonian in
equation (89) in order to determine the groundstate. We thus need to ask for
what values of k, the value of k̃ is negative. That is, when k > N/2. For those k
we have 〈Na,k〉 = 〈Nb,k〉 = 1 in the ground state and the other expectation values
are zero. So we can directly compute the eigenvalues from equations (105)
and (106)

λ+
m =

{ bp/2c
p if m < NA/2

dp/2e
p otherwise

, (117)

λ−m =

{ dp/2e
p if m < NA/2

bp/2c
p otherwise

. (118)

Notice that 1− λ±m = λ∓m . We can insert this in equation (116) to obtain

SA = 2NA

(
bp/2c

p
log
(

p
bp/2c

)
+
dp/2e

p
log
(

p
dp/2e

))
. (119)

So for even p, SA = 2NA log(2). Observe also that the result does not depend
on the boundary conditions. This result was also found in [30] for the case
when p = 2. The factor of 2 arises because we are studying two independent
systems; in the massless limit the Dirac fermion splits into two Weyl fermions.

4.3 sanity check

Before looking at the results, we want to check is this general result is in line
with a simple case where we can directly calculate the entanglement entropy.
The direct approach will consist of manually writing down the reduced density
matrix, by changing from the natural basis of our annihilation operators ak
and bk to the basis of our fields ψj. This can then be checked with the above
formula.

Consider the ground state of our system. Thus 〈Na,k〉 = 〈Nb,k〉 = 0 for all
k (that is, if m 6= 0. If m = 0 the ground state sets 〈Na,k〉 = 〈Nb,k〉 = 0 for all
k < N/2 and 〈Na,k〉 = 〈Nb,k〉 = 1 for the other values of k). Take N = p = 2, so
NA = 1.Then k := k̃(θ) = −k̃(θ + 1) and ω := ωθ = ωθ+1.
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Direct approach

Since the operators ψ±,j satisfy the fermionic anticommutation relations, they
correspond to annihilation operators. We denote a ket state in the following
convention:

|abcd〉 = (ψ†
−,1)

d(ψ†
−,0)

c(ψ†
+,1)

b(ψ†
+,0)

a|0000〉, (120)

with a, b, c, d ∈ 0, 1. We express the groundstate in terms of the quantum
numbers associated with the ψ field.

|0〉 :=
1

2ω

(
m|0011〉+ keiπθ |0101〉+ ω|0110〉 −ω|1001〉 − ke−iπθ |1010〉+ m|1100〉

)
,

We now want to compute the entanglement entropy of this state. The corre-
sponding density matrix is ρ = |0〉〈0|. Now we trace out the subsystem of site
1. Once again care needs to be taken with permuting operators, since they anti
commute. For example

Tr1(|0110〉〈1100|) = (id× 〈00|)ψ+,1ψ†
−,0ψ†

+,1|0000〉〈0000|ψ+,0ψ+,1ψ†
+,1(id× |00〉)

= −|01〉〈10|,
(121)

because we need to permute the two most left operators. After some more
calculations like these, we obtain

ρ0 =
1

4ω2

(
(m2 + ω2)(|01〉〈01|+ |10〉〈10|) + k2(|11〉〈11|+ |00〉〈00|)

−2mω(|01〉〈10|+ |10〉〈01|)) ,
(122)

To determine the eigenvalues of ρ0 we first compute how it acts on the obvious
basis:

• ρ0|00〉 = k2

4ω2 |00〉,

• ρ0|01〉 = 1
4ω2 ((m2 + ω2)|01〉 − 2mω|10〉),

• ρ0|10〉 = 1
4ω2 ((m2 + ω2)|10〉 − 2mω|01〉),

• ρ0|11〉 = k2

4ω2 |11〉.

So the eigen-kets of ρ0 are

• |00〉 with eigenvalue k2

4ω2 ,

• 1√
2
(|01〉+ |10〉) with eigenvalue 1

4ω2 (ω−m)2,

• 1√
2
(|01〉 − |10〉) with eigenvalue 1

4ω2 (ω + m)2,

• |11〉 with eigenvalue k2

4ω2 .
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Thus we can now compute the entanglement entropy

S0 =
−1
4ω2

(
(ω−m)2 log

(
(ω−m)2

(2ω)2

)
+ (ω + m)2 log

(
(ω + m)2

(2ω)2

)
+ 2k2 log

k2

4ω2

)
=−

((
ω−m

ω
− k2

2ω2

)
log
(

ω−m
2ω

)
+

(
ω + m

ω
− k2

2ω2

)
log
(

ω + m
2ω

)
+

k2

2ω2

(
log
(

ω−m
2ω

)
+ log

(
ω + m

2ω

)))
=−

(
ω−m

ω
log
(

ω−m
2ω

)
+

ω + m
ω

log
(

ω + m
2ω

))
.

(123)

We used m2 = ω2 − k2, so (ω±m)2

2ω2 = ω±m
ω − k2

2ω2 and k2 = (ω + m)(ω−m).

Check with general formula

Let us compare this with our general formula from equation (116). Filling in
〈Na,θ〉 = 〈Na,θ+1〉 = 〈Nb,θ〉 = 〈Nb,θ+1〉 = 0 in equations (108) and (109), we
obtain

• λ++ = 1
2p ∑

p−1
n=0

1
ωm̃

(ωm̃ − k̃(m̃)) = 1
2 because k := k̃(θ) = −k̃(θ + 1) and

ω := ωθ = ωθ+1.

• λ−− = 1
2 similarly.

• λ+− = −1
2p ∑

p−1
n=0

m
ωm̃

= −m
2ω .

This is then inserted into equation (110) to obtain

λ± =
ω±m

2ω
. (124)

Notice that

1− λ± =
ω∓m

2ω
= λ∓. (125)

So by use of equation (116) we find

S0 = −
(

ω−m
ω

log
(

ω−m
2ω

)
+

ω + m
ω

log
(

ω + m
2ω

))
. (126)

Which is in line with our direct computation.
Note that, as expected, the result for the massless limit in the direct approach

also is correct compared to the formula for m = 0, but the computation is a
bit different: The eigenvalues in equations (105) and (106) immediately yield
S0 = 2 log(2).
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4.4 large n limit

The limit N → ∞ and NA → ∞ keeping p = 2 fixed is studied in [29] for bosons.
To compare the boson results with the fermion system, we take the same limit
here. The ground state now is completely determined by 〈Na,k〉 = 〈Nb,k〉 = 0.
We have the following simplification from setting p = 2.

k̃(m̃(n)) =
1
ε

sin(
2π(m + θ + nNA)

N
)

=
(−1)n

ε
sin(

2π(m + θ)

N
).

(127)

So ωm̃ = ωm does not depend on the index n anymore. Furthermore the
summations in equations (108) and (109) now can be computed explicitly,
giving for each m ∈ {0, ..., NA − 1}

λ++
m = λ−−m =

1
2

, (128)

λ+−
m =

−m
2ωm

. (129)

Thus our eigenvalues of the reduced correlation matrix are now of the same
form as in the sanity check and the entanglement entropy becomes

SA = −
NA−1

∑
m=0

ωm+θ −m
ωm+θ

log
(

ωm+θ −m
2ωm+θ

)
+

ωm+θ + m
ωm+θ

log
(

ωm+θ + m
2ωm+θ

)
.

(130)
In the limit N → ∞, whilst keeping p = 2 fixed, the sum becomes an integral

SA = −2NA

∫ 1
2

0

ωx −m
ωx

log
(

ωx −m
2ωx

)
+

ωx + m
ωx

log
(

ωx + m
2ωx

)
, (131)

with
ω2

x = m2 +
1
ε2 sin2(2πx). (132)

With the above formula, we can compute the entanglement entropy numerically.
The results are shown in a later section.

4.5 lifshitz dirac theory

A way to investigate long range interactions, is to extend the known Dirac
Lagrangian to a Lifshitz scaled version. In this process, the scale invariance
(which we had for m = 0) becomes somewhat skewed. At this point we
will shortly abandon our c = h̄ = 1 simplification, because the units will
eventually tell us which parameters determine the entanglement entropy. Our
new Lagrangian will be

LLi f shitz = ψ̄(h̄γ0i∂0 + h̄αγ1(i∂1)
z − µα2)ψ. (133)
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Here, α is the skewed "speed of light" with units mz/s and µ is the skewed
"mass" with units kg/m2z−2. Thus we can define the parameter J f = µαεz,
which has the same dimension as the entanglement entropy. The Lifshitz scale
invariance reads

t→ λzt, x → λx. (134)

The exponent z is called the dynamical critical exponent. The reason that i is also
exponentiated in the second term in the Lagrangian, is to preserve Hermiticity
(as we need to perform integration by parts z times to obtain the original
Lagrangian after taking its Hermitean conjugate).

The intuition that adding long range interactions will increase the entangle-
ment entropy is investigated less easily compared to the boson system. For the
continuous system we have for example

〈ψ(0)ψ(r)〉 =
∫ dk

2π

ωk + kz

2ωk
eikr. (135)

The additional term compared to equation (45) arises due to the summation
over spinor components. If m = 0 then ωk = kz so the entanglement entropy
does not scale with z as we had for bosons. In fact, we see that in the case
of m = 0 the z dependence even drops out. This is also immediate from
equations (105) and (106). This however does not compromise our intuition:
In the bosonic case the entanglement entropy is unbounded in the sense that
SA → ∞ as the eigenvalues of the correlation matrices λ → ∞, which can be
read of equation (43). The entanglement entropy for the fermionic system is
given by equation (116), which is bounded and takes on its maximal value
SA = 2NA log(2) if and only if all eigenvalues are equal to 1

2 . Thus we expect
the eigenvalues of the correlation matrix to approach 1

2 as z increases.

Translation

We can apply the same machinery of our previous work to this Lagrangian.
The Lifshitz modification affects the theory at a fundamental level, overall
derivations remain the same. We will derive its effect on the fundamental
parameter (the dispersion relation) and thus obtain a translation to generalize
our previous results.

The Euler-Lagrange formalism gives

∂L
∂ψ̄

= (h̄γ0i∂0 + h̄αγ1(i∂1)
z − µα2)ψ = 0. (136)

We discretize and rescale (to make ψ dimensionless) and make the plane wave
ansatz ψj = ck(ω)ei(jk 2π

N +ωt). Recall

∂1ψj = ik̃(k)ψj =
i
ε

sin(
2πk
N

). (137)
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Hence
(i∂1)

zψj = (−k̃(k))zψj. (138)

This result is obtained more easily compared to the bosonic case. Using the
equations of motion from equation (136) we obtain the dispersion relation

h̄2ω2
k = α4µ2 + h̄2α2k̃(k)2z. (139)

A general solution will thus be a superposition of such plane waves. We obtain

ψ+,j =
1√
2N

N−1

∑
k−θ=0

1√
ωk

eijk 2π
N

(
a†

k eiωkt
√

ωk + α(−k̃)z + bke−iωkt
√

ωk − α(−k̃)z
)

,

ψ−,j =
1√
2N

N−1

∑
k−θ=0

1√
ωk

eijk 2π
N

(
−a†

k eiωkt
√

ωk − α(−k̃)z + bke−iωkt
√

ωk + α(−k̃)z
)

.

(140)

At this point we can set h̄ = α = 1 as a convention, but notice that this
simplification actually depends on the value of z. The mass-dimension of
µ then again is 1, but ε will have mass-dimension −1/z. Hence a natural
dimensionless parameter is µεz.

The Hamiltonian remains of the same form as in equation (76), but now has
different energy levels, since the dispersion relation has changed. It seems as
though all previous results can be translated to results for this Lifshitz theory,
just by replacing k̃→ −(−k̃)z.

This translation seems to conclude the calculations on our Lifshitz theory.
But often it cannot be used in the final results in the previous sections. The
translation must be applied earlier on in the machinery. As we will see, some
peculiar situations will arise.

Massive fermions

We start with the massive case; a remarkable situation arises when p = 2 and z
is even. In that case we have

λ±±m =
ωm+θ + k̃z

2ωm+θ
, (141)

λ+−
m =

−µ

2ωm+θ
. (142)

Thus using ω2 = µ2 + k̃2z we see that the eigenvalues of the correlation matrix
become either 0 or 1. Hence when p = 2 and z is even SA = 0. At first
this would seem odd, but when considering what physical system we are
studying in this case, the result makes complete sense. When we discretize the
Lagrangian in equation (133) prior to making the plane wave ansatz we claim
that the interaction between the sites given by the term proportional to

ψ†
j ∂z

1ψj = ψ†
j

1
(2ε)z

z

∑
n=0

(−1)n
(

z
n

)
ψj+z−2n. (143)
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To prove the claim we will use natural induction on z. For z = 1 we immediately
obtain the centered finite difference formula as in equation (66). Assume now
the claim holds for z− 1, then

∂z
1ψj = ∂1(∂

z−1
1 ψj) = ∂1

(
1

(2ε)z−1

z−1

∑
n=0

(−1)n
(

z− 1
n

)
ψj+z−1−2n

)

=
1

(2ε)z

z−1

∑
n=0

(−1)n
(

z− 1
n

)
(ψj+z−2n − ψj+z−2−2n)

=
1

(2ε)z

(
z−1

∑
n=0

(−1)n
(

z− 1
n

)
ψj+z−2n +

z

∑
n=1

(−1)n
(

z− 1
n− 1

)
ψj+z−2n

)

=
1

(2ε)z

(
ψj+z + (−1)zψj−z +

z−1

∑
n=1

(−1)n
((

z− 1
n

)
+

(
z− 1
n− 1

))
ψj+z−2n

)

=
1

(2ε)z

(
ψj+z + (−1)zψj−z +

z−1

∑
n=1

(−1)n
(

z
n

)
ψj+z−2n

)

=
1

(2ε)z

z

∑
n=0

(−1)n
(

z
n

)
ψj+z−2n.

(144)

This concludes the proof. From equation (143) we see that site j has an interac-
tion with sites j + z− 2n for n = 0, 1, ..., z. That means that if z is even, there is
no direct nearest neighbor interaction. If moreover N is even this means that
all even sites do not interact with the odd sites. So if p = 2 we have a system
with an even amount of sites and our subsystem consists of only the even sites.
Hence there is no interaction between the subsystem and the rest of the system.
As a result, the entanglement entropy vanishes.

A second way to legitimize this explanation is to check whether the nearest
neighbor correlations vanish. Notice that for p = 2 we have

eik 2π
N = eik π

NA = −ei(k+NA)
π

NA , (145)

whilst for even z, (k̃(k))z = (k̃(k + NA))
z. Hence, if we split the sum over k in

equation (79) into two sums both ranging from 0 to NA − 1 (with a change of
summation variable), we see that the two thus obtained terms cancel. Hence
the nearest neighbor correlations indeed vanish.

As a final check we can verify whether the ground state is indeed a product
state in the product space of our subsystem and its complement. we do so for
the simple case p = N = 2 and z is even. After some algebra we can rewrite
our ground state |0〉 in the basis of the lattice sites 0 and 1. Using the same
notation and conventions as in the previous sanity check we obtain the result

|0〉 :=
1

2ω
((ω− kz)|0011〉+ m|0110〉 −m|1001〉+ (ω + kz)|1100〉) .
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This is a product state, but this is not clear directly because one needs to keep
track of permutations of the fermionic creation and annihilation operators as
they anti commute. This results in the following factorization

|0011〉 = |01〉1 × |01〉0, (146)

|0110〉 = −|01〉1 × |10〉0, (147)

|1001〉 = |10〉1 × |01〉0, (148)

|1100〉 = |10〉1 × |10〉0. (149)

So the ground state factorizes as

|0〉 :=
1

2ω

(√
ω− kz|01〉1 −

√
ω + kz|10〉1

)
×
(√

ω− kz|01〉0 −
√

ω + kz|10〉0
)

.

Hence there is no entanglement.

Massless fermions

Note that the parameter z also has an important effect on the massless case:
Considering this translation in the context of equation (119) one might be
temped to say that z does not affect the entanglement entropy in the massless
case. This is not true because there is actually a subtle effect of the parameter z
on the entanglement entropy of massless fermions. Namely, when z is even the
value of −(−k̃)z is always negative, so in the ground state 〈Na,k〉 = 〈Nb,k〉 = 1
for all k. Thus for even z we get that SA = 0 and for odd z the result in
equation (119) still applies.
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R E S U LT S

At this point we have derived all the necessary formulas, which will now
be analyzed graphically. The results for bosons are well known [29, 22, 23]
and their main purpose here will be to compare with the results for fermions,
which are new. We will start out with the results for the theory that contains
only nearest neighbor interactions, before turning our attention to the Lifshitz
theories that contain long range interactions.

5.1 nearest neighbor interaction

For both the boson and fermion system, the dimensionless parameters that
determine the entanglement entropy (which in our convention h̄ = c = 1 is also
dimensionless) are N, p and mε, and for fermions we also have the boundary
conditions determined by θ±. Due to the symmetry of our system, which is
also reflected in equations (43) and (116), we expect the entropy to scale linearly
with NA = N/p in the large N limit, keeping p fixed. For the dependence
on mε, we expect that the entanglement entropy decreases as mε increases;
an increase of mε means that either m increases or 1/ε decreases. Whereas
m couples on-site particles, 1/ε couples nearest neighbors. On-site coupling
is expected to decrease the entanglement entropy and off-site interactions is
expected to increase the entanglement entropy.

Bosons

As will become clear, the above intuition indeed applies. In figure 2 the
entanglement entropy is plotted as a function of mε for different values of
the subsystem size NA. The figure confirms our expected behavior of the
entanglement entropy as a function of mε. Observe also that for large values of
mε the entanglement entropy becomes extensive, i.e. a linear function of NA (as
SA is divided by NA on the vertical axis).

In figure 3 the entanglement entropy is plotted as a function of the fraction
p = N/NA for a fixed value of N and various values of mε. Notice that the
entanglement entropy thus is an increasing function of p. This is understood
in the following way: As p increases and N remains fixed, our subsystem A
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Figure 2.: The entanglement entropy density SA/NA for bosons for p = 2 fixed,
plotted as a function of the mass m times the lattice spacing ε, for
different subsystem sizes NA. The entanglement entropy decreases as
mε increases. Furthermore, for large values of mε the entanglement
entropy becomes extensive as the graphs converge.
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Figure 3.: The entanglement entropy density SA/NA for bosons for N = 2520
(the least common multiple of the numbers 2 up to 10), plotted as a
function of p, for different values of Jb = mε. As p increases, so does
the entanglement entropy.

becomes smaller, hence its complement becomes bigger and thus will contain
more particles that can entangle with the particles in A. On the other hand, if
p = 2 the two systems have equal size and thus the entanglement is minimal.

Another interesting situation arises when we take the large N limit N → ∞
and NA → ∞ while keeping p = 2 fixed. In this limit the discrete steps of
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k/N that are summed over in the computation of the entanglement entropy
in equation (43) become a continuous parameter x and the sum becomes an
integral, similar to what we have worked out in chapter 4 for the large N limit
of the fermion system. The result in plotted in figure 4.
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Figure 4.: The entanglement entropy for bosons density SA/NA for the large N
limit plotted as a function of mε, while keeping p = 2 fixed.

Fermions

In the fermion system we have an additional parameter θ± that effects the
entanglement entropy. The graphs in figure 5 show this effect. Some remarkable
situations arise.

First of all, when p = 2 and θ = 0 there seems to be a discontinuity as
a function of mε at mε = 0. In this specific situation we have that ωk =√

m2 + 1
ε2 sin2(πk/NA) = 0 when k is a multiple of NA. Considering equa-

tion (76) we see that the groundstate becomes degenerate. Recall that for the
massless fermions we chose a different definition of the annihilation operators
ak and bk compared to the massive case. When θ 6= 0, the massless limit yields
the same groundstate for both conventions, but when θ = 0, the two ground-
states are different. From equations (105) and (106) we see that we are now
allowed to choose a different massless groundstate, such that the eigenvalues
are 0 or 1 instead of 1/2, yielding the entanglement entropy of the massless
limit.

Secondly, when N is even, the entanglement entropy is maximized for θ =

1/2 (anti-periodic boundary conditions) and minimized for θ = 0 (periodic
boundary conditions). But when N is odd, θ = 1/2 becomes a minimum
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Figure 5.: Graphs of the entanglement entropy (EE) density for fermions SA/NA
as a function of the boundary condition parameter θ for p = 2 ((a)
and (b)) or p = 3 ((c) and (d)) and NA = 1 ((a) and (c)) or NA = 2
((b) and (d)).The different curves show different values of J f : J f = 0
(blue), J f = 0, 1 (purple), J f = 0, 5 (orange) and J f = 1 (green).

and θ = 1/4, 3/4 are the new maxima. As N increases the same behavior is
exhibited, but the amplitude of the effect decreases. Mathematically, this result
is a direct consequence of the considerations resulting in equation (111): when
p is even, the θ dependence comes from the eigenvalues λ+−

m in equation (109),
which shows the same behavior. When p is odd, only the n = 0 term contributes
in the sum over k̃ in equation (108), which, for even N has period 1 as a function
of θ and for odd N has period 1/2. Thusfar is the reach of the mathematical
interpretation.

For the physical interpretation, one can see from the Dirac Lagrangian that the
boundary conditions indeed effect the entanglement. For simplicity, consider
the system where p = 2 and NA = 1. In the Dirac Lagrangian the interaction
term on site 0 is proportional to ψ†

0(ψ1 − ψ−1). Now if we would have periodic
boundary conditions (θ = 0) then ψ1 = ψ−1 and we see that the interactions
cancel, whereas for anti-periodic boundary conditions (θ = 1/2), ψ1 = −ψ−1,
the interactions are equal and add up, thus maximizing the entanglement.

A third remark we wish to make is that indeed the θ dependence drops out in
the massless case. We have seen this as a consequence of the θ dependence being
divided out in the correlation functions. This observation provides a further
hint to the physical interpretation of the θ dependence of the entanglement
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Figure 6.: The entanglement entropy density for fermions plotted as a function
of mε, for different subsystem sizes NA. The entanglement entropy
decreases as mε increases, similar to bosons. Also the same extensive
behavior is shown.

entropy: θ moderates the effect of the coupling between the plus and minus
spinor components. However, a proper understanding of the θ dependence still
needs to be further developed.

Finally, the graphs in figure 5 already exhibit the predicted behavior as a
function of mε and p, which is made more explicit in figures 6 and 7. Notice
that in figure 7 the increase as a function of p indeed is observed when one
considers odd and even p separately. This alternating behavior as a function of
the parity of the amount of sites between the sites of our subsystem has also
been observed in [30] (we refer specifically to the fermion representation of
figure 1) where a graph is given of the entanglement entropy for a subsystem
consisting of two sites on an infinite chain of massless fermions as a function of
the amount of sites between them.

In the large N limit the same behavior is shown for both bosons and fermions,
as becomes clear from figure 8.

At this point we can already state a fundamental difference between the boson
system and fermion system: The Hilbert space of fermions is finite dimensional
due to the Pauli exclusion principle, whilst it is infinite dimensional for bosons.
As a result, the entanglement entropy for fermions is bounded by 2NA ln(2),
whereas for bosons it is unbounded and generally diverges for mε→ 0.
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Figure 7.: The entanglement entropy for fermions density for N = 2520 (the
least common multiple of the numbers 2 up to 10), plotted as a
function of p, for different values of J f = mε. For J f = 0 we indeed
read off the result of equation (119). Considering odd and even p
separately, we see that the entanglement entropy is an increasing
function of p.
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Figure 8.: The entanglement entropy for fermions density in the large N limit,
plotted as a function of mε.
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5.2 long range interaction

Very recently, the results for bosonic Lifshitz theories were published [22, 23].
Some of these results will be reproduced here, before we display and describe
the results for fermionic Lifshitz theories. The main interest of this subsection
is the dependence on the dynamical critical exponent z. In particular, the large
N limit is interesting to compare for both systems, since only the parameters z
and J determine the entanglement entropy.

Bosons

In figure 9 the entanglement entropy is plotted as a function of z, which clearly
confirms our intuition that the entanglement entropy increases as z increases.
Also in the large N limit, as is shown in figure figure 10, this behavior is
exhibited. In fact, as Jb → 0 the entanglement entropy seems to become a linear
function of z.
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Figure 9.: The entanglement entropy for bosons as a function of the dynamical
critical exponent z, for different values of Jb = mεz.

Fermions

As we have discussed in section 4.5 for p = 2 and z is even, the entanglement
entropy vanishes for fermions. In the graphs of the entanglement of fermions
in the Lifshitz theory, we have therefor omitted the point corresponding to even
values of z. In figure 11 the entanglement entropy for fermions in the large N
limit is plotted as a function of z.

This figure shows some remarkable results. As we have already derived
mathematically (see section 4.5) the entanglement entropy does not depend in
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Figure 10.: The entanglement entropy for bosons as a function of the dynamical
critical exponent z in the large N limit with p = 2 fixed, for different
values of J = mεz. The entanglement entropy seems to become a
linear function of z as J → 0.
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Figure 11.: The entanglement entropy density for fermions in the large N limit,
keeping p = 2 fixed, plotted as a function of z, for different values
of J = µεz. Remarkably, the entanglement entropy density decreases
as a function of z.

z in the massless limit: It depends only on the parity of z, being maximal when
z is odd and zero when z is even. Most striking, however, is the observation
that the entanglement entropy density decreases as z increases, contradicting
our intuition. Mathematically, this is immediately clear from equations (131)
and (132) where sin(2πx) now is generalized to −(− sin(2πx))z. As z → ∞,
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we have that sin2z(2πx) → 0 almost everywhere (as the set of points where
sin(2πx) = 1 has measure zero), so ωεz → J f , so indeed SA → 0 when J f 6= 0.

The physical understanding of this phenomenon is more involved. By study-
ing the two point correlators in equation (79) in the same limit, we get that

ωk → m so, as ∑N−1
k−θ=0 eik(j−i) 2π

NA = Nδi,j, the correlators all converge to 1
2 δi,j.

Hence the correlation is lost. We see that this z → ∞ limit is equivalent to
taking the large J f limit. This hints at what is going on physically when z
increases: If we look at the interaction terms in the Lifshitz Lagrangian of
equation (133), we have that the on site coupling parameter is proportional to

µα2, (150)

whereas the interactions have a coupling parameter proportional to

α

(2ε)z . (151)

Now, we have defined J f = αµεz as a dimensionless parameter that defines
the entanglement entropy for fermions, following the bosonic approach (where
Jb = µεz

α ). For the bosons this choice is indeed the slimmest definition of a
dimensionless parameter one can make from µ, ε and α and conveniently it
also assures that if we keep Jb fixed, the ratio between the coupling parameters
of interactions and on-site coupling, which is m2/ α2

ε2z = J2
b , remains fixed as

well. Clearly, this is not the case for fermions when we fix J f . In fact, the ratio
diverges as 2z. Hence, the result that the entanglement entropy density for
fermions decreases as z increases when keeping J f fixed, makes sense now.

If we wish to compare the situation for fermions properly with the boson
system, we have to define a new dimensionless parameter J̃ f from this ratio of
coupling parameters:

J̃ f = µα2/
α

(2ε)z

= 2zαµεz

= 2z J f .

(152)

In figure 12 the entanglement entropy density in the large N limit is plotted as
a function of z for different values of J̃ f . We see now that for massive fermions
the entanglement entropy converges to some non-zero value.

We can compute the convergence limit analytically. Considering equa-
tion (131), we have to determine the limit of µ/ωx as z→ ∞, keeping J̃ f = 2zµεz

fixed. For convenience, we first take the square of the inverse

lim
z→∞

ω2
x

µ2 = lim
z→∞

1 +
sin2z(2πx)

22(1−z)

= 1 + lim
z→∞

1
4
(2 sin(2πx))2z.

(153)
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Figure 12.: The entanglement entropy density for fermions in the large N limit,
keeping p = 2 fixed, plotted as a function of z, for different values of
J̃ f = 2zµεz. For J̃ f 6= 0 the entanglement entropy density converges
to 4

3 ln(2) (dashed line).

The limit of the latter term actually depends on x: when 2 sin(2πx) < 1, the
latter term vanshes and when 2 sin(2πx) > 1, the latter term diverges. So
inverting these results, and using arcsin(1/2) = π/6, we obtain

lim
z→∞

µ

ωx
=


0 , if x > 1/12 or x < 5/12,

2√
5

, ifx = 1/12 or x = 5/12,

1 , if x < 1/12, or x > 5/12.

(154)

Inserting this in equation (131), we obtain

lim
z→∞

SA = −2 lim
z→∞

∫ 1
2

0

ωx − µ

ωx
log
(

ωx − µ

2ωx

)
+

ωx + µ

ωx
log
(

ωx + µ

2ωx

)
= 4

∫ 5/12

1/12
ln(2)

=
4
3

ln(2).

(155)

This limit is shown in figure 12 by the dashed line.
However, this neat result still is not in line with the intuition that the entan-

glement entropy should increase as z increases. If a significant on-site coupling
is present, increasing z will indeed increase the entropy, but even then, the
entropy will never reach its maximum 2NA ln(2). The physical explanation is
that the long range interactions that are added by the Lifshitz theory are actu-
ally interfering destructively with each other. To understand this phenomenon,
consider z = 3. Then the Dirac Lagrangian contains a term proportional to

ψ†
j (ψj+3 − 3ψj+1 + 3ψj−1 − ψj−3). (156)
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The nearest neighbor interaction is three times larger that the long range
interaction, but of opposite sign! So the total interaction between site j and j + 3
gets a direct contribution from the long range term, and an indirect contribution
through a threefold nearest neighbor interaction of opposite sign. Hence, in
general, the increase of z does not directly increase the correlations. Such
destructive interference thus bounds the effectiveness of Lifshitz theories as a
means to increase the entanglement entropy by adding long range interactions.

This results invites us to consider if a similar effect is present for bosons.
Indeed, they do, but for bosons the interference is always constructive. For
z = 2, the interaction term in the Hamiltonian is proportional to

(φj+2 − 2φj+1 + φj)
2 = φ2

j+2 + 4φ2
j+1 + φ2

j − 4φj+2φj+1 − 4φj+1φj + 2φj+2φj.
(157)

We see that the nearest neighbor interactions always of opposite sign compared
to the next nearest neighbor interaction. Hence, the indirect interaction through
the twofold nearest neighbor interaction is of the same sign as the direct long
range interaction.

To test this physical explanation, we will consider again a finite fermion
system. Now boundary conditions will play a role. In the simple system p = 2,
N = 2, this can be used to our advantage by choosing the boundary conditions
to be anti periodic θ = 1/2: Notice that the long range interaction between
sites j and j + 2n + 1 and the direct nearest neighbor interaction differ a factor
(−1)n in sign. In this system, such a long range interaction actually is a nearest
neighbor interaction, which has gone round the system n times, picking up a
factor (−1)n by anti periodicity. Hence, now all long range interactions, added
by increasing z, constructively interfere, increasing the entanglement. In figure
figure 13 the desired result is shown: the entanglement entropy now increases
as z increases. The purpose of the figure is mainly to make a case for the
explanation of the results in terms of interference.
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Figure 13.: The entanglement entropy density for fermions in the simplified
system N = p = 2 with anti periodic boundary conditions θ =

1/2, plotted as a function of z, for different values of J̃ f . The anti
periodic boundary conditions insure that all interactions interfere
constructively, thus an increase of z, which adds interactions, yields
an increase of the entanglement entropy.
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O U T L O O K

Before we conclude this thesis, we wish to highlight three interesting points of
discussion that arise from the results. These considerations will also provide
suggestions for future research.

We have seen multiple significant differences between the theory and results
for for bosons and for fermions. A very subtle difference can be found in the
dispersion relations (equations (24) and (67)). Though subtle, this difference
has drastic consequences for the results as we have seen. Thus one may wonder
what the origin is of this difference. For the fermions, we are effectively forced
to consider a centered difference discretization of the spatial derivative (see
appendix A for a detailed explanation of this claim). For bosons, we are free
to choose either a centered of forward difference, the latter being the natural
choice. One could however make the choice to take the centered difference
for bosons to make its theory more comparable to that of fermions. This
has also been done in appendix A. The result is satisfactory: the dispersion
relation (equation (165)) now is the same for fermions and bosons and the
same remarkable features arise as a consequence. In particular, similarly to
fermions, a new dimensionless parameter J̃b was needed to provide a proper
understanding of the z dependence.

The second point of discussion concerns the dependence of the entanglement
entropy on the boundary conditions, characterized by θ. To some extent we
have a good physical understanding of the effect of θ. But this understanding
is not complete. The main issue is the relation between mass (on site coupling)
and the boundary conditions: For massless fermions the entanglement entropy
does not depend on θ. Why? We have seen that for p = 2 the entanglement
entropy is completely determined by the behavior of λ+−

m (see equation (111),
which indeed vanishes when there is no mass. This could suggest that the
effect of the boundary conditions is actually moderated through the coupling
of the plus and minus spinor components. Another explanation may come
from the boundedness of the entanglement entropy. In the massless case there
are only off-site interactions in the Lagrangian and their strength may indeed
be effected by θ, but since there is no on-site coupling, any effect of θ on the
coupling strength may be canceled, by scaling the theory with an appropriate
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scalar, yielding the same effective theory. The point is that there is no mass as a
frame of reference to contrast the effect of θ against.

Thirdly, we have seen that adding longrange interactions by considering a
Lifshitz scaled version of the fermion theory has led to the phenomenon of
interference. This makes it harder to formulate a good intuition about the effect
of adding long range interactions as becomes clear from the results. Therefor,
we suggest to study other ways of adding long range interactions for future
research.

In this thesis we have successfully produced a theoretical framework for the
study of entanglement entropy in periodic fermion lattices. A crucial ingredient
of this framework is the concept of phase circulant matrices, which extend the
known theory of circulant matrices so that it can be applied to the correlation
matrices of fermions. This has allowed us to determine the eigenvalues of the
fermion two point correlation matrices analytically, thus providing analytic
insight in the entanglement entropy. Equipped with these tools, we have studied
both massive and massless systems and considered the continuum limit. Finally,
we have added long range interactions by means of a Lifshitz scaling. Similar
results for bosons were reproduced simultaneously, to be able to compare the
fermion results.

As expected, for both fermions and bosons the entanglement entropy de-
creases as either the mass or the lattice spacing increase. Also, when we fix the
total amount of lattice sites N, we see that the entanglement entropy density
is an increasing function of the ratio p = N/NA. This is also in line with our
expectations, since an increase in p results in more particles in the complement
of A that can entangle with the fewer particles in A. Furthermore, in the large
N limit, the results of bosons and fermions are quite similar.

For fermions there is an additional degree of freedom that determines the
entanglement entropy coming from the boundary conditions. This degree of
freedom is characterized by the parameter θ and has a remarkable effect on
the entanglement entropy, which is still not properly understood as we have
mentioned above. Based on the results, we have attempted at some physical
interpretations, which should be further investigated in future research.

In the simple system defined by p = N = 2, we can directly see an effect of θ

as a moderator of the interference between the interactions. This phenomenon
of interference is a key result of this thesis, whose implications become more
clear when considering the theory of long range interactions. Where one would
expect that adding interactions will always enhance the entanglement, we have
seen that for fermions this is not the case. Our intuition is compromised by the
interference between the interaction terms in our theory. This does not happen
in the boson theory due to the square of the spatial derivative that occurs in the
theory (even if we consider the centered difference as the discretization of the
spatial derivative).

Another significant difference between the bosons and fermions is the fact
that the Hilbert space of bosons is infinite dimensional, whereas the Hilbert
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space of fermions is finite dimensional due to the Pauli exclusion principle.
This results in the entanglement entropy being unbounded for bosons, whereas
there is a clear bound for fermions. In this framework, the mass plays a delicate
role. Mass is not just the on site coupling parameter, but it also provides the
background for the off-site coupling, as the crucial parameter determining the
entanglement entropy is the ration between the on-site and off-site coupling
strength.

Although we have only considered the results for systems in their ground
state, the machinery actually has been developed to produce the results for
any specified state. An interesting case to study in future research would be
the thermal state, i.e. the state that satisfies the Pauli-Dirac distribution. Apart
from further investigating the points of discussion mentioned above, another
suggestion for future research is to extend the developed machinery to higher
dimensional lattices or, as has been done in [22, 23] for bosons, apply the
machinery to a line segment subsystem. Furthermore, it might be interesting to
investigate what these results translate to by the holographic principle.

The beauty of the developed formalism is that, although its results are remark-
able, we can come to a thorough understanding because we have obtained them
analytically, unearthing the mathematical structure that underlies entanglement
phenomena.
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A
F I N I T E D I F F E R E N C E A P P R O X I A M T I O N

The discretized dispersion relations in equations (24) and (67) differ in the subtle
position of the factor 2 being inside or outside the sine. This is a consequence
of the discretization of the spatial derivative. In general, one can choose to
take the forward or centered difference as the discretization (the backward
finite difference is equivalent to the forward choice). We will show first that for
fermions, the two are equivalent and yield an effective centered difference due
to the hermiticity of the Lagrangian.

For bosons however, the two choices yield different theories. The forward
derivative is the natural choice and is worked out in chapter 3. Here we shall
work out the effect of choosing the centered derivative. We shall see that for
the centered derivative the dispersion relations become equal.

fermions

Consider the Dirac Lagrangian density

L = ψ
(
iγµ∂µ −m

)
ψ. (158)

The corresponding Lagrangian is hermitean, since we can integrate by parts,
but this density is not. When we discretize, we have to consider the hermitian
version of the Lagrangian density to preserve the symmetry that would other-
wise be lost since we can no longer integrate by parts on a lattice. The proper
Lagrangian to consider therefor is

L =
∫

dx
(

ψ̄
(
iγ0∂0 −m

)
ψ +

i
2

(
ψγ1∂1ψ− (∂1ψ)γ1ψ

))
. (159)
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Now we discretize this expression by taking the forward finite difference as the
spatial derivative. The only relevant term to consider is the last term.

∫
dx

i
2

(
ψγ1∂1ψ− (∂1ψ)γ1ψ

)
→∑

j

i
2

(
ψjγ

1(ψj+1 − ψj)− (ψj+1 − ψj)γ
1ψj

)
= ∑

j

i
2

(
ψjγ

1ψj+1 − ψj+1γ1ψj

)
= ∑

j

i
2

(
ψjγ

1(ψj+1 − ψj−1

)
.

(160)

In the last equation we relabeled j→ j− 1 in the second term.

We now work out the same calculation for the centered difference.

∫
dx

i
2

(
ψγ1∂1ψ− (∂1ψ)γ1ψ

)
→∑

j

i
4

(
ψjγ

1(ψj+1 − ψj−1)− (ψj+1 − ψj−1)γ
1ψj

)
= ∑

j

i
2

(
ψjγ

1(ψj+1 − ψj−1

)
.

(161)

Where we relabeled the latter term on the first line j → j− 1 and j → j + 1
separately. Indeed the two Lagrangians are equal. Hence the Euler Lagrange
equations obtained from the are equal. Thus the theories with either the forward
or centered difference are equivalent.

bosons

This result for fermions does not hold for bosons. Suppose we take the centered
difference when discretizing the spatial derivative term (∂1φ)2. We get

∫
dx(∂1φ)2 →∑

j

1
4ε

(φj+1 − φj−1)
2

= ∑
j

1
4ε

(φ2
j+1 − 2φj+1φj−1 + φ2

j−1).
(162)

Hence there are no more nearest neighbor interactions making this theory differ
significantly to the theory with the forward derivative. As a consequence, we
see that if we choose p = 2 the entanglement entropy vanishes as we would
expect, since our subsystem does not interact with the rest of the system.
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However, the theory now does become more comparable to the fermion case.
From the plane wave ansatz, we now have

∂1φj =
φj+1 − ψj−1

2ε

=
1
2ε
(eikε − e−ikε)φj

=
i
ε

sin(kε)ψj

(163)

So, from the Klein-Gordon equation

(∂2 −m)φ = 0, (164)

and periodicity, we immediately obtain the new dispersion relation

ω2
k = m2 +

1
ε2 sin(

2πk
N

), (165)

which is the same as equation (67).
Working through this modification in the machinery for bosons, we obtain

some interesting results. Firstly, by the loss of nearest neighbor interactions, we
expect that when p = 2, there will be no entanglement entropy. Indeed a direct
calculation shows that the eigenvalues of the correlation matrices vanish in this
case, and thus the entanglement entropy vanishes as well.

Furthermore, considering long range interactions, we obtain a z dependence
of the entanglement entropy density as plotted in figure 14. We now en-
counter the same phenomenon as for the fermions, as the entanglement entropy
decreases when z increases. Similar to fermions, we need to define a new
dimensionless constant J̃b as the ratio between the on-site coupling parameter
of and the interaction coupling parameter. Hence we define J̃b = 2zmεz

α and
consider the effect of z on the entanglement entropy keeping the value of J̃b
fixed. The result is shown in figure 15. Indeed the expected behavior is obtained.

As for the phenomenon of interference, it still is constructive. Consider for
example the case z = 3. The relevant interaction terms in the Hamiltonian are

−6φj+3φj+1 − 18φj+1φj−1 − 6φj−1φj−3 + 6φj+3φj−1 + 6φj+1φj−3 − φj+3φj−3.
(166)

One can see immediately that the direct and indirect contributions are indeed
of the same sign, hence the interference is always constructive.
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Figure 14.: The entanglement entropy density for bosons as a function of z for
fixed values of Jb = mεz/α in a theory that has been discretized
with the centered derivative. Remarkably, as z increases, the entan-
glement entropy decreases due to the decrease of the interaction
coupling parameter.
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Figure 15.: The entanglement entropy density for bosons as a function of z for
fixed values of J̃b = mεz/α in a theory that has been discretized with
the centered derivative. As expected, increasing z now increases the
entanglement.



B
D I A G O N A L B L O C K M AT R I X

In this appendix we show that a 2N × 2N matrix, consisting of four diagonal
N × N blocks is diagonalizable by transforming it to a N × N diagonal matrix,
with the diagonal entries 2× 2 blocks. So let M be a matrix of the following
form:

M =



m++
1 0 · · · 0 m+−

1 0 · · · 0

0
. . . . . .

... 0
. . . . . .

...
...

. . . . . . 0
...

. . . . . . 0
0 · · · 0 m++

N 0 · · · 0 m+−
N

m−+1 0 · · · 0 m−−1 0 · · · 0

0
. . . . . .

... 0
. . . . . .

...
...

. . . . . . 0
...

. . . . . . 0
0 · · · 0 m−+N 0 · · · 0 m−−N


. (167)

We show by induction on N that there is an invertible matrix P such that

P−1MP =



m++
1 m+−

1 0 · · · 0 0
m−+1 m−−1 0 · · · 0 0

0 0
. . . . . .

...
...

...
...

. . . . . . 0 0
0 0 · · · 0 m++

N m+−
N

0 0 · · · 0 m−+N m−−N


. (168)
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For N = 1, the result is immediate. So suppose it holds for N − 1. Let
M be as above and let R be matrix obtained the 2N × 2N identity matrix by
interchanging the Nth and (2N − 1)th column. Then

R−1MR =



m++
1 0 · · · 0 m+−

1 0 · · · 0 0 0

0
. . . . . .

... 0
. . . . . .

...
...

...
...

. . . . . . 0
...

. . . . . . 0
...

...

0 · · · 0 m++
N−1 0 · · · 0 m+−

N−1
...

...

m−+1 0 · · · 0 m−−1 0 · · · 0
...

...

0
. . . . . .

... 0
. . . . . .

...
...

...
...

. . . . . . 0
...

. . . . . . 0
...

...
0 · · · 0 m−+N−1 0 · · · 0 m−−N−1 0 0
0 · · · · · · · · · · · · · · · · · · 0 m++

N m+−
N

0 · · · · · · · · · · · · · · · · · · 0 m−+N m−−N



.

(169)
Now the 2 × 2 block down right is already in the desired form. For the
(2N− 2)× (2N− 2) block in the upper left, we can use the induction hypothesis
to obtain a matrix PN−1 that puts the upper block in the desired form. Extending
PN−1 to Q by adding the 2× 2 identity matrix to the right bottom, we thus
obtain P = RQ such that Q−1R−1MRQ is indeed in the desired form. This
concludes the proof.
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