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Abstract

A model independent theory of curvature perturbations from inflation allows a
fundamental understanding of the origins of structure formation and the Cos-
mic Microwave Background. In this thesis we focus on the necessities to achieve
this systematic and model independent way to derive a theory of curvature
perturbations. We derive such a theory by applying techniques from sponta-
neous symmetry breaking in field theory. We approach spontaneous symmetry
breaking systematically with the coset construction. We present the necessary
techniques and knowledge to apply the coset construction. Any theory that is
time-dependent, inflation for example, spontaneously breaks time translations.
With the coset construction we describe any theory with a spontaneous symme-
try breaking of time translations, i.e. all cosmology described by a single degree
of freedom. In particular the coset construction leads to a theory of curvature
perturbations from the early universe. We propose the steps for deriving this
in non-dynamical as well as dynamical gravity. As of yet the results do not
comply with the heuristic theory. The bulk of this thesis provides background
on the topics, providing an overview of the concepts that enable a researcher
to derive a theory of spontaneously broken time translations in dynamical and
non-dynamical gravity consistent with a heuristic theory.
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Chapter 1

Introduction

Nature and symmetry are tied in a close relationship. The objects that we would
associate with nature, like trees, animals or the night sky exhibit symmetry in
some way. Trees and animals are almost exactly mirror-symmetric and spinning
while looking up at the night sky does not change the impression it makes. A
symmetry is doing something to an object such that the object looks the same
as if we would have done nothing. Symmetries are of the utmost interest for
a physicist. A symmetry can reveal striking properties in the laws of nature.
The famous physicist Albert Einstein for example pondered on the symmetries
of the Maxwell laws of electromagnetism and discovered special relativity. A
symmetry is spontaneously broken when the symmetry of the equations of mo-
tion and of the Lagrangian is not a symmetry of the groundstate (or vacuum
configuration). An object like a chair exhibits spontaneous symmetry breaking
for example. The equations of motion of the atoms in the chair are rotationally
invariant. The collective solution of the equations, i.e. the configuration that
forms the chair, is not rotationally invariant. A side-note should be added for
quantum mechanical systems. The subtlety is that the groundstate is a su-
perposition of several groundstates, making the superposed groundstate unique
and leaving the symmetry unbroken. The example of the chair does not hold
for an isolated QM chair as in this case the quantum mechanical properties
would conserve rotational symmetry. On the other hand, an infinite number of
possible groundstates forming a continuous symmetry together ensures sponta-
neous symmetry breaking in quantum mechanics. The theories describing the
quantum behaviour of degrees of freedom that arise from spontaneous symme-
try breaking are effective for certain intervals of length or of energy. Many
(existing) physical theories are effective at a certain scale. The chemist would
for example not need to know about any substructures of atoms, like quarks
or strong and weak nuclear forces, to describe the structure of a salt crystal.
This scale effectiveness is usually the approach to modelling any physical struc-
tures, actions or predictions in science. This scale effectiveness is fundamental
to the theories that we describe here. This thesis is on the subject of spon-
taneous symmetry breaking by inflation. The questions that we set out to be
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answered are: is there a general approach to describing curvature perturbations
from spontaneous symmetry breaking of time translations? If this approach
exists, can it be applied to a curved background? The thesis shows that a gen-
eral approach is possible using the coset construction in spontaneous symmetry
breaking. The research falls short on translating the construction to a curved
background. There are several reasons [1] why spontaneous symmetry breaking
(SSB) for a theory of curvature perturbations would be favourable:

• The theory is a systematic approach to the SSB of time translations,
thereby taking into account all theories of inflation (that are slow rolling,
i.e. vacuum expectation value of the field changes slowly).

• It is irrelevant what happens at microscopic scales. The scalar fluctuations
that are responsible for the Cosmic Microwave Background (CMB) are
the degrees of freedom that arise from this approach. Any fields like the
inflaton are not necessary.

• The spontaneously broken symmetries are realised in a non-linear way.
Non-linear symmetries provide non trivial relations among correlators
through Ward identities. An example of a Ward identity is the disappear-
ance of the longitudinal polarization of the photon, as it is non-physical.

• The Goldstone approach (Goldstones are the degrees of freedom in spon-
taneous symmetry breaking) is generally the most physical approach to
describe degrees of freedom from a SSB.

Before describing what spontaneous symmetry breaking is and mentioning
a couple of examples, we describe the inflating universe in part I. Inflation is a
rapid expansion of spacetime in the early universe. This resulted in the stretch-
ing of quantum fluctuations that were present before and during inflation, which
are responsible for the structure of the universe we see today. The rapid ex-
pansion during inflation takes place within a certain amount of time. This time
dependence spontaneously breaks time translations. At the end of part I we
describe a theory of the degrees of freedom in spontaneously broken time trans-
lations. This theory does not limit itself to inflation but generally describes all
theories that demonstrate spontaneously broken time translations, i.e. all theo-
ries of cosmology. In Part II we cover spontaneous internal symmetry breaking
in particle physics. An internal symmetry is a symmetry that does not trans-
form the coordinates of the field. This is done for transformations that commute
(Abelian) and for transformations that do not commute (non-Abelian). We de-
rive the theory for the Goldstones of spontaneously broken symmetries that do
not commute by using the coset construction. The coset construction is a sys-
tematic approach to a theory related to a symmetry breaking pattern. Instead
of guessing the invariant objects from the remaining symmetries as we do at
the end of the first part, we systematically compute them using the Goldstone
degrees of freedom. The transformations are also made coordinate dependent
(gauged) and the coset construction is used to describe spontaneous symmetry
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breaking of gauged transformations. The famous Higgs mechanism is an exam-
ple of spontaneous internal gauged symmetry breaking. At high energies the
electroweak symmetries are mixed. Only below the energy scale of 246 GeV the
electroweak symmetry is spontaneously broken, giving the W -bosons and the
Z-bosons (weak interactions) mass and leaving the photons massless. Theories
that describe the quantum effects in spontaneously broken settings and that are
effective in a certain energy regime are called effective field theories. In part
II we describe the effective theory of spontaneous chiral symmetry breaking.
The chiral symmetry is a symmetry that rotates the quark flavours u, d and s.
These symmetries are spontaneously broken by the condensate and the eight
Goldstone bosons are scalar meson fields. In part III we describe spacetime
spontaneous symmetry breaking. The difference with internal SSB is that the
symmetries are only transformations on the coordinates. It is possible to have
degenerate degrees of freedom in spacetime spontaneous symmetry breaking.
These are accounted for by application of the inverse Higgs constraint. We then
compute the theory of scalar perturbations by spontaneous breaking of time
translation, by applying the coset construction. The result of the third part is
an approximation to the theory of spontaneously broken time translations in
flat spacetime that we set out to derive. We approach the same theory but in a
curved background by working with a membrane that spontaneously breaks the
symmetry. We also do this by introducing covariant derivatives that conserve
the diffeomorphism symmetries of gravity. A good extension would be to finish
this approach in a curved background and compare the results with the findings
we describe in part I. The prognosis is that not a lot of new physics would arise
by this model independent approach as the degrees of freedom in a SSB of time
translations have been extensively researched and measured.

5



Part I

Cosmology and Inflation
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Chapter 2

A Review of Inflation

Throughout the thesis we use
c = h̄ = 1 . (2.1)

Before we cover the subject of inflation it is necessary to introduce the toolkit of
a cosmologist. To grasp the spacetime of our universe the best bet is to look at
the isometries underlying it [2]. The isometries are distance preserving transfor-
mations, and labeled homogeneity and isotropy. The former is invariance under
translations in space and the latter is invariance under rotations of space. With
these isometries in mind, Friedmann Lemâıtre Robertson and Walker derived a
cosmological model with a time dependent scale factor a(t), which is 1 today.
This model is analogous to a raising bread in the oven, where the scale factor
determines the relative size of the bread. A scale factor smaller than 1 would
imply that the bread has shrunk. The metric of this theory is aptly named the
FLRW-metric,

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 φdφ2)

]
, (2.2)

where K denotes the curvature of spacetime. If K is zero, (2.2) would boil down
to a flat spacetime metric with a scale factor. For a positive K it is positively
curved. For a negative K, the factor in front of the measure dr2 decreases
when r increases and it is negatively curved. A coordinate transformation from
the radius r to the coordinate χ can be applied to write the metric so that
the measure for the radial component is dχ2 for all K. The transformation is
defined by,

r2 ≡ Φk(χ)


sinh2 χ K = −1 ,

χ2 K = 0 ,

sin2 χ K = 1 ,

(2.3)

leading to,

ds2 = −dt2 + a2(t)
[
dχ2 + Φk(χ)(dθ2 + sin2 φdφ2)

]
. (2.4)
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The scale factor is time dependent, therefore it is important to define a quantity,

H ≡ ȧ

a
, (2.5)

where a dot denotes the time derivative. H is the Hubble parameter, describing
the expansion rate of the universe. For a collapsing universe the sign of H is
negative and for an expanding universe it is positive. The inverse of the Hubble
parameter is a measure for the cosmological time of the universe H−1 ∼ t and
the cosmological size of the universe H−1 ∼ d if expansion had been linear. Now
that we have the metric it is practical to define a conformal time τ , this is the
time coordinate scaled with the scale factor,

τ =

∫
dt

a(t)
. (2.6)

Conformal time enables us to write the metric as a spacetime with a conformal
time dependent scale factor for the whole invariant measure,

ds2 = a2(τ)
[
−dτ2 + dχ2

]
, (2.7)

where the angles φ and θ have been fixed, made possible by the isotropy of the
universe. Null geodesics ds2 = 0 are now defined in a scale factor independent
way. The null geodesic limits the maximal covered distance in a time t− ti by
a particle p. This maximum is the horizon of a particle,

χp = τ − τi =

∫ t

ti

dt

a(t)
, (2.8)

this horizon in the comoving frame is χp. Multiply by the scale factor a(t) to
recover the physical distance dp at time t,

dp(t) = a(t)χp . (2.9)

The particle horizon will turn out to play a pivoting role for the formulation of
the theory of inflation. Before diving into inflation, the dynamics of spacetime
are outlined in the following.

2.1 Gravitational Dynamics

The formula connecting the energy momentum of a physical system with the
curvature of spacetime was derived by Albert Einstein in 1915. This will form
the starting point of the section,

1

M2
Pl

Tµν = Λgµν +Gµν . (2.10)

The Einstein tensor is a relabeled combination of the metric, the Ricci scalar
and the Ricci tensor. They depend on the metric and its derivatives, Gµν ≡
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Rµν − 1
2Rgµν . The left hand side of (2.10) is the content of the universe. This

is divided into three epochs, matter domination, radiation domination and a
cosmological constant. We describe these by a perfect fluid, with an energy
density ρ and a pressure p. The distinguishing property between epochs is the
parameter w, or the equation of state,

p

ρ
≡ w . (2.11)

The equation of state parameter for the different epochs is,

w =


0 in matter domination,
1
3 in radiation domination,

−1 in cosmological constant domination.

(2.12)

The energy-momentum tensor of a perfect fluid is,

Tµν = (ρ+ p)uµuν + pgµν . (2.13)

With (2.10) we derive the Friedmann equations, named after their discoverer
Friedmann,

H2 +
K

a2
=

1

3M2
Pl

ρ , (2.14)

Ḣ +H2 = − 1

6M2
Pl

(ρ+ 3p) . (2.15)

Taking the time derivative of (2.14) and combining the equations, the continuity
equation reads,

1

6M2
Pl

ρ̇

H
+
K

a2
= − 1

2M2
Pl

(ρ+ p) , (2.16)

rewriting it and setting K = 0,

d ln ρ

d ln a
= −3(1 + w) , (2.17)

where w is the equation of state parameter. Integrating it leads to,

ρ ∝ a−3(1+w) , (2.18)

using (2.14) the scale factor reads,

a(t) ∝

{
t

2
3(1+w) w 6= −1 ,

eHt w = −1 .
(2.19)

The composite energy density and pressure are,

ρ = Σiρi , p = Σipi , (2.20)
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the index i covers the different substances. The critical density is the value of
ρ in absence of spatial curvature and the cosmological constant set to zero,

ρc ≡ 3H2M2
Pl . (2.21)

The ratio between the energy density ρ and the critical energy density is

Ωi ≡
ρi
ρc
. (2.22)

Each i content has its own equation of state parameter wi. This finalizes the
introduction of some fundamental cosmological concepts. Looking at conse-
quences of these fundamentals will lead to difficult questions concerning initial
conditions of the universe. These are solveable by introducing the concept of
inflation.

2.2 Fine tuned initial Conditions, a Feeling or a
Fact?

Gravitational theory tells us that any inhomogeneities would attract and create
larger ones in a big bang cosmology, so any initial inhomogeneity would grow
exponentially and would dominate at this point. This is not what we observe
in the universe. It seems that at the start, τ = 0, the conditions of the universe
were finely tuned, as there could have been causal contact between all observable
parts in a big bang cosmology. The absence of causal contact between nearly
homogeneous parts of the universe is also known as the horizon problem.

2.2.1 The Horizon Problem

The particle horizon between a time 0 and time t is,

τ ≡
∫ t

0

d ln a

(
1

aH

)
, (2.23)

(aH)−1 is called the comoving Hubble radius. The comoving Hubble radius is
the radius of a sphere whose surface is luminally recessing. Solving the integral
with equation of state parameter w and using that (aH)−1 = H−1

0 a
1
2 (1+3w)

(from (2.14)) where H0 is the value of the Hubble parameter now, the comoving
horizon is proportional to,

τ ∝ a 1
2 (1+3w) . (2.24)

This means that the comoving horizon and the comoving Hubble radius grow
with time in matter domination and in radiation domination,

τ ∝

{
a Radiation Domination,

a
1
2 Matter Domination.

(2.25)

Any comoving scale entering the horizon now is causally disconnected, yet ap-
proximately homogeneous by observation. This seems quite incongruous.
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2.2.2 The flatness Problem

Consider the Friedmann equation (2.14), rewritten in terms of Ω = ρ
ρc

1− Ω =
−K

(aH)2
. (2.26)

The growth of the comoving Hubble radius in matter and radiation domination
implies that a small deviation from the value Ω = 1 blows up the curvature
K. Though observations show that the universe is approximately Euclidean flat
space. Again, fine tuned initial conditions are one way of solving this issue.
Although, these initial values are not necessary anymore with the introduction
of inflation.

2.3 Inflation

The problems arising with the fine tuned initial conditions are linked to a comov-
ing Hubble radius that is always increasing. An important distinction between
comoving horizon and comoving Hubble radius has to be made. The comoving
horizon describes the maximum distance that a massless particle has travelled.
The comoving Hubble radius is the region on which the massless particle is re-
ceding by the speed of light. Any particle separated a distance larger than the
comoving Hubble radius cannot communicate now. Postulating an era in which
the comoving Hubble radius is shrinking as time passes puts every part of the
universe inside the comoving Hubble radius at one point. Modes then left it as
it was decreasing and later reentered as the radius increased in a matter or ra-
diation dominated universe. The particle horizon is an integral of the comoving
Hubble radius (2.23). A large comoving Hubble radius in the far past therefore
implies a large comoving horizon now. The conditions for a decreasing comoving
Hubble radius are synonymous with an accelerated expansion of the universe

ä > 0 ⇔ d

dt
(aH)−1 < 0 . (2.27)

We derive the right equivalence relation by taking the time derivative of the
comoving Hubble radius,

d

dt
(aH)−1 = −(aH)−2a(H2 + Ḣ) . (2.28)

Inflation happens when w < − 1
3 . Now that we have the dynamics of an inflating

universe, it enables us to revisit the flatness and the horizon problems from a
new perspective.

2.3.1 Revisiting Horizon and flatness Problem

The comoving horizon is extended to large scales with a decreasing comoving
Hubble radius as time passes. So the comoving horizon now contains all dis-
tances between particles that enter the horizon after inflation. The flatness

11



problem revisited,

|1− Ω(a)| = 1

(aH)2
, (2.29)

shows that the energy density parameter now reaches 1 in a stable way as
the comoving Hubble radius decreases. This way flatness of the universe is a
consequence of inflation. Another way to look at this, is that any curvature
that was there in the beginning drowned out when an exponential growth of the
universe occurred.

2.4 Dynamics of Inflation

Inflation has to stop at a certain time. This time is expressed in the number of
e-folds. An e-fold is the time in which the scale has grown by a factor e. Using
the Friedmann Equation (2.15), we express the change in the Hubble parameter
H,

ε ≡ − Ḣ

H2
,

ä

a
= H2(1− ε) , (2.30)

in an accelerated expansion ä > 0 therefore ε < 1. The measure of number of
e-folds is N ,

dN = d ln a = Hdt , (2.31)

and we rewrite ε as

ε = −d lnH

dN
. (2.32)

This parameter is the tool to describe the conditions for the end of inflation.
To model inflation we use a scalar field.

2.4.1 Scalar Field Inflation

A scalar field acts as an order parameter to make sense of the dynamics of
inflation in most theories of inflation. The scalar field is called the inflaton.
The simplest assumption is that the scalar field is minimally coupled to gravity.
The action is a combination of the Einstein-Hilbert action and a coupled scalar
field action Sφ,

S = SEH + Sφ =

∫
d4x
√
−g
[

1

2
M2
PlR−

1

2
gµν∂µφ∂νφ− V (φ)

]
, (2.33)

the potential V (φ) contains self-interactions. We model the inflaton as a perfect
fluid. The energy momentum tensor is

T (φ)
µν ≡ −

2√
−g

δSφ
δgµν

. (2.34)

Applying δ
√
−g = − 1

2

√
−ggµνδgµν (with gµνδg

µν = −gµνδgµν) it is
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T (φ)
µν = ∂µφ∂νφ− gµν

(
1

2
∂σφ∂

σφ+ V (φ)

)
. (2.35)

Taking the field to be spatially homogeneous, i.e. independent of x, φ(t,x) =
φ(t), filling in the FLRW metric and applying (2.13) the pressure and energy
density are,

ρφ =
1

2
φ̇2 + V (φ) , (2.36)

pφ =
1

2
φ̇2 − V (φ) . (2.37)

To recap, accelerated expansion implies that the strong energy condition is
violated. The equation of state parameter for the scalar field is denoted by wφ
and is

wφ =
pφ
ρφ

=
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (2.38)

To have the scalar field drive accelerated expansion we need

wφ < −
1

3
, (2.39)

so V (φ)� 1
2 φ̇

2. Varying the action with respect to the field we get

δSφ
δφ

=
1√
−g

∂µ(
√
−g∂µφ)− dV

dφ
= 0 , (2.40)

and applying the same principles as before, the field equation is

φ̈+ 3Hφ̇+
dV

dφ
= 0 . (2.41)

The Friedmann equation (2.14) with zero curvature is

H2 =
1

3M2
Pl

(
1

2
φ̇2 + V (φ)

)
. (2.42)

It shows that the Hubble parameter H creates a significant friction to the dy-
namics of the scalar field. This friction makes sure that inflation takes some
time to stop. The measure for how long this is, is expressed in terms of e-folds.
The slow-roll conditions are used to define this measure.

2.4.2 Slow roll Inflation

We defined ε as,

ε ≡ − Ḣ

H2
= −d lnH

dN
, (2.43)
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and call it the slow roll parameter. We can express it in terms of the equation
of state parameter by using the Friedmann equations,

ε =
3

2
(1 + wφ) , (2.44)

and by using the field equations,

ε =
1

2

φ̇2

H2
, (2.45)

when ε < 1 accelerated expansion occurs. This coincides with

1

2
φ̇2 � V (φ) . (2.46)

In the de Sitter limit exponential expansion a = eHt occurs. The following are
satisfied in this limit: pφ → −ρφ and ε → 0. The expansion of the universe

does not stop in de Sitter, as φ̇ = 0. Inflation is quasi de Sitter as it fades
out after a certain amount of time. The requirement for this is that the second
time derivative of the scalar field is small relative to the two terms in the field
equations,

|φ̈| � |3Hφ̇|, |dV
dφ
| . (2.47)

We introduce another slow roll parameter η and express it in terms of ε

η = − φ̈

Hφ̇
= ε− 1

2ε

dε

dN
, (2.48)

the condition is stated as |η| < 1. This means that the change of ε per e-fold N
is just a fraction of the parameter itself. Most literature also parametrizes slow
roll in terms of the potential and its derivatives with respect to φ, V ′ ≡ dV

dφ ,

εV =
M2

Pl

2

(
V ′

V

)2

ηV =
V ′′

V
, (2.49)

where the requirements
εV , |ηV | � 1 , (2.50)

hold for slow-roll inflation. Inflation ends when,

ε(φend) ≡ 1 . (2.51)

The number of e-folds before inflation ends is,

N =

∫ aend

a

Hdt =

∫ φend

φ

H

φ̇
dφ =

∫ φend

φ

dφ√
2ε
, (2.52)

it exceeds around 60 e-folds. This concludes the introduction to inflation. The
topics covered were the horizon and flatness problem, the concept of inflation
and single-field inflation. The next chapter covers perturbations of spacetime
in general relativity and the role of inflation therein.
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Chapter 3

Perturbations

The fundamentals of theoretical cosmology have been formulated in the preced-
ing chapter. We can also derive an explanation for observed fluctuations in the
large scale structures of the universe, the cosmic microwave background (CMB)
and other perturbations from theoretical principles. We do this by applying
perturbations to the background. The start of these inhomogeneities can be
traced back to the period of inflation. The empty vacuum at microscopic scales
is in actuality a fluctuating entity, due to the uncertainty principle. Spacetime
at these scales is filled with excitations and annihilations. We derive the gravita-
tional perturbations originating from inflation by applying these perturbations
to the inflaton field, called δφ. Any change in the inflaton field means a change
in the energy momentum tensor. This in turn backreacts on spacetime itself.
Therefore δφ has to be studied in connection to the perturbation of spacetime
δgµν [3][4]. The field fluctuates with respect to a time dependent background,

φ(x, t) = φ̄(t) + δφ(x, t) , (3.1)

as the unperturbed inflaton field is homogeneous φ̄(x, t) = φ̄(t). The bar de-
notes the background solution. The next sections will discuss perturbations and
diffeomorphisms. Diffeomorphisms are spacetime dependent transformations on
the coordinates and are gauge degrees of freedom in a gravitational theory.

3.1 Scalar, Vector and Tensor Decomposition

This section reviews the practice of describing the spacetime curvature of the
universe as a small perturbation with respect to a time dependent background,
the FLRW metric ḡµν [5]. The labeling we use for the perturbation to the metric
is hµν ,

gµν = ḡµν + hµν . (3.2)

The indices are raised and lowered by using the background metric. Keeping in
mind that δ(MM−1) = 0 for a matrix M ,

hµν = −ḡµρḡνσhρσ . (3.3)
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Weinberg [5] has an extensive description of the perturbations on the most
common tensors in General Relativity. They are not mentioned in this case, the
conclusions do follow. The metric is decomposable into scalar, vector and tensor
degrees of freedom due to spatial homogeneity and isotropy. The decomposition
is denoted by latin capital letters,

h00 = −E , (3.4)

h0i = a [∂iF +Gi] , (3.5)

hij = a2 [Aδij + ∂i∂jB + ∂iCj + ∂jCi +Dij ] , (3.6)

the degrees of freedom have a few constraints, Dij = Dji ,

∂iCi = ∂iGi = 0, ∂iDij = 0, Dii = 0 . (3.7)

The decomposition can be applied to the perturbation of the energy momentum
tensor as well. The background values are: for the pressure p̄, for the density
ρ̄ and for the four momentum ūµ. The elements of the decomposition are de-
noted by δρ, δp and δui which is decomposed into the gradient of the velocity
potential ∂iδu and a divergenceless vector δuVi , ∂iδu

V
i = 0. Other terms include

dissipative corrections: ∂i∂jπ
S , ∂iπ

V
j +∂jπ

V
i and πTij . The equations that define

these quantities are,

δTij = p̄hij + a2
[
δijδp+ ∂i∂jπ

S + ∂iπ
V
j + ∂jπ

V
i + πij

]
, (3.8)

δTi0 = p̄hi0 − (ρ̄+ p̄)
(
∂iδu+ δuVi

)
, (3.9)

δT00 = −ρ̄h00 + δρ . (3.10)

The constraints apply in the same manner,

∂iπ
V
i = ∂iδu

V
i = 0 , ∂iπ

T
ij = 0 , πTii = 0 . (3.11)

With these equations we describe three classes of motion , a scalar mode, which
can be viewed as a compression of spacetime by a change in potential, a vector
mode, viewed as a vortex mode due to for example the dragging of the frame
by a spinning object and tensor modes, viewed as radiation.

3.2 Gauge Transformations

The Einstein equations for the perturbed quantities show that only combina-
tions of them present physical scalar and vector degrees of freedom, i.e. are
invariant under diffeomorphisms. This will also be denoted as gauge invariant.
To get a better understanding of the perturbed metric and the perturbed energy
momentum tensor, we look at their transformations under the diffeomorphism,

xµ → x′µ = xµ + εµ(x) , (3.12)
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where εµ is as small as the perturbations to the metric and energy momentum
tensor. The metric transforms under a coordinate transformation x → x′ as a
two-tensor,

g′µν(x′) = gλκ(x)
∂xλ

∂x′µ
∂xκ

∂x′ν
. (3.13)

Any change in the full metric gµν(x) is attributed to a change in the perturbation
metric hµν(x). The field equations are invariant for a change in the metric
perturbations under the diffeomorphisms ε,

hµν(x)→ hµν(x) + ∆hµν . (3.14)

This change is defined as,

∆hµν(x) ≡ g′µν(x)− gµν(x) . (3.15)

Expanding the metric g′µν(x) to first order in ε and perturbations,

g′µν(x) = gκλ(x′ − ε) ∂x
κ

∂x′µ
∂xλ

∂x′ν
(3.16)

= gµν(x)− ∂λḡµν(x)ελ − ḡκν(x)∂µε
κ − ḡµλ∂νελ , (3.17)

and plugging in the result,

∆hµν(x) = −∂λḡµν(x)ελ − ḡκν(x)∂µε
κ − ḡµλ∂νελ . (3.18)

Filling in the FLRW metric, then εi = a2εi and ε0 = −ε0 and the change in the
perturbations in spatial and temporal components is,

∆hij = − ∂εi
∂xj
− ∂εj
∂xi

+ 2aȧδijε0 , (3.19)

∆hi0 = −ε̇i −
∂ε0
∂xi

+ 2
ȧ

a
εi , (3.20)

∆h00 = −2ε̇0 . (3.21)

The field equations are invariant under the transformation of the energy mo-
mentum as well,

δTµν(x)→ δTµν(x) + ∆δTµν(x) . (3.22)

In the same manner as the metric tensor, it is expressed linearly in ε and pertur-
bations. A distinction has been made between δ signifying the perturbation on
the background and ∆ denoting the change of the perturbation under a gauge
transformation. Analogously to the metric,

∆δTµν = −T̄λµ(x)∂νε
λ(x)− T̄λν(x)∂µε

λ(x)− ∂λT̄µν(x)ελ(x) , (3.23)

and similarly, filling in FRW,

∆δTij = −p̄
(
∂εi
∂xj

+
∂εj
∂xi

)
+
∂

∂t
(a2p̄)δijε0 , (3.24)

∆δTi0 = −p̄ε̇i + ρ̄
∂ε0
∂xi

+ 2p̄
ȧ

a
εi , (3.25)

∆δT00 = 2ρ̄ε̇0 + ˙̄ρε0 . (3.26)
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The change ∆ under a gauge transformation is expressible for each scalar, vec-
tor and tensor component introduced in the previous section individually. To
manage that, a decomposition is necessary. ε is written in terms of a scalar
degree εS and a divergenceless vector εVi ,

εi =
∂εS

∂xi
+ εVi , ∂iε

V
i = 0 . (3.27)

The change under a gauge transformation is now,

∆h00 = −2ε̇0 , (3.28)

∆hi0 = − ∂

∂t

∂

∂xi
εS − ε̇Vi −

∂ε0
∂xi

+ 2
ȧ

a

∂εS

∂xi
+ 2

ȧ

a
εVi , (3.29)

∆hij = − ∂

∂xj
∂

∂xi
εS − ∂εVi

∂xj
−
∂εVj
∂xi
− ∂

∂xi
∂

∂xj
εS −

∂εVj
∂xi

+ 2aȧδijε0 . (3.30)

Equating the degrees of freedom of ∆hµν with the change to the scalar, vector
and tensor degrees of freedom under a gauge transformation results in,

∆A = 2
ȧ

a
ε0 , ∆B = − 2

a2
εS , (3.31)

∆Ci = − 1

a2
εVi , ∆Dij = 0 , ∆E = 2ε̇0 , (3.32)

∆F =
1

a

(
−ε0 − ε̇S +

2ȧ

a
εS
)
, ∆Gi =

1

a

(
−ε̇Vi +

2ȧ

a
εVi

)
. (3.33)

The same process is applied to the energy momentum tensor,

∆δp = ˙̄pε0 , ∆δρ = ˙̄ρε0 , ∆δu = −ε0 , (3.34)

the change in a gauge invariant quantity is zero,

∆πS = ∆πVi = ∆πTij = ∆δuVi = 0 . (3.35)

There are two options now that we described the gauge transformations for
each scalar, vector and tensor degree separately. The first option is to work
exclusively with gauge invariant quantities and the second is to choose a gauge.
The gauge for the tensor part is not fixable, the quantities Dij and πTij are

already gauge invariant. The vector degrees of freedom πVi , δuVi , Ci and Gi can
be combined to form gauge invariant quantities, πVi , δuVi and G̃i ≡ Gi − aĊi.
Fixing a gauge for the vector part is choosing an ε for which either Ci or Gi
vanishes. For the scalar degrees of freedom there are several options to fix the
gauge.

3.3 Comoving Gauge

In this section we describe the relevant gauge fixing choice for the theory of
inflation [6] [1]. Once we choose a gauge, a covariant Lagrangian density is
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obtained with the objects that are covariant in this gauge. The following gauge
choice sets the fluctuations of the scalar field to zero,

δφ(x) = 0 , (3.36)

this means that time diffeomorphisms are fixed,

ε0(x) = 0 , (3.37)

for all x spacetime coordinates. There is a function t̃(x) that describes the
spacetime ’slicing’ for which the scalar perturbations are zero. Once the gauge
is fixed this function coincides with the coordinate time t. This gauge is called
the comoving gauge. In a way spacetime now moves to eliminate scalar pertur-
bations. In some literature it is also called unitary gauge. This is a term used
in spontaneous symmetry breaking of a gauge degree of freedom. Gauge sym-
metry breaking is similar to this gauge fixing, as in both cases certain degrees of
freedom which are non-linearly realized by the symmetry are fixed to manifest
the degree of freedom in other physical objects. In this case the perturbation
of the inflaton field is gauge fixed and the degree of freedom is expressed by the
metric. The spatial diffeomorphisms are not fixed,

xi → xi + εi(x) . (3.38)

More terms can be added to a theory whose symmetry has decreased. Added
terms only need to comply with the symmetries that are unbroken. The terms
that comply with these symmetries are listed below.

• The Riemann tensor Rµνρσ is invariant under all diffeomorphisms, so it
is the usual diffeomorphism symmetry term. To combine it into a scalar
it is contracted with covariant derivatives or with the completely anti-
symmetric tensor εµνρσ.

• Any function of t̃ becomes a function of the time t in the comoving gauge.
Terms in the Lagrangian are therefore multiplied by generic functions f(t).

• The gradient of t̃ is a delta function, ∂µt̃ = δ0
µ. The contraction of any

vector or tensor with this object, will result in a free upper index 0. An
example of this is g00 , therefore powers of g00 are in the Lagrangian.

• The following unitary normal vector is perpendicular to the spatial hyper-
surface,

nµ =
∂µt̃√

−gµν∂µt̃∂ν t̃
. (3.39)

We use it to write the spatial metric,

hµν ≡ gµν + nµnν , (3.40)
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this projects objects onto the spatial hypersurfaces by contraction. The
extrinsic curvature is the covariant derivative of the normal vector pro-
jected onto the spatial hyperslices,

Kµν = hσµ∇σnν , (3.41)

the ν index is not contracted with the metric h, as it is already on the
surface, nν∇σnν = 1

2∇(nνnν) = 0. The extrinsic curvature is part of the
Lagrangian. The Riemann tensor on the spatial hypersurfaces is equal
to a combination of the extrinsic curvature tensor and the full Riemann
term, projected on the surface. Therefore using one or the other in the
Lagrangian is sufficient. In this case the extrinsic curvature is part of the
Lagrangian.

In conclusion, the action consists of functions of the objects,

S =

∫
d4x
√
−g F (Rµνρσ, g

00,Kµν ,∇µ, t) . (3.42)

The linear terms in the action are functions of t,

Slin =

∫
d4x
√
−g
[

1

2
M2
PlR− Λ(t)− c(t)g00

]
. (3.43)

They are fixed by taking into account the equations of motion in an FLRW
background. The equations are produced by evaluating the energy-momentum
tensor,

Tµν ≡ −
2√
−g

δSΛ,c

δgµν
= −c(t)g00 − Λ(t) + 2c(t)δ0

µδ
0
ν , (3.44)

and filling it into the Einstein equations for the FLRW metric,

H2 =
1

3M2
Pl

[c(t) + Λ(t)] , (3.45)

Ḣ +H2 = − 1

3M2
Pl

[2c(t)− λ(t)] . (3.46)

The values of the linear terms are,

c(t) = −M2
PlḢ , (3.47)

Λ(t) = M2
Pl[3H

2 + Ḣ] . (3.48)

The higher order terms are powers of the objects subtracted by their background
value, denoted by a bar. This ensures that any higher order term is invariant
under spatial diffeomorphisms and is evaluated around the FLRW background.
The background values of the objects are

ḡ00 = −1 , (3.49)

K̄µν = a2Hhµν , (3.50)

R̄µνρσ = 2(H + k)hµ[ρhσ]ν + (Ḣ +H2)a2hµσδ
0
νδ

0
ρ (3.51)

+ permutations in indices , (3.52)
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where for a generic tensor U[µν]··· ≡ 1
2 (Uµν··· − Uνµ···). The higher order terms

are powers of: δg00 = g00 + 1, δKµν = Kµν − a2Hhµν , δR = Rµνρσ − R̄µνρσ.
Each power is multiplied by a function Mi(t) which has a mass dimension com-
pensating for the dimension of the operator. The action is,

S =

∫
d4x
√
−g[

1

2
M2
PlR+M2

PlḢg
00 −M2

Pl(3H
2 + Ḣ)

+
1

2!
M2(t)4(g00 + 1)2 +

1

3!
M3(t)4(g00 + 1)3

− M̄1(t)3

2
(g00 + 1)δKµ

µ −
M̄2(t)2

2
(δKµ

µ )2

− M̄3(t)2

2
δKµ

ν δK
ν
µ + · · · ] .

(3.53)

This theory does not only describe the case for perturbations to a scalar field,
but any theory of gravity with spontaneously broken time translations. Higher
order terms, for instance the δRµνρσ term, are not mentioned above.

3.3.1 Restoring Time Diffeomorphisms

When a symmetry is spontaneously broken, it is non-linearly realized by a Gold-
stone field. The concept of symmetry breaking and Goldstone fields is more
thoroughly explained in part II. The results of the Goldstone theorem applied
to time translations symmetry breaking are stated here. The main difference
here as opposed to the following chapters is that the Goldstone field is inserted
by hand, also known as the Stückelberg trick. The method that we describe in
the rest of this thesis is based on the coset construction and is used to derive the
Goldstone field theory from the symmetry breaking pattern. The Stückelberg
trick is done by replacing the time diffeomorphism parameter by a spacetime
dependent field π(x). Under a time diffeomorphism ε0(x) it has the following
transformation property, for

t→ t+ ε0(x) , (3.54)

then
π(x)→ π(x)− ε0(x) , (3.55)

such that the combination
π(x) + t , (3.56)

is time diffeomorphism invariant. The following example explains the applica-
tion of the Stückelberg trick. We take the linear terms A(t) and B(t)g00. The
original action is, ∫

d4x
√
−g
[
A(t) +B(t)g00

]
. (3.57)

The 00 element of the metric transforms under broken time diffeomorphisms as,

g00(x)→ g′00(x′(x)) =
∂x′0(x)

∂xµ
∂x′0(x)

∂xν
gµν(x) . (3.58)
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Applying the Stückelberg trick t→ t′ ≡ t+ π to the action,∫
d4x
√
−g
[
A(t+ π(x)) +B(t+ π(x))

∂(t+ π(x))

∂xµ
∂(t+ π(x))

∂xν
gµν(x)

]
.

(3.59)
The Stückelberg trick applied to the action that we derived previously in (3.53)
results in restored time diffeomorphisms,

S =

∫
d4x
√
−g[

1

2
M2
PlR+M2

PlḢ∂µ(t+ π)∂ν(t+ π)gµν −M2
Pl(3H

2 + Ḣ)

+
1

2!
M2(t)4(∂µ(t+ π)∂ν(t+ π)gµν + 1)2

+
1

3!
M3(t)4(∂µ(t+ π)∂ν(t+ π)gµν + 1)3 + · · · ] .

(3.60)

This method is a model independent description of a theory of spontaneous time
diffeomorphism breaking [7]. The π field is related to perturbations of the scale
factor and in turn to comoving curvature perturbations by multiplication with
the Hubble parameter,

Hπ ∝ δa

a
∝ ζ . (3.61)

The comoving curvature perturbations ζ describe the origin of cosmological
observables such as the CMB.
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Part II

Spontaneous Symmetry
breaking in QFT
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Chapter 4

Goldstone Theorem and a
complex Scalar Field

A spontaneous symmetry breaking of a physical system in a symmetric state
under a certain action, a rotation for example, is characterized by three traits
[8]:

(i) a parameter assuming a critical value breaks the symmetry, after that

(ii) the symmetric state is unstable and the system will reach an alternative
ground state, which

(iii) is part of a continuous family of ground states.

A symmetry of a quantum field theory is characterized by a symmetry trans-
formation on a field changes the Lagrangian by a total derivative [9]

δL = ∂µF
µ , (4.1)

where Fµ is some arbitrary function. For any transformation δφ the Lagrangian
transforms as

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µ(δφ) , (4.2)

rewriting it

δL =

[
∂L
∂φ

δφ− ∂µ
(

∂L
∂(∂µφ)

)]
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)
, (4.3)

where the equation of motion of the field is δS = 0. Then using (4.1) with (4.3),

∂µ

(
∂L

∂(∂µφ)
δφ− Fµ

)
= 0 , (4.4)

we find for every symmetry transformation a current

jµ =
∂L

∂(∂µφ)
δφ− Fµ(φ) , (4.5)
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which is conserved
∂µj

µ = 0 . (4.6)

The definition of the associated charge is

Q ≡
∫
d3xj0(x) , (4.7)

and this is conserved as well. This is proven by,

dQ

dt
=

∫
d3x

dj0(x)

dt
= −

∫
d3x∂ij

i(x) = −
∫
dA ·~j(x) = 0 , (4.8)

as ~j → 0 when |~x| → ∞, where A denotes a surface at infinity. In quantum
mechanics the charge generates the transformation δφ with a commutator, in
classical mechanics we use Poisson brackets. This is seen by,

[Q,φ(y)] =

∫
d3x

[
j0(x), φ(y)

]
=

∫
d3x

[
∂L

∂(∂0φ)
δφ, φ(y)

]
. (4.9)

The conjugate momentum is defined as,

π(x) ≡ ∂L
∂(∂0φ)

, (4.10)

the commutation relation for the field φ(y) and its conjugate momentum is

[φ(x), π(y)] = iδ(3)(x− y) . (4.11)

This enables us to complete equation (4.9),

[Q,φ(y)] =

∫
d3x [π(x), φ(y)] δφ = −i

∫
d3xδ(3)(x− y)δφ = −iδφ . (4.12)

In the following we describe a group theory approach to symmetry transforma-
tions.

4.1 Group Theory

The groups that are covered are continuous symmetry groups, these are also
called Lie groups. Groups are a set of elements with an action between them.
A few prerequisites are needed to form a group, there has to be an identity
operator, for every element an inverse, it has to be associative and any product
of elements has to be in the group. The number of elements can be infinite, like
in Lie groups. The group is Abelian when actions commute and non-Abelian
when transformations of the group do not commute. The linearization of the
action of a Lie group gives the Lie algebra. An exponential map connects the
group with its related algebra in the case that the group is a matrix group. The
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transformation matrix g ∈ G and the matrices Ta as elements of the Lie algebra
are connected by,

g ≡ eiα
aTa = 1 + iαaTa + · · · . (4.13)

A finite dimensional and unitary matrix representation of the Lie group exists
if and only if the group is a matrix Lie group. Only matrix Lie groups are
handled in the cases studied. The elements of the Lie algebra are commonly
called generators of the group. In the examples real fields are transformed into
real fields, so the transformations g are real and unitary. The generators Ta are
finite and hermitian, because the transformations are real and unitary. They
are defined by hand to satisfy,

Tr[TaTb] ≡ δab . (4.14)

In this case up and down indices are indistinguishable. Closure of the group
means for g1(≡ eiαaTa) ∈ G, g2(≡ eiαbTb) ∈ G that g1g2 ∈ G and in terms of the
generators is (by applying (4.13))

TaTb − TbTa = icabdTd , (4.15)

where cabd is the form factor, a constant and antisymmetric under exchange of
two indices. In spontaneous symmetry breaking we start with a full symmetry
group G. The vacuum configuration then spontaneously breaks the symmetry
to a subgroup H, denoting the group of preserved symmetries. A subgroup is
a subset of elements of the full group that form a closed group by themselves,
therefore it has its distinct generators. SSB then makes a division of the gener-
ators of G possible. Generators are divided into unbroken generators ti, which
are part of the Lie algebra of H and broken generators Xα, part of the Lie al-
gebra of G/H. G/H is the quotient group or left coset of H in G and is defined
by

G/H ≡ {gH : g ∈ G} . (4.16)

The coset consists of the spontaneously broken symmetries. Note the indices
that are used:

• a, b, c... for generators that are part of the full Lie algebra,

• i, j, k... for unbroken and

• α, β, ... for broken generators,

The generators of the full group are separated into the generators of the sub-
group and of the coset,

Ta =

{
ti unbroken generators ,

Xα broken generators .
(4.17)

H is a subgroup, so its algebra is closed under multiplication,

titj − tjti = cijktk . (4.18)
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The commutator between broken and unbroken generators is proportional to
the broken generators,

tiXα −Xαti = iciαβXβ . (4.19)

These properties are applied in the rest of this thesis.

4.2 Goldstone Theorem

Before formulating the Goldstone Theorem and its proof, we show that The
charge Q is the generator of the symmetry. Let g act by definition on the field
φ as,

g · φ ≡ φ+ αδφ+ · · · . (4.20)

Where α is an infinitesimal parameter. The symmetry transformation is repre-
sented by a unitary operator, for a finite and Hermitian generator X

Ωg ≡ eiαX , (4.21)

which acts on the field by conjugation,

(g · φ(x)) = Ω−1
g φ(x)Ωg = e−iαXφ(x)eiαX = φ(x)− α[X,φ(x)] + · · · . (4.22)

The commutation relation,

[X,φ(x)] = −iδφ(x) , (4.23)

holds for the generator X = Q. For non abelian symmetries this holds as well
(for which the label a is added to denote multiple generators),

Ω ≡ eiα
aQa . (4.24)

This represents the symmetry transformation. A vacuum configuration of the
field |0〉 and a transformation Ω are used to describe spontaneous symmetry
breaking of a physical system. A symmetry that leaves the vacuum invariant
acts like,

Ω |0〉 = |0〉 . (4.25)

The charge annihilates the vacuum,

Qa |0〉 = 0 . (4.26)

This vacuum is a non-degenerate vacuum with respect to the symmetry. The
symmetry is spontaneously broken, when there exists an infinite number of
groundstates connected by the symmetry transformation are possible configu-
rations. The transformation does not change the action (they are groundstates,
i.e. produce the same minimum value of the action) but does change the vacuum
state. Bringing the groundstate to a different groundstate means that,

Ω |0〉 = |0〉′ 6= |0〉 . (4.27)
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The charge does not annihilate the vacuum,

Qa |0〉 6= 0 . (4.28)

The action is invariant under the transformation

δS = 0 . (4.29)

Goldstone bosons are associated with the theory when a symmetry is sponta-
neously broken, as stated by the Goldstone Theorem.

Goldstone Theorem Take a field φa(x), where a denotes the a’th vector ele-
ment of the vector field. Let the field transform under non-Abelian symmetries.
Its expectation value is non-vanishing around the vacuum,

〈0|φa(x) |0〉 6= 0 , (4.30)

and it is not a singlet, i.e. it is not invariant under the transformation Ω =
eiQ

aαa ,
[Qa, φb(x)] = −iδφ(x) = −icabcφc(x) . (4.31)

If the charge Qa of the transformation does not annihilate the vacuum,

Qa |0〉 6= 0 , (4.32)

then massless particles exist in the particle states of the theory. The number of
massless particles is dependent on the conservation of symmetries G→ H where
G is the group of transformations under which the vacuum is invariant before
spontaneous symmetry breaking and H is the group that still leaves the vacuum
state invariant after spontaneous symmetry breaking. The number of massless
particles is the dimension of the quotient group when Lorentz invariance is
manifest,

dim {G/H} = dim {G} − dim {H} . (4.33)

Proof The vacuum expectation value is non-zero 〈0|φa(x) |0〉 6= 0, the state
φb(x) is not a singlet [Qa, φb(x)] = −icabcφc(x) and the charge does not annihi-
late the vacuum,

〈0| [Qa, φb(x)] |0〉 = 〈0|Qaφb(x)− φb(x)Qa |0〉 6= 0 . (4.34)

Writing the charge as an integral and inserting intermediate states
∑
n |n〉 〈n|,∑

n

∫
d3y[〈0| j0

a(y) |n〉 〈n|φb(x) |0〉 − 〈0|φb(x) |n〉 〈n| j0
a(y) |0〉]|x0=y0 6= 0 .

(4.35)
It is evaluated at y0 = x0 as the operators φa(x) and j0

a(y) act at the same time.
Using translational invariance, j0

a(y) = e−ipyj0
a(0)eipy, inserting this into (4.35)

28



and integrating,∑
n

∫
d3y

[
〈0| j0

a(0) |n〉 〈n|φb(x) |0〉 eipny − 〈0|φb(x) |n〉 〈n| j0
a(y) |0〉 e−ipny

]
|x0=y0

= (2π)3
∑
n

δ3(pn)
[
〈0| j0

a(0) |n〉 〈n|φb(x) |0〉 eipn0y0 − 〈0|φb(x) |n〉 〈n| j0
a(y) |0〉 e−ipn0y0

]
= (2π)3

∑
n

δ3(pn)
[
〈0| j0

a(0) |n〉 〈n|φb(x) |0〉 eiMny0 − 〈0|φb(x) |n〉 〈n| j0
a(y) |0〉 e−iMny0

]
6= 0 ,

(4.36)

where Mn is the mass for the intermediate state n. To prove that Mn = 0 we
have to show that (4.36) is independent of y0. Taking the derivative of (4.34)
with respect to y0,

∂

∂y0
〈0| [Qa, φb(x)] |0〉 =

∂

∂y0

∫
d3y 〈0| [j0

a(y), φb(x)] |0〉 . (4.37)

The conservation of the current, ∂µj
µ
a = ∂0j

0
a(y) + ∂ij

i
a(y) = 0, integrated over

space is
∂

∂y0

∫
d3j0

a(0) = −
∫
d3y∂ij

i
a(y) . (4.38)

Inserting this into (4.37) gives

∂

∂y0

∫
d3y 〈0| [j0

a(y), φb(x)] |0〉

= −
∫
d3y 〈0| [∂ijia(y), φb(x)] |0〉

= −
∫
dA · 〈0| [~ja(y), φb(x)] |0〉 .

(4.39)

The spatial part of the current ~ja(y) is evaluated at the spatial boundary where
the light cones of the fields φb(x) cannot overlap with it. This surface integral
therefore vanishes by causality. In conclusion, the masses of the intermediate
states are zero. The number of these states is equal to the number of charges
that do not annihilate the vacuum after spontaneous symmetry breaking, i.e. is
equal to dim{G/H}.

Gaplessness and decoupling Before mentioning examples of spontaneous
symmetry breaking we describe two special properties of Goldstone bosons in
this paragraph. Firstly, in the low energy limit a Goldstone mode decouples
from all interactions, because the state at zero momentum is indistinguishable
from the vacuum. Secondly, the energy of a Goldstone mode vanishes at zero
momentum, i.e. it is gapless. Gapless means that there is no energy to gap
before the field is perturbed. The energy is

E(p) =
√
m2 + p2 , (4.40)
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m = 0 for the Goldstone mode to ensure gaplessness. Gaplessness means that

lim
p→0

E(p) = 0 , (4.41)

with spatial momentum p , is ensured. The Goldstone theorem is applied in the
next sections.

4.3 Abelian global internal Symmetries

We describe a toy UV complete model in this section as an example of spon-
taneous symmetry breaking. The internal U(1) symmetry of the theory gets
spontaneously broken. The field is then expanded around the nonzero vacuum
expectation value to write the Goldstone boson part of the Lagrangian [10]. The
UV theory is,

L = −∂µφ∗∂µφ− V (φ, φ∗) , (4.42)

V =
λ

4
(φ∗φ− µ2

λ
)2 , (4.43)

and is invariant under the U(1) symmetry group. The transformation of the
field is,

φ→ eiαφ . (4.44)

The symmetry is called a global symmetry, because α is a constant. To calculate
the current, apply Noether’s theorem (4.5) with δφ = iφ. The current is

jµ = i(φ∗∂µφ− φ∂µφ∗) . (4.45)

The vacuum expectation values are the minima of the potential V (φ∗φ), denoted
by φ0. The potential has{

µ2

λ ≤ 0 one groundstate (|φ0| = 0) ,
µ2

λ > 0 infinitely many groundstates (|φ0| = µ√
λ

) .
(4.46)

In the last case, the groundstates can reach one another by a phase transforma-
tion

φ0 → eiαφ0 . (4.47)

When this regime is reached the U(1) symmetry is spontaneously broken, i.e.
each vacuum expectation value is distinct from the other modulo U(1). This
example is also commonly described as a Mexican hat potential. The vacuum
expectation value is defined as v ≡ |φ0| = µ√

λ
. The Goldstone mode becomes

explicit in the Lagrangian as the field is written in terms of a radial component
and a phase component,

φ(x) = χ(x)eiθ(x) . (4.48)

Applying this to the Lagrangian (4.42),

L = −∂µχ∂µχ− χ2∂µθ∂
µθ − V (χ2) . (4.49)
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At low energies the field is evaluated at φ0(x) = veiθ(x), this decouples the
Goldstone field θ from other fields. Besides that, the Goldstone terms in the
Lagrangian only depend on derivatives of the field, this implies gaplessness. Next
we describe a Lagrangian that is produced by only looking at the spontaneous
symmetry breaking pattern and that does not require knowledge of a full UV
theory.

4.3.1 Phenomenological Lagrangian

In this subsection we derive a Lagrangian that is invariant under a non-linear
symmetry transformation using only the transformation itself. This technique
makes an underlying UV complete theory superfluous. It is also called con-
structing a phenomenological Lagrangian, as from the phenomenon, in this case
an inhomogeneous symmetry transformation, the theory is constructed. Via this
method one derives the quantum behaviour of the Goldstone field, i.e. the effec-
tive field theory. For example, the Goldstone field in the previous UV complete
model transforms nonlinearly,

θ(x)→ θ(x) + α , (4.50)

with constant α. A Lagrangian that only depends on the derivatives of the field
is covariant under this transformation. Written down to second order,

Leff = −1

2
f2

1∂µθ∂
µθ − f2

2
∂µ∂νθ∂

µ∂νθ +
f3

4
∂µθ∂

µθ∂νθ∂
νθ + · · · , (4.51)

where f1 is a dimension one quantity, as the angle θ is dimensionless. We
apply Noether’s Theorem (4.5) on the Lagrangian and derive the current. The
non-linear transformation implies, δθ = −1 and the current is,

jµ = f2
1∂

µθ + f2∂ν(∂µ∂νθ) + f3(∂νθ∂νθ)∂
µθ + · · · . (4.52)

To recap, this section started with a toy UV complete model and spontaneously
broke the Abelian symmetry. The Goldstone mode is then written explicitly in
the Lagrangian. After that, we describe how a phenomenological Lagrangian is
obtained solely from the non-linear symmetry transformation. The next chapter
is along the same lines, but for the case of non-Abelian spontaneous symmetry
breaking.
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Chapter 5

Non-Abelian spontaneous
Symmetry breaking

The sections in this chapter cover a few examples and their phenomenological
Lagrangian by making use of the group theory principles from the preceding
chapter.

5.1 Spontaneous breaking of non-Abelian Sym-
metry

This section starts with a UV complete theory as in the Abelian case. A UV
complete example model of the Lagrangian for N fields φ = φi for i = 1, 2, 3..., N
is,

L = −∂µφT∂µφ− V (φ) . (5.1)

The T denotes the transpose. The symmetry of the theory is the group of
spacetime independent orthonormal rotations O(N) between the fields (OTO =
1 and ∂µO = 0),

φ(x)→ Oφ . (5.2)

and the potential is invariant under the transformation O,

V (Oφ) = V (φ) . (5.3)

Spontaneous symmetry breaking occurs when the vacuum expectation value v
is non-zero,

〈φ〉 ≡ v 6= 0 , (5.4)

and conserves only the elements of the subgroup H ≤ O(N) where h ∈ H,

hv = v . (5.5)

The Goldstone bosons are the field components of φ(x) that are aligned with
the directions of the generators of the coset O(N)/H.
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UV model non-Abelian spontaneous symmetry breaking The fields
are φ(x) ≡ {φi}. Then writing the fields as,

φ(x) = Ω(θ(x))ρ(x) ≡ eiθ
α(x)Xαρ(x) . (5.6)

The transformation Ω(ω), for some constant ω can be seen as a symmetry
transformation in the direction of the generators that are broken by the vacuum
configuration. The component ρ is perpendicular to these directions. To recap,
Xα are the broken generators, part of the algebra of the coset G/H and ti are
the unbroken generators part of the algebra of H. The transformation g ∈ G is
decomposed in these [11],

g ≡ eiα
aTa = exp

[
iviti

]
exp [iωαXα] , (5.7)

where ωα and vi are real parameters and the element of the subgroup h ∈ H is

h ≡ eiv
iti . (5.8)

We require that the potential V has the property

V (Ω(θ(x))ρ(x)) = V (ρ(x)) . (5.9)

In the Abelian case this is synonymous to the potential being independent of
the phase. The Goldstone fields are only expressed in the kinetic part of the
Lagrangian. They are therefore gapless, i.e. there is no Goldstone field when
∂µθ

α(x) = 0. The transformations θα(x)→ θ′α(x) and ρ(x)→ ρ′(x) are defined
by φ(x)→ φ′(x) = gφ(x),

gΩ(θ(x))ρ(x) = Ω(θ′(x))ρ′(x) , (5.10)

let Ω(θ′) = Ω′. Then (not noting the spacetime dependence anymore),

(Ω′)−1gΩρ = ρ′ , (5.11)

the matrix γ ≡ (Ω′)−1gΩ is the matrix that transforms ρ,

γρ = ρ′ . (5.12)

It is proveable that γ is in the subgroup H. Two cases of the symmetry trans-
formation g are taken, g = h to prove that γ ∈ H and when g ∈ G/H. In each
case we derive the transformation of the Goldstone field θ.

Case g = h In the case that g = h (ω = 0 in (5.7)), because the commu-
tator between broken and unbroken generators is proportional to the broken
generators we have

hΩ = Ω′h , (5.13)

eiv
itieiθ(x)αXα = eiθ

′(x)αXαeiv
iti . (5.14)

This makes,
Ω′ = hΩh−1 , (5.15)

(by writing this infinitesimally) we see that θ transforms linearly

θ′α(x)Xα = hθα(x)Xαh
−1 , (5.16)
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Case g ∈ G/H To find out how the θ field transforms under a g ∈ G/H we
use infinitesimal notation. The transformation g is now (5.7) with vi = 0,

g = 1 + ωαXα + · · · , (5.17)

The linear change in the transformation of Ω(θ) is expressed as ∆α

Ω(θ′) = Ω(θ)[1 + i∆α(θ, ω)Xα + · · · ] . (5.18)

Then using (5.11) to define the transformation of the Goldstone fields,

(Ω′)−1gΩ = γ , (5.19)

gΩ = Ω′γ . (5.20)

Where γ ∈ H. Using (5.18) we get

gΩ = Ω[1 + i∆αX
α + · · · ]γ (5.21)

taking it to first order (leaving out the matrix gamma for the transformation of
θ),

e−iθ·X(1 + iω ·X + · · · )eiθ·X = 1 + i∆αXα + · · · . (5.22)

Isolating the ∆α

e−iθ·X(ω ·X)eiθ·X = ∆αXα , (5.23)

∆β = Tr[Xβe
−iθαXα(ω ·X)eiθ

γXγ ] . (5.24)

Where we’ve used that Tr[XαXβ ] = δαβ and the cyclicity property of the trace.
We write the term within the trace infinitesimally to find the transformation of
θ,

Xβe
−iθαXα(ω ·X)eiθ

γXγ = Xβ(1−iθαXα+ · · · )(ω ·X)(1+iθγXγ+ · · · ) , (5.25)

writing out the right hand side,

XβXαωα + iωδθ
γXβ(XδXγ −XγXδ) + · · · , (5.26)

using the commutation relation XδXγ−XγXδ = iciδγti+ icαδγXα and that the
Tr[Xαti] = 0 we find,

∆β ≈ Tr[XβXαωα + iωδθ
γXβ(XδXγ −XγXδ) + · · · ] , (5.27)

∆α ≈ ωα − cαβγωβθγ +O(θ2) . (5.28)

To show that,
δθα = (θ′)α − θα ∝ ∆α , (5.29)

is engaging and not part of this thesis. Nevertheless, we can see from this that
θ transforms as,

δθα = ωα − cαβγωβθγ +O(θ2) . (5.30)

This implies that the Goldstone fields transforms inhomogeneously. Just as
in the Abelian case. The field transformation of the Goldstone field is field
dependent. This point is taken into account when constructing the Lagrangian.
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5.2 Model independent Lagrangian

The field dependence of the transformation has to be taken into account in
developing the kinetic part of the Goldstone field in the Lagrangian. Starting
with the coset element and writing it down in the following combination,

Ω−1∂µΩ . (5.31)

This is called the Maurer-Cartan form. We find the transformation of Ω−1∂µΩ
by using

Ω′ = gΩh−1 , (5.32)

so that

Ω−1∂µΩ→(Ω′)−1∂µΩ′ = (gΩh−1)−1∂µ(gΩh−1)

= hΩ−1∂µΩh−1 + h∂µh
−1 .

(5.33)

We apply ∂µ(hh−1) = (∂µh)h−1 + h∂µh
−1 = 0 ,

Ω−1∂µΩ→ hΩ−1∂µΩh−1 − ∂µhh−1 . (5.34)

We seperate the Maurer-Cartan form, by defining it in terms of the generators
ti and Xα and fields Aiµ and eαµ . This enables us to handle the transformation
per generator,

Ω−1∂µΩ ≡ −iAiµti + ieαµXα . (5.35)

The ∂µh
−1h only depends on ti, as it is in the subgroup H. The fields Aiµ(θ)

and eαµ(θ) transform as,

− iAiµ(θ)ti → −iAiµ(θ′)ti = h[−iAiµ(θ)ti]h
−1 − ∂µhh−1 , (5.36)

ieαµ(θ)Xα → ieαµ(θ′)Xα = h[ieαµ(θ)Xα]h−1 . (5.37)

The field aligned with the broken generators transforms as a covariant quan-
tity. Contractions of these fields with other covariant quantities are still covari-
ant, the trace of these over the generators are in the Lagrangian. The fields
aligned with the unbroken symmetries transform as gauge potentials. They are
part of the covariant derivative. Both of these cases are shown below. For the
rest of the derivations of the Lagrangian the reader is referred to the paper by
C.P. Burgess. The main results are stated here. First we extract ∂µθ from the
fields,

eαµ = eαβ∂µθ
β , (5.38)

Aiµ(θ) = Aiα(θ)∂µθ
α . (5.39)

The seperated fields are expanded and depend on θ in the following way,

Aiα(θ) ≈ 1

2
ciαβθ

β +O(θ2) , (5.40)
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eαβ(θ) ≈ δαβ −
1

2
cαβγθ

γ +O(θ2) . (5.41)

Terms in the Lagrangian are G-invariant and Lorentz invariant. The covariant
derivative is constructed with Aiµ

(Dµeν)α = ∂µe
α
ν + cαiβA

i
µe
β
ν , (5.42)

and transforms covariantly. The Lagrangian is made up of combinations of the
terms,

L(eµ, Dµ, ...) , (5.43)

so that the first term is

LGB = −1

2
fαβη

µνeαµe
β
ν + (higher-derivate terms) . (5.44)

There are terms of dimension 4 and 5 in this first term

eαβ∂µθ
βeγα∂

µθγ ≈ ∂µθα∂µθα − cαβγθγ∂µθα∂µθβ
+O(higher-dimension) ,

(5.45)

where the dimension four term is the kinetic term. We now derived the La-
grangian for Goldstone bosons arising in non-Abelian spontaneous symmetry
breaking by using the coset construction. Remark that there is a significant
difference between the terms generated from the group invariant ingredients for
Abelian and for non-Abelian symmetry breaking. This difference is in the di-
mensions of the terms. For the Abelian symmetry breaking, the terms depend
on ∂µθ and ∂µ. The leading order term is a dimension four operator, the next
to leading order is a dimension six operator. For the non-Abelian symmetry
breaking (5.45) the next to leading order term is of the form

cαβγθ
α(∂µθ

β∂µθγ) , (5.46)

which is of dimension 5. Terms of dimension 6, 7 and so forth arise at higher
order. Dimensional analysis [12] tells us why this difference is important. A
Lagrangian made up from operators Oi, where the i-th operator has dimension
δi, has a scaling, for a process at scale E,∫

dDxOi ∼ Eδi−D . (5.47)

For δi > D then at low energies the term becomes less pronounced, this is called
an irrelevant operator. If δi = D, the term is called marginal, this means that
it is independent of the energy scale and contributes the same in every regime.
Lastly, if δi < D the term is dubbed relevant and its contribution grows as
the energy scale drops. Applying this to the Lagrangians derived above, we
find that in both cases the leading term is a marginal term. The difference is
in the next to leading order term, here the non-Abelian case has a dimension
five term significantly contributing at lower energies than for the Abelian case.
Before proceeding with spacetime spontaneous symmetry breaking, we describe
a famous example of spontaneous symmetry breaking.

36



5.2.1 Phenomenological Lagrangian for Abelian SSB by
coset construction

Here we show how the coset construction is used in Abelian SSB. The sponta-
neous symmetry breaking pattern is U(1)→ 1. The coset element is

Ω = eiθ(x) . (5.48)

The Maurer Cartan one form is

Ω−1∂µΩ ≡ iDµθ , (5.49)

where the covariant derivative reduces to the partial derivative without any
conserved symmetries. Calculating the left hand side

Ω−1∂µΩ = i∂µθ(x) . (5.50)

The building blocks in the Lagrangian in this case are

L(∂µθ, ∂µ) . (5.51)

We combine these in a Lorentz invariant way and add the dimension one quantity
f to arrive at

L = −1

2
f2

1∂µθ∂
µθ − f2

4
∂µ∂νθ∂

µ∂νθ − f3

4
∂µθ∂

µθ∂νθ∂
νθ + · · · . (5.52)

This is the same Lagrangian as in (4.51). It is the same symmetry breaking
pattern, from which a single gapless excitation emerges.

5.3 Chiral Lagrangian

This is an instructive derivation of the Chiral Lagrangian. Three fields in QCD
the u, d and s quarks are fairly light quarks. They approximately transform
under the chiral SU(3)L × SU(3)R. The symmetry would be exact if the fields
were massless. The generators of SU(3)L × SU(3)R are,

λaL =
1

2
(1 + γ5)λa , λaR =

1

2
(1− γ5)λa . (5.53)

λa are the generators of SU(3). The generators are normalized, Tr[λaλb] = δab.

λa = λaL + λaR . (5.54)

The generators of SU(3)× SU(3) can be written as

λa , λaγ5(= λaL − λaR) . (5.55)

These generators are used in the SSB. The masses are negligible with respect to
the energy scale that exceeds the binding energy between quarks. At this scale
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hadrons appear as these are QCD condensates. The hadrons are vacuum config-
urations of the quarks which spontaneously break the symmetry. The symmetry
is spontaneously broken to a single SU(3) by the formation of hadrons. The
symmetry transformation for the three vector is u

d
s

→ exp [i(vaλa + ωaλaγ5)]

 u
d
s

 . (5.56)

The broken and unbroken generators are{
λa unbroken SU(3) ,

λaγ5 broken SU(3) .
(5.57)

The distinction between broken and unbroken generators is made by the γ5

matrix, so the indices a, b, ... are used in both the broken and unbroken cases.
The va and ωa are real numbers, γ5 is the product of the four anticommuting 4×
4 Dirac- matrices. The generators of SU(3) are stated explicitly in Weinberg’s
book [13]. Next, the SU(3) × SU(3) transformations are written as a product
of the broken and unbroken transformations, with fields θa(x) and weight ua
respectively,

exp [−iγ5θaλa] exp [iuaλa] . (5.58)

The transformation of the Goldstone fields θa(x) is,

exp [i(vaλa + ωaλaγ5)] exp [−iγ5θaλa]

= exp [−iγ5θ
′
aλa] exp [iuaλa]

(5.59)

In this case a different approach can be used to derive the transformation rule for
the Goldstone fields. By splitting the transformation (5.59) in two independent
parts. The (1 + γ5) (denoted by L) and the (1− γ5) (R) part,

ϕLa ≡ va + ωa , ϕRa ≡ va − ωa , (5.60)

(5.59) squared is

exp
[
i(ϕLaλa(1 + γ5) + ϕRa λa(1− γ5))

]
×

exp [(1 + γ5) (−iθaλa) + (1− γ5) (iθaλa)]

=exp [(1 + γ5) (−iθ′aλa) + (1− γ5) (iθ′aλa)]×
exp [2iuaλa] .

(5.61)

Splitting this transformation into the L,

exp
[
i(ϕLaλa)

]
exp [−iθaλa]

= exp [−iθ′aλa] exp [iuaλa] ,
(5.62)

and R parts,

exp
[
i(ϕRa λa)

]
exp [iθaλa]

= exp [iθ′aλa] exp [iuaλa] .
(5.63)
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We derive the transformation of,

Ω(θ) ≡ exp [2iθa(x)λa] , (5.64)

by multiplying (5.63) with the inverse of (5.62),

Ω′(θ) = exp
[
iϕRa λa

]
Ω(θ)exp

[
−iϕLaλa

]
. (5.65)

Now that we have the transformation rule for the Goldstone fields we can
write an invariant Lagrangian. The elements of Ω(θ) are subject to constraints:
ΩΩ† = 1 and detΩ = 1. The first term in the Lagrangian is (Maurer Cartan
one form contracted with itself and in the trace),

L2derivatives = − 1

16
F 2Tr

{
∂µΩ∂µΩ†

}
, (5.66)

where the cyclicity of the trace ensures invariance under the transformation
(5.65), F is an undetermined constant. To find the explicit behaviour of the
meson fields we write θa(x)λa as a matrix (the matrices λa are generators of
SU(3), in a way this is writing fields along the generators),

θa(x)λa =


1√
2
π0 + 1√

6
η0 π+ K+

π− − 1√
2
π0 + 1√

6
η0 K0

K̄− K̄0 −
√

2
3η

0

 , (5.67)

and write (5.66) out,

Lkinetic =− 1

2
∂µπ

0∂µπ0 − ∂µπ+∂µπ−

− ∂µK+∂µK̄− − ∂µK0∂µK̄0 − 1

2
∂µη

0∂µη0 .

(5.68)

This is the chiral Lagrangian describing the effective theory.
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Chapter 6

Gauge Symmetries

In this chapter we will discuss the gauging of symmetries, i.e. making them
local. This is done by adding spacetime dependence to the transformation
parameter and introducing a new gauge field to the derivative such that it
becomes a covariant derivative. Demanding that the covariant derivative on
the field transforms linearly under the spacetime dependent transformation, we
get the transformation rule for the gauge field. We will start with a section on
Abelian gauge symmetries. The most famous example of a U(1) gauge theory is
the theory of quantum electrodynamics. Following that up is a section outlining
non-Abelian gauge symmetries.

6.1 Abelian Gauge Symmetry

We introduce local Abelian gauge invariance to a theory as a prerequisite for
the theory to be phase independent at each spacetime point [14]. In terms of a
phase θ of a Dirac field ψ we write it as

ψ → eiθψ (global) , ψ → eiθ(x)ψ (local) . (6.1)

To ensure that the theory is independent of its phase at each spacetime point
we need to introduce a field which communicates the information regarding the
phase differences, this is the gauge field. As an illustrating example we start
with a free massive Dirac Lagrangian,

L = −ψ̄ /∂ψ −mψ̄ψ . (6.2)

This is invariant under global phase transformations. Making the transforma-
tion local we see that the derivative transforms differently,

∂µψ(x)→ ∂µ(eiqθ(x)ψ(x)) = eiqθ(x)(∂µψ(x) + iq∂µθ(x)ψ(x)) , (6.3)

where q is introduced as a measure of the strength of the phase transformation.
Now a modified derivative that transforms linearly is introduced,

Dµψ(x)→ (Dµψ(x))′ = eiqθ(x)(Dµψ(x)) , (6.4)
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this Dµ is the covariant derivative. It must contain a field which compensates
for the generation of the extra term in (6.3), we call this field Aµ . If we define,

Dµψ(x) ≡ (∂µ − iqAµ(x))ψ(x) , (6.5)

we have the transformation,

Dµψ(x)→(∂µ − iqA′µ(x))(eiqθ(x)ψ(x))

= eiqθ(x)(∂µ + iq∂µθ − iqA′µ)ψ(x)

= eiqθ(x)(∂µ − iqAµ)ψ(x) .

(6.6)

Evaluating this, we distill the transformation rule of the gauge field to compen-
sate for the extra term. This rule is

Aµ → A′µ = Aµ + ∂µθ(x) . (6.7)

Now we that we have a new derivative which abides local gauge invariance we
can write the Lagrangian as,

L = −ψ̄ /Dψ −mψ̄ψ , (6.8)

this Lagrangian is not interaction free anymore, as the fermion field now has an
interaction term inside of the /D. Repeated application of covariant derivatives
yields new covariant quantities. An example of this is the commutator,

[Dµ, Dν ]ψ = −iq(∂µAν − ∂νAµ)ψ , (6.9)

and since ψ transforms covariantly and [Dµ, Dν ]ψ is covariant, the commutator
itself is covariant. The commutator is called the field strength tensor,

Fµν ≡ ∂µAν − ∂νAµ , (6.10)

which can be used to write a propagation term (non-interacting) for the gauge
field in the Lagrangian. Combining it with the Lagrangian of the massive
fermion,

L = −1

4
F 2
µν − ψ̄∂ψ −mψ̄ψ + iqAµψ̄γ

µψ , (6.11)

bringing about a current for the gauge field, which is

Jµ = iqψ̄γµψ . (6.12)

In the next section we will derive the theories for non-Abelian gauge symmetries
is along the same lines.

6.2 Non-Abelian Gauge Symmetry

Consider a field which transforms under a Lie group G. For every group element
we have a corresponding matrix g ≡ U . The transformation rotates the field as,

ψ(x)→ ψ′(x) = Uψ(x) . (6.13)
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We use Ta to denote the generators of the Lie algebra. To extend the group
to local gauge transformations we make U spacetime dependent, U(x). The
derivative on the field transforms as,

∂µψ(x)→ U(x)∂µψ(x) + (∂µU(x))ψ(x) , (6.14)

and in the same way as in the preceding section we introduce a gauge field which
compensates for the extra term on the right,

Dµψ(x) ≡ ∂µψ −Aµψ , Aµ ≡ AaµTa , (6.15)

by transforming under gauge transformations as,

Aµ → A′µ = UAµU
−1 + (∂µU)U−1. (6.16)

Taking the commutator of two covariant derivatives we get

[Dµ, Dν ]ψ = −(∂µAν − ∂νAµ − [Aµ, Aν ])ψ ≡ −Gµνψ , (6.17)

where Gµν is the field strength tensor for the non-Abelian gauge symmetry. In
terms of the field Aaµ (Gµν ≡ GaµνTa) it is

Gaµν = ∂µA
a
ν − ∂νAaµ − cabcAbµAcν , (6.18)

where,
[Ta, Tb] = ccabTc . (6.19)

The field strength tensor transforms according to,

Gµν → G′µν = UGµνU
−1 , (6.20)

using this we construct the gauge Lagrangian. We replace derivatives with co-
variant derivatives to make the existing part of the Lagrangian gauge invariant.
To incorporate a stand alone field strength term in the Lagrangian we use the
trace operator for its cyclic property,

Lgauge field =
1

4
Tr[GµνG

µν ] , (6.21)

and the Lagrangian plus a fermion field becomes,

L =
1

4
Tr[GµνG

µν ]− ψ̄ /Dψ −mψ̄ψ , (6.22)

with a current,
Jaµ = ψ̄γµψT

a . (6.23)
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6.3 Gauge Symmetries and the Coset Construc-
tion

Applying the knowledge from the two preceding sections to the coset construc-
tion enables us to gauge any symmetry and work with it in its spontaneously
broken state. If a group G with generators Ta is gauged, i.e. the measure of the
parametrization is spacetime dependent, we replace the partial derivative by a
covariant derivative in the Maurer-Cartan form,

Ω−1∂µΩ→ Ω−1DµΩ ≡ Ω−1(∂µ + iAaµTa)Ω . (6.24)

This is invariant under the local transformations,

Ω→ g(x)Ω Aµ → g(x)Aµg
−1(x) + i(∂µg(x))g−1(x) . (6.25)

When broken symmetries are gauged we can fix the gauge by setting the Gold-
stone fields from the broken generators to zero, this is called the unitary gauge.
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Part III

Spacetime spontaneous
Symmetry breaking
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Chapter 7

Formalisms

Before starting with the spontaneous breaking of spacetime symmetries, a few
formalisms are explained in this chapter. Mainly the tetrad formalism and the
Poincaré algebra are worked out.

7.1 Tetrad Formalism and Fermions in Gravity

We can replace all Lorentz tensors with objects which transform as tensors under
general coordinate transformations, i.e. diffeomorphisms for most theories that
we would like to gauge to incorporate gravity,[15] [16]. We then replace all
derivatives by covariant derivatives and replace the ηab minkowski metric by
the general metric gµν . This method however is only applicable to objects
which behave like tensors under local Lorentz transformations. Spinors are
objects which do not behave as tensors under these transformations and need
a different approach. First we outline the tetrad formalism and after that we
describe the spinor in gravity. Using the principle of equivalence we define at
every point X a coordinate set that is local at this point, call it ξaX . Note that
it is only possible to cover the whole spacetime with a single coordinate system
like this when it is a flat spacetime. The invariant quantity is given by,

ds2 = ηabdy
adyb , (7.1)

and to make this quantity invariant under general coordinate transformations
(GCT), we introduce fields eaµ(x). Then,

dya = eaµ(x)dxµ , (7.2)

where

eaµ(x) ≡
(
∂ξaX(x)

∂xµ

)
x=X

, (7.3)

with this, we can rewrite the invariant quantity as,

ds2 = eaµ(x)ebν(x)ηabdx
µdxν ≡ gµνdxµdxν , (7.4)

45



where dxµ transforms as a vector under GCT. From this we derive the trans-
formation rule for the eaµ(x),

e′aµ (x) =

(
∂xν

∂x′µ

)
eaν(x) . (7.5)

This shows that the eaµ(x) describes a set of four vectors; this set is called
the tetrad or vierbein. Using this formalism we derive an invariant measure,
dV = d4y,

d4y = d4x

∣∣∣∣∂y∂x
∣∣∣∣ = d4x det eaµ , (7.6)

and from the determinant of the metric we find the determinant of the vierbein,

g ≡ det gµν = det(eaµe
b
νηab) = −(det eaµ)2 . (7.7)

Matching it up, the invariant volume element becomes

d4y =
√
−gd4x . (7.8)

This is the familiar integration measure for an action in a curved spacetime. By
formulating the vierbein we now have a tool to promote any object with Lorentz
indices (denoted by a, b, c, ...) to one with world indices (denoted by µ, ν, σ, ...)
by contracting it with the vierbein. This enables us to generalize the spinors
from flat spacetime to a general spacetime. Starting with a Dirac theory with
Lorentz indices,

L = ψ̄(iγa∂a −m)ψ , (7.9)

the Dirac field transforms as,

ψ → Sψ ≡ exp

{
− iq

2
αabJab

}
ψ . (7.10)

The Jab are the generators of the Lorentz group in spinorial representation,

Jab =
σab
2

= i
[γa, γb]

2
. (7.11)

To add gravity the Lorentz transformations are gauged by making αab a function
of spacetime and introducing a gauge field Aµ, such that the covariant derivative
on the dirac field is,

Dµψ ≡ (∂µ − iqAµ)ψ ≡ (∂µ − i
q

2
JabA

ab
µ )ψ . (7.12)

To derive the transformation of the gauge field we demand that the covariant
derivative on the field transforms linearly,

(Dµψ) (x)→ S(x) (Dµψ) (x) , (7.13)
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this implies,

A′µ = SAµS
−1 − i

g
(∂µS)S−1 , (7.14)

this gauge field Aµ is called the spin connection. We can now write the Dirac La-
grangian in a general spacetime by adding the vierbein and the spin connection
to (7.9),

L = ψ̄(iγaeµa(x)Dµ −m)ψ . (7.15)

By making the known steps, adding a field strength tensor and the invariant
volume element to the integration, we get the theory for a fermion field coupled
to gravity.

7.2 Poincaré Group

The Poincaré algebra and the corresponding group express the symmetries of
Minkowski spacetime. We derive the algebra in this chapter from first princi-
ples. From Einstein’s principle of equivalence we know that for any two inertial
reference frames denoted by coordinates xµ and x′µ, the invariant lengths have
to be equal [17],

ηµνdx
µdxν = ηµνdx

′µdx′ν , (7.16)

rewriting,

ηµν

(
∂x′µ

∂xρ

)(
∂x′ν

∂xσ

)
= ηρσ . (7.17)

The coordinate transformations T (Λ, a) consist of two parts, the Lorentz trans-
formations Λµν and the constant translations aµ,

T (Λ, a) : x→ x′µ = Λµνx
ν + aµ , (7.18)

applying the equivalence principle (7.17),

ηµνΛµρΛνσ = ηρσ , (7.19)

puts a constraint on the Lorentz transformation Λ. In the following is argued
that the transformations T (Λ, a) form a group. Firstly, the transformations
T (Λ, a) satisfy a composition rule. Starting with,

T (Λ̄, ā) : x′µ → x′′µ , x′′µ = Λ̄µνx
′ν + āµ , (7.20)

and combining this with the transformation xµ → x′µ,

x′′µ = Λ̄µνΛνρx
ρ + Λ̄µνa

ν + āµ , (7.21)

is equivalent to applying the transformation,

T (Λ̄Λ, Λ̄a+ ā) = T (Λ̄, ā)T (Λ, a) . (7.22)
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To make the argument that these transformations constitute a group complete,
we have to show that the Lorentz transformations have an inverse. The deter-
minant of (7.19),

(detΛ)2 = 1 , (7.23)

shows that (Λ−1)µν exists. The inverse is determined by the same equation,

(Λ−1)νρ = Λρν = ηνµη
ρσΛµσ . (7.24)

The transformations with a = 0 form a subgroup,

T (Λ̄, 0)T (Λ, 0) = T (Λ̄Λ, 0) , (7.25)

called the homogeneous Lorentz group. The full group of transformations
T (Λ, a) is the inhomogeneous Lorentz group.

Poincaré algebra Transformations T (Λ, a) induce linear transformations on
vectors in physical Hilbert space Ψ ∈ H. Denoted by U(Λ, a) ,

T (Λ, a) : Ψ→ U(Λ, a)Ψ , (7.26)

satisfying the composition rule (7.22)

U(Λ̄, ā)U(Λ, a) = U(Λ̄Λ, Λ̄a+ ā) . (7.27)

We derive its corresponding algebra to apply it to our coset construction of
spontaneous spacetime symmetry breaking. To derive the algebra of a Lie group
we look at infinitesimal transformations around the identity Λµν = δµν and aµ =
0 ,

Λµν = δµν + ωµν , aµ = εµ , (7.28)

the Lorentz constraint (7.19) puts a constraint on ωµν ,

ηµν(δµρ + ωµρ )(δνσ + ωνσ) = ηρσ , (7.29)

rewritten,
ηρσ + ωρσ + ωσρ +O(ω2) = ηρσ , (7.30)

the constraint implies that ωµν is anti-symmetric ,

ωµν = −ωνµ . (7.31)

An anti-symmetric 4 dimensional two tensor has 4×3
2 = 6 independent com-

ponents, with the 4 components of εµ this makes a total of 10 independent
components for an inhomogeneous Lorentz transformation. The linear transfor-
mation on a vector in physical Hilbert space is

U(1 + ω, a) = 1 +
i

2
ωµνJ

µν − iερP ρ + · · · , (7.32)

48



here Jµν and Pµ are ω and ε independent. The sign for Pµ is a convention, as
the theory does not distinguish between εµP

µ and −εµPµ. Pµ are the compo-
nents of the energy-momentum operator and Jµν are the components of Lorentz
operators, these are spatial rotations and boosts. The transformation U(1+ω, a)
is unitary, so Jµν and Pµ are Hermitian and as ωµν is anti-symmetric, Jµν is as
well. To derive the transformation properties we apply a transformation U(Λ, a)
and its inverse to the infinitesimal transformation,

U(Λ, a)U(1 + ω, a)U−1(Λ, a) , (7.33)

which to linear order is,

U(Λ, a)

[
i

2
ωµνJ

µν − iερP ρ
]
U−1(Λ, a) . (7.34)

The inverse of the transformation is obtained by using the transitive property
of the transformation (7.27),

U−1(Λ, a) = U(Λ−1,−Λ−1a) , (7.35)

so that,

U(Λ, a)U−1(Λ, a) = U(Λ−1Λ,Λ−1a− Λ−1a) = U(1, 0) . (7.36)

We can use this inverse in the equation (7.33),

U(Λ, a)U(1 + ω, a)U−1(Λ, a) = U(Λ(1 + ω),Λε+ a)U(Λ−1,−Λ−1a)

= U(Λ(1 + ω)Λ−1,Λε+ a− Λ(1 + ω)Λ−1a)

= U(Λ(1 + ω)Λ−1,Λε− ΛωΛ−1a)

(7.37)

to analyze the transformation property of Jµν and Pµ we compare this to linear
order with the equation (7.34),

U(Λ, a)

[
i

2
ωµνJ

µν − iερP ρ
]
U−1(Λ, a)

=
i

2
(ΛωΛ−1)µνJ

µν − i(Λε− ΛωΛ−1a)ρP
ρ ,

(7.38)

To first order in ε and ω, the transformation rules for Jµν and Pµ are

U(Λ, a)JρσU−1(Λ, a) = ΛρµΛσν (Jµν − aµP ν + aνPµ) (7.39)

U(Λ, a)P ρU−1(Λ, a) = ΛρµP
µ (7.40)

These rules clarify that Jµν transforms as a tensor under Lorentz transforma-
tions (when a = 0) and Pµ as a vector. The operator Pµ is invariant under
purely translations, but Jµν is not. This can be viewed as a consequence of
changing the origin with respect to the calculation of the angular momentum.
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We derive the commutation relations between the operators in the last part of
this chapter. The transformation of any operator X is,

U(1 + ω, a)XU−1(1 + ω, a) = X + i

[
1

2
ωµνJ

µν − εµPµ, X
]

+ · · · . (7.41)

Firstly, to first order in ω and ε (7.39) is,

ΛρµΛσν (Jµν − aµP ν + aνPµ)

= (δρµ + ωµνη
νρ)(δσν − ωµνηµσ)(Jµν − εµP ν + ενPµ)

= ωµνη
νρJµσ − ωµνηµσJρν − ερPσ + εσP ρ +O(ωε) ,

(7.42)

and (7.40) is,

ΛρµP
µ = (δρµ + ωµνη

νρ)Pµ = P ρ + ηνρωµνP
µ . (7.43)

Replacing X with Jµν and with Pµ gives,

i

[
1

2
ωµνJ

µν − εµPµ, Jρσ
]

= ωµνη
νρJµσ − ωµνηµσJρν − ερPσ + εσP ρ , (7.44)

and,

i

[
1

2
ωµνJ

µν − εµPµ, P ρ
]

= ωµνη
νρPµ , (7.45)

splitting the equations in their ω and ε parts and taking into account the anti-
symmetry of ω, the commutation rules are,

i [Jµν , Jρσ] = Jµσηνρ − Jνσηµρ − Jρνησµ + Jρµησν , (7.46)

i [Pµ, Jρσ] = Pσηµρ − P ρηµσ , (7.47)

[Pµ, P ρ] = 0 . (7.48)

Which makes up the Lie algebra of the Poincaré group. The exponential maps
for finite translations are represented by,

U(1, a) = e−iaµP
µ

, (7.49)

and for Lorentz transformations by,

U(Λξ, 0) = e
i
2 ξµνJ

µν

, (7.50)

combining them we get,

U(Λξ, a) = e−iaµP
µ

e
i
2 ξµνJ

µν

. (7.51)

These are used in the coset construction of spacetime spontaneous symmetry
breaking.
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Chapter 8

Spacetime spontaneous
Symmetry breaking and the
Coset Construction

To recap, when a symmetry group is spontaneously broken the Goldstone fields
are realized by the coset element and in effect by the Maurer-Cartan one form.
The Maurer Cartan one form is created from the generators of the broken sym-
metries, i.e. non linearly realized symmetries. Translations are, regardless of
the symmetry breaking pattern, non linearly realized symmetries. Therefore the
generators of translations, Pµ are included into the Maurer Cartan one form [18].

8.1 Inverse Higgs Constraint

Breaking spacetime symmetries is different from breaking internal symmetries,
because of the possibility of a degenerate number of degrees of freedom in the
theory. In other words, the number of Goldstones is not equal to the dimension
of the coset. To accurately predict the number of degrees of freedom we have
to impose the Inverse Higgs constraint. The scheme for such a constraint is the
following [6]. In general the commutator between a translation generator P ,
and a broken generator X1, contains a broken generator X2 and an unbroken
generator t1,

[P,X1] ∼ X2 + t1 . (8.1)

A commutator containing a broken symmetry generator X2 6= 0, different from
the broken symmetry generator in the commutator X2 6= X1 implies that the
inverse Higgs has to be applied. The inverse Higgs is a constraint that removes
the redundant degrees of freedom. The component of the Maurer Cartan one
form that is aligned with the broken generator X2 is set to zero,

[Ω−1∂µΩ]X2
= 0 . (8.2)
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In most cases this corresponds to setting the covariant derivative of the Gold-
stone field of X2 (denoted by π′) in the direction of P to zero ,

DPπ
′ = 0 , (8.3)

(this is the component of the Maurer Cartan form aligned with the generator
X2). Thereby expressing the Goldstone field of X1 (denoted by π) in terms
of derivatives on the Goldstone of X2. A way of understanding the constraint
and why it is necessary, is found in the low energy limit of the theory. The
commutator (8.1) being non-zero implies that from the covariant derivative on
the field π′ a linear term of the Goldstone field π arises in the Lagrangian. This
is synonymous to a mass term of the Goldstone π. This mass term creates a gap
for low energy theories. By integrating out this gap we obtain an effective action.
This is done by applying the equations of motion. The constraint is therefore
a different approach to the same result by applying the equation of motion of
π. The equation of motion would generally not be exactly the constraint (8.3),
but some combination of these terms, which becomes a complicated term. This
term describes the substition of the field π with derivatives of π′. We show the
IH constraint for a toy UV example [19]. The theory is

L =
1

2
(∂µφ)2 . (8.4)

The theory is invariant under

φ→ φ′ = φ+ α+ βµx
µ . (8.5)

The α is removed by the derivative in the action and the βµ in the action can
be written as a total derivative,

∂µφβ
µ +

1

2
β2
µ = ∂µ(φβµ +

1

2
β2
νx

µ) . (8.6)

The groundstate φ0 spontaneously breaks the symmetry. This implies that two
excitations exist, one for the transformation α and one for β. The excitations
are the spacetime dependent realizations of these symmetries. In this case we
have that any βµ(x)xµ can be written as α(x) = βµ(x)xµ. This means that the
shifts are not independent and we have to apply inverse Higgs constraint.

8.2 SSB of Time Translations in non-dynamical
Gravity

We derive a theory that describes scalar perturbations by SSB of time trans-
lations by defining the symmetry breaking pattern and the Maurer Cartan one
form. We do this in non-dynamical gravity. The theory of spontaneously bro-
ken gauged time translation is the main goal. But a specific case where gravity
is non-dynamical is done to see if the method is applied correctly. There are
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condensed matter systems that spontaneously break time translations without
gravity. These theories with a single degree of freedom are described by the
effective theory derived here. The symmetries are the elements of the Poincaré
group. Boosts and time translations are related. When time translations are
broken, Lorentz boosts are automatically broken. This is because boosts relate
spacetime translations with each other. The broken generators are P0 and Ki.
Any non-linearly realized symmetry is in the Maurer Cartan one form.

The coset is ISO(3, 1)/SO(3)× IR3 with an element:

Ω ≡ eix
iPieiπ(x)P0eiη

i(x)Ki . (8.7)

The Maurer Cartan form is defined as [20]

Ω−1∂µΩ ≡ ie0
µP0 + ieiµPi + ieνµDνη

iKi + eνµA
ij
ν Jij . (8.8)

Evaluating it by using (8.7) turns out

Ω−1∂µΩ = i(δiµΛνi + ∂µπΛν0)Pν + e−iη
iKi∂µe

iηjKj . (8.9)

Using equivalences described in formalisms of the Poincaré algebra we get

Ω−1∂µΩ = i(δiµΛ0
i+∂µπΛ0

0)P0+i(δjµΛij+∂µπΛi0)Pi+iKi(Λ
−1∂µΛ)0i+

i

2
Jij(Λ

−1∂µΛ)ij .

(8.10)

Inverse Higgs Constraint The degree of freedom ηi(x) is degenerate. To
apply the Inverse Higgs constraint the degree of freedom is expressed in terms
of the velocity vector that describes the boost, βi defined as

βi =
ηi

η
tanhη , (8.11)

with η ≡
√
~η2. We have

Λ0
0 = γ, Λ0

i = γβi, Λi0 = γβi, Λij = δij + (γ − 1)
βiβj
β2

, (8.12)

where γ ≡ 1√
1−β2

. The inverse Higgs is based on

[Pi,Kj ] ⊂ δijP0 . (8.13)

The field aligned with the generator P0 is set to zero to remove the degenerate
degree of freedom

e0
i = 0 . (8.14)

Writing this out leads to

Λ0
i + ∂iπΛ0

0 = 0

γβi + ∂iπγ = 0 ,

βi = −∂iπ .
(8.15)
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We interpret this statement as that any boost can be expressed by a spacetime
dependent time translation. The building blocks of the Lagrangian are the
invariant objects which arise from the Maurer-Cartan one-form. They are

L(eνµ, Dµ) , (8.16)

where the field in the covariant derivative is the field aligned with the unbroken
symmetries Jij

(Dµeν)α = ∂µe
α
ν + icαijβA

ij
µ e

β
ν . (8.17)

The form factor cαijβ is defined by

[Pβ , Jij ] = icαijβPα . (8.18)

For the values of the form factors we refer to the Poincaré algebra. At lowest
order the Lagrangian is

Leff = −1

2
fρση

µνeρµe
σ
ν + higher order , (8.19)

Positivity of kinetic energy implies that fρσ has to be positive definite. Writing
the Lagrangian out,

Leff = −f00e
0
0e

0
0 − fijei0e

j
0 + fklη

ijeki e
l
j + higher order . (8.20)

In terms of the gapless excitations the elements are

e0
0 = (π̇ + 1)γ , (8.21)

ei0 = Λi0 + ∂0Λi0 = γβi(1 + π̇) = −γ∂iπ(1 + π̇) , (8.22)

eji = Λji + ∂iπΛj0 = δij + (γ − 1)
βjβi
β2

+ ∂iπγβ
j = δji + (γ − 1)

∂jπ∂iπ

(∇π)2
+ γ∂iπ∂

jπ .

(8.23)

This leads to the following theory in terms of the degree of freedom π(x)

Leff = −f00(π̇ + 1)2γ2 − fijγ2∂iπ∂jπ(1 + π̇)2

+fij(δ
ij+2(γ−1)

∂iπ∂jπ

(∇π)2
+(2γ+(γ−1)2 +2γ(γ−1))∂iπ∂jπ+γ2∂iπ∂jπ(∇π)2)

+ higher order . (8.24)

To find out if this is the correct Lagrangian, or that some combinations of
parameters is necessary, we look at the transformations of the degrees of freedom
π(x) and ηi(x). This is done by comparing it to a Heuristic Lagrangian of time
translations SSB in flat spacetime.
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8.2.1 Heuristic Lagrangian

The heuristic Lagrangian is a function of t + π and its derivatives (similar to
the Stückelberg trick). The heuristic theory of SSB of time translations in flat
spacetime is made up of functions of t+ π and derivatives of this term. This is
similar to the Stückelberg trick, but without gravity,

L = Λ(t+π)+A1(t+π)∂µ(t+π)∂µ(t+π)+A2(t+π)((∂(t+π))2)2+higher order .
(8.25)

It contains powers of
(−1− 2π̇ + ∂µπ∂

µπ) . (8.26)

This Lagrangian is covariant under the transformation:

π(x)→ π′(x′(x)) = π′(t+ c, xi) = π(x)− c . (8.27)

And Lorentz transformations

π(x)→ Λ0
0(α)π(x)− Λi0(α)xi . (8.28)

These are used to check the results of the coset constructed theory as they
should transform in a similar fashion.

8.3 Transformation of Goldstone Fields

Transformation properties of the Goldstone fields follows from the action of an
element g ∈ G on the element of the coset G/H. In the case of spontaneously
broken time translations and boosts the action of g ∈ ISO(3, 1) on the coset
element is

gΩ(π, η) = Ω(π′, η′)h(π, η, g) , (8.29)

where h ∈ SO(3)× IR3. We write the element h infinitesimally

h = 1 + if i(π, η)Pi + iρij(π, η)Jij + · · · , (8.30)

where f i and ρij denote the change in the parameters aligned respectively with
the unbroken generators Pi and Jij . The transformation is written infinitesi-
mally

Ω(π′, η′) = Ω(π, η)(1 + i∆πP0 + i∆ηiKi + · · · ) , (8.31)

where ∆π ≈ π − π′ and ∆ηi ≈ ηi − η′i. We show the starting points of the
transformation rules and work them out in seperate paragraphs. In the case
that g ∈ G/H is a time translation with parameter α

(1 + iαP0 + · · · )eiπ(x)P0eix
iPieiξ

i(x)Ki =

eiπ(x)P0eix
iPieiξ

i(x)Ki(1 + i∆πP0 + i∆ηiKi + · · · )
× (1 + if i(π, η, α)Pi + iρij(π, η, α)Jij + · · · ) .

(8.32)
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By arguing that the commutator of P0 with any other generator of the Poincaré
Algebra produces Pi and the generator itself we get

∆πP0 + f iPi = e−iξ
i(x)Kie−ix

iPie−iπ(x)P0(αP0)eiπ(x)P0eix
iPieiξ

i(x)Ki . (8.33)

In the case that g ∈ G/H is a Lorentz boost

(1 + iαjKj + · · · )eiπ(x)P0eix
iPieiξ

i(x)Ki =

eiπ(x)P0eix
iPieiξ

i(x)Ki(1 + i∆πP0 + i∆ηiKi + · · · )
× (1 + if i(π, η, α)Pi + iρij(π, η, α)Jij + · · · ) .

(8.34)

Arguing that the commutator of Ki with other generators in the Poincaré group
produces Jij , Pi and the generator itself we get that

∆ηiKi+if
iPi+iρ

ijJij = e−iξ
i(x)Kie−ix

iPie−iπ(x)P0(αjKj)e
iπ(x)P0eix

iPieiξ
i(x)Ki

(8.35)
We work these cases out in the following paragraphs and add the transformation
under the unbroken spatial translations.

Transformations under Time Translations The transformation of the
Goldstone fields under time translations is

∆πP0 + f iPi = e−iη
i(x)Kie−ix

iPie−iπ(x)P0(αP0)eiπ(x)P0eix
iPieiη

i(x)Ki . (8.36)

The generators of translations commute, so we get

∆πP0 + f iPi = e−iη
i(x)Ki(αP0)eiη

i(x)Ki

= αΛ0
0P0 + αΛi0Pi .

(8.37)

Under a time translation t→ t+ α

∆π = αΛ0
0 , f i = αΛi0 . (8.38)

where ∆π ≈ π − π′. Guess from Heuristic Lagrangian:

π(t, xi)→ π(t+ α, xi) = π(t, xi)− α . (8.39)

These are alike when γ ≈ 1.

Transformations under Spatial Translations Commutator of spatial trans-
lations with boosts contains generators for time translations and spatial trans-
lations.

∆πP0 + f iPi = e−iη
i(x)Ki(αiPi)e

iηi(x)Ki

= αiΛ0
iP0 + αjΛijPi .

(8.40)
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Under infinitesimal spatial translations xi → xi + αi the transformations are

∆π = αiΛ0
i , f i = αjΛij . (8.41)

In the heuristic Lagrangian the argument of the π field changes

π(x)→ π(t, xi + αi) = π(x) + αi∂iπ + · · · . (8.42)

These result correspond well with the transformation of the effective Lagrangian
when the inverse Higgs is applied

βi = −∂iπ (8.43)

and γ ≈ 1.

Transformations under Boosts The commutator of the boost generator
with the time translation generator is

[J0i, P0] ⊃ Pi, P0 . (8.44)

The boost generator commutes in the same manner with the spatial translation
generators. The full expression for the transformation under boosts is

∆πP0 + ∆ηiKi + f iPi + ρijJij =

e−iη
i(x)Kie−ix

iPie−iπ(x)P0(αjKj)

× eiπ(x)P0eix
iPieiη

i(x)Ki .

(8.45)

The terms evaluated seperately are

e−iπ(x)P0(αjKj)e
iπ(x)P0 = αj(Kj + πPj) . (8.46)

We use that spatial translations commute with themselves

e−ix
iPi(αjKj)e

ixiPi = αj(Kj + xjP0) . (8.47)

Taking all parts and using that U(Λ)−1JabU(Λ) = ΛcaΛdbJcd

∆πP0 + ∆ηiKi + f iPi + ρijJij = e−iη
i(x)J0iαj(J0j + πPj + xjP0)eiη

i(x)J0i

= αjΛµ0 Λνj Jµν + αjπΛµj Pµ + αjxjΛ
µ
0Pµ .

(8.48)

The transformations under xµ → Λ(α)µνx
ν are

∆π = αjπΛ0
j + αjxjΛ

0
0 (8.49)

∆ηi = αjΛ0
0Λij − αjΛi0Λ0

j , (8.50)

f i = αjπΛij + αjxjΛ
i
0 (8.51)
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and finally,
ρik = αjΛi0Λkj (8.52)

Guess from Heuristic Lagrangian:

π(x)→ Λ0
0(α)π(Λx)− Λ(α)i0x

i . (8.53)

These do not seem to show a similar behaviour as in the other cases, even for
an approximation.

8.3.1 Spatially homogeneous limit

By a spatially homogeneous approximation we may see if the theories coincide.
The following approximations are made to the theories

γ ≈ 1 ,

βi ≈ 0 ,

∂iπ ≈ 0 .

(8.54)

In compliance with these approximations, the effective theory is

Leff. approx. = fij(π + t)δij − f00(π + t)(1 + π̇)2 + higher order . (8.55)

The functions denoted by f are functions of π+ t as this is invariant under time
translations. The same methodology applied to the Heuristic Lagrangian leads
to

LHeur. approx = Λ(π + t)−A1(t+ π)(1 + π̇) +A2(t+ π)(1 + π̇)2 + higher order .
(8.56)

We can subtract a total derivative from this Lagrangian to cancel the term with
A1. This is

∂t

[∫ t+π

A(x)dx

]
=(

∂

∂(t+ π)

∫ t+π

A(x)dx

)
∂(t+ π)

∂t
.

(8.57)

The theory is

LHeur. approx = Λ(π + t) +A2(t+ π)(1 + π̇)2 + higher order . (8.58)

These results show that the theories have the same dynamics of the scalar
degree in the spatially homogeneous limit. This concludes the dissertation on
the theory of SSB of time translations in non-dynamical gravity. The present
theory does not coincide perfectly with a heuristically derived theory. Further
research is necessary to make a model independent theory that does have this
property.
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Chapter 9

Curvature perturbations in
an FLRW Background

9.1 Spatial Hyperslices as Membranes in 3+1
Dimensions

The following approach is similar to SSB by membranes in [18]. It is mainly an
exercise that does not yield significant results. The hyperslices in the paper [18]
are (d − 1)-dimensional where the (d − 1) dimensions include the time dimen-
sion. This is a correct approach to membranes in d-dimensions spontaneously
breaking the d − 1 spatial direction. But it does not correspond to a breaking
of the time direction as the d’th dimension, as we would like it to do. This is
because the derived action is defined only on the hypersurface. It is therefore an
irrelevant approach to the effective theory that is our goal, as is defined over all
spacetime. Nevertheless this part shows the approach up to the preliminaries of
an effective theory. To use spatial hyperslices for deriving an effective theory in
a curved background we distinguish four different coordinate indices, the indices
are

• Greek indices µ, ν, ρ, σ, · · · for (curved) general spacetime,

• Latin indices a, b, c, d, · · · for (locally flat) Lorentz spacetime,

• Latin capital indices A,B,C,D, · · · for (curved) general spatial indices,

• Latin indices i, j, k, l, · · · for (locally flat) Lorentz spatial indices.

As before spatial rotations and translations are unbroken and time translations
and boosts are broken

Unbroken =

{
Pi spatial translations ,

Jij spatial rotations .
(9.1)
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and

Broken =

{
P0 time translations ,

J0i ≡ Ki boosts .
(9.2)

The coset representative, which includes all translations as they are nonlinearly
realized, is

Ω = eiπ(x)P0eiY
i(x)Pieiη

j(x)Kj = eiY
a(x)Paeiη

i(x)Ki . (9.3)

The middle expression is used to make the degrees of freedom explicit, but we
will use the right expression with Y a(x) = (π(x), Y i(x)) to calculate the Maurer-
Cartan one-form. The Maurer-Cartan one-form is evaluated on the general
spatial hyperslices Ω−1DAΩ. This object can be seen as a projection of the
Maurer Cartan in d-dimensions onto the d−1-dimensional spatial hypersurface,

Ω−1DAΩ ≡ ∂AY µΩ−1DµΩ (9.4)

We use the covariant derivative for the gauged ISO(3, 1) group in a curved
background. The one form is

∂AY
µΩ−1DµΩ = ∂AY

µΩ−1

(
∂µ + ẽaµPa +

i

2
ωabµ Jab

)
Ω . (9.5)

The coset representative (9.3) is made up of two parts, one for the transla-
tions and one for the boosts. A good approach would be to work through the
translations part first. This part is

e−iY
a(x)Pa

(
∂µ + ẽaµPa +

i

2
ωabµ Jab

)
eiY

a(x)Pa . (9.6)

We rewrite it as

e−iY
a(x)Pa

(
(i∂µY

a(x) + ẽaµ)Pa +
i

2
ωabµ Jab

)
eiY

a(x)Pa . (9.7)

Using the commutation relations of the Poincaré group(
i∂µY

a(x) + ẽaµ
)
e−iY

a(x)PaPae
iY a(x)Pa = (i∂µY

a(x) + ẽaµ)Pa , (9.8)

we write the part with the generator of Lorentz transformations as

i

2
ωbcµ (1− iY a(x)Pa + · · · )Jbc(1 + iY a(x)Pa + · · · ) . (9.9)

Using the relations

[Pa, Jbc] = −i(Pbηac − Pcηab) , ωabµ = −ωbaµ , (9.10)

we have firstly,

i

2
ωbcµ (1−iY a(x)Pa+· · · )Jbc(1+iY a(x)Pa+· · · ) =

i

2
ωabµ Jab+

1

2
ωbcµ Y

a(Pbηac−Pcηab)+· · · ,
(9.11)
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and secondly keeping only the linear terms

ieaµPa +
i

2
ωabµ Jab , (9.12)

where we redefined the vierbein

eaµ = ẽaµ + ∂µY
a + ωabµ Yb . (9.13)

Plugging this into the full Maurer-Cartan one-form

∂AY
µΩ−1DµΩ = ∂AY

µe−iη
i(x)Ki

(
∂µ + eaµPa +

i

2
ωabµ Jab

)
eiη

i(x)Ki . (9.14)

Using as before that U(Λ) ≡ eiηi(x)Ki , U(Λ)−1PaU(Λ) = ΛbaPb and U(Λ)−1JabU(Λ) =
ΛcaΛdbJcd we get

∂AY
µΩ−1DµΩ = i∂AY

µebµΛabPa +
i

2
∂AY

µ(Λ−1)ac (ηcd∂µ + ωcdµ )ΛbdJab . (9.15)

We express the result as a linear combination of all the generators, in terms of
Goldstone fields and the coset vierbein this is

∂AY
µΩ−1DµΩ ≡ iEiA(Pi +∇iπP0 +∇iηjKj) +

1

2
AijAJij . (9.16)

From this equation we can read off the fields, by equating the evaluation of the
Maurer-Cartan to its definition

EiA = ∂AY
µeaµΛia = (∂Aπe

a
0 + eaA)Λia , (9.17)

∇iπ = EAi ∂AY
µeaµΛ0

a = EAi (∂Aπe
a
0 + eaA)Λ0

a , (9.18)

∇iηj = EAi ∂AY
µ[(Λ−1∂µΛ)0j + ωcdµ Λ0

cΛ
j
d] , (9.19)

AijA = ∂AY
µ[(Λ−1∂µΛ)ij + ωcdµ ΛicΛ

j
d] , (9.20)

(9.21)

The field aligned with the spatial rotations transforms as a connection. For this
reason we incorporate this field into the covariant derivative that is used in the
Lagrangian.

IH constraining The commutator of unbroken spatial translations and boosts
contains broken time translations

[Pi, J0j ] = iP0ηij . (9.22)

We inverse Higgs constrain the covariant derivative along the generators of spa-
tial translations on the field π

∇iπ = 0 . (9.23)

We write the constraint as

EAi (∂Aπe
a
0 + eaA)Λ0

a = 0 . (9.24)

We see that Λ0
a is orthogonal to the spatial hyperslices.
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Effective Action The effective action is built up from several possible dif-
feomorphism invariant terms and their Lorentz invariant combinations. The
building blocks are taken from the Maurer-Cartan form. The measure of inte-
gration is an invariant volume element defined by

d4x
√
−g = d4xdetE . (9.25)

The spatial part of the metric is defined as

hAB ≡ eaµebνηab∂AY µ∂BY b = eaAe
b
Bηab + ea0e

b
0ηab∂Aπ∂Bπ . (9.26)

This concludes the exercise of deriving an effective field theory by modelling the
SSB of time translations as broken by spatial hyperslices. The derived action
exists on the spatial hypersurface and does not yield a theory defined over all
spacetime.

9.2 Preliminaries of a Coset Construction of SSB
time translations in dynamical Gravity

To gauge the Poincaré transformations we introduce the gauge fields for space-
time translations ẽaµ and Lorentz transformations ωabµ to the covariant derivative
Dµ. The element of the gauged ISO(3, 1)/SO(3, 1) coset is

Ω = eiy
a(x)Paeiη

iKi . (9.27)

We use a as the index of locally inertial coordinates ya(x) at some point within
the patch that is described by the (curved) coordinates x and with ya = (π, yi).
We compute the translations in The Maurer-Cartan one form seperately

e−iy
aPa(∂ + ẽaµPa +

i

2
ωabµ Jab)e

iyaPa = ieaµPa +
i

2
ωabµ Jab , (9.28)

with
eaµ = ẽaµ + ∂µy

a + ωabµ yb . (9.29)

The full one-form is

Ω−1DµΩ = iebµΛabPa +
i

2
Jab[(Λ

−1∂µΛ)ab + ωcdµ ΛacΛbd]

≡ iEaµ(Pa +∇aηiKi +
1

2
JijA

ij
a ) .

(9.30)

We read off the covariant parts

Eaµ = ebµΛab , (9.31)

∇aηi = eµbΛba[(Λ−1∂µΛ)0i + ωcdµ Λ0
cΛ

i
d] . (9.32)

The inverse Higgs constraint is applied in a similar fashion as for the other
spacetime SSB’s.
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Inverse Higgs constraint The commutator is

[Pi,Kj ] ⊂ iδijP0 . (9.33)

This implies that we set E0
i to zero to enforce the constraint and remove degen-

erate degrees of freedom. We make the π dependence explicit in the constraint,

E0
i = 0 ,

ebiΛ
0
b = (ẽbi + ∂iy

b + ωbci yc)Λ
0
b = 0 ,

(ẽ0
i + ∂µπ + ωci yc)Λ

0
0 + (ẽji + ∂jy

j + ωjci )Λ0
j = 0 .

(9.34)

These preliminaries may lead to an effective theory in dynamical gravity. But
as the theory in non-dynamical gravity falls short we had to discontinue the
research on this topic to first fix these issues before venturing into a more general
case of the non-dynamical theory.
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Chapter 10

Conclusion and Outlook

We recap the goal and method of the research in this chapter. Subsequently we
describe the main conclusions and we formulate an outlook for further research.

10.1 Summary

Our main goal was to derive a model independent theory that describes curva-
ture perturbations from a spontaneous symmetry breaking of time translations.
We divided this goal into three parts: inflation, SSB in field theory and SSB of
spacetime symmetries. In the first part we introduced the inflaton and worked
out the requirements on the field and on the potential for extended inflation to
occur. From this model we were able to observe that structure formation arises
from the single degree of freedom in the early universe. These are the curvature
perturbations described by the scalar degree of freedom in the metric. This en-
ticed us to discover if there was a way to derive a theory of these perturbations
without an underlying model. We approach such a model independent theory
by looking at the spontaneous symmetry breaking pattern. We first derived
the theory by manually introducing the degree of freedom. This top down ap-
proach is the Stückelberg trick. The coset construction introduces the degrees
of freedom by looking at the invariant objects. We used the coset construction
in field theory for Abelian and non-Abelian symmetries. As the main goal was
the case of curvature perturbations in dynamical gravity we also looked at SSB
of gauge symmetries. As dynamical gravity is the gauged version of spacetime
symmetries. Finally we looked at the formalisms of spacetime SSB, and tried
to derive an effective theory.

10.2 Conclusions

The main factor of this research was to build a complete understanding of
spontaneous symmetry breaking and of the coset construction. We described
these in the field theory part of the thesis. The coset construction of the Abelian
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SSB is derived and coincides well with a model dependent version. The Chiral
Lagrangian as an example was derived to test if the method was understood
and that we were able to apply it. We applied the coset construction to the
SSB of time translations in non dynamical gravity. This theory appeared to be
incomplete. We tested this by looking at the transformations of the scalar degree
of freedom, and comparing them to a phenomenological theory. The theories
coincided for spatial translations after applying the inverse Higgs constraint.
The boosts did not show this behaviour. This pointed to a misapprehension
or a caveat in our approach. We specified the theory by taking the spatially
independent limit to see if the theories coincide in that limit. They showed
similar behaviour at this point. We had derived a more general case of SSB
with dynamical gravity up to the inverse Higgs constraint but had to cease, as
the approach does not in essence differ with respect to the non dynamical case.
We can say with some certainty that this more general case would show similar
issues and would not approach the EFT of inflation derived by the Stückelberg
trick.

10.3 Outlook

The research in the field is ongoing. The coset construction is a relatively
new technique, but has already been applied to a number of different cases. To
understand and apply the coset construction in a systematic way without errors,
so also for spacetime symmmetry breaking would be the first goal of research
continuation. the second goal would be to use the coset construction for the
SSB of time translation symmetry, in a consistent manner, thereby deriving a
theory coinciding with the Heuristic theory. Applying the coset construction to
dynamical gravity would subsequently be the main task. These results would
then be compared to the theory that we derived using the Stückelberg trick.
Furthermore, a better understanding of spacetime symmetry breaking and in
particular the SSB by inflation would be possible. These results would thereby
provide a fundamental conceptualization of curvature perturbations and in turn
of the origins of structure formation in the universe.
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