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Abstract 
A mismatch exists between supply and demand of PV electricity. While residential solar panels produce 

electricity during the day, most electricity is used in the evening. The possible abolishment of net 

metering could make equipping PV systems with a battery attractive. Potentially, this battery could 

address the supply and demand mismatch and reduce peaks in consumption. In this research, various 

aspects of residential storage was investigated. First, based on a meta-analysis of existing literature of 

Lithium-ion batteries and based on experience curves, possible cost developments of Lithium-ion 

battery systems were determined. The meta-analysis resulted in predictions for 2020 of around 250 

€/kWh, while experience curves indicated values of around 150 €/kWh. Using power data 

(measurements every 10 seconds) and battery simulations, the average optimal storage size for a 

neighborhood in the Dutch city Amersfoort was determined to be 3.18 kWh. The optimally sized 

batteries have a large impact on overproduction of PV electricity: more than half of the overproduction 

was covered by the batteries. The impact on peak shaving and load shifting was limited when the 

batteries were not controlled, but large when batteries were precharged. The most important factors 

for consumers determined by a consumer survey were product lifetime and safety. 
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1 Introduction 

June 16, 2013. The German spot market price for electricity reached a record low of -100 € 𝑀𝑊ℎ⁄  

between 14:00 and 16:00 o’clock (EEX, 2013). With more renewables in the energy mix, negative prices 
could also be possible in the Netherlands (Chaves-Ávila, et al., 2012)). Meanwhile, Dutch Minister of 
Economic Affairs has publicly announced that in his view the net metering policy, allowing PV owners 
to sell oversupply of electricity to the grid at retail prices, should be abolished (Tweede Kamer, 2013). 
If PV owners would be treated like energy companies, could this mean that at certain moments they 
would have to pay money when producing electricity with their solar panels? 
 

1.1.1 Societal background 

In recent years, the installed renewable capacity in the Netherlands has slightly increased. However, 
given the EU 2020 goals it can be expected that the amount of renewable energy in the Dutch energy 
mix will experience strong growth in the upcoming years: the Netherlands are bound to increase the 
renewable energy supply from 4,5% in 2013 to 14% in 2020 (CBS (2013), European Parliament (2009)). 
To enforce this, the Dutch government -along with a broad alliance of energy related organizations- 
signed the “Energy Agreement on sustainable growth” (SER, 2013). In this agreement, the goal was set 
to have 6000 MWe on-shore wind and 2050 MWe off-shore wind1 in 2020. No specific goal was set for 
Photovoltaics (PV), although it was stated that 1 million households and Small and Medium Enterprises 
should be “substantially” self-sufficient (SER (2013), p. 79). Earlier, in 2011, an alliance of energy 
companies launched a plan to achieve 4000 MWe in 2020. Since 2010, the total installed capacity of PV 
doubled each year, from 88 MWe in 2010 to 722 MWe in 2013 (CBS, 2014). 
 

 
Figure 1, Installed capacity renewable electricity. Sources: for wind energy SER (2013) and for solar KEMA (2011). 

Evidently, having more renewables in the energy mix has several advantages. Examples are the 
decrease of dependence on import and decrease of greenhouse gas emissions. However several 
challenges arise with the integration of more renewables in the energy mix. Probably most 
prominently, are the costs: governments often opt for the most cost-efficient implementation of 
incentives to increase renewables (see e.g. SER (2013)). A second consideration is the flexible and 
uncontrollable nature of renewable energy sources. Particularly, because a supply and demand 
mismatch exists between e.g. PV and household electricity demand (see Figure 2). Both challenges 
form important themes within this research.  
 

                                                           
1 4450 MWe off-shore wind in 2023. 
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Simultaneously, electricity use is expected to increase in the upcoming years. Rooijers et al. (2014) 
expect an increase in electricity use in all of their scenarios for the Dutch energy supply in 2030. In the 
business-as-usual scenario they expect an increase of 23%. Causes are, among others, the possible 
electrification of household heat demand (i.e. heat pumps), and penetration of electric vehicles (EVs) 
(Rooijers, et al., 2014). Regarding EVs, the Dutch government aims to have 200.000 EVs in 2020, and 1 
million in 2025 (Rijksoverheid, 2011). With average use, an EV would increase a household’s electricity 
consumption with 42% (Brouwer et al., 2013).  
 
With an evenly spread increase of electricity load, the peak demand will also increase. This can be even 
more amplified when heat pumps are used and EVs are charged directly after standard working hours, 
at the current peak demand. The peak demand forms an important cost variable for the energy system. 
On the one hand because flexible power plants have to be employed to cover the peak demand. These 
power plants are characterized by high marginal costs. On the other hand because peak demand 
determines the peak capacity of the electricity grid and thereby has influence on investment 
requirements of net operators as well as electricity suppliers. Recent developments in the Dutch 
electricity market led Distributed System Operator (DSO) Liander to believe large investments in the 
grid are needed (Kamp, 2014). 
 
A phenomenon that can flatten out the peak of PV electricity production, as well as the household 
peak demand, is Domestic Energy Storage (DES). For this application, electrochemical storage (or 
batteries) has received much attention. In contrast to the most common form of grid storage (hydro 
storage), batteries are applicable for small-scale distributed energy systems. When during the day, a 
PV household produces more electricity than it uses, currently this electricity is exported back into the 
grid. Using an integrated PV battery system as an alternative, overproduction of electricity could be 
stored, and used in the evening when there is no PV electricity production (see Figure 2). This would 
increase the self-consumption of PV electricity, which has several advantages: for example, reduction 
of electricity transport and encouragement of consumers to control energy behavior (Castillo-Cagigal, 
et al., 2011). Furthermore, when there would be ‘smart timing’ of operation of the batteries, it could 
contribute to shave the peaks of local production as well as consumption. This implies that integration 
of ICT solutions can be a valuable addition.  
 

 
Figure 2, general logic domestic energy storage: part of the supply and demand mismatch is solved by implementing 
storage. Source: Hoppmann et al. (2014) 

1.1.2 Scientific background 

Various studies have examined integrated PV-battery systems. Castillo-Cagigal et al. (2011) designed a 
system with PV, storage and DSM and found that DSM on its own could increase PV self-consumption 
from 32.7% to 46.8%. For storage to accomplish the same increase, a storage size of 0.2 days of 



autonomy was needed. In an average Dutch household this would mean a rather small storage size of 
less than 2 kWh2. This shows that although DSM can make a valuable contribution, it cannot be the 
potential game changer that residential storage is. A second finding was that stored electricity 
increases non-linearly with increased storage size (Castillo-Cagigal, et al., 2011). This shows that there 
will be an optimal storage size. Because the exact relationship between storage size and yearly stored 
electricity is unknown, and will vary per household, this optimal storage size can be difficult to 
determine. Hoppmann et al. (2014) focused on determining economically optimal sizes of PV and lead-
acid storage systems. They found that these systems could, under the right price circumstances, 
already be profitable in 2013. RMI et al. (2014) went one step further: they investigated the 
possibilities of a ‘utility in a box’, i.e. being self-sufficient without connection to the grid. Their 
proposed system consisted of an integrated PV-battery system supplemented with a small diesel 
generated. They forecasted grid parity possible already today on Hawaii, and well before 2030 for 
millions of residents of the states New York and California.  
 

1.1.3 Gap in literature 

However, there are some difficulties with applying the research of RMI et al. (2014) to the Dutch 
situation. For example, their assumptions on costs of solar panels are higher than prices in the 
Netherlands. On the other hand, the solar irradiation assumed is much higher than in the Netherlands. 
This makes going completely off-grid much less realistic: enormous PV and battery systems would be 
needed, or extensive use of micro diesel generators. The first is evidently not optimal from an 
economic point of view, and the second from an environmental point of view. It may be more 
interesting to focus on the intermediate step before establishment of completely self-sufficient micro-
grids: becoming more self-sufficient.  
 
There also are some limitations to the research of Hoppmann et al. (2014). For example, they used 
load profiles and hourly solar irradiation data. Evidently, this is less accurate than using sub-hourly PV 
production and household consumption data, as will be done in this research. PV production is not 
only dependent on solar irradiation, but also on e.g. ambient temperature. Furthermore, Hoppmann 
et al. focused on a typical household, with average consumption. Particularly in this case, it is essential 
to differentiate between households, because storage can be much more attractive for PV owners with 
much oversupply as compared to PV owners with average oversupply. Lastly, Hoppmann et al. (2014) 
maximized feed-in tariff at the wholesale price (which is unrealistic in a short-term scenario in the 
Netherlands, because this would be a big difference from the current net metering scheme). They also 
assumed no policy differences tax that is included in the current retail price. This is unsure, because a 
problem with current price schemes is the perceived ‘tax evasion’ of PV; this could be seen as an over 
subsidy. The assumption is that storage would receive the same subsidy. To make the results applicable 
for more policy scenarios, in this research the focus will lie on at which difference between a feed-in 
tariff and retail electricity prices, residential storage can be attractive.   
 

1.1.4 Research questions 

The main question of this research will be: 

How would battery systems in conjunction with PV systems contribute to (economic) value for 
different stakeholders in the Netherlands? 
 
To answer this research question, several sub questions are being investigated: 

1. What could be the cost development of residential battery systems? 

                                                           
2 It should be noted that the research was not done for the Dutch situation, so numbers cannot be transferred 
one on one. 



2. What is the relation between increasing battery size and Net Present Value of storage for 
different PV households and what would be the optimal storage size for these households? 

3. For the optimally sized batteries, what would be (a) the impact on overproduction, (b) the 
results for various indicators of battery degradation (c) the impact on consumption and 
production power peaks on neighborhood level and (d) the impact on peak loads on 
neighborhood level? 

4. How would precharging of the optimally sized batteries impact the battery degradation 
indicators, and the peak shaving and load shifting on neighborhood level?  

5. What could be non-financial barriers for consumers? 
 

 

1.1.5 Scientific relevance 

This research will contribute to the scientific literature by being the first research on the value of 

integrated residential PV battery systems that takes multiple stakeholders into account. Research 

question one is relevant, because peak reduction could represent additional benefits of residential 

storage for the energy system. Thereby this question investigates integrated PV battery systems from 

the point of view of a service operators. Research question 2 till 4 investigate the systems from the 

economic perspective of a consumer. Research question 5 aims to take the entire system into account. 

Research question 5 represents a specific contribution to the scientific literature. Indisputably, there 
is a behavioral aspect in the supply and demand mismatch. In the Netherlands, early initiatives on 
providing smart meters were aimed at giving consumers insight in their electricity use. Activities in 
demand side management (DSM) focus on load shifting of controllable household devises from the 
peak load hours, for example by giving price incentives (dynamic pricing). At the same time, various 
researchers report that behavioral factors remain largely neglected in research about smart grids. For 
example, Geelen et al. (2013) argue that current smart grid approaches focus on technology and 
economic incentives, while including consumers in product and services development receives less 
attention. Verbong et al. (2013) see two main perspectives about consumer involvement. The first 
perspective is that of the ‘homo economicus’: the consumer that acts based on economic maximization 
of self-interest. This perspective is covered by research question 4. The second perspective 
encompasses that emotional incentives are equally important; this perspective is covered by research 
question 6. It is important to include non-economic factors, to prevent premature lock-in in a non-
optimal pathway (Verbong et al., 2013). 
  
  



 

2 Methodologies  
The research questions stated in the previous chapter require different methods for answering them. 
Figure 3 shows an overview of how the research questions are translated into research products. 
Furthermore, it shows the connection between the research questions. Research question 1 serves as 
input for research question 2-4. Research question 2-4 are strongly connected: the same data source 
and methodology were used. Furthermore, results of research question 2 served as input for the 
results of research questions 3 and 4: subsequent simulations were performed based on the optimal 
sizes determined in research question 2. Research question 5 fills the gap left by the previous research 
questions, but uses no direct input from these research questions. This chapter describes the methods 
in detail. 
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Figure 3, flowchart of this research 

2.1 Cost development 
6. What could be the cost development of residential battery systems? 

 
This research question involved a very challenging combination: the price development of a residential 
battery system is extremely important to the attractiveness of a storage system, and at the same time 
is very unsure. This is due to the fact that residential energy storage is in a very early stage of 
development.  
 
Therefore, an elaborate research was executed to determine possible price developments. Central to 
the approach of this research question is data triangulation: different methods were used to construct 
a comprehensive framework around price developments of electrochemical energy storage. Thereby, 
this research goes further than many previous studies that incorporated either a meta-analysis (e.g. 
Stewart (2012)), a bottom-up costs analysis (e.g. McKinsey (2012)), or experience curves (e.g. 
Matteson & Williams (2015)). In this research, first a meta-analysis was performed on general 



predictions regarding cost development of electrochemical energy storage. Next, a meta-analysis was 
performed on learning rates of Lithium-ion Batteries (LiBs). For both meta-analyses, data was collected 
using search engines Scopus and Google Scholar. Additionally, grey literature was taken into account. 
Grey literature was critically assessed before incorporated in this research. In general, publications 
from renowned consultancy companies were taken into account, but individual websites on the matter 
were not. Snowballing was used to access the ground source of predictions as much as possible; in this 
way, specific assumptions within literature could be assessed. In the meta-analysis about learning 
rates, it turned out most studies about learning rates of LiBs were aimed at consumer electronics. 
Therefore, the next step was to construct a learning curve based on LiB costs in (Plugin Hybrid) Electric 
Vehicles (PH)EVs.  
 
The time scope for literature taken into account in this research question is 2009-2015. This is a 
relatively extensive period, taken into account the rapid developments in this area. However, this 
choice can provide valuable insights regarding trends in predictions of price developments.   
 
Since the use of LiBs in car batteries is relatively recent, this experience curve is based on few data 
points. However, it does give an indication. For the period 2011-2013, cost data was based on DOE 
(2014), cumulative production was based on Pillot (2014)3. The 2014 cost data was based on Lux 
Research (2014) and cumulative production on Pontes (2015). 
 
To translate the determined learning rates (LRs) to a future cost, the relatively conservative prediction 
of Pillot (2014) from Avicenne Energy was used (see Figure 4). In addition to Figure 4, note that 
Navigant Research (2013) expects 3.8 million EVs in 2020, and US national goals amount to at least six 
million (PH)EV sales in 2020 (IEA, 2013).  
 

 
Figure 4, past and future predictions of Avicenne Energy. Source: Pillot (2014) 

 

                                                           
3 This data was validated by Bloomberg (2014b). 



2.2 Input data  
The data needed for research question 2-4 was received from research institute DNV GL. As part of the 

“Smartgrid: rendement voor iedereen” project, for 100 households the power interaction with the grid 

was measured every 10 seconds. Note that data concerned net metered power; therefore it was not 

possible to analyze consumption and production individually. The period of measurement was 

November 2013 till October 2014.  

There were three problems with the quality of the data. Firstly, data from various dates was missing 

for all households. Data of the entire days 13, 20, 22, 27 and 29 November, 3, 5, 6, 9, 11, 12, 13, 17, 18 

and 23 December, 15, 18 and 21 January, 19 and 24 February, 14, 26 and 30 March, 1, 2, 5, 8, 16 and 

19 April, 17 May, 23, 25, 28, 30 and 31 July, 8, 20, 26 and 27 August, and 2-31 October were missing. 

It was assumed that the remaining dates were a representative for a year. This choice was made 

because otherwise much more additional assumptions had to be incorporated, resulting in equal 

uncertainty of final results. Sensitivity analysis was performed to see the effect of decreasing or 

increasing production.  

Secondly, data for individual households also often was incomplete. Criterion for leaving a household 

outside the analysis, was whether more than a month of the (remaining) data was missing. As a result, 

21 households were kept outside of the research.  

Lastly, extreme outliers could be observed from data (e.g. a 10 kW production peak for a few data 

points of a household  that had few overproduction in the rest of the year). Therefore, when minima 

or maxima of an individual household were needed, a certain percentile was assumed to be the 

minimum/maximum of this household.  

Of the remaining 79 households, eight households had no solar panels, and an additional seven had a 

total overproduction of less than 10 kWh4. On average, the households with a higher overproduction 

exported on average 983 kWh to the grid (standard deviation 559). The average consumption from the 

grid of all 79 households was 2637 kWh (standard deviation 1113). 

 
Table 1 shows the most important input parameters of this research. Since all parameters are under significant uncertainty, 
sensitivity analyses was performed on the results of research question 2 – 4; minimum and maximum input values for the 
sensitivity analysis are also shown in  

Table 1.  
 
Table 1, Input parameters 

 Min Base Max Based on 

Cost battery (€) 100 200 300 See chapter 3.1 

ΔElectricity price (€) 0,08 0,16 0,28  

ΔElectricity price Increase 0% 1% 3% SER (2013) 

Discount rate 0,02 0,04 0,08 Hoppmann et al. (2014) 

𝜼𝒓𝒐𝒖𝒏𝒅 𝒕𝒓𝒊𝒑 0,76 0,81 0,91 Hoppmann et al. (2014) 

Life time (years) 5 15 20 Based on Heymans et al. (2014), Tesla 
Motors (2015a), this research  

 

                                                           
4 It was impossible to determine whether these households had a very small PV installation, or these values were 
due to measurement errors 



The cost of the battery is an essential parameter and was extensively investigated in research question 
1. The ΔElectricity price (difference between retail electricity price and feedin tariff) is completely 
dependent on the electricity pricing scheme; as a base, this was estimated to be €0,16. This was 
estimated to increase with 1% per year, as the Dutch government announced to pay investments in 

renewable energy from increasing existing energy taxes (SER, 2013).  The 𝜂𝑐 and 𝜂𝑑 were assumed to 

be equal at 0.9, resulting in a 𝜂𝒓𝒐𝒖𝒏𝒅 𝒕𝒓𝒊𝒑 of 0.81. This efficiency includes inversion losses.  Making an 
appropriate assumption for lifetime was complex. This is subject of debate regarding Electric Vehicle 
(EV) batteries, and moreover residential batteries operate under different circumstances than EV 
batteries. Heymans et al. (2014) estimate that 80% of the capacity of EV batteries is left after eight 
years. The residential battery that was launched by Tesla has a warranty of 10 years (Tesla Motors, 
2015a). The lifetime was assumed to be higher, because also with capacity loss, a battery would still 
be able cover a large part of the PV overproduction (some elaboration on this can be found in 
paragraph 3.3.4). Limiting the life time to performance guarantees would therefore underestimate the 
total possible use of the battery. 
 
One special sensitivity analysis was performed; this sensitivity analysis was not on one of the input 
parameters, but on the input data: PV electricity production, or more specifically, on the rate of self-

sufficiency5. Hourly solar irradiation (𝐸𝑗
𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛,ℎ𝑜𝑢𝑟) data was obtained from KNMI (2015), and 

converted to percentages of the total yearly irradiation per 10 seconds i: 

𝑝(𝐸𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛)𝑖 =
𝐸𝑗

𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛,ℎ𝑜𝑢𝑟

∑ (𝐸𝑗
𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛,ℎ𝑜𝑢𝑟)𝑗 ∗ 360

 

 
For all households k, this could be converted to the Extra Production for household k with on moment 
in time i: 

𝐸𝑖,𝑘
𝐸𝑥𝑡𝑟𝑎 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑝(𝐸𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛)𝑖 ∗ 𝐸𝑘

𝑌𝑒𝑎𝑟𝑙𝑦 𝑁𝑒𝑡 𝑀𝑒𝑡𝑒𝑟𝑒𝑑 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
∗ 𝑆𝑜𝑙𝑎𝑟𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 

 

Note that since ∑ (𝑝(𝐸𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛)𝑖)𝑖  = 1, the extra production meets the entire net metered 
consumption of household k if the SolarMultiplier = 1, hence the self-sufficiency would be 100%.  
 

2.3 Determining optimal storage size 
2. What is the relation between increasing battery size and Net Present Value of storage for 

different PV households and what would be the optimal storage size for these households? 
 

Using MATLAB, use of batteries was simulated to determine yields of batteries from various sizes. The 
specific code can be found in Appendix 7.3. 

                                                           
5 Self-sufficiency =

𝐸production

𝐸𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
 

 



 
Figure 5 shows an overview of all steps that have to be undertaken by the model, for every household, 
every 10 seconds, and various storage sizes. Block 2, 3, 4, 8 and 9 represent the decisions that in reality 
typically would be made by an energy management system. The input data (Block 1) was received from 
DNV GL (see Paragraph 2.2). Block 5, 6, 7, 10, 11 and 12 represent the consequences on two variables: 
the input to the battery content of a household, and the (new) demand from the grid of a household. 
The battery content served as input for the energy management system in the next time step, while 
the new demand from grid served to construct a new dataset with inclusion of a battery. The output 
data (block 13) was used to do succeeding calculations; in this research question to determine the Net 
Present Value (NPV) for different storage sizes. 
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Figure 5, Flow chart of Battery use. BS = battery scenario. In the actual model, there are also feedback loops from block 5, 6, 7, 10, 11 and 12 to blocks 3 and 8. 
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In this research, the optimal storage size for a household was defined as the storage size with the 

highest NPV. For each household, we determined the NPV using discounted marginal benefits and 

costs. The Marginal Benefits encompass the additional benefits if the battery size would be increased 

by one unit. Similar to Hoppmann et al. (2014), storage sizes were increased at intervals of 0.5 kWh. 

To determine the MBs, several steps had to be undertaken. 

First, it had to be determined whether there was overproduction (Block 2):  

If 𝑃𝑃𝑉 > 𝑃𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 → 𝐸𝑃  = (𝑃𝑃𝑉 − 𝑃𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) ∗ ∆𝑡 

With Power (P) expressed in Watt, time (∆𝑡) in seconds and  overproduction  (𝐸𝑃) in Joule. Next, it has 
to be determined whether this overproduction can be stored in the battery (i.e. Battery content < 
Battery Size, Block 8). If the battery is already fully charged, the battery is not used and nothing 
happens to the input data (Block 10). If a battery is not fully charged, 𝐸𝑃 can be stored in the battery:  
 

𝐸𝑃,𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = (𝑃𝑃𝑉 − 𝑃𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) ∗ ∆𝑡 ∗ 𝜂𝑐 
 
With 𝜂𝑐 as the charging efficiency. 
 
This is limited (block 9) by: 
 
𝐸𝑃,𝐵𝑎𝑡𝑡𝑒𝑟𝑦

∆𝑡⁄ ≤ 𝑃𝑜𝑤𝑒𝑟 𝑟𝑎𝑡𝑒𝑚𝑎𝑥  

 
All energy that cannot be stored in the battery is exported to the grid (𝐸𝑃,𝐺𝑟𝑖𝑑). The energy stored in 

the battery (𝐸𝑃,𝐵𝑎𝑡𝑡𝑒𝑟𝑦) can be used at a later moment, when there is net consumption. So when 
Battery content > 0 kWh, Consumption from battery 𝐸𝐶,𝐵𝑎𝑡𝑡𝑒𝑟𝑦 (in Joule) is:  
 

𝐸𝐶,𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = (𝑃𝑃𝑉 − 𝑃𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) ∗ ∆𝑡 ∗ 𝜂𝑑 
 

with 𝜂𝑑  as the discharging efficiency. 
 
Again, this is limited by the Max Power rate6: 
 

𝐸𝐶,𝐵𝑎𝑡𝑡𝑒𝑟𝑦

∆𝑡⁄  ≤
𝑃𝑜𝑤𝑒𝑟 𝑟𝑎𝑡𝑒 

𝑚𝑎𝑥

𝜂𝑑⁄  

Block 5 and 6 represent the consumption from a battery and thereby are closely related to the benefits 

of storage. The yearly energy covered by a battery (𝐸
𝐶 𝑡𝑜𝑡𝑎𝑙,𝐵𝑎𝑡𝑡𝑒𝑟𝑦 

) for household j can be calculated 

by summing all consumption from the batteries over time period i of 10 seconds, corrected by a factor 
365

297
 due to the missing data (see Paragraph 2.2): 

 

𝐸𝑗
𝐶 𝑡𝑜𝑡𝑎𝑙,𝐵𝑎𝑡𝑡𝑒𝑟𝑦 

= ∑ 𝐸𝑖,𝑗
𝐶 𝑡𝑜𝑡𝑎𝑙,𝐵𝑎𝑡𝑡𝑒𝑟𝑦 

∗
365

297

2566080

𝑖

 

                                                           
6 Max Power rate is defined as the maximum output from the battery 



One should note that the flow chart of 

 
Figure 5 represents the simulation of the battery and subsequent effects on interaction with the grid. 
When the battery is correctly simulated, the yield also can be simply calculated comparing the situation 
without battery and the situation with the simulated battery on yearly export to the grid: 

𝐸𝑗
𝐶 𝑡𝑜𝑡𝑎𝑙,𝐵𝑎𝑡𝑡𝑒𝑟𝑦 

= (𝐸𝑗
𝑃,𝐺𝑟𝑖𝑑

(𝑁𝑜 𝑏𝑎𝑡𝑡𝑒𝑟𝑦) − 𝐸𝑗
𝑃,𝐺𝑟𝑖𝑑

(𝐵𝑎𝑡𝑡𝑒𝑟𝑦)) ∗ 𝜂𝑑 ∗ 𝜂𝑐 ∗
365

297
 

 

Subsequently, the financial benefits of the battery 𝐵𝑏𝑎𝑡𝑡 (in €) can determined by the product of 

𝐸𝑗
𝐶 𝑡𝑜𝑡𝑎𝑙,𝐵𝑎𝑡𝑡𝑒𝑟𝑦 

in kWh and the ∆ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒 (€
𝑘𝑊ℎ⁄ )7:  

 

𝐵𝑗
𝐵𝑎𝑡𝑡 = 𝐸𝑗

𝐶 𝑡𝑜𝑡𝑎𝑙,𝐵𝑎𝑡𝑡𝑒𝑟𝑦 ∗ ∆ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒  

 
With 
∆ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒 = Retail electricity price – Feed-in tariff 
  
Now the Marginal Benefits can be determined: 

𝐵𝑠,𝑗
𝑀 = 𝐵𝑠,𝑗

𝐵𝑎𝑡𝑡 − 𝐵𝑠−0.5,𝑗
𝐵𝑎𝑡𝑡  

 

                                                           
77 Note that with net metering policy in place, the retail electricity price and the feed-in tariff are by definition 
equal, so ∆ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒 = 0  𝐵𝑏𝑎𝑡𝑡 = 0. 
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Since batteries are modular, Marginal Costs were assumed to be constant. This is in line with the 
dominant qualification regarding storage costs. In reality, larger batteries will be somewhat cheaper 
per kWh.   
 
NPV per household  
Using the above we thus define NPV per household based on battery size: 
 

𝑁𝑃𝑉𝑠,𝑗 = 𝑁𝑃𝑉𝑠−0.5,𝑗 +
∑ (𝐵𝑠,𝑗

𝑀 ∗ (1 + 𝑌𝑖)𝑡 (1 + 𝑑𝑟)𝑡⁄ )𝐿𝑡
𝑡=0

(1 + 𝑑𝑟)𝑡
− 𝐶𝑀 

With 
𝑠 = Battery size (in kWh)  

𝐵𝑀 = additional benefits after increasing battery size to size s 

𝐶𝑀 = additional costs after increasing battery size to size s 
 
Optimal storage size 
Economic theory dictates that the optimal investment decision can be found where the marginal costs 
MC equal the marginal benefits MB: 

𝐶𝑀 = 𝐵𝑀 →  
𝑑𝐶

𝑑𝑆batt
=

𝑑𝐵

𝑑𝑆batt
 

 

If the 𝐵𝑀 are discounted, this point will coincide with the maximum value of the NPV analysis that was 
explained previously.  
 

2.4 Simulation with optimally sized batteries 
3. For the optimally sized batteries, what would be (a) the impact on overproduction, (b) the 

results for various indicators of battery degradation (c) the impact on consumption and 
production power peaks on neighborhood level and (d) the impact on peak loads on 
neighborhood level? 

 
For this research question, the data was used as described in paragraph 2.2, and the model as 
illustrated as in 



 
Figure 5. 
 

2.4.1 Overproduction 

Self-consumption of PV electricity is increasingly becoming a central issue around PV. Self-
consumption is the part of the total energy produced by the solar system (𝐸𝑃𝑉, in kWh) that is directly 
consumed (𝐸direct, in kWh) by the same prosumer. This can be increased by storage in a battery, 
leading to the following definition of self-consumption (similar to the definition of Castillo-Cagigal et 
al. (2011)):  
 

𝑆𝐶𝑡𝑜𝑡𝑎𝑙 =
𝐸𝑑𝑖𝑟𝑒𝑐𝑡+𝐸

𝐶 𝑡𝑜𝑡𝑎𝑙,𝐵𝑎𝑡𝑡𝑒𝑟𝑦 

𝐸PV
  

 
However, since the data obtained for this research were net metered data, self-consumption per 
household could not be obtained: it is impossible to determine the isolated production and 
consumption data. However, we do know the overproduction. Overproduction is the direct opposite 
of self-consumption: 
 

𝐸𝑗
𝑃,𝐺𝑟𝑖𝑑= 1 – 𝑆𝐶. 

 
In other words, overproduction is the part of 𝐸PV that is exported to the grid.  One could say that  from 
a system’s perspective overproduction is actually the most relevant part of 𝐸PV; this is the part that is 

put on the grid and can cause problems with intermittency. Note that without a battery, 𝐸𝑗
𝑃,𝐺𝑟𝑖𝑑= 𝐸𝑗

𝑃: 
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all overproduction is exported to the grid. Evidently, implementing batteries would reduce the 𝐸𝑗
𝑃,𝐺𝑟𝑖𝑑: 

part of the overproduction is now exported to a battery (𝐸𝑗
𝑃,𝐵𝑎𝑡𝑡𝑒𝑟𝑦

). 

 
The impact on overproduction (in %) can be determined by: 

𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑛 𝑂𝑣𝑒𝑟𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
(𝐸𝑗

𝑃,𝐺𝑟𝑖𝑑
(𝐵𝑎𝑡𝑡𝑒𝑟𝑦) − 𝐸𝑗

𝑃,𝐺𝑟𝑖𝑑
(𝑁𝑜 𝑏𝑎𝑡𝑡𝑒𝑟𝑦) )

𝐸𝑗
𝑃,𝐺𝑟𝑖𝑑

(𝑁𝑜 𝑏𝑎𝑡𝑡𝑒𝑟𝑦)
∗ 𝜂𝑑 ∗ 𝜂𝑐 

 
Note that there is actually a larger impact on overproduction, however this impact is partly due to 
charging and discharging efficiency losses. Therefore, we multiply with these efficiencies. 
 

2.4.2 Battery degradation indicators 

The prediction of battery degradation and factors influencing it is still not fully understood (Barré, et 
al., 2013). In this research, three indicators for battery degradation were examined: average Depth of 
Discharge (DOD), average State of Charge (SOC) and total energy throughput. Note that the DOD is a 
less important factor for Lithium-ion batteries than for e.g. lead-acid batteries (Peterson, et al., 2010). 
Thereby it is mainly of interest if one would opt for a different battery than the Lithium-ion battery. 
Still, relationships between DOD and battery degradation are also found for the LiB (Barré et al.  (2013), 
Hoke et al. (2011)). The DOD for each day i and each household j was determined by   
 
DOD𝑖,𝑗 = 𝑆𝑂𝐶(𝑚𝑎𝑥)𝑖,𝑗−𝑆𝑂𝐶(𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑑𝑎𝑦)𝑖,𝑗 
 
Defined this way, the multiple charge and discharge cycles during one day are not taken into account. 
Therefore, the total energy throughput for household j was also calculated: 
 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  𝐸𝑗
𝐶 𝑡𝑜𝑡𝑎𝑙,𝐵𝑎𝑡𝑡𝑒𝑟𝑦 

+ 𝐸𝑗
𝑃 𝑡𝑜𝑡𝑎𝑙,𝐵𝑎𝑡𝑡𝑒𝑟𝑦  

 
This indicator is possibly the most important indicator for battery degradation (Peterson, et al., 2010). 
Lastly, the average SOC is taken into account. Battery degradation increases when batteries operate 
under a high SOC (Fu, et al., 2014). 
 

2.4.3 Peak shaving 

As can be seen in the flow chart, the model produces a net data set of demand from the grid for each 
household. To determine the neighborhood peaks, the cumulative demand from the grid (in kW) at 
point in time i was determined by summing over all households j: 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑟𝑜𝑚 𝑔𝑟𝑖𝑑𝑖 = ∑ 𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑟𝑜𝑚 𝑔𝑟𝑖𝑑𝑖,𝑗
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The consumption and production peaks are then found by taking respectively the maximum and 
minimum of the total demand for every day. Again, the situation without batteries and with optimally 
sized batteries were be compared, to determine the peak shaving that can be attributed to the 
batteries. 
 

2.4.4 Load shifting 

Lastly, the peak loads were found by summing the total demand over a period of four hours. This was 
based on CE Delft & Kema (2012), see Figure 6. The two-hour peak load of day k was determined by: 
  

𝐹𝑜𝑢𝑟 𝐻𝑜𝑢𝑟 𝑝𝑒𝑎𝑘 𝑙𝑜𝑎𝑑𝑘 = ∑ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑟𝑜𝑚 𝑔𝑟𝑖𝑑𝑖

𝑇𝑖𝑚𝑖𝑛𝑔 𝑃𝑒𝑎𝑘+1080

𝑖=𝑇𝑖𝑚𝑖𝑛𝑔𝑃𝑒𝑎𝑘−360

∗ 10 



As can be seen in Figure 6 and was observed by the data, summing from one hour before the peak till 
three hours after the peak resulted in a higher peak load than when was summed from two hours 
before and after. The four hour peak load of the neighborhood will be compared for the situation with 
and without batteries. 

 
Figure 6, electricity demand in residential areas. Source: CE Delft & Kema (2012), adjusted version 

2.5 Simulation precharged battery 
4. How would precharging of the optimally sized batteries impact the battery degradation 

indicators, and the peak shaving and load shifting on neighborhood level?  
 
For this research question, the data was used as described in paragraph 2.2, and the model as 
illustrated as in 



 
Figure 5. 
 
First, it has to be established when peaks in demand occur. The charging program has to ensure that 
at these moments, the battery will be used to cover (part of) the load. So when there is not enough 
oversupply from the PV system, the batteries could, to some extent, be charged using electricity from 
the grid. Precharging needed for household j on day k is determined by: 
 
𝑃𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑗,𝑘 = 𝐸𝑣𝑒𝑛𝑖𝑛𝑔 𝐷𝑒𝑚𝑎𝑛𝑑𝑗,𝑘 − 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑗,𝑝𝑒𝑎𝑘 

 
Evidently, the precharging is limited by the battery size of the household: 𝑃𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑗,𝑘 ≤

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑖𝑧𝑒𝑗. 

 
Hence, the maximum amount of precharge needed is determined by the evening demand of a 
household. To minimize the … of 𝐸𝑃,𝐵𝑎𝑡𝑡𝑒𝑟𝑦 by electricity from the grid, the battery content at the 

initial peak is subtracted from the evening demand. In a smart grid application, the energy 
management system should communicate all this information to a central information system. This 
information could for example be based on consumer input, indicators of electricity use pattern during 
the day, etc. Determining suitable indicators falls outside the scope of this research; for this research, 
perfect information was assumed. The precharging is equally spread over the hours 10 – 17. 
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Compared to the flow chart in 

 
Figure 5, the new power 𝐼𝑛𝑝𝑢𝑡 𝐷𝑎𝑡𝑎 for every household j and every point in time i = 

𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑟𝑜𝑚 𝑔𝑟𝑖𝑑 𝑁𝐵𝑖,𝑗 + 𝑃𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑖,𝑗. Subsequently, the model will be run again with the 

optimally sized batteries, but now including precharging. The system including precharging will be 

compared to the system without battery use and the system with non-controlled batteries. 

2.6 Social acceptance 
5. What could be non-financial barriers for consumers? 

 
Apart from the economics and grid integration, social acceptance can be a challenge for more 
deployment of renewables. The NIMBY (not-in-my-back-yard) effect is a well-known example.  
 
To determine the non-financial barriers, a survey was performed8 on 168 respondents: 112 PV owners, 
53 non-PV owners and 3 unknown. Respondents were recruited via social media, visitors of a PV 
website, and the network of a PhD student from Utrecht University.  
 
The following characteristics form the dependent variables: 

 Product lifetime 

                                                           
8 This survey was constructed and conducted as part of the course “Consultancy Project” (GEO4-2519). However, 
(statistical) data analysis was largely absent in that project, so will be performed as part of this thesis. 
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 Safety 

 Noise level 

 Grid independence 

 Environmental impact 

 User friendliness 

 Structural change (Renovation requirements) 

 Maintenance friendliness 

 Space use 
 
These characteristics were based on literature research and interviews with the stakeholder of the 
Consultancy Project, which was GDF Suez. The characteristics were examined regarding the perceived 
importance and concerns of the respondents. Regarding importance, each respondent was asked to 
rate each characteristics on a five-point scale ranging from “very unimportant” to “very important”. 
Regarding the concerns, each respondent was asked to make a top three. The question asked was: 
 

“If you think about energy storage in your residence, from which of the characteristics 
do you expect most problems? Make a top three, with ‘1’ being the characteristic with 
the most problems, followed by ‘2’ and ‘3’.” 

 
Concerns are different from importance, because a respondent can consider some characteristics very 
important, but simultaneously does not consider those characteristics a potential problem or challenge 
for DES. Therefore concerns may relate more to potential barriers, while importance relate more to 
preferred design of the product. Note that these concerns do not necessarily correspond with actual 
problems with DES; the perception of the respondent is central. 
 
Within subjects: Comparing characteristics (all respondents) 
On all results, statistical inference was performed. Because data on dependent variables is ordinal, 

non-parametric tests were used. It was first established whether an overall statistical difference exists 

between the characteristics, using Friedman ANOVA test. When statistical differences existed, 

Wilcoxon Signed-Rank Test was used to determine which characteristics differed. The conservative 

method of Bonferroni was used to correct for multiple comparisons. This means the required level for 

statistical significance is: 

p = 
𝛼

(𝑛(𝑛−1)
2⁄ )

 

Where: 
𝛼 = standard significance level 
n = number of variables = 9 
 
This results in required significance levels of p = 0,00139 for 𝛼 = 0,05 and p = 0,000278 for 𝛼 = 0,01 

Also, effect sizes were determined, using (after Corder & Foreman (2009), p. 39): 
 

Effect size =  
|𝑧|

√𝑛
 

  
Where: 
z = test statistic 
n = number of matched pairs = 38 
 
Between subjects: Comparing PV owners and non-PV owners on characteristics 



Furthermore, two groups were compared: PV owners and non-PV owners. These two groups represent 
different target groups for batteries. Regarding PV owners, their system would be retrofitted with a 
storage system, while non-PV owners represent the target group of a new integrated PV battery 
system. Specific policies will determine for which group residential batteries will be more attractive 
(e.g. abolishment of net metering also for current systems, or only for future systems). Because the 
future policies are unknown, both groups have to be taken into account separately. The groups were 
compared regarding the importance they attach to and concerns they have about the different 
characteristics, using the Mann-Whitney U-test. 
 
  



3 Results 

3.1 Cost developments lithium-ion batteries 

3.1.1 Cost developments based on meta-analysis  

Figure 7 shows an overview of all literature found on prediction of battery storage costs. All costs found 

in literature are converted to 2015€. Some additional information about the studies can be found in 

Table 3.  

All studies predict a decline in costs of energy storage. On average, the studies predict a decrease from 

624 €/kWh in 2010 to 363 €/kWh in 2015, 254 €/kWh in 2020 and 171 €/kWh in 2030. The differences 

between studies are large. Note that most studies give cost ranges; often these ranges do overlap. 

Remarkably, studies agree more on the long-term future than on the present and short-term future.  

One possible explanation is that many studies, implicitly or explicitly, take policy goals as a base for 

their prediction. The US Department of Energy stated a goal of 150 $/kWh in 2030. From there, studies 

may adjust their prediction accordingly to their specific research; a process known in the Psychology 

field as anchoring. On the other hand, strong political commitment has an influence on the trajectory 

of the cost reduction; such a goal may serve as a self-fulfilling prophecy. The large spread on the short 

term may be due to the large spread in prices in this early stage of development. The starting costs 

have a larger influence on the cost prediction in the short term, than in the long term (Gerssen-

Gondelach & Faaij, 2012).  

Investigating the literature more in detail, an important notion can be made. Over the course of the 

years, especially after 2011, the predictions of storage cost have become more optimistic (see Table 

2).  Evidently, the negative trend is statistically not significant due to the limited number of data points 

(Pearson’s r = -0,336 one-tailed p = 0,073). However, the hypothesis is further confirmed when looking 

at individual studies: several (corporate) authors published a more optimistic update of their earlier 

predictions. 

Table 2, 2020 battery cost prediction per publication year. Sources: see Table 3 

Publication year study Average 2020 prediction (2015€/kWh) 

2009  293  

2010  269  

2011  308  

2012  260  

2013  255  

2014  210  

 



 
Figure 7, overview of different price projections for Lithium-ion batteries. 
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Table 3, additional information of studies used in Table 3 

Source Comment 

IEA (2009a) Based on projected LiB cost of a 150 km range EV. Expectations conceded a 
range of 470-620 $/kWh on the short term (2015-2020) and 350-530 $/kWh 
on the long term (2020 and beyond). Specific years were not given, because 
the IEA reckoned the price development depended on the unsure 
development in production in the upcoming years. For this research, 2017 
was chosen as the year for the short term prediction, and 2025 for the long 
term prediction 

IEA (2011) Based on eyeballing of figure with target cost range and expected cost 
range. Range in 2010: 400-800 $/kWh, 2020: 300-470 $/kWh 

IEA (2013) Based on statement: “According to the U.S. Department of Energy (U.S. 
DOE), battery costs based on development efforts have gone […] to USD 
485/kWh of usable energy at the end of 2012. These cost gains may take 3-4 
years to be realized by industry, but the numbers give an indication as to 
what is possible in the near term.” (IEA, 2013, p: 17). IEA take a 9.5% CAPR, 
so it was assumed that the costs would be 485 $/kWh in 2016 and 
decreased annually with 9.5% until 2020. Further assumptions: production 
of 100 000 batteries per year and profit margins excluded 

Anderson (2009) Data points of baseline scenario are illustrated in Figure 7. This scenario is 
based on a 4% CAPR. Rationale for this CAPR is the decreased CAPR of LiB for 
consumer electronics (9.9% for period 1998-2005, but 5.4% for period 2002-
2005). Values for optimistic values in 2015, 2020 and 2030 are 350, 300 and 
250 $/kWh, respectively. This scenario is based on bottom-up cost 
improvements. Values for pessimistic scenarios are 775, 750 and 775 $/kWh 
for 2015, 2020 and 2030 - an increase due to possible instability in South-
America, where many Lithium reserves are located. 

Bosch (2009) Battery capacity of 20 kWh. Predictions for 2020: 500/350/250 in €/kWh 
(Market potential low/base/high respectively) 

McKinsey (2010) 2010 costs is average of data provided by participating companies (range: 
375-1500 €/kWh). 2015 (range: 275-750 €/kWh) and 2020 (range: 230-450 
€/kWh) projections are based on proprietary data and include 
improvements in production engineering, future economies of scale, and 
mutual learning between different battery applications (HEV, PHEV and 
BEV). Participating companies were mainly oil and gas companies, car 
manufacturers and Electrolyser companies 

McKinsey (2012) Based on bottom-up “should-cost” model. Numbers are prices. Data from 
interviews with experts from automotive and battery industry, academia, 
and governments. 

Deutsche Bank (2009)   Based on discussions with companies from automotive and battery industry. 
25 kWh pack, 30% gross margin 

Deutsche Bank (2010) Update from earlier predictions, because prices fell down faster than 
expected (from 650 $/kWh in 2009 to 450 $/kWh in the end of 2010). 
Predictions based on 7.5% CAGR price reductions, driven by fierce 
competition.  Based on discussions with industry experts and car makers 

Bloomberg (2013) Data in Figure 7 based on eyeballing learning curve published by Bloomberg 
(2013). However, data points shown in the same figure (based on collected 
prices) indicate lower prices than the learning curve. 

Stewart (2012) Meta-analysis of 16 studies performed in period 2000-2011 



Pillot (2014) Pack cost for EV at production of >100 000 packs/year. Based on Lithium-
nickel-manganese-cobalt technology and Lithium-manganese spinel 
technology, which have similar cost as LFP (BCG, 2010). Not specified 
whether the numbers are prices or costs – presumably prices, because in 
more detailed figures margin and warranty are included.   

PWC (2013) Based on interviews with component manufacturers, battery suppliers and 
industry experts. Application is not specified for the battery cost. 
Presumably concern PHEV batteries which is the main subject of the report – 
standalone batteries are cheaper 

DOE (2012) Average of Reference scenario & High technology scenario. High technology 
scenario is based on a technological breakthrough that enables reaching the 
DOE storage price goals, reference scenario is a business-as-usual scenario. 
Ranges for 2015, 2020 and 2030: 405-675 2010$/kWh, 260-520 $/kWh, 150-
350 $/kWh respectively. Concerning prices; margins unknown.  

RMI (2014) Meta-analysis based on (extrapolation of) studies of Navigant, DOE and 
Bloomberg. 2012$ 

Roland Berger (2012) Costs of complete battery systems, based on value chain analysis.  

Lux Research (2012) Based on analysis cost structure Lithium-ion battery and potential cost 
innovations 

Lux Research (2014)  Evaluation of Tesla’s Gigafactory. Costs of Tesla batteries. Alleged current 
Tesla battery costs are 274 $/kWh, resulting in 196 $/kWh with claimed 30% 
cost reduction in 2017-2020. 

BCG (2010) Bottom-up analysis component costs. Interviews with different players in 
supply chain EV battery and academic experts. Margin: 13%. Range: 360-440 
2009$/kWh. Cost analysis is aimed at the Lithium-nickel-cobalt-aluminum 
battery. The Lithium-iron phosphate battery is cheaper and more suitable 
for standalone storage 

Anderman (2013) 2013 and 2016 data point are costs of Tesla battery at production volume 
25000/year and 50000/year and is including pack components, but excluding 
pack integration and gross margin. 2020 data point are costs of EV market 
batteries in general (including pack integration) where I assumed a gross 
margin of 21% (which was mentioned earlier in the report about a different 
batteries)9 

Gerssen-Gondelach & 

Faaij (2012) 

Based on learning curves (LR = 17% and LR = 9%). Start values either 800 
2010$/kWh or 1200 $/kWh. Range 2020: 200-600 $/kWh. Range 2025: 200-
300 $/kWh 

 
For example, Lux Research published two critical reports on LiBs. In the first report, they estimate the 
costs of storage to be 396 $/kWh in 2020, concluding that it was unlikely for (Plugin-Hybrid) Electric 
Vehicles (PH(EV)s) to reach mass market (Lux Research, 2012). Their second study around LiBs 
emphasized the likely overcapacity of the Gigafactory Tesla and battery manufacturer Panasonic. Lux 
Research estimates the cost reduction for a Tesla Model 3 to be $ 2800; not be enough to produce a 
low-cost EV (Lux Research, 2014). This cost reduction was based on the analysis that the cost for Tesla 
were 274 $/kWh at that time (2014). The 30% battery cost reduction that Tesla’s CEO Elon Musk 
foresees with his Gigafactory, would lead to a battery price of 196 $/kWh in 2017 (Lux Research, 2014). 
Hence, Lux Research indicates that their estimation for battery costs in 2020 was already well 
surpassed by Tesla as early as 2014, two years after the initial study. 
 

                                                           
9 Data report not fully accessible 



A second example of a negatively adjusted prediction, are the studies of Deutsche Bank. According to 
them, already in the first study the “aggressive outlook put [Deutsche Bank] well out of consensus. 
And yet, in retrospect, it has proven to be not quite aggressive enough” (Deutsche Bank, 2010, p: 19). 
Deutsche Bank observed a steep decline in battery prices in one year, forcing them to update their 
initial forecast from 650 $/kWh in 2010 and 325 $/kWh in 2020 to 450 $/kWh in 2010 and 250 $/kWh 
in 2020. This is also a striking example of the uncertainty in short term prices stressed before: the 2009 
prediction for 2010 was almost 50% higher than the actual price in 2010, while using the same sources 
(see Deutsche Bank, 2009, p:1 and Deutsche Bank, 2010, p:1). 
 
Furthermore, the IEA adjusted their forecast positively in their series of publications. In 2009, IEA 
expected the LiB price for a 150 km range EV to become around 440 $/kWh in “2020 and beyond” (IEA, 
2009a, p: 148). The forecast for 2020 became 380 $/kWh in their 2011 study, 325 $/kWh in their 2013 
study to 300 $/kWh in their 2014 study.  
  
Possibly the most remarkable adjustment came from McKinsey. In their 2010 study, they provided a 
range of 230-450 €/kWh as prediction for the 2020 battery cost. Two years later, they predicted a cost 
of 128 €/kWh; almost twice as low as the lower bound of their initial range.  
 
Comparing the McKinsey studies can provide a hypothesis for an explanation of this trend. In the first 
research, mainly incumbents were taken into account (see list of participating companies Appendix). 
A well-known thesis in innovation theory is that more radical innovation does not come from 
incumbents. The incumbents’ key strengths over time can become their key rigidities, unable to 
reinvent themselves. In this case, this could be translated in a pessimistic view of the opportunities of 
radically new ways of driving. In their second study, McKinsey took a completely different approach: 
they based their cost prediction not on the statements of incumbents, but on a bottom-up “should-
cost” model. In this way, they found out battery costs could be far lower than expected by the 
incumbents. More specifically, the traditional players could be surprised by the rapid development of 
the LiB technology. Table 2 shows that 2011 serves as the turnaround year for the trend in battery cost 
predictions; this is also the year that the LiB started to be used on a larger scale in car batteries. This 
can be theoretically supported by looking at the ‘Technology structural change’ adopted from IEA 
(2000) shown in Figure 8. 
 

Making definite statements about an explanation of the developments in decreasing cost predictions 
falls outside the scope of this research. Evidently, many alternative explanations can be given. 

Figure 8, Technology Structural change. Source: IEA (2000) 



However, there are very strong arguments that this trend is not a coincidence, and therefore it will be 
taken into account in the remainder of this research. 
 

3.1.2 Cost developments based on experience curves 

A second well-known method to monitor cost progress of a technology is the use of experience 

curves. 

3.1.2.1 Critical assessment literature learning rates Lithium-ion battery 

Several studies have been performed to establish the learning rate (LR) of the Lithium-ion battery (LiB) 

technology. These studies were all aimed at the LiB in consumer products. Mayer et al. (2012) 

compared a one-factor experience curve with a two-factor experience curve. In this research the focus 

lies on the one-factor experience curve, because it is questionable whether it is possible to forecast 

separate research, development and demonstration (RD&D) expenditures (Junginger et al., 2010). 

Using price and cumulative production data for the period 1991 – 2005, Mayer et al. (2012) found a LR 

of 14%10 for LiB in consumer products. Matteson & Williams (2015) find a significantly higher LR of 22% 

for almost the same period (1993 – 2005). Figure 11 shows they have equal price data: the data 

difference between data points is a constant factor 1.21, which is due to different base year for the US 

Dollar (Matteson & Williams use 2005$, Mayer et al. do not specify the year). However, the cumulative 

production differs between the studies (see Figure 12): Matteson & Williams use structurally higher 

cumulative production data. This is due to the fact that Matteson & Williams look at all LiBs, while 

Mayer et al. only look at high energy LiBs, which excludes high power batteries as used in many hybrid 

and plugin electric vehicles. This makes the difference in LR between the studies even more peculiar: 

with higher cumulative production and similar prices, the LR of Matteson & Williams should be lower 

than the LR of Mayer et al. Therefore, using the data provided in both articles, I reassessed both LRs 

(See Appendix A). It turned out that the LR provided by Matteson & Williams was roughly correct11, 

however the LR corresponding to the data of Mayer et al. should be 18.4%. Ironically, the R2 in this 

reassessment is similar to the R2 of their two-factor analysis12, which they deemed superior (Mayer et 

al, 2012). This is still lower than Matteson & Williams, which is due to a relatively much lower first data 

point of Mayer et al. (15 MWh against 100 MWh), which makes the number of doublings in the data 

of Mayer et al. higher than that in the data of Matteson & Williams. The (adjusted) experience curves 

can be found in Figure 9 and Figure 10. 

                                                           
10 The two-factor experience curve had a somewhat higher R2: 0.957 instead of 0.910. The LR for the general 
experience effect was found to be 8% and the LR for the R&D-based LR was 27%. 
11 In this research, a LR of 21.4% was found, which can be explained by a transformation bias since Microsoft 
Excel spreadsheet software was used here. 
12 R2 should be 0.955 and not the 0.910 that reported in Mayer et al. (2012) reported. This is almost equal to the 
R2 of the two-factor analysis of 0.957. 



 

Figure 9, adjusted experience curve based on data Mayer et al. (2012). LR = 1 – 2-0,293 = 18.4% 

 
Figure 10, Experience curve based on data Matteson & Williams (2015). LR = 1 – 2-0,345 = 21.4% 
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Figure 11, comparison price data Matteson & Williams (2015) and Mayer et al. (2012) 

 
Figure 12, Comparison between Matteson & Williams (2015) and Mayer et al. (2012) regarding cumulative production LiB 

However, the article of Matteson & Williams (2015) is not without mistakes either. Next to their own 

LR, they incorporated a LR adapted from IEA (2013). There was a misunderstanding of scientific 

discourse between IEA (2013) and Matteson & Williams (2015). From IEA (2013, p: 17): “For potential 

costs in 2020, Figure 16 looks at the projected compound annual growth of the learning rate, which 

describes the reduction in cost of batteries through economies of scale. IEA estimates a learning rate 

of 9.5%, which compares with Deutsche Bank’s more conservative 7.5%, albeit at a lower starting cost 

point. As a point of comparison, laptop batteries developed at a rate of 15% in the 1997-2012 period”. 

The IEA (2013) uses the term learning rate incorrectly here, according to the general definition (see 

e.g. Junginger et al., 2010). The 9.5% they mention is a Compound Annual Growth Rate (CAGR), which 

they also mention. This can be derived from the fact that they refer to the 7.5% of the Deutsch Bank, 

which is also a CAGR (see paragraph 3.1.1 and Deutsche Bank (2010)). Moreover, the IEA did publish a 

LR in an earlier publication (IEA, 2009b). Based on the number of shipments of small-scale LiBs and the 

price per cell, an experience curve was constructed resulting in a LR of 30%. Presumably, this 

experience curve is somewhat less accurate than the learning curves of Matteson & Williams (2015) 
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and the adjusted learning curve of Mayer et al., for several reasons. Most importantly, fewer data 

points are used. Furthermore, they chose to look at number of shipments, while the other studies 

looked at physical data. This is suboptimal, because cells can vary in size, which can have an effect on 

the learning.  

 
Figure 13, Experience curve small-scale Lithium-ion batteries. Source: IEA (2009b) 

Lastly, a study on the PR of consumer LiBs is reported by Shinoda et al. (2011). This study reports a LR 
of 30%. However, no details are given on data acquisition. Since the cumulative production in the 
experience curve of Shinoda et al. is lower than both Mayer et al. and Matteson & Williams, it could 
be that this research only looked at the Japan market – which is the focus of the article. This would be 
in violation of technological learning theory, which urges to look at global markets (e.g. van Sark 
(2010a)).  

 
Figure 14, Experience curve lithium-ion batteries. Source: Shinoda et al. (2011) 

3.1.2.2 Experience curve on (Plugin-Hybrid) Electric Vehicles  

The previously mentioned studies about LiBs were all based on LiBs in consumer electronics. The 

studies made the assumption that the results can be translated to batteries for (PH)EVs. To validate 

this assumption, an experience curve for LiBs in (PH)EVs was constructed (see Figure 15). The resulting 

LR was 23.2% with a R2 of 0.8973.  



 
Figure 15, Experience curve Lithium-ion battery technology for PH(EV)s. Sources: DOE (2014), Pillot (2014) Lux Research 
(2014), Pontes (2015) 

The data was validated eyeballing an experience curve provided by Bloomberg (2014a). In Figure 16, it 
can be observed that according to Bloomberg, the price of EV LiB fell 22.5% with every doubling. This 
is comparable with our results presented in Figure 12.. 
 

 
Figure 16, adjusted experience curve Bloomberg (2014a). Blue vertical lines indicate a doubling, starting from 8000 MWh 

To translate the determined LRs to a future cost, the relatively conservative prediction on battery 
demand for EVs of Pillot (2014) from Avicenne Energy was used (see Figure 4, Figure 17).  
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Figure 17, projection battery demand for electric vehicles. Note: only Lithium-ion batteries for PHEVs and EVs were taken 
into account in this research. Source: Pillot (2014) 

Table 4 shows an overview of the found LRs and the resulting 2020 price based on Pillot (2014). Note 

that when using the 2014 LiB cost of 205 €/kWh provided by Lux Research (2014) as starting point, all 

LRs result in a 2020 cost prediction that lie below the lowest 2020 prediction found in literature: 128,26 

€/kWh (McKinsey, 2012). Using Bloomberg’s battery price index of 2014 (425 €/kWh), 2020 prices 

would become 150-250 €/kWh. Still, these prices lie within the lower bound of literature cost 

predictions.  

Table 4, Overview learning rates and resulting 2020 LiB cost predictions based on projection Pillot (2014). 

Source LR Resulting 2020 cost based 
on Lux, 2014 (€/kWh) 

Resulting 2020 price based on 
Bloomberg, 2014 (€/kWh) 

Matteson & Williams (2015) 22% 97 202 

Mayer et al. (2012) 18,4% 112 231 

IEA (2009b) 30% 70 146 

Shinoda et al. (2011) 30% 70 146 

Bloomberg (2014a) 22,5% 96 198 

This research 23,2% 93 193 

 



 
 
The battery price index used by Bloomberg encompasses a middle of the pack price. This seems also 
the case for the studies found in literature. For example, many studies give ranges even for the prices 
at the time of these studies. An argument could also be made to incorporate the lowest prices of 
ranges, instead of the average price: the Best Available Technology production cost (Sark, et al., 
2010b).  
 
There are several indications for the fact that the current prices are lower than the price index of 
Bloomberg. Next to Lux Research (2014), there are several other sources that claim a comparable price. 
For example, the difference between a Tesla with a 85 kWh battery capacity and one with a 60 kWh 
battery capacity, excluding taxes, is € 6320,- (Tesla Motors, 2015b). This corresponds to 253 €/kWh. 
Nissan offered owners of their EV, the Nissan Leaf, a replacement battery for 204 €/kWh 
(MyNissanLEAF.com, 2013). Anderman (2013) reported a battery price of 266 €/kWh, including a profit 
margin of 21%.  
 
On the other hand, basing cost projections solely on experience curves may also be too optimistic (and 
unrealistic, if you do not take into account a range of LRs) (see EXP CURVE book, 2010). A first reason 
is that the cost development of LiBs for (PH)EVs may have benefited from a spillover effect from 
knowledge on LiBs for consumer electronics. This effect may subdue in later stages of development. A 
second reason to handle the found LR with care is the scarcity of data on the cost development of EV. 
In this research, the experience curve is largely based on the research and development team of DOE13. 
Despite the fact that this is a reliable source, the experience curve is vulnerable for the possibility of 
the influence of chance on the learning trajectory of DOE. The LR found was confirmed by Bloomberg 
(2014a), who based their experience curve on prices. However, a serious theoretical remark can be 
made: there is no linear relation between prices and costs (see Figure 18). Therefore, it is 
recommended to accompany an experience curve based on prices with analysis of the market (Sark, 
et al., 2010a). In this case, it is very well possible that the EV battery market experiences a shakeout, 
which would lead to an overestimation of the LR. Mean reason to believe this, is the current 
overcapacity of LiB production. According to Anderman (2013), already in the end of 2013 there was 
capacity of more than 23 GWh, while only 3 GWh was produced. The 23 GWh annual LiB demand is 
not expected to be reached before 2018 (Pillot, 2014). With this current overcapacity, it seems 

                                                           
13 Regarding cumulative production, the worldwide amount is taken. Therefore the resulting curve can still be 
considered an experience curve, instead of a learning curve, which would be appropriate for an analysis of a 
singular company. 
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reasonable to think different producers are competing on price (Bloomberg, 2014b). And more 
practically: if the needed capacity for producing batteries is already installed, this leaves less room for 
cost reduction by technological learning. 14  
 

 
Figure 18, Price-cost relations for a new product. Source: Boston Consulting Group (1968). Adapted from van Sark et al. 
(2010b) 

Since the literature predicts LiB prices to be around 250 €/kWh, but experience curves indicate costs 

around 150 €/kWh, for the remainder of this research the base cost of Lithium-ion batteries in 2020 

will be assumed to be 200 €/kWh. 

3.1.2.3 Future cost reductions 

As recommended by van Sark et al. (2010a), in this research the experience curves are supported by 
bottom-up engineering studies. The studies in the literature study often were bottom-up engineering 
studies. For example, DOE (2014) predicts no change is possible in their current production costs of 
thermal management, pack integration, and packaging & transportation. However, they aim for a 50% 
cost reduction in manufacturing and in material costs, resulting in a target of 132 $/kWh compared to 
their current costs of 212 $/kWh. A more detailed analysis can be adopted from McKinsey (2012), see 
Figure 19. Regarding “Manufacturing and overhead improvements”, McKinsey estimated 23 percent 
of the 2011 costs could be reduced by manufacturing at scale; mostly in the period 2011-2015. Through 
economies of scale, 60-70% can be saved on the per unit labor costs. Furthermore, higher unit sales 
provide the opportunity to spread fixed costs (e.g. Research & Development) over more products, 
resulting in a possible 30-50% costs reduction in overhead. Larger-scale production indeed seems to 
take place: in the end of 2013 there was already an installed (PH)EV LiB production capacity of 23 
GWh/year (Anderman, 2013) – the cumulative production including 2014 is 16 GWh. Next, McKinsey 
estimated around 18% of the 2011 costs could be reduced by “Material and component cost 
reductions”. 60% of this reduction is represented by margin compression; in 2011 the margins of 
component suppliers was 20-40%, while typical margins in the automotive suppliers industry are more 
than twice as low. The rest of the savings in Material and component cost can be made by 
manufacturing-productivity improvements. For example, manufacturers can move their business to 
countries with lower factor costs. Finally, “Technology improvements” can reduce 2011 battery costs 
with 30%. An example is the so-called “layered-layered” structures; the layering of an electronically 

                                                           
14 On the other hand, Van Sark et al. (2010) emphasize that plants undergo significant learning in the first years 
of operation. 



inactive component with an electronically active component. Reportedly, this could increase battery 
capacity by 40 percent. 

 
Figure 19, McKinsey analysis of potential cost reductions 

3.1.2.4 EV batteries versus stationary batteries 

While the EV battery market may be an immature market, the stationary battery market is a premature 
market – especially in Europe. This is reflected in the extreme spread in current prices of stationary 
batteries. In Germany, batteries are sold in a niche market as a luxury product. Costs are € 17,000 for 
a  7.1 kWh (usable capacity) battery, a whopping 2394 €/kWh (Solaranlagen-Portal, 2015). In the 
American market, batteries are also sold because they are a necessity for remote locations rather than 
a luxury product. This is reflected in the price which is five times lower than the German price: 480 
€/kWh (Balqon, 2015). Reportedly, one can even order 10 kWh batteries for $1500 + 15 $/month for 
10 years. This relates to Net Present Costs of 265 €/kWh15 (Shahan, 2014). Furthermore, Tesla plans to 
use its Gigafactory to also produce stationary batteries (Bloomberg, 2014c), which could further 
decrease the price. 
 
Due to this extreme variation in stationary battery prices, in this research the assumption is made that 
stationary battery prices are comparable to EV battery prices. Although batteries are modular 
products, there is some scaling effect regarding the assembly of battery cells into a battery pack. This 
would result in a somewhat higher per kWh cost for stationary batteries as compared to EV batteries, 
because of the larger size of EV batteries. On the other hand, stationary batteries have lower 
performance requirements. Regarding power rating, EV batteries need a multiple of the required 
power rating for stationary batteries. The power rating can also be translated into cost. Related, the 
heat generation in EV batteries is much higher than in stationary batteries. Therefore, EV batteries 
have much higher cooling requirements.  
 
All in all, it seems reasonable to assume similar costs for EV batteries and stationary batteries. This was 
also confirmed by battery experts from Vito (De Beuckere, personal conversation). However, in reality 
it may take some time before these costs are realized for stationary batteries, just like it took some 
time for EV batteries to surpass the cost of consumer batteries.  

                                                           
15 Using a discount rate of 6% 



 

3.2 Determining optimal storage size 
2. What is the relation between increasing storage size and marginal benefits of storage for 

different types of PV households and how would that influence PV self-consumption? 
 
From the 77 households, 67 had a business case for a battery (i.e. a positive Net Present Value (NPV) 
was found). The optimal sizes for a battery ranged from 1 to 7 kWh, with an average of 3.18 kWh and 
a standard deviation of 1.23 kWh. Looking at households with a positive NPV for a battery, Figure 20 
shows the distribution of optimal sizes of the batteries is somewhat right skewed, with 3 as modus.  
 

 
Figure 20, overview of occurrence of various optimal storage sizes.  

The NPVs ranged from 33 € to 1704 €, with an average of 699 € with a standard deviation of 278. Not 
surprisingly, average NPV increases with increasing optimal storage size (see Figure 21); households 
with larger optimal batteries have more overproduction, hence higher benefits of storage. However, 
the relation is not one on one: the household with an optimal storage size of 5 kWh seems to have a 
relatively high NPV. Hence, individual profiles play a role: it is most optimal when the full battery 
capacity is used as many times as possible. This was confirmed by examining the amount of days that 
the full capacity of the battery was used: 120 days for the household with a battery of 5.5 kWh, 132 
days for the household with a battery of 6.5 kWh, but 166 days for the household with a battery of 5 
kWh. 
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Figure 21, relation between Optimal battery size and NPV. There were no households with an optimal size of 6 kWh, so 
this value is left out of graph. 

Figure 22 shows the relationship between increasing the storage size and the NPV for four individual 

households. Although individual differences are apparent, all curves show the same pattern: steepest 

increase in NPV for the lowest storage sizes, diminishing increase until the maximum is reached, and 

subsequently a gradual decline in NPV. Hence, Marginal benefits are declining with increasing storage 

size (see Figure 23).  

 
Figure 22, Relation storage size and Net Present Value of adding a battery. Green dots represent maximum values (optimal 
storage sizes)  
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Figure 23, Marginal Benefits curves and Marginal Cost curve. Optimal storage sizes can be found Marginal Costs = Marginal 
benefits, hence the intersect between the cost curve and the benefit curves 

Instead of opting for the battery with the highest NPV, one could also opt for a larger battery. This 
would result in a somewhat lower NPV. However, when the difference between the NPV of the optimal 
size and the NPV of a larger size is small, this could be an interesting investment opportunity for an 
external party. For example, consider the following situation. For a prosumer, the NPV of the battery 
decreases with 100 € when it is sized 2 kWh above the optimal size. For a net operator, there would 
be a business case for storage at investment costs of 150 €/kWh, while battery costs are 200 €/kWh. 
For both parties individually, it would be irrational to invest in storage capacity. However, when they 
would both pay half of the additional storage costs and place the battery at that prosumer, both would 
have a business case for the additional storage. Therefore, it is interesting to analyze what these 
decreases in NPV with additional storage for a prosumer would be. The very low slopes after the peak 
(Figure 22) already indicate that these decreases can be very small.  
 
Table 5 elaborates on this. In this case, costs were defined as the decrease in NPV compared to the 
situation with the optimal battery size. Table 5 shows these costs for various storage sizes, averaged 
over all households with a business case for battery storage. If all batteries were enlarged with 4 kWh 
(so on average more than doubled), it would costs an external party 119 €/kWh to compensate for the 
NPV loss of a prosumer. However, it makes more economical sense to look at the incremental storage 
costs: an external party could increase the storage sizes of this neighborhood until the incremental 
costs are equal to the value the external party attaches to storage capacity. On average, the ‘costs’ of 
increasing storage sizes until 1.5 kWh stay below 100 €/kWh. Considering that the average optimal 
storage size is 3.18 kWh, this already would be a very significant increase. 
 
Table 5, Economic effect of increasing storage size above optimal size. Averaged over all households with a business case 
for battery storage 

Expansion above to 
optimal storage size 
(kWh) 

Average decrease 
NPV (€) 

‘Storage costs’ external 
party (€/kWh) 

Incremental ‘storage costs’ 

(∆€
𝒌𝑾𝒉⁄ ) 

0.5 14 27 27 

1 46 46 65 

1.5 94 63 97 

2 155 77 121 

2.5 225 90 140 
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3 302 101 155 

3.5 385 110 165 

4 477 119 185 

 
To answer the research question, linear regression was performed. Variables taken into account were 
Yearly Overproduction, Yearly Net metered consumption, and Watt Peak. The best predictor of the 
optimal storage size is Yearly Overproduction, with an adjusted R2 of 0.698 (see Figure 24). This is not 
surprising, because overproduction is direct input for the battery, and therefore determines the 
benefits of the battery. Still, 30 percent of the variance in optimal storage size cannot be explained by 
yearly overproduction. This can be explained by the individual differences between households 
regarding the specific profile. Households with a constant overproduction of 4 kWh would have a very 
different optimal storage size than households with 0 kWh oversupply on half of the days and 8 kWh 
oversupply on the other half of the days, despite having the same yearly oversupply. 
 

 
Figure 24, relation between yearly overproduction and corresponding optimal storage size of a prosumer. Yearly 
overproduction is defined as a negative. Adjusted R2: 0.742 

In reality, the yearly overproduction mostly will not be available. Watt Peak would be a more practical 
predictor for optimal storage size. Figure 25 shows the relation between Watt Peak and optimal 
storage size. Watt Peak predicts optimal storage size also reasonably well, with an adjusted R2 of 0.484. 
Comparing to yearly overproduction, a larger part of the optimal storage size remains unexplained. 
This is due to the fact that consumption is not taken into account. If one household has a PV system 
with the same Watt Peak as a second household, but much less electricity consumption, this household 
will have more overproduction and therefore have a larger optimal size. Therefore, it is reasonable to 
add a second factor to the regression model: Net metered consumption. Like Watt Peak, this variable 
is readily available for most households. Using multiple regression analysis, the regression model 
would become16: 
 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑖𝑧𝑒 (𝑘𝑊ℎ) =  0.45 − 2.47 ∗  10−4 ∗ 𝑁𝑒𝑡 𝑀𝑒𝑡𝑒𝑟𝑒𝑑 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (
𝑘𝑊ℎ

𝑦𝑒𝑎𝑟
) + 1.24 ∗

𝑃𝑉 𝑆𝑦𝑠𝑡𝑒𝑚 𝑆𝑖𝑧𝑒 (𝑘𝑊𝑝𝑒𝑎𝑘)  

 

 Value Standard Error 

Intercept 0.45 0.42 

                                                           
16 𝑘𝑊𝑝𝑒𝑎𝑘 is now defined as a positive number 
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Net Metered Consumption 2.47 ∗  10−4 9.7 ∗  10−5 

PV System Size 1.24 0.16 

 
The predictions based on this regression model are plotted against the actual optimal storage sizes in 
Figure 26. The adjusted R2 of this model is 0.527. Evidently, this regression model makes no physical 
sense. However, it does make logical sense: the larger the PV installation, the higher the optimal size. 
And the lower the net metered consumption, the higher the optimal storage size. Low net metered 
consumption relates to high overproduction, which makes larger storage systems more attractive.  
 

 
Figure 25, relation between Watt Peak and corresponding Optimal storage size of a prosumer. Watt Peak is defined as a 
negative number. Adjusted R2 = 0.481 

    

 
Figure 26, Model Predictions of Optimal Size (x-axis) versus Optimal Size (y-axis) 
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3.3 Simulation Optimal Batteries 

3.3.1 Overproduction 

The overproduction that is covered by the battery for individual households range from 34.3% till 

73.7%. On average, a battery covers 53.8% of the overproduction of a household, with a standard 

deviation of 8.5%. Smaller batteries cover a larger part of their specific overproduction than larger 

batteries; there is a correlation of -0.24 between Optimal battery size and percentage of 

overproduction covered. This seems counterintuitive, however it is due to the high absolute 

overproduction on very sunny days for households with large PV systems.  

Since the initial self-consumption without batteries of the households is not known, the effect on self-

consumption cannot be determined. Figure 27 shows what an 53,8% decrease in overproduction 

would mean for various amounts of self-consumption. If the initial average self-consumption of PV 

electricity within the neighborhood was 30%, the optimally sized batteries would increase this with 

130%. Hence, the new average self-consumption would be 69%. Evidently, the impact on self-

consumption is much higher for low initial values of self-consumption. 

 
Figure 27, increase of self-consumption for various initial self-consumptions 

 

3.3.2 Peak shaving 

Table 6 shows information on production and consumption peaks for a system without batteries, and 
a system where PV systems are equipped with optimally sized batteries. When comparing production 
and consumption, it is notable that the overall yearly production and consumption peaks are 
somewhat equivalent in both system configurations: 111,4 kW and 107,5 kW for the system without 
batteries, 105,1 kW and 96,5 kW for the neighborhood with batteries. 
 
A next important notion that can be made from Table 6, is that it is really important at which indicator 

one looks. Regarding consumption, on average the optimally sized batteries have a substantial impact 

on the peaks. However, it makes more sense to look at the overall peak of the entire year. To prevent 

brown- or blackouts the yearly peaks are more relevant the electricity system is designed to be able to 

have the capacity to cover all demand at all time. Looking at the yearly consumption peak, impact of 

the battery is much smaller; just 5,7%. The same holds for the production peaks. Overall, many of these 

peaks are shaved in a system with batteries: on average the peaks lie more than 50% lower than in a 
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system without batteries. However, the overall maximum is just 10,2% lower in a system with 

batteries. This is due to the nature of optimization on consumer economics; the batteries are aimed 

to obtain as much value for money as possible. On that one day with extreme overproduction, many 

batteries will be fully charged in an early stage of the day. When the batteries are fully charged, 

overproduction will be exported to the grid resulting is similar potential production peaks as a system 

without batteries. Overall, it can be concluded that batteries have a substantial impact to the stability 

of the system; on many days the consumption and production peaks are much lower in a system with 

batteries. However, the impact of having batteries on the needed capacity of the system is just 

marginal. 

Table 6, overview consumption and production peaks for neighborhood with and without batteries 

Daily peak   No Batteries (kW) Batteries (kW) Difference 

Consumption (average) 70,7 57,5 -18,7% 

Consumption (max) 111,4 105,1 -5,7% 

Production (average) -61,5 -29,7 -51,7% 

Production (max) -107,5 -96,5 -10,2% 

 

3.3.3 Load shifting 

The average consumption in the four peak hours for the neighborhood without batteries was 203 kWh. 
When the PV systems were equipped with optimally sized batteries, this average peak load was 
reduced to 158 kWh: a decrease of 22,2%. This means that for this neighborhood, over an entire year 
16,4 MWh of load could be shifted from the peak hours.  
 
The total consumption17 of the neighborhood for one year is 256 MWh. So on average, per four hours 
117 kWh is consumed. Hence, incorporating batteries shifts the peak load substantially; decreasing the 
difference between peak load and average load by more than half. 
 

3.3.4 Battery degradation indicators 

The indicators of battery degradation were examined: average Depth of discharge (DoD), average State 

of Charge (SoC) and total energy throughput. 

The average DoD over all household and the entire year was 52,9%. The occurrence of various DoDs 

shows a typical double peak profile, most often the battery is either fully used, or hardly used. Figure 

28 shows a distribution of various categories of average DoD on for all households with a battery. For 

31.7% of the days, the battery capacity was used for less than 20%. On the other hand, on 28.4% of 

the days, the full capacity of the battery was used.  This is not surprising, as the battery size was 

economically optimized. This could be a problem for battery technologies that cannot handle deep 

(dis)charges well.  

                                                           
17 Consumption from grid. So excluding self-produced directly consumed PV electricity 



 
Figure 28, occurrence of various categories of average Depth of Discharge.  

The average SOC varied per battery; from 3,7% to 41,0%. On average, the households had a battery 

with an average SOC of 22,2% (standard deviation 8,6%). Larger batteries had a higher average SOC: a 

correlation of 0,51 between storage size and average state of charge was found. These are rather low 

average SOCs, which is positive for the battery lifetime. However, one should notice that these low 

values are mainly caused by the fact that batteries are empty for large part of the year. 

Possibly the best indicator for battery degradation is the total energy throughput. On average, the 

optimally sized batteries had an total energy throughput of 1441 kWh in one year. The total energy 

throughput can be predicted accurately from the optimal size, as can be seen in Figure 29; there is a 

correlation of 0,98. This is not surprising, since the optimal size was determined by the amount 

electricity that could be used from a battery of various sizes.  

 
Figure 29, relation between optimal storage size and total energy throughput 

A second notion that can be made from Figure 28 is that also a degraded battery is able to cover a 

large part of the ‘demand’. Based on manufacturer warranties, industry targets and simulations, 

Heymans et al. (2014) predict that EV batteries would lose 20% of their capacity after 8 years, and 
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would no longer be used in vehicles. If the same would be true for PV integrated batteries, the battery 

with 80% of its capacity would still be able to cover 86.4% of demand that the initial battery would. A 

clear empirical relation between capacity loss and functionality loss was found: 

1 − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝑙𝑜𝑠𝑠 (%) = 0,6385 ∗ ln(1 − 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑙𝑜𝑠𝑠 (%)) + 1,0038 

 

 

 

3.4 Simulation precharged battery 
As mentioned before, residential energy storage appears to be a natural partner for peak shaving. 
Electricity is stored during daytime, and can be used after daytime when sunlight is not available; 
approximately at the same time as when the peaks occur. In reality, this is only true to some extent: 
when there is sufficient overproduction of solar electricity. As we have seen in the previous 
paragraphs, and  This can have economic value regarding the reduced deployment of power plants 
with high marginal cost (load shifting, 3.3.3). However, it has no value regarding the prevention of 
investment cost (peak shaving, 3.3.2). Therefore,  
 

3.4.1 Peak Shaving and load shifting 

Figure 30 shows the development of the neighborhood’s aggregated consumption peaks throughout 
the year. In all graphs, it can be observed that these peaks are higher in winter than in summer. In the 
optimized ‘Dumb’ batteries, this trend is most pronounced. Peaks of the ‘Dumb’ battery coincide with 
peaks of the base scenario in the winter, and this gradually alters to match the graph of the ‘Smarter’ 
battery in the summer. 
 

y = 0,6385ln(x) + 1,0038
R² = 0,9995
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Figure 30, Neighborhood daily consumption peaks from November 2013 until September 2014. For illustrative purposes, 
these peaks are displayed as a continuous graph – in reality the peaks are discrete points. 

As can be observed in Figure 30, peaks of electricity use occur in winter, and it is unrealistic that enough 
PV electricity will be produced on winter days to prevent peaks. Hence, the same back-up capacity and 
grid capacity would have to be built to maintain the current electricity requirements. This was reflected 
in the overall peak of consumption of the neighborhood without batteries, and the neighborhood with 
non-controlled batteries as described in paragraph 3.3.2. 
 
To illustrate this, a day with substantial overproduction (30 April 2014, Figure 32, Cumulative electricity 
demand of neighborhood for various configurations of)) and a day with marginal overproduction (5 
February 2014, Figure 31, Cumulative electricity demand of neighborhood for various configurations 
of 5 February 2014.) are analyzed in more detail. The neighborhood’s aggregate grid use is shown. On 
30 April, there is substantial overproduction. When comparing the situation with a battery and without 
a battery, some peak shaving can be observed. However, on 5 February there is much less 
overproduction. On this day, the patterns of the neighborhood without batteries and the 
neighborhood with the non-controlled batteries were very equal. Also with the storage capacity, the 
peak demand from the grid is higher than the peak on the day before without storage capacity.  
 
To make optimal use of the solar batteries, these batteries have to be precharged.  When it is ensured 
that all batteries are fully charged at 17 o’clock, the effect of the storage capacity on peak shaving is 
(1) much larger and (2) not dependent on overproduction (see Figure 31, Cumulative electricity 
demand of neighborhood for various configurations of 5 February 2014. and Figure 32, Cumulative 
electricity demand of neighborhood for various configurations of). Table 7 shows the resulting impact 
on the four hour peak and the peak electricity demand. The neighborhood with precharged batteries 
have 39% lower four hour peak load than the neighborhood without batteries and 21% lower than the 
neighborhood with non-controlled batteries. The peak load is almost entirely shifted and is just slightly 
higher than the average four hour load over the whole year (117 kWh). The peak electricity demand is 
decreased to 75,2 kW. So in contrast to the non-controlled batteries, this is a substantial difference to 
the situation without batteries (-33%, compared to -6% when batteries are not precharged). The load 
duration curves of Figure 33 provide more insight in this. Where the neighborhood without batteries 
and with non-controlled batteries start at similar demands, the curve of precharged batteries start 
substantially lower. From 2000 hours, the curve of the system with precharged batteries lies higher 
than the curve of the non-controlled batteries. This is due to the many hours of precharging, which 
results in a slightly higher electricity demand during from 10 till 17. 
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Table 7, comparison between neighborhood without batteries, with non-controlled batteries, and with precharged 
batteries on four hour peak load, and peak power 

 No batteries Batteries (no control) Batteries (precharged) 

Average 4 hour peak (kWh) 203 157 124 

Peak power (kW) 111 105 75,2 

 
 
 
 
 



 

 

 

 

 
Figure 31, Cumulative electricity demand of neighborhood for various configurations of 5 February 2014. 
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Figure 32, Cumulative electricity demand of neighborhood for various configurations of 
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Figure 33, Load duration curves for neighborhood without batteries, with non-controlled batteries, and with precharged batteries. Data from 297 between November 2013 and September 
2014



 

 

 

 
 
 



 

 

 
 

3.4.2 Battery degradation indicators 

Table 8, overview battery degradation indicators for optimally sized batteries with (a) no control and 
(b) prechargingTable 8 shows the performance on battery degradation indicators when the battery is 
precharged to meet the peak demand.  Not surprisingly, when incorporating precharging, the batteries 
perform worse on all battery degradation indicators. Note that the batteries are programmed to meet 
the entire evening demand. With an average optimal storage size of 3,17 kWh, many prosumers need 
the entire battery capacity to cover for their evening demand 
 
Table 8, overview battery degradation indicators for optimally sized batteries with (a) no control and (b) precharging 

 No control Precharging 

Average DoD 53% 85% 

Average SoC 22% 30% 

Total energy throughput (kWh/year) 1441 2074 

 

3.5 Sensitivity analysis 
Three sensitivity analyses were performed. Figure 34 shows the impact of the various input parameters 

on the average optimal storage size (research question 2). Note, this is the impact on the average of 

the entire neighborhood, so also the households with an optimal storage size of 0 kWh taken into 

account.18 The positive impact on optimal storage size taken only the households with a business case 

for batteries into account, would be somewhat higher. 

It can be concluded that the parameters with the largest impact on the optimal storage size, are the 
life time of the battery, the cost of the battery and the benefits of storage (=ΔElectricity price). All 
these parameters are quite uncertain. The life time of the battery is subject of current scientific debate 
(e.g. Barré et al. (2013)). To increase complexity for the residential battery, this debate is mostly 
focused at car batteries. These batteries operate under different circumstances than residential 
batteries. Most importantly, the operating temperature of residential batteries will be lower due to 
the lower power requirements. This would be positive for the life time of a residential battery as 
compared to a car battery. Furthermore, the lifetime of the battery is often expressed as the time a 
battery can meet certain performance requirements (i.e. 80% of initial capacity). However, as was 
shown in paragraph 3.3.4, the functionality loss of a residential battery would still be limited. The 
uncertainty in investment costs of the batteries was extensively reviewed in paragraph 3.1. An 
important uncertain factor here is the development of demand for batteries. This can be influence by 
various factors, e.g. EV charging infrastructure, oil price and policy support. Lastly, the benefits of 
storage is completely dependent on future policy decisions. Mostly the possible abolishment of net 
metering, but also for example incorporating a more advanced dynamic pricing regime. Substantial 
difference between the retail price and the feed-in tariff is needed: when this difference is €0,08 the 
average optimal storage size decreases with almost 70%.  
 

                                                           
18 Reason to do the analysis this way, was that otherwise an increase from optimal storage size for a specific 
household from 0 kWh to 0,5 kWh would be negative for the average of the neighborhood. 



 

 

 
Figure 34, Sensitivity analysis on average optimal storage size 

The next step is to look at the impact of these changed optimal storage sizes on the results of research 
question 3 and 4. The impact on peak electricity demand of the system with no control is very small. 
This is logical, since the impact of the non-controlled batteries on the peak electricity demand without 
batteries was also limited. The same holds, to a lesser extent, for the impact on the four hour peak of 
the non-controlled batteries. Smaller battery sizes have a larger impact on the peak electricity demand 
and peak four hour load of the neighborhood with precharged batteries. The impact on for hour peak 
is somewhat robust: when the optimal sizes of the batteries decrease to 44% of the initial optimal 
sizes, the four hour peak is 13,4% higher than the initial four hour peak. This is still much lower than 
for the neighborhood without batteries; 96 kWh versus 158 kWh. The peak electricity demand of the 
neighborhood with precharged batteries is 84 kW when the optimal sizes are decreased to 44% of the 
initial optimal sizes, and 96 kW when the batteries are decreased to 72% of the initial optimal sizes 
(compare: 111 kW in the neighborhood without batteries). The relationship between optimal size and 
Peak demand has a peculiar shape; surprisingly, when the optimal sizes are increased further, the peak 
demand increases. This is due to the fact that more precharging is possible with larger batteries. 
Apparently, the precharging during the day –which is programmed to meet the evening demand– 
results in higher peaks than the evening peaks.  
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Figure 35, Impact of storage size on peak electricity demand and four hour peak load of neighborhood with (a) non-
controlled batteries and (b) precharged batteries 

Lastly, a special sensitivity analysis was performed. Using solar irradiation data, the input data for this 
research was transformed to match a neighborhood of different self-sufficiencies. In Figure 36, the 
value of 1 on the x-axis represents a self-sufficient neighborhood that produces as much electricity as 
it used. With abolishment of net metering, the average optimal size of this neighborhood would be 5,1 
kWh. Note that for self-sufficient households with high absolute consumption and production (e.g. 
households with electric heating or an electric car), the optimal size can be much higher. One 
household in the investigated neighborhood would have an optimal battery size of 10 kWh.  
 

 
Figure 36, impact of varying self-sufficiency of neighborhood on main results research question 2-5
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3.6 Social acceptance 
In the course “Consultancy Project”, a survey (N = 168) was performed on different residents of the 
Netherlands about characteristics of Domestic Energy Storage (DES). In this section, the data of 
perceived importance and concerns is analyzed. 
 

3.6.1 Importance 

When investigating the importance respondents attach to different characteristics, a general 
conclusion can be made that all characteristics were, on average, deemed important. Space used was 
evaluated as the least important characteristic, still on average scoring 3,41 on a 5-point scale. Product 
lifetime and Safety were considered most important, followed by Maintenance friendliness, 
Environmental impact, Noise level and User friendliness. After Space used, the least important 
characteristics are Structural change and Grid independence. However also notable regarding Grid 
independence; while on average it scored relatively low, the standard deviation was the highest. This 
means there is more controversy about this variable: some respondents deem it not that important, 
while others think it is very important. This is also reflected when respondents are asked to rank a top 
three of most important characteristics: 11,9% of the respondents see grid independence as the most 
important characteristic; only Safety, Product lifetime and Noise level score higher (see Appendix A). 
 

  Mean Std. Deviation 

Space used 3,41 0,94 

Structural change 3,58 0,94 

Grid independence 3,61 1,13 

User friendliness 3,95 0,75 

Noise level 4,07 0,95 

Environmental impact 4,16 0,88 

Maintenance friendliness 4,19 0,73 

Product lifetime 4,44 0,67 

Safety 4,45 0,71 

Table 9, Mean importance and standard deviation attached to different characteristics in survey by 168 respondents on a 
5-points scale. 

 
Figure 37, average importance attached to different characteristics regarding Domestic Energy Storage. 169 respondents 
rated each characteristic on a 5-point scale. 
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To test whether the differences between the importance attached to characteristics were significant, 
a Friedman ANOVA was executed. The differences were significant: χ2 (8) = 304,177, p < 0,01. To 
determine which characteristics differed statistically significant, Wilcoxon Signed-Rank Test was 
executed. Effect sizes (Corder & Foreman, 2009) and significances are shown in Table 10. 27 of the 36 
comparisons were statistically significant (p<0,01), and effect sizes were high: 24 scored above medium 
(=0,3) and 12 even scored above high (=0,5) (Corder & Foreman, 2009). 
 

  

Noise Structure UserFr Lifetime Mainten Evironm Safety Indep Space 

Noise 
 

0,41* 0,13 0,35* 0,11 0,07 0,35* 0,30* 0,52* 

Structure   0,34* 0,66* 0,55* 0,42* 0,67* 0,03 0,15 

UserFr    0,52* 0,30* 0,22 0,51* 0,30* 0,46* 

Lifetime     0,39* 0,30* 0,02 0,58* 0,72* 

Mainten      0,03 0,36* 0,42* 0,62* 

Evironm       0,32* 0,38* 0,54* 

Safety        0,56* 0,73* 

Indep         0,17 
Space                   

Table 10, Effect sizes of differences between characteristics. To determine the direction of the difference, see Table 9. 
Asterisks (*) indicate whether differences are statistically significant (after Bonferroni correction, p <0,01). 

 
Next step was to determine whether PV owners differ from non-PV owners regarding the importance 
they attached to different characteristics. This is relevant, because these represents two different 
target markets, and the attractiveness of each market depends on policy. 
 
In the survey, it was asked whether respondents own a PV system. This resulted in two independent 
groups: PV owners (n=112) and non-PV owners (n=53). The differences regarding importance attached 
to different characteristics are visually represented in Figure 38. In general, PV owners attached more 
importance to characteristics than non-PV owners. Specifically, PV owners attached more importance 
than Non-PV owners to the characteristics Noise level, Product life time, Maintenance friendliness, 
Environmental impact, Grid independence and Space used. Non-PV owners attached more importance 
to Structural change and User friendliness. There is no notable difference regarding Safety.  
 



 

 

 

Figure 38, Differences between PV owners and non-PV owners in importance attached to different characteristics of DES. 

 
To determine whether the observed differences were significant, Mann-Whitney U-tests were 
executed. The results are shown in Table 11. Not surprisingly, PV owners attached significantly more 
importance to environmental impact of a storage system (p<0,01). Furthermore, PV owners found grid 
independence significantly more important (p<0,01). There were non-significant trends (0,05<p<0,10) 
for three characteristics. PV owners seemed to attach more importance to Maintenance friendliness 
(p=0,084) and Product lifetime (p=0,057). There is only one characteristics that seems to be regarded 
as more important by non-PV owners as compared to PV owners: User friendliness (p=0,071).   
 

  Noise Structure UserFr Lifetime Mainten Evironm Safety Indep Space 

Mann-Whitney 
U 2893,5 2664,5 2514,5 2486,0 2526,0 2219,0 2714,0 2197,5 2920,5 

Z -0,280 -1,118 -1,809 -1,906 -1,731 -2,819 -1,004 -2,785 -0,176 

p (2-tailed) 
0,779 0,263 0,071 0,057 0,084 0,005 0,315 0,005 0,860 

Table 11, outcome Mann-Whitney U-tests on differences between PV owners (n=112) and non-PV owners (n=53) regarding 
importance attached to different characteristics 

3.6.2 Concerns 

As expected, the concerns respondents have are different from the characteristics they found 
important. 26,2% of the respondents expected most problems from Structural change and Product 
lifetime. These characteristics were included in 58,9% and 53,0% respectively of the respondents’ top 
three. 45,2% included Space used in their top three, and 35,7% included Noise level. Fewer problems 
were expected with User friendliness, Maintenance friendliness, Environmental impact, Safety and Grid 
independence: respectively 19,0%, 23,8%, 23,2%, 19,0% and 22,0% included these characteristics in 
their top three. Figure 39 gives an overview of how many times characteristics are included in the top 
three of a respondent. 
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Figure 39, top three of problems expected with domestic energy storage by 168 respondents 

To determine whether the differences between the amounts of problems expected with the 
characteristics were significant, a Friedman ANOVA was executed. The differences were significant: χ2 
(8) = 144,672, p < 0,01. To determine which characteristics differed statistically significant, Wilcoxon 
Signed-Rank Test was executed. Effect sizes (Corder & Foreman, 2009) and significance are shown in 
Table 12. 18 of the 36 comparisons were statistically significant (p<0,05), and effect sizes were 
moderate: most effect sizes were around 0,3. Structural change and Product lifetime show bigger 
differences with the other characteristics, which is in line with the visual representation of Figure 39.  
 

 Noise Structure UserFr Lifetime Mainten Evironm Safety Indep Space 

Noise 
 

0,31* 0,23 0,29* 0,20 0,18 0,22 0,15 0,10 

Structure   0,49* 0,00 0,45* 0,46* 0,49* 0,41* 0,26** 

UserFr    0,50* 0,04 0,05 0,01 0,09 0,32* 

Lifetime     0,46* 0,49* 0,50* 0,41* 0,21 

Mainten      0,00 0,02 0,05 0,30* 

Evironm       0,03 0,05 0,30* 

Safety        0,08 0,31* 

Indep         0,28* 
Space                   

Table 12, Effect sizes of differences between characteristics. To determine the direction of the difference, see Figure 39. * 
indicates that differences are statistically significant after Bonferroni correction at p <0,01; ** at p<0,05. 

 
Comparing PV owners with non-PV owners regarding their concerns, the difference between their 
number one concern was notable: PV owners expect the most problems from the Product lifetime, 
while non-PV owners expect most problems from Structural change, followed by Space used (See 
Figure 39). 

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

Concerns

Third

Second

Most



 

 

 
Figure 40, Differences between PV owners and non-PV owners in problems expected from different characteristics of DES. 
Points are attached for characteristics that are included in the top three’s: three points for a first place, two points for a 
second place, one point for a third place. 

Again, to test significance of observed differences a Mann-Whitney U tests were executed. It was found 
that PV owners expect more problems than non-PV owners with the Product lifetime (p<0,01). Non-
PV expect more problems than PV owners with User friendliness. Interestingly, PV owners expect more 
problems with Grid independence than non-PV owners. At the same time, we saw PV owners find Grid 
independence more important than non-PV owners do. It seems that part of the PV owners see grid 
independence as a goal, while another part of does not find it important and mainly sees potential 
problems with it.  
 

  Noise Structure UserFr Lifetime Mainten Evironm Safety Indep Space 

Mann-
Whitney U 2952,0 2575,0 2545,5 2046,0 2898,0 2895,5 2843,5 2561,5 2632,0 

Z -0,066 -1,445 -2,139 -3,445 -0,332 -0,340 -0,630 -1,966 -1,287 

p (2-tailed) 0,948 0,149 0,032 0,001 0,740 0,734 0,529 0,049 0,198 

Table 13, outcome Mann-Whitney U-tests on differences between PV owners (n=112) and non-PV owners (n=53) 
regarding problems expected from different characteristics 
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4 Discussion 
As was emphasized by Hoppmann et al. (2014), many studies on integrated PV-battery-systems 
investigate one aspect in isolation. Hoppmann et al. investigated the impact of multiple economic input 
parameters to determine optimal PV system and storage size for three-person household in Germany. 
This research goes further in several aspects. First, because of the data richness. Where other studies 
focused on  a specific amount of consumption (e.g. Hoppmann et al. (2014), Rocky Mountain Institute 
(2014)), this study incorporated 79 different household with varying amounts of consumption and 
production. Moreover, instead of using a standard electricity profile (often with total energy use of 15 
minutes, averaged over households), this study used power data measured every 10 seconds. This 
allows to account for differences between households in specific consumption profiles. On the one 
hand it is valuable to be able to predict an optimal storage size based on parameters like PV system 
size, on the other hand it is also very important to know which part of the variance cannot be predicted. 
The empirically formula to determine the optimal storage size, as established in paragraph 3.2, explains 
52,7% of the variance in storage size. Hence, 47,3% is dependent on specific profiles, which indicates 
the value of e.g. a smart meter for determining an optimal storage size.  
 
Furthermore, this research looks beyond implications for households only, but also investigated the 
possible impact on a larger scale. Important herein was the stepwise approach; first elaborate on the 
cost development of lithium-ion batteries, and using this information as input for determining the 
optimal sizes. Subsequently, using these optimal sizes to simulate behavior of a neighborhood 
equipped with batteries and the resulting impact on peak consumption. Next, comparing the situation 
of not-controlling the batteries of the neighborhood, with controlling the same batteries by 
precharging. The value is that more advanced lessons can be learned. For example, it is possible to 
make statements about what would be the impact of a certain battery price on the potential load 
shifting of a neighborhood19. 
 
Policy recommendations 
There already has been much speculation about the abolishment of net metering. But before such a 
decision is to be made, it is important to create knowledge on consequences of the abolishment of net 
metering. A recommendation about whether it would be a wise decision to abolish net metering, falls 
outside the scope of this research. In order to make such a statement, the abolishment should be 
compared to different alternatives.  
 
The main recommendation that can be made, is that an integrated policy approach is needed. Smart 
grids ask for smart policies. An example is to make it easy for net operators and prosumers to make a 
joint investment in batteries. Prosumers could benefit from the increased self-consumption, while 
allowing net operators to operate the battery for peak shaving applications. Such alliances could also 
be made with energy retailers, enabling load shifting and it’s economic benefits. The main 
recommendation is to make a decision on net metering abolishment and transition scheme well in 
advance. This time can for example be used by grid operators or energy retailers to convince 
prosumers of the usefulness of allowing them to operate your in-house battery. As this research has 
demonstrated, the benefits of distributed storage greatly increase when batteries are smartly 
operated. This opens the opportunity to form such alliances, and furthermore provide an attractive 
investment climate for smart grid applications because of long term stability of policy. 
 
Limitations and future research 
Limitations include limited generalizability, and assumption of perfect information and economic 
rational behavior of prosumers. Also, there was some data imperfection. Missing dates; as mentioned 
in the methodologies, data of the entire month October, 13, 20, 22, 27 and 29 November, 3, 5, 6, 9, 

                                                           
19 Evidently 



 

 

11, 12, 13, 17, 18 and 23 December, 15, 18 and 21 January, 19 and 24 February, 14, 26 and 30 March, 
1, 2, 5, 8, 16 and 19 April, 17 May, 23, 25, 28, 30 and 31 July and 8, 20, 26 and 27 August were missing. 
It was assumed that the remaining dates were representative for a year. The website Polder PV has 
documented the production of PV electricity from 2002-2014 (Polder PV, 2015). The assumption that 
the data in this research is representative for a complete year, resulted in a production that was 3,87% 
higher than the average yearly production over the 13 years.  
 
Possibilities for future research include: 

 combination with research about DSM, smart EV charging; 

 Add economics of peak reduction from net operator, electricity producer (load shifting and 
peak shaving; 

 Add flexible prices; 

 Optimize integration of battery –determine an acceptable peak, and use batteries to stay 
below that peak. (Optimization based on costs of battery degradation – more research 
needed); 

 
Connection to existing literature 

 
Figure 41, Weniger et al. (2014). 

Figure 41 shows the increasing benefits of storage in the upcoming years in Germany. Increasing the 
retail electricity price (i.e. energy taxes or making network cost dependent from grid use) could be 
seen as a regulatory option to create financial incentives for electricity storage. However, there is a 
notable difference with the stimulation of PV electricy. The feed-in tariff is coupled to the PV electricity 
cost; the feed-in tariff is decreased with decreasing cost of PV. The battery storage incentives on the 
other hand, would be increased with the decreasing costs discussed in section 3.1. The Dutch Minister 
of Economic Affairs announced a suitable transition period will be put in place when net metering is 
abolished. It seems more logical to subsidize investment in storage, rather than solely increase taxes 
on use. 



 

 

5 Conclusion 
In this research, the following main research question was addressed: 
 
How would battery systems in conjunction with PV systems contribute to (economic) value for 
different stakeholders in the Netherlands? 
 
To answer this research question, several sub questions were investigated.  
 

1. What could be the cost development of residential battery systems? 
 
First, possible cost developments of battery systems were examined. Two methods were used, a meta-
analysis of existing cost predictions in literature, and learning theory. A notable finding was that both 
within and between this methods, there was much differences between individual studies. The meta-
analysis showed the Lithium-ion batteries were estimated to be around 250 €/kWh in 2020 (ranging 
from 125-400 €/kWh). Learning theory and cumulative production predictions resulted in an estimated 
cost of around 150 €/kWh (range 70-230 €/kWh). Therefore, the prediction of this research is that 
Lithium-ion costs will lie around 200 €/kWh in 2020. 
 

2. What is the relation between increasing battery size and Net Present Value of storage for 
different PV households and what would be the optimal storage size for these households? 

 
The following empirical relation between Net Metered Consumption and PV System Size and Optimal 
storage size was found: 
 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑆𝑖𝑧𝑒 (𝑘𝑊ℎ) =  0.45 − 2.47 ∗  10−4 ∗ 𝑁𝑒𝑡 𝑀𝑒𝑡𝑒𝑟𝑒𝑑 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (
𝑘𝑊ℎ

𝑦𝑒𝑎𝑟
) + 1.24 ∗

𝑃𝑉 𝑆𝑦𝑠𝑡𝑒𝑚 𝑆𝑖𝑧𝑒 (𝑘𝑊𝑝𝑒𝑎𝑘)  

 
Furthermore, an important finding was that increasing the battery size above the optimal size would 
result in limited decrease of NPV. 
 

3. For the optimally sized batteries, what would be (a) the impact on overproduction, (b) the 
results for various indicators of battery degradation (c) the impact on consumption and 
production power peaks on neighborhood level and (d) the impact on peak loads on 
neighborhood level? 

4. How would precharging of the optimally sized batteries impact the battery degradation 
indicators, and the peak shaving and load shifting on neighborhood level?  

 
The optimally sized batteries covered 53.7% of the overproduction of prosumers. So the batteries 
would probably more than double self-consumption of an average prosumer. The performance on 
peak shaving and load shifting depends for a large part on the charging strategy. The non-controlled 
batteries have a marginal impact on the peak power, and a limited impact on the 4 hour peak load. 
The precharged batteries have a substantial contribution to both peak shaving and load shifting (see 
Table 13). 
 
Table 13, comparison between neighborhood without batteries, with non-controlled batteries, and with precharged 
batteries on four hour peak load, and peak power 

 No batteries Batteries (no control) Batteries (precharged) 

Average 4 hour peak (kWh) 203 157 124 

Peak power (kW) 111 105 75.2 

 



 

 

On the other hand, regarding battery degradation performance indicators, precharged batteries 
performed much worse (see Table 14).  
 
Table 14, overview battery degradation indicators for optimally sized batteries with (a) no control and (b) precharging 

 No control Precharging 

Average DoD 53% 85% 

Average SoC 22% 30% 

Total energy throughput (kWh/year) 1441 2074 

 
 

5. What could be non-financial barriers for consumers? 
 
Consumers indicated that the most important non-financial factors were product lifetime and safety.
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7 Appendices 

7.1 Appendix A – reassessment experience curves 
 

 

 

 

 

Table 15, production and price data   Table 16, production and price data 
LiB Matteson & Williams (2015)     LiB Mayer et al. (2012) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Cumulative 
production 
(MWh) 

Price 
($/kWh) 

100 2522 

300 2111 

900 2063 

2100 1496 

3600 1146 

6200 712 

10000 615 

16000 507 

23000 422 

33000 422 

44000 398 

61000 374 

78000 338 

Cumulative 
 Production 
 (MWh) 

Price  
($/kWh) 

15 2090 

50 1750 

121 1710 

547 1240 

1258 950 

2288 590 

3816 510 

5983 420 

8505 350 

12093 350 

17350 330 

24526 310 

33372 280 



 

 

7.2 Appendix X – Data literature study 
 
Table 17, data literature study future costs EV battery. Data in 2015€ 

 2010 2012 2013 2015 2016 2017 2020 2025 2030 

IEA (2009)  € 673      € 408  € 369  € 329  

IEA (2011)  € 486     € 365     € 308    

IEA (2013)    € 466    € 393    € 264    

Anderson (2009)  € 477     € 382     € 318   €254   €207  

Bosch (2009)  € 561        € 262    

McKinsey (2010)  € 935     € 491     € 322    

McKinsey (2012)   € 353       € 128   €103   

Deutsche Bank (2009)  € 448     € 336     € 224    

Deutsche Bank (2010)  € 310     € 227     € 172    

Bloomberg (2013)  € 676     € 439     € 253   €152   €101  

Stewart (2012)  € 754     € 547     € 396   €283   €219  

Pillot (2014)    € 392   € 294     € 189    

PWC (2013)    € 477   € 398     € 248    

DOE (2012)   € 689   € 541   € 374     € 271   €217   €175  

RMI (2014)    € 473   € 365     € 270   €196   €152  

Roland Berger (2012)   € 500    € 339     € 207    

Lux Research (2012)        € 300    

Lux Research (2014)     € 207    € 148     

BCG (2010)  € 779        € 312    

Advanced Automotive  
Batteries (2014) 

 € 239    € 196    € 172    

Faaij & Gerssen-Gondelach (2012)  € 810     € 421     € 304   €243   

DOE goals     € 405       €150  

Average  € 624   € 514   € 431   € 363   € 295   € 148   € 254   €207   €171  



 

 

7.3 Appendix C - MATLAB Code main model 
 
clear all 
tic 
%% About data 
% Total number of days: 297 

  
% NOV_tm_JAN 
% 01-11-2013 t/m 31-01-2014 
% Missing data: 13-11, 20-11, 22-11, 27-11, 29-11, 03-12, 05-12 & 06-12, 
% 09-12, 11 t/m 13-12, 17-12 & 18-12, 23-12, 15-01, 18-01, 21-01 
% -> Number of days: 74 

  
% FEB_tm_APR 
% 02-02-2014 t/m 01-05-2014 
% Missing data: 19-02, 24-02, 14-03, 26-03, 30-3, 01-04 & 02-04, 05-04, 
% 08-04, 16-04, 19-04 
% -> Number of days: 78 

  
% MAY_tm_JULI 
% 01-05-2014 t/m 01-08-2014 
% Missing data: 17-05, 23-07, 25-07, 28-07, 30-07, 31-7  
% -> Number of days: 87 

  
% AUG_tm_SEP 
% 01-08-2014 t/m 01-10-2014 
% Missing data: 08-08, 20-08, 26-08, 27-08 
% -> Number of days: 58 
% No double data: 01-08, 09-08, 21-08, 28-08 

  
%!! for data transition and data info, see DataTransitionComplete.m !! 

  
%% %%%%%%%%%%%%%%%% INITIALISATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%one-way efficiency 
% w=1; 
% Optimal_Size_Sens=zeros(7,1); 
% AmountBCs_Sens=zeros(7,1); 
% MaxConsDumb_Sens=zeros(7,1); 
% MaxConsSmart_Sens=zeros(7,1); 
% TwoHourPeakDumb_Sens=zeros(7,1); 
% TwoHourPeakSmart_Sens=zeros(7,1); 
% while w<2 

  
%% Parameters 
eta=0.9; 
DR = 0.04;                           %Discount rate 
PowerMax = 2000/3600000*10;          %converted to "kWh" to be comparable 

with other data 
LifeTimeBat = 15;                    %Life time battery [year] 
C_bat = 200;                         %Cost Battery [euro/kWh_size] 
C_elec = 0.16;                       %Benefits of storage (Retail price-FIT) 

[euro/kWh_used] 
YearlyPriceIncrease=1.01;            %Increase Benefits of storage (Effect 

increase energy taxes + effect decrease wholesalemarket prices) 
PreChargeTime = 17;                  %Time that the battery fully precharged 
PreChargeStart = 11;                 %Start of precharging 
PreChargeEnd = 17.5;                 %End of precharging 
EveningEnd = 22;                     %IF CHANGED, ALSO CHANGE IN FUNCTIONS!! 



 

 

BatteryOnTime = 16;                  %Battery use from 
DurationPeak = 4; 
DurationPreCharging = 7; 

  
%% Control constants 
load('AUG_tm_SEP.mat') 
% load('Optimal_Size.mat') 
NrDays1=74; 
NrDays2=78; 
NrDays3=87; 
NrDays4=58; 
BeginTime = 1; 
NrHH = 79;                           %Number of households 
NrDays = 58;                          %Number of days 
EndTime = NrDays*24*60*6;             %Number of 10 seconds periods 
dt = 1;                             % 
k = 0; 
day = 0; 
BatterySizeIni = 2;                 %[kWh] 
BatterySizeMax = 22;                %[kWh] 

                      
%% Input matrices 
Export2Grid = zeros (BatterySizeMax, NrHH); 
ExportPR = zeros (EndTime-BeginTime+1, NrHH); 
UsageAbovePR = zeros (EndTime-BeginTime+1, NrHH); 
UsedFromBattery = zeros (BatterySizeMax, NrHH); 
MaxConsBase = zeros (1,NrDays);                %Maximum consumption on daily 

basis [W] 
MaxProdBase = zeros (1,NrDays);                %Maximum production [W] 
TimingMaxBase = zeros (1,NrDays);              %Timing maximum consumption 
TimingMinBase = zeros (1,NrDays);              %Timing maximum prodution 
MaxConsDumb = zeros (1,NrDays);                %Maximum consumption on daily 

basis [W] 
MaxProdDumb = zeros (1,NrDays);                %Maximum production [W] 
TimingMaxDumb = zeros (1,NrDays);              %Timing maximum consumption 
TimingMinDumb = zeros (1,NrDays);              %Timing maximum prodution 
MaxConsSmart = zeros (1,NrDays);                %Maximum consumption on daily 

basis [W] 
MaxProdSmart = zeros (1,NrDays);                %Maximum production [W] 
TimingMaxSmart = zeros (1,NrDays);              %Timing maximum consumption 
TimingMinSmart = zeros (1,NrDays);              %Timing maximum prodution 
TwoHourPeakBase = zeros (1,NrDays); 
TwoHourPeakDumb = zeros (1,NrDays); 
TwoHourPeakSmart = zeros (1,NrDays); 
BatterySizeM=zeros(1,BatterySizeMax); 
BatteryPrecharge = zeros (EndTime+24*60*6,NrHH);   
PreCharging = zeros (EndTime+24*60*6,NrHH); 
PreChargeM = zeros (EndTime+24*60*6,NrHH); 
PreChargingActual=zeros(NrDays,NrHH); 
MaxBattery = zeros(NrDays,NrHH); 
EveningDemand = zeros(NrDays,NrHH); 
BatteryOptimalSmart = zeros (EndTime,NrHH); 

  
HHGridUseBase=AUG_tm_SEP/3600000*10;            %Conversion Power -> Watt to 

kWh (Measurements every 10 seconds) 
HHGridUseBase(EndTime+1:end,:)=[];                     %Boundary condition 
HHGridUseBase(:,NrHH+1:end)=[]; 
InputBattery=HHGridUseBase; %Demand for battery use; can be positive 

(discharging) or negative (charging) 
HHGridUseDumb=HHGridUseBase; %HHKWH_AA = Household consumption from grid (so 

total consumption - consumption from battery) 



 

 

HHGridUseSmart=HHGridUseBase; %HHKWH_AAA = Household consumption from grid 

using smart battery (so total consumption - consumption from battery) 

  
%% PART ZERO: BASE CALCULATIONS (NO BATTERY) 
%% Calculation Total Production (excluding self-consumption)%% 
HHtotalBase=sum(HHGridUseBase,2); 

  
U1=HHGridUseBase<0; %Production>Consumption 
Production=U1.*HHGridUseBase; 
TotalProductionHH=sum(Production)*-1; %Total production of one household in 

complete time period 
TotalProduction=sum(Production,2)*-1; %Total production van de wijk op een 

bepaald moment 

  
for i = 1:EndTime 
        for j = 1:NrHH 
            if InputBattery(i,j)>0 
                InputBattery(i,j)=InputBattery(i,j)/eta;    %Input battery 

is amount of electricity DEMAND. Regarding transfer losses, more has to be 

taken from the battery 
            else InputBattery(i,j)=InputBattery(i,j)*eta;   %InputBattery<0 

= production. So electricity to battery -> *eta because of transfer losses 
            end 
        end 
end 

  
%% Export P(PV)>PR(Bat) 
for i = BeginTime:EndTime 
    for j = 1:NrHH 
        if InputBattery(i,j) < -PowerMax/eta %Look to InputBattery, because 

when PowerMax=2kW, 2.1kW production can still be exporterd to battery 

(assumption) 
            ExportPR(i,j)=-PowerMax/eta-HHGridUseBase(i,j);  %Assumption: if 

production-consumption > PowerMax, the difference is exported to the grid 
            InputBattery(i,j) = -PowerMax*eta; 
        end 
        if HHGridUseBase(i,j) > PowerMax        %Look to HHKWH, because 

demand. When demand = PowerMax &Demand = 2000, this can be met with battery 
            UsageAbovePR(i,j)=HHGridUseBase(i,j)-PowerMax; 
            InputBattery(i,j) = PowerMax/eta; 
        end 
    end 
end 

  
TotalExportPR=sum(ExportPR); 

  
%% Find maxima Houesholds 
N=(HHGridUseSmart<0); 
ProductionBase=HHGridUseBase.*N; 

  
HHtotalBase=sum(HHGridUseBase,2); 
HHProductionBase=sum(ProductionBase,2); 

  
for i = BeginTime-1:EndTime-360*24 
    k = k-dt; 
    if k < 1 
        day = day+1; 
        [MaxConsBase(day), TimingMaxBase(day)] = 

max(HHtotalBase(i+1:i+360*24));       %Possibly adjust HHKWH to HHKWH_A! 



 

 

        [MaxProdBase(day), TimingMinBase(day)] = 

min(HHProductionBase(i+1:i+360*24)); 
        k = 24*360; 
    end 
end 

  
for i =1:NrDays 
    TimingMaxBase(i)=TimingMaxBase(1,i)+((i-1)*24*360); 
    TimingMinBase(i)=TimingMinBase(1,i)+((i-1)*24*360); 
end 

  

  
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% DYNAMIC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%% PART ONE - Determining optimal battery size 
for BatterySize = BatterySizeIni:BatterySizeMax 

     
    BatterySizePrecise=BatterySize/2; 

     
    Battery = zeros (EndTime,NrHH); 
    Export = zeros (EndTime,NrHH); 

         
    for i = BeginTime+1:EndTime 
        for j = 1:NrHH 

                         
            Battery(i,j)=Battery(i-1,j)-InputBattery(i-1,j); 

             
            if Battery(i,j)> BatterySizePrecise 
               Export(i,j)=(Battery(i,j)-BatterySizePrecise)/eta; 
            end 

             
            Battery(i,j)= min(BatterySizePrecise,max(0,Battery(i,j))); 

       
        end 
    end 

          
    Battery(1,:)=[]; %Removal zeros 

     
    Export2Grid(BatterySize,1:NrHH)=sum(Export)+sum(ExportPR); 
    UsedFromBattery(BatterySize,1:NrHH)=(TotalProductionHH-

Export2Grid(BatterySize,1:NrHH)).*eta^2;  

     
    % TotalUsed(BatterySize)=sum(UsedFromBattery); 
    % TotalExported(BatterySize)=sum(Export2Grid); 

  
   BatterySizeM(BatterySize)=BatterySize; 
end 
%% Functions part 1  
%%Elapsed time is 205.638725 seconds (functions only). 
[UsedFromBattery1, MaxConsBase1, MaxProdBase1, TimingMaxBase1, 

TimingMinBase1, HHGridUseBase1, InputBattery1]=Function_NOV_tm_JAN(eta, 

PowerMax, BatterySizeMax,NrHH); 
1; 
[UsedFromBattery2, MaxConsBase2, MaxProdBase2, TimingMaxBase2, 

TimingMinBase2, HHGridUseBase2, InputBattery2]=Function_FEB_tm_APR(eta, 

PowerMax, BatterySizeMax,NrHH); 
2; 



 

 

[UsedFromBattery3, MaxConsBase3, MaxProdBase3, TimingMaxBase3, 

TimingMinBase3, HHGridUseBase3, InputBattery3]=Function_MAY_tm_JULI(eta, 

PowerMax, BatterySizeMax,NrHH);            
3; 

  
TimingMaxBase2=TimingMaxBase2+NrDays1*360*24; 
TimingMinBase2=TimingMinBase2+NrDays1*360*24; 
TimingMaxBase3= TimingMaxBase3+(NrDays1+NrDays2)*360*24; 
TimingMinBase3=TimingMinBase3+(NrDays1+NrDays2)*360*24; 
TimingMaxBase=TimingMaxBase+(NrDays1+NrDays2+NrDays3)*360*24; 
TimingMinBase=TimingMinBase+(NrDays1+NrDays2+NrDays3)*360*24; 

  
UsedFromBattery = 

UsedFromBattery1+UsedFromBattery2+UsedFromBattery3+UsedFromBattery; 
MaxConsBase = [MaxConsBase1 MaxConsBase2 MaxConsBase3 MaxConsBase]; 
MaxProdBase = [MaxProdBase1 MaxProdBase2 MaxProdBase3 MaxProdBase]; 
TimingMaxBase = [TimingMaxBase1 TimingMaxBase2 TimingMaxBase3 

TimingMaxBase]; 
TimingMinBase = [TimingMinBase1 TimingMinBase2 TimingMinBase3 

TimingMinBase]; 

  
HHtotalBase=[sum(HHGridUseBase1,2);sum(HHGridUseBase2,2);sum(HHGridUseBase3

,2);sum(HHGridUseBase,2)]; 

  
% for i =1:NrDays 
% TwoHourPeakBase1(i)=sum(HHtotalBase(TimingMaxBase(i)-

360:TimingMaxBase(i)+360)); 
% end 
NrDays=297; 
for i =1:NrDays 
TwoHourPeakBase(i)=sum(HHtotalBase(TimingMaxBase(i)-

270:TimingMaxBase(i)+630)); 
end 

  
clear UsedFromBattery1 
clear UsedFromBattery2 
clear UsedFromBattery3 
clear MaxConsBase1 
clear MaxConsBase2 
clear MaxConsBase3 
clear MaxProdBase1 
clear MaxProdBase2 
clear MaxProdBase3 
clear TimingMaxBase1 
clear TimingMaxBase2 
clear TimingMaxBase3 
clear TimingMinBase1 
clear TimingMinBase2 
clear TimingMinBase3 

  

  

  
%% NPV calculation 
SizevsUsed = [BatterySizeM' UsedFromBattery]; 
I = repmat(SizevsUsed(:,1) .* C_bat,1,NrHH)/2;   
NPV = -I; 
for t = 1:LifeTimeBat 
    B_disc=365/NrDays*(SizevsUsed(:,2:NrHH+1).* C_elec)/(1+DR)^t;     %Remove 

6 ( 
    NPV = NPV + B_disc; 



 

 

    C_elec=C_elec*YearlyPriceIncrease; 
end 
NPV=[zeros(1,NrHH);NPV]; 

  
[NPV_Max, Optimal_Row]=max(NPV); 
Optimal_Size=(Optimal_Row-1)/2; 

  
AmountBCs = sum(Optimal_Size>0);        %Number of households with a business 

case for a battery 
% HHBC=find(Optimal_Size>0);              %Which household has a positive 

business case? 
% UsedFromBatteryOptimal = zeros(1,AmountBCs); 
% Optimal_SizeNew=Optimal_Size(HHBC); 
% for i=1:AmountBCs 
%     UsedFromBatteryOptimal(i)=UsedFromBattery(Optimal_SizeNew(i),HHBC(i)); 
% end 

  
%% PART TWO: Redoing calculation with optimal battery size (Dumb battery) 
NrDays = 58; 

  
BatterySize = Optimal_Size; 

  
BatteryOptimalDumb = zeros (EndTime,NrHH); 
Export = zeros (EndTime,NrHH); 

  
for i = 2:EndTime 
        for j = 1:NrHH 

  
            BatteryOptimalDumb(i,j)=BatteryOptimalDumb(i-1,j)-

InputBattery(i-1,j);    

             
            if BatteryOptimalDumb(i,j)> BatterySize(j) 
                Export(i,j)=(BatteryOptimalDumb(i,j)-BatterySize(j))/eta; 
            end 

             
            BatteryOptimalDumb(i,j)= 

min(BatterySize(j),max(0,BatteryOptimalDumb(i,j))); 

             
            if and(InputBattery(i,j) > 0, BatteryOptimalDumb(i,j) > 0)             

%i.e. Usage from battery -> usage from grid = 0 
                HHGridUseDumb(i,j) = UsageAbovePR(i,j); 
            end 

             
            if and(InputBattery(i,j) < 0, BatteryOptimalDumb (i,j) < 

BatterySize(j)) 
                HHGridUseDumb(i,j) = -ExportPR(i,j); 
            end 

  
        end 
end 

  
%% No battery versus battery 
% Consumption from grid with optimal battery (YOBAT) vs no battery (NOBAT) 
N=(HHGridUseBase>0); 
NOBATCons=HHGridUseBase.*N; 
Y=(HHGridUseDumb>0); 
YOBATcons=HHGridUseDumb.*Y; 
NOBATvsYOBAT=[sum(NOBATCons); sum(YOBATcons)]; 

  



 

 

%% Calculating effect Dumb Battery 
N=(HHGridUseDumb<0); 
ProductionDumb=HHGridUseDumb.*N; 
HHProductionDumb=sum(ProductionDumb,2); 
day = 0; 
k = 0; 
% Finding new peaks 
HHtotalDumb=sum(HHGridUseDumb,2); 
for i = 0:EndTime-360*24 
    k = k-dt; 
    if k < 1 
        day = day+1; 
        [MaxConsDumb(day), TimingMaxDumb(day)] = 

max(HHtotalDumb(i+1:i+360*24));       %Possibly adjust HHKWH to HHKWH_A! 
        [MaxProdDumb(day), TimingMinDumb(day)] = 

min(HHProductionDumb(i+1:i+360*24)); 
        k = 24*360; 
    end 
end 
for i =1:NrDays 
    TimingMaxDumb(i)=TimingMaxDumb(1,i)+((i-1)*24*360); 
    TimingMinDumb(i)=TimingMinDumb(1,i)+((i-1)*24*360); 
end 

  
%% Functions part 2 
% % Elapsed time is 392.435460 seconds. 

  
[MaxConsDumb1, MaxProdDumb1, TimingMaxDumb1, TimingMinDumb1, ExportPR1, 

UsageAbovePR1, HHGridUseDumb1, NOBATvsYOBAT1, 

BatteryOptimalDumb1]=Function2_NOV_tm_JAN(eta, HHGridUseBase1,Optimal_Size, 

PowerMax,NrHH); 
[MaxConsDumb2, MaxProdDumb2, TimingMaxDumb2, TimingMinDumb2, ExportPR2, 

UsageAbovePR2, HHGridUseDumb2, NOBATvsYOBAT2, 

BatteryOptimalDumb2]=Function2_FEB_tm_APR(eta, HHGridUseBase2,Optimal_Size, 

PowerMax,NrHH); 
[MaxConsDumb3, MaxProdDumb3, TimingMaxDumb3, TimingMinDumb3, ExportPR3, 

UsageAbovePR3, HHGridUseDumb3, NOBATvsYOBAT3, 

BatteryOptimalDumb3]=Function2_MAY_tm_JULI(eta, 

HHGridUseBase3,Optimal_Size, PowerMax,NrHH); 

  
MaxConsDumb=[MaxConsDumb1 MaxConsDumb2 MaxConsDumb3 MaxConsDumb]; 
MaxProdDumb=[MaxProdDumb1 MaxProdDumb2 MaxProdDumb3 MaxProdDumb]; 

  
TimingMaxDumb2=TimingMaxDumb2+NrDays1*360*24; 
TimingMinDumb2=TimingMinDumb2+NrDays1*360*24; 
TimingMaxDumb3= TimingMaxDumb3+(NrDays1+NrDays2)*360*24; 
TimingMinDumb3=TimingMinDumb3+(NrDays1+NrDays2)*360*24; 
TimingMaxDumb=TimingMaxDumb+(NrDays1+NrDays2+NrDays3)*360*24; 
TimingMinDumb=TimingMinDumb+(NrDays1+NrDays2+NrDays3)*360*24; 
TimingMaxDumb=[TimingMaxDumb1 TimingMaxDumb2 TimingMaxDumb3 TimingMaxDumb]; 
TimingMinDumb=[TimingMinDumb1 TimingMinDumb2 TimingMinDumb3 TimingMinDumb]; 

  
HHtotalDumb=[sum(HHGridUseDumb1,2);sum(HHGridUseDumb2,2);sum(HHGridUseDumb3

,2);sum(HHGridUseDumb,2)]; 
NrDays=297; 
for i =2:NrDays-1 
TwoHourPeakDumb(i)=sum(HHtotalDumb(TimingMaxDumb(i)-

180:TimingMaxDumb(i)+540)); 
end 

  



 

 

NOBATvsYOBAT=NOBATvsYOBAT1+NOBATvsYOBAT2+NOBATvsYOBAT3+NOBATvsYOBAT; 
NOBATvsYOBAT=[NOBATvsYOBAT; NOBATvsYOBAT(1,:)-NOBATvsYOBAT(2,:)]; 
%% Net Present Costs of increasing battery size 
N=Optimal_Size>0; 
NPV_BC=NPV(:,N); 
NPV_BC_Max=NPV_Max(:,N); 
Optimal_Size_BC=Optimal_Size(N); 
Optimal_Row_BC=Optimal_Row(N); 
for i=1:7 
    for j=1:AmountBCs 
        ExtraCosts(i,j)=NPV_BC_Max(j)-NPV_BC(Optimal_Row_BC(j)+i,j); 
    end 
end 
[t,indices]=sort(ExtraCosts(:)); 
[I,J] = ind2sub(size(ExtraCosts),indices); 
row_orig = reshape(I,size(ExtraCosts))'; 
col_orig = reshape(J,size(ExtraCosts))'; 
sorted = reshape(t,size(ExtraCosts))'; 

  
load TotalConsumption.mat 
load TotalProduction.mat 
load TotalNetMetered.mat 
load WattPeak.mat 
TotalConsumption_BC=TotalConsumption(:,N); 
TotalProduction_BC=TotalProduction(:,N); 
TotalNetMetered_BC=TotalNetMetered(:,N); 
WattPeak_BC=WattPeak(N,:); 
tbl=table(TotalNetMetered_BC',TotalProduction_BC',TotalConsumption_BC',Watt

Peak_BC,Optimal_Size_BC','VariableNames',{'NetMeteredUse','TotalProduction'

,'TotalConsumption','WattPeak','Optimal_Size'}); 
mdl=fitlm(tbl); 
tbl2=table(TotalNetMetered_BC',WattPeak_BC,Optimal_Size_BC','VariableNames'

,{'NetMeteredUse','WattPeak','Optimal_Size'}); 
mdl2=fitlm(tbl2); 

  
clear t 
clear I 
clear J 
clear row_orig 
clear col_orig 
clear MaxConsDumb1 
clear MaxConsDumb2 
clear MaxConsDumb3 
clear MaxProdDumb1 
clear MaxProdDumb2 
clear MaxProdDumb3 
clear TimingMaxDumb1 
clear TimingMaxDumb2 
clear TimingMaxDumb3 
clear TimingMinDumb1 
clear TimingMinDumb2 
clear TimingMinDumb3 
clear NOBATvsYOBAT1 
clear NOBATvsYOBAT2 
clear NOBATvsYOBAT3 

  

   

  
%% PART THREE: Precharging (smart battery) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Find maxima Batteries 



 

 

3; 

  
NrDays=58; 

  
for i=1:NrDays 
EveningDemand(i,:)=sum(HHGridUseDumb(TimingMaxBase(i)-

360:TimingMaxBase(i)+(DurationPeak-1)*360,:)); 
end 

  
BatterySize = Optimal_Size; 

  
% When not charging further than MaxBat 
% day = 0; 
% k = 0; 
% for i = BeginTime-1:EndTime-360*24 
%     k = k-dt; 
%     if k < 1 
%         day = day+1; 
%         MaxBattery (day,:)= max(BatteryOptimalDumb(i+1:i+360*24,:));       

%Possibly adjust HHKWH to HHKWH_A! 
%         k = 24*360; 
%     end 
% end 
%          
% PreChargingPotential = bsxfun(@minus,Optimal_Size,MaxBattery);     % Pre 

charging potential = Optimal battery size - Maximum of energy stored in the 

specific battery on a specific day 

  
BatteryAtStartPeak=zeros(NrDays,NrHH); 
for i=1:NrDays 
    BatteryAtStartPeak(i,1:NrHH)=BatteryOptimalDumb(TimingMaxBase(i),:); 
end 

  
PreChargingNeed=EveningDemand-BatteryAtStartPeak; % Or EveningDemand-

MaxBattery; 
for i=1:NrDays 
    for j=1:NrHH 
        PreChargingNeed(i,j)=max(0,PreChargingNeed(i,j)); 
    end 
end 

  
for i=1:NrDays 
    for j=1:NrHH 
        PreChargingActual(i,j)=min(BatterySize(j),PreChargingNeed(i,j)); 
    end 
end 

  
for i = 1:NrDays 
PreChargeM(1+(i-

1)*360*24:i*360*24,1:NrHH)=repmat(PreChargingActual(i,1:NrHH),360*24,1); 
end 
%PreChargeM2=PreChargeM-Battery; 

  
PreChargeM=PreChargeM/((DurationPreCharging)*360); 
for i = 1:NrDays 
    PreCharging(TimingMaxBase(i)-

(DurationPreCharging+1)*360:TimingMaxBase(i)-360,:)= 

PreChargeM(TimingMaxBase(i)-(DurationPreCharging+1)*360:TimingMaxBase(i)-

360,:);            % Create matrix with zeros and every day one value of 



 

 

precharging potential. For modelling reasons, assumption is made that 

batteries are charged in one go. 
end 

  
%% Account for PR(Bat) 
InputBatSm=InputBattery-PreCharging(1:EndTime,:); 
for i = BeginTime:EndTime 
    for j = 1:NrHH 
        if InputBatSm(i,j) < -PowerMax/eta 
            PreCharging(i,j)=PreCharging(i,j)-(-PowerMax/eta-

InputBatSm(i,j)); 
        end 
    end 
end 

  
HHGridUseSmart=HHGridUseSmart+PreCharging(1:EndTime,1:NrHH);  

   
% BatteryOnOff=[ones(BatteryOffTime*360,NrHH);zeros((BatteryOnTime-

BatteryOffTime)*360,NrHH);ones((24-BatteryOnTime)*360,NrHH)]; 
% BatteryOnOff=repmat(BatteryOnOff,NrDays,1); 
InputBatterySmart=InputBattery; 

  
for i = 1:EndTime 
    for j = 1:NrHH 
        if PreCharging(i,j)>0 
            InputBatterySmart(i,j)=-PreCharging(i,j); 
            if and(PreCharging(i,j)>0,InputBattery(i,j)<0) 
                InputBatterySmart(i,j)=-PreCharging(i,j)+InputBattery(i,j); 
            end 

             
        end 
    end 
end 

  
%% Smart Battery Dynamic 
for i = 2:EndTime 
    for j = 1:NrHH 

  
        BatteryOptimalSmart(i,j)=BatteryOptimalSmart(i-1,j)-

InputBatterySmart(i-1,j); 

  
        if BatteryOptimalSmart(i,j)> BatterySize(j) 
            Export(i,j)=-HHGridUseBase(i,j); 
        end 

  
        BatteryOptimalSmart(i,j)= 

min(BatterySize(j),max(0,BatteryOptimalSmart(i,j))); 

  
        if and(InputBattery(i,j) > 0, BatteryOptimalSmart(i,j) > 0)             

%i.e. Usage from battery -> usage from grid = 0 
            HHGridUseSmart(i,j) = UsageAbovePR(i,j)+PreCharging(i,j); 
        end 

  
        if and(InputBattery(i,j) < 0, BatteryOptimalSmart (i,j) < 

BatterySize(j)) 
            HHGridUseSmart(i,j) = -ExportPR(i,j)+PreCharging(i,j); 
        end 

  
    end 



 

 

end 
%% Calculating effect 'Smart' Battery 
day = 0; 
k = 0; 
dt=1; 
% Finding new peaks 

  
N=(HHGridUseSmart<0); 
ProductionSmart=HHGridUseSmart.*N; 

  
HHtotalSmart=sum(HHGridUseSmart,2); 
HHProductionSmart=sum(ProductionSmart,2); 

  
for i = 0:EndTime-360*24 
    k = k-dt; 
    if k < 1 
        day = day+1; 
        [MaxConsSmart(day), TimingMaxSmart(day)] = 

max(HHtotalSmart(i+1:i+360*24));       %Possibly adjust HHKWH to HHKWH_A! 
        [MaxProdSmart(day), TimingMinSmart(day)] = 

min(HHProductionSmart(i+1:i+360*24)); 
        k = 24*360; 
    end 
end 
for i =1:NrDays 
    TimingMaxSmart(i)=TimingMaxSmart(1,i)+((i-1)*24*360); 
    TimingMinSmart(i)=TimingMinSmart(1,i)+((i-1)*24*360); 
end 

  
BatteryTotal=sum(BatteryOptimalSmart,2); 

  
% 

BatteryTotal=[sum(BatteryOptimalSmart,2);sum(BatteryOptimalSmart1,2);sum(Ba

tteryOptimalSmart2,2);sum(BatteryOptimalSmart3,2)]; 

  
%% Functions part 3 
%Elapsed time is 633.370520 seconds. 
[HHtotalSmart1, HHProductionSmart1, MaxConsSmart1, MaxProdSmart1, 

TimingMaxSmart1, TimingMinSmart1, HHGridUseSmart1, 

BatteryOptimalSmart1]=Function3_NOV_tm_JAN(BatteryOptimalDumb1, 

HHGridUseBase1, HHGridUseDumb1, eta, PowerMax, Optimal_Size, PreChargeStart, 

PreChargeEnd, EveningEnd, InputBattery1, ExportPR1, UsageAbovePR1,NrHH); 
3.5; 
[HHtotalSmart2, HHProductionSmart2, MaxConsSmart2, MaxProdSmart2, 

TimingMaxSmart2, TimingMinSmart2, HHGridUseSmart2, 

BatteryOptimalSmart2]=Function3_FEB_tm_APR(BatteryOptimalDumb2, 

HHGridUseBase2, HHGridUseDumb2, eta, PowerMax, Optimal_Size, PreChargeStart, 

PreChargeEnd, EveningEnd, InputBattery2, ExportPR2, UsageAbovePR2,NrHH); 
[HHtotalSmart3, HHProductionSmart3, MaxConsSmart3, MaxProdSmart3, 

TimingMaxSmart3, TimingMinSmart3, HHGridUseSmart3, 

BatteryOptimalSmart3]=Function3_MAY_tm_JULI(BatteryOptimalDumb3, 

HHGridUseBase3, HHGridUseDumb3, eta, PowerMax, Optimal_Size, PreChargeStart, 

PreChargeEnd, EveningEnd, InputBattery3, ExportPR3, UsageAbovePR3,NrHH); 

  
MaxConsSmart=[MaxConsSmart1,MaxConsSmart2,MaxConsSmart3,MaxConsSmart]; 
MaxProdSmart=[MaxProdSmart1,MaxProdSmart2,MaxProdSmart3,MaxProdSmart]; 

  

  
TimingMaxSmart2=TimingMaxSmart2+NrDays1*360*24; 
TimingMinSmart2=TimingMinSmart2+NrDays1*360*24; 



 

 

TimingMaxSmart3= TimingMaxSmart3+(NrDays1+NrDays2)*360*24; 
TimingMinSmart3=TimingMinSmart3+(NrDays1+NrDays2)*360*24; 
TimingMaxSmart=TimingMaxSmart+(NrDays1+NrDays2+NrDays3)*360*24; 
TimingMinSmart=TimingMinSmart+(NrDays1+NrDays2+NrDays3)*360*24; 
TimingMaxSmart=[TimingMaxSmart1,TimingMaxSmart2,TimingMaxSmart3,TimingMaxSm

art]; 
TimingMinSmart=[TimingMinSmart1,TimingMinSmart2,TimingMinSmart3,TimingMinSm

art]; 

  
HHtotalSmart=[sum(HHGridUseSmart1,2);sum(HHGridUseSmart2,2);sum(HHGridUseSm

art3,2);sum(HHGridUseSmart,2)]; 
NrDays=297; 
for i =2:NrDays 
TwoHourPeakSmart(i)=sum(HHtotalSmart(TimingMaxSmart(i)-

180:TimingMaxSmart(i)+540)); 
end 

  
clear MaxConsSmart1 
clear MaxConsSmart2 
clear MaxConsSmart3 
clear MaxProdSmart1 
clear MaxProdSmart2 
clear MaxProdSmart3 
clear TimingMaxSmart1 
clear TimingMaxSmart2 
clear TimingMaxSmart3 
clear TimingMinSmart1 
clear TimingMinSmart2 
clear TimingMinSmart3 

  
%% %%%%%%%%%%%%%%%%%%%%%%Visualization%%%%%%%%%%%%%%%%%%%%%%%%%%% %%  
%Time  

  
A = ones(EndTime,1); 
for i = 1:EndTime 
    A(i) = i+32*360*24; 
end 

  
B=datevec(A/8640, 'HH:MM:SS');   %evt. 'DD:HH:MM:SS' 

  
Time=datenum(B); 

  
%Convert to time of day 

  
C = datevec(TimingMaxSmart/8640, 'DD:HH:MM:SS'); %%replace maxInd for minInd 

etc. 

  
D = datenum(C); 

  
TimePeak = datestr(D,'HH:MM:SS'); 

  
HHtotaltotal=[HHtotalBase HHtotalDumb HHtotalSmart]; 
HHtotaltotal=HHtotaltotal*3600/10; %in kW 
TotalProduction=-1*TotalProduction*3600/10; 

  
% figure(1) 
% 

plotyy(Time(1*24*360:20*24*360),HHtotaltotal(1*24*360:20*24*360,1:3),Time(1

*24*360:20*24*360),BatteryTotal(1*24*360:20*24*360)) 



 

 

% datetick('x','dd-mmm HH:MM:SS','keepticks') 
% figure(6) 
% 

plotyy(Time(3*24*360:5*24*360),HHtotaltotal(3*24*360:5*24*360,1:3),Time(3*2

4*360:5*24*360),TotalProduction(3*24*360:5*24*360)) 
% datetick('x','dd-mmm HH:MM:SS','keepticks') 

  
clear A 
clear B 
clear C 
clear Check 
clear D 
clear dt 
clear i 
clear I 
clear j 
clear k 
clear N 
clear t 
clear U1 
clear Y 

     

  
% Optimal_Size_Sens(w)=mean(Optimal_Size) 
% AmountBCs_Sens(w)=AmountBCs 
% MaxConsDumb_Sens(w)=max(MaxConsDumb) 
% MaxConsSmart_Sens(w)=max(MaxConsSmart) 
% TwoHourPeakDumb_Sens(w)=mean(TwoHourPeakDumb) 
% TwoHourPeakSmart_Sens(w)=mean(TwoHourPeakSmart) 
% w=w+1; 
% DR=DR+0.01; 
%  
% end 
% save Optimal_Size_Sens_DR.mat Optimal_Size_Sens 
% save AmountBCs_Sens_DR.mat AmountBCs_Sens 
% save MaxConsDumb_Sens_DR.mat MaxConsDumb_Sens 
% save MaxConsSmart_Sens_DR.mat MaxConsSmart_Sens 
% save TwoHourPeakDumb_Sens_DR.mat TwoHourPeakDumb_Sens 
% save TwoHourPeakSmart_Sens_DR.mat TwoHourPeakSmart_Sens 
%plot(Size_Used(:,1),Size_Used(:,2),Size_Used(:,1),Size_Used(:,3),Size_Used

(:,1),Size_Used(:,4)) 

  
% figure(1) 
% plotyy(X1,Battery(2:end,1:2),X,Export) 
%save Loops2.txt StoreStorage -ascii 
toc 

 
MaxBattery1=zeros(NrDays1,NrHH); 
BatteryAtStart1=zeros(NrDays1,NrHH); 
dt = 1;                             % 
k = 0; 
day = 0; 
for i = 0:NrDays1*360*24-360*24 

     
    k = k-dt; 
    if k < 1 
        day = day+1; 
        for j=1:NrHH 
            MaxBattery1(day,j)= max(BatteryOptimalDumb1(i+1:i+360*24,j));       

%Possibly adjust HHKWH to HHKWH_A! 



 

 

            BatteryAtStart1(day,j)=BatteryOptimalDumb1(6*360+i,j); 

             
        end 
        k = 24*360; 
    end 
end 

  
MaxBattery2=zeros(NrDays2,NrHH); 
BatteryAtStart2=zeros(NrDays2,NrHH); 

  
k = 0; 
day = 0; 
for i = 0:NrDays2*360*24-360*24 
    k = k-dt; 
    if k < 1 
        day = day+1; 
        for j=1:NrHH 

             
            MaxBattery2(day,j)= max(BatteryOptimalDumb2(i+1:i+360*24,j));       

%Possibly adjust HHKWH to HHKWH_A! 
            BatteryAtStart2(day,j)=BatteryOptimalDumb2(6*360+i,j); 

             
        end 
    k = 24*360; 
    end 
end 

  
MaxBattery3=zeros(NrDays3,NrHH); 
BatteryAtStart3=zeros(NrDays3,NrHH); 

  
k = 0; 
day = 0; 
for i = 0:NrDays3*360*24-360*24 
       k = k-dt; 
    if k < 1 
        day = day+1; 
        for j=1:NrHH 

             
            MaxBattery3(day,j)= max(BatteryOptimalDumb3(i+1:i+360*24,j));       

%Possibly adjust HHKWH to HHKWH_A! 
            BatteryAtStart3(day,j)=BatteryOptimalDumb3(6*360+i,j); 

             
        end 
    k = 24*360; 
    end 
end 
MaxBattery=zeros(NrDays4,NrHH); 
BatteryAtStart=zeros(NrDays4,NrHH); 
dt = 1;                             % 
k = 0; 
day = 0; 
for i = 0:NrDays4*360*24-360*24 
        k = k-dt; 
    if k < 1 
        day = day+1; 
        for j=1:NrHH 

             
            MaxBattery(day,j)= max(BatteryOptimalDumb(i+1:i+360*24,j));       

%Possibly adjust HHKWH to HHKWH_A! 



 

 

            BatteryAtStart(day,j)=BatteryOptimalDumb(6*360+i,j); 

             
        end 
    k = 24*360; 
    end 
end 

  
MaxBattery=[MaxBattery1;MaxBattery2;MaxBattery3;MaxBattery]; 
BatteryAtStart=[BatteryAtStart1;BatteryAtStart2;BatteryAtStart3;BatteryAtSt

art]; 
DepthOfDischargeKWH=(MaxBattery-BatteryAtStart); 
DepthOfDischarge=zeros(NrDays1+NrDays2+NrDays3+NrDays4,NrHH); 

  
k = 0; 
day = 0; 
for i=1:NrDays1+NrDays2+NrDays3+NrDays4 
    for j=1:NrHH 
        DepthOfDischarge(i,j)=DepthOfDischargeKWH(i,j)/Optimal_Size(j); 
    end 
end 

  
N=find(Optimal_Size>0); 
DepthOfDischarge=DepthOfDischarge(:,N) 
toc 

 

 



 

 

7.4 Appendix D – MATLAB code ‘solar neighborhood’ 
Solar neighborhood 

NrHH=79 

  
load 'TotalNetMetered.mat' 
load Optimal_Size.mat 

  
load('NOV_tm_JAN.mat') 
load 'Sollar irradiation NOV_tm_JAN.txt' 
HHGridUseBase1=NOV_tm_JAN/3600000*10;            %Conversion Power -> Watt 

to kWh (Measurements every 10 seconds) 
HHGridUseBase1(NrDays1*24*360+1:end,:)=[];                     %Boundary 

condition 
HHGridUseBase1(:,NrHH+1:end)=[]; 

  
ExtraPVProduction1=zeros(NrDays1*24*360,1); 
for i=0:NrDays1*24-1 
ExtraPVProduction1(i*360+1:(i+1)*360)=repmat(Sollar_irradiation_NOV_tm_JAN(

i+1,:),360,1); 
end 

  
ExtraPVProduction1=ExtraPVProduction1/(325610*360); 

  
ExtraPVProduction1=bsxfun(@times,TotalNetMetered,ExtraPVProduction1); 
ExtraPVProduction1=ExtraPVProduction1*SolarMultiplier; 
HHGridUseBase1=HHGridUseBase1-ExtraPVProduction1; 

  
W=find(Optimal_Size>0); 
HHGridUseBase1=HHGridUseBase1(:,W); 

  
load('FEB_tm_APR.mat') 
load 'Sollar irradiation FEB_tm_APR.txt' 
HHGridUseBase2=FEB_tm_APR/3600000*10;            %Conversion Power -> Watt 

to kWh (Measurements every 10 seconds) 
HHGridUseBase2(NrDays2*24*360+1+1:end,:)=[];                     %Boundary 

condition 
HHGridUseBase2(:,NrHH+1:end)=[]; 

  
ExtraPVProduction2=zeros(NrDays2*24*360,1); 
for i=0:NrDays2*24-1 
ExtraPVProduction2(i*360+1:(i+1)*360)=repmat(Sollar_irradiation_FEB_tm_APR(

i+1,:),360,1); 
end 

  
ExtraPVProduction2=ExtraPVProduction2/(325610*360); 

  
ExtraPVProduction2=bsxfun(@times,TotalNetMetered,ExtraPVProduction2); 
ExtraPVProduction2=ExtraPVProduction2*SolarMultiplier; 
HHGridUseBase2=HHGridUseBase2-ExtraPVProduction2; 

  
W=find(Optimal_Size>0); 
HHGridUseBase2=HHGridUseBase2(:,W); 

  
load('MAY_tm_JULI.mat') 
load 'Sollar irradiation MAY_tm_JULI.txt' 

  



 

 

HHGridUseBase3=MAY_tm_JULI/3600000*10;            %Conversion Power -> Watt 

to kWh (Measurements every 10 seconds) 
HHGridUseBase3(NrDays3*24*360+1+1:end,:)=[];                     %Boundary 

condition 
HHGridUseBase3(:,NrHH+1:end)=[]; 
ExtraPVProduction3=zeros(NrDays2*24*360,1); 
for i=0:NrDays3*24-1 
ExtraPVProduction3(i*360+1:(i+1)*360)=repmat(Sollar_irradiation_MAY_tm_JULI

(i+1,:),360,1); 
end 

  
ExtraPVProduction3=ExtraPVProduction3/(325610*360); 

  
ExtraPVProduction3=bsxfun(@times,TotalNetMetered,ExtraPVProduction3); 
ExtraPVProduction3=ExtraPVProduction3*SolarMultiplier; 
HHGridUseBase3=HHGridUseBase3-ExtraPVProduction3; 

  
W=find(Optimal_Size>0); 
HHGridUseBase3=HHGridUseBase3(:,W); 

  
load('AUG_tm_SEP.mat') 
HHGridUseBase=AUG_tm_SEP/3600000*10;            %Conversion Power -> Watt to 

kWh (Measurements every 10 seconds) 
HHGridUseBase(NrDays3*24*360+1+1:end,:)=[];                     %Boundary 

condition 
HHGridUseBase(:,NrHH+1:end)=[]; 
load 'Sollar irradiation AUG_tm_SEP.txt' 
ExtraPVProduction4=zeros(NrDays4*24*360,1); 
for i=0:NrDays4*24-1 
ExtraPVProduction4(i*360+1:(i+1)*360)=repmat(Sollar_irradiation_AUG_tm_SEP(

i+1,:),360,1); 
end 

  
ExtraPVProduction4=ExtraPVProduction4/(325610*360); 

  
ExtraPVProduction4=bsxfun(@times,TotalNetMetered,ExtraPVProduction4); 
ExtraPVProduction4=ExtraPVProduction4*SolarMultiplier; 
HHGridUseBase=HHGridUseBase-ExtraPVProduction4; 
load Optimal_Size.mat 
W=find(Optimal_Size>0); 
HHGridUseBase=HHGridUseBase(:,W); 
NrHH = 60; 

 

 



 

 

 


