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Abstract—The field of Machine Learning has been rapidly gaining attention from both academic and commercial
parties. To promote fast deployement of analytical solutions, several tools have been developed to aid the novice user.
Concurrently, fields like meta-learning have been making great progress in developing models of algorithm performance
on different datasets. One of the central issues in Machine Learning, for both novices and experts, is what learning
algorithm to use on a given dataset. Although many solutions have been proposed, a definitive solution has yet to
be found. We will argue that a possible solution lies in a deeper understanding of the data we are dealing with. By
characterizing datasets in terms of meta-features such as the size of the dataset, we can compare and discuss different
datasets and relate them to algorithm performance. A better empirical and analytical understanding of the data may also
improve algorithm development, cause significant time-savings and present new insights. Focussing on classification
algorithms, we present a number of ways in which meta-features can contribute to machine learning research. We will
discuss several challenges and guidelines that have been proposed in the relevant literature and lastly we present what
little is known about several meta-features and their relation to a classifier’s performance.

Index Terms—Dataset characterization, meta-learning, meta-features, machine learning, classification, data mining
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1 INTRODUCTION

In todays world, data is a cheap and easy
to acquire commodity. A steadily increasing
number of companies have extensive databases
with data about their business or customers,
while at the same time researchers have started
initiatives to collect and publish datasets on a
wide range of topics such as wildlife movement
or credit scores. The broader field of Artificial
Intelligence has contributed greatly to the use
and development of smart algorithms that can
’learn’ from data. AI and Machine Learning
techniques such as classification, clustering or
regression are used to, for example, diagnose a
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patient or predict equipment failure. Data min-
ing is the name of the overall process of gather-
ing, pre-processing, transforming, and analyz-
ing data with the goal of discovering patterns
and transforming information into actionable
knowledge. Machine Learning concerns itself
with the design and application of algorithms
for analyzing data and producing patterns,
predicting future data points or classifying un-
seen examples. Machine Learning is a largely
independent sub field of Artificial Intelligence
which has been widely used in areas such
as computer-aided diagnosis, natural language
processing, image classification, object recog-
nition, etc. Subsequently, tools have become
available for use by laymen and professionals
to aid them in analyzing their data (e.g. Rapid-
Miner.com, Prediction.io, DataRobot.com, Mi-
crosofts Azure Machine Learning, Googles Pre-
diction API, and Amazon Machine Learning, R,
WEKA, OpenML).

A particular concern of this paper is the use
of classification algorithms and their relation to
the data they are trained on, specifically the in-
fluence of dataset characteristics on the perfor-
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mance of supervised classification algorithms.
In a broad sense classification is any situation
in which a decision about a piece of informa-
tion is made. In a more formal way, following
Michie et al.’s definition, classification is the
construction of a procedure that is applied to
a series of cases, wherein each case is assigned
one of a set of predefined labels/classes based
on the observed features in the dataset [1].
In this paper we will refer to classification as
meaning supervised classification; in which a
classifier is trained on a set of examples with
associated labels. In light of the large number of
different classification algorithms and datasets
available, some categorization has been pro-
posed to group classifiers by their ’family’. For
example, classification algorithms can be cat-
egorized as Statistical, Machine Learning (e.g.
Decision Trees or Rule-based classifiers) and
Neural Networks [1], [2], while datasets may
be databases, ordered sets, streaming resources,
etc.

One of the most challenging problems in
Machine Learning is the determination of per-
formance indicators in algorithms and the pre-
diction of the best performing algorithm on a
given dataset. This problem remains an issue to
this day and has been studied for a long time,
albeit sparsely (e.g. [1], [3]–[7]). When consid-
ering the availability of hundreds of machine
learning algorithms and thousands of datasets
with possibly millions of data points, there is
a surprising lack of guidelines and standard-
ization of what algorithm to use on a dataset,
what parameters and features to select or how
to pre-process the data [8]. Datasets themselves
offer little information on the type of analysis
to use. Picking the right algorithm for a dataset,
as well as configuring and using an algorithm
to its maximal potential so as to maximize its
usefulness, proves to be an obstacle for both
laymen and experts [9]–[11]. This is largely
due to the large number of different algorithms
available and their difficulty in deployment,
fine-tuning and interpretation. At the same
time more data than ever before has become
available to users, but the quality of the data
has not necessarily improved. These challenges
require novel solutions based on not only smart
AI techniques (such as meta-learning), but also

on a proper empirical foundation of data anal-
ysis. Discovering relationships between classi-
fiers and datasets requires the data to be com-
parable to other datasets: using meta-features
to characterize datasets and make crude pre-
dictions of algorithm performance without the
use of models will be the central theme in this
paper.

1.1 Opportunities for meta-features
This paper aims to address the lack of a deeper
understanding of the role of meta-features in
the classification process. Most work concern-
ing meta-features and data characterization has
been done in the context of meta-learning, the
field of research that aims to improve algorithm
performance and selection through learning
from past experiences (See section 4 for a more
thorough introduction). It would seem that al-
gorithm performance is closely related to the
characteristics of the data, so it follows that
to obtain the best results from a classification
procedure an algorithm should be used that
is known to perform well1 on data with these
characteristics.

There’s a number of cases where a deeper
understanding of meta-features would be ben-
eficial. First of all, there is empirical evidence
to support the No Free Lunch theorem [1],
[10], [12], which states that no algorithm will
perform best on all problems [13]. It would
thus make sense to use an algorithm that is
tailored to the problem at hand. Second, testing
and fine-tuning several algorithms to find the
best one is tedious and very time-consuming. A
guideline provided by the data would not only
help the user, but could also improve automatic
selection procedures. Third, a deeper under-
standing of the data and differences between
datasets would be helpful in designing (novel)
classification algorithms, especially considering
that tailored algorithms should perform best.
Fourth, the superiority of a classifier may be

1. In theory it is only possible to reliably compare two
different classifiers when they are used on the exact same
dataset. However, as Michie et al. note [1], the sometimes
radically different nature of two algorithms makes it impossible
to correctly compare them. The measure of accuracy is quite
relative as well: In some cases an error of 15% is considered
very good, while 5% may be bad in others.
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restricted to a given domain characterized by
some complexity measures [14]. Knowledge
of the influence of these complexity measures
may help us understand classifier limitations.
Fifth, in most of the empirical literature classi-
fiers are used in their baseline configuration, to
make fair comparisons, while they usually per-
form much better when properly fine-tuned.
Fine-tuning requires knowledge of the implicit
requirements of the data. Sixth, it has been
noted throughout the Machine Learning com-
munity that a standardized format for datasets
for learning is lacking [15]. Knowledge of meta-
features could guide the process of developing
such a standardization. A last couple of chal-
lenges that would deserve attention on a meta-
feature level are that meta-features appear to
be largely inter-dependent, that performance
data is missing for many algorithm/dataset
combinations, and the use of artificial data
which is likely not very representative of real-
life applications, although it may be useful in
meta-feature research and establishing some
general relations [8].

1.2 Aim of this paper

Most approaches on selecting the best
performing algorithm for a dataset are
focused on automated procedures (e.g.
meta-learning, feature-selection). We notice
a lack of empirical foundation for the many
meta-features found in the literature, and
for the interpretation of the results obtained
by developing meta-algorithms using these
measures (e.g. [16]). The goal of this paper is
thus to provide an overview of the challenges
and guidelines concerning the influence of
dataset characteristics, meta-features, on the
performance of classification algorithms. Our
central question is as follows:

”What do we know about the influence of
dataset characteristics on classification algorithm
performance?

To answer this question we will aim to an-
swer related questions such as: ”What meta-
features are available?”, ”What meta-features
contain the most information in any given

dataset?”, ”What are the sensitivities of types
of classifiers to different datasets?” and ”What
ways are available to describe a dataset?”.
Our questions differ from those answered by
the field of meta-learning in the following
way: whereas in meta-learning a model is
constructed to describe the influence of meta-
features on classifier performance, we focus on
a more basic approach, a more a priori knowl-
edge of this relationship without the need for
meta-learning techniques. In Section 2 we will
discuss some related work; Landmarking in
particular. We will then define and discuss
meta-features, some challenges, and guidelines
in Section 3. In Section 4 we will discuss
meta-learning, which is the most active area
of research concerning the exploitation (and to
some extent, understanding) of dataset charac-
teristics. We will discuss some popular dataset
characteristics and their relation to classifier
performance in Section 5, in the categories
Simple, Statistical and Information Theoretic.
We conclude in Section 6. Our goal is to pro-
vide a broad overview of the current state-
of-the-art of meta-features and their influence
on classifier performance, as well as show a
need for further research on this topic. We hope
that addressing the issues mentioned here will
spur further research to create a better under-
standing our data, and ultimately enhance our
results in using Artificial Intelligence to learn
from data.

2 RELATED RESEARCH TOPICS

Several different, but related research areas
have concerned themselves with the topic of
meta-features and data characterization. We
will briefly discuss the most notable here, es-
pecially the topic of landmarking, while meta-
learning is discussed in Section 4.

An example of an early use of meta-features
to link algorithm performance and data char-
acteristics is found in Average Case Analysis,
which constructs analytical formulas to predict
the performance of an algorithm on a dataset
with certain characteristics (e.g. [6]). This ap-
proach was preceded however by the STAT-
LOG project, which discussed meta-features at
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large and used them in an early form of meta-
learning [1]. Aha (1992) proposed a method for
generalizing from case-studies and produced
rules to indicate what algorithm would per-
form best on a dataset [3]. See [16] for an
elaboration on these related works.

The availability of good data is closely re-
lated to the issue of building a ’perfect’ clas-
sification model. Most, if not all, datasets are
rather specific to a certain topic and may con-
tain noise, missing values or irrelevant data,
especially if the data has been acquired from
a real-life application. Given the increase of
available datasets and massive data streams it
has become increasingly hard to obtain and
create ’clean’ datasets. Data pre-processing is
the procedure of removing detrimental data
points from the data and transforming the data
to a format that is easily learned from by clas-
sifiers. Cases where data is used for learning
without pre-processing are rare, or even non-
existent. Data pre-processing influences data
in three directions: Data cleansing (noise, ex-
tremes, redundancy), altering dimensionality
(attribute generation, filtering, transformation),
and altering data quantity (sub/oversampling,
balancing) [17].

A couple of tools have been developed to
automate the process of selecting the best al-
gorithm and fine-tuning it. Thornton et al. de-
veloped ’Auto-WEKA’ as a tool to automate
this in learners that can be used in the WEKA
package. They achieved some promising re-
sults, although their focus was mostly on pa-
rameter and algorithm selection optimization
[18]. Following this approach and extending
it, were Feurer et al.: They developed a sim-
ilar tool called ’auto-sklearn’ to automate algo-
rithm selection and tuning for algorithms in the
scikit-learn Python package [10]. Compared to
Thornton et al.’s approach they added a meta-
learning step to ”warm-start” the Bayesian op-
timization by using meta-features of a large
number of datasets and they integrated au-
tomatic ensemble construction. Their method
seemed to best Thornton et al.’s, but the most
interesting result was probably that while test-
ing hundreds of classifiers, no classifier was the
best on more than half of all datasets [10]. Al-
though tools like these show promising results

in predicting a (very) good classifier for a given
dataset, they require previous knowledge (for
’auto-sklearn’) and a lot of time to train, plus
there is not much interpretation of the results,
and no interpretation of the factors that led to
the results in the literature.

2.1 Landmarking
Landmarking is a method for selecting machine
learning algorithms using very simple learn-
ers, as proposed by [19]. Landmarking quickly
determines an estimate of an algorithm’s per-
formance on a dataset by first using a simple
learner on the dataset. The results of this simple
learner, that roughly resembles the full-fledged
learner, are then assumed to give some kind
of indication of the performance of the full-
fledged algorithm on that dataset [11]. When
using this strategy over multiple datasets and
with multiple different simple learners, the re-
sults of the simple learners can be used to char-
acterize the datasets and consequently relate
these to algorithm performance. Landmarking
is one of the ways to characterize datasets
by looking at the performance or morphology
of a classifier that has been trained on the
data: A simple learner’s performance should
be very similar on datasets that are similar.
Another approach to this would be to look at
the number of nodes in a decision tree that
has been trained on the data, for example. In
Section 3 we will discuss some different ways
of characterizing datasets. In this paper we will
mostly concern ourselves with meta-features
like ’size’, but Landmarking [19], Yardsticks
[1], and sampling-based landmarking [20], [21]
show some interesting new perspectives on
dataset characterization.

Yardstick is a early form of Landmarking
proposed by Michie et al. to compensate for the
difficulties in using some of their meta-features
[1], which inspired the work by Pfahringer et
al. In their original paper, Pfahringer et al.
first use three landmarkers (linear discrimi-
nant, naive Bayes kernel, and C5.0 trees) and
a number of meta-features to show that land-
markers can aid in improving the predictions of
meta-learning algorithms. In the second part of
their work they used 10 meta-learners to clas-
sify a problem as one for a specific classifier or
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one where none of the learners would excel. In
this meta-learning task, only landmarkers were
used as meta-features. They used a best deci-
sion tree node (according to the best informa-
tion gain), a random node, a worst node, and
an elite nearest-neighbor learner as landmark-
ers. These landmarkers give an indication of
the linear separability of the problem, and the
number of irrelevant attributes. Their results
show that landmarking in meta-learning can
be successfully used to predict the suitability of
a type of classifier (e.g. Decision Tree, Neural
Network) [19].

Landmarking has produced some interesting
and promising results in the prediction of the
best performing algorithm on a new dataset.
A couple of issues remain, however. It is not
clear what the relation is between a landmarker
and the dataset at hand. There have also been
several cases in which the performance of a
landmarker was not significantly predictive of
the performance of the full-fledged learner. The
work by Phafringer et al. discussed above used
mostly artificial data and reports that their
choice of landmarkers and meta-learners was
quite ad-hoc. More work on this topic would be
needed to see if landmarking can be successful
in meta-learning and dataset characterization.
Although using landmarkers is significantly
faster than trying different learners, it is still
a time-consuming process, which may be one
of the reasons that its use in meta-learning so
far is limited [10]. For more on the topic of
landmarking see [11], [19], [21], [22].

3 INTRODUCTION TO META-FEATURES

A dataset characteristic is some way of describ-
ing a property of a dataset. Several ways of do-
ing so are possible: while we focus on ’classes’
of dataset characteristics (e.g. the number of
examples, the class proportion, the entropy of
classes, or the modality of the data), another
way would be to use algorithm performance
on a dataset, as we saw in Landmarking, or
the morphology of the learned model [1]. In
Section 5 we will present and discuss some
popular meta-features. In a learning task an
algorithm learns from several features of a
dataset, which, in the case of meta-learning,

are meta-properties of the dataset. Hence, these
dataset characteristics are called meta-features
in the field of meta-learning. We will use both
’dataset characteristics’ and ’meta-features’ in-
terchangeably in this paper. Dataset character-
istics and meta-features represent the type of
information in a dataset, how the information
is distributed, and in what form it is. They
describe the nature of attributes, the attributes
themselves on a meta-level, associations be-
tween attributes, the association between an
attribute and a target value, and more [22].

Michie et al. were one of the first ones to pro-
pose a categorization of types of meta-features:
They used meta-features in the categories ’sim-
ple’, ’statistical’ and ’information theoretic’,
based on the historical origin of these measures
[1]. Simple measures are, for example, the num-
ber of examples, the class proportions or the
modality of the data (nominal vs. numerical).
Statistical and information theoretic measures
both relate to a specific family of classifiers:
Statistical measures are especially useful in
predicting the performance of numerical-based
classifiers. Information theoretic measures are
mostly used for nominal values or combina-
tions of numerical and nominal values, and are
closely related to the performance of decision
trees and rule-based learners, for example [1],
[17]. The measures proposed by Michie et al.
have been widely used in related research (e.g.
[2], [18], [22], [23], although there has been
some criticism on the choice of measures as
well [1], [16], [24].

One of the biggest challenges is what meta-
features contain the most information, in meta-
learning [8] but in general classification as well
[1]. Michie et al. have tried to use multidi-
mensional scaling to extract the essential fea-
tures, but they were unable to find a proper
conclusion due to the large differences be-
tween datasets and algorithms used. In a case
analysis by Aha (1992) the meta-features were
varied and it was found that this caused sig-
nificant performance differences between the
algorithms tested [3]. In a different approach
to defining dataset complexity, Ho et al. found
that certain complexity measures can be used
to describe how hard a problem is, and that
this can be linked to algorithm performance
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(especially class overlap seemed to be of sig-
nificant influence) [25]. Kalousis et al. also an-
alyzed the usefulness of certain meta-features
and concluded that the number of examples,
the ratio of examples to attributes, the class en-
tropy and the information gain were especially
informative [16]. A meta-analysis of classifica-
tion algorithms concludes that homogeneity of
covariance between classes increases prediction
performance, that canonical correlation is re-
lated to the performance of neural networks
and that a higher value of the skewness of the
data may improve statistical classifier perfor-
mance [2].

One of the most important qualities of a
good dataset characteristic is its discriminative
power: it should contain enough information
to distinguish between datasets and algorithms
[8]. Also, they should not be too computation-
ally complex, or more time would be spent
calculating meta-features than would be spent
trying out different algorithms [1], [8], [19].
Because the characteristics of a dataset are di-
rectly representative of the data in the dataset,
some caution should be used in transforming
or pre-processing the data [22]. This has also
been noted when converting nominal values
to binary values, to make them compatible
with numerical algorithms [1]. There is some
discussion and experimentation on the rep-
resentation of meta-features: most researchers
use the mean of values for the meta-feature,
or a ratio of that mean as a measure of said
meta-feature, but this may cause severe loss
of information and it does not scale well with
datasets of different sizes [22]. Other methods
have also been successfully applied, like logic
programming [26] and histograms [22].

As mentioned earlier, both the meta-data
and the data itself are likely not clean before
usage and may contain missing values, ex-
treme outliers and skewed proportions. Some
have suggested to counteract these issues, to
obtain more meta-data and to enhance re-
search on meta-features, by artificially gener-
ating data (e.g. adding/removing noise, over-
/undersampling attributes). This approach has
been moderately successful in drawing con-
clusions on the role of meta-features [8], [27],
but it seems unlikely that artificial data is very

representative of real-world problems [1], [28].
An interesting development is the use of large
data streams and extreme data mining, where
the huge amount of available information com-
pensates for some issues with for example class
proportion and noise [29], [30].

4 META-LEARNING

The characterization of datasets has attracted
the most attention in meta-learning research
[1]. A number of slightly different definitions of
meta-learning exist, but Vilalta et al. provide a
concise one: ”Meta-learning studies how learn-
ing systems can increase in efficiency through
experience; the goal is to understand how
learning itself can become flexible according
to the domain or task under study.” [31]. Ba-
sically, meta-learning concerns itself with the
use of learning systems to make other learning
systems flexible based on the problem at hand.
Machine Learning algorithms are used to map
dataset characteristics to the relative perfor-
mance of algorithms. A simple meta-learning
procedure would be: Characterize a number
of datasets by their meta-features, benchmark
a number of classifiers on these datasets and
use a learning algorithm to relate the perfor-
mance of the classifiers to the meta-features.
Meta-features are especially important here be-
cause they are used to define a dataset as a
specific type and consequently differentiate it
from other datasets. After training the meta-
learning algorithm, these measurable differ-
ences, or similarities, between datasets can be
used to select the algorithm that would be
likely to perform best on the new dataset,
given that dataset’s similarity to a previously
seen dataset, and the different classifier perfor-
mances on different datasets.

To provide an example of such a meta-
learning model, we will discuss the meta-
learning model constructed by Pfahringer et
al. [19]. They used over 200 artificially gen-
erated datasets with different dataset charac-
teristics to predict pair-wise winners for all
pairs of C50BOOST (Boosted Trees), RIPPER
(Rule-based) and LTREE (Discriminant Tree).
The learners got 7 meta-features and the land-
markers as input to predict which algorithm
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Fig. 1. Meta-learning model produced by the
RIPPER learner [19].

would be better on a given dataset. The ad-
vantage of the RIPPER learner is that it is
rule-based, and thus provides a very easy-to-
interpret model, which we can see in Figure
1. In the top part of the rules in the figure,
C50BOOST vs. RIPPER, we can see that RIP-
PER generally wins over C50BOOST (it is the
default choice), but C50BOOST outperforms
RIPPER if the C5-estimate (error estimate from
the landmarker) is already lower than 9% or
if the dataset contains more than 5 classes and
the number of examples is less than 1000. Sim-
ilarly, in LTREE vs. C50BOOST, we can see that
C50BOOST almost always outperforms LTREE
on any dataset, except in the rare cases when
there is a relatively equal class distribution, the
c5-estimate is quite high and the linear dis-
criminant estimate is less than 28%. For a full
explanation of the model and the results, see
[19]. We have merely used this as an example
of a meta-learning model, which quite clearly
shows how a choice of classifier is based on
meta-features.

Several challenges concerning meta-features
have been noted in the meta-learning commu-
nity. For example, meta-features are only useful
if they contain information that can be used to
discriminate between learners [1]. It is not yet
clear, however, which meta-features are useful
and which are not. Because most of the work
done in meta-learning focuses on prediction
and the construction of robust meta-learning
systems, it suffers from the same lack of inter-
pretation of meta-features as Machine Learning

in general. Michie et al. also noted that one
of their meta-features ’SD ratio’ was so com-
putationally intensive that it would be much
easier to just use some form of Landmarking
with the algorithms that depend on ’SD ratio’
[1]. Brazdil et al. note that because the choice
of parameters hugely affects the quality of
the results, meta-learning methods should also
provide guidelines for the selection of meta-
features and parameters [8]. This is related to
the challenge of deciding what meta-features
to use: Just like with regular features, meta-
features can suffer from noise, missing values
or irrelevancy. Some meta-features may only be
useful for a certain family of learners. Given the
huge variety in real-world datasets an answer
to this challenge is not easily formulated [1],
[8].

The field of meta-learning has made some
great progress in the characterization of
datasets for predicting algorithm applicability.
Although classes of meta-features (as opposed
to landmarking, for example) seem to be the
most widely researched category of charac-
terization, some interesting results have been
found in other categories as well (e.g. see
[32], [33] for model-based meta-learning). It is
generally accepted that meta-features are in
some way or another crucial to the field of
meta-learning. However, there is still a lack
of interpretation and empirical evaluation of
the influence of meta-features, and a lack of
guidelines for usage and selection. To learn
more about meta-learning, see [8]: A great book
on the use of meta-learning in data mining that
discusses practical applications, challenges and
guidelines.

5 DISCUSSION OF META-FEATURES

In this section we will discuss several meta-
features as proposed earlier in the three cate-
gories: Simple, Statistical and Information The-
oretic. We will discuss what, as far as can be
concluded, their role/influence is on classifier
performance and present the challenges that
remain. Not all possible meta-features are cov-
ered. For some it is not clear enough what
their influence might be, and often a slightly
different set of meta-features is used in other
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literature. We have picked the ones that have
been most common in the literature and those
that have been most extensively covered.

5.1 Simple meta-features

Simple meta-features are dataset characteristics
that are easily observable and cater to any
family of classifiers. Some of the most widely
used meta-features in this category are:

• Number of examples
• Number of attributes
• Number of classes / class proportions
• Ratio of nominal vs. numerical attributes
• Modality of the data
• Amount of missing values
The number of examples in a dataset is

possibly the most obvious meta-feature of any
dataset: it simply is a measure of how much
data is in the dataset. The size of the dataset
is at the same time possibly the most influ-
ential on the performance of classifiers. The
size is directly linked to the training time of
an algorithm, and specific issues arise when
dealing with very little or huge amounts of
data. A popular way of dealing with high train-
ing times is to use only a sample of the data,
although this may cause underrepresentation
or overfitting. While the number of examples is
often regarded as an important measure in the
literature, it is reportedly rarely used in data
mining [8]. A reason for that may be that in an
average dataset the size is not an interesting
measure compared to innate algorithm perfor-
mance or other measures. But when dealing
with especially small datasets the number of
examples is rather meaningful, because there
is relatively little information in the dataset.
Salperwyck et al. looked at the performance of
algorithms on small datasets and found that
generative algorithms (i.e. Naive Bayes) gen-
erally perform better on small datasets than
discriminative ones (i.e. Decision Tree, Rule-
based). Although the reason for this remains
unclear, they argue that generative algorithms
like Naive Bayes are able to very quickly
construct a good model from little data [34].
An interesting question Salperwyck et al. pose
is what the minimum number of examples

would be to find an ’interesting’ solution. Un-
fortunately this question remains unanswered.
Nowadays (very) large datasets have become
more easily available than ever before. These
datasets offer huge potential, but large datasets
also have their own share of challenges. Banko
et al. for example have shown that very large
datasets offer significant performance improve-
ments for classification algorithms [29]. Large
datasets offer a number of benefits due to their
sheer size: Issues with noise, redundancy of
examples and class underrepresentation may
be overcome by the fact that there is sim-
ply more information available. Large datasets,
however, may also be more complex, which
calls for well-scaling algorithms that can deal
with higher data complexity [1], [18]. The di-
mensionality of the dataset (the number of
classes or number of attributes) may also pose
a challenge: Most literature on data charac-
teristics and algorithm performance uses only
two classes for their empirical evaluation, but
report that dimensionality may be a problem,
for example for Neural Networks [12]. A higher
dimensionality of attributes is likely to be
counterproductive, according to [36], and large
datasets are likely to contain a lot more fea-
tures. A selection of features would be crucial
in these cases. If computing power and time
are not an issue, the advantages of big data
can overcome issues like underrepresentation
of classes, but most researchers argue that bet-
ter data is still worth more than more data,
although this view is getting challenged [30].

Another popular problem in classification is
that of the bias-variance trade-off in classi-
fiers. The bias and variance of a classifier may
have a significant impact on their performance
compared to other classifiers. The bias in a
classification task refers to the error caused by
modeling a real-life problem by a much simpler
model. Variance measures the degree to which
the predictions of the classifiers developed by a
learning algorithm differ from training sample
to training sample [27]. Brain et al. have found
that the variance will decrease significantly
with increasing dataset size. However, the bias
seemed to remain constant, and thus bias man-
agement in classifiers may be critical for a good
generalization performance [27]. Geman et al.
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have also shown that bias and variance are
influential in learning [35], but the question
remains of what trade-off between variance
and bias will render the best results. Classifiers
with a low bias tend to have high variances
and vice versa, thus finding the best trade-
off between bias and variance would require
some experimentation. Very different learning
algorithms may be needed for applications on
small and large datasets, and it is expected
that classifiers learned from small samples will
differ more significantly than classifiers learned
from larger samples [27], [34].

The number of classes in a dataset and/or
the class proportion (i.e. are all classes rep-
resented by the same number of attributes
and examples?) is another widely used meta-
feature, although the influence of this charac-
teristic remains largely undiscussed. A classic
opinion is that class imbalance (i.e. one class
has much fewer examples/attributes than an-
other class) can cause significant performance
issues, especially when the minority class is the
one of interest. Batista et al. tested this hypoth-
esis and found that class imbalance is likely
not an issue with most classifiers. However,
class minority in combination with overlapping
classes is very likely to be detrimental to classi-
fier performance [37]. They also produced good
results in using oversampling on the minority
class and note that a learner’s accuracy should
be carefully interpreted: A 99% accuracy may
seem to be very good, but if the 1% error
represents the left out minority class of interest,
the result is useless. Furthermore, Michie et
al. report that some algorithms, like the Koho-
nen network (a Neural Network type), benefit
greatly from equal class distributions.

The proportion of nominal attributes (e.g.
names, places; symbolic or binary) to numerical
attributes (i.e. continuous numbers) gives a
measure of what kind of data is the majority in
a dataset. It is widely known that algorithms
show big differences in their ability to han-
dle types of attributes (e.g. [1], [22]). For ex-
ample, discriminant algorithms like Quadratic
Discriminants are unable to deal with nominal
data. This means that when presented with
a largely nominal dataset, another algorithm
has to be used or the nominal data has to

be discarded or converted. Converting nominal
attributes to numerical or binary values may
cause loss of information, or greatly increase
the number of attributes to learn [22]. On the
other hand partitioning algorithms like deci-
sion trees are at an advantage when dealing
with nominal data [1], [22], [38]. Depending on
the proportion of a type of attributes some fam-
ilies of algorithms may perform much better on
a dataset, or require complicated transforma-
tions on the data.

A related issue is that of modality: the
modality of the data is the form it comes in or
is transformed to. This is more a property than
a measure but it nonetheless presents some
interesting issues that come with certain types
of data. Michie et al. report that a particular
concern is that of hierarchical data. For exam-
ple: the attribute ’Pregnant’ is second to ’Sex’,
as it only applies when a value of ’Sex’ is
’female’. Most algorithms perform badly with
this kind of data, as they fail to abstract the
underlying relations and are thus stuck with a
lot of irrelevant data. Decision Trees, however,
are especially good at mapping this kind of
data to a model [1]. Another possible issue is
that most datasets come in some sort of tabular
format. However, some data, for example time-
series data, may come in a completely different
format and require a classifier that is able to
deal with this kind of data [8]. This has become
especially important with the onset of on-line
learning and streaming data.

The last measure concerns that of missing
data. It is widely known that missing data is
detrimental to classifier performance, although
some classifiers are better able to handle miss-
ing values than others [1], [23], [34]. Especially
the distribution of the missing values may be
crucial to classifier performance [28]. Fortu-
nately a lot of good methods exist nowadays
to deal with missing values, ranging from sub-
stitution by artificial data to using the mean
value of the attribute. Unfortunately there is
little consensus yet over what method is best,
and it may depend on the data at hand.

5.2 Statistical meta-features
Statistical meta-features are measures of prop-
erties of a dataset that relate to the field
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of Statistics. They are generally only us-
able on predominantly numerical datasets and
are particularly useful in relating the dataset
characteristics to the performance of statisti-
cal/numerical classifiers. It has been suggested
that these measures may be more generally
applicable, but more research on that is needed
[1]. The meta-features discussed here are:

• Standard Deviation ratio (SD ratio)
• Correlation of attributes
• Skewness & Kurtosis
• Normality of the data distribution

The ratio of Standard Deviations as used in
Michie et al. is a measure of how much the
covariance matrices of classes differ, which is a
crucial measure for predicting the performance
and usability of discriminant algorithms. The
SD ratio is ”the geometric mean ratio of stan-
dard deviations of the populations of individ-
ual classes to the standard deviations of the
sample” [1]. Although this measure is very
helpful in deciding whether to use a Linear or
Quadratic Discriminant Analysis, its usefulness
with other algorithms is unclear, if there is
any use at all. Furthermore Michie et al. note
that it is very computationally expensive to
calculate the SD ratio for even a moderately
sized dataset, and that just applying and tuning
the algorithm without a priori knowledge is
faster. The regular standard deviation may be
more useful in this case, but this is generally
made equal to 1 in the data pre-processing step.

The correlation between attributes and be-
tween attributes and classes is another widely
used, but poorly interpreted measure. It is
known that some algorithms such as Naive
Bayes that assume independence perform
poorly on highly correlated datasets [1]. Cor-
relation of attributes may also be affected by
forms of pre-processing. There is some dis-
cussion on the usefulness of this measure in
this context, as a proper feature selection or
data pre-processing algorithm should be able
to filter out any irrelevant or redundant data.
However, datasets are rarely perfect, so it may
very well be possible that the correlation of at-
tributes can be used as a meta-feature. Kalousis
et al. question its use as well, but use it
nonetheless as a indication of whether some at-

tribute influences another one, which would be
important to statistical algorithms that makes
assumptions about (in)dependence [22]. Unfor-
tunately very little work on the influence of
both correlation and standard deviation ratio
has been done in the literature in the context of
classifier performance. It is generally used as a
measure for feature selection or meta-learning,
where interpretation of its influence is lacking.

A more interesting meta-feature in numerical
datasets may be the skewness and kurtosis
of the data. Skewness is a measure of how
asymmetrical a probability distribution is for a
certain variable. Kurtosis is another measure of
the shape of the probability distribution. These
meta-features are often used in analytical dis-
cussion and meta-learning research, but very
little is known about their relation to algorithm
performance. It has been noted that a certain
measure of skewness and kurtosis can influ-
ence the performance of a statistical learning
algorithm [39], but it is unclear to what extent
and for what values this influence is negative
or positive [1], [39].

5.3 Information theoretic meta-features
Information Theoretic meta-features are de-
rived from the field of Information Theory and
are most appropriate for nominal attributes [1].
However, they are also able to deal with contin-
uous attributes and are widely used through-
out the Machine Learning community. Just like
with the statistical measures, the measures dis-
cussed below often lack solid interpretation in
the context of algorithm performance, but can
be easily used to characterize datasets. Meta-
features like Noise-Signal ratio have also been
used as a meta-feature, but are not covered
here. Noise is often dealt with in a data pre-
processing step and it is widely known that
noisy data degrades classifier performance. The
information theoretic meta-features we will
mention are:

• Class & attribute entropy
• Mutual information
The class entropy is closely related to the

class proportions in the sense that the entropy
of a class is a measure of how ’random’ that
class is, or what the probability of that class
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occurring is. The entropy is maximal when all
classes have an equal likelihood of occurring,
and minimal when one class has a probability
of 1 while the rest has a probability of 0. When
some class has a much better representation
(through more data point and/or attributes)
than other classes, the overall entropy will
thus be low. In line with what was previously
mentioned, class entropy is deemed to be a
useful predictor of algorithm performance and
it is thus widely used in work on dataset
characterization. However, Sohn (1999) noted
that although many algorithms are sensitive
to changes in the class entropy, the change
in performance was not significant. It is thus
not clear what exactly the influence of class
entropy is [2]. It seems to be closely linked
with the issue of class imbalance, which may
be influential to some algorithms. It is also
mentioned that the entropy of attributes may
be more useful, as it is closely related to the
relevancy of attributes [1], [2].

One of the most important characteristics of
a dataset is the amount of information that
attributes add to a class [22]. The mutual in-
formation between a class and an attribute is
a measure of the shared information between
the two [1]. The more shared information, the
better the performance of an algorithm. The
mutual information can also be used to deter-
mine irrelevant attributes, those that add no
information to a class. Although widely used
in the literature, the meta-feature of mutual
information (sometimes: information gain) has
not been thoroughly analyzed in the context
of algorithm performance: Apart from ”more
information enhances algorithm performance”,
little is known about what values of mutual
information are needed to achieve top perfor-
mance.

6 CONCLUSIONS

In this paper we have initially stated the role
of meta-features in the broad field of Artifi-
cial Intelligence and consequently the field of
Machine Learning. Although meta-features are
widely used in meta-learning, their use in other
applications of machine learning may also be
beneficial, for example in algorithm design.

We have subsequently discussed a number of
issues concerning meta-features, which mostly
focused on the lack of interpretation of the
relationship between meta-features of a dataset
and the performance of a classification algo-
rithm on that dataset. We have also discussed
some meta-features themselves and have found
that simple meta-features enjoy the best in-
terpretation at the moment, although meta-
features from statistical and information theo-
retic backgrounds are widely used as well. Un-
fortunately the literature is not clear as to what
meta-features are the most important overall,
but research on this issue is ongoing. It seems
that it would not be wise to attempt to answer
our central question at this point, as many
answers are still unknown: It is clear that some
meta-features, like the size of the dataset or
the mutual information are influential to many
algorithms, and while for some meta-features
we know what values result in better classi-
fier performance, many questions about this
issue remain for meta-features like skewness
and kurtosis, for example. However, we have
mentioned several works that underline the
importance of meta-features in classification.
And furthermore, we have seen that meta-
learning provides very promising results in
relating meta-features to classifier performance.

Overall, to provide the machine learning
community with an answer to the multiple
questions regarding meta-features, algorithm
selection and design, more research is needed.
A good starting point, we believe, would be
to assess what meta-features are crucially im-
portant in any dataset and why. One of the
advantages of Artificial Intelligence is that it
can develop algorithms to solve problems, like
what algorithm to use, without needing an
understanding of the data. We have seen suc-
cessful approaches like this in meta-learning
or automatic selection tools like ’auto-sklearn’.
However, we believe that a deeper understand-
ing of dataset characteristics would still be ben-
eficial in algorithm design, speeding up classi-
fier deployment and dataset pre-processing..
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