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A B S T R A C T

In this thesis, the automatic detection of sentiments expressed by chil-
dren using machine learning is investigated. The automatic sentiment
detection is used within a robotic companion that helps children with
their daily struggles of living with Type 1 diabetes. The problem state-
ment that guides this research is: To what extent is it possible to correctly
classify the sentiment of a Dutch child’s diary entry by means of automatic
text analysis? Results show that machine learning models yield a sig-
nificantly higher performance than a symbolic sentiment scoring algo-
rithm. Machine learning models have shown to be better at capturing
context and at capturing complex negations. The usage of an ordinal
or time-correlated adaptation of a machine learning model is evalu-
ated as well, but results show that such a model does not have an ad-
vantage over a regular machine learning model. Additionally, a new
algorithm for semantic normalization on top of standard morphologi-
cal normalization is introduced in this thesis. Results show that using
this newly created step consistently improves the performance in the
current study. The new algorithm for semantic normalization is espe-
cially useful in this thesis, because the dataset is sparse and contains
highly infrequent words.
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1
I N T R O D U C T I O N

Type 1 diabetes mellitus (T1DM) is one of the most common diseases
among children and youngsters in the United States and Europe. In
the United States, approximately 215,000 children and youngsters un-
der the age of 20 have to endure this type of diabetes, and every year
another 13,000 young people are diagnosed with T1DM. In Europe,
the statistics show an average increase among all children and young-
sters of 3.9% per year, and the increase is largest among children
under four years old. [22]

Having T1DM requires a vast number of lifestyle changes, such as
blood glucose monitoring, insulin administration, and diet modifica-
tion. Children often struggle to manage T1DM and all its consequent
lifestyle changes by themselves. Self-managing blood glucose check-
ing and insulin administrating can be difficult, especially at a young
age [4]. Children indicate for example the importance of having some-
one nearby whom can help when blood glucose is low [22].

Moreover, having T1DM also comes with emotional challenges [4].
The most important concern for children with T1DM is to still have
a ’normal life’ which does not differ from their peers [42]. Children
with T1DM can feel left out as they have to spend time for example
during lunch on testing glucose and administering insulin, which re-
duces the amount of time to play with their friends. Because of the
additional activities which have to be incorporated into their lives,
children with T1DM can sometimes feel alone. [22]

A robotic companion can be a solution to some of these challenges.
The Personal Assistant for a healthy Lifestyle (PAL 1) project develops
such a social robot (using the Nao 2) and an accompanying mobile
application for children with T1DM. One possible use of the robot
indicated by both children and their parents is to be a sensitive lis-
tener. A robot can for example function as a friend when children
feel emotional and can comfort children when they are sad or anx-
ious. In this way, a robot can help improve self-esteem and make the
child feel less different from their peers. Another important use of the
robot is to help with the self-management of all the daily tasks, and
to increase children’s knowledge on what to do in certain situations.
[4]

Studies evaluating the perception of this robot show positive results
[33] [34] [39]. Children with T1DM demonstrate bonding with the
robot [39]. Moreover, children with T1DM indicate that they perceive

1 http://www.pal4u.eu
2 Aldebaran Robotics (http://www.aldebaran.com)
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2 introduction

the robot as a peer [33] and as a friend [34]. Children feel at ease
when interacting with the robot, and appreciate the shown interest
by the robot. Children indicate an interest in further interactions with
the robot [34]. Therefore, the robot can be a solution to some of the
challenges faced by children with T1DM.

One way of helping children with their emotional challenges is to
ask the child to keep a diary at the end of the day [49]. The robot
can use such a diary entry to detect feelings of sadness, fear, anger,
and happiness in the child, and act accordingly. The robot could for
example comfort the child when it is feeling sad, or engage in the
enjoyment of the child when it is feeling happy. Since a robot it is not
straightforward for a robot to understand such sentiments from text,
an algorithm is needed which analyzes the sentiment of the diary en-
tries. Currently, pilots for evaluation of this robot are running in both
the Netherlands and Italy, where some textual data from children is
collected.

The current algorithm [49] for this task in the PAL project is based
on sentiment scoring. The algorithm parses the text entry, translates
the entry into English, and assigns a sentiment value obtained from
the SentiWordNet dictionary [3][19] to the entry. The final sentiment is
then obtained by evaluating whether the sentiment value is below or
above certain manually set classification thresholds in order to label
the entry with either "positive", "neutral", or "negative".

A data-driven algorithm, which uses machine learning, might find
different patterns in the data entries than a sentiment scoring ap-
proach. It is important to consider multiple text representations and
machine learning models, in order to research which representation
together with which model and which parameters works best. This
study will first be performed on the Dutch data entries, but the ap-
proach can be duplicated for the Italian data entries.

Algorithms for sentiment analysis have been widely studied [37].
In our study, we do not focus on texts from adults but rather on data
from children in the age of 8 to 14 [49]. Most algorithms however
are based on reviews, discussions, blogs or other social network data
which are almost always written by adults. Hence, almost all algo-
rithms and available datasets which can be used for training senti-
ment classification algorithms are focused on data from adults. Since
this research focuses on data from children, this research will broaden
the current knowledge on sentiment analysis for children’s text en-
tries.

Within the PAL project, only a small dataset has been collected so
far. Because the dataset is relatively small, it will probably contain
words that only occur once in the dataset. Training on these words
is not useful, as weights learned for these words cannot be applied
to other words. Therefore, a new algorithm for semantic normaliza-
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tion is designed and evaluated, which is able to map these highly
infrequent words to more frequent words.

The data also has some interesting properties. In general, machine
learning models assume that the data entries are independent of
each other. In this case, however, different diary entries of the same
child possibly relate to each other. In other words, the sentiment of a
specific child today might be dependent on his sentiment yesterday.
Therefore, using a model which takes into account time-correlation
of entries might be interesting to study. Moreover, the target variable
(sentiment) can be interpreted to be at an ordinal level rather than a
nominal level, as sentiment is defined as either positive, neutral, or
negative. Therefore, using an ordinal model which takes this ordering
into account is studied as well.

Altogether, the problem statement that guides the research of this
thesis is the following:

To what extent is it possible to correctly classify the sentiment of a
Dutch child’s diary entry by means of automatic text analysis?

To provide a specific answer, the problem statement breaks down into
the following research questions:

1. To what extent is it possible to correctly classify the sentiment
of a Dutch child’s diary entry by means of a sentiment scoring
algorithm?

2. To what extent is it possible to correctly classify the sentiment
of a Dutch child’s diary entry by means of machine learning
models?

3. Does using the new algorithm for semantic normalization im-
prove the performance?

4. Does using an ordinal model or a time-correlated model im-
prove the performance?

The outline of the thesis is as follows. Chapter 2 provides a lit-
erature review describing studies that are relevant for this research.
Chapter 3 describes the method by outlining different text represen-
tations and machine learning models. Chapter 4 specifies the data
collection, description, and pre-processing. Chapter 5 studies the per-
formance of the sentiment scoring model, in order to answer the first
research question. Chapter 6 evaluates various text representation
methods in the field of natural language processing and sentiment
analysis. Chapter 7 aims at learning different machine learning mod-
els from these text representations, in order to answer the second re-
search question. Chapter 8 evaluates the usage of a new algorithm for
semantic normalization, in order to answer the third research ques-
tion. In Chapter 9, the effect of using an ordinal adaptation of Logis-
tic Regression and a time-correlated approach are evaluated, in order
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to answer the fourth research question. Chapter 10 studies the perfor-
mance across different datasets and evaluates the errors made by the
machine learning models models. Chapter 11 comprises the discus-
sion and conclusion, including an answer to the problem statement
and recommendations for future research.



2
L I T E R AT U R E R E V I E W

Algorithms for sentiment analysis have been widely studied. In this
literature overview, a selection of research on sentiment analysis is
discussed, starting with sentiment analysis in general. Moreover, clas-
sifying emotion, which is close to sentiment, from text is discussed.
Finally, work done on automatic text analysis especially for Dutch
texts is evaluated.

2.1 sentiment analysis

Most of the sentiment analysis research is focused on data retrieved
from the World Wide Web, and this data is often obtained from so-
cial media websites. Sentiment analysis is mostly directed at reviews,
blogs, forum texts, and tweets [8][37][54]. In this context, sentiment
analysis is mostly used for companies to get a grip on how customers
are talking about their company on the internet [54]. Sentiment anal-
ysis in this case is focused on how people express their opinion re-
garding a certain consumption product [8] or regarding the customer
service [37].

Sentiment analysis can be approached from both a symbolic and a
machine learning setting. In a symbolic setting, sentiment analysis algo-
rithms consist of rules which are manually created [8]. The current
algorithm for classifying the children’s diaries [49] is an example of
such a symbolic setting, as it uses SentiWordNet [3][19] sentiment val-
ues together with manually set thresholds. Another symbolic method
is to use semantic similarity, which can be calculated by using Word-
Net [20], a lexical database where words and relations among words
are indicated by using a network structure. The path from a word in
the document to semantic words such as ’good’ and ’bad’ in Word-
Net can be used as an indicator of sentiment [9]. Most symbolic ap-
proaches used are pre-trained with one dataset, and can afterwards
be applied to other datasets. The critical point of symbolic approaches
such as sentiment scoring and using a WordNet is that the dataset on
which the scoring or network algorithm is trained should be compa-
rable enough to the dataset the algorithm is used on.

Machine learning approaches are generally better than symbolic ap-
proaches at capturing context and measuring the (un)certainty of a
sentiment classification [8]. The most common approach to sentiment
classification with machine learning is to use lowercase features and
split documents and sentences into n-grams, i.e. subsets of size n (ei-
ther n words or n characters). n-Grams are shown to be effective for

5



6 literature review

word sense disambiguation [56] and capturing negation [53], both
important when performing sentiment analysis. These n-grams are
then used as features in machine learning models, such as Logistic
Regression or Naive Bayes.

2.2 emotion analysis

Multiple researchers have focused on automatically classifying a per-
son’s emotion from his writings, and have worked with machine
learning techniques for this purpose. Chaffar and Inkpen [10] have
researched the usage of supervised learning to recognize the six ba-
sic emotions [18] in text. Their dataset consisted of a mixture of differ-
ent text domains, including sentences from blog posts, sentences from
fairytales, and headlines from newspapers and the Google News search
engine. Stopwords were removed from the data and all data was
stemmed, i.e. a word such as ’fishing’ was replaced by its stem ’fish’.
The data was transformed into three types of features: Bag-Of-Words
(BOW) features, n-grams, and lexical emotion features. A Bag-Of-
Words representation consists of a feature vector with Boolean or
frequency attributes for each word that occurs in the sentence. An
n-gram representation consists of one feature for every subset of n
words of the sentence instead of one feature per word. A Bag-Of-
Words representation is thus the same as an unigram (1-gram) rep-
resentation. Lexical emotion features were extracted from a lexical
resource called WordNetAffect [66], which contains sets of emotional
words based on WordNet [20]. A Decision Tree model, a Naive Bayes
model, and a Support Vector Machine (SVM) model were evaluated.
Results show that the Support Vector Machine performs best on all
types of datasets. Moreover, results show that an n-gram representa-
tion (with n ≥ 2) performs only better than a Bag-Of-Words represen-
tation on some datasets. Finally, the usage of lexical emotion features
did not improve the accuracy rates. Hence, a simple uni- or n-gram
machine learning approach performed better than using complex lex-
ical features.

Leshed and Kaya [35] also studied machine learning approaches for
classifying emotions in blog posts. The emotion expressed in a blog
post was annotated by the bloggers themselves. The authors however
indicate that this is a limitation, as the labels are not objectively as-
signed. Stopwords were removed from the blog entries. Blog entries
were transformed into a Bag-Of-Words representation with a stan-
dard tf-idf (term frequency - inverse document frequency) scheme
instead of a Boolean approach used by Chaffar and Inkpen [10]. Only
the 5,000 most frequent words were used. A Support Vector Machine
(SVM) model was again used to learn the patterns. The authors note
that using a Bag-of-Words (or a uni-gram) representation which does
not take negations such as ’not sad’ into account was a limitation of
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their research. Hence, studying whether to use a Bag-Of-Words or an
n-gram representation is important in sentiment or emotion analysis
research.

Alm, Roth, and Sproat [2] researched machine learning techniques
for emotion analysis of sentences from children stories. Seven emo-
tions were grouped into two categories: positive valence PE = {happy,
positively surprised} and negative valence NE = {anger, disgusted,
fearful, sad, negatively surprised }. Their model aimed at classifying
a sentence as either positive, negative, or neutral. Emotions expressed
in a sentence were labelled by annotators who worked in pairs. Inter-
annotator agreement however was reached in approximately 50% of
the cases, due to the subjective nature of the annotation task and the
large number of different classes (seven classes). Hence, labelling text
entries is not a straightforward task. Features used included the pos-
itive and negative word counts, calculated by using a dictionary of
positive and negative words. Additionally, the usage of sequencing,
i.e. taking into account the emotion of adjacent sentences, was stud-
ied as well. Results show that sequencing was beneficial in some cases,
showing that taking into account emotions from related sentences can
possibly improve classification results.

Finally, a totally different approach is presented by Danisman and
Alpkocak [14], who used a Vector Space Model to classify emotions
in text. The aim of their research was to classify sentences from the
International Survey on Emotion Antecedents and Reactiosn (ISEAR)
dataset as either anger, disgust, fear, sad, or joy. In their vector space
model, each sentence is represented as a vector similar to the Bag-
of-Words approach with a tf-idf scheme. Each emotion class is rep-
resented by a set of sentences which are labelled with that emotion.
A model vector for an emotion is calculated by taking the mean of
all the vectors in the corresponding emotion class. A new sentence
which needs to be classified is then transformed into a tf-idf vector as
well, and the cosine similarity between this new vector and all emo-
tion model vectors is calculated. The emotion corresponding to the
most similar emotion model vector is then selected as the predicted
emotion class. Results show that this Vector Space Model approach
has in some cases similar performance as machine learning models
such as Naive Bayes and SVM. Moreover, the effect of stemming and
stopword removal is studied, and results show that sometimes these
techniques decrease the emotional meaning of a sentence. Hence, us-
ing a Vector Space Model with similarity measures might provide
interesting results. Moreover, the usage of stemming and stopword
removal should be studied, because research results do not agree on
the performance of these techniques.
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2.3 dutch text analysis

Some research has specifically focused on automatic text analysis of
Dutch texts, which is useful to discuss as Dutch texts are used in
this study as well. Hollink, Kamps, Monz, and de Rijke [27] studied
the performance of different pre-processing techniques used for doc-
ument retrieval on different European languages, including Dutch.
Techniques were evaluated on datasets provided by the Cross-Language
Evaluation Forum (CLEF), and were compared by looking at the
mean average precision scores of all documents of a certain language.
The baseline consisted of a simple Bag-Of-Words representation of
the texts in lower-case without any pre-processing. Replacing diacriti-
cal characters, i.e. characters with an accent placed on, with their cor-
responding unmarked character improved the precision compared to
the baseline with 9.6% for Dutch texts. Stemming of words with the
Snowball stemmer [63] improved upon the baseline precision only
slightly with 1.2%. In the work of Kraaij and Pohlmann [32] on Dutch
texts, stemming does improve recall but at the cost of a decrease in
precision. Using a lemmatizer does not yield a significant result over
using a stemmer for Dutch texts [27].

Additionally, the impact of splitting a compounded word, i.e. ’ice-
berg’ into ’ice’ and ’berg’, is evaluated by Hollink, Kamps, Monz,
and de Rijke [27]. Compound splitting on Dutch texts improved the
stemmed representation with 3.6% and improves the baseline with
4.0%. Other researchers [8][11][32][46] also report that improved per-
formance can be reached by using compound splitting on Dutch texts.



3
M E T H O D

In this chapter, the methods and approaches used in this thesis are
described. This study is divided into four parts. First, the sentiment
scoring model is explained (Section 3.1). Moreover, various text rep-
resentation methods are evaluated (Section 3.2). These text represen-
tations are tested together with different machine learning models
(Section 3.3). All these representations and models are evaluated ac-
cording to several measures (Section 3.4).

3.1 sentiment scoring

Sentiment scoring can be seen as a symbolic approach, rather than a
machine learning approach, and is currently used for the children’s
diary classification task. The algorithm that is currently being used in
the PAL project [49] parses the text entry, translates each word into
English, and assigns to each translated word a sentiment value from
the SentiWordNet dictionary [3][19]. SentiWordNet, a lexical resource
for sentiment mining, assigns to words a positivity, negativity, and
objectivity sentiment score. The final classification into either posi-
tive, neutral, or negative is assigned to an entry when its sentiment
value is below or above a threshold. The performance is however not
reported in the paper. Internal resources indicate that the algorithm,
tested on 42 diary entries, has an accuracy of 71.43%. Currently, more
training examples are available, as will be described in Chapter 4. In
this thesis, the sentiment scoring approach will also be studied, as a
baseline or reference for the machine learning models.

Since SentiWordNet [3][19] is based on English data, and this the-
sis uses Dutch data, another resource is needed. The CLiPS (Com-
putational Linguistics and Psycholinguistics) research center at the
University of Antwerp has developed a linguistic tool called Pattern
[62], which also has a Dutch module [55]. The Dutch module con-
tains textual functions such as a Part-Of-Speech (POS) tagger and a
noun singularizer and pluralizer. Moreover, it contains the sentiment
function sentiment which returns a valence (positive/negative) and a
subjectivity value, based on a lexicon of adjectives. The valence value
is between -1 (negative) and 1 (positive), and the subjectivity value
is between 0 (objective) and 1 (subjective). The Dutch algorithm is
trained on book reviews, but it is not documented where these re-
views come from. In Chapter 5, the usage of this sentiment scoring
algorithm will be studied. Both the usage of the valence value and the

9
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subjectivity value will be studied. Moreover, an analysis of the errors
made by sentiment scoring will be included.

3.2 text representation

An alternative to a sentiment scoring approach is a machine learn-
ing approach. In order to train machine learning models, textual data
needs to be transformed into numerical data by using words as fea-
tures and counting their occurrences in a sentence. Optionally, nor-
malization of the text entries is performed before transforming text
entries into numerical data, in order to reduce the number of unique
words or to overcome the sparseness of the data. A pipeline for pre-
processing textual data into numerical data can contain the following
steps in relative order: morphological normalization (Section 3.2.1),
semantic normalization (Section 3.2.2), n-grams (Section 3.2.3), and
term frequencies (Section 3.2.4). An exploration of the impact of all
methods except semantic normalization will be performed in Chapter
6, and Chapter 7 will study their performance in machine learning
models. Chapter 8 discusses the performance of using a new algo-
rithm for semantic normalization.

3.2.1 Morphological normalization

Morphological normalization, i.e. normalizing words in the input text
to a standard form, is widely used in the field of automatic text anal-
ysis [27]. Morphological normalization was introduced for two main
reasons: an increase in performance as related words are mapped to
the same standard form [28], and a large reduction in storage size
because the number of distinct words reduces [6].

One type of morphological normalization is stemming, which auto-
matically removes suffixes from words. The most well-known algo-
rithm for stemming of English words is constructed by Porter [57].
The Porter stemmer maps different words to their stem, i.e. ’con-
nected’, ’connection’, ’connecting’, and ’connections’ are all mapped
to the stem ’connect’. Using a stemmer can possibly improve the per-
formance. A stemmer can however also be very disruptive and may
produce non-words or may map non-related words to the same stem,
for example both ’universe’ and ’university’ to the stem ’univers’ [27].
A stemmer does not take different meanings of a word into account
and does not look at the context of a word [41].

Therefore, instead of using a traditional stemmer, morphological
normalization will be performed by using functions from the Dutch
module of Pattern [55]. The function singularize, lemma, and predicative

will be used. The function singularize returns the singular form of
plural nouns. The function lemma returns the base form of a verb, for
example the base form of ’ben’ is ’zijn’. Here we can see that using a
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lemma function instead of a stemmer function produces more quali-
tative results, as a stemmer is not able to map ’ben’ to ’zijn’ as it does
not take the meaning of a word into account. The predicative func-
tion returns the base of an adjective with an −e suffix, for example
the base of ’lieve’ is ’lief’. We will refer to this type of morphological
normalization with the term stemming.

Generally, stopwords are removed before applying morphological
normalization to the text [27]. A list with stopwords for Dutch [17]
is provided in the Natural Language Toolkit (NLTK) documentation
[48] for Python. The stopwords are derived from a large sample of
Dutch texts, and are ranked according to the number of occurrences
found in the sample. Stopwords include for example: ’de’, ’en’, ’van’,
’ik’, ’te’, ’dat’, and ’die’. A total of 101 stopwords are present in the
Dutch stopword list. Some stopwords, however, are likely to be impor-
tant for capturing negation and intensity. Therefore, the words ’niet’,
’geen’, ’veel’, ’zo’, and ’niets’ will not be seen as stopwords and will
not be removed, resulting in a list of 96 stopwords.

Different variations of morphological normalization will be eval-
uated in this thesis. The following variations will be tested: 1) no
normalization, 2) stopword removal, and 3) stopword removal and
stemming.

3.2.2 Semantic Normalization

Because we are dealing with a relatively small dataset, it is very likely
that words occur in the test data that are not in the training data. In
such a case, no weight is learned for such a word, and the machine
learning model will have more difficulty predicting the target value
as it cannot use these unseen words. Leaving these ’unknown’ words
untreated thus might effect the classification performance. For this, a
new algorithm will be designed that maps words that are not present
in the training set to similar words that do occur in the training set.
This will be done with the usage of synonyms, which can be extracted
from synonym websites. The precise workings of the new algorithm
will be discussed in Chapter 8.

One method of selecting the most appropriate synonym is to use
Word2Vec [70]. Word2Vec is a method of transforming words from
text entries into numerical vectors, or neural word embeddings. Word2Vec
does this by using a two-layer neural network with a full corpus as
input data. Word2Vec can be compared to an autoencoder, but does
not train input words through reconstruction but rather against other
words in the neighborhood in the corpus. This is done by predict-
ing a target word based on its context (continuous Bag of Words,
CBOW), and conversely by predicting a target context based on the
word (skip-gram), see Figure 1. Similar words will be placed close
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together in vector space [44][45]. By training a Word2Vec model on a
dataset, words similar to a specific word can be found.

Figure 1: CBOW architecture and Skip-gram. Reprinted from Efficient Esti-
mation of Word Representations in Vector Space, by Tomas Mikolov,
Kai Chen, Greg Corrado, and Jeffrey Dean (2013), arXiv preprint
arXiv:1301.3781.

The Python package gensim [24] provides a function for building a
Word2Vec model. In this study, the Word2Vec model will be trained
on the BasiLex-corpus [5]. The BasiLex-corpus is an annotated collec-
tion of texts written for children of primary school age. It consists of
11.5 million words. Approximately 40 percent of the corpus consists
of texts for educational purposes, another approximately 40 percent
of the corpus consists of child literature, and the other 20 per cent
consists of media texts aimed at children. Because of the large size of
the corpus, it is suitable to be used for building a Word2Vec model.
Moreover, the BasiLex-corpus consists of texts written for young chil-
dren. The diaries in this research are, however, written by children.
Although a difference exists in texts written for children or by chil-
dren, the words in the corpus are somewhat comparable to words
used in children’s diaries and the corpus is the most suitable one
available for this research.

The gensim package [24] and its model Word2Vec transform words
into word vectors based on their context. Moreover, they have a simi-
larity function which can calculate the cosine similarity between two
word vectors which indicates the similarity between the two corre-
sponding words in the following way:

Definition 1. The cosine similarity between two word vectors x and y is
calculated by:

similarity(x, y) = cos(θ) =
x · y
‖x‖‖y‖

The similarity ranges between -1 and 1, where -1 means exactly
the opposite and 1 means exactly the same. This can be used to find
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similar words, which are the words with the highest cosine similarity.
The performance of using Word2Vec for mapping unknown words to
words which are present in the training data in the new algorithm for
semantic normalization will be studied in Chapter 8.

3.2.3 n-Grams

After performing morphological normalization, the resulting text en-
tries can be further pre-processed into n-grams: text input of size
n (either n words or n characters). n-Grams are widely used in au-
tomatic text algorithms [8]. n-Grams are constructed by sliding an
n-long window along the text entry while moving one word or char-
acter at a time. At every position, the sequence of words or characters
in the window is stored [27]. In this study, we will work with sub-
sets of n words. The most appropriate value for n depends on the
dataset. When using bigrams (2-grams) or trigrams (3-grams) instead
of unigrams (1-grams, Bag-of-Words), negations such as ’niet leuk’
or ’niet zo leuk’ can be captured. However, the larger the value for
n, the sparser the resulting feature set will be. Therefore, unigrams,
bigrams, and trigrams are all incorporated in this study.

The Scikit-Learn package [60], a machine learning package for Python,
has the function CountVectorizer [13] for transforming text entries
into a matrix of token (n-grams) counts. The function has amongst
others the parameter ngram_range which can be used to indicate which
sizes of n-grams will be produced. Other parameters are the maxi-
mum number of features (max_features), the minimum document fre-
quency (min_df ), and the maximum document frequency (max_df ).
When a maximum number of features is given, a subset of tokens (n-
grams) is selected according to their term frequency across the corpus.
Minimum document frequency can be used to remove highly infre-
quent words. Maximum document frequency can be used to remove
corpus-specific stop words [21].

In this study, different values for these parameters will be evalu-
ated. Appropriate values to consider depend on the dataset. There-
fore, the specific values will be determined in Chapter 6.

3.2.4 Term Frequency (- Inverse Document Frequency)

After applying the CountVectorizer [13] function, the resulting ma-
trix consists of occurrence counts of the selected n-grams for every
text entry. Hence, the feature value is the number of times an n-gram
occurs in the text entry. With this method, however, longer text en-
tries have higher average count values [58]. Another representation
to use is term frequency, which normalizes the occurrence counts by
dividing them by the total number of words in the text entry, also
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called document. Note that term is in this case used to refer to n-gram.
Hence, term frequency is defined as follows:

Definition 2. Term frequency t fij of a term ti in a text entry dj is calculated
by [69]:

t fij =
nij

∑
k

nkj

where nij is the occurrence count of term ti in text entry dj, which is divided
by the total number of words in the text entry.

Moreover, words that occur in many documents can be downscaled
in order to make them less dominant [58]. This can be useful as
most frequent words are most of the times non-informative words
or stopwords. Frequent words are, however, not by definition non-
informative, and an improved performance of tf-idf over term fre-
quencies or occurrence counts depends on the data. A widely used
representation for doing this is using term frequency - inverse document
frequency (tf-idf). The term frequency, as defined in Definition 2, is
multiplied by the inverse document frequency, which is defined as fol-
lows:

Definition 3. Inverse document frequency id fi of a term i is calculated by
[69]:

id fi = log
|D|

|{j : ti ∈ dj}|

where |D| is the total number of documents (or text entries) in the corpus,
and |{j : ti ∈ dj}| is the number of documents (text entries) the term ti
occurs once or more in.

Definition 4. Term frequency - inverse document frequency for a term ti in
a document dj is calculated by:

t fij · id fi

The Scikit-Learn package for Python [60] has a function TfidfTransformer

[71] for transforming the occurrence counts into either term frequen-
cies or tf-idf. In this study, the usage of occurrence counts, term fre-
quency and tf-idf will be evaluated.

3.3 machine learning models

With these different text representations, different machine learning
models are trained. First, Logistic Regression is explained (Section
3.3.1). Secondly, the usage of the lasso penalty within Logistic Re-
gression as a feature selection step is discussed (Section 3.3.2). More-
over, the two other often used machine learning models are reviewed:
Naive Bayes (Section 3.3.3) and Support Vector Machine (Section 3.3.4).
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3.3.1 Logistic Regression

The Logistic Regression model is related to the Linear Regression
model, but uses an inverse logistic (logit) function to transform the
output value into a value between 0 and 1. The output variable can
now be interpreted as a probability. The Logistic Regression model
function uses weights β j for all features Xj, similar to a Linear Re-
gression model. The output value when working with a binary target
variable Y is then calculated by: [29]

Definition 5. The logistic function in a binary case with q features, X ≡
(X1, . . . , Xq), is calculated by [29]:

p(X) ≡ Pr(Y = 1|X) =
eβ0+β1X1+...+βqXq

1 + eβ0+β1X1+...+βqXq

p(X) is equal to Pr(Y = 1|X) in a binary case. Because of the logit
function, the output value is between 0 and 1. In a binary case, if the
value calculated by the logistic function is larger or equal to some
hand-set threshold, then the predicted value is 1, and otherwise 0.
The threshold can be set manually, but one often used threshold is
0.5. After manipulating the function in Definition 5, we get what is
also called the log-odds:

Definition 6. The log-odds in a binary case are calculated by [29]:

log
(

p(X)

1− p(X)

)
= β0 + β1X1 + . . . + βqXq

The log-odds do not indicate a straight-line relationship between the
logistic function p(X) and the inputs Xj, as is in linear regression. The
relationship is rather complicated, and the rate of change in p(X) per
one-unit increase in an Xj depends on the current value of Xj and the
values of the other variables. The only conclusion that can be drawn
is that if β j is positive, then an increasing Xj is associated with an
increasing Pr(Y = 1) if all other variables remain the same. [29]

When working with a multinomial target variable, the formula in
Definition 5 is slightly adapted:

Definition 7. The logistic function in a multinomial case with q features
and K classes is calculated by [7]:

pk(X) ≡ Pr(Y = k|X) =
eBkX

K
∑

l=1
eBl X

where BkX equals βk,0 + βk,1X1 + . . . + βk,qXq with weights specific for
every class k, and where one class is set as reference with B1 = 0.



16 method

In this thesis, however, a one-versus-rest scheme is used, which
trains a binary classifier for all classes after which the predictions
for all binary classifiers are combined into a single prediction. From
now on, the binomial case is discussed again. Learning the weights
(or coefficient estimates) β j is usually done by maximum likelihood.
Maximum likelihood aims at optimizing the likelihood function, which
is calculated as follows in the binary case when using only a β0 and
a β1 [29]:

Definition 8. The likelihood function in a binary case when using only β0

and β1 is calculated as follows [29]:

L(β0, β1) = ∏
i:yi=1

p(xi) ∏
i′ :yi′=0

(1− p(xi′))

Various numerical optimization algorithms are developed for find-
ing the estimators of β0 and β1 by minimizing the negative log-likelihood.
The negative log-likelihood is a transformation of the likelihood func-
tion by taking the logarithm of the likelihood function and multiply-
ing it by -1.

3.3.1.1 Regularization

In order to prevent the model from overfitting, regularization can be
used. This will be explained in the binary case, but the difference with
a multinomial case is only the number of coefficients for each variable.
One type of regularization is shrinkage of the weights (coefficient
estimates) β j to a lower value or even to zero. The two best-known
techniques for doing so are the usage of a ridge or a lasso penalty.
The ridge penalty is also called a l2 penalty, and the lasso penalty is
also called a l1 penalty. When using a ridge penalty, the goal is not to
minimize the negative log-likelihood (−log L), but rather to minimize
the following: [29]

Definition 9. When adding the ridge penalty, the aim is to minimize [29]:

−log L+ λ
q

∑
j=1

β2
j

where λ ≥ 0 is a tuning parameter which needs to be specified separately.

The lasso penalty is defined as follows: [29]

Definition 10. When adding the lasso penalty, the aim is to minimize [29]:

−log L+ λ
q

∑
j=1
|β j|

where λ ≥ 0 is a tuning parameter which needs to be specified separately.
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Figure 2 shows the constraint regions of the lasso and ridge penalty
and the contours of the error function. The solution without regular-
ization is marked as β̂. The blue solid areas are the constraint regions,
with |β1|+ |β2| ≤ s for lasso (left) and β2

1 + β2
2 ≤ s for ridge (right).

The red ellipses are the contours of the error function. The β̂ solu-
tion is the same as the regularization solution if s is sufficiently large,
where a large value for s corresponds to λ = 0 in Definitions 9 and 10.
However, if s decreases, coefficient estimates have to shrink in order
to fall within the constraint region.

The different effect of using lasso or ridge penalty can also be seen
from Figure 2. When the ellipse intersects with the constraint region
at an axis, one of the coefficients will be equal to zero. Because the
constraint area of the ridge penalty has no sharp points, an inter-
section between the constraint region and the ellipse will generally
not occur on an axis. With the lasso penalty, the constraint area has
corners on each of the axes. Therefore, the constraint region and the
ellipse will often intersect at an axis, and feature elimination will thus
occur more often. [29].

Figure 2: Contours of the error and constraint functions for the lasso (left)
and ridge regression (right). Reprinted from An Introduction to Sta-
tistical Learning, by Gareth James, Daniela Witten, Trevor Hastie,
and Robert Tibshirani (2013), Springer Texts in Statistics.

In this thesis, the model LogisticRegression [38] from the Scikit-
Learn package for Python will be used for modelling Logistic Re-
gression. The liblinear solver will be used, which uses one-versus-
rest schemes for multinomial target variables. The usage of both a l1
(lasso) and a l2 (ridge) penalty will be evaluated. Moreover, different
values for λ will be evaluated. The LogisticRegression model uses
a parameter C instead of a λ value. The parameter C is an inverse
of regularization strength. Hence, smaller values indicate a stronger
regularization [38].



18 method

3.3.1.2 Proportional Odds

Because the classes in this research can be interpreted to be at an ordi-
nal level (negative-neutral-positive), instead of at a nominal level, an
ordinal Logistic Regression model will be evaluated as well. The most
common used ordinal Logistic Regression model is the proportional
odds model, also called the cumulative logit model. The proportional
odds model is formulated differently than with the regular Logistic
Regression model, namely as Pr(Y ≤ k|X) instead of Pr(Y = k|X) [1].
Moreover, in the case of K different target values, only one weight
β j for each of the features Xj is present, instead of K − 1 different
weights βk,j for each feature Xj with traditional Logistic Regression
[31]. Hence, the form is as follows:

Definition 11. The proportional odds model has the following form [1]:

Pr(Y ≤ k|X) =

exp(αk +
q
∑

j=1
β jXj)

1 + exp(αk +
q
∑

j=1
β jXj)

where αk is the intercept for a specific class k.

The odds are subsequently calculated differently than in Definition
6, namely as:

Definition 12. The proportional odds are calculated by [1]:

Pr(Y ≤ k|X)

1− Pr(Y ≤ k|X)
=

Pr(Y ≤ k|X)

Pr(Y > k|X)

The proportional odds model is implemented in R with the
ordinal.gmifs function from the ordinalgmifs package [52] for R. The
function ordinal.gmifs performs lasso penalization by using the gen-
eralized monotone incremental forward stagewise method. Incremen-
tal forward stagewise regression solves the lasso regression problem
when enforcing monotonicity. The only difference is that forward
stage-wise is optimal per unit L1 arc-length traveled along the co-
efficient path, where lasso reduces the residual sum-of-squares per
unit increase in L1-norm of the coefficient β [26]. The assumption of
an ordinal model is that variables are monotonically related to the
order. Before training the ordinal model, the function nominal_test

from the ordinal package [51] can be used to test whether variables
are non-monotonically related to the order, which is a violation of
the assumption of the ordinal model. The usage of this model will be
evaluated in Chapter 9.

3.3.2 Dimension Reduction

As explained in the previous subsection, the usage of a lasso (or l1)
penalty in Logistic Regression leads to a reduction of dimensions be-
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cause coefficient estimates can be shrunk down to zero. The outcome
of a lasso penalty can also be used as a feature selection step for
the two upcoming models, Naive Bayes and Support Vector Machine.
The function SelectFromModel [61] in Scikit-Learn can be used for
this purpose. The function SelectFromModel asks for a model, such
as a Logistic Regression with lasso penalty, and returns the features
which have non-zero coefficients. The usage of a feature selection step
for both Naive Bayes and Support Vector Machine will be studied.

3.3.3 Naive Bayes

Another machine learning model is Naive Bayes, which is a classifier
based on the Bayes’ rule, i.e. [65]:

Pr(hypothesis|data) =
Pr(data|hypothesis)× Pr(hypothesis)

Pr(data)

The structure of the Naive Bayes model is shown in Figure 3. The
Naive Bayes classifier learns the conditional probability of each fea-
ture Xi given the class label Y, hence Pr(Xi|Y). With the Bayes’ rule,
the probability of Y given a particular valuation of features X1, . . . , Xq

(in the case of q features) can be calculated. The predicted value is
then the class with the highest posterior probability. The assumption
that Naive Bayes makes, namely that all features are conditionally in-
dependent given the class label Y, is however rather strong. In a text
dataset, it cannot be assumed that words are chosen independent
of each other in a sentence. Nevertheless, the performance of Naive
Bayes is competitive with state-of-the-art classifiers. [23]

Figure 3: The structure of the naive Bayes network. Reprinted from Bayesian
Network Classifiers, by Nir Friedman, Dan Geiger, and Moises Gold-
szmidt (1997), in Machine Learning, 29, p. 131-163.

A Multinomial Naive Bayes model is implemented in Scikit-Learn
with the function MultinomialNB [47]. A Multinomial model is chosen
rather than a Bernoulli model because the Multinomial model can
work with word counts and fractional counts (such as tf-idf) which
will be used in this thesis as well. McCallum and Nigam [43] also
show an improved performance of using a Multinomial Naive Bayes
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over a Bernouilli Naive Bayes for text classification. The probability
distribution is represented by vectors θy = (θy1, . . . , θyq) for a training
set with y class labels and q features. θyi is the probability Pr(xi|y) of
feature xi given the class y [47].

Additionally, a smoothing parameter can be used to prevent from
having zero probabilities for future computations. The smoothing pa-
rameter transforms the distribution θyi into θ̂yi in the following way
[47]:

θ̂yi =
Nyi + α

Ny + αq

where Nyi = ∑
x∈T

xi is the occurrence count of word i in the vocab-

ulary of class y, and Ny =
|T|
∑

i=1
Nyi is the total count of all words for

class y. Smoothing is called Laplace smoothing when α = 1 and Lid-
stone smoothing when α < 1 (but always α ≥ 0) [47]. In this thesis,
different values for the smoothing parameter α will be evaluated.

3.3.4 Support Vector Machine

A Support Vector Machine (SVM) is a specific instance of a support
vector classifier. A support vector classifier aims at finding a hyperplane
(or decision boundary) where the distance from the hyperplane to
the closest point of each class is maximal. The margin is then the
distance between the hyperplane and the closest data points of each
class. Because a support vector classifiers aims at finding the maximal
margin, low confidence classifications are avoided. A cost parameter
C is used as a penalty for variables which lie within the margin or on
the wrong side of the hyperplane [7]. Slack variables ε1, . . . , εn allow
observations to be on the wrong side of the hyperplane or margin.
If εi (of the ith observation) is zero, the observation is on the correct
side of the margin. If εi > 0, the observation is within the margin but
on the correct side of the hyperplane, and when εi > 1, the obser-
vation is on the wrong side of the hyperplane [29]. A high value for
C results in a smaller margin with less misclassifications, whereas a
low value for C will result in a larger margin with more misclassifi-
cations [7]. In the book of James, Witten, Hastie, and Tibshirani [29],
however, C is defined as a budget rather than a cost. Hence, the effect
of the parameter C as a budget is opposite to the effect of C as a cost.
Formally speaking, the goal of a support vector classifier according
to James, Witten, Hastie, and Tibshirani [29] is defined as follows:

Definition 13. The goal of the support vector classifier is to find the hyper-
plane that optimizes [29]:

maximize
β0,β1,...,βq,ε1,...,εn

M
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subject to
q

∑
j=1

β2
j = 1,

yi(β0 + β1xi1 + β2xi2 + . . . + βqxiq) ≥ M(1− εi),

εi ≥ 0,
n

∑
i=1

εi ≤ C

with weights β j, q features, n training examples, and where M is the width
of the margin, C is the budget parameter, and ε1, . . . , εn are slack variables.

A support vector classifier aims at finding a hyperplane that lin-
early separates the two classes from each other. In some cases, how-
ever, a well performing linear boundary cannot be found. Figure 4

provides an example of a dataset which is difficult to divide linearly.
In such a situation, a kernel function that maps the input features to a
higher dimensional space in which the data is linearly separable can
be a solution. A support vector machine is a support vector classifier with
a non-linear kernel function. [29]

Figure 4: Left: The observations fall into two classes, with a non-linear
boundary between them. Right: The support vector classifier
seeks a linear boundary, and consequently performs very poorly.
Reprinted from An Introduction to Statistical Learning, by Gareth
James, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013),
Springer Texts in Statistics.

A kernel function quantifies the similarity of two observations. The
kernel used in the support vector classifier is the linear kernel, which uses
the inner product of two observations xi and xi′ . The linear kernel
is comparable to using a Pearson (standard) correlation. The kernel
function K of the linear kernel is as follows [29]:

Definition 14. The linear kernel function is defined as [29]:

K(xi, xi′) =
q

∑
j=1

xijxi′ j
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Two other type of kernels are the polynomial kernel and the radial
kernel. These kernels are non-linear. When a non-linear kernel is used,
the resulting classifier is known as a support vector machine instead of
a support vector classifier. The polynomial and radial kernel are calcu-
lated as follows [29]:

Definition 15. The polynomial kernel function of degree d is defined as
[29]:

K(xi, xi′) = (1 +
q

∑
j=1

xijxi′ j)
d

Definition 16. The radial kernel function is defined as [29]:

K(xi, xi′) = exp(−γ
q

∑
j=1

(xij − xi′ j)
2)

The effect of using a polynomial or radial kernel function is dis-
played in Figure 5. The figure shows that the data that was not lin-
early separable before, can now be separated by using a non-linear
kernel function.

Figure 5: Left: An SVM with a polynomial kernel of degree 3 is applied to
the non-linear data from Figure 4, resulting in a far more appro-
priate decision rule. Right: An SVM with a radial kernel is applied.
In this example, either kernel is capable of capturing the decision
boundary. Reprinted from An Introduction to Statistical Learning, by
Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani
(2013), Springer Texts in Statistics.

Support Vector Machines are modeled with the function SVC [68]
in the Scikit-Learn package for Python. The SVC function uses the C
parameter as a cost parameter rather than a budget parameter. Hence,
a low value for C means a smooth decision surface and a high value
for C means more focus on correctly classifying the training exam-
ples. Different values for the cost parameter C, different kernels (lin-
ear, polynomial, rbf), different values for γ for the polynomial and
radial kernel, and different degrees for the polynomial kernel will be
evaluated in this study.
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3.4 evaluation methods

Because of the small size of the dataset, multiple training and test
splits are used to evaluate the machine learning models. The ap-
proach of nested cross-validation is used. The data is split into ten
folds with the StratifiedKFold [67] function of Scikit-Learn, where
the folds are made by preserving the percentage of samples for each
class. For j = 1..10, cross-validation is performed on all folds except j
to determine the optimal parameters. A model is then trained on all
folds except j with the found parameters, after which the prediction
performance is estimated on j. The final performance of a model is
then the average and standard deviation of each of the 10 folds. The
same division of the training data among all outer and inner folds
will be used for all models.

3.4.1 Accuracy

Machine learning models will be mainly evaluated on their accuracy.
The accuracy of a model is defined as follows:

Definition 17. The accuracy of a model is computed by:

number of correctly classified training examples
total number of training examples

Moreover, the confusion matrices of each model will be evaluated.
The confusion matrix can be build with the Scikit-Learn function
confusion_matrix. In the case of working with the three classes {negative,
neutral, positive}, the confusion matrix looks as follows (Table 1):

predicted

negative neutral positive

actual
negative a b c

neutral d e f

positive g h i

Table 1: Example confusion matrix

From such a confusion matrix, the accuracy can also be calculated
by dividing the sum of the diagonal by the sum of the whole matrix,
indicated by the green cell colors:

a + e + i
a + b + c + d + e + f + g + h + i

When it is the case that the number of diary entries per class dif-
fers substantially, it might be more relevant to use a more balanced
approach. The balanced accuracy can then be used, which is the sum
of recall for each class, averaged over the number of classes [64].
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3.4.2 Mean Absolute Error

A measure related to accuracy is the mean absolute error (MAE).
MAE is defined as follows, when the classes {negative, neutral, positive}
are coded respectively as {1, 2, 3}:
Definition 18. The mean absolute error (MAE) is calculated by:

1
n

n

∑
i=1
| fi − yi|

where n is the size of the test set, fi is the predicted class and yi is the true
class of a test example i.

Note that the goal is to minimize the MAE, and to maximize accu-
racy and balanced accuracy.

3.4.3 Precision and Recall

Next to solely evaluating models on their accuracy, it can also be im-
portant to look more specific to the classification errors made by the
algorithm. Another type of measure is to use precision and recall. Pre-
cision is also called the positive predictive value. Recall is the same as
the True Positive Rate, and is also known as sensitivity [15]. Precision
and recall are calculated as follows:

Definition 19. Precision is computed by [15]:
true positives

true positives + false positives

Definition 20. Recall is computed by [15]:
true positives

true positives + false negatives

Precision and recall are often combined into one measure, called
the F-score. The F-score has a parameter β which can be used to indi-
cate a preference for recall or precision. The F-score is calculated as
follows:

Definition 21. The Fβ-score is computed by [25]:

Fβ = (1 + β2)× precision× recall
(β2 × precision) + recall

The F-score with β = 1 is often used, and is also called the F1-
score. The F1-score has a maximum of 1 and a minimum of 0, where
1 means perfect performance and 0 means the worst performance.
The F1-score will be used in this study next to classification accuracy.
The F1-score is then calculated as follows:

Definition 22. The F1-score is computed by [25]:

F1 = 2× precision× recall
precision + recall
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D ATA

In this chapter, the data used in this study is discussed. In Section 4.1,
the data collection and labelling of the data is described. Section 4.2
explains the pre-processing of the dataset.

4.1 collection and labelling

Datasets are obtained from internal resources at TNO. The data was
collected by TNO from children in the age of 8 to 14 at diabetes re-
lated environments (hospitals and diabetes camps). An overview of
the datasets used can be seen in Table 2. All text entries in the datasets
were written by children. From the vriendenboekje and year1_results
datasets, only text entries which resemble diary entries were selected.

dataset type of data nr of text entries

sentiment_test diary entries 44

a_note activities performed today 49

e_note current emotion 61

mike activities performed today 154

vriendenboekje friendly message from a 13

child to the robot

year1_results questionnaire regarding 30

the usability of the robot

total 351

Table 2: Overview datasets

Text entries were split into multiple entries when they indicated
sentiments or activities at different points in time (i.e. this morning,
tomorrow, next week) or when they were very long. The number of
resulting text entries is shown in Table 3.

Out of the 395 text entries, 282 text entries were labelled by the
child itself. The labels, however, did in many cases not relate to the
content of the text entry. Moreover, the sentiment analysis algorithm
should not make any assumptions when analyzing the text entries.
Text entries concerning birthdays or parties should thus be seen as
neutral, except in the case a sentiment word such as ’leuk’ (fun) was
used in the text entry as well. Thus, even though a child might find
a specific activity positive or negative, if the child does not express
his sentiment clearly in the text, the text entry should be classified as

25
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dataset nr of original entries nr of split entries

sentiment_test 44 70

a_note 49 52

e_note 61 65

mike 154 165

vriendenboekje 13 13

year1_results 30 30

total 351 395

Table 3: Overview datasets after splitting text entries

neutral. Therefore, all text entries were labelled by annotators and the
labels of the children were not used.

Three annotators all labelled all text entries as either negative, neu-
tral, or positive. The first annotator was the writer of this thesis (woman,
aged 23). The second annotator was a woman aged 53, and the third
annotator was a man aged 56. Annotators were told to objectively la-
bel the text entries, thus not making assumptions on the sentiment of
specific activities. The inter-annotator agreement is measured by Co-
hen’s Kappa and is displayed in Table 4. A Cohen’s Kappa of above
0.8 indicates ’very good agreement’. Hence, the agreement between
every pair of annotators was very good.

1 2 3

1 0.86 0.85

2 0.86 0.82

3 0.85 0.82

Table 4: Inter-annotator agreement measured by Cohen’s Kappa

Total agreement was not reached in 56 cases. In those cases, the ma-
jority rule was used to select the most appropriate label. Exceptions
to the majority rule were text entries indicating illness. Some text en-
tries indicating illness were labelled as negative and others as neutral
by the majority rule. Therefore, in order to remain consistent, all text
entries indicating illness were labelled as negative. The division of
the resulting labels across the different datasets is shown in Table 5.

4.2 pre-processing

Because the text entries were written by children, some text entries
contained spelling errors. Spelling errors were corrected manually,
because a well-performing spelling correction algorithm for Dutch
was not found and the size of the dataset was relatively small. In
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dataset negative neutral positive

sentiment_test 8 31 31

a_note 1 30 21

e_note 12 34 19

mike 26 66 73

vriendenboekje 0 0 13

year1_results 13 6 11

total 60 167 168

Table 5: Division of labels across the datasets

practice, however, automatic spelling correction should be employed
in order to guard the performance, as only weights are learned for
correct spellings of words.

Previous research [27] has indicated the improvement of perfor-
mance when using compound splitting, i.e. splitting ’iceberg’ into
’ice’ and ’berg’. In this thesis, some words are split as well, thereby
making it easier for the algorithm to recognize similar feelings such
as ’buikpijn’ and ’keelpijn’. An overview of the compound splitting
performed is shown in Table 6. An ’*’ indicates any word.

compounded word first word second word

*pijn * pijn

*feest * feest

school* school *

kerst* kerst *

super* super *

feestweek feest week

gymles gym les

Table 6: Words split into compounds

Furthermore, the following punctuation marks were removed: com-
mas (,), full stops (.), colons (:), apostrophes (’), inverted commas
("), hyphens (-), and parenthesis (()). Exclamation marks (!) were not
removed, but are treated as a word. Multiple consecutive exclama-
tion marks were replaced by one single exclamation mark, in order
to prevent from extreme outliers, because the usage of exclamation
marks varied widely among diaries. Finally, diacritical characters, i.e.
characters with an accent, were replaced with their corresponding
unmarked character. All characters were transformed into lowercase
characters.
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S E N T I M E N T S C O R I N G

In this chapter, the usage of sentiment scoring is explored. Sentiment
scoring can be seen as a symbolic approach, rather than a machine
learning approach, and is currently used for the children’s diary clas-
sification task. The performance of a sentiment scoring algorithm can
function as a baseline or reference for the machine learning mod-
els. The sentiment scoring function sentiment from the Dutch Pattern
module of CLiPS [55] is used. This function returns a valence value
between -1 (negative) and 1 (positive), and a subjectivity value be-
tween 0 (objective) and 1 (subjective). In this chapter, both the usage
of the valence value (Section 5.1) and both the valence and subjectiv-
ity value (Section 5.2) is studied.

5.1 valence value

After feeding a sentence to the sentiment function, a valence value
between -1 and 1 is returned. The predicted label is then assigned
with the usage of thresholds: if the value is larger than zero, the clas-
sification is ’positive’. Similarly, if the value is smaller than zero, the
classification is ’negative’. If the valence value is exactly zero, then
the classification is ’neutral’. The algorithm is thus as follows:

Input : valence value vi of text entry ti
Output : label li
if vi > 0 then

li = positive
else if vi < 0 then

li = negative
else

li = neutral
Algorithmus 1 : Labelling algorithm based on the valence value

Performance is measured on the whole dataset by means of the
accuracy, balanced accuracy, F1-score and mean absolute error (MAE)
scores. The performance is shown in Table 7. Note that the goal is
to minimize MAE, whereas the goal is to maximize the other three
measures.

The corresponding confusion matrix is shown in Table 8. Colors
indicate the percentage of examples for each class which are classified
correctly.

29
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measure performance

accuracy 0.7570

balanced accuracy 0.7410

F1-score 0.7184

MAE 0.2937

Table 7: Performance of sentiment scoring with valence value

predicted

negative neutral positive

actual
negative 41 8 11

neutral 35 108 24

positive 9 9 150

Table 8: Confusion matrix sentiment scoring with valence value

An analysis of negative text entries with the highest valence values
and positive text entries with the lowest valence values is displayed
in Table 9.

text entry valence

negative text entries

daarna gingen we een modeshow lopen 0.60

dat was dan weer niet zo leuk

veel buik pijn en niet zo lekker 0.60

school school niet zo leuk 0.60

niet helemaal goed het lukte een beetje 0.55

ik snapte het niet helemaal goed niet hoe het werkte 0.55

positive text entries

we gaan nog naar burger zoo daar heb ik zin in -0.65

met de vogels ontbijten de vogels kwamen naar mij -0.23

en naar mijn zusje en mijn moeder en het was

grappig en leuk

naar huis ik en een vriendin en een vriend gingen -0.23

naar huis het was wel donker maar ik had een -0.10

leuke schoen ervoor

ik ging naar charlie in het ziekenhuis en dat was leuk -0.03

Table 9: Analysis of negative text entries with the highest valence values and
positive text entries with the lowest valence values
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The trend in the negative text entries in Table 9 appears to be the
usage of ’niet zo’ or ’niet helemaal’, which is not detected as a nega-
tion of positiveness by sentiment scoring. The valence of ’niet lekker’
and ’niet leuk’ is -0.3, whereas the valence of ’niet zo lekker’ and ’niet
zo leuk’ is 0.6. Apparently, sentiment scoring does not detect phrases
such as ’niet zo’ or ’niet helemaal’ as a negation of the positive senti-
ment, because ’niet’ is not directly in front of the positive sentiment.

The trend in the positive text entries is the usage of the word ’naar’.
In these text entries, the word ’naar’ is a preposition and is used as an
indication of a movement towards a place, such as the zoo. However,
the word ’naar’ as an adjective is a negative word. Seemingly, senti-
ment scoring does not take the usage of ’naar’ as a preposition into
account. The difference between the two usages of the word ’naar’
can be detected by means of a Part-Of-Speech tagger, in order to bet-
ter classify the text entries.

5.2 valence and subjectivity value

The usage of the subjectivity value as a method for detecting neu-
tral text entries is explored in this section. The subjectivity value is
between 0 (objective) and 1 (subjective). Therefore, a threshold of 0.5
is chosen to detect neutral (objective) text entries, which is exactly
between 0 and 1.

Text entries are now classified as ’positive’ if their corresponding
valence value is larger than zero and if their subjectivity value is
larger than 0.5. Text entries are classified as ’negative’ if their cor-
responding valence value is smaller than zero and if their subjectivity
value is larger than 0.5. In all other cases, the classification is ’neutral’.
Hence, the algorithm is as follows:

Input : valence value vi and subjectivity value si of text entry ti
Output : label li
if vi > 0 and si > 0.5 then

li = positive
else if vi < 0 and si > 0.5 then

li = negative
else

li = neutral
Algorithmus 2 : Labelling algorithm based on the valence and sub-
jectivity value

Table 10 shows that the usage of the subjectivity value next to the
valence value increases performance according to all measures. The
accuracy is increased from 0.7570 to 0.7844, the balanced accuracy
from 0.7410 to 0.7629, the F1-score from 0.7184 to 0.7447, and the
MAE from 0.2937 to 0.2656. The division of classes according to this
model is displayed in Figure 6. Figure 6 shows that a low score for



32 sentiment scoring

subjectivity can be an indication for a neutral sentiment. The con-
fusion matrix is displayed in Table 11. The confusion matrix shows
that more neutral text entries are labelled correctly compared to the
algorithm which only uses the valence value. Colors indicate the per-
centage of examples for each class which are classified correctly.

measure performance

accuracy 0.7848

balanced accuracy 0.7629

F1-score 0.7447

MAE 0.2656

Table 10: Performance of sentiment scoring with valence and subjectivity
value

Figure 6: Scatter plot of data points based on their valence (x-axis) and sub-
jectivity (y-axis) values, labelled by the usage of valence and sub-
jectivity value

predicted

negative neutral positive

actual
negative 41 8 11

neutral 31 119 17

positive 9 9 150

Table 11: Confusion matrix sentiment scoring with valence and subjectivity
value
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T E X T R E P R E S E N TAT I O N

In this chapter, an exploration of the different text representations
is reported. This chapter is intended solely as an exploration of the
workings of the transformations, not as a base to make decision upon.
All transformations in this chapter are performed on the whole dataset.
When training machine learning models, however, the transforma-
tions are first fit and applied on the training data, after which they
are applied on the test data. The chapter describes the three steps per-
formed before learning models, namely morphological normalization
(Section 6.1), n-grams (Section 6.2), and term frequency weighting
(Section 6.3).

6.1 morphological normalization

The first step is morphological normalization. In this thesis, three
different variations are evaluated: 1) no normalization, 2) stopword
removal, and 3) stopword removal and stemming. In this section, all
variations are discussed.

For stopword removal, a list with stopwords for Dutch [17] is pro-
vided in the Natural Language Toolkit (NLTK) documentation [48] for
Python. The stopwords are derived from a large sample of Dutch
texts. Stopwords include for example: ’de’, ’en’, and ’ik’. A total of 101

stopwords are present in the Dutch stopword list. Some stopwords,
however, are likely to be important for capturing negation and inten-
sity. Therefore, the words ’niet’, ’geen’, ’veel’, ’zo’, and ’niets’ are not
seen as stopwords and are not removed, resulting in a list of 96 stop-
words. When performing stopword removal, the stopwords in the
stopword list are removed from the sentences. The effect of stopword
removal on the average sentence length is shown in Table 12.

original stopword removal

all 9.93 (6.77) 5.63 (3.49)

negative 9.48 (4.84) 5.90 (2.96)

neutral 9.55 (6.87) 5.38 (3.45)

positive 10.46 (7.24) 5.77 (3.71)

Table 12: Average sentence length (and standard deviation) after stopword
removal

Table 12 shows that both the average sentence length and the stan-
dard deviation decrease after performing stopword removal. The ta-

33
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ble also shows that the smallest reduction in average sentence length
takes place in the negative text entries. This indicates that negative
text entries contain less stopwords.

For stemming, an algorithm is built manually with the usage of
functions from the Dutch module of Pattern [55]. The functions singularize,
lemma, and predicative are used. The function singularize returns
the singular form of plural nouns. The function lemma returns the
base form of a verb: for example the base form of ’ben’ is ’zijn’. The
predicative function returns the base of an adjective with an −e suf-
fix: for example the base of ’lieve’ is ’lief’. The Part-of-Speech (POS)
tag of a word (e.g. ’plural noun’, ’singular noun’, ’adjective’, etc.) in
a sentence can be found with the function parse, which is also from
the Dutch module of Pattern [55]. The stemming algorithm is then as
follows:

Input : sentence s
Output : sentence s′ with stemmed words
s′ =′′

forall words w occurring in sentence s do
if w is a plural noun then

w = singularize(w)
else if w is a verb not in base form then

w = lemma(w)
else if w is an adjective then

w = predicative(w)
s′ = s′ + w

end
Algorithmus 3 : Stemming algorithm

The effect of both 1) stopword removal and 2) stopword removal
and stemming on the number of distinct words in the dataset is
shown in Table 13. Stemming is always performed after stopword
removal, hence the term ’stemming’ in the table refers to both stop-
word removal and stemming.

original stopword removal stemming

all 821 759 692

negative 219 171 163

neutral 526 467 429

positive 417 357 326

Table 13: Number of distinct words after stopword removal and stemming

Table 13 shows that the number of distinct words in the dataset
decreases as stopword removal and stemming are performed. The
number of distinct words in negative text entries is lower, because
less negative text entries occur in the dataset. The number of positive
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and neutral text entries in the dataset differs with only 1 text entry,
but the number of distinct words differs quite substantially: the set
of neutral text entries contains more distinct words than the set of
positive text entries.

6.2 n-grams

After morphological normalization, text entries are transformed into
n-Grams. The Scikit-Learn package [60], a machine learning pack-
age for Python, has the function CountVectorizer [13] for transform-
ing text entries into a matrix of n-grams counts. The function has
amongst others the parameter ngram_range which can be used to in-
dicate which sizes of n-grams are produced. Other parameters are the
maximum number of features (max_features), the minimum document
frequency (min_df ), and the maximum document frequency (max_df ).
In this research, the following parameter settings are used:

• ngram_range = (1,3), hence all uni-, bi-, and tri-grams

• max_features = None

• min_df = 2, in order to eliminate non-words or highly infre-
quent words

• max_df = None

In this section, the usage of different values for n is explored. For
the machine learning models, however, all uni-, bi-, and trigrams
(with minimum document frequency of 2) are used. The exploration
in this section is done on the dataset after stopword removal and stem-
ming. In this section, transformations are performed on the whole
dataset. When training machine learning models, however, the trans-
formations are first fit and applied on the training data, after which
they are applied on the test data. Table 14 shows the number of dis-
tinct n-grams for different values of n.

unigrams bigrams trigrams

all 243 156 47

negative 97 40 8

neutral 195 63 8

positive 177 108 36

Table 14: Number of distinct n-grams for n = {1, 2, 3} with minimum docu-
ment frequency = 2

Table 14 shows that the number of distinct n-grams decreases as
n increases, which is expected. Moreover, it shows that the set of
positive text entries contains more distinct trigrams than the set of
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neutral text entries, even though they contain approximately the same
number of text entries. This can be explained by the fact that the set of
neutral text entries contains more distinct words (unigrams), thereby
decreasing the possibility of higher-order n-grams occurring twice or
more.

6.2.1 Unigrams

In this section, the usage of unigrams on the dataset after stopword
removal and stemming is analyzed. Table 15, Table 16, and Table
17 show the top five most occurring words in respectively negative,
neutral, and positive text entries. Colors indicate the percentages dis-
played in the tables.

word negative neutral positive

niet 43.33 11.38 3.57

heel 20.00 1.20 17.86

leuk 18.33 3.59 70.83

vinden 16.67 2.40 18.45

moeilijk 16.67 0.06 0.00

Table 15: Top five most occurring words in negative text entries, scores indi-
cate the percentage of text entries per class that contain the word

word negative neutral positive

school 13.33 26.95 25.60

gaan 13.33 21.56 15.48

we 6.67 19.76 14.29

spelen 1.67 14.37 7.74

niet 43.33 11.38 3.57

Table 16: Top five most occurring words in neutral text entries, scores indi-
cate the percentage of text entries per class that contain the word

Table 15, Table 16, and Table 17 show that some words overlap be-
tween the tables, such as ’leuk’, ’heel’, ’school’, ’gaan’, and ’niet’. The
high occurrence of ’leuk’ in negative text entries can be explained by
the usage of phrases such as ’niet leuk’. Children also use ’school’
approximately double as much in positive text entries than in nega-
tive text entries, thereby indicating that going to school is not always
unpleasant.



6.2 n-grams 37

word negative neutral positive

leuk 18.33 3.59 70.83

school 13.33 26.95 25.60

vinden 16.67 2.40 18.45

heel 20.00 1.20 17.86

gaan 13.33 21.56 15.48

Table 17: Top five most occurring words in positive text entries, scores indi-
cate the percentage of text entries per class that contain the word

6.2.2 Bigrams

In this section, the usage of bigrams on the dataset after stopword
removal and stemming is analyzed. Table 18, Table 19, and Table 20

show the top five most occurring bigrams in respectively negative,
neutral, and positive text entries. Colors indicate the percentages dis-
played in the tables.

bigram negative neutral positive

niet leuk 11.67 0.60 0.00

niet zo 11.67 0.00 0.00

vinden niet 8.33 1.20 0.00

heel moeilijk 5.00 0.00 0.00

buik pijn 5.00 0.00 0.00

Table 18: Top five most occurring bigrams in negative text entries, scores
indicate the percentage of text entries per class that contain the
word

bigram negative neutral positive

we gaan 0.00 4.79 4.17

school we 0.00 4.19 1.10

we hebben 1.67 2.40 1.79

film kijken 0.00 2.40 0.60

pannenkoek eten 0.00 1.80 0.00

Table 19: Top five most occurring bigrams in neutral text entries, scores indi-
cate the percentage of text entries per class that contain the word

Table 18, Table 19, and Table 20 show that bigrams do not overlap
much between the tables. All bigrams occurring in the negative table
are not present in the positive text entries, and vice versa. Bigrams
occurring in the negative and positive tables indicate a strong sense
of sentiment, especially compared to the unigrams occurring in the
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bigram negative neutral positive

heel leuk 0.00 0.00 8.93

ik vinden 0.00 0.00 8.33

leuk dag 0.00 0.00 7.14

super leuk 0.00 0.00 6.55

vinden leuk 0.00 0.00 5.95

Table 20: Top five most occurring bigrams in positive text entries, scores in-
dicate the percentage of text entries per class that contain the word

previous subsection which are more general. Four out of the five bi-
grams in the positive table use the word ’leuk’, which is apparently
a strong indicator of positive sentiment as it is also present in 70.83%
of the positive text entries.

6.2.3 Trigrams

In this section, the usage of trigrams on the dataset after stopword
removal and stemming is analyzed. Table 21, Table 22, and Table 23

show the top five most occurring trigrams in respectively negative,
neutral, and positive text entries. Colors indicate the percentages dis-
played in the tables.

trigram negative neutral positive

vinden niet leuk 8.33 0.60 0.00

heel moeilijk vragen 3.33 0.00 0.00

niet helemaal goed 3.33 0.00 0.00

niet zo lekker 3.33 0.00 0.00

niet zo leuk 3.33 0.00 0.00

Table 21: Top five most occurring trigrams in negative text entries, scores
indicate the percentage of text entries per class that contain the
word

trigram negative neutral positive

school we gaan 0.00 1.20 0.60

spelen vogels gaan 0.00 1.20 0.00

vogel spelen vogels 0.00 1.20 0.00

vogels gaan vliegen 0.00 1.20 0.00

niks minder gespoot 1.67 0.60 0.00

Table 22: Top five most occurring trigrams in neutral text entries, scores in-
dicate the percentage of text entries per class that contain the word
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trigram negative neutral positive

vinden super leuk 0.00 0.00 4.17

ik vinden leuk 0.00 0.00 2.38

ik vinden super 0.00 0.00 2.38

best wel leuk 0.00 0.00 1.79

leuk dag hebben 0.00 0.00 1.79

Table 23: Top five most occurring trigrams in positive text entries, scores
indicate the percentage of text entries per class that contain the
word

Table 21, Table 22, and Table 23 show that trigrams do not occur of-
ten in the text entries. Table 21 on the negative text entries displays the
trigrams the Sentiment Scorer from the previous chapter had trouble
with, namely ’niet zo leuk’, ’niet zo lekker’, and ’niet helemaal goed’.
Table 22 shows a lot of trigrams referencing birds (’vogel’). Because
neutral text entries contain a large number of distinct words (Table
13), few trigrams occur in more than one entry. A few (1.20%) neutral
entries refer to birds, and those topics are thereby the most occurring
trigrams, as not many other trigrams exist that occur in more than
one text entry.

6.3 term frequency (- inverse document frequency)

After applying the CountVectorizer [13] function, the resulting ma-
trix consists of occurrence counts of the selected n-grams for every
text entry. Another representation to use is term frequency, which nor-
malizes the occurrence counts by dividing them by the total number
of words in the text entry. Moreover, words that occur in many docu-
ments can be downscaled in order to make them less dominant [58].
An often used representation for doing this is using term frequency -
inverse document frequency (tf-idf).

The Scikit-Learn package for Python [60] has a function
TfidfTransformer [71] for transforming the occurrence counts into
either term frequencies or tf-idf. In this study, the usage of occurrence
counts, term frequency and tf-idf is evaluated.

In this section, transformations are performed on the whole dataset.
When training machine learning models, however, the transforma-
tions are first fit and applied on the training data, after which they
are applied on the test data. Figure 7 shows the distribution of the
often occurring variables ’leuk’ and ’niet’ for the three different rep-
resentations: occurrence count (top), term frequency (middle), and
tf-idf (bottom).
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Figure 7: Histogram of the variables ’leuk’ and ’niet’ with an occurrence
count (top), term frequency (middle), and tf-idf (bottom) represen-
tation

Figure 7 shows that the distribution becomes more spread after
applying term frequencies. Moreover, the distributions shifts a bit to
the left after applying tf-idf. This makes sense, as tf-idf downscales
variables that occur in many text entries and both ’leuk’ and ’niet’
occur often in the dataset. A difference can be seen between ’leuk’ and
’niet’ though’: ’niet’ occurs less often than ’leuk’ and is subsequently
less downscaled.

The effect of using all these text representations is evaluated in the
next chapter on machine learning models.



7
M A C H I N E L E A R N I N G M O D E L S

In this chapter, the usage of different machine learning models is
studied. In the first three sections, Logistic Regression (Section 7.1),
Naive Bayes (Section 7.2) and Support Vector Machine (Section 7.3)
are discussed. In Section 7.4, the three models are compared.

Because of the small size of the dataset, multiple training and test
splits are used to evaluate the machine learning models. The ap-
proach of nested cross-validation is used. The data is split into ten
folds with the StratifiedKFold [67] function of Scikit-Learn, where
the folds are made by preserving the percentage of samples for each
class. For j = 1..10, cross-validation is performed on all folds except j
to determine the optimal parameters. A model is then trained on all
folds except j with the found parameters, after which the prediction
performance is estimated on j. The final estimated performance of a
model is then the average and standard deviation of each of the 10

folds.
All models use the same division of data among the folds in both

the outer and inner loop. All transformations on the data (e.g. term
frequency) are fit and applied on the training data first, after which
they are applied on the test data.

7.1 logistic regression

The model LogisticRegression [38] from the Scikit-Learn package
for Python is used for modelling Logistic Regression. The liblinear
solver is used, which uses one-versus-rest schemes for multinomial
target variables. The model specific parameter which is optimized is
the C parameter, which is the inverse of regularization strength λ.
Hence, smaller values indicate stronger regularization. The values for
C considered at every cross-validation step are: {10, 9, 8, 7, 6, 5, 4, 3, 2, 1}×
10{3,2,1,0,−1}. It is checked that optimal C-values are not among the
most extreme C-values considered. Hence, the search range for C-
values is appropriate. Different types of text representations and the
usage of a lasso (l1) or ridge (l2) penalty are studied as well. Result-
ing models are evaluated according to four measures: accuracy, mean
absolute error (MAE), balanced accuracy, and F1-score.

Table 24 shows the accuracy scores and Table 25 shows the mean
absolute errors for the corresponding models. The term ’occ’ in the
tables refers to occurrence counts and ’stopwords’ refers to stopword
removal. The scores are multiplied with 100 for better readability of
the table. Colors indicate the scores. The colors in Table 25 are differ-

41
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ent, because the objective is to minimize MAE and to maximize the
other three measures.

occ tf tf-idf

lasso (l1)
text 85.28 (4.65) 85.51 (6.04) 86.29 (3.77)

stopwords 86.06 (3.89) 86.59 (4.16) 86.80 (4.14)

stemming 88.84 (3.88) 88.85 (4.31) 89.85 (2.65)

ridge (l2)
text 82.70 (6.23) 81.20 (6.94) 79.47 (4.57)

stopwords 84.28 (5.30) 84.30 (4.21) 83.02 (5.79)

stemming 84.54 (4.49) 85.78 (3.60) 84.29 (4.20)

Table 24: Results of Logistic Regression (mean and standard deviation), mea-
sured with accuracy ×100

occ tf tf-idf

lasso (l1)
text 16.49 (4.81) 16.01 (6.19) 15.48 (5.09)

stopwords 16.45 (4.53) 15.67 (5.72) 14.97 (5.05)

stemming 12.68 (4.95) 13.18 (5.67) 12.16 (3.37)

ridge (l2)
text 19.83 (6.41) 21.83 (6.86) 23.33 (4.94)

stopwords 18.25 (6.28) 18.24 (5.17) 19.51 (6.78)

stemming 17.99 (5.93) 16.75 (4.69) 17.99 (5.34)

Table 25: Results of Logistic Regression (mean and standard deviation), mea-
sured with mean absolute error ×100

Tables 24 and 25 show that a lasso (l1) penalty performs better
than a ridge (l2) penalty. The lasso (l1) penalty performs dimension
reduction by setting some of the coefficients to zero. In this case, the
dataset contains a lot of features and the dataset is sparse, and dimen-
sion reduction thus provides an improvement on the performance.
The tables moreover show the following ordering: stemming > stop-
word removal > text representation. Hence, more intense morphologi-
cal normalization leads to higher scores. By using morphological nor-
malization, words with the same base are mapped to the same stem.
This results in fewer distinct n-grams, which make it easier for the
model to learn the pattern in the training set as less weights need
to be learned. Tables 24 and 25 do not show a clear preference for
occurrence counts, term frequencies or tf-idf.

Since the dataset is unbalanced, balanced accuracy and F1-score
are also evaluated. Table 26 shows the balanced accuracy scores and
Table 27 shows the F1-scores for the corresponding models. Colors
indicate the scores.

Tables 26 and 27 show approximately the same performance pat-
tern as in Tables 24 and 25. The values in Tables 26 and 27 have
slightly higher standard deviations than in the other two tables. Higher
standard deviations are probably caused by the increased influence
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occ tf tf-idf

lasso (l1)
text 78.44 (5.65) 78.62 (8.43) 79.96 (7.43)

stopwords 79.40 (5.77) 81.23 (5.55) 82.11 (5.05)

stemming 83.74 (6.86) 83.38 (7.49) 84.16 (5.74)

ridge (l2)
text 76.41 (7.01) 74.51 (7.50) 73.86 (5.13)

stopwords 79.78 (6.63) 79.07 (6.78) 79.85 (6.55)

stemming 79.28 (6.78) 80.62 (5.58) 80.15 (5.57)

Table 26: Results of Logistic Regression (mean and standard deviation), mea-
sured with balanced accuracy ×100

occ tf tf-idf

lasso (l1)
text 79.56 (5.27) 79.58 (7.91) 80.78 (6.30)

stopwords 80.65 (6.21) 82.36 (5.91) 82.99 (5.02)

stemming 84.68 (6.71) 84.29 (7.48) 85.38 (5.53)

ridge (l2)
text 77.30 (6.98) 75.60 (7.75) 75.02 (5.10)

stopwords 80.15 (6.43) 79.67 (6.26) 80.17 (6.80)

stemming 79.48 (6.09) 81.08 (5.01) 80.82 (5.45)

Table 27: Results of Logistic Regression (mean and standard deviation), mea-
sured with F1-score ×100

of negative entries on the score. Balanced accuracy and F1-score are
calculated by taking the mean of the accuracies for each class. Far less
negative text entries are present in the dataset than positive and neu-
tral entries. As a result, a wrongly classified negative text entry has
approximately three times as much influence on the score as positive
and neutral text entries. Consequently, the scores fluctuate more than
when using normal accuracy or MAE.

In general, Logistic Regression shows the following patterns: lasso
> ridge, and stemming > stopword removal > text representation. When
using the lasso penalty and the stemming representation, a tf-idf rep-
resentation is a best match. This combination scores highest on all
measures. Hence, for comparing Logistic Regression to Naive Bayes
and Support Vector Machine in Section 7.4, the combination lasso-
stemming-tf-idf is used for Logistic Regression.

7.1.1 Coefficient Evaluation

Because Logistic Regression learns weights for predicting classes, an
exploratory analysis of the coefficient values might give insights into
the workings of the model. In this subsection, the coefficients of the
lasso-stemming-tf-idf combination are evaluated. Because a tf-idf rep-
resentation is used, all variables are scaled into the same range. Table
28 shows the variables and their coefficients with the highest sum
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of absolute coefficient values across all one-versus-rest models, when
training on the whole dataset with a lasso-stemming-tfidf combina-
tion.

variable negative neutral positive

leuk -4.80 -35.71 42.40

lekker -20.90 21.26

goed -19.17 19.07

niet zo 15.67 -3.85 -5.50

jammer 14.76 -10.03

lastig 1.87 9.22 -13.49

gezellig -0.02 -8.98 15.43

saai 14.15 -9.38

hard 10.76 -12.53

niet leuk 13.76 -9.52

Table 28: Top ten variables and their coefficients with highest sum of abso-
lute coefficient values for Logistic Regression

Table 28 shows that some variables indicate clear positive senti-
ments, such as ’leuk’, ’lekker’, ’goed’, and ’gezellig’. Some variables
indicate clear negative sentiments, such as ’jammer’, ’lastig’, ’saai’,
and ’niet leuk’. The words ’niet zo’ probably indicate a negation of
a positive sentiment. The feature set also contains the trigrams the
Sentiment Scorer had trouble with, namely ’niet zo leuk’, niet echt
leuk’, and ’niet helemaal goed’. This indicates that these trigrams are
strong indicators of sentiment.

The usage of the lasso penalty also performs as a feature selection
step. In this case, out of the 446 features, 315 have a coefficient of
zero for all classes. Tables 24, 25, 26, and 27 have shown that using
a lasso (l1) penalty leads to a better performance. The outcome of
a lasso penalty can also be used as a feature selection step for the
two upcoming models, Naive Bayes and Support Vector Machine. The
function SelectFromModel [61] in Scikit-Learn can be used for this
purpose. The function SelectFromModel asks for a model, such as a
Logistic Regression with lasso penalty and default C parameter, and
returns the features which have non-zero coefficients. The usage of
this feature selection step for both Naive Bayes and Support Vector
Machine is studied. This feature selection step will be called ’lasso’ in
the upcoming sections, where ’no lasso’ indicates no feature selection
step.
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7.2 naive bayes

A Multinomial Naive Bayes model is implemented in Scikit-Learn
with the function MultinomialNB [47]. A Multinomial model is cho-
sen rather than a Bernoulli model because the Multinomial model can
work with word counts and fractional counts (such as tf-idf) which
are used in this thesis as well. McCallum and Nigam [43] also show
an improved performance of using a Multinomial Naive Bayes over
a Bernouilli Naive Bayes for text classification. The model specific pa-
rameter which is optimized is the smoothing parameter, which can
be used to prevent from having zero probabilities for future computa-
tions. The values for smoothing considered at every cross-validation
step are: {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} × 10{0,−1,−2,−3}.

Table 29 shows the accuracy scores and Table 30 shows the mean
absolute errors for the corresponding models. The term ’occ’ in the
tables refers to occurrence counts. The scores are multiplied with 100

for better readability of the table. Colors indicate the scores. The col-
ors in Table 30 are different, because the objective is to minimize MAE
and to maximize the other three measures.

occ tf tf-idf

lasso
text 78.21 (7.99) 75.40 (7.20) 71.36 (7.02)

stopwords 75.91 (6.59) 70.63 (6.95) 69.87 (7.06)

stemming 74.40 (6.66) 72.38 (8.87) 71.12 (8.79)

no lasso
text 75.95 (3.57) 75.42 (3.75) 75.20 (4.79)

stopwords 76.68 (5.45) 78.69 (6.29) 77.94 (5.95)

stemming 79.23 (3.36) 80.22 (5.12) 76.68 (4.76)

Table 29: Results of Naive Bayes (mean and standard deviation), measured
with accuracy ×100

occ tf tf-idf

lasso
text 25.62 (10.17) 29.66 (6.09) 35.98 (7.76)

stopwords 27.90 (8.09) 35.20 (8.08) 36.72 (9.57)

stemming 29.68 (8.29) 32.97 (11.30) 33.44 (9.58)

no lasso
text 29.64 (4.82) 29.92 (5.16) 29.89 (4.76)

stopwords 28.62 (8.33) 25.35 (8.56) 26.08 (8.00)

stemming 26.06 (6.08) 23.56 (6.86) 27.37 (5.67)

Table 30: Results of Naive Bayes (mean and standard deviation), measured
with mean absolute error ×100

Tables 29 and 30 show a different pattern than with Logistic Re-
gression. Not a clear improvement of performance can be seen when
using a feature selection step based on the lasso Logistic Regression
model instead of no feature selection step. This can be explained be-
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cause Logistic Regression and Naive Bayes have very different work-
ings: Logistic Regression works with weights and Naive Bayes works
with a probability distribution. Hence, features that are important
for Logistic Regression are not necessarily the most useful for Naive
Bayes.

The difference in performance of using feature selection with occur-
rence counts or tf/tf-idf can be explained by the number of features
selected: an exploratory study indicates that lasso Logistic Regression
sets less coefficients to zero for occurrence counts than for term fre-
quencies or tf-idf. Hence, more features are selected with occurrence
counts. This might be because the distribution of variables with occur-
rence counts differs from the distribution with tf or tf-idf, as has been
shown in Section 6.3. A more detailed study on this aspect could be
performed, but results for occurrence counts indicate that feature se-
lection will probably not improve the performance vastly. Moreover,
results in general indicate that it is not very likely that Naive Bayes
will perform better than Logistic Regression. Hence, this aspect is not
further evaluated.

Tables 31 shows the balanced accuracy scores and 32 shows the
F1-scores for the corresponding models. Colors indicate the scores.

occ tf tf-idf

lasso
text 74.33 (7.78) 66.38 (6.69) 63.21 (8.59)

stopwords 74.27 (7.45) 65.87 (8.30) 65.61 (8.40)

stemming 73.80 (6.75) 69.40 (10.52) 68.02 (8.67)

no lasso
text 67.89 (5.26) 68.17 (3.74) 67.30 (7.01)

stopwords 70.60 (5.11) 74.32 (7.19) 72.31 (7.12)

stemming 72.62 (5.47) 74.83 (6.79) 70.60 (7.52)

Table 31: Results of Naive Bayes (mean and standard deviation), measured
with balanced accuracy ×100

occ tf tf-idf

lasso
text 74.74 (8.81) 67.76 (8.08) 64.25 (10.24)

stopwords 74.11 (7.42) 66.99 (9.08) 66.59 (8.89)

stemming 73.56 (6.78) 70.36 (10.89) 69.20 (8.68)

no lasso
text 68.58 (5.55) 69.54 (4.49) 68.15 (8.34)

stopwords 71.71 (5.99) 75.33 (7.53) 73.37 (7.28)

stemming 73.20 (5.42) 75.75 (6.78) 70.69 (8.55)

Table 32: Results of Naive Bayes (mean and standard deviation), measured
with F1-score ×100

Both Table 31 and 32 show the same pattern, which quite resembles
the patterns seen in Table 29 and Table 30. The main difference is,
however, that feature selection with occurrence counts is now clearly
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among the best combinations. Rennie, Shih, Teevan, and Karger [59]
indicate that Naive Bayes select poor weights for the decision bound-
ary when the dataset is unbalanced. An under-studied bias effect of
Naive Bayes is that it shrinks weights for classes with few training ex-
amples. In our case, negative text entries make up for approximately
15% of the dataset, whereas neutral and positive entries each make up
for 42.5% of the dataset. Feature selection performed by lasso Logistic
Regression thus may have the effect that it prevents from overfitting
on neutral and positive text entries. Balanced accuracy and F1-score
use a macro average over all the classes, thereby giving more weight
to the negative text entries than normal accuracy. Hence, this may be
an explanation that feature selection with occurrence count is among
the best combinations for balanced accuracy and F1-score. The bias
effect of Naive Bayes might also be an explanation of the decreased
performance when using Naive Bayes over Logistic Regression.

The combination stemming-tf without feature selection can be con-
sidered the best combination for Naive Bayes: it scores highest on
all four measures. Hence, for comparing Naive Bayes with the other
models in Section 7.4, this combination is used.

7.3 support vector machine

Support Vector Machines (SVM) are modeled with the function SVC

[68] in the Scikit-Learn package for Python. Two kernels are evalu-
ated: Linear kernel and RBF kernel. The model specific parameters
which are optimized during cross-validation are the cost parameter
C (both kernels) and the gamma value γ (RBF).

7.3.1 Linear Kernel

For the Linear kernel, the cost parameter C needs to be optimized.
The values for C considered at every cross-validation step are the
same as in Logistic Regression: {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} × 10{3,2,1,0,−1}.
Tables 33, 34, 35, and 36 show the accuracy scores, mean absolute er-
rors, balanced accuracy scores, and F1-scores for the corresponding
models. The term ’occ’ in the tables refers to occurrence counts. The
scores are multiplied with 100 for better readability of the table. Col-
ors indicate the scores. The colors in Table 34 are different, because
the objective is to minimize MAE and to maximize the other three
measures.

Tables 33, 34, 35, and 36 all show the same pattern. More intense
morphological normalization improves the performance. Moreover,
the tables show that feature selection with lasso Logistic Regression
improves upon the best performance of the SVM with Linear kernel.
A clear preference for either occurrence counts, term frequencies of
tf-idf is not clear.
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occ tf tf-idf

lasso
text 86.06 (7.42) 83.22 (7.57) 82.96 (7.40)

stopwords 86.03 (5.56) 85.02 (5.62) 86.78 (5.24)

stemming 90.11 (7.19) 86.53 (5.85) 87.80 (6.03)

no lasso
text 83.52 (4.11) 81.21 (6.29) 80.72 (5.89)

stopwords 84.48 (7.12) 84.07 (5.59) 82.53 (6.54)

stemming 85.99 (7.58) 87.57 (6.55) 85.03 (3.78)

Table 33: Results of SVM with Linear kernel (mean and standard deviation),
measured with accuracy ×100

occ tf tf-idf

lasso
text 16.22 (5.51) 20.85 (8.30) 20.85 (6.87)

stopwords 17.54 (6.67) 18.27 (5.07) 16.76 (5.73)

stemming 12.44 (7.32) 17.54 (7.12) 15.74 (6.65)

no lasso
text 19.26 (4.01) 21.84 (6.91) 22.07 (6.44)

stopwords 18.29 (6.73) 18.47 (4.77) 20.49 (6.14)

stemming 17.06 (7.27) 15.24 (6.10) 18.02 (4.22)

Table 34: Results of SVM with Linear kernel (mean and standard deviation),
measured with mean absolute error ×100

occ tf tf-idf

lasso
text 80.84 (8.15) 77.19 (7.24) 76.97 (7.06)

stopwords 80.80 (5.84) 78.96 (5.72) 81.75 (4.50)

stemming 86.14 (6.96) 81.55 (5.16) 83.62 (5.72)

no lasso
text 78.46 (4.08) 75.94 (7.03) 76.98 (6.63)

stopwords 78.53 (7.05) 78.91 (6.09) 78.77 (6.70)

stemming 79.72 (8.13) 83.79 (6.61) 81.44 (4.30)

Table 35: Results of SVM with Linear kernel (mean and standard deviation),
measured with balanced accuracy ×100

occ tf tf-idf

lasso
text 80.84 (7.42) 77.77 (7.57) 78.05 (7.40)

stopwords 81.14 (5.56) 79.92 (5.62) 82.95 (5.24)

stemming 86.65 (7.19) 82.25 (5.85) 84.01 (6.03)

no lasso
text 78.70 (4.11) 76.32 (6.29) 77.15 (5.89)

stopwords 79.00 (7.12) 79.05 (5.59) 78.99 (6.54)

stemming 79.70 (7.58) 83.61 (6.55) 81.23 (3.78)

Table 36: Results of SVM with Linear kernel (mean and standard deviation),
measured with F1-score ×100

The combination stemming-occurrence counts with feature selec-
tion can be considered the best combination for Linear SVM: it scores
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best on all four measures. Therefore, for comparing Linear SVM to
the other models in Section 7.4, this combination is used.

7.3.2 RBF Kernel

For the RBF kernel, both the cost parameter C and the gamma value
γ are optimized. The values for C are the same as previously used.
The values for γ considered at every cross-validation step are: 2 ×
10{−15,−13,−11,−9,−7,−5,−3,−1,1,3}. Tables 37, 38, 39, and 40 show the ac-
curacy scores, mean absolute errors, balanced accuracy scores and
F1-scores for the corresponding models. The term ’occ’ in the tables
refers to occurrence counts. The scores are multiplied with 100 for
better readability of the table. Colors indicate the scores. The colors
in Table 38 are different, because the objective is to minimize MAE
and to maximize the other three measures.

occ tf tf-idf

lasso
text 85.26 (4.75) 82.47 (5.55) 83.47 (6.47)

stopwords 86.56 (2.92) 85.01 (3.14) 86.78 (4.56)

stemming 90.09 (3.97) 85.50 (5.15) 88.05 (4.47)

no lasso
text 83.28 (2.85) 81.74 (4.41) 79.96 (5.09)

stopwords 84.00 (3.70) 84.07 (3.51) 82.52 (5.48)

stemming 86.26 (5.34) 87.32 (3.64) 84.78 (4.00)

Table 37: Results of SVM with RBF kernel (mean and standard deviation),
measured with accuracy ×100

occ tf tf-idf

lasso
text 16.76 (5.08) 21.35 (7.46) 19.56 (5.54)

stopwords 17.50 (4.61) 18.29 (5.31) 16.51 (5.91)

stemming 12.46 (6.52) 17.82 (7.93) 14.73 (5.59)

no lasso
text 19.50 (3.23) 20.80 (5.38) 22.83 (5.65)

stopwords 18.54 (4.28) 18.46 (4.88) 20.24 (6.10)

stemming 16.28 (6.61) 14.97 (5.48) 18.26 (4.90)

Table 38: Results of RBF kernel (mean and standard deviation), measured
with mean absolute error ×100

Tables 37, 38, 39, and 40 all show the same pattern, which is sim-
ilar to the SVM with a Linear kernel. More intense morphological
normalization improves the performance. Moreover, feature selection
with lasso Logistic Regression improves upon the best performance
of the SVM with RBF kernel. A preference for or pattern in the perfor-
mance on either occurrence counts, term frequencies of tf-idf is not
clear.
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occ tf tf-idf

lasso
text 79.88 (6.51) 76.61 (7.01) 77.39 (6.48)

stopwords 81.92 (4.72) 80.02 (4.07) 81.40 (6.90)

stemming 85.77 (5.71) 80.05 (6.31) 84.18 (5.24)

no lasso
text 77.91 (4.57) 76.36 (6.74) 74.96 (6.18)

stopwords 77.79 (5.49) 79.26 (6.55) 79.11 (6.95)

stemming 79.93 (7.90) 83.24 (6.41) 81.26 (5.58)

Table 39: Results of SVM with RBF kernel (mean and standard deviation),
measured with balanced accuracy ×100

occ tf tf-idf

lasso
text 80.28 (5.91) 77.30 (7.21) 78.66 (6.75)

stopwords 81.94 (4.25) 80.56 (3.98) 82.32 (6.78)

stemming 86.39 (5.79) 81.09 (6.56) 84.78 (5.35)

no lasso
text 78.18 (4.11) 76.71 (6.22) 75.69 (5.90)

stopwords 78.08 (4.93) 79.18 (5.51) 79.06 (6.40)

stemming 80.15 (7.42) 83.08 (5.96) 80.99 (5.44)

Table 40: Results of SVM with RBF kernel (mean and standard deviation),
measured with F1-score ×100

The combination stemming-occurrence counts with feature selec-
tion can be considered the best combination for RBF SVM: it scores
best on all four measures. Therefore, for comparing RBF SVM to the
other models in Section 7.4, this combination is used.

The RBF kernel does not show any improvement on performance
when compared to the Linear kernel, even though the model is more
complex than the Linear kernel. Therefore, a decision is made to not
evaluate the Polynomial kernel, as it is even more complex than the
other two kernels. A more complex model does not only take up more
computing time, but is also more prone to overfitting, especially with
a small dataset as is currently the case.

7.4 comparing models

In this section, two studies are performed on the statistical signif-
icance of observed differences between the accuracy of predictions
made by cross-validation in the outer loop by the models: first on dif-
ferences in morphological normalization and secondly on differences
in machine learning models. The statistical significance of observed
differences between the accuracy of predictions made by all models
is computed by comparing the number of correct predictions made
by one model and incorrect by another, and vice versa, i.e. counting
the number of wins and losses of each model against the other. These
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are compared with a two-tailed binomial test (with the R function
pbinom) against the null hypothesis that both classifiers have the same
accuracy. If the algorithms would perform similarly, as assumed un-
der the null hypothesis, each model should win approximately N/2

times where N is the number of cases on which the two models do
not agree. This statistical test is also known as the sign test [16].

7.4.1 Morphological Normalization

In the previous sections, the pattern stemming > stopword removal >
text can be seen from the results. In this section, this pattern is sta-
tistically evaluated. The best combinations for all four machine learn-
ing models include stemming. In order to statistically test the effect
of morphological normalization, the predictions made by each ma-
chine learning models with their best combination (which always in-
cludes stemming) are compared to the same combination but then
with stopword removal or no morphological normalization at all. Ta-
ble 41 shows the results, where the resulting p-values which are sig-
nificant at α = 0.05 are indicated with an asterisk. The abbreviation
’stop’ refers to stopword removal and ’stem’ refers to stemming.

text stop stem text stop stem

text .868 .016* text .104 .027*

stop .029* stop .362

stem stem

Logistic Regression Naive Bayes

text stop stem text stop stem

text .999 .005** text .486 < .001***

stop .004** stop < .001***

stem stem

Linear SVM RBF SVM

Table 41: Statistical differences (reported with an asterisk if significant at
α = 0.05) in accuracy between different types of morphological
normalization

Table 41 shows that using the stemming algorithm performs sig-
nificantly different in accuracy from no morphological normalization
for all four models. Table 41 also shows that using the stemming al-
gorithm performs significantly different in accuracy from using only
stopword removal for all models except Naive Bayes. Hence, it can be
concluded that using stemming significantly improves the accuracy
over using the other two types of morphological normalization. By
using stemming, words with the same base are mapped to the same
stem, such as ’ben’ to ’zijn’. This results in fewer distinct n-grams,
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which make it easier for the model to learn the pattern in the training
set as less weights need to be learned. The difference in accuracy be-
tween stopword removal and no morphological normalization is not
significant.

7.4.2 Machine Learning Models

All four machine learning models are compared to each other on
the basis of their performance with their best combination. Table 42

shows an overview of the performance of all models according to all
measures. For completeness, the performance of the Sentiment Scorer
on each of the ten folds in the outer loop is calculated as well. The
values in Table 42 are visualized in a histogram in Figure 8. Note that
the goal is to minimize mean absolute error (MAE), whereas the goal
is to maximize the other three measures.

model acc. bal. acc. F1 MAE

Sent. Scorer 78.48 (7.16) 76.29 (7.56) 74.47 (7.56) 26.56 (9.09)

Log. Reg. 89.85 (2.65) 84.16 (5.74) 85.38 (5.53) 12.16 (3.37)

Naive Bayes 80.22 (5.12) 74.83 (6.79) 75.75 (6.78) 23.56 (6.86)

Linear SVM 90.11 (7.19) 86.14 (6.96) 86.65 (7.19) 12.44 (7.32)

RBF SVM 90.09 (3.97) 85.77 (5.71) 86.39 (5.79) 12.46 (6.52)

Table 42: Performance (×100) of the best combinations for each model

Figure 8: Visualized performance (×100) of the best combinations for each
model

Table 42 and Figure 8 show a clear difference in performance be-
tween Sentiment Scoring and Naive Bayes on one hand, and Logistic
Regression and the SVM’s on the other hand. A study of the signifi-
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cance of observed differences between the accuracy of predictions of
all models is performed, as explained at the beginning of this section.
Table 43 shows the results, where the resulting p-values are reported
when the difference is significant at α = 0.05. ’LSVM’ refers to SVM
with Linear kernel and ’RBFSVM’ refers to SVM with RBF kernel.

SS LR NB LSVM RBFSVM

SS < .001*** < .001*** < .001***

LR < .001***

NB < .001*** < .001***

LSVM

RBFSVM

Table 43: Statistical differences (reported with a p-value if significant at α =
0.05) in accuracy between machine learning models

Table 43 shows that Sentiment Scoring and Naive Bayes perform
significantly different in accuracy from Logistic Regression and the
SVM’s. Sentiment Scoring and Naive Bayes do not differ significantly,
and neither do Logistic Regression and the SVM’s. A closer look at
the confusion matrices might still show the differences between them.

Tables 44 and 45 show the confusion matrix with predictions for
all data entries made by cross-validation in the outer loop, for re-
spectively Sentiment Scoring and Naive Bayes. Colors indicate the
percentage of examples for each class which are classified correctly.

predicted

negative neutral positive

actual
negative 41 8 11

neutral 31 119 17

positive 9 9 150

Table 44: Confusion matrix of Sentiment Scoring

predicted

negative neutral positive

actual
negative 33 15 12

neutral 8 132 27

positive 3 13 152

Table 45: Confusion matrix of Naive Bayes

Tables 44 and 45 show that even though Sentiment Scoring and
Naive Bayes are not statistically different, their predictions differ from
each other. The bias effect [59] of Naive Bayes towards classes with
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more text entries can be seen from its confusion matrix: the number
of correctly classified negative text entries is relatively lower than for
neutral and positive text entries. Almost half of the negative text en-
tries are classified incorrect. This is also the main difference between
Naive Bayes and Sentiment Scoring, as the latter classifies more neg-
ative text entries correctly (at the cost of neutral entries).

Tables 46, 47, and 48 show the confusion matrix with predictions
for all data entries made by cross-validation in the outer loop, for
respectively Logistic Regression, Linear SVM, and RBF SVM. Colors
indicate the percentage of examples for each class which are classified
correctly.

predicted

negative neutral positive

actual
negative 38 15 7

neutral 3 161 3

positive 1 11 156

Table 46: Confusion matrix of Logistic Regression

predicted

negative neutral positive

actual
negative 43 13 4

neutral 6 158 3

positive 6 7 155

Table 47: Confusion matrix of Linear SVM

predicted

negative neutral positive

actual
negative 42 14 4

neutral 5 159 2

positive 6 7 155

Table 48: Confusion matrix of RBF SVM

Tables 46, 47, and 48 show that Logistic Regression and the SVM’s
perform quite similar. The main difference between Logistic Regres-
sion and Linear SVM is a slightly more accurate prediction for either
positive and neutral text entries (Logistic Regression) or negative text
entries (Linear SVM). RBF SVM is a sort of trade-off between the two.
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Figure 9 shows the learning curves for Logistic Regression, Naive
Bayes, Linear SVM and RBF SVM. The curves show the average ac-
curacy on the test sets (y-axis) for an increasing random proportion
of the dataset size (x-axis) on which nested cross-validation is per-
formed.

Figure 9: Learning curves for Logistic Regression, Naive Bayes, Linear SVM
and RBF SVM

The learning curves show that it might be beneficial for Logistic
Regression, Linear SVM and RBF SVM to obtain more data in order
to improve performance, as the lines are still slightly increasing. The
learning curve of Naive Bayes shows that obtaining more data will
not help very much, as the line is converging.

All in all, the results from this chapter indicate that using Logis-
tic Regression or Support Vector Machine machine learning models
make significantly better predictions than a symbolic approach. Ma-
chine learning models can take complex negations such as ’niet zo
leuk’ into account, as can be seen in the feature sets of these models.
Logistic Regression and Support Vector Machine are thereby advis-
able to use for the sentiment classification task of the robot.





8
I N T R O D U C I N G S E M A N T I C N O R M A L I Z AT I O N

In the previous chapter, the results show that more intense morpho-
logical normalization yields a better performance. In addition to mor-
phological normalization, a new algorithm for semantic normaliza-
tion is designed. An effect of using this newly designed semantic
normalization algorithm is expected, particularly because the dataset
is sparse and contains many infrequent words. Because the dataset
is relatively small, it is very likely that words occur in the test data
that are not in the training data. In such a case, no weight is learned
for such a word, and the machine learning model will have more
difficulty predicting the target value as it cannot use these unseen
words. Moreover, only words in the training data that occur twice or
more often in the training data are taken into account during learn-
ing. The training algorithm thus does not take into account words
that occur only once, thereby possibly missing informative training
patterns. Leaving these ’unknown’ words in the training and test data
untreated thus might affect the classification performance.

In this chapter, these ’unknown’ words (i.e. words that do not occur
or occur only once in the training set) are mapped to ’known’ words
(i.e. words that occur twice or more often in the training data) by
means of a newly designed algorithm. We call this semantic normal-
ization, as it operates on the meaning of the words (semantics) rather
than syntax. In this chapter, semantic normalization is first explained
(Section 8.1), after which the usage of the new algorithm is evaluated
(Section 8.2).

8.1 workings

For the new algorithm for semantic normalization, a synonym dic-
tionary is first constructed. Synonyms are extracted from the Dutch
website http://synoniemen.net, with the usage of Python libraries urllib2
and Beautiful Soup 4, which are able to open (X)HTML websites and
parse them. The website synoniemen.net only contains synonyms for
verbs if they are in base form, for nouns if they are singular, and for
adjectives if they are in base form. Therefore, the synonym replace-
ment step is performed after stemming. For every of the 692 words
in the dataset after stemming, synonyms were extracted from the
synoniemen.net website. Synonyms are only considered for the dictio-
nary if they occur in the vocabulary of our dataset. Then, ’unknown’
words are mapped to ’known’ words in two ways: 1) by using Part-
Of-Speech-tags (POS-tags) and 2) by using Word2Vec.

57
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8.1.1 POS Normalization

Because the synonyms are not ordered, a selection procedure needs
to be designed in order to select an appropriate synonym for a word.
One straightforward approach is to iterate over the synonyms for an
’unknown’ word and select the first one with the same POS-tag, as
some words have multiple interpretations and functions (such as the
word ’naar’). The POS-tag can be found with the function parse from
the Dutch module of Pattern [55]. Hence, an ’unknown’ word is re-
placed with a ’known’ word if the POS-tag of the synonym in the sen-
tence is the same as the POS-tag of the original word in the sentence.
Therefore, the following algorithm is constructed, where the blue part
indicates the part which differs from the Word2Vec approach:

Input : training set with sentences ti, other set with sentences
oj, synonym dictionary d

Output : other set with sentences oj with words possibly
replaced with their synonym

construct feature set f = all words in training set sentences ti
with minimum document frequency of 2

forall sentences in the other set oj do
forall words wk occurring in sentence oj do

if wk is not in the feature set f then
forall synonyms ml for word wk from the synonym
dictionary d, which are in the feature set f do

o′j = sentence with synonym ml instead of wk

if POS-tag(ml in o′j) == POS-tag(wk in oj) then
oj = o′j
break (move to the next word in the sentence)

end
end

end
Algorithmus 4 : Synonym replacement with POS algorithm

The ’other set’ in the algorithm can be both the training set and the
test set. In the first case, the algorithm replaces words that occur only
once in the training set with words that occur twice or more often. In
the latter case, the algorithm replaces words in the test set that do not
occur in the training set with words that occur twice or more often in
the training set.

8.1.2 Word2Vec Normalization

Another method could be to select the synonym according to its
Word2Vec similarity score with the original word. As explained in
Chapter 3, Word2Vec transforms words from text entries into numer-
ical vectors by using a two-layer neural network. These word vectors
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can be used to find the most similar words by calculating cosine sim-
ilarity between two word vectors, which indicates to what extent the
two words occur in the same context. In this thesis, a Word2Vec model
is trained on the BasiLex-corpus [5], consisting of 11.5 million words
in texts written for young children. Hence, the text in the corpus is
somewhat comparable to the words in the diary entries.

A Word2Vec model is trained with a window size of 5 and 200

dimensions. The window size is chosen because Levy and Goldberg
[36] have shown that a larger window (size=5) tend to capture more
topical and domain similarities, whereas a smaller window (size=2)
tend to capture more functionally similar words. The dimension is
chosen as an exploratory study has shown that no substantial differ-
ences occur in similarities in this research between similarity scores
with 20 or 200 dimensions. Hence, no more dimensions are evaluated.
Moreover, only words which occur 10 times or more in the BasiLex
corpus are transformed into word vectors.

Figure 10 shows a t-Distributed Stochastic Neighbor Embedding (t-
SNE) of the word vectors of frequently occurring words in our dataset
and words which have a high sum of absolute coefficient values for
Logistic Regression (Table 28). T-SNE [40] is a technique which can
display high-dimensional datasets in two-dimensional space. It uses
random walks on neighborhood graphs to extract the implicit struc-
ture of the dataset, which can then be used to find suitable visualiza-
tions of the dataset. The colors are done manually, in order to visual-
ize the different observed groups.

Figure 10: t-SNE of Word2Vec word vectors

Figure 10 shows some patterns. Most of the words in the purple
group represent subjective opinions. The purple group contains both
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positive (’lekker’, ’gezellig’) and negative (’jammer’, ’saai’) words,
and moderator words (’beetje’, ’super’). Most of the words in the red
group represent daily activities (’dag’), indicated by phrases such as
going to school (’gaan’, ’school’). Most of the words in the blue group
represent slightly more objective opinions, indicated by words such
as ’goed’, ’moeilijk’, ’vinden’ and ’lastig’.

Figure 10 also shows that antonyms can have high similarity scores.
The similarity score for example between the word vectors for ’leuk’
and ’stom’ is 0.91 and the score for ’lekker’ and ’vies’ is 0.90, where
the maximum score is 1.0. Hence, Word2Vec cannot be used as a
standalone method for synonym replacement. Therefore, Word2Vec
is used in collaboration with the synonym dictionary described in
the previous section. Instead of iterating over all the synonyms and
selecting the first one with the same POS-tag, however, the synonym
is chosen with the highest Word2Vec similarity score. In this way,
words which occur in the same context are mapped to each other,
without the possibility of selecting antonyms. Hence, the strength of
synonyms and of Word2Vec is combined. Words are, however, only
replaced by one of their synonyms if their similarity score is 0.75

or higher. Therefore, the following algorithm is designed, where the
blue part indicates the part which differs from the POS-tag approach:

Input : training set with sentences ti, other set with sentences
oj, synonym dictionary d, Word2Vec model w2v

Output : other set with sentences oj with words possibly
replaced with their synonym

construct feature set f = all words in training set sentences ti
with minimum document frequency of 2

forall sentences in the other set oj do
forall words wk occurring in sentence oj do

if wk is not in the feature set f then
best_score = 0
best_word =′′

forall synonyms ml for word wk from the synonym
dictionary d, which are in the feature set f do

simlk = similarity(wk, ml , w2v)
if simkl > best_score then

best_score = simlk
best_word = ml

end
if best_score ≥ 0.75 then

o′j = sentence with synonym best_word instead of
wk

oj = o′j
end

end
Algorithmus 5 : Synonym replacement with Word2Vec algorithm
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The workings of this newly created algorithm are shown in Figure
11 and Figure 12, which show all synonyms for the words ’boos’ and
’toernooi’. Colors indicate the ordering according to our Word2Vec
model, where a darker color means higher similarity, and the selected
synonym with the highest similarity score is underlined.

Figure 11: Synonyms of the word ’boos’, colors indicate the ordering accord-
ing to Word2Vec

Figure 12: Synonyms of the word ’toernooi’, colors indicate the ordering
according to Word2Vec

Figure 11 and Figure 12 show that Word2Vec performs quite well
on selecting the best synonym from a list of synonyms. Whether
Word2Vec selection outperforms POS-tags or vice versa is studied in
the next section.
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8.2 results

In this section, the usage of the new algorithm for semantic normal-
ization is evaluated. The approach is the same as in the previous
chapter: all models use the same division of data among the folds in
both the outer and inner loop of the nested cross-validation. Table 49

shows the average number of entries with a replaced word and the
average number of words replaced in the folds in the outer loop, in
both the train and the test set. The training sets consist approximately
of 355.5 entries and the test sets of 39.5 entries.

train test

entries words entries words

POS 80.50 (1.72) 107.30 (2.95) 12.10 (3.28) 17.20 (4.18)

W2V 61.70 (3.47) 78.40 (4.60) 9.10 (3.98) 11.80 (5.75)

Table 49: Average number (and standard deviation) of entries and words
replaced by semantic normalization

Table 49 shows that the Word2Vec (W2V) approach is more selec-
tive, as it replaces less entries and less words with a synonym. The
Word2Vec approach has the criterion that the similarity score should
be at least 0.75 (out of 1.00). The criterion of the POS approach is that
the word should have the same POS-tag. Hence, the similarity score
criterion is more selective than the POS-tag criterion.

In this chapter, only Logistic Regression and SVM with Linear ker-
nel are evaluated because Naive Bayes has shown to have significant
lower performance than the other models and SVM with RBF kernel
performs similar to SVM with Linear kernel but has a slightly lower
performance. Four different text variations are evaluated: 1) POS nor-
malization on both train and test set (tt-POS), 2) POS normalization
on the test set only (test-POS), 3) Word2Vec normalization on both
train and test set (tt-W2V), and 4) W2V normalization on test set only
(test-W2V).

Section 8.2.1 describes the results with Logistic Regression, Section
8.2.2 evaluates the results with Linear SVM, and Section 8.2.3 pro-
vides a comparison to the results in the previous chapter.

8.2.1 Logistic Regression

The same implementation of the Logistic Regression model and the
same parameters as used in the previous chapter are used in this
chapter as well.

Tables 50, 51, 52, and 53 show the accuracy scores, mean absolute
errors, balanced accuracy scores, and F1-scores for the corresponding
models. The term ’occ’ in the tables refers to occurrence counts. The
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scores are multiplied with 100 for better readability of the table. Col-
ors indicate the scores. The colors in Table 51 are different, because
the objective is to minimize MAE and to maximize the other three
measures.

occ tf tf-idf

lasso (l1)

tt-POS 89.12 (5.04) 90.17 (4.51) 89.65 (5.29)

test-POS 89.63 (5.40) 89.65 (5.14) 89.89 (3.84)

tt-W2V 89.88 (4.67) 89.11 (5.34) 90.65 (4.18)

test-W2V 90.37 (4.89) 90.88 (4.25) 91.37 (3.49)

ridge (l2)

tt-POS 84.83 (4.61) 84.81 (3.72) 84.07 (5.09)

test-POS 85.59 (4.72) 86.82 (3.36) 85.07 (5.38)

tt-W2V 86.55 (4.01) 87.35 (4.38) 86.61 (4.30)

test-W2V 86.32 (5.11) 87.07 (3.53) 85.31 (4.32)

Table 50: Results of Logistic Regression (mean and standard deviation) with
semantic normalization, measured with accuracy ×100

occ tf tf-idf

lasso (l1)

tt-POS 12.65 (5.00) 11.59 (5.34) 12.36 (6.03)

test-POS 11.87 (6.49) 12.11 (6.05) 12.37 (4.33)

tt-W2V 11.38 (4.93) 12.39 (5.10) 11.10 (4.72)

test-W2V 11.14 (5.39) 10.88 (4.61) 10.91 (3.63)

ridge (l2)

tt-POS 17.19 (4.25) 17.47 (4.23) 18.20 (5.61)

test-POS 16.69 (4.70) 15.96 (3.76) 17.45 (6.89)

tt-W2V 15.49 (4.73) 14.93 (5.23) 15.16 (4.84)

test-W2V 15.97 (5.60) 15.48 (3.95) 17.23 (5.27)

Table 51: Results of Logistic Regression (mean and standard deviation) with
semantic normalization, measured with mean absolute error ×100

occ tf tf-idf

lasso (l1)

tt-POS 85.02 (6.57) 85.85 (6.01) 85.80 (6.90)

test-POS 85.08 (8.49) 85.08 (8.03) 84.92 (6.65)

tt-W2V 85.98 (8.76) 85.74 (8.33) 86.94 (8.66)

test-W2V 86.02 (8.54) 86.41 (7.93) 86.79 (6.98)

ridge (l2)

tt-POS 79.86 (6.28) 80.56 (6.37) 79.99 (7.37)

test-POS 80.82 (6.23) 81.44 (5.89) 81.13 (6.75)

tt-W2V 83.01 (7.27) 83.64 (8.54) 83.77 (7.93)

test-W2V 82.46 (7.15) 82.70 (6.68) 82.38 (7.51)

Table 52: Results of Logistic Regression (mean and standard deviation) with
semantic normalization, measured with balanced accuracy ×100
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occ tf tf-idf

lasso (l1)

tt-POS 86.09 (6.32) 87.32 (5.70) 87.10 (6.22)

test-POS 85.75 (8.38) 85.82 (8.27) 85.80 (6.63)

tt-W2V 86.44 (8.63) 86.16 (7.93) 87.25 (8.46)

test-W2V 86.51 (8.00) 87.05 (7.70) 87.43 (6.70)

ridge (l2)

tt-POS 80.60 (5.78) 80.60 (5.85) 80.53 (7.03)

test-POS 81.13 (5.84) 81.75 (5.34) 81.35 (6.54)

tt-W2V 83.01 (6.65) 83.50 (7.65) 83.52 (7.41)

test-W2V 82.44 (7.05) 82.57 (5.77) 81.84 (6.61)

Table 53: Results of Logistic Regression (mean and standard deviation) with
semantic normalization, measured with F1-score ×100

Tables 50, 51, 52, and 53 show that Word2Vec performs better than
POS-tags in most cases. Word2Vec is a more advanced method of syn-
onym selection than just selecting the first synonym found that has
the same POS-tag, and it is shown that this more advanced method
is paying off.

The results also show that when using Word2Vec, semantic normal-
ization on the test set only (test-W2V) performs better in some cases
than normalization on both the training and the test set (tt-W2V). In
such a case, words that occur only once in the training set are possibly
not useful to train on. Moreover, the improved performance of using
a lasso penalty is shown in this section as well. A clear preference for
either occurrence counts, term frequencies of tf-idf is not clear.

The combination test-W2V with tf-idf and lasso penalty can be con-
sidered the best combination for Logistic Regression: it scores best on
accuracy and F1-score, and is runner-up on MAE and balanced ac-
curacy. Therefore, for comparing Logistic Regression with semantic
normalization to the other models in Section 8.2.3, the combination
test-W2V with tf-idf and lasso penalty is used.

8.2.2 Support Vector Machine

The same implementation of the SVM model with Linear kernel and
the same parameters as used in the previous chapter are used in this
chapter as well.

Tables 54, 55, 56, and 57 show the accuracy scores, mean absolute
errors, balanced accuracy scores, and F1-scores for the corresponding
models. The term ’occ’ in the tables refers to occurrence counts. The
scores are multiplied with 100 for better readability of the table. Col-
ors indicate the scores. The colors in Table 55 are different, because
the objective is to minimize MAE and to maximize the other three
measures.
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occ tf tf-idf

lasso (l1)

tt-POS 88.85 (3.08) 87.33 (4.13) 86.83 (2.95)

test-POS 88.87 (6.44) 86.82 (4.06) 88.60 (3.80)

tt-W2V 89.88 (2.94) 88.27 (6.52) 90.33 (4.96)

test-W2V 91.14 (5.97) 87.54 (5.33) 89.07 (5.50)

ridge (l2)

tt-POS 84.53 (2.85) 85.28 (4.35) 82.52 (3.13)

test-POS 86.01 (5.52) 87.34 (4.76) 85.30 (3.62)

tt-W2V 87.05 (5.80) 88.09 (4.63) 87.09 (5.16)

test-W2V 86.74 (7.06) 88.08 (4.97) 85.78 (4.52)

Table 54: Results of SVM with Linear kernel (mean and standard deviation)
with semantic normalization, measured with accuracy ×100

occ tf tf-idf

lasso (l1)

tt-POS 13.43 (2.35) 15.72 (4.43) 16.46 (2.57)

test-POS 13.68 (7.98) 16.48 (5.03) 14.44 (4.83)

tt-W2V 11.37 (3.87) 15.05 (9.13) 12.22 (6.74)

test-W2V 10.89 (7.31) 16.03 (7.46) 13.97 (6.53)

ridge (l2)

tt-POS 17.77 (3.26) 17.76 (4.66) 20.27 (3.44)

test-POS 16.53 (6.11) 15.72 (6.04) 17.75 (4.80)

tt-W2V 14.74 (5.97) 14.44 (5.15) 15.97 (6.54)

test-W2V 15.31 (8.53) 13.73 (6.22) 16.52 (5.69)

Table 55: Results of SVM with Linear kernel (mean and standard deviation)
with semantic normalization, measured with mean absolute error
×100

occ tf tf-idf

lasso (l1)

tt-POS 84.82 (5.52) 82.18 (5.68) 83.21 (4.71)

test-POS 85.54 (8.77) 82.50 (5.48) 85.33 (5.76)

tt-W2V 85.96 (6.08) 85.81 (9.99) 88.50 (8.34)

test-W2V 88.39 (9.08) 84.13 (6.93) 86.40 (7.05)

ridge (l2)

tt-POS 78.57 (5.01) 81.30 (6.90) 78.43 (6.13)

test-POS 80.09 (8.50) 83.62 (8.46) 81.32 (6.19)

tt-W2V 83.39 (8.47) 84.58 (8.02) 84.86 (7.98)

test-W2V 81.38 (8.88) 84.91 (8.36) 83.11 (6.80)

Table 56: Results of SVM with Linear kernel (mean and standard deviation)
with semantic normalization, measured with balanced accuracy
×100

Tables 54, 55, 56, and 57 show a resemblance with the results of
Logistic Regression with semantic normalization. Word2Vec performs
better than POS-tags in most cases, and using semantic normalization
on test set only performs better than both train and test set in some
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occ tf tf-idf

lasso (l1)

tt-POS 85.58 (4.73) 82.82 (5.50) 83.26 (3.84)

test-POS 85.56 (8.57) 82.88 (5.67) 85.52 (5.39)

tt-W2V 86.70 (5.35) 85.42 (10.03) 88.23 (7.93)

test-W2V 88.30 (8.78) 84.19 (7.03) 86.18 (6.92)

ridge (l2)

tt-POS 78.98 (3.79) 81.13 (5.87) 77.93 (5.13)

test-POS 79.98 (7.72) 83.16 (7.75) 81.10 (5.34)

tt-W2V 83.37 (8.30) 84.25 (7.22) 84.27 (7.48)

test-W2V 81.50 (9.02) 84.15 (7.71) 82.26 (6.11)

Table 57: Results of SVM with Linear kernel (mean and standard deviation)
with semantic normalization, measured with F1-score ×100

cases. An improved performance of using a lasso penalty is clear as
well. Moreover, a clear preference for either occurrence counts, term
frequencies of tf-idf is not clear.

The combination test-W2V with occurrence counts and lasso penalty
can be considered the best combination for Logistic Regression: it
scores best on accuracy, MAE, and F1-score, and is runner-up on and
balanced accuracy. Therefore, for comparing Linear SVM with seman-
tic normalization to the other models in Section 8.2.3, the combination
test-W2V with occurrence counts and lasso penalty is used.

8.2.3 Comparing models

The Logistic Regression (LR) and Linear SVM (LSVM) model with-
out and with the new algorithm for semantic normalization (sem) are
compared to each other on the basis of their performance with their
best combination. Table 58 shows an overview of the performance
of all models according to all measures. The values in Table 58 are
visualized in a histogram in Figures 13 and 14.

model acc. bal. acc. F1 MAE

LR 89.85 (2.65) 84.16 (5.74) 85.38 (5.53) 12.16 (3.37)

LRsem
91.37 (3.49) 86.79 (6.98) 87.43 (6.70) 10.91 (3.63)

LSVM 90.11 (7.19) 86.14 (6.96) 86.65 (7.19) 12.44 (7.32)

LSVMsem
91.14 (5.97) 88.39 (9.08) 88.30 (8.78) 10.89 (7.31)

Table 58: Performance (×100) of the best combinations for each model with
and without semantic normalization

Table 58 and Figures 13 and 14 show a clear improvement in perfor-
mance when using the new algorithm for semantic normalization. A
study on the statistical significance of observed differences in the ac-
curacy of predictions made by the models with and without semantic
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Figure 13: Visualized performance (×100) of the best combinations for each
model with and without semantic normalization

Figure 14: Visualized mean absolute error (×100) of the best combinations
for each model with and without semantic normalization

normalization is performed, with the same two-tailed binomial test as
explained in Section 7.4. The p-value for respectively Logistic Regres-
sion and Linear SVM is p = .146 and p = .424. Hence, the difference
in the accuracy of predictions is not significant at α = 0.05.

A second statistical test performed is the paired Wilcoxon Signed-
Rank Test, which is a non-parametric test that ranks the performance
of two classifiers and compares the ranks rather than the actual perfor-
mance [16]. The test is performed in R with the function wilcox.test.
The performance of using semantic normalization (with test-W2V)
against only using stemming is compared on six scores: the average
accuracy for occurrence counts, term frequencies, and tf-idf for both
lasso and ridge penalty.

The p-value on the paired Wilcoxon Signed-Rank Test for respec-
tively Logistic Regression and Linear SVM is p = .031 and p = .036.
Hence, the difference in ranks is significant at α = 0.05. Thus, it can be
concluded that using semantic normalization performs consistently
better across different combinations.

Tables 59 and 60 show the confusion matrix with predictions for
all data entries made by cross-validation in the outer loop, for re-
spectively Logistic Regression and Linear SVM, both with semantic
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normalization. Colors indicate the percentage of examples for each
class which are classified correctly.

predicted

negative neutral positive

actual
negative 42 11 7

neutral 4 159 4

positive 2 6 160

Table 59: Confusion matrix of Logistic Regression with semantic normaliza-
tion

predicted

negative neutral positive

actual
negative 47 9 4

neutral 9 153 5

positive 4 4 160

Table 60: Confusion matrix of Linear SVM with semantic normalization

Tables 59 and 60 show that the main difference between the Logistic
Regression model and the Linear SVM model are the predictions for
negative and neutral text entries. Logistic Regression classifies more
neutral entries correctly, while Linear SVM classifies more negative
entries correctly. The same difference can also be seen in the confusion
matrices of the models without semantic normalization in Chapter 7

(Tables 46 and 47). With the application in mind, one could argue
that the predictions of Linear SVM are more useful for the robot. The
task of the robot is to detect sentiments expressed by children, and a
higher classification rate for negative entries contributes more to this
goal than a higher classification rate for neutral entries.

Tables 59 and 60 also show an interesting aspect of using the new
algorithm for semantic normalization as compared to the confusion
matrices of the corresponding models without semantic normaliza-
tion (Tables 46 and 47). When using the new semantic normalization
algorithm, the accuracy for neutral entries slightly decreases, but the
accuracy for negative and positive entries increases. Thus, with the
application in mind, using the new semantic normalization algorithm
has a real advantage.

All in all, the results for the new algorithm for semantic normal-
ization on top of standard morphological normalization show that
using this newly created step consistently improves the performance
in the current study. The new semantic normalization algorithm is
especially useful in this thesis, because the dataset is sparse and con-
tains highly infrequent words.
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M A C H I N E L E A R N I N G A D A P TAT I O N S

In this chapter, two adaptations of machine learning models are evalu-
ated. Section 8.1 discusses ordinal Logistic Regression, and in specific
the proportional odds model. Section 8.2 studies the usage of using
time-correlations within machine learning models.

9.1 ordinal logistic regression

The target variable can be interpreted to be at an ordinal level rather
than a nominal level, as we can order the sentiment as negative-
neutral-positive according to an increasing valence level. Hence, the
classes {negative, neutral, positive} can be ordered respectively as {1, 2, 3}.
For this approach, ordinal Logistic Regression is studied as compared
to regular Logistic Regression. The most commonly used ordinal Lo-
gistic Regression model is the proportional odds model, also called
the cumulative logit mode. In the case of K different target values,
only one weight β j for each of the features Xj is present, instead of
K− 1 different weights βk,j for each feature Xj with traditional Logis-
tic Regression [31].

The assumption of the ordinal Logistic Regression is that variables
are monotonically related to the order negative-neutral-positive. Be-
fore training an ordinal model, it is tested whether this assumption
applies to the variables in our dataset with the function nominal_test

from the ordinal package [51] for R. The test performs an analysis of
variance (anova) on the difference between an ordinal model that uses
one weight β j for each of the variables, and an ordinal model with one
variable that uses weights that vary with the class (and all else equal):
in our case weights for ’negative|neutral’ and ’neutral|positive’ [12].
The difference in log-likelihood between the two models is compared
with a chi-square distribution, and a significant difference indicates
that a variable is not monotonically related to the order. This test is
applied to all variables, and results indicate that no variable is sta-
tistically non-monotonically related to the order with α = 0.05. The
variable with the lowest p-value is ’school’ with p = .319. Hence, the
assumption of ordinal Logistic Regression is met for all variables.

The usage of the proportional odds model is evaluated by compar-
ing its performance against the results of regular Logistic Regression
from the previous chapters. Moreover, the usage of semantic normal-
ization for ordinal Logistic Regression is studied in this section as
well. Consequently, four different models are compared to each other
in this section: with or without semantic normalization, and regular

69
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or ordinal Logistic Regression. The best representations for regular
Logistic Regression from the previous chapters are used for ordinal
Logistic Regression as well.

Both models had a higher performance with a lasso penalty than
with a ridge penalty. Therefore, the ordinal.gmifs function from the
ordinalgmifs package [52] is chosen instead of other ordinal functions
such as the polr function from MASS package [50], as ordinal.gmifs
performs penalization by using the generalized monotone incremen-
tal forward stagewise method, which behaves like a monotone ver-
sion of the lasso [26]. The model is trained and tested with the same
folds in the outer loop as all models in the previous chapters, and
does not have an inner loop.

Tables 61, 62, 63, and 64 show the accuracy scores, mean absolute
errors, balanced accuracy scores, and F1-scores for the corresponding
models. The scores are multiplied with 100 for better readability of
the table. Colors indicate the scores. The colors in Table 62 are differ-
ent, because the objective is to minimize MAE and to maximize the
other three measures.

LR LRsem

regular 89.85 (2.65) 91.37 (3.49)

ordinal 85.78 (4.39) 87.28 (5.73)

Table 61: Performance of ordinal Logistic Regression (mean and standard
deviation), measured with accuracy ×100

LR LRsem

regular 12.16 (3.37) 10.91 (3.63)

ordinal 14.98 (4.40) 13.47 (5.58)

Table 62: Performance of ordinal Logistic Regression (mean and standard
deviation), measured with mean absolute error ×100

LR LRsem

regular 84.16 (5.74) 86.79 (6.98)

ordinal 78.47 (5.67) 82.15 (7.30)

Table 63: Performance of ordinal Logistic Regression (mean and standard
deviation), measured with balanced accuracy ×100

Tables 61, 62, 63, and 64 show that ordinal Logistic Regression mod-
els perform worse than regular Logistic Regression. An explanation
for the lower performance may be that the proportional odds model
is too restricted, as it only uses one weight for each of the features,
whereas regular Logistic Regression has a one-vs-rest scheme and
thus three weights for each feature. It might still be the case that a
less restricted ordinal model could perform better.
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LR LRsem

regular 85.38 (5.53) 87.43 (6.70)

ordinal 80.14 (5.33) 83.23 (6.94)

Table 64: Performance of ordinal Logistic Regression (mean and standard
deviation), measured with F1-score ×100

A study on the statistical significance of observed differences in
the accuracy of predictions made made by the models is performed
by means of a two-tailed binominal test on the wins and losses of
one model against another, as described in Section 7.4. The p-value
for the test of the LR-regular model against the LR-ordinal model is
p = .002, and for the LRsem-regular model against the LRsem-ordinal
model is p = .002. Hence, the ordinal model performs significantly
different in accuracy from the regular model at α = 0.05. Thus, it can
be concluded that the proportional odds model makes significantly
worse predictions than a regular Logistic Regression model.

Moreover, the tables show that the performance increases when us-
ing the new algorithm for semantic normalization for ordinal Logistic
Regression. Therefore, the usage of ordinal Logistic Regression with
semantic normalization is evaluated from this point on.

Table 65 shows the coefficients for ordinal Logistic Regression for
the variables with the highest sum of absolute coefficient values for
regular Logistic Regression (from Table 28). For the proportional odds
model, it holds that a positive slope indicates a tendency for a de-
creasing response level as the variable decreases. Hence, a positive
coefficient indicates a negative monotone relationship.

variable negative neutral positive ordinal

leuk -4.80 -35.71 42.40 -4.63

lekker -20.90 21.26 -1.31

goed -19.17 19.07 -1.39

niet zo 15.67 -3.85 -5.50 0.95

jammer 14.76 -10.03 0.40

lastig 1.87 9.22 -13.49 0.55

gezellig -0.02 -8.98 15.43 -0.75

saai 14.15 -9.38 0.78

hard 10.76 -12.53 0.18

niet leuk 13.76 -9.52 1.59

Table 65: Top ten variables and their coefficients with highest sum of abso-
lute coefficient values for regular Logistic Regression, with corre-
sponding coefficients for ordinal Logistic Regression



72 machine learning adaptations

The coefficients in Table 65 show that the ordinal coefficients are
quite intuitive: all positive variables (’leuk’, ’lekker’, ’goed’, ’gezel-
lig’) have a negative coefficient, and all negative variables (’niet zo’,
’jammer’, ’lastig’, ’saai’, ’niet leuk’) have a positive coefficient.

Table 66 shows the ten variables with highest absolute coefficient
for ordinal Logistic Regression.

variable coefficient

leuk -4.63

niet leuk 1.59

goed -1.39

lekker -1.31

lol -0.96

niet zo 0.95

saai 0.78

gezellig -0.75

ziek 0.68

helemaal goed 0.64

Table 66: Top ten variables with highest absolute coefficient value for ordinal
Logistic Regression

Table 66 shows an overlap of seven variables with Table 65, indi-
cating that similar variables are important for both regular Logistic
Regression and ordinal Logistic Regression. The coefficients are again
intuitive: positive variables have negative coefficients and vice versa.
The bigram ’helemaal goed’ also indicates a negative sentiment, as it
is a subpart of the phrase ’niet helemaal goed’ and the phrase ’hele-
maal goed’ does not occur in positive text entries.

Table 67 shows the confusion matrix with predictions for all data
entries made by cross-validation in the outer loop, for ordinal Logistic
Regression with semantic normalization. Colors indicate the percent-
age of examples for each class which are classified correctly.

predicted

negative neutral positive

actual
negative 38 19 3

neutral 8 151 8

positive 0 12 156

Table 67: Confusion matrix of ordinal Logistic Regression with semantic nor-
malization



9.2 time-correlated models 73

The confusion matrix shows that, when compared to regular Logis-
tic Regression (Table 59), negative and positive text entries are more
often classified as neutral than as respectively positive and negative.
Hence, predictions made by ordinal Logistic Regression are more cen-
tered around the middle class.

9.2 time-correlated models

Another approach is to assume that the sentiment of a child is corre-
lated in time, i.e. that a child’s current sentiment has a relation with
it’s sentiment in the past couple of days. For this approach, only text
entries for which it is known which child wrote the diary are taken
into account. This is the data from the a_note, e_note, and mike datasets.
If a diary was split into multiple diaries, only the first part of the split
is taken into account in order to avoid interdependency between di-
aries. Because the model uses less training examples (n = 264) than
in the previous experiments (n = 395), the results of a time-correlated
approach cannot be compared to the results in the previous chapter.

All text entries of a specific child ordered according to the time
the entries were expressed are called the history of a child. For each
class c ∈ {negative, neutral, positive}, two dummy variables are con-
structed: whether the label of the text entry one step back in history
(denoted as t1) of the child is c , and whether the label of the text en-
try two steps back in history (denoted as t2) of the child is c. Hence,
six dummy variables are created in total.

The performance when using these dummy variables is evaluated
in this section for both Logistic Regression (LR) and Linear SVM
(LSVM) without or with semantic normalization (sem). For regular Lo-
gistic Regression and Linear SVM, the best performing combinations
from Chapter 7 are used. For these models with semantic normal-
ization, the best performing combinations from Chapter 8 are used.
All these combinations include Lasso penalty selection. Nested cross-
validation is used as described in the previous chapters, although
now on a smaller dataset.

Tables 68, 69, 70, and 71 show the accuracy scores, mean absolute
errors, balanced accuracy scores, and F1-scores for the corresponding
models. The scores are multiplied with 100 for better readability of
the table.

LR LRsem LSVM LSVMsem

regular 84.82 (5.50) 86.00 (6.45) 85.48 (5.70) 86.75 (6.78)

regular+t1 85.13 (6.36) 87.09 (6.41) 85.48 (5.70) 87.13 (6.51)

regular+t1+t2 84.39 (6.07) 86.70 (6.43) 84.75 (6.90) 86.40 (7.36)

Table 68: Performance of time-correlated models (mean and standard devia-
tion), measured with accuracy ×100
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LR LRsem LSVM LSVMsem

regular 17.91 (7.81) 17.44 (8.16) 16.85 (7.06) 16.30 (8.52)

regular+t1 16.81 (7.93) 15.57 (7.91) 16.85 (7.06) 15.53 (7.77)

regular+t1+t2 17.94 (8.44) 15.95 (8.56) 17.56 (8.17) 16.24 (8.91)

Table 69: Performance of time-correlated models (mean and standard devia-
tion), measured with mean absolute error ×100

LR LRsem LSVM LSVMsem

regular 74.16 (9.65) 79.99 (9.03) 73.77 (11.18) 79.64 (9.62)

regular+t1 72.98 (10.95) 79.95 (9.85) 73.77 (11.18) 79.95 (9.59)

regular+t1+t2 72.42 (10.86) 79.67 (9.80) 73.44 (12.41) 79.62 (10.07)

Table 70: Performance of time-correlated models (mean and standard devia-
tion), measured with balanced accuracy ×100

LR LRsem LSVM LSVMsem

regular 75.07 (11.11) 81.36 (8.42) 75.02 (13.08) 81.55 (9.19)

regular+t1 73.98 (13.33) 82.00 (9.35) 74.87 (13.27) 82.15 (8.85)

regular+t1+t2 73.20 (13.18) 82.01 (9.41) 74.36 (13.95) 80.94 (9.91)

Table 71: Performance of time-correlated models (mean and standard devia-
tion), measured with F1-score ×100

Tables 68, 69, 70, and 71 show that the performance increases when
using semantic normalization on this smaller dataset.

The results show a small preference for the regular+t1 model, al-
though the preference is not clear-cut. The regular+t1 model scores
best on accuracy and mean absolute error, but the difference with the
other models is small. The balanced accuracy scores and F1-scores
do not clearly show this preference, but also do not show a prefer-
ence for any other model. All scores have a relatively high standard
deviation, which indicates that the performance is unstable across dif-
ferent folds. An increased performance when taking time-correlation
into account could thus merely be a coincidence, rather than that an
actual time-correlation exists in the data.

Another explanation is that the machine learning models also take
into account the words in the sentence and not only the time features
t1 and t2. Hence, a time relation might still be present, but does not
add any valuable information given the words occurring in the sen-
tence. Or in other words, if a diary contains n-grams clearly indicating
one sentiment, this is more informative than time features.

The accuracy when training a Logistic Regression model (with lasso
penalty) on only the t1 and t2 dummy variables is 0.5038, compared
to a majority baseline of 0.4228. This result might indicate that some
time correlation is present in the dataset. This model, however, does
not predict any entry as negative, hence the recall of negative senti-
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ment is zero. Moreover, the Cohen’s Kappa between the current label
and the label one step back in time is only 0.15, and the Cohen’s
Kappa between the current label and the label two steps back in time
is only 0.05. Thus, the presence of an actual time correlation rather
than a lucky coincidence is still questionable.

Table 72 shows the coefficient values for the regular+t1 Logistic
Regression model.

variable negative neutral positive

t1-negative 0.64 -0.46

t1-neutral -0.19 0.57

t1-positive 0.15 -0.20 0.90

Table 72: Coefficient values of time variables for regular+t1 Logistic Regres-
sion model

Table 72 shows that most coefficients are quite intuitive: the coeffi-
cient for the class itself (i.e. t1-negative for the negative class) always
has a positive sign, i.e. it is most likely that a negative entry will oc-
cur after another negative entry. The table also shows that the lasso
penalty has set the t1-negative and t1-neutral variable to zero for the
positive class. The coefficients are, however, not very influential as
they are relatively small. The maximum absolute coefficient value is
for example 33.85 (for the word ’leuk’ for the positive class).

Tables 68, 69, 70, and 71 have shown that overall the LSVMsem

regular+t1 model performs best. Therefore, the confusion matrix of
this model is compared to the confusion matrix of the LSVMsem reg-
ular model. Tables 73 and 74 show these confusion matrices with
predictions for all data entries made by cross-validation in the outer
loop, for LSVMsem respectively without and with time-correlation (t1).
Colors indicate the percentage of examples for each class which are
classified correctly.

predicted

negative neutral positive

actual
negative 19 8 6

neutral 2 115 6

positive 2 11 95

Table 73: Confusion matrix of LSVMsem with the child-only dataset

Tables 73 and 74 show a very small difference in predictions, one
neutral and one positive training example are both predicted respec-
tively as negative (regular) or positive (t1). Because of this small differ-
ence in confusion matrices and the small difference in performance as
previously reported, one can conclude that using a time-correlation
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predicted

negative neutral positive

actual
negative 19 8 6

neutral 1 115 7

positive 1 11 96

Table 74: Confusion matrix of time-correlated (t1) LSVMsem with the child-
only dataset

model does not have a machine learning model that does not take
time-correlation into account.



10
F I N A L S T U D I E S

In this chapter, two final remarks are made on the machine learning
models studied in this thesis. In Section 10.1, the robustness of the
machine learning algorithms across the different datasets is evaluated.
In Section 10.2, the errors made by the best machine learning model
are studied.

10.1 robustness across datasets

In this section, the robustness of the machine learning algorithms
across the different datasets is studied. Therefore, instead of nested
cross-validation, a leave-one-dataset-out study is performed. Hence,
machine learning models are trained on five out of the six datasets,
and are tested on the sixth dataset. The outer loop of nested cross-
validation is thus replaced by a leave-one-dataset-out scheme, but the
workings of the inner loop are similar to the previous chapters. Both
Logistic Regression and Linear SVM with and without semantic nor-
malization are studied. For regular Logistic Regression and Linear
SVM, the best performing combinations from Chapter 7 are used. For
the models with semantic normalization, the best performing combi-
nations from Chapter 8 are used.

Tables 75, 76, 77, and 78 show the accuracy scores, mean absolute
errors, balanced accuracy scores, and F1-scores for the correspond-
ing models. The scores are multiplied with 100 for better readability
of the table. Colors indicate the scores. For balanced accuracy and F1-
score, no results are reported for the a_note and vriendenboekje datasets
as these datasets are highly unbalanced. A_note contains only one
negative text entry, and vriendenboekje does not contain any neutral
or negative text entries at all (Table 5). Therefore, the balanced accu-
racy and F1-score for these two datasets present a distorted view, as
balanced accuracy and F1-score are computed at a macro level.

Tables 75, 76, 77, and 78 show some patterns. For almost all datasets,
using semantic normalization either improves or preserves the scores
for performance.

Moreover, for some datasets it is more difficult to get good predic-
tions than for others. This is most probably due to the unbalanced
division of labels across the datasets (see also Table 5). Due to a lack
of negative text entries to train on, predictions for negative text entries
are more often incorrect. This can be seen with year1_results, which
contains relatively more negative text entries than the other datasets,
and scores worse than all other datasets on accuracy and MAE.

77
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test set LR LRsem LSVM LSVMsem

sentiment_test 87.14 95.71 85.71 88.57

a_note 82.69 84.62 80.77 80.77

e_note 78.46 80.00 80.00 80.00

mike 81.82 84.24 84.85 86.67

vriendenboekje 84.62 84.62 92.31 92.31

year1_results 70.00 73.33 76.67 80.00

Table 75: Robustness across different datasets, measured with accuracy
×100

test set LR LRsem LSVM LSVMsem

sentiment_test 17.14 7.14 20.00 17.14

a_note 17.31 15.38 19.23 19.23

e_note 24.62 20.00 21.54 20.00

mike 23.03 20.61 16.36 14.55

vriendenboekje 15.38 15.38 7.69 7.69

year1_results 43.33 36.67 26.67 23.33

Table 76: Robustness across different datasets, measured with mean abso-
lute error ×100

test set LR LRsem LSVM LSVMsem

sentiment_test 81.05 90.59 76.88 79.03

a_note

e_note 69.82 71.58 72.60 71.58

mike 73.53 77.79 76.74 80.54

vriendenboekje

year1_results 73.93 76.50 82.05 84.62

Table 77: Robustness across different datasets, measured with balanced ac-
curacy ×100

test set LR LRsem LSVM LSVMsem

sentiment_test 81.90 91.75 77.46 79.03

a_note

e_note 72.23 74.66 75.40 74.66

mike 74.42 78.67 78.53 82.63

vriendenboekje

year1_results 67.90 71.48 75.16 78.75

Table 78: Robustness across different datasets, measured with F1-score ×100

Another trend in the results is that Logistic Regression performs
clearly better than Linear SVM for the sentiment_test dataset, but Lin-
ear SVM performs clearly better than Logistic Regression for the
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vriendenboekje and year1_results datasets. The sentiment_test dataset
has relatively more neutral text entries than the vriendenboekje and
year1_results datasets, and the vriendenboekje and year1_results datasets
have relatively more negative and positive text entries. The confusion
matrices in Chapters 7 and 8 have shown that Logistic Regression is
more accurate in predicting neutral text entries than Linear SVM, and
that Linear SVM is more accurate in predicting negative text entries.
Since year1_results and vriendenboekje have relatively more negative
text entries and sentiment_test has relatively more neutral text entries,
this result is not surprising.

The highest performance is seen when sentiment_test is used as test
set. Sentiment_test is the dataset which contains actual diary entries,
whereas the other five datasets are diary-like text entries. The text en-
tries from the sentiment_test thus contain the most informative words
from which to extract sentiment. An advice for the developers of the
robot is thus to collect more data like the entries in sentiment_test, as
these are most informative for the robot.

10.2 analysis of errors

In Chapter 8, it is argued that the Linear SVM model with the new
algorithm for semantic normalization (LSVMsem) produces the most
useful predictions for the robot. The accuracy of this model is 0.9114

(Table 58), and the confusion matrix of this model is shown in Table
60. The LSVMsem model makes 35 errors in 395 predictions in the
outer loop of nested cross-validation.

Table 81 in Appendix A.1 shows all the 35 errors the LSVMsem

model has made, and the actual and predicted labels. Out of the 35 in-
correct labels predicted by the model, seven entries have a predicted
label which was given to the text entry by one of the annotators. Thus,
no full consensus was reached on these seven text entries during the
annotation phase. These entries are colored in green in the appendix.
These seven diaries are also represented here in Table 79, where ’act’
indicates the actual label and ’pred’ indicates the predicted label. The
diaries are given an index number for reference.

Most text entries in Table 79 contain some contradictions, indicated
by the word ’maar’ (entries 1, 3, 5, 7). Giving a label to text entries
with such a construction is a subjective task and depends on the in-
terpretation of the annotator. Most of these diaries have been given
a neutral label, but contain both a positive and negative sentiment.
Moreover, diary entry 2 indicates illness, which was labelled as neg-
ative but can also be seen as a neutral sentiment. Some of the con-
structed labels in this study, and labels for sentiment data in general,
are thus quite subjective and a ground truth is very difficult to estab-
lish.
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nr diary act pred

1 bso het was leuk maar het regent te hard neut pos

2 ik moest spugen neg neut

3 bso het was niet echt leuk maar neg pos

ik ging toch iets doen

4 ik zit op 229 pfffffffff net gefietst en neg neut

had niks minder gespoten en ook

geen dextro jammer

5 boek lezen was leuk maar ook niet echt leuk neut pos

ik had geen echte leuke boek

6 ziek nog blijven het gaat beter dan gisteren neut neg

en mijn been doet iets minder pijn dan gisteren

7 boodschappen doen het was leuk neut pos

maar een bloem vinden vond ik lastig

Table 79: Text entries wrongly classified by the LSVMsem model, but with a
label which was given to the text entry by one of the annotators

Seven errors out of the remaining 28 errors made by the algorithm
are ’extreme’, i.e. a positive text entry is predicted as negative or vice
versa. These errors are colored in red in the appendix and displayed
here in Table 80. The diaries are given an index number for reference.

nr diary act pred

8 ik voel mij blij want ik hoef niet naar school pos neg

9 hij was hoog dus mijn humeur was niet goed neg pos

10 omdat ik mij duizelig voel neg pos

11 bij nizo is sinterklaas! het was pos neg

fantastisch en er waren veel pepernoten

maar door heel veel snoepen kom als je niet

op let kom je hoog te zitten! dus toen zat ik

op 229 en dat is natuurlijk heel hoog!

12 toen ik weer naar huis ging ben ik uitgegleden neg pos

en dat was het minder leuke!

13 het was gezellig thuis dus zo is het pos neg

14 ik voel mij top pos neg

Table 80: Text entries which are extremely wrongly classified by the
LSVMsem model

The coefficients used for predicting the labels of these seven entries
are studied, by looking at the coefficients of the fold each of the pre-
dictions belong to. In the folds entries 8 and 14 belong to, the word
’voelen’ is associated with a negative sentiment, thereby classifying
these entries as negative. In entry 10, this is probably vice versa, with
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’voelen’ associated with a positive sentiment. The wrong classification
of diary 9 is probably due to the occurrence of ’goed’, which indicates
a positive feeling, whereas the bigram ’niet goed’ is not present in the
feature set. This might also be the case for entry 12, which contains
the word ’leuke’, whereas ’minder leuke’ is not in the feature set. En-
try 11 contains a lot of exaggerating terms, such as ’heel’ and ’echt’
(replacement for ’natuurlijk’ by Word2Vec), which are associated with
negative sentiments. The same holds for entry 13, which contains the
word ’zo’, which is also more associated with negative sentiments
than positive.

The other 21 errors are a confusion between neutral and positive, or
neutral and negative. The seven ’extreme’ errors are most disturbing.
For the other 21 errors it might be argued that humans sometimes
also make small mistakes in conversations with others, for example
due to noise.

To conclude, the accuracy of the algorithm is 91.14%. The classi-
fications will most likely be accepted by the end-user in even more
cases, considering the disagreement between the annotators and the
target application where neutral-positive and neutral-negative confu-
sion might not be a strong problem.
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D I S C U S S I O N A N D C O N C L U S I O N

11.1 discussion

Previous research has indicated that machine learning approaches
are generally better than symbolic approaches at word sense disam-
biguation [56], capturing negation [53], and capturing context [8]. The
results from this research are in line with previous research. A sig-
nificantly higher accuracy is reached when using machine learning
over sentiment scoring. Moreover, the sentiment scoring algorithm
has shown to have difficulty with some negations and word sense
disambiguation of some words. The machine learning models in this
research use an n-gram representation with uni-, bi-, and trigrams,
which enable the models to take complex negations such as ’niet zo
leuk’ into account, as also proposed by Leshed an Kaya [35].

Furthermore, earlier research done on Dutch text analysis [27][32]
did not show a clear improvement when using stemming. Addition-
ally, an unstable effect of using stemming was also found in research
on English texts [14]. Most researchers [27] use the Snowball stemmer
[63], for which the algorithm is incorporated in the Natural Language
Toolkit (NLTK) documentation [48]. This type of stemming does not
take different meanings of a word into account and does not look
at the context of a word [41]. In our research, however, the positive
effect of using stemming has been proven throughout. Results have
shown that stemming significantly improves the accuracy over using
stopword removal or no morphological normalization. In contrast to
earlier research which uses the Snowball stemmer, a stemmer was
built manually for this thesis with the functions singularize, lemma,
and predicative from Pattern [62]. These functions do take meaning
and context into account, and can map for example the verb ’ben’ to
the base form ’zijn’, something the Snowball stemmer cannot do. One
can conclude that using a stemmer which does take meaning into ac-
count rather than the Snowball stemmer may be more valuable.

In addition to previous research, this study also designed and eval-
uated a new algorithm for semantic normalization by using synonyms
and Word2Vec to map highly infrequent words to similar more fre-
quent words. The results in this thesis have shown that using seman-
tic normalization performs consistently better than using only stem-
ming. Future research could investigate the workings and the effect
of this new semantic normalization step on other datasets, and could
think of different methods for mapping infrequent words to more
frequent words besides using synonyms and Word2Vec.
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Naturally, it would be beneficial to collect more negative text en-
tries, as the current dataset is highly unbalanced. Researchers [30]
have, however, shown that people suppress negative emotions more
often than positive emotions in public settings. In other words, people
are not keen to express negative emotions to others. Hence, obtaining
a more balanced dataset with relatively more negative text entries is
a difficult task.

Earlier research has also indicated the difficulty of assigning sen-
timents to text entries. Alm, Roth, and Sproat [2] have researched
machine learning techniques for emotion analysis of sentences from
children stories. They have also indicated that agreement between an-
notators is sometimes difficult to achieve. In this thesis, it is argued
that labelling the sentiment expressed in a text entry is not straight-
forward, due to the subjective nature of the annotation task. Future
research could focus on how to deal with the subjectivity of this type
of text entry.

Regarding the usage of the LSVMsem algorithm in practice in a
robot-child setting, results have shown that the performance is quite
satisfying. The algorithm makes an extremely incorrect prediction in
1.17% of the cases. For all other cases it can be argued that it makes
a prediction which could be made by a human as well, and in 91.14%
of the cases the prediction is a perfect fit. Naturally, improving the ac-
curacy by acquiring more data could improve the performance. But
since the number of extremely incorrect predictions is quite low, the
current algorithm can already be implemented in the robot.

11.2 research questions

The aim of this research is to classify the sentiment of a Dutch child’s
diary entry as correctly as possible by means of automatic text anal-
ysis, which has been researched addressing four main research ques-
tions:

1. To what extent is it possible to correctly classify the sentiment
of a Dutch child’s diary entry by means of a sentiment scoring
algorithm?

2. To what extent is it possible to correctly classify the sentiment
of a Dutch child’s diary entry by means of machine learning
models?

3. Does using the new algorithm for semantic normalization im-
prove the performance?

4. Does using an ordinal model or a time-correlated model im-
prove the performance?
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The aim of the first research question is to study the workings of
Sentiment Scorer from the Dutch Pattern module of CLiPS [55], which
is a symbolic approach. The results show that incorporating not only
the valence value but also the subjectivity value results in a reason-
able performance. When analyzing the errors made by the Sentiment
Scorer, it is revealed that the Sentiment Scorer has difficulty with
some negations of positive sentiments (’niet zo leuk’) and different
functions and usages of the same word (’naar’).

The aim of the second research question is to evaluate whether
using a machine learning approach has an advantage over using the
Sentiment Scorer. The results show that a Logistic Regression or a
SVM model yield a significantly higher accuracy than the Sentiment
Scorer. A machine learning approach is better at capturing context [8],
and is better at capturing the negations which the Sentiment Scorer
has difficulty with. Moreover, machine learning approaches are better
at adapting to domain-specific word usages, as symbolic approaches
are pre-trained on datasets which are often not fully similar to the
datasets they are applied on. Additionally, results have shown that
stemming significantly improves the accuracy over using stopword
removal or no morphological normalization.

The aim of the third research question is to design and explore the
possible advantage of using the new algorithm for semantic normal-
ization as a next level of morphological normalization. The results
show that using this new semantic normalization algorithm on top
of stemming results in models with consistently better performance.
Moreover, using the new semantic normalization algorithm leads to
a higher accuracy for negative and positive text entries, although at
the cost of the accuracy for neutral text entries. This is an advantage
for the application whose goal it is to detect sentiments, in order to
react to children interacting with the robot.

The aim of the fourth research question is to examine whether us-
ing adaptations of the regular machine learning models does improve
the performance. The proportional odds model appears to be an un-
fortunate adaptation as it makes significantly worse predictions than
a regular model. The proportional odds model is probably too re-
stricted. Another less restricted ordinal model, however, might still
perform better. The results of a time-correlated model also show no
increased performance, possibly due to a lack of time correlation in
the data or possibly because time features do not have additional in-
formation over the content of the text entries in this study.

11.3 conclusion

The problem statement that guided the research of this thesis is: To
what extent is it possible to correctly classify the sentiment of a Dutch child’s
diary entry by means of automatic text analysis? The results show that
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this is best possible with a Support Vector Machine with a Linear
kernel and Word2Vec semantic normalization on the test set, which
then has an accuracy of 0.9114, a balanced accuracy of 0.8839, a F1-
score of 0.8830, and a mean absolute error of 0.1089. The results for
using an ordinal or time-correlated adaptation of a machine learning
model show that such a model does not have an advantage over a
regular machine learning model.

This thesis has also introduced a new algorithm for semantic nor-
malization. The results of this thesis demonstrate a clear increased
performance when using this new algorithm. Using semantic normal-
ization performs consistently better than using only stemming in this
thesis. Semantic normalization can be a viable addition to an auto-
matic text analysis pipeline, especially for small and sparse datasets
such as the one used here.
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A P P E N D I X

a.1 errors made by lsvm
sem

Table 81 shows the errors made by the LSVMsem model. The table
shows the actual label (’act’) and the label predicted by the LSVMsem

model (’pred’). The diary entries in green have a predicted label
which was also given to the text entry by one of the annotators, and
can thus be considered a ’human’ mistake. The other diary entries
have a predicted label which was not annotated by one of the anno-
tators, of which the diary entries in red are extremely confused, i.e. a
negative text entry is predicted as positive or a positive text entry is
predicted as negative.

diary act pred

ik voel mij blij want ik hoef niet naar school pos neg

bso het was leuk maar het regent te hard neut pos

vogel op halen het was heel lang en we neut pos

hadden verkeerde huisnummer gebeld

mie mie gegeten neut neg

tijdens het afzwemmen ik zat rond de 30 neut neg

hoog maar dat voel ik niet ik was wel

wat stuiterig

ik moest spugen neg neut

maar het nadeel van deze dag was dat we neg neut

verloren hadden

hij was hoog dus mijn humeur was niet goed neg pos

in het weekend ga ik zwemmen met mijn neefje! neut neg

ik ga zo naar de bruiloft 42 jaar getrouwd neut neg

van mijn opa en oma maar eerst even douchen

ik verveel me neg neut

heb daar mijn school foto met mijn broertje neut neg

gezien mijn broertje vind het niet leuk

dat iemand zijn foto ziet dus heb ik er

mijn eigen foto bij gedaan

ben chagrijnig ben moe neg neut

87
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bso het was niet echt leuk maar neg pos

ik ging toch iets doen

heel veel achter elkaar quiz gespeeld neut neg

ik ben naar school geweest maar vond het saai neg neut

mijn vriend heeft een ongelukje gehad dat was neg neut

wel erg jammer

ik zit op 229 pfffffffff net gefietst en neg neut

had niks minder gespoten en ook

geen dextro jammer

ik was het super blije poppetje pos neut

maar was vergeten in te vullen

school er was een feest van iemand die had neut pos

zijn doel stil zijn behaald want hij praat

overal door heen door de les door het

voor lezen

boek lezen was leuk maar ook niet echt leuk neut pos

ik had geen echte leuke boek

een beetje hoog en net nog een keer geprikt neut neg

toen zat ik op 84

omdat ik mij duizelig voel neg pos

bij nizo is sinterklaas! het was pos neg

fantastisch en er waren veel pepernoten

maar door heel veel snoepen kom als je niet

op let kom je hoog te zitten!

dus toen zat ik op 229 en dat is natuurlijk

heel hoog!

feestje van tom en chris nou er was veel te eten neut neg

dus ik zat best wel hoog

ziek nog blijven het gaat beter dan gisteren neut neg

en mijn been doet iets minder pijn dan gisteren

toen ik weer naar huis ging ben ik uitgegleden neg pos

en dat was het minder leuke!

het was gezellig thuis dus zo is het pos neg

ik voel mij top pos neg

heb een hekel aan vandaag en mezelf neg neut

krijg allemaal de schijt!

biologie we hoefden niet in ons werkboek pos neut
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te schrijven yes

thuis zijn ik was een beetje boos op mijn diabetes! neg neut

cool pos neut

taal het was interessant pos neut

boodschappen doen het was leuk neut pos

maar een bloem vinden vond ik lastig

Table 81: Errors made by the LSVMsem model
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