
Human-human Interaction Classification
and Detection in Videos

Master of Science Thesis

By
DELIANG WU

Department of Information and Computing Science
UNIVERSITY UTRECHT

Supervisor: dr. ir. R.W. Poppe

School of Remote Sensing and Information Engineering
WUHAN UNIVERSITY

Supervisor: Prof. dr. Zhenzhong Chen

A dissertation submitted to the University of Utrecht in ac-
cordance with the requirements of the degree of MASTER OF

SCIENCE in Artificial Intelligence .

JUNE 23, 2017

Word count: 2̃5K

ABSTRACT

Despite the significant achievements in the image recognition domain, the more important
and difficult task is the video content analyses (VCA) since many vision information are
consist of not only spatial appearances but also temporal motions. There are already many

methods introduced for VCA, such as 3DHOG, 3DSIFT, HOGHOF, and improved Dense Trajectory
etc., but they are all based on hand-craft feature descriptors, in this thesis project, we introduce
a hierarchical deep learning model based on 3DCONVNet and evaluate the model on the UT-
Interaction dataset for both interaction classification and detection tasks. The hierarchical model
is consist of a global interaction feature descriptor and two atomic action feature descriptors.
The global feature descriptor learns the global interaction information, such as the relative
position, while the atomic action feature descriptors learn the more detailed information from
each individual involved in the interaction.

We introduce a novel two-step interaction detection method which is composed of detection
of the spatial locations for the interacting people and detection of the temporal locations of
the interactions based on the spatial locations of the interacting people. Compared with the
method which simply uses the sliding 3D window for interaction detection, we can accelerate the
interaction detection by applying our two-step interaction detection method. And the experimental
results show that we achieved good precision and recall scores based on our two-step interaction
detection method.

i

DEDICATION AND ACKNOWLEDGEMENTS

About one and half years ago, I first enjoyed the charm of the computer vision in the course
CV given by Ronald Poppe. About eight months ago, I decided to focus my thesis project in
the computer vision domain and sought help from Ronald Poppe, I really appreciate him

that he accepted my request despite he was already under full workload then.

In the processes of this thesis project, Ronald gave me many many helpful suggestions on the
project goal definition and architecture designs. I can always get timely and detailed feedbacks
from him, no matter in the weekly reports or for some other discussions about the problems
occurred in the project. And the several iterations of revision and the very detailed and helpful
critiques from Ronald helped me make the best out of this thesis.

And the Prof. Zhenzhong Chen in the Wuhan University also gave me many helpful suggestions
at the beginning of this thesis project and instructed me to learn many necessary background
knowledge. Without the help of Prof. Zhenzhong Chen providing the workstation with two Titan
X GPU cards, I can not timely finish the project based on the deep learning model since the
training processing ran very very slow on my own laptop.

At last, I would like to thank my wife Jie Yu, my son Yizhi and my daughter Jingyu. Without
the understanding and supporting of my wife, I can not fulfill my plan to return to university and
learn the Artificial Intelligence. My wife undertook the most responsibilities of taking care the
children during my studies which help me concentrate on my thesis project. And my lovely son
and daughter are also the most important crutch for me to really finish my thesis.

Utrecht, the Netherlands
June 23, 2017

Deliang Wu

iii

TABLE OF CONTENTS

Page

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Background . 1

1.2 Project Goals . 3

1.3 Contributions . 3

1.4 Outline . 4

2 Related Work 5
2.1 Architectures of Interaction video analysis related works 5

2.2 Hand-crafted Feature Descriptor . 7

2.2.1 3D-SIFT Feature Descriptor . 7

2.2.2 3D-HOG Feature descriptor . 8

2.2.3 Improved Dense Trajectories feature descriptor 9

2.3 Deep Learning Based Feature Descriptor . 11

2.3.1 Spatial-Temporal CNNs feature descriptor 13

2.3.2 Two-Stream ConvNet feature descriptor . 13

2.3.3 3D ConvNet feature descriptor . 14

2.4 Datasets . 15

2.4.1 List of human activity video datasets . 16

2.4.2 UT-Interaction dataset . 16

3 Architecture 23
3.1 Overall Framework . 23

3.1.1 Interaction classification . 23

3.1.2 Interaction detection . 24

3.2 Models . 25

3.2.1 Person Segmentation . 25

v

TABLE OF CONTENTS

3.2.2 Spatial detection of the interacting people . 26

3.2.3 Feature Descriptor . 26

3.3 Training . 27

3.3.1 Train the person detection network . 27

3.3.2 Train the feature descriptor . 28

3.3.3 Train the Classifier . 29

4 Design 31
4.1 Interaction Classification . 31

4.1.1 Data-flow of the Interaction Classification . 31

4.1.2 Data pre-processing . 32

4.1.3 Feature descriptor . 38

4.1.4 Softmax classifier . 42

4.1.5 Optimizer . 42

4.2 Interaction detection . 44

4.2.1 Data-flow of interaction detection . 44

4.2.2 Detection of all people . 45

4.2.3 Spatial detection and tracking of the interacting people 46

4.2.4 Generate candidates of interaction video clips 50

4.2.5 Classification of interaction video clips . 52

4.2.6 Temporal combination . 53

5 Experimental Results 55
5.1 Searching of the optimal parameters . 55

5.1.1 Model . 55

5.1.2 Assumptions and Factors and the default parameter setting 56

5.1.3 Experiments . 56

5.1.4 Conclusions of parameter searching . 70

5.2 The experimental results of of the interaction classification 71

5.2.1 Train the network from scratch . 71

5.3 The experimental results of of the interaction detection 72

5.3.1 Results of the interacting people detection . 72

5.3.2 Results of the interaction detection . 76

6 Conclusions and Future Works 81
6.1 Conclusions for the interaction classification task . 81

6.2 Conclusions for the interaction detection task . 82

6.3 Future work . 82

Bibliography 85

vi

LIST OF TABLES

TABLE Page

2.1 List of human action video datasets . 17

2.2 List of human interaction video datasets . 18

5.1 Default parameters for network and data pre-processing 57

5.2 Parameter, network architecture and training settings for network and data pre-

processing. 73

5.3 The performance comparisons among different models, evaluated on UT-Interaction

set1. 74

5.4 The average spatial overlap ratios of the bounding boxes between the detections and

the ground truth for each video, evaluated on UT-Interaction set1. 74

5.5 The precision and recall of the interaction detection over the 10 video sequences of the

UT-Interaction dataset set1, detector configuration (l = 48, s = 8). 78

5.6 The precision and recall of the interaction detection over the 10 video sequences

of the UT-Interaction dataset set1 without class "Pointing", detector configuration

(l = 48, s = 8). 79

vii

LIST OF FIGURES

FIGURE Page

1.1 Illustration of some challenges of video analysis. 3

2.1 The hierarchical activity recognition model and an example. Reprinted from [2]. . . . 6

2.2 The SIFT descriptor. The left image shows the 2D SIFT descriptor. The center image

shows how multiple 2D SIFT descriptor could be used on a video without modification

to the original method. The right image shows the 3D SIFT descriptor with its 3D

sub-volumes, each sub-volume is accumulated into its own sub-histogram. These

histograms are what makes up the final descriptor. Reprinted from [7]. 8

2.3 Overview of 3D-HOG descriptor computation; (a) the support region around a point of

interest is divided into a grid of gradient orientation histograms; (b) each histogram

is computed over a grid of mean gradients; (c) each gradient orientation is quantized

using regular polyhedrons; (d) each mean gradient is computed using integral videos.

Reprinted from [15]. 9

2.4 Illustration of DT algorithm to extract and characterize dense trajectories. Left:

Feature points are densely sampled on a grid for each spatial scale. Middle: Tracking

is carried out in the corresponding spatial scale for L frames by median filtering in a

dense optical flow field. Right: The trajectory shape is represented by relative point

coordinates, and the descriptors (HOG, HOF, MBH) are computed along the trajectory

in a N ∗N pixels neighbourhood, which is divided into nσ∗nσ∗nτ cells. Reprinted

from [39]. 10

2.5 The architecture of a CNN example: LeNet5. Reprinted from [18]. 12

2.6 The intuitive illustration of convolution over image. 12

2.7 Explored approaches for fusing information over temporal dimension through the

network. Red, green and blue boxes indicate convolutional, normalization and pooling

layers respectively. In the Slow Fusion model, the depicted columns share parameters.

Reprinted from [13]. 14

2.8 The architecture of Two Stream ConvNet. Reprinted from [33]. 14

ix

LIST OF FIGURES

2.9 2D and 3D convolution operations. a) Applying 2D convolution on an image results

in an image. b) Applying 2D convolution on a video volume (multiple frames as

multiple channels) also results in an image. c) Applying 3D convolution on a video

volume results in another volume, preserving temporal information of the input signal.

Reprinted from [36]. 15

2.10 The architecture of C3D. C3D has 8 convolution, 5 max-pooling, and 2 full connected

layers, followed by a softmax output layer. All 3D convolution kernels are 3×3×3

with stride 1 in both spatial and temporal dimensions. Number of filters are denoted

in each box. The 3D pooling layers are denoted from pool1 to pool5. All pooling kernels

are 2×2×2 except for pool1 is 1×2×2. Each fully connected layer has 4096 output

units. Reprinted from [36]. 15

2.11 Visualization of C3D model. Interestingly, C3D captures appearance for the first few

frames but thereafter only attends to salient motion. Reprinted from [36]. 15

2.12 The illustration of the 6 classes of human-human interactions in the UT-Interaction

dataset. 19

2.13 The illustration of the different backgrounds between the two sets 20

2.14 Some frames randomly sampled from the 120 segmented videos. 20

2.15 Illustration of detection and ground truth. 21

2.16 Some challenges for the classification task. 22

2.17 Illustrations of some extra challenges for the detection task. 22

3.1 Overall framework of the interaction classification. 24

3.2 Overall framework of the interaction detection. 25

3.3 The architecture of the person segmentation . 26

3.4 The architecture of the spatial detection and tracking of the interacting people. . . . 27

3.5 Overall Architecture of the 3D-ConvNet. 27

4.1 The overall data-flow of the interaction classification . 32

4.2 The overall data-flow of the data pre-processing module 33

4.3 Horizontal flipping of a video . 38

4.4 Random cropping a video . 38

4.5 The structure of the feature descriptor . 39

4.6 The architecture of the 3D ConvNet . 39

4.7 The illustration of the ReLU operation . 40

4.8 The softmax classifier . 43

4.9 The data-flow of interaction detection. 45

4.10 Illustrations of notations of bounding boxes, a). notations of the bounding box of an

individual and b). notations of the bounding box of a two-person interaction. 46

x

LIST OF FIGURES

4.11 Some examples of the horizon positions of the interacting people, sampled from the

unsegmented videos of UT-Interaction dataset. 47

4.12 An example illustration of preserving and discarding bounding boxes according to the

value of YImean . 49

4.13 An example illustration of preserving and discarding bounding boxes according to the

value of X Imean . 51

4.14 The illustration of temporally sliding the 3D windows which are used to generate

candidates of interaction video clips. 52

4.15 A diagram of temporally combining of interaction video clips 53

5.1 The architecture of the singleNet . 56

5.2 The loss and classification accuracy vs. training epochs comparison between "Xavier"

and normal distribution initialization. 58

5.3 The loss and classification accuracy vs. training epochs comparison between different

initial biases. 59

5.4 The loss and classification accuracy vs. training epochs comparison between networks

with different learning rate. 60

5.5 The loss and classification accuracy vs. training epochs comparison between different

keep probabilities in the dropout layers. 61

5.6 The loss and classification accuracy vs. training epochs comparison between networks

with and without batch normalization layers. 62

5.7 The structures and parameters of the three 3DConvNets which have different number

of convolutional layers. 63

5.8 The loss and classification accuracy vs. training epochs comparison between networks

with different convolutional layers. 64

5.9 The loss and classification accuracy vs. training epochs comparison between networks

with different sizes of the convolutional kernels. 65

5.10 The loss and classification accuracy vs. training epochs comparison between networks

with different number of filters in each convolutional layer. 66

5.11 The loss and classification accuracy vs. training epochs comparison between networks

with different number of output neurons in each fully connected layer. 67

5.12 The loss and classification accuracy vs. training epochs comparison between networks

trained on the data with and without horizontal flipping. 68

5.13 The loss and classification accuracy vs. training epochs comparison between networks

trained on training data with different random cropping configurations. 69

5.14 The loss and classification accuracy vs. training epochs comparison between networks

trained on training data with different temporal down-sampling strides. 70

5.15 The loss and classification accuracy vs. training epochs comparison between networks

trained on training data with different normalization methods. 71

xi

LIST OF FIGURES

5.16 Sample frames of the results of the spatial interacting people detection. The ground

truth and detections are marked in green and red bounding boxes, respectively. 75

5.17 The temporal overlaps between the interaction detections and the ground truth,

evaluated on the 10 unsegmented videos of the UT-Interaction dataset set1. Ground

truth data are marked in green, and the detections are marked in red. 77

5.18 Spatial detection of interacting people. The green bounding boxes are the ground

truth, while the reds are the detection results. For the interactions with class label "3"

("Pointing"), only one person is annotated in the ground truth, while both interacting

people are annotated by our detector. 78

5.19 The F1 score over different IOU threshold. 80

xii

C
H

A
P

T
E

R

1
INTRODUCTION

The technique of automatic video content analysis (VCA) is one of the most important

areas of Computer Vision and Artificial Intelligence. With this technique, machines are

able to recognize objects, human activities and events in videos. Thus, it can be widely

used in many domains, such as human-computer interaction, video classification, entertainment,

self-driving, public safety and security, home automation, etc. Action and interaction analysis is

one of the most common uses of VCA which focuses on the analysis of human activities, such as

the recognition/detection of the action of a single person or recognition/detection of the interaction

of two or more people.

1.1 Background

When we talk about human action, we usually mean the activity of a single person. But in

truth, human interaction is more complex and generally contains three cases: human-human

interaction between two or more people, such as hand-shaking; human-object-human interaction

like a person passing an object to another person; and human-object interaction like a person

pushing a table.

The goal of human action/interaction recognition in videos is to determine the ac-

tion/interaction labels. And the goal of human action/interaction detection in a video is

to locate a specific action/interaction spatially and temporally in the video.

Although a lot of excellent methods and datasets have been published in the last decade in the

area of action recognition, it is still a challenging task and is far from being solved. Comparatively,

the related work in the domain of interaction recognition and detection is relatively scarce. This

is because the job of interaction recognition and detection is even more challenging than that of

action recognition and detection.

1

CHAPTER 1. INTRODUCTION

The main challenges of action and interaction recognition and detections in real scenes mainly

include:

1. Various camera views. The videos which will be analysed could be taken from different

viewpoints which may have never been seen before in the training data. For example,

Figure 1.1 (a) illustrates four videos of the same biking little girl being filmed from four

different camera views. The features extracted from these videos can be different, which

would then make it hard for the classifier to learn to discriminate them as the same activity.

2. Complex background. The background of the action/interaction could vary and even be

totally different. For example, Figure 1.1 (b) illustrates four diving videos taken with totally

different backgrounds with large camera motions. For those feature descriptors that extract

features from not only the segmented person but also from the background. Then the

features extracted from the background would largely confuse the classification results.

3. Usually, a single action video clip contains at least hundreds of frames. Therefore, there

might exist many irrelevant frames which would, in turn, confuse the analysis process. For

instance, a video clip of a basketball game may contain frames of commentators and the

audiences which wouldn’t be relevant.

4. It is hard to get decent performance on a small training set. But sometimes we only have

small scale target datasets with very limited training samples. Such situation is even worse

for the task of interaction video analysis since the related dataset is scarce compared with

the action video analysis.

5. Compared with action video analysis, extra features like relative position and orientation

between the people involved in the interaction need to be taken into consideration, which

makes the representation of features more complex.

Some of the related works for interaction analysis are [26], [37], [22] and [2]. The works of

Patron-Perez et al. [26] and Gemeren et al. [37] focus on the relative information between the

people involved in the interaction, such as their relative position and orientation in relevant body

parts and, then uses hand-crafted feature descriptors, such as histograms of orientated gradients

(HOG [3]) and histograms of optical flow (HOF [5]), to describe those interaction features. The

work of Narayan et al. [22] combines the improved trajectory features and the foreground motion

map features to describe interaction features. In contrast, Choi et al. [2] introduce a hierarchical

method, which first detects and tracks the location of each person and then learns to analyse the

atomic action of each person. Lastly, it uses the atomic action to infer the collective interaction

label. The atomic action is also represented by the hand-crafted feature descriptors, such as HOG

and bag of video words (BoV [6]).

In this thesis project, we adopt a similar hierarchical architecture with the work of Choi et al.

with two main changes: 1). we use the deep learning feature descriptors to represent the atomic

2

1.2. PROJECT GOALS

(a). A same biking girl filmed in 4 different views

(b). 4 diving videos with totally different backgrounds

Figure 1.1: Illustration of some challenges of video analysis.

action for each person involved in the interaction instead of hand-crafted feature descriptors; 2).

Besides having the networks learning atomic features of each person, we add an additional deep

learning network to learn the features of relative position and orientation.

1.2 Project Goals

In this thesis project, we focus on the recognition and detection of two-person interaction. The

goals of this thesis project include:

1. To do interaction recognition based on the target dataset. The inputs are the segmented

specific interaction videos and the outputs are the predicted class labels.

2. To do interaction detection based on the target dataset. The input is the un-segmented

videos and the output is the spatial and temporal location of specified classes.

3. Construct a hierarchical multi-level network to learn the features of interaction. Hierarchi-

cal network means that we first learn atomic action features for each person involved in

interaction, then combine these features to learn interaction features. Multi-level network

means that we have a global first level network which learns global interaction features,

such as the relative position and orientation between the people involved in the interaction

and a second level network which learns the atomic actions of each person.

1.3 Contributions

We mainly have the following contributions for the interaction video analysis:

3

CHAPTER 1. INTRODUCTION

1. We introduce deep learning feature descriptors that address the interaction recognition

and detection with only a small scale target interaction video dataset available.

2. We introduce a hierarchical multi-level framework that will be used for interaction video

analysis tasks.

3. We introduce a two-step method for interaction detection in videos.

1.4 Outline

In the next chapter, we will introduce action and interaction video analysis related works

including various methodologies and related datasets. In Chapter 3 and Chapter 4, we will

describe our overall architecture and low-level design of this project in detail. In Chapter 5, we

will introduce the experiments designs, their experimental results, and analyse them. At last, we

will give the conclusions and possible future works of this project.

4

C
H

A
P

T
E

R

2
RELATED WORK

Due to the large potential practical values in many domains and the big technical chal-

lenges, video analysis has become a very hot research topic in both the academic and

industrial communities in recent years. Since related works of interaction video analysis,

such as [26] [37] [22] [2], are relatively scarce compared to those in closely related areas, like

action video analysis [12] [23] [36] [15] [7] [13] [33], we will introduce both the architectures used

in interaction and action video analysis related works in Section 2.1. The general architecture of

a video recognizer is usually comprised of a feature descriptor and a classifier. The video feature

description research can be mainly divided in two directions: hand-crafted feature descriptors

and learning based feature descriptors. We will introduce these two types separately in Section

2.2 and 2.3 respectively. Another very important factor that determines the performance of the

video analysis is the training datasets. Without a rich and nicely annotated training dataset, it is

hard to get a decent performance even for the best-built algorithm. So, we will introduce popular

publicly available action and interaction video datasets in Section 2.4.

2.1 Architectures of Interaction video analysis related works

Choi et al. [2] introduce a hierarchical network that recognizes the collective activity performed

by a group of people. The hierarchical model is illustrated in Figure 2.1 (b). Oi and O j are the

features of each individual in the video, and Oc is the crowd context feature which represents the

overall information of the video. A is the atomic action of each individual, I is the interaction

between two individuals and C is the collective activity of the group of people. For example, the

collective activity "gathering", illustrated in Figure 2.1 (a), is characterized as a collection of

interactions (such as "approaching") between individuals. Each interaction is described as pairs

of atomic activities (for example " f acing− right" and " f acing− le f t"). Each atomic activity is

5

CHAPTER 2. RELATED WORK

(a) (b)

Figure 2.1: The hierarchical activity recognition model and an example. Reprinted from [2].

associated with a spatial-temporal trajectory. [2] use HOG to represent the appearance features

and use bag of video words (BoV [6]) to represent the spatial-temporal features.

Compared with the work of Choi et al. which uses a hierarchical model to recognize group

activities, Gemeren et al. [37] extract the interaction features from the local body parts of the

interacting people and focus on those parts of the videos that characterize the interaction. This is

helpful in distinguishing between the interactions that only have very slight differences. HOG

(appearance) and HOF (movement) are combined as feature descriptors in this work.

Patron-Perez et al.’s work [26] is similar to [37]. Patron-Perez et al. detect and track each

person’s upper body in the interaction video and crop the tracklet to generate a person-centered

descriptor with HOG and HOF. Besides, the head orientation is also taken into account in the

feature descriptor because the head orientation is also an important cue for the interaction video

analysis.

There are also some methods that use a bag of the local features in order to describe the

features of interaction, like the work of Yimeng et al. [43] and Yu et al. [16]. Yimeng et al. propose

the concept of spatio-temporal phrase which is a combination of the local features in a certain

spatial and temporal structure including their order and relative positions, then the video is

represented by a bag of spatio-temporal phrases. Yu et al. propose the use of a set of attributes and

the pair-wise co-occurrence relationship of two attributes to describe the videos. An attribute is a

binary representation of a body part, such as that ’the torso is still’. A co-occurrence relationship

of two attributes is a binary representation of the association between the two attributes. For

example, the co-occurrence relationships between the attributes "torso bending" and "still leg" in

the activity "bow".

6

2.2. HAND-CRAFTED FEATURE DESCRIPTOR

2.2 Hand-crafted Feature Descriptor

The scale-invariant feature transform (SIFT [19] [20]) and the histogram of oriented gradients

(HOG [3]) feature descriptors achieve great success and are widely applied in the image content

analysis.

SIFT is a local feature describing algorithm which detects the interest points in an image

and computes the gradients for each interest point in order to construct the features of an image.

The SIFT algorithm adopts the difference of Gaussian (DoG) algorithm to detect the interest

points by constructing an image pyramid with several scales and blurring images with several

different Gaussian filters in each scale. The interest points are those points that have maximum

values compared with their neighbor pixels in the image pyramid. Thus, those points with edges

and corners which represent the main feature of an object are most likely to be found as interest

points. Because the interest points are detected in different scales, the SIFT feature descriptor

is scale invariant. Gradient computing is applied to the interest point centered blocks for each

interest point. The computed histogram of gradient features are rotated to the main orientation

for each interest point. Thus, it is rotation invariant. And finally, the features are normalized in

order to further eliminate the effect of different lighting.

For the HOG algorithm, the image is divided into several small cells. The histograms of

gradient (orientation and magnitude) are computed for each cell. This is because the appearance

and shape of an object can be nicely described by the gradient. The HOG feature descriptor is

somewhat transform invariant because the features are computed in local cells, and because the

features are normalized over the sliding overlap blocks which contain several cells in a single

block so it is lighting invariant.

Though SIFT and HOG can efficiently describe appearance and shape features in images, but

they can not be directly used for video analysis tasks, because they not only require appearance

and shape description but also motion description. Thus, they are also extended to 3D-SIFT[7]

[32] and 3D-HOG[15] in order to describe the video features. Among all current hand-crafted

feature descriptors, the improved Dense Trajectories(iDT)[39][40] have been shown to perform

the best on a variety of datasets.

2.2.1 3D-SIFT Feature Descriptor

Compared with 2D-SIFT [19] [20] which only considers x and y dimensions, 3D-SIFT [7] [32]

takes another dimension, in this case, time(t), into consideration because the motion information

contained in time dimension is an essential cue for video analysis. There are two steps involved in

the constructing of the SIFT feature descriptor. The first step is the localization of the key points

and the second step is the calculation of the sub-histograms for each key point. The method of

key points localization in the 3D-SIFT is the same as that in the 2D-SIFT. The main differences

between 2D-SIFT and 3D-SIFT is the calculation of the sub-histogram for each key point.

7

CHAPTER 2. RELATED WORK

Figure 2.2: The SIFT descriptor. The left image shows the 2D SIFT descriptor. The center image
shows how multiple 2D SIFT descriptor could be used on a video without modification to the
original method. The right image shows the 3D SIFT descriptor with its 3D sub-volumes, each
sub-volume is accumulated into its own sub-histogram. These histograms are what makes up the
final descriptor. Reprinted from [7].

The 2D gradient magnitude and orientation for each pixel are calculated in x and y dimensions,

while 3D-SIFT calculates gradients in three dimensions x, y and t. Thus, the motion information

along the time dimension is also well presented by the sub-histogram of 3D gradients.

The 3D-SIFT feature descriptor is illustrated in Figure 2.2. After getting the sub-histogram,

the orientation of each key point could be fixed. In 3D-SIFT, the dominant orientation of the key

point could be represented by θ and φ. To keep the orientation invariant, all neighbourhoods of

each key point are rotated to the dominant orientation. 3D-SIFT also inherits the method of key

points detection and histogram normalization from 2D-SIFT. Thus, it is also scale and lighting

invariant.

2.2.2 3D-HOG Feature descriptor

2D-HOG is widely used for the purpose of object detection in static images. 2D-HOG calculates

the gradients for each pixel and accumulates them as the histograms of orientated gradient over

cells. Klaser et al. extend it to 3D-HOG [15]. In Klaser’s work, the main difference between 2D

and 3D HOG is the calculation of the gradient. In 2D-HOG, only two dimensions x and y are

taken into account, the cell is a square. While in 3D-HOG, additional time dimension t is taken

into consideration, so the cell is a cube. The blocks which are used to contrast-normalization

8

2.2. HAND-CRAFTED FEATURE DESCRIPTOR

Figure 2.3: Overview of 3D-HOG descriptor computation; (a) the support region around a
point of interest is divided into a grid of gradient orientation histograms; (b) each histogram is
computed over a grid of mean gradients; (c) each gradient orientation is quantized using regular
polyhedrons; (d) each mean gradient is computed using integral videos. Reprinted from [15].

also transform from a 2D square to a 3D cube. The overview of the descriptor computation is

illustrated in Figure 2.3.

For similar reasons found in 3D-SIFT, 3D-HOG calculates the gradients in both spatial and

temporal dimensions, so, the motion information contained in the time dimension can be nicely

represented by the 3D-gradients.

2.2.3 Improved Dense Trajectories feature descriptor

The Improved Dense Trajectory (iDT) is a very successful algorithm used for video action recogni-

tion among all hand-crafted feature descriptors which was proposed by Wang et al. [39] [40]. Wang

et al. [39] introduce the Dense Trajectory (DT) algorithm and they improve the DT algorithm by

eliminating background optical flow trajectory caused by the camera motion in [40].

The overview of the DT feature descriptor is illustrated in Figure 2.4, which includes dense

sampling, key points tracking and features description. The video is firstly extended into several

different spatial scales in order to keep this feature descriptor scale invariant.

Feature points are densely sampled on a grid spaced by W pixels and the sampling is carried

out on each spatial scale separately. Since it is hard to track feature points in homogeneous areas,

Wang et el. remove those points which have very small eigenvalues of the auto-correlation matrix.

Feature points are then separately tracked on each spatial scale. Given a point Pt = (xt, yt)

in frame I t, its tracked position in the I t+1 frame is calculated by the position in I t frame and

the components of optical flow computed w.r.t. I t and I t+1. Due to the fact that it is unstable to

track a feature point for a long time, all the feature points are re-sampled every L frames. Then,

for every feature point, the trajectory feature vector is (Pt,Pt+1,Pt+2....,Pt+L−1). The trajectory

9

CHAPTER 2. RELATED WORK

Figure 2.4: Illustration of DT algorithm to extract and characterize dense trajectories. Left:
Feature points are densely sampled on a grid for each spatial scale. Middle: Tracking is carried
out in the corresponding spatial scale for L frames by median filtering in a dense optical flow
field. Right: The trajectory shape is represented by relative point coordinates, and the descriptors
(HOG, HOF, MBH) are computed along the trajectory in a N ∗N pixels neighbourhood, which is
divided into nσ∗nσ∗nτ cells. Reprinted from [39].

feature vector contains the motion information of the feature points thus it can represent motion

information for the videos.

Since just the trajectory features are not enough to describe all the video features, Wang

et al. introduce another three feature descriptors: Histograms of Orientated Gradient (HOG

[3]), Histograms of Optical Flow (HOF [5] and Motion Boundary Histograms (MBH [5]). The

HOG feature descriptor is similar to 3D-HOG but it is calculated along the trajectory. The HOF

features represent the optical flow (movements) of objects in videos and the MBH features are

based on the derivatives of optical flow which is a simple and effective way to suppress the camera

motion. 3D-HOG can well represent both the appearance/shape and the motion information for

objects in videos. The combination of HOF and MBH can further improve the performance of

video analysis as they represent zero-order (HOF) and first-order (MBH) motion information. All

of these three feature descriptors are calculated in a N ∗N ∗L spatial-temporal volume around

the feature point along the trajectory, see the right image in Figure 2.4. The spatial-temporal

volume is sliced into smaller nσ∗nσ∗nτ spatial-temporal cells. N = 32,nσ= 2,nτ= 3 in the work

of Wang et al. The histogram of HOG, HOF and MBH are calculated over all the pixels contained

in each cell.

The work of iDT [40] improves the DT algorithm mainly by eliminating the camera motion. In

the DT algorithm, due to the camera motion, many trajectories in the background are found. But

those trajectories of background are useless for action recognition and usually giving confusing

results. By assuming that the difference between 2 consecutive frames is small, the iDT algorithm

assumes that the frame I t+1 can be calculated from frame I t and a transform matrix H, that

I t+1 = I t ∗H. Then, we can calculate Iwarpt+1 = H−1 ∗ I t+1, where Iwarpt+1 is the frame I t+1

after eliminating the camera motion. Since the transformation matrix H is calculated over

10

2.3. DEEP LEARNING BASED FEATURE DESCRIPTOR

the whole image I t and I t+1 which include both background and interest human. So, the large

movement of the human body in consecutive frames will largely affect the accuracy of matrix

H. Wang et al. use the human detection technique to detect the human body in all images and

mask these areas to get a more accurate transform matrix H and use this matrix to eliminate

the useless trajectory of the background and the human body that is caused by camera motion.

2.3 Deep Learning Based Feature Descriptor

Though hand-crafted feature descriptors achieve very nice performance in terms of image and

video content analysis, they are all based on pre-defined rules to extract features. Thus, they

usually ignore the potential cues for video analysis which are not implemented by the feature de-

signer. A deep learning based feature descriptor has complex parameters and flexible structure. A

well trained deep learning feature descriptor can represent similar features represented by hand-

crafted feature descriptor. For example, the Convolutional Neural Network (CNN or ConvNet

[18]) can learn about edges in lower layers which is similar to HOG. Furthermore, a well trained

deep learning feature descriptor has the potential abilities to represent some features which are

hard for hand-crafted features descriptors which means that learning feature descriptors are

more general than hand-crafted feature descriptors. Due to the significant development of data

science, deep learning based feature descriptors, especially CNN, show powerful ability for feature

representation and have achieved state-of-the-art performance in image classification/recognition

[9].

The Convolutional Neural Network is one type of deep artificial neural network in which

the connectivity patterns between its neurons is inspired by the organization of animal’s visual

cortex. The architecture of one of the very first ConvNets, the LeNet5 by Yann LeCun et al. [18],

is illustrated in Figure 2.5. A typical ConvNet includes three main parts: the convolutional layers,

the pooling/subsampling layers and the fully connected layers. The convolutional layer extracts

features from input image by applying convolution. The convolution can be understood as a

feature filter applied over the input image. We can perform operations such as edge detection

by just setting different filter parameters. So, one filter (convolutional kernel) can extract one

type of features. The more filters, the more features that can be represented by the ConvNet.

An intuitive example of convolution is illustrated in Figure 2.6. The pooling/subsampling layer

reduces the dimensionality of each feature map but retain the most important information.

There are different types of pooling: Max pooling which takes the largest element in a n× n

window; and Average pooling which takes the average value of all elements in the window. The

pooling operation can simplify the features and thus has the following advantages: 1). Making the

network smaller and more manageable; 2). Reducing the number of parameters and computation,

therefore controlling over-fitting; 3). Making the network invariant to small transformations,

distortions, etc. The fully connected layer is a traditional multi layer perceptron in which every

11

CHAPTER 2. RELATED WORK

Figure 2.5: The architecture of a CNN example: LeNet5. Reprinted from [18].

0

1

0

0

0

0

0

0

0

0

0

0

-1

0

0

0

0

-1

1

-4

1

0

1

0

0

1

0

-1

8

-1

-1

-1

-1

-1

-1

-1

Input

Filter

Convolved
Image

Figure 2.6: The intuitive illustration of convolution over image.

neuron in the previous layer is connected to every neuron in the next layer. The output of the

convolutional and pooling layers represents high-level features of input images while the fully

connected layers use these features to classify the input images into various classes.

There is related work [24] in the earlier stages which just simply applies CNN and treats

the videos as a set of single frames, then averages the results over all frames as the overall

result. The performance of such method is not very satisfying since it doesn’t take the important

temporal information into consideration and there may be many irrelevant frames in the video

will confuse the result. In recent years, many new related works have been proposed in order

12

2.3. DEEP LEARNING BASED FEATURE DESCRIPTOR

to solve these problems, like the Spatial-Temporal CNN[13], Two-Stream ConvNet[33], and 3D

Convolutional Networks(3D-ConvNet) [1] [12] [36].

2.3.1 Spatial-Temporal CNNs feature descriptor

Since spatial information represents the appearance and the temporal information represents

motion, they are both essential for video analysis. Karpathy et al. suggested a spatial-temporal

CNN in their work[13]. They studied several approaches to extend the connectivity of CNNs to

time domain in order to make use of the spatial-temporal information contained in videos, includ-

ing late fusion, early fusion and slow fusion. The architectures of fusion CNNs are illustrated in

Figure 2.7.

Single frame architecture is used as a baseline in the work [13]. It is a standard CNN

framework and is similar to the ImageNet challenge winning model [17] just with a different

input image resolution. The architecture of the single frame network is illustrated in Figure 2.7

(a).

The late fusion model, illustrated in Figure 2.7 (b), places two separate single frame networks

that share the network parameters. The inputs of the two networks are two streams which have

a distance of 15 frames. The two networks are merged in the first fully connected layer. Neither

single network alone can detect any motion, but the first full connected layer can compute global

motion characteristics by comparing the outputs of the two networks.

The early fusion model, illustrated in Figure 2.7 (c), is similar to the single frame model

except that the input is consecutive T frames instead of a single frame. T was set to 10 in the

work [13]. The early and direct connectivity to pixel data allows the network to precisely detect

direction and speed of the local motion.

The slow fusion model, illustrated in Figure 2.7 (d), combines the early and late fusion model.

This model slowly fuses the temporal information throughout the network so that higher layers

get access to progressively more global information in both the spatial and temporal dimensions.

2.3.2 Two-Stream ConvNet feature descriptor

The Two-Stream ConvNet proposed by Simonyan et al. [33] is another extension of ConvNet for

action recognition in video data. The Two-Stream ConvNet introduces a different architecture

with the Spatial-Temporal CNNs [13] based on two separate recognition streams (spatial and

temporal), which are combined through late fusion. The spatial stream learns the appearance

features from the still video frames while the temporal stream learns the motion features

in the form of the dense optical flow of input videos. So, the combination of the spatial and

temporal streams can represent both the appearance/shape and motion for the input videos. The

architecture of Two Stream ConvNet is illustrated in Figure 2.8.

13

CHAPTER 2. RELATED WORK

(a). Single Frame (b). Late Fusion (c).Early Fusion (d).Slow Fusion

Figure 2.7: Explored approaches for fusing information over temporal dimension through the
network. Red, green and blue boxes indicate convolutional, normalization and pooling layers
respectively. In the Slow Fusion model, the depicted columns share parameters. Reprinted from
[13].

Figure 2.8: The architecture of Two Stream ConvNet. Reprinted from [33].

2.3.3 3D ConvNet feature descriptor

3D ConvNet was first proposed by Ji et al. [12] with human body segmented video volumes

as input and Tran et al. [36] improved it by making it accept full raw video volumes as input

without any pre-processing. The main difference between 2D ConvNets and 3D ConvNets is that

the convolution and pooling are applied in three dimensions (x,y,time) instead of two (x,y). As

illustrated in Figure 2.9, 2D convolution applied on a single image or a video volume (multiple

frames as multiple channels) all result in an image, while 3D Convolution on a video volume

results in another video volume. So, the video temporal information is lost after applying 2D

convolution, while the 3D convolution preserves both the spatial and temporal information.

The network architecture used in [36] annotated as C3D is illustrated in Figure 2.10. The

14

2.4. DATASETS

Figure 2.9: 2D and 3D convolution operations. a) Applying 2D convolution on an image results in
an image. b) Applying 2D convolution on a video volume (multiple frames as multiple channels)
also results in an image. c) Applying 3D convolution on a video volume results in another volume,
preserving temporal information of the input signal. Reprinted from [36].

Figure 2.10: The architecture of C3D. C3D has 8 convolution, 5 max-pooling, and 2 full connected
layers, followed by a softmax output layer. All 3D convolution kernels are 3×3×3 with stride
1 in both spatial and temporal dimensions. Number of filters are denoted in each box. The 3D
pooling layers are denoted from pool1 to pool5. All pooling kernels are 2×2×2 except for pool1 is
1×2×2. Each fully connected layer has 4096 output units. Reprinted from [36].

Figure 2.11: Visualization of C3D model. Interestingly, C3D captures appearance for the first few
frames but thereafter only attends to salient motion. Reprinted from [36].

input of the network is a 16 frames video volume. Videos with frame number larger than 16 will

be split into several 16 frames video clips with an overlap of 8 frames for each video clip. Features

are calculated separately for all video clips, and the features of video clips which belong to the

same video are simply averaged to generate the finally features of the video.

The Figure 2.11 illustrates what the 3D ConvNet learns by using the de-convolution method

explained in [42]. In both examples, the features first focus on the appearance and gradually

track the motion over the rest of the frames.

2.4 Datasets

Training dataset is one of the key factors needed to train a high-performance feature descriptor.

At the same time, published and widely used datasets can be helpful for comparing between

15

CHAPTER 2. RELATED WORK

different approaches. After the publication of the KTH [31] dataset which contains 6 action

classes and 600 videos (2391 sequences) in 2004, more and more human activity datasets have

been published. In recent years, the development of datasets has the following characteristics:

1. More action classes. KTH has 6 classes, UCF101 [34] has 101 action classes and ASLAN

[25] has 432 classes.

2. More training and testing samples. KTH has 192 videos for training and 216 videos for

testing, while ActivityNet 200 [10] has 10024 videos for training and 5044 videos for testing.

3. The video scenes become more and more complex. The videos of KTH are acted by very

limited number of actors, while recent datasets are cut from realistic scenes, like youtube,

cctv, BBC etc.

4. More challenges in the video content; from fixed backgrounded without camera motion to

non-static camera, multi-viewpoints, more complex backgrounds; from single person action

to human-human interaction, human-object interaction, etc.

2.4.1 List of human activity video datasets

Part of the widely used action and interaction video datasets are illustrated in Table 2.1 and

Table 2.2, respectively.

2.4.2 UT-Interaction dataset

We use UT-Interaction dataset [30] as the main target interaction dataset to train and evaluate

our interaction classification and detection model. We first introduce the basic information of this

dataset followed by some special challenges about it and the last for the evaluation methodology.

Introductions of the basic information of the UT-Interaction dataset

The UT-Interaction dataset contains videos of continuously executions of 6 classes of human-

human interactions, including hand shaking, hugging, kicking, pointing, punching and pushing,

as shown in Figure 2.12.

There are 20 video sequences whit about 1 minute lengths for each. Each video contains at

least one execution per interaction, providing us 6 executions of human-human interactions per

video on average. Several participants with more than 15 different clothing conditions appear

in the videos. The videos are taken with the resolution of 720×480, and the height of a person

in the video is about 200 pixels. Ground truth labels of interaction are provided, including time

intervals and bounding boxes.

These 20 videos are divided into two sets. The set1 is composed of 10 video sequences

taken on a paring lot. The videos of the set1 are taken with slight different zoom rate, and

16

2.4. DATASETS

Table 2.1: List of human action video datasets

Dataset Classes Videos Annotations Properties

KTH[31] 6 action
classes

• Training : 192

• Validation: 192

• Testing: 216

• Resolution: 160×120
@ 25fps

• Action labels

• Temporal seg-
ments

• Static camera

• Simple background

• Acted by 25 subjects,
6 actions and 4 sce-
narios

Hollywood2[21] 12 action
classes
and 10
scene
classes

For actions:
• Training : 823

• Testing: 884

For scenarios:
• Training : 570

• Testing: 582

Resolution: 400− 300×
300−200

• Action labels

• Scene labels

• Non-static camera

• Realistic scenarios
from movies

UCF101[34] 5 types,
101
action
classes

• Training : 9537

• Testing: 3783

• Resolution:
400−300×300−200

• Action labels • Realistic scenarios
from YouTube

• Large variations
in camera motion,
object appearance
and pose, object scale,
viewpoints, cluttered
background, illumi-
nation conditions,
etc.

ActivityNet
200[10]

200
action
classes

• Training : 10024

• Validation: 4926

• Testing: 5044

• Action labels

• Temporal seg-
ments

• Hierarchy
activities
relationship

• Realistic scenarios

• Large variations
in camera motion,
object appearance
and pose, object scale,
viewpoints, cluttered
background, illumi-
nation conditions,
etc.

17

CHAPTER 2. RELATED WORK

Table 2.2: List of human interaction video datasets

Dataset Classes Videos Annotations Properties

UT-
Interaction[30]

6 inter-
action
classes

• 20 videos

• 2 sets, 10 for each set.
Evaluated by leave
one out cross valida-
tion.

• Resolution = 720 ×
480

• Interaction la-
bels

• Temporal seg-
ments

• Spatial seg-
ments

• Two-person in-
teraction

• Static camera

• Acted in
different back-
ground

ShakeFive2[38] 8 inter-
action
classes

• 153 videos

• Resolution = 1280×
720

• Interaction la-
bels

• Joint position

• Temporal seg-
ments

• Homogeneous
background

• Static camera

Multi-modal
& Multi-view
& Interactive
[41]

9 inter-
action
classes
and 13
person-
object
inter-
action
classes

• 1760 RGB videos

• 1760 depth videos

• Resolution = 320 ×
240

• Interaction la-
bels

• Joint position

• Foreground
mask

• Homogeneous
background

• Static camera

their backgrounds are mostly static with little camera jitter. While the set2 (the other 10 video

sequences) are taken on a lawn in a windy day. The backgrounds are moving slightly, for example

tree moving, and they contain more camera jitters. The illustrations of the different backgrounds

between the two sets are shown in Figure 2.13.

The evaluation methodology

We evaluate our models with two different experimental settings: classification and detection.

For the 'classification ' task, the two sets of videos are evaluated separately. There are 120

video segments which are cropped based on the ground truth and each contains exactly one

execution of one type of interaction. So, for each set, we have 60 segmented videos that will be

used for the training and testing. The cropped video segments are illustrated in Figure 2.14.

18

2.4. DATASETS

Hand Shaking Hugging Kicking

Pointing Punching Pushing

Figure 2.12: The illustration of the 6 classes of human-human interactions in the UT-Interaction
dataset.

10-fold leave-one-out cross validation is employed to evaluate the classification accuracy. That is,

for each set, we leave one among 10 sequences for the testing and use the other 9 for the training.

The performance is measured ten times and the average accuracy is used as the overall accuracy.

Classification Accuracy=
∑10

i=1 Accuracyi

10

Where Accuracyi is the classification accuracy of the ith sequence.

For the 'detection' task, the interaction detection is measured to be correct if and only if the

network correctly annotates an occurring interaction’s time interval and spatial bounding box. If

the detection overlaps the ground truth more than 50% spatially and temporally, the detection is

treated as a true positive. Otherwise, it is treated as a false positive. i.e.

Detection∩Ground Truth
Detection∪Ground Truth

> 50%

The 'Detection ' here is a 3D volume, its label, location and size are given by the output of the

interaction detector. And 'Ground Truth ' here is also a 3D volume which has the same class label

with the 'detection '. The location and size of the 'Ground Truth ' are provided by the ground

truth table. The illustration of 'Detection ' and 'Ground Truth ' is shown in Figure 2.15.

We use general Precision-Recall graph to evaluate our detection model. Where precision and

recall are defined as below:

Precision= The number of correct detections
The number of founded detections

Recall= The number of correct detections
The number of GT detections

19

CHAPTER 2. RELATED WORK

set1

seq1 seq2 seq3 seq4 seq5

seq10seq9seq8seq7seq6

a). Some frames randomly sampled from the 10 video sequences of set1

seq11 seq12 seq13 seq14 seq15

seq20seq19seq18seq17seq16

set2

b). Some frames randomly sampled from the 10 video sequences of set2

Figure 2.13: The illustration of the different backgrounds between the two sets

a). Some frames randomly sampled from the 60 video segments of set1

b). Some frames randomly sampled from the 60 video segments of set2

Figure 2.14: Some frames randomly sampled from the 120 segmented videos.

20

2.4. DATASETS

x

y

t

detection

Ground
truth

Figure 2.15: Illustration of detection and ground truth.

The challenges

Comparing with image analysis focus on still images, we are expected to recognize ongoing

complex human activities from continuous videos, taken in realistic settings. There are some

challenges for the classification task as below:

1. The backgrounds of set1 and set2 are different illustrated in Figure 2.16 a). This requires

the classifier focuses on foregrounds and ignore the influences of different backgrounds.

2. The background is not still even in a same video segment which is illustrated in Figure

2.16 b). This may causes troubles for the classifier to learn to discriminate between the

background and the foreground.

3. The resolutions of different video segments are different which is illustrated in Figure 2.16

c). The classifier usually requires all its inputs with the unified size. we can unify the sizes

for them by cropping and resizing. But, the width-height ratio and scale for each interaction

may still be different.

4. The time duration for each interaction execution in different video segments varies much

from 30 frames to 154 frames.

5. The lighting conditions of different video segments are various which is illustrated in

Figure 2.16 d).

Compared with the classification task, there are some extra challenges for the detection task,

including:

1. Both interacting people and irrelevant people are present in the scene in some videos as

shown in Figure 2.17 a). This will causes troubles for interacting people detection.

2. Several pairs of interacting people execute interactions simultaneously in some videos as

shown in Figure 2.17 b), but the ground truth only contains one pair interacting people for

each video.

21

CHAPTER 2. RELATED WORK

a). Example frames illustrate interactions with same class label executed in
different backgrounds

b). Example frames illustrate dynamic background in a same segmented video

c). Example frames illustrate different resolutions of the video segments

d). Example frames illustrate different lighting of the video segments

488x300 276x236 348x232

Figure 2.16: Some challenges for the classification task.

a). Both interacting and Irrelevant people are present in the scene

b). Two pairs of interacting people execute interactions simultaneously

Figure 2.17: Illustrations of some extra challenges for the detection task.

22

C
H

A
P

T
E

R

3
ARCHITECTURE

This project focuses on two-person human-human interaction classification and detection in

videos. Almost all of the few previous works [26] [22] [2] of the two-person human-human

interaction recognition adopt hand-crafted feature descriptors. For example, Narayan

et al. [22] combine improved trajectory features and the foreground motion map features in

order to present interaction features while Patron-Perez et al. [26] and Choi et al. [2] use a

hierarchical model to present interaction features. In the hierarchical model, each individual

is tracked throughout the videos, and the atomic activity for each individual and their relative

position and orientations are computed first and then the collective interaction is represented.

Our work adopts the hierarchical model similar to [26] but we replace the hand-crafted feature

descriptors with the deep learning feature descriptors since deep learning based methods [12]

[36] [33] [23] have already achieved better performance in the related domains, such as single

person action recognitions in videos, than hand-crafted feature descriptors[7] [15] [32] [39] [40].

3.1 Overall Framework

Since we define two tasks including interaction classification and detection in our project and we

set the classification as the basis for the detection, we will first introduce the overall framework

of the interaction classification followed by the introduction of the architecture of the interaction

detection.

3.1.1 Interaction classification

Due to lack of sufficient large-scale two-person interaction datasets to just train a single deep

learning network, we adopt the hierarchical model similar to [2] and [26] which learn atomic

23

CHAPTER 3. ARCHITECTURE

Person
SegmentationSegmented

Videos

Atomic
Action

Feature
descriptor

Atomic
Action

Feature
descriptor

F
usion

 of F
ea

tures

C
lassifier

person
segments

Action
features

Action
features

Interaction
features

Interaction
Labels

Global
Interaction

Feature
descriptor

Global
features

Person_0

Person_1

Fg

Fa0

Fa1

{Fg , Fa0 , Fa1}

UT-
Interaction

Figure 3.1: Overall framework of the interaction classification.

action features for each individual in the video and concatenate these features to represent the

collective interaction features. In contrast to [2] and [26] which adopt hand-crafted features

descriptors, such as HOG [3] and BoV [6], we employ the deep learning networks as the feature

descriptors.

The overall framework of our interaction classifier is illustrated in Figure 3.1. In our architec-

ture, we first apply the person detection to locate and track the position of each person in the

input segmented videos of the UT-Interaction dataset, see Section 2.4.2, and then crop each video

into two video segments, each of which contains one person’s activity. Then we design an atomic

action spatial-temporal feature descriptor for each person. Since there are lots of large scale

single person action datasets available, we can pre-train the atomic action feature descriptors

with those datasets, such as the ucf101 action dataset [34], and finetune the parameters on

our target interaction dataset.

One drawback of this hierarchical model is that it ignore the important relative information

between the two people, such as their relative position and orientation, etc. To fix this, we

introduce another global feature descriptor to learn those relative information which can be

trained directly on our target dataset UT-Interaction.

The features extracted by the global interaction feature descriptor (Fg) and the features

extracted by the atomic action feature descriptors (Fa0 and Fa1) are concatenated and fed to the

Classifier.

3.1.2 Interaction detection

The overall architecture of the interaction detection is illustrated in Figure 3.2. We first perform

the spatial detection of interacting people followed by the temporal detection of interaction

24

3.2. MODELS

UT-Interaction
Spatial detection

of interacting
people

Person
SegmentationSegmented

Videos

Atomic
Action

Feature
descriptor

Atomic
Action

Feature
descriptor

F
usion

 of F
ea

tures

C
lassifier

person
segments

Action
features

Action
features

Interaction
features

Interaction
Labels

Global
Interaction

Feature
descriptor

Global
features

Person_0

Person_1

Fg

Fa0

Fa1

{Fg , Fa0 , Fa1}

Post processing
of interaction

detection

detectionsvideos

Video
segments

Temporal detection of interactions

Evaluation of
the interaction

detection

Ground
Truth

Figure 3.2: Overall framework of the interaction detection.

instead of directly applying a spatial-temporal variable size sliding window. Because the later one

costs lots of computation resources and is very timing consuming. We define the spatial detection

of interacting people as spatially locating the interacting people in each frame and tracking them

throughout the video. Then we can make use of these spatial locations of the interacting people to

generate candidate video clips by temporally sliding a 3D (x, y, t) window. Then we apply temporal

detection of interactions based on the interaction classification model defined in the Section 3.1.1.

3.2 Models

We introduce the main models employed in the interaction classification and detection. Since

there are many model overlaps between interaction classification and detection, we introduce the

main models in flat mode rather separately introduce them for classification and detection.

3.2.1 Person Segmentation

We locate the position of each person in each frame of the input videos, and track them throughout

the video. Then we can use the bounding boxes of each person to split each input video into two

25

CHAPTER 3. ARCHITECTURE

HOG SVM

Person Segmentation

Detection Tracking

Figure 3.3: The architecture of the person segmentation

video segments. The structure of the person segmentation is illustrated in Figure 3.3. There is

no special challenges to perform person detection and tracking in the videos of UT-Interaction

dataset because the background is relative simple and there is no much occlusions between

people. So, for simplicity, we employ the classical Histogram of Oriented Gradients (HOG) feature

descriptor plus a linear Support Vector Machines (SVM) framework to construct the person

detector [4]. Due to there may be some missing detections of one or two people in some frames,

we employ the Kalman Filter to track each person throughout each video. Due to the fact that

the relative position of the interacting people will be kept, i.e. if one of the interacting people first

appear at left then he will kept at left in the whole video, we can simply match the interacting

people according to their relative position.

3.2.2 Spatial detection of the interacting people

For the interaction detection task, since there are both interacting and irrelevant people are

present in the scene, we need to locate the positions for the interacting people and omit the irrele-

vant people. The overall architecture of the spatial detection of interacting people is illustrated in

Figure 3.4. We adopt the same model to detect all people in each frame and to track interacting

people as the person detection and tracking in the Section 3.2.1. The only difference here is that

we need the extra works to locate the interacting people and omit the irrelevant people which we

will introduce in detail in the next chapter 4.2.3.

3.2.3 Feature Descriptor

We employ the hierarchical feature descriptors, including a global feature descriptor which

learns the global features, such as the relative position and orientation between two-person, and

two atomic feature descriptors which learn the local atomic action features for each person. By

doing this, our hierarchical feature descriptor is expected to learn both the hight-level complex

26

3.3. TRAINING

Detection of all
people

Spatial detection of
interacting people

Tracking of
interacting people

Input videos
Output
bounding boxes

Figure 3.4: The architecture of the spatial detection and tracking of the interacting people.

3D Conv

3D Pooling

3D Conv

3D Pooling

3D Conv

3D Conv

3D Pooling

3D Conv

3D Conv

3D Pooling

3D Conv

3D Conv

3D Pooling

Full Connected

Full Connected

L1 L2 L3 L4 L5 L6 L7

Videos Features

Figure 3.5: Overall Architecture of the 3D-ConvNet.

interaction features and low-level detail atomic action features. The global feature descriptor

and the atomic action feature descriptors share similar network frameworks. We use different

network parameters between the global feature descriptor and the atomic feature descriptors.

Our feature descriptors are all designed based on the 3D ConvNet [36]. 3D ConvNet learns

both spatial and temporal features at the same time by applying three-dimensional (x,y,time)

convolution and pooling. The architecture of our 3D-ConvNet based feature descriptor is similar

to Tran et al.’s 3D-ConvNet[36] . The architecture of our 3D-ConvNet is illustrated in Figure 3.5.

3.3 Training

Since the performance of a learning algorithm is highly dependent on the training datasets, it is

important to select proper training datasets for each network and balance the performance and

computational complexity at the same time.

3.3.1 Train the person detection network

For simplicity, we directly use a pre-trained HOG plus linear SVM classifier trained on INRIA
Person Dataset [4] as our person detector. The INRIA Person Dataset is one of the most

used datasets for static people detection, which provides original images and the corresponding

27

CHAPTER 3. ARCHITECTURE

annotations. The training set contains 614 (2416 people) positive images and 1218 negative

images.

3.3.2 Train the feature descriptor

There is an extra class for the interaction detection task because the video clips which contain

no interaction need to be annotated an extra label. So, we train the feature descriptor for the

interaction classification and the detection with different training set.

Train the feature descriptor for the interaction classification task

We adopt different training strategies between the global feature descriptor and atomic action

feature descriptors.

For the global feature descriptor, we train it directly on the training data of the UT-Interaction
dataset, see 2.4.2. Before feeding training data to optimize the parameters, we first resize all

segmented videos to 128×144 pixels; randomly sampling a 112×128 region; augment the train-

ing videos by horizontal flipping and multi-time random cropping; temporally down-sample the

frames and finally split each input video into several 16-frame video clips with 8 frames overlap.

We use the adaptive moment estimation (ADAM) to optimize our models. We use mini-batch of 16

examples (video clips) and initial learning rate of 1e(−4) which is further divided by 2 for every 4

training epochs.

For the atomic action feature descriptors, we will test both the pre-training plus fine-tuning

strategy and the directly training strategy. Since we have large scale single person action datasets

available, we will observe whether the pre-trained network can further improve the performance.

For the pre-training plus fine-tuning strategy, large scale action video dataset UCF-101 [34] will

be used to pre-train the atomic action feature descriptor and the video segments generated by

the person segmentation, see 3.2.1, will be used to fine-tune it. For the directly training strategy,

we train the network directly on the video segments generated by the person segmentation. We

adopt the same method of augmentation and pre-processing which we have applied to train the

global feature descriptor except that the final resolution of the video clips is 112×80 instead of

112×128. The method of optimization is also as same as that of the global feature descriptor.

Train the feature descriptor for the interaction detection task

We adopt the same strategy as the classification task to train the feature descriptor for the

detection task except that the some negative training videos are added to the training set and

there are 7 class labels instead of 6. Those negative training videos are generated by randomly

cropping in the unsegmented videos, see 2.4.2, and for each that does not overlap with any

positive bounding boxes, see 4.2.5 for detail.

28

3.3. TRAINING

3.3.3 Train the Classifier

All the output features of the global feature descriptor Fg and the atomic action feature descriptors

Fa0 and Fa1 are concatenated as {Fg,Fa0,Fa1} and fed to the softmax classifier. These features

are extract from the target dataset UT-Interaction.

29

C
H

A
P

T
E

R

4
DESIGN

In this chapter, we present the designs of the interaction classification and detection and

their implementations in detail. We use the interaction classifier as a part of interaction

detector, thus, we will first introduce the methodologies of the interaction classifier followed

by the video interaction detection. We present our approaches in top-down style and along the

data-flow.

4.1 Interaction Classification

We present the overall data-flow and low-level designs of the interaction classifier. We start with

the overall data-flow, then present how we pre-process the training and testing data; how we

design the feature descriptor, the classifier, and the optimizer.

4.1.1 Data-flow of the Interaction Classification

The overall data-flow of the interaction classifier is illustrated in Figure 4.1. We use the segmented

videos of the UT-Interaction dataset, see Section 2.4.2, to train and test our interaction classifier

in the classification scenario. The data is first sent to the data pre-processing module which

is designed to split the dataset into training and testing videos; augment the training data

with horizontal flipping and randomly cropping; and convert the videos to video clips with the

standard shape which can be accepted by our feature descriptor. In the off-line training phase,

the feature descriptor extracts features from the input video clips, the classifier predicts the class

labels according to the extracted features, and the optimizer optimizes the parameters of feature

descriptor and classifier according to the loss between the predicted labels and the given labels.

In the on-line testing phase, the parameters learned in the off-line training phase are loaded into

31

CHAPTER 4. DESIGN

D
ata

Pre-Processing

Feature
Descriptor

Softmax
Classifier

Training Videos Features

OFFLINE TRAINING

Feature
Descriptor

Softmax
Classifier

Features

ONLINE TESTING

Learned parameters

Testing videos

Segmented
videos

Optimizer

Predicted
 Labels

Training Labels

Predicted Interaction
 Labels

UT-Interaction
dataset

Figure 4.1: The overall data-flow of the interaction classification

feature descriptor and classifier. The classifier predicts the interaction labels for the input videos

according to the features extracted by the feature descriptor.

4.1.2 Data pre-processing

The input videos of the global interaction feature descriptor contain two interacting people while

the input videos of the atomic action feature descriptors contain only one of the two interacting

people. So, the data pre-processing module needs to generate different type of training and testing

videos according to their corresponding feature descriptors.

The overall data-flow of the data pre-processing module is illustrated in Figure 4.2. The

person segmentation module is designed to detect and track each person in the interaction videos

and to segment each video into two videos which contain only one person in each video. There are

three low-level data pre-processing modules, one for global interaction feature descriptor and the

other two for the atomic action feature descriptors. These three low-level data pre-processing

modules are synced to each other in order to ensure that they are processing the same video at

the same time. The low-level data pre-processing module first splits the input videos into training

set and testing set, then augments the training data by horizontal flipping and random cropping

since the UT-Interaction dataset is a relatively small scale interaction dataset for training a deep

learning network, and finally resizes and clips the augmented videos into the video clips with the

proper size which can be accepted by the corresponding feature descriptors.

Person Segmentation

The tracking-by-detection methodology is employed in the person segmentation module. We first

detect all people in each frame with a classical Histogram of Orientated Gradient (HOG) feature

descriptor plus a linear support vector machine (SVM) classifier [3]. Then a Kalman filter is

applied to track each person throughout a video. Since there are two and only two interacting

32

4.1. INTERACTION CLASSIFICATION

UT-Interaction
dataset

Segmented videos Split Training
data & Testing

data

Augmen-
tation

Down-sampling, Resizing
& Normalization

Down-sampling, Resizing
& Normalization

Training Video clips
Training labels

Testing Video clips

Testing labels

Training Videos

Testing Videos

Data pre-processing for global feature descriptorHOG
Feature

Descriptor

SVM
classifier

Detector

NMS

Tracking

Segm
entation

Split Training
data & Testing

data

Augmen-
tation

Down-sampling, Resizing
& Normalization

Down-sampling, Resizing
& Normalization

Training Video clips
Training labels

Testing Video clips
Testing labels

Training Videos

Testing Videos

Split Training
data & Testing

data

Augmen-
tation

Down-sampling, Resizing
& Normalization

Down-sampling, Resizing
& Normalization

Training Video clips
Training labels

Testing Video clips
Testing labels

Training Videos

Testing Videos

Person Segmentation

Person_0

Person_1

Data pre-processing for atomic action feature descriptor0

Data pre-processing for atomic action feature descriptor1

To global
feature
descriptor

To atomic
action
feature
descriptor0

To atomic
action
feature
descriptor1

sync

sync

Testing Videos

Figure 4.2: The overall data-flow of the data pre-processing module

people in the input videos, we get two bounding boxes in each frame after tracking. And finally,

we crop the video according to the bounding boxes and generate two segmented videos from each

input video.

The HOG feature descriptor The HOG feature descriptor is widely used to represent the ap-

pearance and shape of objects by calculating and collecting the gradients. The steps of generating

HOG features include:

1. Convert the input colourful image to gray scale.

2. Calculate the gradients of each pixel. Specifically, the gradients for a pixel point at (x, y) is

calculated with following formulas:

Gx(x, y)= H(x+1, y)−H(x−1, y)(4.1)

G y(x, y)= H(x, y+1)−H(x, y−1)(4.2)

G(x, y)=
√

Gx(x, y)2 +G y(x, y)2)(4.3)

α(x, y)= tan−1(
G y(x, y)
Gx(x, y)

)(4.4)

Where Gx(x, y) and G y(x, y) are the horizontal and vertical gradients respectively and

H(x, y) is the pixel value of the point (x, y). G(x, y) and α(x, y) are the amplitude and

orientation of the gradient of the pixel point (x, y), respectively.

33

CHAPTER 4. DESIGN

3. Compute the histogram of gradients in the cell unit. A cell is usually composed of 6×6 pixels

and we use 9 bins to compute the histogram for these 36 pixels. The value of orientation

determines which bin need to add and the value of amplitude determines the weight of

adding.

4. Normalize the histogram in a larger block unit. A block is usually composed of 3×3 neighbor

cells. We can further eliminate the effects of different lighting and contrast of the raw

images by block normalization. There are 3×3×9 features for each block.

5. Slide the block horizontally and vertically with stride j = 1 cell, we get many blocks and

their features xi. All those features are combined together, {x0, x1, ..., xn}, as the final HOG

features of an image.

The linear SVM classifier In our project, we use a linear SVM to determine whether the

input image is a person or not according to the input features extracted by the HOG feature

descriptor. The object of training such a liner classifier is to find a hyper-plane which is defined

as:

(4.5) wT X +b = 0

Where X are the input features, w and b are the weights and biases respectively. We get the

optimal values of w and b by training the classifier on the INRIA dataset [4]. Then we use

hw,b(x)= g(wT x+b) to predict whether the input is a person or not. The input is predicted as a

person if hw,b(x)≥ 0, and vice versa.

Person detection A sliding window is used to detect the locations of the interacting people in

each frame. A size variable window slides over the whole image with stride (4,4), and the pixels

in the sliding window will be converted to HOG features and predicted by the SVM classifier.

For the purpose of scale invariance, we apply the detection in a multi-scale image pyramid.

The multi-scale image pyramid is composed of the images with different scales with the below

formula.

(4.6) img_colsi+1, img_rowsi+1 = img_colsi

scale
,
img_rowsi

scale

Where img_colsi and img_rowsi are the width and height, respectively, of the image in the ith

layer of the image pyramid, and scale = 1.03 controls the shape , the relative size of the next

layers and finally determines the number of layers of the image pyramid. The location, window

size as well as the confidence will be recorded if it is predicted as a person. Since there are many

overlapping windows after the whole detection process, we use non-maximum-suppression (NMS)

to eliminate the overlapping windows and find out those windows with maximum confidence. The

overlap threshold is empirically set to 0.65 in the project.

34

4.1. INTERACTION CLASSIFICATION

Tracking of people The detection of one or two people may be lost in some frames. So, we

employ the first order Kalman filter to track the location of each person throughout the whole

videos after detection. There are exactly two interacting people to track in our project, so, we have

two independent Kalman filters. Instead of tracking a whole bounding box, we use the Kalman

filter to track the left-top point location of each bounding box, and reconstruct bounding boxes

with the filtered left-top point locations plus the average width and height of all the bounding

boxes in the video.

Another special point in our project is that the relative left-right position between the two

interacting people will keep unchanged. That is, if the person A first present at the left side of the

two interacting people, then he will always be at the left side throughout the whole video. So, we

do not need to specially design an algorithm to match the people when tracking but just simply

assign the left bounding box to person A and the right one to person B. The detailed design of the

Kalman filter for a single person is introduced as below.

The system state of each person includes position and velocity. We notate the position at time

t as p(t)= (x(t), y(t)) and the system state at time t is x(t)= [p(t),v(t)]. Then we implement the

Kalman filter with following steps:

1. Initialize the Kalman filter.

t ← 0

Q(0)= I4 ∗10−6

R(0)= I4 ∗100

Where I4 is a 4×4 identity matrix. Q(0) and R(0) are the initial value of the noise covariance

matrices for estimation and measurement, respectively.

2. Estimate the system states at time t according to the optimal value of the system state at

time t−1.

(4.7)

[
p(t|t−1)

v(t|t−1)

]
=

[
I2 I2

O2 I2

][
p(t−1|t−1)

v(t−1|t−1)

]
+w(t)

Where I2 and O2 are 2×2 identity and null matrices, respectively. w(t) represents the

uncertainty of the estimation, and is assumed to be a random variable with a zero mean

and its covariance matrix Q(t)= E[w(t)wT (t)].

3. Update the covariance matrix for the estimation of the system states at time t according to

the covariance matrix of the system state at time t−1.

(4.8) P(t|t−1)=
[

I2 I2

O2 I2

]
P(t−1)+Q(t)

Where P(t|t−1) is the covariance matrix of the estimation at time t, and P(t−1) is the

covariance matrix of the optimal system states at time t−1.

35

CHAPTER 4. DESIGN

4. Measure the system states at time t.

(4.9)

[
p̄(t)

v̄(t)

]
=

[
I2 O2

][
p̄(t)

p̄(t)− p(t−1|t−1)

]
+m(t)

Where p̄(t), v̄(t) are the measured system states at time t. If the detection of the person

is missing in some frames, we use the measured values at the time t−1 as the measure

value at time t. m(t) is the uncertainty of the measurement, and is assumed to be a random

variable with a zero mean and its covariance matrix R(t)= E[m(t)mT (t)].

5. Update the Kalman gain at time t according to the covariance matrix of the estimation of

the system states at time t.

K g(t)= P(t|t−1)HT

HP(t|t−1)HT +R(t)
(4.10)

H =
[

I2 O2

O2 I2

]
(4.11)

Where K g(t) is the Kalman gain at time t.

6. Calculate the optimal system states according to the estimation, measurement and the

value of Kalman gain.

(4.12)

[
p(t|t)
v(t|t)

]
=

[
p(t|t−1)

v(t|t−1)

]
+K g(t)

([
p̄(t)

v̄(t)

]
−

[
I2 O2

O2 I2

][
p(t|t−1)

v(t|t−1)

])

7. Update the covariance matrix for the optimal system states at time t according to the

Kalman gain and covariance matrix of the estimated system sate at time t.

(4.13) P(t|t)=
(
1−K g(t)

[
I2 O2

O2 I2

])
P(t|t−1)

8. Repeat above steps from 2 to 7 at time t+1.

We generate a bounding box for each person in each frame after tracking, and the width

and height of all bounding boxes are the same because we replace the width and height of

each bounding box with the average value of the width and height of all bounding boxes in a

video based on a reasonable assumption that every person in the video has similar width and

height. Finally, we crop the interaction video according to the bounding boxes and generate two

segmented videos which contain one person in each. See the inputs and outputs of the Person

Segmentation module in the Figure 4.2.

36

4.1. INTERACTION CLASSIFICATION

Data pre-processing

The functions of data pre-processing include splitting of training and testing data, augmentation

of training data and converting the training and testing videos to proper size which can be

accepted by the corresponding feature descriptors. The general steps of data pre-processing are:

1. The splitting of training and testing data. Since UT-Interaction is a relative small scale

interaction video dataset, we use 10-fold leave-one-out cross validation to evaluate the

performance. There are 2 independent sets, 10 sequences in each set, and 6 segmented

videos (interaction) in each sequence. So, we leave one sequence for testing and other nine

sequences for training in each run. See 2.4.2 for detail.

2. Augmentation of training data. After the splitting of training and testing videos, we get

56 videos for training and 6 videos for testing in each run. But, 56 videos is not sufficient

to train our deep learning network. So, we employ two methods, horizontal flipping and

random cropping, to augment the training videos. Horizontal Flipping is used to generate a

new video by horizontally flipping each frame from the original video which is illustrated

in Figure 4.3. We further enlarge the scale of the training set n times by N-time random

cropping. In the random cropping module, we crop the video by a window with fixed size

and random position of left-top point in a reasonable range. Specifically, in our project,

we first resize each training video to l ×128×144, where l is the number of frames for

each video, then random crop each video with size l×112×128. An example of the random

cropping is illustrated in Figure 4.4.

3. Down sampling. The number of frames of each individual interaction video is usually in the

range from 60 to 150 frames, but our feature descriptor can only accept the video clips with

only 16 frames due to the limitation of GPU memory and computation time. If we directly

crop each video into 16-frame video clips, then there will be only very limited temporal

information contained in each video clip. So, we first down-sample the video with N frames

stride to make each video clip contains more temporal information. Besides the fixed stride

temporal down-sampling, we have an additional temporal down-sampling mode, that is,

we sample exactly 16 frames from each input video with equal distances if the number of

frames of the input video is larger than 16 by setting N = 0.

4. Resizing. The number of frames for each video may be still larger than 16 after down

sampling of frames, then we crop them to many 16-frame video clips with 8 frames over-

lapping.

5. Normalization. Since our training data are videos, the most common method of normaliza-

tion videos is to subtract the mean value of all pixels which is calculated across all training

videos. To further eliminate the affect of different lighting, we divide the value of every

37

CHAPTER 4. DESIGN

Horizon
Flipping

Figure 4.3: Horizontal flipping of a video

Random
Cropping

Figure 4.4: Random cropping a video

pixel by the standard deviation with following formulas:

µ=
∑

m,l,h,w,c pm,l,h,w,c

N
(4.14)

std =
√∑

m,l,h,w,c(pm,l,h,w,c −µ)2

N
(4.15)

pNorm = pm,l,h,w,c −µ

std
(4.16)

Where m,l,w,h,c are the number of video clips, the number of frames per video clip, the

width, height and the number of channels per frame respectively. pm,l,h,w,c is the pixel

value, µ and std are the mean value and standard deviation of pixels over all training

videos. And the pNorm is a generated pixel value after normalization.

4.1.3 Feature descriptor

To fully represent the features of the input interaction videos, we employ a hierarchical feature

descriptor which contains one global interaction feature descriptor and two atomic action feature

descriptors. All the three feature descriptors are based on a same structure 3D ConvNet but with

different size of input videos and network parameters. The input video’s size for global interaction

feature descriptor is n×16×112×128×3 while that for the atomic action feature descriptors is

n×16×112×80×3, where n is the number of video clips, l = 16 is the number of frames of each

video clip, 112×128×3 and 112×80×3 are the frame sizes for the global interaction feature

descriptor and the atomic action feature descriptors respectively. The structure of the feature

descriptor is illustrated in Figure 4.5.

38

4.1. INTERACTION CLASSIFICATION

Global Interaction Feature Descriptor (3D ConvNet)

Atomic Action Feature Descriptor (3D ConvNet)

Atomic Action Feature Descriptor (3D ConvNet)

Fusion

Videos

Videos

Videos

Features

Fg

Fa0

Fa1

{Fg ,Fa0 ,Fa1}

Figure 4.5: The structure of the feature descriptor

Fully Connected

fc5 fc6

Videos Features3D Conv

Conv1

ReLu
3D Pooling

3D Conv

Conv2

ReLu
3D Pooling

3D Conv

Conv3
ReLu

3D Pooling

3D Conv

Conv4

ReLu
3D Pooling

D
ropout

Fully Connected

D
ropout

Figure 4.6: The architecture of the 3D ConvNet

The Architecture of the 3D ConvNet is illustrated in Figure 4.6. The 3D ConvNet feature

descriptor contains 4 3D convolutional and pooling layers and 2 fully connected layers.

The 3D convolutional and pooling layer

Each 3D convolutional and pooling layer contains three main operations: 3D convolution, Rec-

tified Linear Unit (ReLU) and pooling as shown in Figure 4.6. We also introduce two Batch

Normalization [11] layers after the first two pooling layers.

3D convolution: Different from a 2D convolutional layer which only applies convolution

spatially, the 3D convolutional layer applies convolution spatially and temporally, thus, it can

extract both spatial and temporal features. In our project, the input of the 3D convolutional

layer is a 5D volume with size [n, l,h,w, c] and the size of the 3D filter is [d,k,k, c]. The 3D filter

convolves a 3D volume which has the same shape with it in the input video. Then the 3D volume

slides spatially and temporal across over the whole input video to generate a new output 3D

volume which has the same shape as the input video (if boundary padding is applied) except all

input channels are summed. The 3D convolution can be described as the following formula:

(4.17) Outputn,i, j,k =
∑
c

h,w,l∑
di,d j,dk

Inn,i+di, j+d j,k+dk ∗Filterdi,d j,dk

Where n is the number of video clips, l is the number of frames per video clip, h,w, c are the

height, width and number of channels per frame respectively. Inn,l,h,w,c is the pixel value at the

39

CHAPTER 4. DESIGN

0

-2

-6

2

6

-2-6

2 6

input
Output of ReLU

Figure 4.7: The illustration of the ReLU operation

specified position. i, j,k are the offsets of the sliding window with strides 1. Filter[di,d j,dk] is

the value of the filter at point [di,d j,dk].

There are nof _conv filters in each convolutional layer. Each filter convolves the input volume

separately, and all the outputs of the convolutional results are concatenated together as the final

output of a convolutional layer. For example, [16,16,112,128,3] is the shape of an input volume

which has 16 video clips, 16 frames with size [112,128,3] per video clips , [3,3,3,3,32] is the

shape of the filters which have 32 filters with size [3,3,3,3]. The last 3 is the number of channels

(R,G and B channel) which must be as same as the number of channels of the input volume.

ReLU: An additional operation called Rectified Linear Unit (ReLU) is employed after every

convolution operation. The purpose of ReLU is to introduce non-linearity in our 3D ConvNet. The

ReLU is a pixel-wise operation and replaces all negative pixel values of the output of convolutional

layer by zero which is defined in Figure 4.7 and following formula:

(4.18) Output = Max(0, Input)

Batch Normalization Batch normalization alleviates a lot of headaches with properly initial-

izing neural networks by explicitly forcing the activations throughout a network to take on a unit

Gaussian distribution at the beginning of the training. Batch normalization is performed to each

neuron. The forward propagation steps are shown as below:

40

4.1. INTERACTION CLASSIFICATION

1. Calculate the mean value and variance over the input mini-batch.

µB = 1
m

m∑
i=1

xi(4.19)

σ2
B = 1

m

m∑
i=1

(xi −µB)2(4.20)

Where µB and σ2
B are the mean and variance of the input mini-batch, respectively.

2. Normalize the input mini-batch.

(4.21) x̂i = xi −µB√
σ2

B +ε

3. Scale and shift the normalization results to reconstruct the data.

(4.22) yi = γx̂i +β

In the training phase, γ and β are updated by the optimizer, and in the testing phase, the mean

values of γ and β are used.

Max pooling: According to the previous researches [36] [1], max pooling performs better in

the 3D ConvNet than other methods of pooling, so, we also employ 3D max pooling in our 3D

ConvNet. The purpose of operating max pooling is to reduce the dimensionality of each feature

map but retains the most important information. In our project, we define a spatial and temporal

neighbourhood (a 2×2×2 window according to the related work [36]) and take the largest element

in that window.

Fully connected layer

A fully connected layer is a traditional multi-layer perception where every neuron in the previous

layer is connected to every neuron in the next layer. The outputs from the convolutional and

pooling layers represent high-level features of the input video clips, while the fully connected

layers are designed to learn some non-linear combinations of the output feature maps of the

convolutional layers.

To avoid over-fitting to the training set, a dropout layer [35] is added after each fully con-

nected layer. While training, dropout is implemented by only keeping a neuron active with some

probability p, or setting it to zero otherwise.

Fusion of features

As mentioned at the beginning of this section, we have three sub-feature descriptors in our

hierarchical feature descriptor. The output features of these three feature descriptors are denoted

41

CHAPTER 4. DESIGN

as Fg (features extracted by the global interaction feature descriptor), and Fa0,Fa1 (features

extracted by the two atomic action feature descriptors). We concatenate the three sets of features

as the final output features of our hierarchical feature descriptor, the final output features are

denoted as below:

(4.23) Features = {Fg,Fa0,Fa1}

4.1.4 Softmax classifier

The output of our hierarchical feature descriptor is a vector with 4096×3 dimensions. And we

have 6 interaction classes for classification task and 7 interaction classes for detection task (one

more class than classification is used to label the class which not belongs to anyone of the 6

interaction classes). As shown in Figure 4.8 we first transform the high dimension features to the

scores for each class:

(4.24) hw,b(X)= wT x+b

Where w,b are the weights and biases, respectively, and X is the input features. For example,

the dimensionality of the input features is n×12288 and we have 6 output classes, then the

dimensionality of the weights should be 12288×6 and the dimensionality of biases should be 6.

We then apply softmax regression to convert the score of each class to probability distribution

with the following formula:

(4.25)



p(y= 1|x;w,b)

p(y= 2|x;w,b)

p(y= 3|x;w,b)

.

.

.

p(y= 6|x;w,b)


= 1∑6

j=1 ehw j ,b j (X)



hw1,b1(X)

hw2,b2(X)

hw3,b3(X)

.

.

.

hw6,b6(X)


We set the label which gets the maximum probability value as the predicted label for the input

features.

4.1.5 Optimizer

The processes of optimization in our project are composed of initialization of the parameters,

optimizing of the parameters with the ADAM optimizer [14], dynamic adjustment of the learning

rate.

Initialization of the parameters

The network parameters, including weights and biases, are initialized before the optimization

process. We expect weights to be small random numbers close to 0. So, we initialize all weights

42

4.1. INTERACTION CLASSIFICATION

…
…

4096 dimensions

…
…

4096 dimensions

…
…

4096 dimensions

…
…

6 or 7 classes

Softm
ax regression

Probability
distribution

Fg

Fa0

Fa1

Features extracted by hierarchical feature descriptor

w

w

Figure 4.8: The softmax classifier

with a normal distribution with zero mean. And the value of biases are initialized to a constant

value of 0.1.

Optimizing of the parameters

The objective of the optimizer is to minimize the cross-entropy loss between the output of softmax

classifier and the expected labels. We use the adaptive moment estimation (ADAM) optimizer

to update parameters of the whole network, including feature descriptor and classifier, with

following steps:

1. Initialize all weights and biases of the whole network, weights are randomly initialized

with normal distribution and biases are initialized with a small constant.

2. m0 ← 0, v0 ← 0 and t ← 0. Initialize the first moment vector m0, second moment vector v0

and time t.

3. t ← t+1. Increase time t in training process.

43

CHAPTER 4. DESIGN

4. lr t ← learning_rate×
p

1−β2t

1−β1t . The real time learning rate decay with the training time

t. β1 and β2 are the exponential decay rates for the first and second moment estimations

respectively.

5. mt ← β1×mt−1 + (1−β1)× gradient. Update the first moment vectors according to the

gradients. Gradients are symbolic partial derivatives of the parameters w.r.t. the loss

function and are calculated with back propagation algorithm, [28].

6. vt ←β2×vt−1 + (1−β2)× gradient2. Update the second moment vectors according to the

gradients.

7. θt ← θt−1 − lr t × mtp
vt +ε . Where θt represents the values of all parameters in the network,

including all weights and biases. All parameters are updated with respect to the first and

second moment vectors and the real time learning rate.

8. Repeat steps from 3 to 7 until convergence is reached.

Dynamic adjustment of the learning rate

ADAM optimizer can adjust the learning rate by itself. While, in this project, we further adjust

the learning rate according to the training epochs.

(4.26) Learning Rate= Initial Learning Rate∗2−int(Epoch
M)

Where Epoch is one pass of all training videos, and M is the parameter to control the decay rate

of the learning rate of the optimizer.

4.2 Interaction detection

In this section, we describe the data-flow and low-level design of the interaction detector. We

first introduce the overall data-flow of the interaction detector followed by how we spatially and

temporally detect the interactions.

4.2.1 Data-flow of interaction detection

The overall data-flow of the interaction detection is shown in Figure 4.9 and the process of the

interaction detection mainly include following steps:

1. Detection of all people in each frame of the input videos.

2. Spatial detection of interacting people. Since there are not only the interacting people but

also some irrelevant people present in some videos, and all people will be detected in step 1.

We select the bounding boxes of interacting people and drop those of irrelevant people in

this step.

44

4.2. INTERACTION DETECTION

Detection of all
people

Spatial detection of
interacting people

Tracking of
interacting people

Input videos
Output bounding
boxes

Generate candidates of
interaction video clips

Classification of interaction
videos (7 classes)

Temporal
combination

 Final bounding boxes of
interacting people and
class labels

Figure 4.9: The data-flow of interaction detection.

3. Tracking of interacting people. Since the interacting people may be lost in some frames, we

use the Kalman filter to track the interacting people.

4. Generate candidates of interaction video clips. Since we have already got the spatial location

of interacting people in the previous step, we generate candidates of interaction video clips

by temporally sliding a fixed length (48 frames) video window with a constant stride (4

frames).

5. Classification of candidate interaction video clips. We train an interaction classifier which

has 7 classes and predicts class labels for each candidate video clip with this interaction

classifier.

6. Temporal combination of interaction detection. We find candidate videos clips which are

predicted to be one of the interaction classes and temporally combine those video clips

which are the temporal neighbor with each other. And finally, we vote one interaction class

label to each cluster with the majority rule.

4.2.2 Detection of all people

We use a person detector which is the same as that in Section 4.1.2 to locate all people in each

frame of the input videos. We feed the unsegmented videos provided by UT-Interaction dataset

45

CHAPTER 4. DESIGN

(x_A,y_A)

(x_B,y_B)

(x_mid,y_mid)
height

width

a). notations of a bounding box of an individual

(x_Imean,y_Imean)

b). notations of a bounding box of the two-person interaction

(x_A0,y_A0)

(x_B0,y_B0)

(x_A1,y_A1)

(x_B1,y_B1)

(x_IA,y_IA)

(x_IB,y_IB)

Figure 4.10: Illustrations of notations of bounding boxes, a). notations of the bounding box of an
individual and b). notations of the bounding box of a two-person interaction.

for detection tasks to the person detector, and get the detected locations in each frame of each

input video. An example illustration of the input and output of the person detection is shown in

Figure 4.9.

4.2.3 Spatial detection and tracking of the interacting people

The output of the person detector are bounding boxes of all detected people of the input videos,

thus, those irrelevant people present in the videos will also be detected as shown in Figure 4.9.

So, the purpose of spatial detection of interacting people is to locate the interacting people and

ignore those irrelevant people. We first introduce the main nations and basic assumptions which

we apply to spatial detection and tracking of interacting people, followed by the detail methods.

Notations and assumptions

Notations We define some notations for the bounding boxes of individual and two-person

interaction as shown in Figure 4.10. For the bounding box of an individual, we notate its left-top

and right-bottom points with (xA, yA) and (xB, yB) respectively, and:

width = xB − xA(4.27)

hight = yB − yA(4.28)

(xmid, ymid)= (xA + width
2

, yA + height
2

)(4.29)

And for the bounding box of the two-person interaction, we have definitions and notations as

46

4.2. INTERACTION DETECTION

Figure 4.11: Some examples of the horizon positions of the interacting people, sampled from the
unsegmented videos of UT-Interaction dataset.

below:

(xI A, yI A) = (xA0,
yA0 + yA1

2
)(4.30)

(xIB, yIB) = (xB1,
yB0 + yB1

2
)(4.31)

(xImean, yImean) = (
xI A + xIB

2
,

yI A + yIB

2
)(4.32)

Where xAi, yAi, xBi, yBi are the coordinates of the ith bounding box of the individuals, xI A, yI A, xIB, yIB

are the coordinates of the bounding box of a two-person interaction, and xImean, yImean are the

coordinates of the center point of the interaction bounding box.

Assumptions To find out the interacting people from all people present in the videos, we have

following basic assumptions:

1. All individuals have similar size of bounding boxes. We design a method to learn a stable

width and height of bounding box and apply them for all individuals. By doing this, those

over-small or over-large bounding boxes caused by the mistakes of the person detection will

be eliminated.

2. The horizon positions of the interacting people are very close, which is illustrated in Figure

4.11.

3. The moving speed of an interaction bounding box is slow between two successive frames.

Learn the stable width and height of the bounding boxes for individuals

We assume that the bounding boxes of all individuals have same width and height throughout a

whole video. So, we design a method to learn such a width and height on line. We learn the value

47

CHAPTER 4. DESIGN

of width with the formulas as below and learn the value of height in the same way.

wt
1 = Norm

(
1

abs(widtht−1
i −widtht

i)

)
(4.33)

wt
2 = Norm

(
1

Min(abs(widtht
i −widtht

ī
))

)
(4.34)

widtht =
N∑

i=0
widtht

i × (0.5×wt
1i +0.5×wt

2i)(4.35)

Where wt
1 is the temporal learning weight which puts more weights on those new bounding boxes

of which the value of width is closer to the learned width, wt
2 is the spatial learning weight which

puts more weights to those new bounding boxes which have very similar width with each other

in the same frame. Norm(X i)= X i∑
i X i

is a vector normalization function. widtht
i is the value of

the width of the ith bounding box at time t, and widtht
ī

are the values of the width of the other

bounding boxes except the ith one at time t.

By applying above method, the learned width and height can be more general represent the

width and height of each individual’s bounding box. And those bounding boxes with area less

than 0.75×widht×height or larger than 1.25×width×height are discarded as false positive

detections.

Learn the value of X Imean and YImean

We have previously defined X Imean and YImean as the coordinates of the center point of the

interaction bounding box. Since we do not previously know the positions of interacting people,

then value of X Imean and YImean can not be calculated directly. We learn the value of X Imean and

YImean from the bounding boxes of all people on line. I will introduce how we learn the value of

YImean and X Imean and how we use these values to detect the interacting people in the following

paragraphs.

Learn the value of YImean We assume that the interacting people usually stand in a very

close horizontal position, thus we put more weights to those bounding boxes which have very

close values of ymid. And we assume that the value of YImean change very slowly, so, we put more

weights to those bounding boxes of which the values of ymid are close to current YImean. We learn

the value of YImean with following formulas:

wt
1 = Norm

(
1

|Y t−1
Imean − yt

mid_i|

)
(4.36)

wt
2 = Norm

(
1

Min(|yt
mid_i − yt

mid_ ī
|)

)
(4.37)

Y t
Imean =

N∑
i=0

yt
mid_i × (0.5×wt

1i +0.5×wt
2i)(4.38)

48

4.2. INTERACTION DETECTION

y_Imean

preserve
preserve

discard
discard

thld_y

Figure 4.12: An example illustration of preserving and discarding bounding boxes according to
the value of YImean

To further stably learn the value of YImean, we add an additional parameter learning_rate

to slow the learning rate of YImean if its value is stable. We detect the stability of the values of

YImean and calculate learning_rate with the following formulas:

YImean_List = [Y t
Imean,Y t−1

Imean, ..., ,Y t−19
Imean](4.39)

µ= 1
20

19∑
i=0

YImean_Listi(4.40)

std =
√√√√ 1

20

19∑
i=0

(YImean_Listi −µ)2(4.41)

learning_rate = Min(1, std/20)(4.42)

Y t
Imean ←Y t−1

Imean + learning_rate× (Y t
Imean −Y t−1

Imean)(4.43)

Where YImean_List is a vector which contains 20 history values of YImean, µ and std are the

mean value and standard deviation of the list YImean_List. We only preserve those bounding

boxes of which the distances between YImean and ymid are less than a small value thld_y. An

example illustration of preserving and discarding bounding boxes according to the value of YImean

is shown in Figure 4.12.

49

CHAPTER 4. DESIGN

Learn the value of X Imean We learn the value of X Imean from the preserved bounding boxes

in the previous step with following formulas:

Xmean =
M∑

i=1
xmid_i(4.44)

learning_rate1= 1

Max(1,
√|X Imean − Xmean|

(4.45)

X Imean_List = [X t
Imean, X t−1

Imean, ..., , X t−19
Imean](4.46)

µ= 1
20

19∑
i=0

X Imean_Listi(4.47)

std =
√√√√ 1

20

19∑
i=0

(X Imean_Listi −µ)2(4.48)

learning_rate2= Min(1, std/20)(4.49)

X t
Imean = X t−1

Imean + learning_rate1× learning_rate2× (X t
mean − X t−1

Imean)(4.50)

Where Xmean is the mean value of xmid of the preserved bounding boxes in the previous step.

learning_rate1 is determined by the distance between the Xmean and current X Imean and

learning_rate2 is determined by the stability of history values of X Imean. By doing this, we

update the value of X Imean slowly if the new Xmean is far away from X Imean or the value of

X Imean is already get stable. We then use the value of X Imean to discard those bounding boxes

which are far away from the vertical axis defined by the value of X Imean and only preserve one

bounding boxes in each side of the vertical axis. Some examples illustrate how we preserve and

discard bounding boxes according to the value of X Imean are shown in Figure 4.13.

Tracking of interacting people

After discarding those bounding boxes according to the learned values of width, height, YImean

and X Imean, we get the bounding boxes of interacting people. Since detections may be lost in

some frames, we use the Kalman filters to track the locations for each person involved in the

interaction. The design of the Kalman filter is same as that we apply in the person segmentation,

see Section 4.1.2.

4.2.4 Generate candidates of interaction video clips

We generate the candidates of interaction videos clips by temporally sliding a 3D window with a

fixed length l and temporal stride s. The illustration of sliding the 3D windows which are used to

generate candidates of interaction video clips is shown in Figure 4.14. And the coordinates of the

50

4.2. INTERACTION DETECTION

preserve

preserve

discard
discard

X_Imean

preserve

discard
discard

X_Imean

preserve
discard

discard

X_Imean

a). Preserve two bounding boxes if there are bounding boxes exist in both side of
vertical axis defined by the value of X_Imean

b). Preserve one bounding box if there are bounding boxes only exist in right side of
vertical axis defined by the value of X_Imean

c). Preserve one bounding box if there are bounding boxes only exist in left side of
vertical axis defined by the value of X_Imean

Figure 4.13: An example illustration of preserving and discarding bounding boxes according to
the value of X Imean

51

CHAPTER 4. DESIGN

x_IA_i+1,y_IA_i+1

x_IA_i,y_IA_i

x_IB_i,y_IB_i

x_IB_i+1,y_IB_i+1

Figure 4.14: The illustration of temporally sliding the 3D windows which are used to generate
candidates of interaction video clips.

sliding windows are calculated with following formulas:

(xI A_i, yI A_i)= (

∑i∗s+l
j=i∗s xA_ j

l
,

∑i∗s+l
j=i∗s yA_ j

l
) i ∈ {0,1,2, ...}(4.51)

(xIB_i, yIB_i)= (

∑i∗s+l
j=i∗s xB_ j

l
,

∑i∗s+l
j=i∗s yB_ j

l
) i ∈ {0,1,2, ...}(4.52)

(ds,de)= (i∗ s, i∗ s+ l) i ∈ {0,1,2, ...}(4.53)

Where xA_ j, yA_ j, xB_ j, yB_ j are the coordinates of the spatial bounding box of interacting people

in the jth frame, and ds,de are the starting and ending frame number of the 3D sliding window

in the time dimension.

4.2.5 Classification of interaction video clips

The interaction classifier we trained in the classification task has only 6 classes, but in the

detection task, we need an additional class ("Null") to label those video clips which do not contain

any interaction.

Training of interaction classifier for detection task

The UT-Interaction dataset only provides training videos for the 6 positive classes, so we generate

a batch of video clips by randomly cropping in the unsegmented videos, and for each that does

not overlap with any positive bounding boxes. We keep those new boxes as negative training

video clips. For simplicity, we use the average width and height of all positive bounding boxes as

the values of the width and height of the negatives and the number of frames for each negative

video clip is fixed to 64. We then use all the positive and negative training video clips to train our

interaction classifier (7 classes).

52

4.2. INTERACTION DETECTION

time

After temporal combination

Before temporal combination

Figure 4.15: A diagram of temporally combining of interaction video clips

We apply the trained interaction classifier (7 classes) to predict the class labels for all

candidates of interaction video clips and get the results in the format as below for each candidate:

{Start_No.,End_No., xA, yA, xB, yB, class_lable}.

4.2.6 Temporal combination

We first drop those candidates with negative predicted class_labels, then temporally combine

those candidates which have successive Start_No as shown in Figure 4.15.

After the temporal combination of candidates, we get many combined candidates which

consist of several original candidates. Since the predicted class labels of original candidates in a

single combination may be different, we use predicted label with the highest average confidence

as the final label for each combination.

53

C
H

A
P

T
E

R

5
EXPERIMENTAL RESULTS

The performance of the classifications and detections is significantly determined by the

pre-processing of training data, the hyper-parameters of the network and the training

parameters. A number of experiments are performed to demonstrate how those factors

influence the performance. We start with the results of how the pre-processing of training data

and the hyper-parameters of the network affect the classification accuracy based on a singleNet,

see Section 5.1.1. Finally, we give the overall experimental results of the classification and

detection tasks.

5.1 Searching of the optimal parameters

We first introduce the network model which we employ for searching of the optimal parameters.

Then, we will overall introduce the factors which would affect the classification accuracy. Finally,

we present the experimental schemes, the results, and the analyses.

5.1.1 Model

Due to the limitation of GPU memory and training time, we search the optimal parameters

of the data pre-processing and the network on a singleNet which is only composed of a global

interaction feature descriptor instead of the hierarchical interaction feature descriptor and a

softmax classifier. The architecture of the singleNet is illustrated in Figure 5.1. We assume

that if the parameters are optimal for the singleNet, then they are also optimal parameters for

the fullNet which is composed of the hierarchical interaction feature descriptor and a softmax

classifier, see Section 3.1.1, because they have very similar network model. Due to that we only

need to search the optimal parameters by comparing the loss and classification accuracy between

55

CHAPTER 5. EXPERIMENTAL RESULTS

Data
Pre-Processing

3D-ConvNet
Global Interaction
Feature Descriptor

Softmax Classifier

Global Interaction
Features Interaction LabelTraining Data

Testing Data

Figure 5.1: The architecture of the singleNet

different parameter settings, it is not necessary to evaluate them on all data. For the sake of

saving training time, it is reasonable to use part of the data instead of the all. So, all training

and testing video used in the experiments of this section are from the UT-Interaction dataset

set1, see Section 2.4.2.

5.1.2 Assumptions and Factors and the default parameter setting

Since there are many factors which influence the classification accuracy, and many parameters

in each factor, it is impossible to search the optimal parameters by going through all the model

parameters, at least under our current resource conditions. we test the effects of each parameter

on the X as if they are independent. Based on this assumption, we have a set of default parameters

as shown in Table 5.1. We only adjust the parameters of one factor, keep the other parameters

as default value, and observe the experimental results. At last, we use the combination of each

factor’s optimal parameter as our network’s parameters and it is expected to be close to the

optimal parameter combination.

5.1.3 Experiments

5.1.3.1 Initialization of the network parameters

Experimental scheme To observe how much the initial values of the weights affect the

classification accuracy, we evaluated two initialization methods, including normal distribution

with zero mean and "Xavier" method [8]. We evaluated the "Xavier" initialization with the uniform

distribution to compare the performance between the two main-stream initialization schemes.

We initialize all biases to 0.1 when we evaluate the weights initializations.

It’s possible and common to initialize the biases to zero, but we only tested non-zero initial

biases because we use ReLU non-linearities and non-zero initialization of biases ensures that

all ReLU units fire in the beginning and therefore obtain and propagate some gradient. We

evaluated 3 constant value initializations for biases, including 0,001, 0.01 and 0.1.

Experimental results and analysis The experimental results of comparison between "Xavier"

and normal distribution initialization (µ= 0,σ= 0.1) are illustrated in Figure 5.2. The experimen-

tal results of the three different initial biases are illustrated in Figure 5.3.

56

5.1. SEARCHING OF THE OPTIMAL PARAMETERS

Table 5.1: Default parameters for network and data pre-processing

No. Factors Parameters

Network

1
Initial values of the network parameters,
see Section 4.1.5.

weights = N(0,σ2), σ= 0.01
biases = 0.1

2
Dynamic adjusting of the learning rate, see
Section 4.1.5. Learning rate = 1e−4 ×2−int(epoch

4)

3 Dropout layers, see Section 4.1.3 keep_ratio = 0.5

4
Batch normalization layers, see Section
4.1.3

Yes

5
The number of convolutional layers, see
Section 4.1.3

4

6
The size of convolutional kernels, see Sec-
tion 4.1.3

3×3×3

7
The sizes of the pooling kernels, see Section
4.1.3

L1: 1×2×2
L2, L3: 2×2×2
L4: 4×2×2

8
The number of filters for each convolutional
layer, see Section 4.1.3

nof_conv1 = 32
nof_conv2 = 128
nof_conv3 = 256
nof_conv4 = 512

9
The number of output neurons for each
fully connected layer, see Section 4.1.3

noo_fc∗ = 4096

Data pre-processing

1
Data augmentation: horizontal flipping, see
Section 4.1.2 1

Yes

2
Data augmentation: random cropping, see
Section 4.1.2 1

Yes, 4 times

3
Temporal down-sampling of frames, see
Section 4.1.2 2

Yes, N=0, see 2

4 Data normalization, see Section 4.1.2 4 Yes, X i = X i−Mean(X)
Std(X)

57

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.2: The loss and classification accuracy vs. training epochs comparison between "Xavier"
and normal distribution initialization.

From the experimental results, we can get the following conclusions about the initializations

of network parameters (weights and biases):

1. Under the same network configurations, "Xavier" initialization gets more stable classifica-

tion accuracy that the normal distribution initialization.

2. The evaluating loss of the "Xavier" initialization is slightly larger that that of the normal

distribution initialization. But this may be caused by the far larger initial loss value of the

normal distribution initialization. There is no obvious over-fitting for both initializations.

3. For the initialization of biases, networks with relative larger initial biases can converge

faster and achieve better classification accuracy with the ReLU non-linearity.

So, we will employ "Xavier" initialization in our network and set the initial biases to 0.1.

5.1.3.2 Learning Rate

Experimental scheme We tested both constant learning rate and decaying learning rate over

the period of the training process. For constant learning rate, we tested values including 0.001,

0.0001 and 0.00001. We also tested the case that the learning rate is divided by 2 after every 3

epochs with initial value 0.0001.

Experimental results and analysis The experimental results of the loss and classification

accuracy vs. training epochs comparison between networks with different learning rate are

illustrated in Figure 5.4. According to the experimental results, we can conclude the following for

the learning rate:

58

5.1. SEARCHING OF THE OPTIMAL PARAMETERS

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Evaluating accuray

initial biases = 0.1
initial biases = 0.01
initial biases = 0.001

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Evaluating loss
initial biases = 0.1
initial biases = 0.01
initial biases = 0.001

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Training accuracy

initial biases = 0.1
initial biases = 0.01
initial biases = 0.001

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Training loss
initial biases = 0.1
initial biases = 0.01
initial biases = 0.001

Figure 5.3: The loss and classification accuracy vs. training epochs comparison between different
initial biases.

1. Larger learning rate, e.g. 1e−3, accelerates the convergence speed of the network, but it is

also easier to over-fit to the training data and even causes unstability.

2. The training process with smaller learning rate, e.g. 1e−5, converges slowly.

3. The training processes with learning rate 1e−4 has good balance between the performance

and convergency speed. And whether decay the learning rate over to the training epochs

doesn’t affect much of the performance.

So, we set the learning rate to 1e−4 for our network.

5.1.3.3 Dropout layer

Experimental scheme Dropout layer is considered as an extremely effective way to reduce

over-fitting in neural network,see Section 4.1.3. We tested different values of the probability p,

59

CHAPTER 5. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Evaluating accuray

lr=1e-3
lr=1e-4
lr=1e-4 with decay
lr=1e-5

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Evaluating loss
lr=1e-3
lr=1e-4
lr=1e-4 with decay
lr=1e-5

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Training accuracy

lr=1e-3
lr=1e-4
lr=1e-4 with decay
lr=1e-5

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Training loss
lr=1e-3
lr=1e-4
lr=1e-4 with decay
lr=1e-5

Figure 5.4: The loss and classification accuracy vs. training epochs comparison between networks
with different learning rate.

including 0.8, 0.5, 0.2.

Experimental results and analysis The experimental results of the loss and classification

accuracy vs. training epochs comparison between different keep probabilities of the dropout

layers are illustrated in Figure 5.5.

According to the experimental results, we conclude the following for the keep probabilities in

the dropout layers:

1. Larger keep probability (0.8) in the dropout layers makes the network converge faster, but

the classification accuracy remains at a lower level after convergence.

2. Smaller keep probability (0.2) in the dropout layers makes the network converge slower,

but the final classification accuracy is higher after convergence.

60

5.1. SEARCHING OF THE OPTIMAL PARAMETERS

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Evaluating accuray

keep prob = 0.5
keep prob = 0.8
keep prob = 0.2

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Evaluating loss
keep prob = 0.5
keep prob = 0.8
keep prob = 0.2

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Training accuracy

keep prob = 0.5
keep prob = 0.8
keep prob = 0.2

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Training loss
keep prob = 0.5
keep prob = 0.8
keep prob = 0.2

Figure 5.5: The loss and classification accuracy vs. training epochs comparison between different
keep probabilities in the dropout layers.

3. 0.5 is a reasonable value of keep probability because it has a good balance between perfor-

mance and convergence speed.

So, we set the keep probabilities to 0.5 in our network.

5.1.3.4 Batch normalization layer

Experimental scheme To observe the effects of batch normalization (BN) layers, see Section

4.1.3, we compared the loss and classification accuracy between the network with and without

BN layers. The only difference between the two networks is whether there are BN layers after

the first two ReLU layers.

Experimental results and analysis The experimental results of the loss and classification

accuracy vs. training epochs comparison between networks with and without BN layers are

61

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.6: The loss and classification accuracy vs. training epochs comparison between networks
with and without batch normalization layers.

illustrated in Figure 5.6.

According to the experimental results, we can say about the batch normalization layers:

1. The convergence speed between the network with and without BN layers is similar.

2. The network with batch normalization layers gets slightly higher classification accuracy,

about 0.92, than the network without batch normalization layers, about 0.88.

So, we add batch normalization layers in our network.

5.1.3.5 The number of the convolutional layers

Experimental scheme Generally, the network can get stronger global information represent-

ing ability and nicer non-linearity by applying multiple convolutional layers. In our project, we

tested 3 networks with different numbers of 3D convolutional layers: 4, 5 and 6, respectively. The

structures and parameters of the three networks are illustrated in Figure 5.7.

Experimental results and analysis According to the experimental results, as shown in

Figure 5.8, we can get following conclusions about the different number of the 3D convolutional

layers:

1. The convergence speed is not affected by the number of the 3D convolutional layers.

2. The 3DConvNet with 5 convolutional layers gets the best classification accuracy among the

three. This may because that the more layers the stronger global information representing

ability. But at the same time, the network with more layers also needs to be trained on

richer training data, else, it may perform even worse, e.g. the case of the 3DConvNet with 6

convolutional layers.

62

5.1. SEARCHING OF THE OPTIMAL PARAMETERS

3D Conv (32)

3D Pooling

3D Conv (128)

3D Pooling

3D Conv (256)

3D Pooling

3D Conv (512)

3D Pooling

Fully
Connected

Fully
Connected

softm
ax

L1 L2 L3 L5 L6
a). 3D-ConvNet with 4 convolutional layers, 4 pooling layers and 2 fully-connected layers

L4

3D Conv (32)

3D Pooling

3D Conv (128)

3D Pooling

3D Conv (256)

3D Pooling

3D Conv (512)

3D Pooling

Fully
Connected

Fully
Connected

softm
ax

L1 L2 L3 L6 L7
b). 3D-ConvNet with 5 convolutional layers, 5 pooling layers and 2 fully-connected layers

L4
3D Conv (512)

3D Pooling

L5

3D Conv (32)

3D Pooling

3D Conv (128)

3D Pooling

3D Conv (256)

3D Pooling

3D Conv (512)

3D Pooling

Fully
Connected

Fully
Connected

softm
ax

L1 L2 L3 L6 L7
c). 3D-ConvNet with 6 convolutional layers, 5 pooling layers and 2 fully-connected layers

L4

3D Conv (512)

3D Pooling

L5a

3D Conv (512)

L5b

Figure 5.7: The structures and parameters of the three 3DConvNets which have different number
of convolutional layers.

So, we set 5 convolutional layers in our 3DConvNet.

5.1.3.6 The size of the convolutional kernel

Experimental scheme We evaluate how much the performance relates to the size of convo-

lutional kernels by comparing four networks with different convolutional kernel sizes: 3×3×3,

3×4×4, 4×4×4 and 4×4×3, see Section 4.1.3 for the format of kernel size. We set all convolutional

layers to use the same kernel size in each 3DConvNet.

Experimental results and analysis According to the experimental results, as shown in

Figure 5.9, we found that there is no obvious difference both in the convergence speed and

classification accuracy among the networks with different convolutional kernel sizes. So, we keep

using the size of 3×3×3 for all convolutional kernels.

5.1.3.7 The number of filters of each convolutional layer

Experimental scheme We use a 3DConvNet with 4 convolutional layers to evaluate the

relationship between the performance and the number of filters of each convolutional layer. We

performed four experiments which adjust the number of filters for only one convolutional layer

each time, including 1) nof _conv1 32 → 64, 2) nof _conv2 128 → 64, 3) nof _conv3 256 → 512,

and 4) nof _conv4 512→ 256.

63

CHAPTER 5. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Evaluating accuray

4 3DConv layers
5 3DConv layers
6 3DConv layers

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Evaluating loss
4 3DConv layers
5 3DConv layers
6 3DConv layers

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Training accuracy

4 3DConv layers
5 3DConv layers
6 3DConv layers

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Training loss
4 3DConv layers
5 3DConv layers
6 3DConv layers

Figure 5.8: The loss and classification accuracy vs. training epochs comparison between networks
with different convolutional layers.

Experimental results and analysis The experimental results are illustrated in Figure

5.10. The numbers listed in the legend represent the numbers of the filters for each convo-

lutional layer, e.g. [32,128,256,512] represents nof _conv1= 32,nof _conv2= 128,nof _conv3=
256,nof _conv4= 512.

According to the experimental results, the networks perform a little better when the numbers

of the filters are [32,128,256,512] and [32,128,512,512], while the performance is a little worse

when the numbers of the filters are [32,64,256,512]. It is hard to explain why they perform

better or worse from the limited experimental data. We just use [32,128,256,512] to configure

the convolutional layers of our network.

5.1.3.8 The number of neurons of each fully connected layer

Experimental scheme There are two fully connected layers in our network. In this experi-

ment, we compared the networks with different numbers of output neurons in the fully connected

layers. Specifically, we compared three cases, including [2048,2048], [4096,2048] and [4096,4096],

64

5.1. SEARCHING OF THE OPTIMAL PARAMETERS

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Evaluating accuray

3x 3x3 convolutional kernels
4x 4x3 convolutional kernels
4x 4x4 convolutional kernels
3x 4x4 convolutional kernels

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Evaluating loss
3x 3x3 convolutional kernels
4x 4x3 convolutional kernels
4x 4x4 convolutional kernels
3x 4x4 convolutional kernels

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Training accuracy

3x 3x3 convolutional kernels
4x 4x3 convolutional kernels
4x 4x4 convolutional kernels
3x 4x4 convolutional kernels

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Training loss
3x 3x3 convolutional kernels
4x 4x3 convolutional kernels
4x 4x4 convolutional kernels
3x 4x4 convolutional kernels

Figure 5.9: The loss and classification accuracy vs. training epochs comparison between networks
with different sizes of the convolutional kernels.

where the numbers in the square bracket represent the number of output neurons of the fully

connected layers, e.g. [2048,2048] represents noo_ f c6= 2048,noo_ f c7= 2048, where noo_ f c6 is

the notation of the number of output neurons of the FC6 layer.

Experimental results and analysis The experimental results are shown in Figure 5.11.

According to the experimental results, we conclude:

1. The network converges a little faster with [4096,4096] output neurons, while there is no

obvious difference between [2048,2048] and [4096,2048].

2. The network with [4096,4096] output neurons also performs a little better than the net-

works with [2048,2048] and [4096,2048] output neurons.

So, we use [4096,4096] to configure the fully connected layers of the network.

65

CHAPTER 5. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Evaluating accuray

[32,128,256,512]
[64,128,256,512]
[32,64,256,512]
[32,128,512,512]
[32,128,256,256]

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Evaluating loss
[32,128,256,512]
[64,128,256,512]
[32,64,256,512]
[32,128,512,512]
[32,128,256,256]

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Training accuracy

[32,128,256,512]
[64,128,256,512]
[32,64,256,512]
[32,128,512,512]
[32,128,256,256]

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Training loss
[32,128,256,512]
[64,128,256,512]
[32,64,256,512]
[32,128,512,512]
[32,128,256,256]

Figure 5.10: The loss and classification accuracy vs. training epochs comparison between networks
with different number of filters in each convolutional layer.

5.1.3.9 Data augmentation: horizontal flipping

Experimental scheme Horizontal flipping is a common technique to augment the training

data, especially for the small scale training data, see Section 4.1.2 1. We evaluated two networks

trained on the data with and without horizontal flipping.

Experimental results and analysis According to the experimental results, shown in Figure

5.12, the network trained on the data with horizontal flipping significantly outperforms the

network which is trained on the data without horizontal flipping. So, we adopt the horizontal

flipping technique to augment our training data.

66

5.1. SEARCHING OF THE OPTIMAL PARAMETERS

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Evaluating accuray

[4096,4096]
[4096,2048]
[2048,2048]

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Evaluating loss
[4096,4096]
[4096,2048]
[2048,2048]

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Training accuracy

[4096,4096]
[4096,2048]
[2048,2048]

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Training loss
[4096,4096]
[4096,2048]
[2048,2048]

Figure 5.11: The loss and classification accuracy vs. training epochs comparison between networks
with different number of output neurons in each fully connected layer.

5.1.3.10 Data augmentation: random cropping

Experimental scheme N-time random cropping is another commonly used technique to

augment small scale training data, see Section 4.1.2 1. We evaluated three networks trained on

the data with 3 different random cropping configurations, including 1-time random cropping,

2-time random cropping, and 4-time random cropping.

Experimental results and analysis The experimental results are illustrated in Figure 5.13.

According to the experimental results, the random cropping technique does help a lot in training

the network. The network trained on the data with 4-time random cropping outperforms that

with 2-time random cropping, and the network trained on the data with 2-time random cropping

outperforms that with 1-time random cropping. So, we use the 4-time random cropping to augment

our training data in the project.

67

CHAPTER 5. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Evaluating accuray

With RLFlipping
Without RLFlipping

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Evaluating loss
With RLFlipping
Without RLFlipping

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Training accuracy

With RLFlipping
Without RLFlipping

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Training loss
With RLFlipping
Without RLFlipping

Figure 5.12: The loss and classification accuracy vs. training epochs comparison between networks
trained on the data with and without horizontal flipping.

5.1.3.11 Temporal down-sampling of frames

Experimental scheme Temporal down-sampling of frames is a method which we applied to

make each video clip contains more temporal information, see Section 4.1.2 2. We evaluated 4

cases: including temporal down-sampling with temporal strides 1 frame, 2 frames, 3 frames and

evenly sample 16 frames from each video (temporal down-sampling = 0).

Experimental results and analysis The experimental results are illustrated in Figure 5.14.

The network trained on the data which are evenly sampled 16 frames from each input video

performs the best. And the other three network have similar performance. So, we set the temporal

down-sampling mode to 0 to pre-process our training data.

68

5.1. SEARCHING OF THE OPTIMAL PARAMETERS

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Evaluating accuray

random cropping = 4
random cropping = 2
random cropping = 1

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Evaluating loss
random cropping = 4
random cropping = 2
random cropping = 1

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Training accuracy

random cropping = 4
random cropping = 2
random cropping = 1

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Training loss
random cropping = 4
random cropping = 2
random cropping = 1

Figure 5.13: The loss and classification accuracy vs. training epochs comparison between networks
trained on training data with different random cropping configurations.

5.1.3.12 Data normalization

Experimental scheme Normalizing the data before feeding to the network is a common

method, see Section 4.1.2 4. In this experiment, we evaluated three different data normalization

methods, including: 1) directly scale the value of X from 0−255 to 0−1, 2) subtract the mean value

(X −mean), 3) subtract the mean value and divide it by the standard deviation ((X −mean)/std).

Experimental results and analysis The experimental results are illustrated in Figure 5.15.

According to the experimental results, the network trained on the data with normalization mode

(X −mean) performs best among the three, and the other two networks have similar performance.

So, we use the normalization mode (X −mean) to normalize the data in our project.

69

CHAPTER 5. EXPERIMENTAL RESULTS

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Evaluating accuray

temporal dowmSampling = 0
temporal downSampling = 1
temporal downSampling = 2
temporal downSampling = 3

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Evaluating loss
temporal dowmSampling = 0
temporal downSampling = 1
temporal downSampling = 2
temporal downSampling = 3

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Training accuracy

temporal dowmSampling = 0
temporal downSampling = 1
temporal downSampling = 2
temporal downSampling = 3

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Training loss
temporal dowmSampling = 0
temporal downSampling = 1
temporal downSampling = 2
temporal downSampling = 3

Figure 5.14: The loss and classification accuracy vs. training epochs comparison between networks
trained on training data with different temporal down-sampling strides.

5.1.4 Conclusions of parameter searching

According to all of the above experiments which we performed for parameter searching, we can

obtain following conclusions:

1. In the network side, the factors which affect the performance much are not the hyper-

parameters of the network but those factors in the training processing, including the

initialization of network parameters, learning rate and the keep probability of the dropout

layers.

2. In the data pre-processing side, almost all factors except the data normalization method

affect the performance of the network much. Such conclusion also indicates that the data is

the critical factor of our project.

70

5.2. THE EXPERIMENTAL RESULTS OF OF THE INTERACTION CLASSIFICATION

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Evaluating accuray

X - mean
(X - mean)/std
X

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Evaluating loss
X - mean
(X - mean)/std
X

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

Training accuracy

X - mean
(X - mean)/std
X

0 1 2 3 4 5 6 7
Training epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

Training loss
X - mean
(X - mean)/std
X

Figure 5.15: The loss and classification accuracy vs. training epochs comparison between networks
trained on training data with different normalization methods.

5.2 The experimental results of of the interaction classification

5.2.1 Train the network from scratch

Experimental scheme

In this step, we train the fullNet on UT-Interaction dataset from scratch. We face a new problem

when we try to apply all optimal parameter settings from singleNet to fullNet. That is the

overall GPU memory allocation requirement for the fullNet is larger than 24GiB which is

beyond the GPU resource we have in hand. So, we slightly adjust the hyper-parameters of the

fullNet. The adjusted hyper-parameters are the values of noo_ f c5 and noo_ f c6 , and both from

4096 to 2048. To compare the performance between the fullNet and singleNet, we build three

models: a). fullNet with adjusted hyper-parameters notated as fullNet_2048, b). singleNet with

optimal hyper-parameters notated as singleNet_4096, and c). singleNet with adjusted hyper-

71

CHAPTER 5. EXPERIMENTAL RESULTS

parameters notated as singleNet_2048. The data pre-processing methods and parameter settings,

the architecture and hyper-parameter settings of the network, and the training settings are

illustrated in the Table 5.2.

Experimental results

The classification accuracy comparisons among different models are illustrated in Table 5.3. The

classification accuracy of the singleNet_4096 is slightly better than that of the f ullNet_2048.

But this doesn’t mean that the singleNet always performances better than that of the f ullNet,

because the singleNet_2048 only gets 82.4% classification accuracy. So, the performance of the

f ullNet_4096 is expected to achieve better performance than the f ullNet_2048 according to the

comparison between the singleNet_4096 and the singleNet_2048, but we don’t have enough

GPU memory resource to run the model. The classification accuracy of our model are not as good

as the works of Raptis et al. [27] and Zhang et al. [43]. One possible reason is that both the above

two works take body parts into consideration, so, they can focus on these discriminative parts

and thus get higher performance. While, in our method, we use deep learning method to learn

features from the whole video not from some specific body parts.

5.3 The experimental results of of the interaction detection

The goal of interaction detection in UT-Interaction is to locate interactions spatially and tempo-

rally in a given un-segmented video which contains approximately 6 interactions in each single

video. Since the performance of the interaction detection is highly dependent on the quality of

the interacting people detection, we first present the results of the interacting people detection,

then the details of the performance of the interaction detection.

5.3.1 Results of the interacting people detection

Experimental scheme

We use the overlap ratio between the detected bounding boxes of the interacting people and the

bounding boxes of the ground truth to measure the quality of the interacting people detection for

each video. The detailed method includes:

1. Detect the interacting people at each frame.

2. Calculate the overlap ratio of the bounding boxes between the detected one and the one

from the ground truth with the following formula:

(5.1) overlap ratio = Detection∩Ground Truth
Detection∪Ground Truth

72

5.3. THE EXPERIMENTAL RESULTS OF OF THE INTERACTION DETECTION

Table 5.2: Parameter, network architecture and training settings for network and data pre-
processing.

No. Factors Parameters

Network

1
Initial values of the network parameters,
see Section 4.1.5.

weights : "Xavier" initialization
biases : constant 0.1

2
Dynamic adjusting of the learning rate, see
Section 4.1.5.

Learning rate = 1e−4

3 Dropout layers, see Section 4.1.3 keep_ratio = 0.5

4
Batch normalization layers, see Section
4.1.3

Yes

5
The number of convolutional layers, see
Section 4.1.3

5

6
The size of convolutional kernels, see Sec-
tion 4.1.3

3×3×3

7
The sizes of the pooling kernels, see Section
4.1.3

L1: 1×2×2
L2, L3, L4: 2×2×2
L5: 2×1×1

8
The number of filters for each convolutional
layer, see Section 4.1.3

nof_conv1 = 32
nof_conv2 = 128
nof_conv3 = 256
nof_conv4 = 512
nof_conv5 = 512

9
The number of output neurons for each
fully connected layer, see Section 4.1.3

noo_fc∗ = 4096

Data pre-processing

1
Data augmentation: horizontal flipping, see
Section 4.1.2 1

Yes

2
Data augmentation: random cropping, see
Section 4.1.2 1

Yes, 4 times

3
Temporal down-sampling of frames, see
Section 4.1.2 2

Yes, N=0, see 2

4 Data normalization, see Section 4.1.2 4 Yes, X i = X i −Mean(X)

73

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.3: The performance comparisons among different models, evaluated on UT-Interaction
set1.

Model Classification Accuracy

our fullNet_2048 87.4%

our singleNet_4096 88.8%

our singleNet_2048 82.4%

Raptis&Sigal [27] 93.3%

Zhang et al. [43] 90%

Ryoo [29] 85%

Table 5.4: The average spatial overlap ratios of the bounding boxes between the detections and
the ground truth for each video, evaluated on UT-Interaction set1.

Videos seq1 seq2 seq3 seq4 seq5 seq6 seq7 seq8 seq9 seq10

Mean overlap
ratios

0.72 0.68 0.64 0.67 0.68 0.68 0.75 0.70 0 0.70

3. Average the overlap ratios over all frames which are annotated containing interactions by

the ground truth:

(5.2) mean overlap ratio = 1
M

M∑
i=1

overlap ratio

Experimental results

The detailed mean spatial overlap ratios for all videos of the UT-Interaction dataset set1 are

illustrated in Table 5.4. And the qualitative experimental results are illustrated in Figure 5.16

with interacting people bounding boxes annotated for set1, the red one is the detection and the

green one is the ground truth. The interacting people detections for the sequences 1 to 4 are easy

since there are only two interacting people appear in the scene, but it is more challenging to

locate the positions of interacting people for sequences 5 to 10, because both interacting people

and irrelevant pedestrians are present in the scene. We adopt the method mentioned in Chapter

4.2.3 to exclude the irrelevant people. From the experimental results shown in Figure 5.16, we

successfully locate the spatial positions of interacting people for all videos except sequence 9,

because the relative position between the irrelevant people are very close to the target interacting

people and they execute the activities simultaneously.

74

5.3. THE EXPERIMENTAL RESULTS OF OF THE INTERACTION DETECTION

a). Sample frames from the results of interacting people detection for seq1 to seq4

b). Sample frames from the results of interacting people detection for seq5 to seq10

Figure 5.16: Sample frames of the results of the spatial interacting people detection. The ground
truth and detections are marked in green and red bounding boxes, respectively.

75

CHAPTER 5. EXPERIMENTAL RESULTS

5.3.2 Results of the interaction detection

Experimental scheme

Because the classification accuracy of the singleNet_4096 is slightly better than that of the

f ullNet_2048, we choose the trained singleNet_4096 as the interaction classifier for the in-

teraction detection task. The 7-class singleNet_4096 interaction classifier is trained on the

UT-Interaction dataset set1 from scratch with parameters listed in the Table 5.2.

Since we already have the spatial locations of the interacting people after the process of the

interacting people detection. We only need to slide a 3D window to generate candidate video clips.

The value of 3D window depth l and sliding stride s are set to 48 and 8 respectively, see Section

4.2.4. We perform the interaction detection on the 10 unsegmented videos of the UT-Interaction

dataset set1, see Section 2.4.2.

Experimental results

The experimental results of the interaction detection are illustrated in Figure 5.17 which shows

the temporal overlaps between the interaction detections and the ground truth. The horizontal

frame-axis is the time dimension (frames), and the vertical sequences-axis is the video sequences

(10 for total). The time durations of the ground truth are annotated with green lines and their

interaction class labels are annotated with green text above the corresponding lines. And the

time durations and interaction class labels of the detections are annotated with red lines and

texts, respectively.

According to the results, there is no interaction with class label "3" ("Pointing") correctly

detected by our interaction detector. This is because that we always draw our interacting bounding

boxes over two interacting people, while only the location of the main actor was annotated in the

ground truth, which is illustrated in Figure 5.18. We also failed to detect any interaction in the

video sequence 9 since we have already failed to spatially detect the interacting people in this

video. The precision and recall of the interaction detection under the configuration l = 48, s = 8

evaluated on the 10 video sequences of the UT-Interaction set1 are illustrated in Table 5.5. The

intersection over union (IOU) between a detection and the ground truth is required to be larger

than 0.5 according to the requirement of the dataset, see Section 2.4.2. So, the overall precision

and recall of our interaction detection evaluated on these 10 video sequences are 0.4 and 0.42,

respectively. While if we lower the IOU threshold to 0.3, the overall precision and recall can be

0.67 and 0.63, respectively. The precision and recall score without consideration of class "Pointing"

is illustrated in Table 5.6. And the F1 scores over the different IOU thresholds are illustrated in

Figure 5.19. Where F1 score is defined as following:

(5.3) F1 socre = 2× precision× recall
precision+ recall

76

5.3. THE EXPERIMENTAL RESULTS OF OF THE INTERACTION DETECTION

0 200 400 600 800 1000 1200 1400 1600 1800 2000
frames

0

1

2

3

4

5

6

7

8

9

10

vi
de

o
se

qu
en

ce
s

4 2 1 3 0 5
4 2 1 0 5

4 5 0 2 1 3
4 4 0 2 1

4 2 1 3 5 0
1 0 1 4 2 1 5 0

4 1 2 0 3 5
4 1 0 4 5 1

0 4 2 1 3 5
0 2 1

2 5 1 3 0
2 5 1 0 5

0 5 4 2 3 1
1 1 0 5 4 2 1

0 2 4 4 5 3 1
1 1 0 2 4 4 5 4 1

0 0 2

0 4 5 3 1 2
0 4 5 1 2 1

Figure 5.17: The temporal overlaps between the interaction detections and the ground truth,
evaluated on the 10 unsegmented videos of the UT-Interaction dataset set1. Ground truth data
are marked in green, and the detections are marked in red.

77

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.18: Spatial detection of interacting people. The green bounding boxes are the ground
truth, while the reds are the detection results. For the interactions with class label "3" ("Pointing"),
only one person is annotated in the ground truth, while both interacting people are annotated by
our detector.

Table 5.5: The precision and recall of the interaction detection over the 10 video sequences of the
UT-Interaction dataset set1, detector configuration (l = 48, s = 8).

Videos
overlapRatio > 0.1 overlapRatio>0.3 overlapRatio>0.5

precision recall precision recall precision recall

seq1 1.0 0.83 1.0 0.83 0.6 0.5

seq2 0.8 0.67 0.8 0.67 0.6 0.5

seq3 0.63 0.83 0.5 0.67 0.5 0.67

seq4 0.67 0.67 0.67 0.67 0.33 0.33

seq5 1.0 0.5 1.0 0.5 0 0

seq6 0.8 0.8 0.8 0.8 0.6 0.6

seq7 0.71 0.83 0.71 0.83 0.57 0.67

seq8 0.56 0.71 0.56 0.71 0.44 0.57

seq9 0.17 0.17 0 0 0 0

seq10 0.83 0.83 0.67 0.67 0.33 0.33

overall 0.72 0.68 0.67 0.63 0.4 0.42

78

Table 5.6: The precision and recall of the interaction detection over the 10 video sequences of the
UT-Interaction dataset set1 without class "Pointing", detector configuration (l = 48, s = 8).

Videos
overlapRatio > 0.1 overlapRatio>0.3 overlapRatio>0.5

precision recall precision recall precision recall

seq1 1.0 1.0 1.0 1.0 0.6 0.6

seq2 0.8 0.8 0.8 0.8 0.6 0.6

seq3 0.63 1.0 0.5 0.8 0.5 0.8

seq4 0.67 0.8 0.67 0.8 0.33 0.4

seq5 1.0 0.6 1.0 0.6 0 0

seq6 0.8 1.0 0.8 1.0 0.6 0.75

seq7 0.71 1.0 0.71 1.0 0.57 0.8

seq8 0.56 0.83 0.56 0.83 0.44 0.6

seq9 0.17 0.2 0 0 0 0

seq10 0.83 0.1.0 0.67 0.8 0.33 0.4

overall 0.72 0.82 0.67 0.76 0.4 0.5

CHAPTER 5. EXPERIMENTAL RESULTS

0.0 0.1 0.2 0.3 0.4 0.5
Intersection over union threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

without class <Pointing>
with class <Pointing>

Figure 5.19: The F1 score over different IOU threshold.

80

C
H

A
P

T
E

R

6
CONCLUSIONS AND FUTURE WORKS

We introduced a hierarchical deep learning model for both interaction classifications

and spatiotemporal interaction detections in the videos. The key point for the video

classifications is how to design the feature descriptor which can well represent the

spatial and temporal information of the videos. While the task of spatiotemporal interaction

detections is more difficult since we have to not only say whether an interaction has occurred but

also determine the spatial and temporal locations for the interaction from an unsegmented video.

6.1 Conclusions for the interaction classification task

The experimental results show that our 3DConvNet deep learning model is a practical way

to describe spatiotemporal features for the videos. We achieved 88.8% classification accuracy

with our singleNet_4096 model. Though it is not the state-of-art classification performance on

the UT-Interaction dataset, the classification accuracy of our hierarchical model is expected to

perform better than the singleNet according to the experimental results.

Another interesting finding of our thesis project is that the critical factors which determine

the classification performance of the network are not the hyper-parameters of the network itself

but the training data, e.g. the training data augmentations and training settings, e.g. the learning

rate. Of course, such experimental results do not mean that the model hyper-parameters are not

important for the deep learning models, in contrast, they only reflect that the critical path of

our project is the limitation of the training data. So, we can further improve the classification

performance by pre-training our model on the similar interaction dataset.

81

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

6.2 Conclusions for the interaction detection task

We introduced a novel method to detect the interactions by two separated steps: spatial inter-

acting people detection and temporal interaction detection. By doing this, we can accelerate the

interaction detections in the videos and achieved a decent precision (0.4) and recall (0.42) score

under the setting of intersection over union threshold > 0.5.

Despite the good performance of the interaction detections, we still have two significant issues

on interaction detections, including 1) our method of the spatial detection of interacting people

currently lacks the ability to correctly locate the multi-group interacting people who execute

interactions simultaneously, 2) our interaction detection model can’t correctly classify the video

clips with the class label "Pointing" due to special resolutions of those interactions. we always

assume that the bounding boxes of the interactions always contain two interacting people while

there are only the main actors contained in the ground truth for those interactions with the class

label "Pointing".

6.3 Future work

There are some possible future works to further improve the performance of the interaction

classifications and detections.

For the interaction classifications:

1. Pre-train the network on similar interaction dataset rather than train it from scratch on

the target dataset, because the target dataset UT-Interaction is a relatively small scale

video interaction dataset for training a deep learning network. Because for a the high

dimensional, more high quality training samples usually mean higher performance.

2. Employ a new training method which is similar to the hard negative mining. The main

idea is we first train the network with the training videos from the dataset, then we use the

trained model to predict the interaction class label for those video clips which are spatially

and temporally cropped from the raw training videos, and finally, use those video clips

which are negatively predicted by the model to re-fine the trained model. This method can

train the model to discriminate those videos which are previously hard for the model to

recognize.

3. Implement the f ullNet_4096 model by finding out some other platforms which consume

less GPU memory than tensorFlow.

The interaction detections:

82

6.3. FUTURE WORK

1. Spatial locating of the multi-group interacting people who execute interactions simulta-

neously. Our model currently lacks of the ability to spatially locate the multi groups of

interacting people who execute the interactions simultaneously, so, we failed to detect the

interactions in the videos which contain multi-group interacting people who execute inter-

actions simultaneously. We can further discriminate the interacting people by detection of

the relative positions and face orientations of all people present in the scene.

2. Another important issue which still needs to be solved is the real-time detection. The

two-step method can accelerate the interaction detections, but it is still far from real-time

applications. Currently, the time of performing interaction detection on a 2000-frame,

720x480 resolution video is about 6 minutes (excluding the time consumed by the spatial

detection of all individuals in each frame). Simplifying the algorithms and some redundant

computing are possible to reduce the timing consuming, but it is still very hard to build a

real-time interaction detector based on our architecture and computing platform (GPU).

But, implementing our interaction detection architecture on the hardware platforms, e.g.

FPGA or ASIC, are still possible for the real-time interaction detections.

83

BIBLIOGRAPHY

[1] M. BACCOUCHE, F. MAMALET, C. WOLF, C. GARCIA, AND A. BASKURT, Sequential deep

learning for human action recognition, Springer, (2011), pp. 29 – 39.

[2] W. CHOI AND S. SAVARESE, A unified framework for multi-target tracking and collective

activity recognition, ECCV, (2012).

[3] N. DALAL AND B. TRIGGS, Histograms of oriented gradients for human detection, CVPR,

(2005).

[4] N. DALAL AND B. TRIGGS, Histograms of oriented gradients for human detection, CVPR,

(2005).

[5] N. DALAL, B. TRIGGS, AND C. SCHMID, Human detection using oriented histograms of flow

and appearance, ECCV, (2006).

[6] P. DOLLAR, V. RABAUD, G. COTTRELL, AND S. BELONGIE, Human detection using oriented

histograms of flow and appearance, VS-PETS, (2005).

[7] G. FLITTON, T. BRECKON, AND N. MEGHERBI BOUALLAGU, Object recognition using 3d

sift in complex ct volumes, Proceedings of the British Machine Vision Conference, (2010),

pp. 11.1–11.12.

[8] X. GLOROT AND Y. BENGIO, Understanding the difficulty of training deep feedforward

neural networks, (2010).

[9] K. HE, X. ZHANG, S. REN, AND J. SUN, Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification, ICCV, (2015), pp. 1026– 1034.

[10] F. C. HEILBRON, V. ESCORCIA, AND B. GHANEM, Activitynet: A large-scale video benchmark

for human activity understanding, CVPR, (2015).

[11] S. IOFFE AND C. SZEGEDY, Batch normalization: Accelerating deep network training by

reducing internal covariate shift, (2015).

[12] S. JI, W. XU, M. YANG, AND K. YU, 3d convolutional neural networks for human action

recognition, IEEE TPAMI, (2013).

85

BIBLIOGRAPHY

[13] A. KARPATHY, G. TODERICI, S. SHETTY, T. LEUNG, R. SUKTHANKAR, AND L. FEI-FEI,

Large-scale video classification with convolutional neural networks, CVPR, (2014).

[14] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, (2015).

[15] A. KLASER, M. MARSZALEK, AND C. SCHMID, A spatio-temporal descriptor based on

3d-gradients, British Machine Vision Association, (2008), pp. 275:1–10.

[16] Y. KONG, Y. JIA, AND Y. FU, Learning human interaction by interactive phrases, ECCV,

(2012).

[17] A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification with deep

convolutional neural networks, NIPS, (2012).

[18] Y. LECUN, L. BOTTOU, Y. BENGIO, AND P. HAFFNER, Gradient based learning applied to

document recognition, IEEE, (1998).

[19] D. G. LOWE, Object recognition from local scale-invariant features, ICCV, (1999).

[20] , Distinctive image features from scale-invariant keypoints, IJCV, (2004).

[21] M. MARSZAŁEK, I. LAPTEV, AND C. SCHMID, Actions in context, CVPR, (2009).

[22] S. NARAYAN, M. S. KANKANHALLI, AND K. R. RAMAKRISHNAN, Action and interaction

recognition in first-person videos, CVPR, (2014).

[23] J. Y.-H. NG, M. HAUSKNECHT, S. VIJAYANARASIMHAN, O. VINYALS, R. MONGA, AND

G. TODERICI, Beyond short snippets: Deep networks for video classification, CVPR,

(2015).

[24] F. NING, D. DELHOMME, Y. LECUN, F. P. L. BOTTOU, AND P. E. BARBANO, Toward auto-

matic phenotyping of developing embryos from videos, IEEE Trans. on Image Processing,

(2005), pp. 1360–1371.

[25] L. W. ORIT KLIPER-GROSS, ORIT KLIPER-GROSS, The action similarity labeling challenge,

IEEE Transactions on Pattern Analysis and Machine Intelligence, (2012), pp. 615–621.

[26] A. PATRON-PEREZ, M. MARSZALEK, A. ZISSERMAN, AND I. REID, High five: Recognising

human interactions in tv shows, BMVC, (2010).

[27] M. RAPTIS AND L. SIGAL, Poselet key-framing: A model for human activity recognition,

(2013).

[28] D. E. RUMELHART, G. E. HINTON, AND R. J. WILLIAMS, Learning representations by

back-propagating errors, (1986), pp. 696 – 699.

86

BIBLIOGRAPHY

[29] M. S. RYOO, Human activity prediction: Early recognition of ongoing activities from stream-

ing videos, (2011).

[30] M. S. RYOO AND J. K. AGGARWAL, Ut-interaction dataset, (2010).

[31] C. SCHULDT, I. LAPTEV, AND B. CAPUTO, Recognizing human actions: A local svm approach,

ICPR, (2004).

[32] P. SCOVANNER, S. ALI, AND M. SHAH, A 3-dimensional sift descriptor and its application

to action recognition, 15th ACM, (2007), pp. 357–360.

[33] K. SIMONYAN AND A. ZISSERMAN, Two-stream convolutional networks for action recognition

in videos, CVPR, (2014).

[34] K. SOOMRO, A. R. ZAMIR, AND M. SHAH, Ucf101: A dataset of 101 human actions classes

from videos in the wild, CRCV-TR, (2012).

[35] N. SRIVASTAVA, G. HINTON, A. KRIZHEVSKY, I. SUTSKEVER, AND R. SALAKHUTDINOV,

Dropout: A simple way to prevent neural networks from overfitting, (2014).

[36] D. TRAN, L. BOURDEV, R. FERGUS, L. TORRESANI, AND M. PALURI, Learning spatiotem-

poral features with 3d convolutional networks, ICCV, (2015).

[37] C. VAN GEMEREN, R. POPPE, AND R. C. VELTKAMP, Spatio-temporal detection of fine-

grained dyadic human interactions, Human Behavior Understanding. HBU 2016. Lec-

ture Notes in Computer Science, vol 9997. Springer, Cham, (2016).

[38] , Spatio-temporal detection of fine-grained dyadic human interactions, 7th International

Workshop on Human Behavior Understanding 2016, (2016), pp. 116–133.

[39] H. WANG, A. KLASER, C. SCHMID, AND C.-L. LIU, Dense trajectories and motion boundary

descriptors for action recognition, IJCV, (2013), pp. 60–79.

[40] H. WANG AND C. SCHMID, Action recognition with improved trajectories, IEEE International

Conference on Computer Vision, (2013).

[41] N. XU, A. LIU, W. NIE, Y. WONG, F. LI, AND Y. SU, Multi-modal & multi-view & interactive

benchmark dataset for human action recognition, ICME 2015, (2015).

[42] M. D. ZEILER AND R. FERGUS, Visualizing and understanding convolutional networks,

ECCV, (2014).

[43] Y. ZHANG, X. LIU, M. CHANG, W. GE, AND T. CHEN, Spatio-temporal phrases for activity

recognition, ECCV, (2012).

87

	List of Tables
	List of Figures
	Introduction
	Background
	Project Goals
	Contributions
	Outline

	Related Work
	Architectures of Interaction video analysis related works
	Hand-crafted Feature Descriptor
	3D-SIFT Feature Descriptor
	3D-HOG Feature descriptor
	Improved Dense Trajectories feature descriptor

	Deep Learning Based Feature Descriptor
	Spatial-Temporal CNNs feature descriptor
	Two-Stream ConvNet feature descriptor
	3D ConvNet feature descriptor

	Datasets
	List of human activity video datasets
	UT-Interaction dataset

	Architecture
	Overall Framework
	Interaction classification
	Interaction detection

	Models
	Person Segmentation
	Spatial detection of the interacting people
	Feature Descriptor

	Training
	Train the person detection network
	Train the feature descriptor
	Train the Classifier

	Design
	Interaction Classification
	Data-flow of the Interaction Classification
	Data pre-processing
	Feature descriptor
	Softmax classifier
	Optimizer

	Interaction detection
	Data-flow of interaction detection
	Detection of all people
	Spatial detection and tracking of the interacting people
	Generate candidates of interaction video clips
	Classification of interaction video clips
	Temporal combination

	Experimental Results
	Searching of the optimal parameters
	Model
	Assumptions and Factors and the default parameter setting
	Experiments
	Conclusions of parameter searching

	The experimental results of of the interaction classification
	Train the network from scratch

	The experimental results of of the interaction detection
	Results of the interacting people detection
	Results of the interaction detection

	Conclusions and Future Works
	Conclusions for the interaction classification task
	Conclusions for the interaction detection task
	Future work

	Bibliography

