
Master thesis
Mathematical sciences

An estimator for state occupation
probabilities in non-Markov multistate

models

May 29, 2017

Author :
Paul Reijbroek
3672883

Supervisor :
Dr. Cristian Spitoni
Second reader :
Dr. Martin Bootsma



Preface

This thesis is the result of the final project for the master studies Mathematical Sciences at
Utrecht University. I would first like to thank my supervisor dr. Cristian Spitoni, who in-
troduced me to the topic of multistate models and survival analysis and who guided me very
well throughout the project. His suggestions, feedback, ideas, explanations and questions were
invaluable. I would like to thank dr. Martin Bootsma as well, for being the second reader
for my thesis. I would also like to thank dr. Roberto Fernandez, who, after listening to my
mathematical interests, suggested to contact dr. Spitoni to be the supervisor of my thesis.

As a result of this thesis, I am now able to comprehend mathematical literature much more
comprehensively. I have learnt to study proofs with a critical mind, how to correct them and
how to use the proofs and template of proofs to construct my own proofs. I have gained a much
more comprehensive knowledge of multistate and survival models and the tools that are often
used in the analysis of these models. As I worked through the material, this thesis became more
and more enjoyable as I gained more knowledge on these subjects.

Wageningen, May 29, 2017

i



Abstract

In medical research, the progress of a disease can be modelled using multistate models. Quan-
tities of interest are the transition hazard and the state occupation probabilities. In this thesis,
we consider estimators of the integrated transition hazard and state occupation probabilities,
with the possibility of right-censoring, in multistate models that are not necessarily Markov.
We focus on deriving the Nelson-Aalen estimator and the Aalen-Johansen estimator, and show
that these are consistent, by correcting the proofs in [1]. We work out the variance for the dis-
tribution of the latter estimator, and propose an estimator for this variance. The contribution
of this manuscript is purely theoretical, without data simulations.
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1 Introduction

In medical research, when a patient is diagnosed with a disease or when someone is requiring
some form of treatment, he/she will want to know what to expect, what could happen and the
probabilities of good and bad events happening to them. This information is useful for physicians
as well, because they have to consider all kinds of treatment and whether the treatment that
they are considering would be the most effective treatment.

When a patient is diagnosed with a possibly deadly disease, a question he/she often asks is the
chances of survival, and if he/she survives, how it will affect his/her life. There are several other
types of questions a patient might ask as well.

For example, when a patient is diagnosed with cancer, he/she will want to know if he/she has
a chance of surviving and how good his/her chances are. But that is probably not all he/she
wants to know. Suppose there are two treatments (A and B) available, but every individual
might experience a relapse after either treatment. From relapse, one might go to the definitive
state of death. Of course the risk of each treatment and the amount of discomfort will be of
importance in choosing a treatment, but the probability of surviving a possible relapse (and the
probability of relapse) will be a factor as well.

In such cases, there exist models that estimate the probability of survival (among probabilities
of other events happening) in a Markov chain, and its properties have been studied (e.g. [4]).
A Markov assumption is rather strong though, and quite often it is not realistic. When looking
at the previous example, there are five states: the patient has been diagnosed with cancer
(”diagnosis”), the patient during and after treatment A (”treatment A”), the patient during
and after treatment B (”treatment B”), ”relapse”, and ”death”. Assuming the patient has
received treatment A, the rate of transitioning to ”relapse” may depend on the transition time
between state ”diagnosis” and state ”treatment A” and on how long ago that transition was.
There might be a higher transition rate to ”relapse” when the transition time to ”treatment A”
happened much earlier. In that case, the transition rate to ”relapse” doesn’t only depend on
the current state ”treatment A”, but also on how long the patient has been in state ”treatment
A”. Similar things could happen in state ”treatment B”. Furthermore, when a patient is in
the state ”relapse”, the transition rate to death may again depend on how long the patient has
been in state ”relapse”, as well as the treatment the patient received prior to relapse and how
long he/she has been in state ”treatment A” or ”treatment B”. Therefore, the transition rate
does not only depend on the current state, but it depends on more of the history of the patient.

As we can see, a Markov model for the progress of this disease is not an accurate model, so a
model with weaker assumptions on the data is needed for a better prediction.

This thesis will start with a review on models that model different stages of a disease as states.
This is called a multistate model. From there on, we use survival data to gather information
about the estimated probability of transitioning into one state from another, since the actual
probabilities of survival (or from getting into one state from another) for many diseases are
unknown, which is why they have to be estimated. Predictions for future patients will be
obtained by looking at the data from patients with the same disease who were treated similarly
that have been studied until now. We will state the conditions that we work with throughout
this thesis, and we will give an overview.
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Multistate models

The progress of a disease can be described by a multistate model for each patient. A state
is given by any stage of a disease a patient can be in. An event is any direct transition from
one state into another, i.e. reaching one state from another state without being in other states
inbetween.

The simplest multistate model is called the survival model (see figure 1.1) and consists of just
two states (usually alive and death) and one transition (alive→ death). It should be noted that
these two states could be any states. In the survival setting, this model is used to just find the
probability of survival without giving more information using available data. The quantity of
interest is the survival time, i.e. the time until the transition from state ’alive’ to state ’death’
takes place.

The survival model is an example of a multistate Markov model. A model which is not necessar-
ily Markov is the following model that we call the illness-death model (see figure 1.1): we have
the following three states: healthy, ill, death, and the following possible transitions: healthy →
ill, ill → healthy, healthy → death and ill → death.

Figure 1.1: A survival model (left) and an illness-death model (right)

It is possible that the probability of death is much higher for a patient that has entered state
’ill’ for a second time than one that does so for the first time. Furthermore, it may also depend
on how long the patient has been in state ill, i.e. how long it has been since the last transition.
Therefore, the survival probability (or the probability of being cured) depends on more than
just the state the person is in at the time.

In general, a multistate model may have more than one starting point, more than one absorbing
state and multiple intermediate states, and intermediate states can be starting states as well.
The illness-death model is an example of a multistate model with one or two starting states,
depending on whether or not every individual starts in state ’healthy’, two intermediate states
(’ill’ and ’healthy’) and one absorbing state (’death’).

In general, the quantities of interest are the stage occupation probabilities (the probability of
being in a state at a certain time) and the transition probabilities (the probability of transitioning
into one state from another). In the following example, from Spitoni, Verduijn & Putter (2012)
[10], which considers patients with kidney malfunctioning (see figure 1.2), there are five possible
states: alive during or after first dialysis (state 1), alive during or after first kidney transplant
(state 2), alive during or after second dialysis (state 3), alive during or after second transplant
(state 4), and death (state 5).
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The interesting quantities are, for each state, the probability of being in that state at a certain
time, and the probability of getting into any state from another state before that one. Because
getting into state 4 from state 1 is only possible via state 2 and 3, the probability of getting
there is not a very mathematically interesting quantity, even though a patient may find it to
be relevant (as it may affect their quality of life and because it may have an influence on their
expectations as to what to expect). The reason these types of probabilities where there are no
direct transitions are not very interesting to study on their own is the fact that the quantities
can be found without too much difficulty by finding the transition probabilities of getting into
state 4 from state 3, into state 3 from state 2 and into state 2 from state 1. Those quantities
are quite interesting, as well as the probability for each state to go into state 5 (either directly
or via another (couple of) state(s)).

Figure 1.2: Multistate model for kidney malfunctioning

We can see that this model is not necessarily Markov. How long it has been since any procedure
has been completed may influence the probability of death or the probability of requiring another
procedure. It doesn’t only depend on the state a patient currently occupies.

As we can see, even in rather simple models, a Markov assumption may be a bit of a stretch. A
violation of this assumption could make calculations for occupation and transition probabilities
a lot more difficult, though.

Predictions for state occupation and transition probabilities

Since the state occupation probabilities and transition probabilities are the quantities we are
most interested in, these are the ones we will want to estimate. This is done with the help of
survival analysis and survival data. Although it would be nice to give an estimation as to how
long a patient will be in a state before they make the next transition, it is very difficult to give
a good estimator for this. We limit ourselves to the aforementioned probabilities.

Unfortunately, data about patient might be incomplete, for many reasons. We discuss two types
of censoring of data. The first one is right-censoring, which happens when a study ends while
no event (i.e. transition) has happened to a patient, or when a patient leaves the study before
it ends and before they enter an absorbing state. Even though we don’t have complete data for
these patients, we may still use the data, and we want to use as much of the available data as
possible, without discarding incomplete observations.

The second one is left-censoring, which happens if we do not have information about a patient
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at the start of the study, that is, they had been in the initial state before the study started or
because (an) event(s) has/have happened to them that we do not know about.

Figure 1.3: A lexis diagram for the possible censoring of individuals, where a closed dot indicates
an event and an open dot indicates right-censoring

In figure 1.3, individuals 1, 2, 5 and 8 are possibly left-censored, as they may have been in a
starting state before time 0, the beginning of the study, or because events already happened to
them before time 0. Individuals 2, 4 and 6 are right-censored because they left the study before
an event happened to them and before the study ended. Individual 8 is also right-censored,
because nothing had happened to them when the study ended at time 8.

Patients can be censored for a variety of reasons. In many models, non-informative censoring is
used, which means that the censoring does not depend on the events, transitions and transition
times and vice versa. Non-informative censoring takes place if a patient decides to leave the
study or is forced to leave the study for, for example, reasons that do not have anything to
do with the disease or the treatment thereof. Censoring can also be informative, if patients
decide to leave the study because, for example, he/she feels the treatment is not helping them
or because he/she gets too ill to participate.

Informative censoring, although more realistic in several cases, will complicate analysis of the
multistate model very much. For that reason, and because analysis of models with non-
informative censoring is still quite useful, we will assume that the censoring in our models
is non-informative. On top of that, we will only work with right-censoring, to be able to derive
some very neat results.

Estimation of probabilities

As mentioned before, in survival models and multistate models, people are interested in the
survival function (which gives the survival probability) in survival models and the transition
hazard and the occupation probabilities in multistate models. In this thesis, we are interested
in non-parametric estimators of these quantities, so an estimator that does not assume any kind
of parametric form on the quantity that we want to estimate.
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A non-parametric estimator for the survival function was given by Edward Kaplan & Paul
Meier in 1958 [6]. This estimator is now known as the Kaplan-Meier estimator. We obtain the
estimator by multiplying the estimated probabilities of survival on subintervals of the study
period. The Kaplan-Meier estimator may take right-censoring into account. This estimator can
be used to obtain different estimators for multistate models.

An estimator to obtain the probabilities of transitioning at any possible moment in time was
given by Nelson & Aalen in 1969 [7], and was proved to be consistent for a Markov system.
This estimator is now called the Nelson-Aalen estimator. The estimator consists of the sum
of all transitions from one state to another, where each time such a transition is made, you
divide that transition by the number of people at risk of such a transition. As Datta & Satten
[1] seemingly proved in 2001, a version of the Nelson-Aalen estimator can be used to estimate
the transition probabilities even if the quantities of the model are not necessarily Markov, and
this estimator is still consistent. A main part of this thesis will be to prove consistency of this
estimator, correcting the proof given in the paper published by Datta & Satten in 2001. This
is found in chapter 4

From the Kaplan-Meier estimator and the Nelson-Aalen estimator for non-Markov systems, one
may derive the Aalen-Johansen estimator, which can be seen as a generalised matrix version
of the Kaplan-Meier estimator. This estimator is used to find the probabilities of being in any
state at any moment of time. Aalen and Johansen proved consistency of this estimator in a
Markov setting in 1978 [4]. Datta & Satten seemingly proved in 2001 that consistency holds in a
non-Markov setting as well, but their proof seemed a bit rushed, and did not entirely derive the
estimator when right-censoring was included. The derivation of the estimator and an extended
proof of consistency for the estimator is given in chapter 5.

Aim of the thesis

In this thesis, we are interested in the theory regarding multistate models. We aim to improve
Datta & Satten’s proofs of consistency of the Nelson-Aalen estimator for cumulative transition
hazards and the Aalen-Johansen estimator for state occupation probabilities in a non-Markov
setting with independent right-censoring [1]. Furthermore, we want to derive a formula for
the estimated variance of the Aalen-Johansen estimator, using just the quantities this model
provides and quantities that can be derived from it.

Outline of the thesis

In chapter 2, we formalise the concept of survival analysis and give a formal definition of
independent right-censoring. We introduce the estimators for which we will prove consistency
in chapters 4 and 5. We will also recall some notions about Martingales, predictable processes
and compensators.

In chapter 3, we discuss the multistate model. We introduce the product integral, the counting
process and how they relate to Martingales, we derive the transition hazard, the censoring hazard
and for both of these the cumulative distribution function. Furthermore, we give the definition
of a Markov process and compare this to the definition of the transition hazard. Finally, we
review the estimators we defined in chapter 2 and define them for multistate models.
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Chapter 4 focusses on the Nelson-Aalen estimator for the transition hazard. We define the
counting processes and at risk processes for our multistate model, we prove a lemma regarding
expectations of censored and non-censored data, and we use the proof of this lemma to prove
consistency of the Nelson-Aalen estimator for cumulative transition hazards under reasonable
conditions.

In chapter 5, we derive the Aalen-Johansen estimator for the occupation probabilities. We
use a balance equation for the case where we have uncensored data and use the Law of Large
Numbers to prove why this is a consistent estimator. Next, we derive the same estimator in a
similar way, although it requires more calculations, for right-censored data. We then use the
results of chapter 4 to prove consistency of this estimator in a way that it similar to the proof
of consistency for the Nelson-Aalen estimator in chapter 4

Information about the distribution of the derived Aalen-Johansen estimator is given in chapter
6. We prove consistency of the covariance function of the distribution of the estimator, and
propose a formula for the variance of this estimator.

In the final chapter, we discuss a different estimator for the occupation probability and possible
requirements for this estimator to be consistent. We also discuss the possibility to include
more known data to acquire the Nelson-Aalen estimator, and what other requirements might
be needed for this estimator to be consistent.
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2 Survival analysis

Throughout the thesis, we assume we are working on a (general) probability space (Ω,F ,P).
Unless stated otherwise, random variables are defined on this probability space. Furthermore,
we will often use so called càdlàg processes, which are processes that are right-continuous and
have left-hand limits (continue à droite, limite à gauche, which means ’continuous on the right,
limits on the left’ in French).

In this chapter, we formalise the concept of survival analysis and non-informative right-censoring.
We will show how to find the probability of survival without being censored. Furthermore, we
introduce two estimators that will be useful later on for multistate models (see chapter 3). We
end this chapter by recalling notions on Martingales, predictable processes and compensators
and some interesting properties they have.

As has been stated in the introduction, we will assume, throughout this thesis, that any cen-
soring in our models is non-informative right-censoring, i.e. it does not depend on the state an
individual is in and on transition times.

2.1 Survival analysis without censoring

If our study consists of individuals with only complete data, we can introduce a random variable,
the survival time T ∗, that gives us all the information we need. Assuming i.i.d. individuals, as
we do, estimating the probability of surviving up to time t is very easy. A consistent estimator
for the survival probability S(t) = P(T ∗ > t) would be

Ŝ(t) :=
#{people who have survived up to time t}

#{people in the study at time 0}
(2.1.1)

and this estimator gives us all the information we could want for this model. In many studies,
this is not a realistic situation, because very often there are people who leave the study before
it is finished and before they make the transition. In the following section, we will discuss the
censoring hazard and censoring probability, as well as the survival hazard.

2.2 Survival hazard and censoring hazard

For simple survival models with right-censoring, we introduce two random variables: the survival
time T ∗ and the censoring time C. Quantities of interest will then be T := min{T ∗, C} and
δ := I(C > T ∗), the indicator whether or not the individual was ever censored. Assuming no
censoring, we may define the survival hazard α by

α(t) := lim
∆t↓0

P(T ∗ ∈ [t, t+ ∆t)|T ∗ ≥ t)
∆t

(2.2.1)

i.e. the rate of death at time t given that the individual has survived up to time t. Then
A(t) :=

∫ t
0 α(s)ds is the cumulative hazard.

A similar approach can be used to acquire the cumulative censoring hazard, as well as the
probability of not having been censored while having survived up to time t. The censoring
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hazard is given by

λ(t) := lim
∆t↓0

P(C ∈ [t, t+ ∆t), δ = 0|T ≥ t)
∆t

(2.2.2)

With the cumulative censoring hazard Λ(t) =
∫ t

0 λ(s)ds.

We now assume censoring may take place anywhere on an interval [0, τ). For any t ∈ (0, τ), we
take a partition 0 = t0 < t1 < . . . < tm = t of the interval [0, t]. Let ∆Λ(ti) := Λ(ti)− Λ(Ti−1).
We find

P(C > t, δ = 0) = lim
max |ti−ti−1|→0

P(C > tm, δ = 0|C > tm−1)·

P(C > tm−1, δ = 0|C > tm−2) · . . . · P(C > t1, δ = 0|C > t0)P(C > t0)
= lim

max |ti−ti−1|→0
(1− P(tm−1 < C ≤ tm, δ = 0|C > tm−1))·

(1− P(tm−2 < C ≤ tm−1, δ = 0|C > tm−2)) · . . . · (1− P(0 < C ≤ t1, δ = 0|C > t0)) · 1
= lim

max |ti−ti−1|→0
(1−∆Λ(tm)) · (1−∆Λ(tm−1)) · . . . · (1−∆Λ(t1))

= lim
max |ti−ti−1|→0

m∏
i=1

(1−∆Λ(ti))

(2.2.3)

This limit of a product leads to the product integral, which is further explained in section
3.3. The representation of the censoring function as a product integral will be useful in later
computations.

2.3 Non-parametric estimators

In many cases the survival hazard is unknown and has to be estimated. In case we have a uniform
population (which will be assumed from here on out. If they all share a certain quality, it still
remains a uniform population), we may use non-parametric estimation to find the cumulative
survival hazard.

2.3.1 The Nelson-Aalen estimator

Let t1 < . . . < tm ≤ t denote all distinct event times up to time t, let nj be the number of
people experiencing some event at time tj , and let yj be the number of people at risk of an
event at time tj−. The Nelson-Aalen estimator is then given by

Â(t) :=
∑
j:tj≤t

nj
yj

(2.3.1)

In a multistate model (see chapter 3), we will use a similar estimator for the transition hazard
for all possible transitions. With a couple of restrictions, we will actually prove convergence in
probability of each estimated transition hazard to the actual hazard, uniformly on [0, t] (where
t ∈ (0, τ), with τ defined as in section 4.2 of the Nelson-Aalen estimator in chapter 4) for these
transition hazards in a multistate model. The Nelson-Aalen estimator for a multistate model is
defined in section 3.6.
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It should be noted that a similar estimator is available for the cumulative censoring hazard.
Because we focus on the (cumulative) survival hazard and the occupation (or state or survival)
probabilities, the details are omitted.

2.3.2 The Kaplan-Meier estimator

Having found the Nelson-Aalen estimator for the cumulative survival hazard, we may continue
to get an estimator for the survival function. Let ∆A(tj) = A(tj) − A(tj−1) where t0 = 0 and
0 < t1 < . . . < tm ≤ t are all the event times up to time t. In the same way we found a formula
for the censoring function, we may find a formula with a product for the survival function, i.e.

S(t) := P(T > t) = lim
max |tj−tj−1|→0

m∏
j=1

(1−∆A(tj)) (2.3.2)

Since we have distinct event times tj , it is easy to see that ∆Â(tj) =
nj

yj
. Plugging in Â in

(2.3.2) for A, we find the so called Kaplan-Meier estimator

Ŝ(t) :=
∏
j:tj≤t

(1− nj
yj

) (2.3.3)

In section 3.6, we will define a similar estimator for multistate models and see what they
estimate. Convergence of that estimator is proved in chapter 5.

2.4 Martingales

A very important type of stochastic process that we will use is the Martingale. A Martingale is
essentially a stochastic process that, given the value of the process at a certain time, remains
the same in expectation.

Definition 2.4.1. Let M = {M(t) : t ≥ 0} be a càdlàg stochastic process and let {Ft : t ≥ 0}
be a filtration, defined on a probability space. Then the process M is called a Martingale with
respect to Ft (or an Ft-Martingale) if it satisfies the following properties:

1. M is adapted to {Ft : t ≥ 0}

2. E|M(t)| <∞ for all t <∞

3. E(M(t)|Fs) = M(s) a.s. for all t ≥ s ≥ 0

Replacing property 3 in definition 2.4.1 by E(M(t)|Fs) ≥ M(s) a.s. gives us a submartingale,
and replacing (3) by E(M(t)|Fs) ≤M(s) a.s. gives us a supermartingale.

It is important to note that, due to property 3, a Martingale M satisfies E(M(t + ∆t) −
M(t)|Fs) = 0 a.s..

A Martingale M is called square integrable if E(M(t)2) < ∞ for all t < ∞. Also, if M is a
square integrable Martingale, then M2 = {M(t)2 : t ≥ 0} is a submartingale. This is a result
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of Jensen’s inequality, a result on convex functions and expectations, proved by Johan Jensen
in 1906. The result is omitted here.

Another class of stochastic processes of vital importance is the class of predictable processes. If
a stochastic process is predictable, it has some nice properties with regards to Martingales on
the same filtration.

Definition 2.4.2. A stochastic process X = {X(t) : t ≥ 0} is called predictable with respect to a

filtration {Ft : t ≥ 0} (or Ft-predictable) if it is measurable on the σ-algebra Ft− := σ(
⋃
h>0

Ft−h).

A very deep result, that will be the basis of the work we will do with counting processes (see
section 3.4), is what is called the Doob-Meyer decomposition. Before stating the theorem, we
have to define a submartingale of class D.

Definition 2.4.3. A submartingale X = {X(t) : t ≥ 0} is a submartingale of class D if the
class of random variables X(T ) where T is an arbitrary stopping time is uniformly integrable.

Now we can state the theorem:

Theorem 2.4.1 (Doob-Meyer decomposition). Let X = {X(t) : t ≥ 0} be a càdlàg submartin-
gale of class D. Then there exists a unique, nondecreasing, predictable process X̃ = {X̃(t) : t ≥
0} such that X̃(0) = 0 a.s. and X − X̃ is a uniformly integrable Martingale. This process X̃ is
called the compensator of X.

Using this theorem, and remembering that M2 is a submartingale if M is a square integrable
Martingale, we can find a process M̃2 as in theorem 2.4.1 such that M2 − M̃2 is a Martingale.
This process is usually denoted 〈M〉 and is called the predictable variation process of M .

The predictable variation process can be very useful in deriving convergence in probability for
Martingales. This is done using the following version of the Lenglart inequality (see section
II.5.2 in [9]):

Theorem 2.4.2. Let M be a Martingale with predictable variation process 〈M〉. Then the
following inequality holds:

P( sup
s∈[0,t]

|M(s)| > η) ≤ δ

η2
+ P(〈M〉(t) > δ) (2.4.1)

Using this result, one may see that a Martingale doesn’t take on large values on [0, t] if its
predictable variation process takes on small values. Proving that a Martingale has mean 0 and
proving that the predictable variation process of the process converges to 0 in probability is
then enough to prove convergence in probability to 0 of the Martingale itself.

Combining these properties of (sub)Martingales and predictable processes, one may derive a
truly wonderful result using stochastic integrals when the integrand is a predictable process
and when we integrate with respect to a martingale, that is, the resulting process is again a
Martingale. The result also gives us a way to calculate the predictable variation process of the
Martingale. The following is theorem II.3.1 in [9].
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Theorem 2.4.3. Assume M is a finite variation, square integrable Martingale on a filtration
{Ft : t ≥ 0}, and H is a predictable process on the same filtration and

∫
H2d〈M〉 is locally finite.

Then
∫
HdM is a square integrable Martingale with predictable variation process 〈

∫
HdM〉 =∫

H2d〈M〉.
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3 Multistate models

This chapter focusses on formally defining multistate models and its quantities. We introduce
the product integral and counting processes and use the notions about Martingales to acquire
useful results on counting processes. We define the transition hazard and the censoring hazard
for a multistate model. At the end of this chapter, we shortly discuss Markov processes and
why the transition hazard as we define it does not imply Markovianess of the model, and review
the estimators we defined in chapter 2 for multistate models.

3.1 Quantities in a multistate model

In our multistate models, we assume a model where an individual can be in one state at a time,
and we assume there are finitely many states. Transition times will be the times an individual
makes a transition from one state into another. In any finite time interval [0, t], we assume
an individual makes a finite amount of transitions. In most models in survival analysis, there
exists at least one absorbing state (often, this state is death), so a finite number of transitions
for each individual is a reasonable assumption.

We may then define the following quantities as in [1]:

T ∗ik = time of kth transition for individual i (which we will define to be ∞ if the ith individual
enters an absorbing state before transition k. Let T ∗i0 ≡ 0);

Ci = censoring time for individual i;

si(t) = state of individual i at time t;

sik = state of individual i between times T ∗i,k−1 and T ∗ik;

T ∗i = sup
k
{T ∗ik : T ∗ik <∞};

δi = I(Ci > T ∗i ) the indicator of whether individual i was (never) censored;

Furthermore, we define Tik = min(T ∗ik, Ci) and Ti = min(T ∗i , Ci) to be the right-censored tran-
sition times for individual i. Denote T ∗i = (T ∗ik : k ≥ 1) and si = (sik : k ≥ 1) the collection of
transition times and states occupied by individual i.

This way, we model every transition, all possible censoring and every state an individual can
be in at any time.

3.2 The model without censoring

Similar to what we did at the start of chapter 2, we may investigate the state occupation
probabilities, assuming there is no censoring at all. Again, with i.i.d. individuals, it is easy to
see that a consistent estimator for the state occupation probability pj(t) = P(si(t) = j) is the
following:

p̂∗j (t) :=
#number of people in state j at time t

#number of people in the studies at time 0
(3.2.1)
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With right-censoring, acquiring an estimator for this probability is not easy, and proving consis-
tency is rather difficult as well. Without censoring, however, it is very easy to find consistency
of this estimator through the Law of Large Numbers. We encounter this fact again in chapter
5. Since consistency holds for any t ∈ [0, τ) (see theorem 4.2.1 for the definition of τ), we have
an even stronger result:

Theorem 3.2.1. In a multistate model with no censoring, p̂∗j (t) is uniformly consistent on
[0, τ), i.e.

sup
t∈[0,τ)

|p̂∗j (t)− pj(t)|
P−→ 0

as n→∞.

Since right-censoring is almost always present in studies with multistate models, we have to take
it into account, so this estimator, however nice and easy it is to work with, is not an estimator
we can often determine. To develop an estimator that does take right-censoring into account,
the rest of this chapter is devoted to the necessary tools and background to enable us to acquire
an estimator for the state occupation probabilities in chapter 5.

3.3 Product integral

A useful tool in survival analysis and multistate models is the so called product integral. Like
the way a regular integral can be thought of as a limit of a sum, the product integral can be
thought of as the limit of a product. The product integral arises naturally in survival analysis
(hence its usefulness), and it gives us nice ways to represent quantities, even if they are discrete
products. In this thesis, we will use the definition and theorems regarding the product integral
of Andersen et al, 1993 [9] (see section II.6).

Definition 3.3.1. Let X(s) be a p×p matrix of càdlàg distribution functions of locally bounded
variation, let I be the p×p identity matrix (where p ∈ Z≥1). We define Y (t) := Ps≤t[I+dX(s)]
to be the product integral of X over intervals of the form [0, t] as follows:

Y (t) = R
s≤t

[I + dX(s)] = lim
max |ti−ti−1|→0

∏
i:ti≤t

(I +X(ti)−X(ti−1)) (3.3.1)

where 0 = t0 < t1 < . . . < tm is a partition of the interval [0, t], and dX(s) = X(s)−X(s−)

Different articles and books use different notations within the product integral. Some writers
prefer dX(s) (e.g. Datta & Satten, 2001 [1]) or even dX (e.g. Glidden, 2002 [3] and and
Andersen et al, 1993 [9]), omitting the time altogether. Another way to write this quantity
is X(ds) (e.g. Glidden, 2002). In this thesis, we will use the representation as used in Datta
& Satten, 2001. In practice, it doesn’t matter which one you use, though: dX(s) = X(s) −
X(s−) = X([0, s])−X([0, s)) = X([0, s]− [0, s)) = X(ds).

The product integral is the (unique) solution to an integral equation, introduced by Volterra in
1887 [11]). This theorem will prove to be essential later on.

Theorem 3.3.1 (Volterra equation). P
s≤t

[I + dX(s)] exists and is a càdlàg function of locally

bounded variation. Furthermore, it is the unique solution to the integral equation

Y (t) = I +

∫ t

0
Y (s−)dX(s) (3.3.2)

13



The product integral has some other interesting qualities. The first one is multiplicativity, i.e.
for s ≤ u ≤ t, we have P(s,t](I + dX(w)) = P(s,u](I + dX(w)) ·P(u,t](I + dX(w)). This follows
easily from definition 3.3.1.

A very important result regarding the product integral is the Duhamel equation. It will have a
major role in most of the proofs in this thesis. The Duhamel equation is essentially a continuous
version of the discrete equality

n∏
i=1

[I +Ai]−
n∏
i=1

[I +Bi] =
n∑
i=1

i−1∏
j=1

[I +Aj ][Ai −Bi]
n∏

j=i+1

[I +Bj ]

 (3.3.3)

As the Duhamel equation is a continuous version of (3.3.3), the continuous version seems quite
natural.

Theorem 3.3.2 (Duhamel equation). Let Y (t) = P
s≤t

[I + dX(s)] and Y ′(t) = P
s≤t

[I + dX ′(s)].

Then

Y (t)− Y ′(t) =

∫ t

0 R
u<s

[1 + dX(u)]d[X(s)−X ′(s)] R
s<u≤t

[1 + dX ′(u)] (3.3.4)

The version we use more often is the following corollary:

Corollary 3.3.3. Assume the conditions of theorem 3.3.2. If Y ′(t) is non-singular, then equa-
tion (3.3.4) can be rewritten:

Y (t)Y ′(t)−1 − 1 =

∫ t

0 R
u<s

[1 + dX(u)]d[X(s)−X ′(s)]

R
u≤s

[1 + dX ′(u)]

−1

(3.3.5)

A final important property of the product integral worth mentioning is the fact that it is a
continuous mapping [5]. This fact will be very useful in chapter 5, when we have a product
integral as an estimator for the state occupation probabilities.

3.4 Counting processes

An important class of stochastic processes in survival analysis is the class of counting processes.
A counting process is basically a stochastic process that counts the number of occurrences of
events in a model.

Definition 3.4.1. A counting process N = {N(t) : t ≥ 0} is a stochastic process adapted to a
filtration {Ft : t ≥ 0} satisfying the following properties:

1. N is right-continuous

2. N(t) ≥ 0 and N(0) = 0

3. N(t) <∞ a.s. for all t ≥ 0
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4. N(t) is an integer for any t ≥ 0

5. N(t) ≥ N(s) if t ≥ s

Quite often, an additional constraint is added, that is, the jumps in the counting process all
have size +1. We do not use this constraint, although the results would not change if we did
use it. If the jumps all have size +1, that means there is at most one occurrence at any time t.

From the definition, we can see that a counting process is a piecewise constant, non-decreasing,
càdlàg process with finite expectation at every time t. It is therefore easy to see that a counting
process is a submartingale. By theorem 2.4.1, a counting process N has a compensator, which
is usually denoted A, such that M = N −A is a Martingale.

A counting process has an intensity process α = (α(t) : t ≥ 0). Because the counting process is
integrable, we can define the intensity process:

α(t) := lim
dt↓0

E(dN(t)|Ft−)

dt
(3.4.1)

Now A(t) =
∫ t

0 α(s)ds is the compensator of N(t). We can now, informally, write

dN(t) = dM(t) + dA(t) = α(t)dt+ dM(t) (3.4.2)

This equation will be useful later on.

Another very useful property of the counting process is the form of the predictable variation
process of the Martingale M associated with the counting process N . According to equation
(2.4.3) in Andersen et al, section II, the predictable variation process of M is given by 〈M〉 = A.
This result is also a corollary of theorem 2.5.1 in Fleming & Harrington [2]:

Theorem 3.4.1. Let N be a counting process with compensator A. If A is continuous, then
E(M(t)2) = EA(t)

3.5 Stochastic processes in a multistate model

We have defined si(t), the state occupied by individual i at time t. These are random variables,
so (si(t) : t ≥ 0) is a stochastic process, determining the path through the model of individual i,
where we can see the state they are in at any time t. This means that, if individual i transitions
from state j to state j′ at time t, that si(t) = j′, where j, j′ ∈ {1, . . . ,K} = S , the state space
of our multistate model. Therefore, the sample paths of si are right-continuous.

When starting at time 0, each individual is in a certain state already. We define the starting
state the probability that an individual starts in each state. For now, we denote this as the
vector p(0) = (P(si(0) = 1), . . . ,P(si(0) = K)).

Furthermore, we define our filtration {Ft : t ≥ 0}, where Ft = σ({T ∗i , si, I(Ti ≤ u, δi = 0), 0 ≤
u ≤ t, i = 1, . . . , n}). This is the σ-algebra that contains the history of the model up to time t.
Because all si are right-continuous, so is our filtration.

We can now give expressions for a counting process, counting the number of transitions from
state j to state j′ of individual i, as well as the (uncensored) transition hazard, which is quite
similar to the survival hazard we saw in equation (2.2.1).
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Letj 6= j′. Define

N∗i;jj′(t) =
∑
k≥1

I(T ∗ik ≤ t, sik = j, si,k+1 = j′) (3.5.1)

to be the counting process as described above. Furthermore, let

αjj′(t) = lim
dt↓0

∑
k≥1

P[T ∗ik ∈ [t, t+ dt), sik = j′|s(t−) = j]

dt
(3.5.2)

be the transition hazard of the uncensored chain from state j to state j′. Like the survival
hazard, we can see this equals

αjj′(t) = lim
dt↓0

E[dN∗i;jj′(t)|si(t−)]

dt
(3.5.3)

with the help of Fubini’s theorem. Then A = {Ajj′} is the cumulative hazard matrix, where

Ajj′(t) =
∫ t

0 αjj′(s)ds, where αjj(t) = −
∑

j′ 6=j αjj′(t).

For the censoring hazard, we assume it is independent of transition times and the states occu-
pied. Furthermore, since we assume all individuals are i.i.d., the censoring hazard is the same
for each individual.

We have to redefine the censoring hazard for each individual as well, because of the multistate
model. We define the censoring hazard like we did in section 2.2.

λc(t) = lim
dt↓0

P(Ci ∈ [t, t+ dt), δi = 0|Ti ≥ t)
dt

(3.5.4)

The cumulative censoring hazard is then given by Λc(t) =
∫ t

0 λc(s)ds. With the definition of
the product integral and using (2.2.3), we find

P(Ci > t, δi = 0) = R
(0,t]

(1− dΛc(s)) =: K(t) (3.5.5)

Which is essentially the probability that individual i has survived up to time t without being
censored.

3.5.1 Markov processes

In survival and multistate models, the cumulative transition hazard (or survival hazard) is often
estimated under the assumption that the system is Markov. As we stated in the introduction
of this thesis, this is a strong and often not very realistic assumption. We will still state the
definition of a Markov process, and show how the process being Markov affects the transition
hazard compared to the process not necessarily being Markov.

Definition 3.5.1. Let (S,S) be a measurable space. A stochastic process X = {Xt : t ≥ 0}
adapted to a filtration {Ft : t ≥ 0} is called a Markov process if, for all A ∈ S and for all s < t

P(X(t) ∈ A|Fs) = P(X(t) ∈ A|Xs) (3.5.6)
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Looking at the definition of the transition hazard (see (3.5.2)), we can see that this is a condi-
tional probability which only assumes knowledge of the state of an individual at time t−. This
is not equal to a Markov assumption, though, because we do not assume that

lim
dt↓0

∑
k≥1

P[T ∗ik ∈ [t, t+ dt), sik = j′|s(t−) = j]

dt

and

lim
dt↓0

∑
k≥1

P[T ∗ik ∈ [t, t+ dt), sik = j′|s(t−) = j,Ft−]

dt

are equal. If we can prove consistency of an estimator for the integrated version of (3.5.2)
(which we will for the Nelson-Aalen estimator do in chapter 4), we may estimate the cumulative
transition hazard for non-Markov systems.

3.6 Estimators in a multistate model

In case of a multistate model, we require estimators for every possible transition between states.
A similar estimator for each transition can be found in a similar way as the Nelson-Aalen
estimator from section 2.3.1: let nk;jj′ be the number of people experiencing a transition from
state j to state j′ at time tk and let yk;j be the number of people at risk in state j at time tk−
(where j 6= j′). In that case, the Nelson-Aalen estimator for the transition hazard between j
and j′ is given by

Âjj′(t) :=
∑
k:tk≤t

nk;jj′

yk;j
(3.6.1)

In a similar way as in section 2.3.2, one may now find the Aalen-Johansen estimator for the
state occupation probability for each state j. First, define nk the K ×K matrix containing all
values nk;jj′ (with nk;jj :=

∑
j′ 6=j nk;jj′) and define yk the diagonal matrix with elements yk;j

on its diagonal. The Aalen-Johansen estimator of the state occupation probability for state j
is then:

p̂j(t) =

y0

∏
k:tk≤t

(I + nky
−1
k )


j

(3.6.2)

where y0 denotes the initial state occupation distribution at time 0.

We prove consistency of the Nelson-Aalen estimator in chapter 4 and consistency of the Aalen-
Johansen estimator in chapter 5.
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4 The Nelson-Aalen estimator for non-Markov data

In this chapter, we prove consistency of the Nelson-Aalen estimator for cumulative transition
hazads in multistate models that are not necessarily Markov. The theorem that we will prove
is a very nice result, first published by Datta & Satten in 2001 [1]. We first define a counting
process for each transition, as well as an ”at risk of transitions in this state” process, hereafter
called the at risk process, for each state. Then we define similar processes, taking the risk of
right-censoring into account. We prove a lemma regarding the expectations of these processes to
make it seem reasonable that the censored processes can be used in the Nelson-Aalen estimator
instead of the uncensored processes, and finally we prove that the estimator that we find is
indeed asymptotically consistent.

The results were derived before in [1]. However, while working through the proofs of both
the lemma and the theorem stating consistency of the estimator, a couple of small errors were
detected. They have been fixed in the proofs in this thesis.

4.1 Uncensored and censored processes

4.1.1 Nelson-Aalen estimator for uncensored processes

Define N∗jj′(t) =
∑n

i=1N
∗
i;jj′(t) and Y ∗j (t) =

∑n
i=1

∑
k≥1 I(T ∗i,k−1 < t ≤ T ∗ik, sik = j) for j 6= j′.

An estimator of A is given by the matrix Â∗ = {Â∗jj′} where

Â∗jj′(t) =


∫ t

0
Jj(u)Y ∗j (u)−1dN∗jj′(u) j 6= j′

−
∑
j′ 6=j

Â∗jj′(t) j = j′
(4.1.1)

where Jj(u) = I(Y ∗j (u) > 0). It takes little work to show that this is in fact the Nelson-Aalen
estimator as defined in section 3.6.

In [8], section 3.1.5, this estimator is almost derived. We will do the same derivation here.

First, notice that the compensator of N∗jj′(t) is equal to
∫ t

0 Y
∗
j (s)αjj′(s)ds, because the transition

rate is proportional to the number of people at risk. Therefore, (3.4.2) becomes

dN∗jj′(t) = dM∗jj′(t) + Y ∗j (t)αjj′(t)dt (4.1.2)

Multiplying both sides by Jj(t) to be able to divide both sides by Y ∗j (t), we find

Jj(t)

Y ∗j (t)
dN∗jj′(t) =

Jj(t)

Y ∗j (t)
dM∗jj′(t) + Jj(t)αjj′(t)dt (4.1.3)

Integrating both sides of the equation from 0 to t, we find∫ t

0

Jj(s)

Y ∗j (s)
dN∗jj′(s) =

∫ t

0

Jj(s)

Y ∗j (s)
dM∗jj′(s) +

∫ t

0
Jj(s)αjj′(s)ds (4.1.4)

Taking expectations on both sides and noting that
∫ t

0
Jj(s)
Y ∗j (s)dM

∗
jj′(s) is a mean-zero Martingale

by theorem 2.4.3, we find an unbiased estimator for
∫ t

0 Jj(s)αjj′(s)ds. Since it seems likely for
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the transition hazard to be low when nobody is at risk, a logical conslusion would be that this
estimator is also a good estimator for

∫ t
0 αjj′(s)ds. For the case of censored data, this is shown

in theorem 4.2.1 (see below).

4.1.2 Nelson-Aalen estimator for censored processes

The problem with the estimator in (4.1.1) is the fact that these estimators do not take censoring
into account. Whenever the data are censored, these processes cannot be determined, because
these processes count the actual number of transitions, rather than the observed transitions.
When we do take censoring into account, we immediately notice that the number of observed
transitions is less than the number of actual transitions. Even though the censored individuals
left the study early, the information that has been gathered before that time is still useful. To be
able to still work with the total number of people in the study, we have to account for them in a
way. Since we assumed non-informative censoring, it makes sense to assume that the transition
rate between two states j and j′ for the censored individuals and the uncensored individuals
are the same. Stating this differently, the probability of observing a transition, given the fact
that a transition takes place, is equal to the probability of having survived without having been
censored at that time. We find the following processes:

Njj′(t) =
n∑
i=1

∑
k≥1

I(T ∗ik ≤ t, Ci ≥ T ∗ik, sik = j, si,k+1 = j′)/K(T ∗ik−)

Yj(t) =
n∑
i=1

∑
k≥1

I(T ∗i,k−1 < t ≤ T ∗ik, Ci ≥ T ∗ik, sik = j)/K(t−)

(4.1.5)

We expect these quantities to be equal in expectation to N∗ and Y ∗ respectively. In lemma
4.1.1, we show that this is in fact the case. This lemma suggests that we may replace the
counting process N∗ and the at risk process Y ∗ by N and Y respectively. We acquire the
following estimator:

Âjj′(t) =


∫ t

0
Jj(u)Yj(u)−1dNjj′(u) j 6= j′

−
∑
j′ 6=j

Âjj′(t) j = j′
(4.1.6)

Note how this estimator is again the Nelson-Aalen estimator from section 3.6, written in a
slightly different way.

Remark : Often, the distribution function of the censoring hazard is unknown as well. For the
Nelson-Aalen estimator, this is not a problem, because the censoring probability is divided away
in the fraction Jj(u)Yj(u)−1dNjj′(u).

To give the strong indication that this estimator could be consistent, we prove the following
lemma.

Lemma 4.1.1. Suppose K(t) > 0 and j is not an absorbing state. Then
(a) E[Njj′(t)] = E[N∗jj′(t)]
(b) E[Yj(t)] = E[Y ∗j (t)]
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Proof. (a) By Fubini’s theorem, we find

E(Njj′(t)) = n
∑
k≥1

E
{
I(T ∗ik ≤ t, Ci ≥ T ∗ik, sik = j, si,k+1 = j′)

K(T ∗ik)

}
(4.1.7)

Dropping the index i to improve readability, we have I(C ≥ T ∗k ) = Ps<T ∗k
[1 + dX̄(s)], with

X̄(s) = −I(C ≤ s). Now noting that I(C ≤ s) = I(C ≤ s, δ = 0) for s ≤ T ∗k and defining
X(s) := −I(C ≤ s, δ = 0), we find

I(T ∗k ≤ t, C ≥ T ∗k , sk = j, sk+1 = j′) = I(T ∗k ≤ t, sk = j, sk+1 = j′) R
s<T ∗k

[1 + dX(s)]

By definition of K(s), we find, on the set {T ∗k ≤ t, C ≥ T ∗k , sk = j, sk+1 = j′}, with X ′(s) :=
−
∫ s

0 λc(u)I(T ≥ u)du, that K(T ∗k−) = Ps<T ∗k
[1 + dX ′(s)]. By theorem 2.4.1, X ′(s) is the

compensator of X(s), so we can see that X(s)−X ′(s) =: −M c(s) is a martingale with mean 0
w.r.t. Fs.

From the Duhamel equation (3.3.4), we obtain

I(T ∗k ≤ t, C ≥ T ∗k , sk = j, sk+1 = j′)

K(T ∗k−)

= I(T ∗k ≤ t, sk = j, sk+1 = j′) R
s<T ∗k

[1 + dX(s)]

 R
s<T ∗k

[1 + dX ′(s)]

−1

= I(T ∗k ≤ t, sk = j, sk+1 = j′)1 +

∫ T ∗k−

0 R
u<s

[1 + dX(u)]d[X(s)−X ′(s)] R
s<u<T ∗k

[1 + dX ′(u)]

 R
s<T ∗k

[1 + dX ′(s)]

−1
= I(T ∗k ≤ t, sk = j, sk+1 = j′)

1 +

∫ T ∗k−

0 R
u<s

[1 + dX(u)]d[X(s)−X ′(s)]

(
R
u<s

[1 + dX ′(u)]

)−1


= I(T ∗k ≤ t, sk = j, sk+1 = j′)

(
1 +

∫ T ∗k−

0

I(C ≥ s)
K(s)

d[X(s)−X ′(s)]

)
(4.1.8)

For the integral part on the right-hand side of equation (4.1.8), note that it is equal to 0 for
C < s. Also note that it is non-negative for C > s and T ∗k ≤ t, so the integral itself is
non-negative, hence it is bounded from above by the same integral from 0 to t. We find

I(T ∗k ≤ t, C ≥ T ∗k , sk = j, sk+1 = j′)

K(T ∗k−)

= I(T ∗k ≤ t, sk = j, sk+1 = j′)

(
1 +

∫ T ∗k−

0

I(C ≥ s)
K(s)

d[X(s)−X ′(s)]

)
≤ I(T ∗k ≤ t, sk = j, sk+1 = j′)

(
1 +

∫ t

0

I(C ≥ s)
K(s)

d[X(s)−X ′(s)]
) (4.1.9)

Since the integral in the right-hand side of equation (4.1.8) is non-negative, it is bounded from

below by 0. Now note that I(C≥s)
K(s) is predictable w.r.t. Fs. Since X(s)−X ′(s) is a mean-zero
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martingale w.r.t. Fs, we find the integral from 0 to t is a martingale w.r.t. Ft as well by theorem
2.4.3. Taking expectations on both sides of equation (4.1.8), we get the following:

E
(
I(T ∗k ≤ t, C ≥ T ∗k , sk = j, sk+1 = j′)

K(T ∗k−)

)
= E

(
I(T ∗k ≤ t, sk = j, sk+1 = j′)

(
1 +

∫ T ∗k−

0

I(C ≥ s)
K(s)

d[X(s)−X ′(s)]

))
≤ E

(
I(T ∗k ≤ t, sk = j, sk+1 = j′)

(
1 +

∫ t

0

I(C ≥ s)
K(s)

d[X(s)−X ′(s)]
))

≤ E (I(T ∗k ≤ t, sk = j, sk+1 = j′)) + E
(∫ t

0

I(C ≥ s)
K(s)

d[X(s)−X ′(s)])
)

= E(I(T ∗k ≤ t, sk = j, sk+1 = j′))

(4.1.10)

So now the second term is smaller than or equal to the last term. But by non-negativity of the
integral, the inequality the other way around is satisfied as well. Therefore, the two are equal,
and we find

E
(
I(T ∗k ≤ t, C ≥ T ∗k , sk = j, sk+1 = j′)

K(T ∗k−)

)
= E(I(T ∗k ≤ t, sk = j, sk+1 = j′)) (4.1.11)

Hence, by Fubini’s theorem, we may conclude E(Njj′(t)) = E(N∗jj′(t))

(b) By Fubini’s theorem, We have

E[Yj(t)] = n
∑
k≥1

E
{
I(T ∗k−1 < t ≤ T ∗k , C ≥ t, sk = j

K(t−)

}
(4.1.12)

Define X̄(s) := −I(C ≤ s), X(s) = −I(C ≤ s, δ := 0), like in the proof of part (a). Now on the
set {T ∗k ≥ t, sk = j} we have X(s) = X̄(s) for s < t. Also note I(C ≥ t) = Ps<t[1 + dX̄(s)].
Hence we find I(T ∗k−1 < t ≤ T ∗k , C ≥ t, sk = j) = I(T ∗k−1 < t ≤ T ∗k , sk = j) Ps<t[1 + dX(s)].
Now we also have, on the set {T ∗k−1 < t ≤ T ∗k , C ≥ t, sk = j}, that K(t) = Ps<t[1 + dX ′(s)]
where X ′(s) is defined as in the proof of part (a). Following the application of the Duhamel
equation as in part (a) and using the second inequality similarly as in equation (4.1.10), we get
the desired result. Hence E(Yj(t)) = E(Y ∗j (t)).

Remark : We have not justified the equalities of the form I(C ≥ T ∗k ) = Ps<T ∗k
[1 + dX̄(s)].

We will justify the use of the product integral in the proof of lemma 4.1.1 here with help of
definition 3.3.1. We will justify the equality for one of these product integrals. The others are
done in a similar fashion.

Knowing definition 3.3.1, we find Ps<T ∗k
[1 + dX̄(s)] = limmax |ti−ti−1|→0

∏
ti<T ∗k

[1 + X̄(ti) −
X̄(ti−1)] where t0 < . . . < tm is a partitition of [0, T ∗k ). Now recall the definition of X̄(t) =
−I(C ≤ s). There are two cases to be treated: C ≥ T ∗k and C < T ∗k .

Case 1: C ≥ T ∗k
In this case, for any ti < T ∗k , we have X̄(ti) = 0, hence we have
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limmax |ti−ti−1|→0

∏
ti<T ∗k

[1 + X̄(ti) − X̄(ti−1)] = limmax |ti−Ti−1|→0

∏
ti<T ∗k

[1] = 1 = I(C ≥ T ∗k ).

So in this case the equality holds.

Case 2: C < T ∗k
In this case, I(C ≥ T ∗k ) = 0. So there exists u ∈ (0, T ∗k ) such that C = u, and more importantly,
in our partition t0 < . . . < tm, there exists j ≤ m s.t. u ∈ (tj−1, tj ]. Then X̄(ti)− X̄(ti−1) = 0
for all i 6= j and X̄(tj) − X̄(tj−1) = −1. But in this case we multiply by 1 − 1 = 0, hence our
product integral must be 0 as well.

In both cases, the two coincide, hence the two are equal.

4.2 Consistency of the estimator

Since the expectations of N and N∗ are the same (and Y and Y ∗ as well), we expect the Nelson-
Aalen estimator with the censored quantities to be consistent as well. However, a surprising
amount of work is needed to prove consistency of this estimator, and a few other assumptions
have to be made as well. We mainly require two integrated processes that we encounter to be
finite, because the bounds that we produce may otherwise not be good bounds.

To be able to state and prove the theorem that gives us consistency, we need a couple of
definitions first. Let τ = sup{t :

∫ t
0 αjj′(u)du <∞, j 6= j′,K(t) > 0} and denote ‖ · ‖ any norm

on the space of K ×K matrices. Define y∗j (t) = E{n−1Y ∗j (t)} = P{si(t) = j}.

We should now be able to prove the following theorem:

Theorem 4.2.1. Assume all conditions of lemma 4.1.1. Let t ∈ [0, τ). Furthermore, assume∫ t

0

I(y∗j (u) > 0)αjj′(u)

y∗j (t)
du <∞ and

∫ t

0

I(y∗j (u) > 0)λc(u)

y∗j (t)
du <∞ ∀j, j′

Then sup
[0,t]
‖Â(u)−A(u)‖ P−→ 0

Proof. Fix a non-absorbing state j such that j′ 6= j for any other state j′, and recall the
definitions of N,N∗, Y and Y ∗. Let Ã∗jj′(u) =

∫ u
0 Jj(s)αjj′(s)ds.

Now first note that sup[0,t] |Âjj′(u) − Ajj′(u)| ≤ sup[0,t] |Âjj′(u) − Ã∗jj′(u)| + sup[0,t] |Ã∗jj′(u) −
Ajj′(u)|. We will show that both terms on the right-hand side converge to 0, uniformly, in
probability on [0, t].

Now when αjj′(s) > 0, we have y∗j (t) > 0 and since
Y ∗j (t)

n
P−→ y∗j (t) as n → ∞, we find (1 −

Jj(s))αjj′(s)
P−→ 0 as n→∞.

Then for all s ∈ [0, t] we have αjj′(s) ≥ 0, so |(1 − Jj(s))αjj′(s)| ≤ αjj′(s). Also note that∫ t
0 |αjj′(s)|ds =

∫ t
0 αjj′(s)ds <∞ by assumption. Then, by the Dominated Convergence Theo-
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rem (and non-negativity of the integral below), we find

sup
[0,t]
|Ã∗jj′(u)−Ajj′(u)|

= sup
[0,t]
|
∫ u

0
(1− Jj(s))αjj′(s)ds|

≤
∫ t

0
|(1− Jj(s))αjj′(s)|ds

P−→
∫ t

0
0ds = 0

(4.2.1)

So the first term converges to 0 uniformly in probability on [0, t]. For the second term in the
right-hand side, we split it into more terms:

Âjj′(u)− Ã∗jj′(u) =

∫ u

0
Jj(s)Yj(s)

−1dNjj′(s)−
∫ u

0
Jj(s)αjj′(s)ds

=

∫ u

0

Jj(s)

Yj(s)
dNjj′(s)−

∫ u

0

Jj(s)

Y ∗j (s)
Y ∗j (s)αjj′(s)ds

=

∫ u

0

Jj(s)

Yj(s)
dNjj′(s)−

∫ u

0

Jj(s)

Y ∗j (s)
dN∗jj′(s) +

∫ u

0

Jj(s)

Y ∗j (s)
dN∗jj′(s)−

∫ u

0

Jj(s)

Y ∗j (s)
Y ∗j (s)αjj′(s)ds

=

∫ u

0

Jj(s)

Y ∗j (s)
dM∗jj′(s) +

∫ u

0

Jj(s)

Yj(s)
dNjj′(s)−

∫ u

0

Jj(s)

Yj(s)
dN∗jj′(s) +

∫ u

0

Jj(s)

Yj(s)
dN∗jj′(s)

−
∫ u

0

Jj(s)

Y ∗j (s)
dN∗jj′(s)

=

∫ u

0

Jj(s)

Y ∗j (s)
dM∗jj′(s) +

∫ u

0
Jj(s)

(
dNjj′(s)

Yj(s)
−

dN∗jj′(s)

Yj(s)

)

+

∫ u

0
Jj(s)

(
1

Yj(s)
− 1

Y ∗j (s)

)
dN∗jj′(s)

(4.2.2)

Now we have divided the second term into three more terms. We will prove convergence in
probability to 0 for each of these terms.

First term: ∫ u

0

Jj(s)

Y ∗j (s)
dM∗jj′(s) =: M∗∗jj′(u) (4.2.3)

Here M∗jj′(s) = N∗jj′(s)−
∫ s

0 αjj′(s)Y
∗
j (u)du is a mean-zero Martingale, where

∫ s
0 αjj′(s)Y

∗
j (u)du

is the predictable compensator for the counting process N∗jj′(s) (see [9], section II.4.1). Theorem
3.4.1 now gives us

〈M∗〉jj′(u) =

∫ u

0
αjj′(s)Y

∗
j (s)ds (4.2.4)

Given that
Jj(s)
Y ∗j (s) is a predictable process, the term we want to have convergence to 0 for is a

mean-zero Martingale M∗∗. Now theorem 2.4.3 and (4.2.4) give us

〈M∗∗jj′(u)〉 =

〈∫ u

0

Jj(s)

Y ∗j (s)
dM∗jj′(s)

〉
=

∫ u

0

(
Jj(s)

Y ∗j (s)

)2

αjj′(s)Y
∗
j (s)ds (4.2.5)

23



If we can prove convergence to 0 in probability for (4.2.5), we will be able to prove convergence
to 0 in probability for (4.2.3).

We get ∫ u

0

(
Jj(s)

Y ∗j (s)

)2

αjj′(s)Y
∗
j (s)ds =

∫ u

0

Jj(s)

Y ∗j (s)
αjj′(s)ds

=
1

n

∫ u

0

Jj(s)
Y ∗j (s)

n

αjj′(s)ds ≤
1

n

∫ u

0

I(y∗j (s))

Y
∗
j (s)

αjj′(s)ds

(4.2.6)

where Y
∗
j (t) =

Y ∗j (s)

n . Since Y ∗j (s) is the sum of i.i.d. indicators, we may consider Y
∗
j (s) as a

Bernoulli random variable with parameter y∗j (s). Its standardised form is given by

Zj(s) := I(y∗j (s) > 0)

√
n(Y

∗
j (s)− y∗j (s))

y∗j (s)(1− y∗j (s))
(4.2.7)

Now Zj(s) converges weakly on D−[0, t], the space of càdlàg functions on [0, t], so for any
ε ∈ (0, 1), there exists K > −∞ s.t. on sets of probability of at least 1− ε, there exists n0 ∈ Z>0

such that we have Zj(s) > K for all n ≥ n0 and all s ∈ [0, t]. Let ε ∈ (0, 1),K, n ≥ n0 as above.

Then K < I(y∗j (s) > 0)
√
n(Y

∗
j (s)−y∗j (s))

y∗j (s)(1−y∗j (s)) . The following calculations will assume y∗j (s) > 0,

because the inequality we wish to get will be trivially true when y∗j (s) = 0.

With K as above and some algebra, we find K(1 − y∗j (s)) < I(y∗j (s) > 0)
√
n

(
Y
∗
j (s)

y∗j (s) − 1

)
.

Rearranging terms some more now gives
K(1−y∗j (s))
√
n

+ I(y∗j (s) > 0) < I(y∗j (s) > 0)
Y
∗
j (s)

y∗j (s) , which

directly implies Y
∗
j (s) > 0. We find

I(y∗j (s)>0)

y∗j (s) − K(1−y∗j (s))

Y
∗
j (s)
√
n

>
I(y∗j (s)>0)

Y
∗
j (s)

. All terms in this

inequality will be positive, with the possible exception of K. If K is non-negative, then obviously
2I(y∗j (s)>0)

y∗j (s) >
I(y∗j (s)>0)

Y
∗
j (s)

. If K < 0, note that the inequality
I(y∗j (s)>0)

y∗j (s) − K(1−y∗j (s))

Y
∗
j (s)
√
n

> 1
Y
∗
j (s)

holds

for all n > n0, hence we can pick n such that −K(1−y∗j (s)

Y
∗
j (s)
√
n
<

I(y∗j (s)>0)

y∗j (s) . In either case, we find

2I(y∗j (s)>0)

y∗j (s) >
I(y∗j (s)>0)

Y
∗
j (s)

. This is the inequality we need. Now if y∗j (s) = 0, our strict inequality

becomes an equality, so we have
2I(y∗j (s)>0)

y∗j (s) ≥ I(y∗j (s)>0)

Y
∗
j (s)

.

Plugging this inequality into (4.2.6), we find∫ t

0

(
Jj(s)

Y ∗j (s)

)2

αjj′(s)Y
∗
j (s)ds ≤ 2

n

∫ t

0

I(y∗j (s) > 0)

y∗j (s)
αjj′(s)ds (4.2.8)

and now notice that the right-hand-side converges to 0 in probability as n → ∞, because the
integral is finite by assumption. Therefore, the predictable variation process of (4.2.3) (which
we will now denote 〈M∗∗〉 converges to 0 in probability as n→∞.

Knowing that 〈M∗∗〉 P−→ as n → ∞, theorem 2.4.2 (Lenglart’s inequality) should give us con-

vergence in probability to 0 for M∗∗. Let η = δ
1
4 , then we find, again as n → ∞, that
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P
(

sup[s∈[0,u] |M∗∗jj′(s)| > δ
1
4

)
≤ δ

1
2 for any δ > 0. This proves convergence in probability to 0

of the first term, uniformly on [0, t].

Second term: ∫ u

0
Jj(s)

(
dNjj′(s)

Yj(s)
−

dN∗jj′(s)

Yj(s)

)
(4.2.9)

From the proof of lemma 4.1.1, we have

I(T ∗ik≤t,Ci≥T ∗ik,sik=j,si,k+1=j′)
K(T ∗ik−)

= I(T ∗ik ≤ t, sik = j, si,k+1 = j′)

(
1 +

∫ T ∗ik−

0

I(Ci ≥ s)
K(s)

d[Xi(s)−X ′i(s)]

)
(4.2.10)

Summing first over k and then i and recalling definitions for N∗jj′ and Njj′ and rearranging
terms as we partially did in the proof of lemma 4.1.1, we find

Njj′(u)−N∗jj′(u) = −
∑
i

∑
k

I(T ∗ik ≤ u, sik = j, si,k+1 = j′)

∫ u

0

I(T ∗ik > s)

K(s)
dM c

i (s) (4.2.11)

Plugging this in the second term we would like to have convergence for and applying Fubini’s
theorem, we get

∫ u

0
Jj(s)

(
dNjj′(s)

Yj(s)
−

dN∗jj′(s)

Yj(s)

)
= −

∫ u

0

Jj(s)

Yj(s)

∑
i

∑
k

I(T ∗ik ≤ u, sik = j, si,k+1 = j′)
I(T ∗ik > s)

K(s)
dM c

i (s)

= −
∑
i

∑
k

I(T ∗ik ≤ u, sik = j, si,k+1 = j′)

∫ u

0

Jj(s)

Yj(s)

I(T ∗ik > s)

K(s)
dM c

i (s)

(4.2.12)

All terms under the integral in this equation on the right-hand side are predictable. Therefore,
that part is a Martingale with predictable variation process at time t

〈∫ t

0

Jj(s)

Yj(s)

I(Ci > s)

K(s)
dM c

i (s)

〉
=

∫ t

0

Jj(s)

Yj(s)2

I(T ∗ik > s)

K(s)2
I(Ti ≥ s)λc(s)ds (4.2.13)

So the predictable variation process of the whole process is bounded by∑
i

∑
k

I(T ∗ik ≤ t, sik = j, si,k+1 = j′)

∫ t

0

Jj(s)

Yj(s)2

I(T ∗ik > s)

K(s)2
I(Ti ≥ s)λc(s)ds (4.2.14)

Applying Fubini’s theorem again, we find
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∑
i

∑
k

I(T ∗ik ≤ t, sik = j, si,k+1 = j′)

∫ t

0

Jj(s)

Yj(s)2

I(T ∗ik > s)

K(s)2
I(Ti ≥ s)λc(s)ds

≤
∫ t

0

Jj(s)

Yj(s)2K(s)2

∑
i

∑
k

I(T ∗ik ≤ t, sik = j, si,k+1 = j′, T ∗ik > s, Ti ≥ s)λc(s)ds

≤
∫ t

0

Jj(s)

Yj(s)2K(s)2

∑
i

∑
k

I(T ∗ik ≤ t, sik = j, si,k+1 = j′, T ∗ik > s)λc(s)ds

≤
∫ t

0

Jj(s)

Yj(s)2K(s)2
Y ∗j (s)λc(s)ds ≤

1

K(y)2

∫ t

0

Jj(s)

Yj(s)2
Y ∗j (s)λc(s)ds

≤ 1

K(y)2

∫ t

0

Jj(s)

Yj(s)
λc(s)ds ≤

1

2nK(t)2

∫ t

0

I(y∗j (s) > 0)

y∗j (s)
λc(s)ds

P−→ 0 as n→∞

The last two inequalities follow from the proof of lemma 4.1.1 and the proof of the first term of
this proof. Convergence to 0 now follows by the assumption we made that the integral is finite.
Applying Lenglart’s inequality like with the first term of this proof, we have convergence to 0
in probability for (4.2.9), uniformly on [0, t].

Third term: ∫ u

0
Jj(s)

(
1

Yj(s)
− 1

Y ∗j (s)

)
dN∗jj′(s) (4.2.15)

We may bound this term from above by∫ u

0
Jj(s)

∣∣∣∣∣ 1

Yj(s)
− 1

Y ∗j (s)

∣∣∣∣∣dN∗jj′(s)
=

∫ u

0
Jj(s)

∣∣∣∣∣ 1

Yj(s)
− 1

Y ∗j (s)

∣∣∣∣∣dM∗jj′(s) +

∫ u

0
Jj(s)

∣∣∣∣∣ 1

Yj(s)
− 1

Y ∗j (s)

∣∣∣∣∣Y ∗j (s)αjj′(s)ds

(4.2.16)

Which, using predictability of the terms under the integral signs, is a submartingale on [0, t]
with compensator

L(t) :=

∫ t

0
Jj(s)

∣∣∣∣∣ 1

Yj(s)
− 1

Y ∗j (s)

∣∣∣∣∣Y ∗j (s)αjj′(s)ds

=

∫ t

0
Jj(s)

∣∣∣∣∣ 1

Y j(s)
− 1

Y
∗
j (s)

∣∣∣∣∣Y ∗j (s)αjj′(s)ds
=

∫ t

0
Jj(s)

∣∣∣∣∣Y j(s)− Y
∗
j (s)

Y
∗
j (s)Y j(s)

∣∣∣∣∣Y ∗j (s)αjj′(s)ds
=

∫ t

0
Jj(s)

∣∣∣Y j(s)− Y
∗
j (s)

∣∣∣ 1

Y j(s)
αjj′(s)ds

≤ sup
[0,t]

∣∣∣Y j(s)− Y
∗
j (s)

∣∣∣ ∫ t

0

Jj(s)

Y j(s)
αjj′(s)ds

(4.2.17)

From lemma 4.1.1b and the Law of Large Numbers, sup[0,t] |Y j(s) − Y
∗
j (s)|

P−→ 0 as n → ∞.
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The second term is bounded in probability by the proof of convergence of (4.2.3) in this proof.
Therefore, this compensator converges to 0 in probability as n→∞.

The first term on the right-hand side of (4.2.16) is a Martingale. Its predictable variation process
at time t is given by

〈∫ t

0
Jj(s)

∣∣∣∣∣ 1

Yj(s)
− 1

Y ∗j (s)

∣∣∣∣∣dM∗jj′(s)
〉

=

∫ t

0
Jj(s)

3

∣∣∣∣∣ 1

Yj(s)
− 1

Y ∗j (s)

∣∣∣∣∣
3

Y ∗j (s)αjj′(s)ds (4.2.18)

Similar algebra as used for the compensator of the Martingale then gives us

〈∫ t

0
Jj(s)

∣∣∣∣∣ 1

Yj(s)
− 1

Y ∗j (s)

∣∣∣∣∣dM∗jj′(s)
〉

≤

(
1

n
sup
[0,t]

(
Jj(s)

∣∣∣∣∣ 1

Y j(s)
− 1

Y
∗
j (s)

∣∣∣∣∣
))2

sup
[0,t]

∣∣∣Y j(s)− Y
∗
j (s)

∣∣∣ ∫ t

0

Jj(s)

Y j(s)
αjj′(s)ds

(4.2.19)

The latter supremum and the integral have already been treated before. Now for the first
supremum: first, note that Yj(s) 6= 0 if Y ∗j (s) 6= 0 by the proof of lemma 4.1.1b. Second,
applying the continuous mapping theorem to this term and using lemma 4.1.1b itself, we find
that this term also converges to 0 in probability as n→∞. In other words, (4.2.19) converges
to 0 in probability. Another application of Lenglart’s inequality as we did in the proof for
convergence of (4.2.3) now gives us the desired result. The proof is complete.

We have now proved consistency of the Nelson-Aalen estimator for censored data for processes
that don’t necessarily have to be Markov processes. In the next chapter, we use this result to
prove consistency of the Aalen-Johansen estimator for state occupation probabilities for non-
Markov systems.
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5 The Aalen-Johansen estimator for non-Markov data

In this chapter, we aim to find a consistent estimator for the state occupation probabilities
pj(t) = P(si(t) = j), where si(t) is the stage occupied by individual i at time t, with j ∈ S .
First, we find an estimator for this quantity based on the uncensored processes N∗ and Y ∗

and use a well-known result to prove that this estimator is consistent. We then do the same
derivation for the censored processes to arrive at the same estimator, taking into account when
censoring might or might not happen, which complicates our calculations a lot. We finally prove
that this estimator is consistent as well.

In [1], Datta & Satten oversimplify the way to obtain the estimator for censored processes, and
they omit the proof altogether. Although the proof of this particular estimator is similar to
the proof of theorem 4.2.1, the proof requires the result, and an additional step is necessary.
Therefore, we will give a formal proof of the result.

5.1 State occupation probabilities for uncensored data

We first consider the situation where the data are uncensored. Let us define an estimator for
pj(t):

p̂∗j (t) :=
K∑
k=1

Y ∗k (0+)

n
p̂∗kj(0, t) (5.1.1)

with p̂∗kj(0, t) the kjth element of the matrix p̂∗(0, t) = P(0,t](I + dÂ∗(s)). Note the similarities
of this estimator and the Kaplan-Meier estimator in section 2.3.2 and the version in section 3.6.
This estimator is called the Aalen-Johansen estimator [4].

From the Law of Large Numbers, we have
Y ∗j (t+)

n
P−→ pj(t) as n → ∞. Therefore, if we have

p̂∗j (t) =
Y ∗j (t+)

n , we have convergence in probability for p̂∗j (t) to pj(t). It is possible to show
that this is true. We obtain the results by working out the details of (5.1.2) (see [9], (section
IV.4.1.4)). De details are found below.

Y ∗j (t+) = Y ∗j (0+) +
∑
j′ 6=j

N∗j′j(t)−
∑
j′ 6=j

N∗jj′(t) (5.1.2)

To derive (5.1.1), remember the identity for Â∗(t) (see (4.1.1)), assume j′ 6= j, and note that
Jj(s) is only necessary when we divide by Y ∗j (s) (because otherwise it doesn’t do anything).
We find

N∗jj′(t) =

∫ t

0
Y ∗j (s)dÂ∗jj′(s) (5.1.3)

Plugging in in (5.1.2) and using the second identity from (4.1.1), we find
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Y ∗j (t+) = Y ∗j (0+) +
∑
j′ 6=j

∫ t

0
Y ∗j′(s)dÂ

∗
j′j(s)−

∑
j′ 6=j

∫ t

0
Y ∗j (s)dÂ∗jj′(s)

= Y ∗j (0+) +
∑
j′ 6=j

∫ t

0
Y ∗j′(s)dÂ

∗
j′j(s) +

∫ t

0
Y ∗j (s)dÂ∗jj(s)

= Y ∗j (0+) +
K∑
j′=1

∫ t

0
Y ∗j′(s)dÂ

∗
j′j(s)

= Y ∗j (0+) +

(∫ t

0
Y∗(s)dÂ∗(s)

)
j

(5.1.4)

where Y∗(s) = (Y ∗1 (s), . . . , Y ∗K(s)) is a row-vector containing all elements Y ∗j (s). Combining all
j ∈ S , we find

Y∗(t+) = Y∗(0+) +

∫ t

0
Y∗(s)dÂ∗(s) (5.1.5)

This integral equation is of the same form as the one in Theorem 3.3.1. Applying this result,
we find for Y∗(t+):

Y∗(t+) = Y∗(0+) R
(0,t]

(I + dÂ∗(s)) (5.1.6)

Hence

Y ∗j (t+)

n
=

K∑
k=1

Y ∗k (0+)

n
p̂∗kj(0, t) = p̂∗j (t) (5.1.7)

and the identity p̂∗j (t) =
Y ∗j (t+)

n is justified.

5.2 State occupation probabilities for censored data

Having found a consistent estimator in case of uncensored data, it seems natural to assume that
an estimator of the same form for censored data works as well, i.e. replacing the uncensored
quantities Â∗ and Y ∗ with Â and Y respectively. We find

p̂j(t) =
K∑
k=1

Yk(0+)

n
p̂kj(0, t) (5.2.1)

with p̂(0, t) = P(0,t](I + dÂ(s)). Note how this is the Aalen-Johansen estimator for censored
data.

Deriving this estimator is not as simple as deriving (5.1.1). We cannot use the balance equation
(5.1.2) with the censored qualities. Not only do we use a quantity in those processes that we
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do not observe, we have to take the people who are censored while in state j into account as
well. For these reasons, to get to this estimator, some more work is required.

Define the following quantities:

Nuc
jj′(t) :=

n∑
i=1

∑
k≥1

I(T ∗ik ≤ t, Ci ≥ T ∗ik, sik = j, si,k+1 = j′)

Y uc
j (t) :=

n∑
i=1

∑
k≥1

I(T ∗i,k−1 < t ≤ T ∗ik, Ci ≥ T ∗ik, sik = j)

N c
j (t) :=

n∑
i=1

∑
k≥1

I(T ∗i,k−1 < Ci ≤ T ∗ik, Ci ≤ t, sik = j)

(5.2.2)

And define the estimator for the hazard

Âucjj′(t) =


∫ t

0
Jucj (u)Y uc

j (u)−1dNuc
jj′(u) j 6= j′

−
∑
j′ 6=j

Âucjj′(t) j = j′
(5.2.3)

with Jucj (u) = I(Y uc
j (u) > 0). Note how these quantities are the the quantities Y , N without

division by K(.), and also note that Âuc equals Â for this reason.

Now we can write a balance equation like (5.1.2) with these quantities:

Y uc
j (t+) = Y uc

j (0+) +
∑
j′ 6=j

Nuc
j′j(t)−

∑
j′ 6=j

Nuc
jj′(t)−N c

j (t) (5.2.4)

Like the uncensored data case, we may rewrite all terms Nuc
j′j(t) and Nuc

jj′(t) to
∫ t

0 Y
uc
j′ (s)dÂucj′j(s)

and
∫ t

0 Y
uc
j (s)dÂucjj′(s) respectively, and we may use the definition of Âucjj′(s) to find the following

equation:

Y uc
j (t+) = Y uc

j (0+) +
K∑
j′=1

∫ t

0
Y uc
j′ (s)Âucj′j(s)−N c

j (t) (5.2.5)

Writing in vector form like we did for the uncensored data case and noting that∑K
j′=1

∫ t
0 Y

uc
j′ (s)dÂucj′j(s) =

(∫ t
0 Yuc(s)dÂuc(s)

)
j
, we find

Yuc(t+) = Yuc(0+) +

∫ t

0
Yuc(s)dÂuc(s)−Nc(t) (5.2.6)

Where Nc(t) = (N c
1(t), . . . , N c

K(t))

Now note that the hazard for the counting process Nc is just the censoring hazard. According

to formula (3.20) in [8],

∫ t

0

Jucj (s)

Y uc
j (s)

dN c
j (s) is an unbiased estimator for Λc(t). Rewriting and

noting that Jucj (s) > 0 whenever Y uc
j (s) > 0, we find
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Nc =

∫ t

0
Yuc(s)dΛc(s) (5.2.7)

where Λc(s) = IKΛc(s), with IK the K ×K identity matrix.

Now (5.2.6) can be written the following way:

Yuc(t+) = Yuc(0+) +

∫ t

0
Yuc(s)d(Âuc −Λc)(s) (5.2.8)

This takes the form of a Volterra equation like before. Therefore, with theorem 3.3.1, we find

Yuc(t+) = Yuc(0+) R
(0,t]

(I + d(Âuc −Λc)(s)) (5.2.9)

Now we note that Yuc(t) = Y(t)K(t−) with K(t−) = IKK(t−). We also observe that K(0) =
IK . Finally, remember that K(t) =

∏
(0,t](I−dΛc(s)). Plugging this in (5.2.9) and multiplying

both sides by (K(t))−1 gives us

Y(t+) = Y(0+) R
(0,t]

(
I + d(Âuc −Λc)(s)

)R
(0,t]

(I − dΛc(s))

−1

(5.2.10)

To get to (5.2.1) from (5.2.10), we need two more things.

First, we need Âuc(s) = Â(s), which we have seen before, and which is clear from the definition
of both quantities.

Second, we need

P
(0,t]

(
I + d(Â−Λc)(s)

)(
P

(0,t]

(I − dΛc(s))

)−1

= P
(0,t]

(
I + dÂ(s)

)
(5.2.11)

To do this, we first apply the Duhamel equation, corollary 3.3.3, to the left-hand-side of the
desired equation. We get the following:

R
(0,t]

(
I + d(Â−Λc)(s)

)R
(0,t]

(I − dΛc(s))

−1

= I +

∫ t

0 R
(0,s)

(I + d(Â−Λc)(u))dÂ(s)

R
(0,s]

(I − dΛc)(u))

−1 (5.2.12)

Noting that
(
P(0,s](I − dΛc)(s))

)−1
is a diagonal matrix with the same entry on every diagonal

element and defining

Z(t) := P(0,t]

(
I + d(Â−Λc)(s)

)(
P(0,t] (I − dΛc(s))

)−1
, we may rewrite (5.2.12) to

Z(t) = I +

∫ t

0
Z(s−)dÂ(s) (5.2.13)
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which is the Volterra equation we have seen before, with solution

Z(t) = R
(0,t]

(
I + dÂ(s)

)
(5.2.14)

according to theorem 3.3.1, and now (5.2.10) becomes

Y(t+) = Y(0+) R
(0,t]

(I + dÂ(s)) (5.2.15)

as desired. Dividing all components of Y(t+) by n will now finally give algebraic equivalence
of p̂j(t) and Yj(t+)/n. Therefore, we have really derived this estimator for pj(u) using the
observed data, instead of only replacing the uncensored processes with the censored processes
in (5.1.1).

5.3 Consistency of the estimator with censored processes

Having proved identity (5.2.15), that is, algebraic equivalence of
Yj(t)
n and p̂j(t), the Law of Large

Numbers could be used to prove convergence in probability of p̂, like we did for p̂∗. Below, we
present a different proof, based on and using (the proof of) theorem 4.2.1.

Theorem 5.3.1. Assume all conditions of theorem 4.2.1. Then p̂j(u) is uniformly consistent
in probability for pj(u) on [0, t].

Proof. Let p̂(u) := (p̂1(u), . . . , p̂K(u)). Similarly, let p̂∗(u) := (p̂∗1(u), . . . , p̂K(u)). Furthermore,

let p̃∗(u) := Y∗(0+)
n

∏
(0,u](I + dÃ∗(s)) where Ã∗(s) is defined as in the proof of theorem 4.2.1.

Also, denote p(u) = (p1(u), . . . , pK(u)). We find the following:

sup
[0,t]
‖p̂(u)− p(u)‖ ≤ sup

[0,t]
‖p̂(u)− p̃∗(u)‖+ sup

[0,t]
‖p̃∗(u)− p̂∗(u)‖+ sup

[0,t]
‖p̂∗(u)− p(u)‖ (5.3.1)

The last term on the right-hand side of (5.3.1) converges to 0 in probability by the Law of Large
Numbers as n → ∞, as we have seen before in section 5.1. If we can prove convergence in
probability to 0 for the first two terms of the right-hand side, we will have proved the theorem.

First term:
sup
[0,t]
‖p̂(u)− p̃∗(u)‖ (5.3.2)

From (5.2.15), we find

p̂(u)− p̃∗(u) =
Y(0+)

n R
(0,u]

(I + dÂ(s))− Y∗(0+)

n R
(0,u]

(I + dÃ∗(s))

=
Y(0+)

n R
(0,u]

(I + dÂ(s))− Y∗(0+)

n R
(0,u]

(I + dÂ(s))

+
Y∗(0+)

n R
(0,u]

(I + dÂ(s))− Y∗(0+)

n R
(0,u]

(I + dÃ∗(s))

=

(
Y(0+)

n
− Y∗(0+)

n

)
R
(0,u]

(
I + dÂ(s)

)
+

Y(0+)

n

R
(0,u]

(I + dÂ(s))− R
(0,u]

(I + dÃ∗(s))


(5.3.3)
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Since Y∗(0+)
n = Y(0+)

n (because P(Ci > 0) = 1 for all i because K(0) = 1), the first term
on the right-hand side of (5.3.3) cancels. For the second term, we may use the continuous
mapping theorem to prove that (5.3.2) converges to 0 in probability if Â(s) converges to Ã∗(s) in
probability. But this is a result that we directly proved while proving theorem 4.2.1. Therefore,
(5.3.2) converges to 0 in probability as n→∞.

Second term:
sup
[0,t]
‖p̃∗(u)− p̂∗(u)‖ (5.3.4)

We have

p̃∗(u)− p̂∗(u) =
Y∗(0+)

n

R
(0,u]

(I + dÃ∗(s))− R
(0,u]

(I + dÂ∗(s))

 (5.3.5)

Like with term 1, we want to use the continuous mapping theorem to prove convergence in

probability to 0. To that end, we must prove that Â∗(s)
P−→ Ã∗(s).

Let j′ 6= j, we find

Â∗jj′(s)− Ã∗jj′(s) =

∫ u

0
Jj(s)αjj′(s)ds−

∫ u

0

Jj(s)

Y ∗j (s)
dN∗jj′(s)

=

∫ u

0

Jj(s)

Y ∗j (s)
αjj′(s)Y

∗
j (s)d(s)−

∫ u

0

Jj(s)

Y ∗j (s)
dN∗jj′(s)

= −
∫ u

0

Jj(s)

Y ∗j (s)
dM∗jj′(s)

(5.3.6)

But this is (4.2.3), for which we have already proved convergence to 0 in probability in theorem
4.2.1. Therefore, by the continuous mapping theorem, (5.3.4) converges to 0 in probability as
well.

As now all terms converge to 0 in probability for every u ∈ [0, t], p̂(u) is uniformly consistent
for p(u) on [0, t]. This is what we wanted to prove.

33



6 Asymptotics of the Aalen-Johansen estimator

In this chapter, we explore some properties of the Aalen-Johansen estimator for censored pro-
cesses. Mainly, we are interested in the distribution and the variance of the estimator. Although
we proved that the estimator is asymptotically consistent, it would be nice to find a formula on
how far off our estimator could reasonably be. This was done by David Glidden in 2002 [3]. We
will use the quantities he defined to adapt his proof for the consistency of his estimator for the
covariance function for the distribution of the Aalen-Johansen estimator. To do this, we first
recall and redefine a couple of processes and add some new ones along the way. After we have
proved the consistency of this covariance function, we propose an estimator for the variance.

6.1 Additional quantities of the model

To find the formula for the consistency of the covariance function, Glidden defined counting
processes and at risk processes for a multistate model in a slightly different way than Datta
& Satten did in [1]. Although the eventual quantities in the Nelson-Aalen estimator and the
Aalen-Johansen estimator are the same, he uses these other quantities for the distribution of the
Aalen-Johansen estimator and for the (estimator of the) covariance function of this estimator.
To be able to work out his proof, we give the same definitions here, unless they are equivalent
to the definitions in [1]. In that case, we just recall the definition. Throughout this chapter, we
assume j 6= j′ unless stated otherwise.

We first define the counting processes and at risk processes for individual i.

N∗i;jj′(t) :=
∑
k≥1

I(T ∗ik ≤ t, sik = j, si,k+1 = j′) (6.1.1)

Ni;jj′(t) :=

∫ t

0
I(Ci ≥ s)dN∗i;jj′(s) (6.1.2)

Y ∗ij(t) :=
∑
k≥1

I(T ∗i,k−1 < t ≤ T ∗ik, sik = j) (6.1.3)

Yij(t) := Y ∗ij(t)I(Ci ≥ t) (6.1.4)

Note that we just recalled the same definitions for N∗i;jj′ as the one in chapter 4.

From these definitions, we define n K × K matrices Ni(t) and YiD(t) which are i.i.d.. The
(j, j′)th element of Ni(t) is Ni;jj′(t) and its jth diagonal element is −

∑
j′ 6=j Ni;jj′(t) where

j = 1, . . . ,K. Furthermore, YiD(t) is a diagonal matrix with jth diagonal element Yij(t). These
matrices are essentially the counting process matrix and the at risk matrix for individual i.

Recalling the definition for the transition hazard α (see (3.5.2)) and how we used Fubini’s
theorem for this hazard, we get the transition hazard

αjj′(t) = lim
dt↓0

E[dN∗i;jj′(t)|si(t−) = j]

dt
= lim

dt↓0

E[dN∗i;jj′(t)|Y ∗ij(t) = 1]

dt
(6.1.5)

which has the same cumulative transition hazard as before:

Ajj′(t) =

∫ t

0
αjj′(s)d(s) (6.1.6)
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Ajj(t) = −
∑
j′ 6=j

Ajj′(t) (6.1.7)

Because of the proof of theorem 5.3.1, we can see that

p(t) =
Y(0+)

n P
(0,t]

(I + dA(s)) (6.1.8)

with help from the continuous mapping theorem and theorem 4.2.1.

Because we want to sum over individuals, it seems natural to sum the matrices of all indi-
viduals and define the Aalen-Johansen on the result. Let Y j(t) = n−1

∑n
i=1 Yij(t), N jj′(t) =

n−1
∑n

i=1Ni;jj′(t). Now let N(t) := n−1
∑n

i=1Ni(t), Y D(t) := n−1
∑n

i=1 YiD(t). We get the
following estimator of A:

Â(t) =

∫ t

0
Y
−1
D (s)dN(s) (6.1.9)

Which leads to the estimator

p̂(t) :=
Y(0+)

n R
(0,t]

(I + dÂ(s)) (6.1.10)

of p(t). Note that this is equivalent to the definition of the Aalen-Johansen estimator in (5.2.1).

6.2 The distribution function and covariance function

The quantity of interest is now n
1
2 (p̂−p)(t), because results for the distribution of this quantity

will give us information about the distribution of p̂.

In appendix A of [3], Glidden showed that n
1
2 (p̂− p)(t) converges weakly to G(t) =

{G1(t), . . . ,GK(t)} which is a vector of Gaussian processes. Furthermore, he showed n
1
2 (p̂−p)(t)

has the same distribution as the process W (t) = {W1(t), . . . ,WK(t)} =: n−
1
2
∑

Φi(t), with

Φi(t) :=
Y(0+)

n

∫ t

0 R
(0,s)

(I + dA(u))dΨi(s) R
(s,t]

(I + dA(u)) (6.2.1)

where

Ψi(t) :=

∫ t

0
Y−1
D (s)(dNi(s)− YiD(s)dA(s)) (6.2.2)

and
YD(s) = lim

n→∞
Y D(s) (6.2.3)

where 0 ≤ s ≤ t ≤ τ . He did so by using the compact differentiability of the integral and
product integral at these quantities. Because we don’t have to make any changes to the proof
because every step is quite clear, we omit it here.
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The elements of G(t) have covariance ξjj′(s, t) =: Cov{Gj(s),Gj′(t)} = E{Φ1j(s)Φ1j′(t)} where
j = 1, . . . ,K and j′ = 1, . . . ,K. This is not difficult to see:

Cov{Gj(s),Gj′(t)}

= E(n−1
n∑
i=1

n∑
i′=1

Φij(s)Φi′j′(t))− E(n−
1
2

n∑
i=1

Φij(s))E(n−
1
2

n∑
i=1

Φij′(t))

= E(n−1
n∑
i=1

Φij(s)Φij′(t))− n−1
n∑
i=1

E(Φij(s))E(Φij′(t))

= n−1
n∑
i=1

E(Φij(s)Φij′(t))

= n−1nE(Φ1j(s)Φ1j′(t))

Because the Gaussian processes have mean 0, because all Φi are i.i.d..

The unknown quantities used in (6.2.1) can be estimated. To do so, it seems natural to replace
YD by Y D and A by Â. To estimate the covariance function, we now define

Φ̂i(t) =
Y(0+)

n

∫ t

0 R
(0,s)

(I + dÂ(u))dΨ̂i(s) R
(s,t]

(I + dÂ(u)) (6.2.4)

Ψ̂i(t) =

∫ t

0
Y
−1
D (s)(dNi(s)− YiD(s)dÂ(s)) (6.2.5)

A consistent estimator for the covariance function is then given by

ξ̂jj′(s, t) := n−1
n∑
i=1

Φ̂ij(s)Φ̂ij′(t) (6.2.6)

This statement was proved in [3] in appendix B. Because some steps were unclear in his proof,
we shall give a slightly modified proof later on in this chapter. First, we define several matrix
norms.

Definition 6.2.1 (Matrix norms). The norm of a K ×K matrix A is given by the formula

‖A‖ = max
1≤j≤K

K∑
j′=1

|Ajj′ | (6.2.7)

The supremum norm of a K ×K matrix on [0, τ ] is given by

‖B‖∞ = sup
t∈[0,τ ]

‖B(t)‖ (6.2.8)

Furthermore, the variation norm is given by

‖C‖v = max
1≤j≤k

 K∑
j′=1

|Cjj′ |v
 1

v

(6.2.9)
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With the help of these norms, consistency of ξ̂ can be proved.

Theorem 6.2.1. The covariance estimator ξ̂jj′ is consistent for all j, j′ = 1, . . . ,K

Proof. Define

ξ(s, t) = E(Φ1(s)TΦ1(t)) = n−1
n∑
i=1

Φi(s)
TΦi(t) (6.2.10)

and

ξ̂(s, t) = n−1
n∑
i=1

Φ̂i(s)
T Φ̂i(t) (6.2.11)

where ξjj′(s, t) and ξ̂jj′(s, t) are the elements of 6.2.10 and 6.2.11. To prove consistency of

ξ̂jj′(s, t), we have to prove that∥∥∥∥∥n−1
n∑
n=1

Φ̂i(s)
T Φ̂i(t)− Φi(s)

TΦi(t)

∥∥∥∥∥ P−→ 0 (6.2.12)

as n→∞. To show this, we have to show the following three properties:

max
1≤i≤n

‖Φ̂i(t)‖ = Oq(1) (6.2.13)

max
1≤i≤n

‖Φi(t)‖ = Oq(1) (6.2.14)

max
1≤i≤n

‖Φ̂i(t)− Φi(t)‖
P−→ 0 as n →∞ (6.2.15)

Where q denotes the outer probability. This is easy to see, since there exists n0 such that for
all n > n0:∥∥∥∥∥n−1

n∑
i=1

Φ̂i(s)
T Φ̂i(t)− Φi(s)

TΦi(t)

∥∥∥∥∥
≤

∥∥∥∥∥n−1
n∑
i=1

Φ̂i(s)
T Φ̂i(t)− Φ̂i(s)

TΦi(t)

∥∥∥∥∥+

∥∥∥∥∥n−1
n∑
i=1

Φ̂i(s)
TΦi(t)− Φi(s)

TΦi(t)

∥∥∥∥∥
≤M

∥∥∥∥∥n−1
n∑
i=1

Φ̂i(t)− Φi(t)

∥∥∥∥∥+M

∥∥∥∥∥n−1
n∑
i=1

Φ̂i(s)
T − Φi(s)

T

∥∥∥∥∥ P−→ 0

as n→∞, if (6.2.13), (6.2.14) and (6.2.15) hold. Here, M = max{M1,M2}, where M1 and M2

are the quantities such that P(max1≤i≤n ‖Φ̂i(t)‖ > M1)
q−→ 0 and P(max1≤i≤n ‖Φi(t)‖ > M2)

q−→
0 as n→∞.

Since the elements of Λ̂ are all monotone and bounded in probability (by the assumption that
there are finitely many transitions for each individual), we find that the same is true for ‖Â‖∞
and ‖Â‖v, i.e. they are Oq(1). Since Y

−1
D , dNi and YiD are bounded as well for all i = 1, . . . , n,

we find that max1≤i≤n ‖Ψ̂i‖v =: ‖Ψ̂‖v is Oq(1) as well.
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Let v > 1, and let w > 1 such that 1
v + 1

w = 1, and assume without loss of generality that v > w.
Then, for (6.2.13), we have the following:

max
1≤i≤n

‖Φ̂i(t)‖ = max
1≤i≤n

∥∥∥∥∥∥Y(0+)

n

∫ t

0 R
(0,s)

(I + dÂ(u))dΨ̂i(s) R
(s,t]

(I + dÂ(u))

∥∥∥∥∥∥
≤

∥∥∥∥∥∥R
(0,t]

(I + dÂ(u))

∥∥∥∥∥∥
∞

∥∥∥Ψ̂
∥∥∥
v

∥∥∥∥∥∥R
(0,t]

(I + dÂ(u))

∥∥∥∥∥∥
w

≤ K
1
w
− 1

v

∥∥∥∥∥∥R
(0,t]

(I + dÂ(u))

∥∥∥∥∥∥
∞

∥∥∥Ψ̂
∥∥∥
v

∥∥∥∥∥∥R
(0,t]

(I + dÂ(u))

∥∥∥∥∥∥
v

≤ K2

∥∥∥∥∥∥R
(0,t]

(I + dÂ(u))

∥∥∥∥∥∥
∞

∥∥∥Ψ̂
∥∥∥
v

∥∥∥∥∥∥R
(0,t]

(I + dÂ(u))

∥∥∥∥∥∥
v

(6.2.16)

because of the Hölder inequality.

For ‖P(0,t](I + dÂ(u))‖v, we have

‖P(0,t](I+dÂjj′(u))‖v = sup1≤j≤K

(∑K
j′=1 P(0,t](I + dÂjj′(u))v

) 1
v ≤ K

1
v ‖P(0,t](I+dÂ(u)‖∞.

Now ‖P(0,t)(I + dÂ)‖∞ is bounded from above by f(t) exp(K|Â′|), with f(t) := (1 + KC∗)t

where C∗ = supt∈[0,τ ] maxi,j∈{1,...,K} Âjj′(t) and where Â′(t) = maxj,j′∈{1,...,K} Âjj′(t) with Â′ =
supt∈[0,τ ]A

′(t). This can be seen the following way, if we define T to be the set of all transition
times 0 < t1 < t2 < . . . < tk ≤ τ with t0 = 0:

R
(0,t]

(I + dÂ(u)) =
∏

ti≤t,ti∈T
(I + ∆Â(ti)) (6.2.17)

where ∆Â(ti) = Â(ti) − Â(ti−1). With the non-negativity and monotonicity of Â, we find the
following:

∆Âjj′(ti) = Âjj′(ti)− Âjj′(ti−1)

= Âjj′(ti)− Â′(ti−1) + Â′(ti−1)− Âjj′(ti−1)

≤ Â′(ti)− Â′(ti−1) + Â′(ti−1)− Âjj′(ti−1) ≤ Â′(ti)− Â′(ti−1) + C∗
(6.2.18)

which, with again the help of the monotonicity of Â (and Â′), implies∥∥∥∆Â(ti)
∥∥∥
∞
≤ K|Â′(ti)| −K|Â′(ti−1)|+ |C∗| (6.2.19)

Plugging this all in in (6.2.17), we get∥∥∥∥∥∥R
(0,t]

(I + dÂ(u))

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∏

ti≤t,ti∈T
(I + ∆Â(ti))

∥∥∥∥∥∥
∞

≤
∏

ti≤t,ti∈T

∥∥∥(I + ∆Â(ti))
∥∥∥
∞
≤

∏
ti≤t,ti∈T

(1 +
∥∥∥∆Â(ti)

∥∥∥
∞

)

≤
∏

ti≤t,ti∈T
(1 +K∆|Â′(ti)|+KC∗) ≤ R

(0,t]

(1 +Kd|Â′(s)|) R
(0,t]

(1 +KC∗)

≤ f(t) exp(K|Â′|)

(6.2.20)
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Where for the second to last inequality an equality is used that we proved in theorem 5.3.1 (see
(5.2.11)) Since (6.2.20) is bounded in probability, (6.2.17) is now bounded in probability as well.

Now that we have shown that all three terms of (6.2.16) are bounded in probability, this implies
that (6.2.13) is Oq(1). (6.2.14) is done in a similar way, noting that A is bounded in probability
as well. All we have left to prove is (6.2.15).

To do so, note the following:

max
1≤i≤n

‖Φ̂i(t)− Φi(t)‖

≤ max
1≤i≤n

∥∥∥∥∥∥
∫ t

0 R
(0,s)

(I + dÂ(u))dΨ̂i(s)

R
(s,t]

(I + dÂ(u))−R
(s,t]

(I + dA(u))

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
∫ t

0 R
(0,s)

(I + dÂ(u))d
(

Ψ̂i(s)−Ψi(s)
)

R
(s,t]

(I + dA(u))

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
∫ t

0

R
(0,s)

(I + dÂ(u))− R
(0,s)

(I + dA(u))

dΨi(s) R
(s,t]

(I + dA(u))

∥∥∥∥∥∥
∞

We may rewrite each of these terms the same we did for inequality (6.2.16). The first and
third term of the above equation then converge to 0 in probability because the the difference
in the product integral converges to 0 and because all elements are bounded in probability, as
we proved before when we proved uniform consistency for the estimator p̂. The second term
has Ψ̂ − Ψ converging to 0 in probability, because of convergence of Y D and Â to YD and A,
respectively, and with help of the continuous mapping theorem. This means all terms converge
to 0 in probability as n→∞. Therefore, (6.2.15) holds, and our theorem is proved.

6.3 Variance of the distribution

Although we have found a consistent estimator for the covariance function, the expression is
rather difficult. The estimator for the variance of the elements of n

1
2 (p̂ − p)(t) is no different,

since the elements of G(t) have variance ξjj(t, t) =: ξj(t). It would be nice to have a formula in
terms of quantities that we know or quantities which we can estimate with consistent estimators.

Notice how Var{Gj(t)} = Cov{Gj(t),Gj(t)} = E(n−1
∑n

i=1 Φij(t)
2) = n−1

∑n
i=1 EΦij(t)

2. Denote
pjj′(s, t) the (j, j′)th element of P(s,t)(I + dA(u)). Define p̂jj′(s, t) similarly. Let p(s, t) =

P(s,t)(I + dA(u)) and define p̂(s, t) likewise. Then

Φij(t) =

K∑
k=1

Yk(0+)

n

[∫ t

0
pjj′(0, s)dΨi(s)pjj′(s, t)

]
kj

=
K∑
k=1

K∑
l=1

K∑
m=1

Yk(0+)

n

∫ t

0
pkl(0, s)[dΨ(s)]lmpmj(s, t)

(6.3.1)

which we may now use for the variance. Recalling (6.2.2) for Ψ, We find, with help of Fubini’s
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theorem

Var(Gj(t)) =

1

n

n∑
i=1

∑
k,l,m∈S

∑
k′,l′,m′∈S

E
Yk(0+)

n

Yk′(0+)

n

∫ t

0

∫ t

0
pkl(0, s)pk′l′(0, s

′)pmj(s, t)pm′j(s
′, t)·

(Y−1
D (s)(dNi(s)− YiD(s)dA(s)))lm(Y−1

D (s′)(dNi(s
′)− YiD(s′)dA(s′)))l′m′

=
n∑
i=1

∑
k,l,m∈S

∑
k′,l′,m′∈S

Yk(0+)

n

Yk′(0+)

n

∫ t

0

∫ t

0
pkl(0, s)pk′l′(0, s

′)pmj(s, t)pm′j(s
′, t)·

1

n
E
(
(Y−1

D (s)(dNi(s)− YiD(s)dA(s)))lm(Y−1
D (s′)(dNi(s

′)− YiD(s′)dA(s′)))l′m′
)

(6.3.2)

Now it is useful to note that dNi(s) − YiD(s)dA(s) is the increment of a Martingale (and
is therefore a Martingale itself with mean zero), because Ni(t) −

∫ t
0 YiD(s)dA(s) =: Mi(t)

is a Martingale. Then, using the tower property for conditional expectations and using the
Martingale property, assuming s ≥ s′, we find:

E((dMi(s))lm(dMi(s
′))l′m′) = E(E((dMi(s))lm(dMi(s

′))l′m′ |Fs′))
= E((dMi(s

′))lmE((dMi(s))l′m′ |Fs′)) = E((dMi(s
′))lm(dMi(s

′))l′m′)
(6.3.3)

Define

Σl,m,l′,m′(s, s
′) :=

1

n

n∑
i=1

(
1

YD(s)
(dNi(s)− YiD(s)dA(s))

)
lm

(
1

YD(s′)
(dNi(s

′)− YiD(s′)dA(s′))

)
l′m′

(6.3.4)

for all l,m, l′,m′ ∈ S .

Through (6.3.3) and theorem 3.4.1, we find, when l = l′ and m = m′, that
E(Σm,l,m,l(s, s

′)) = E( 1
YD(s)

1
YD(s′)YiD(s)dA(s))lm.

Applying this information to (6.3.2) and applying theorem 3.4.1, we find

Var(Gj(t)) =

n∑
i=1

∑
k,l,m∈S

∑
k′,l′,m′∈S

Yk(0+)

n

Yk′(0+)

n

∫ t

0

∫ t

0
pkl(0, s)pk′l′(0, s

′)pmj(s, t)pm′j(s
′, t)·

1

n
E
(
(Y−1

D (s)(dNi(s)− YiD(s)dA(s)))lm(Y−1
D (s′)(dNi(s

′)− YiD(s′)dA(s′)))l′m′
)

=
∑

k,l,m∈S

∑
k′,l′,m′∈S

Yk(0+)

n

Yk′(0+)

n

∫ t

0

∫ t

0
pkl(0, s)pk′l′(0, s

′)pmj(s, t)pm′j(s
′, t)·

1

n

n∑
i=1

E
(
(Y−1

D (s)(dNi(s)− YiD(s)dA(s)))lm(Y−1
D (s′)(dNi(s

′)− YiD(s′)dA(s′)))l′m′
)

=
∑

k,l,m∈S

∑
k′,l′,m′∈S

Yk(0+)

n

Yk′(0+)

n

∫ t

0

∫ t

0
pkl(0, s)pk′l′(0, s

′)pmj(s, t)pm′j(s
′, t)Σl,m,l′,m′(s, s

′)

Although this is still a rather long and nasty expression, it contains nothing but quantities
that we know or can consistently estimate. As we proved in chapter 4, A can be consistently
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estimated by Â, and by chapter 5, p is consistently estimated by p̂. Furthermore, as YD(s) =
limn→∞ Y D(s), this quantity can be used to estimate YD(s).

Define the following estimator for Σ:

Σ̂l,m,l′,m′(s, s
′) :=

1

n

n∑
i=1

(
1

Y D(s)
(dNi(s)− YiD(s)dÂ(s))

)
lm

(
1

Y D(s′)
(dNi(s

′)− YiD(s′)dÂ(s′))

)
l′m′

(6.3.5)

Noting again that Â and Y d are consistent estimators, an application of the continuous mapping
theorem gives us consistency of this estimator for Σ. We find the following estimator for ξj(t):

ξ̂j(t) =∑
k,l,m∈S

∑
k′,l′,m′∈S

Yk(0+)

n

Yk′(0+)

n

∫ t

0

∫ t

0
p̂kl(0, s)p̂k′l′(0, s

′)p̂mj(s, t)p̂m′j(s
′, t)Σ̂l,m,l′,m′(s, s

′)

(6.3.6)

Investigating whether this estimator is consistent or not could be an interesting topic to research.
A suggestion on how to do this would be to prove that this mapping to get this integral is a
continuous mapping, and then to use consistency of the estimators involved. Assuming this
estimator is in fact consistent, we may then estimate the variance using just the data that has
been provided.
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7 Discussion

Conclusion

In this thesis, we have corrected Datta & Satten’s [1] proof of consistency of the Nelson-Aalen
estimator and the Aalen-Johansen estimator for multistate models and made the proofs more
rigorous. We have discussed a way to model progress of diseases for individuals. We have
provided the necessary conditions and tools to find those estimators. Using these results, these
estimators can be used to give patients who have fallen ill a good idea of the possibilities and
likelihoods of what might happen to them.

We have succeeded in our aim to correct and give proofs for the consistency of the Nelson-Aalen
estimator and the Aalen-Johansen estimator. We have also made the proof of consistency of
the estimated covariance function for the distribution of the Aalen-Johansen estimator more
accessible. With the help of these tools, we have been able to provide a formula for the variance
of this distribution.

Related research

The results do lead to several other questions that need to be answered. The first one is
about the Nelson-Aalen estimator and its definition of the transition hazard. In the Nelson-
Aalen estimator, not much information about the past is used. Although there is no Markov-
assumption, it seems they use a weighted average on the history of what could have happened
to patients. This gives an asymptotically correct estimator, but in individual situations, this
estimator could be off, because the information on what happened to the patient itself is not
used. This can be remedied, by defining a transition hazard as follows (with j 6= j′):

αjj′(t) = lim
dt↓0

E[dN∗i;jj′(t)|Ft−]

dt

Through this definition, the transition hazard is now a random variable. Because of the nature
of the proof of theorem 4.2.1, this theorem cannot be applied for this transition hazard. To use
all information up to time t−, other conditions are necessary. A way to do so could be to bound
the hazard by a function k(s) with

∫ t
0 k(s)ds <∞ for all t ∈ (0, τ) and imposing this bound in

the conditions for theorem 4.2.1 as well. The proof may then be adapted to fit the new model.
However, this is a strong requirement, and weaker assumptions to get the same result could be
nice.

Another question is the possibility of a much simpler estimator for the state occupation proba-
bilities. In chapter 5, we proved that the number of people at risk with right-censoring, divided
by n times the probability of having survived up to that time without being censored is a con-
sistent estimator. Therefore, when the probability of being censored is known, much less work
is required to find the state occupation probabilities. A problem might arise when the censoring
probability is unknown, which is usually the case. Assuming that there is a probability larger
than 0 that an individual is not censored and has survived, the surviving without censoring
probability can be estimated from the censoring hazard, which can be estimated the same way
the cumulative transition hazard can be estimated. With independent censoring, the steps to
prove consistency for the Nelson-Aalen estimator of the censoring hazard are the same for the
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estimator of the transition hazard. An estimator for pj(t) would then be

p̂′(t) :=
Y uc
j (t+)

nK̂(t−)

where K̂ denotes the estimator for K.

Alternatively, one may use another estimator which is rather naive, that is, p̂′
∗
(t) :=

Y uc
j (t+)

n′(t) ,

where n′(t) is the number of people in the study that have not been censored. Under the
assumption of uninformative right-censoring, this is a consistent estimator. Although it requires
not nearly as many calculations as the estimator p̂′, it is a bit naive, as you lose a lot of
information by not including the data you have about the censored patients. An interesting
topic of research could be the influence of the censoring on the variance of this estimator p̂′

∗
,

as well as the variance of the estimator p̂′.

A third problem could be the proposed estimator in chapter 6 and calculations thereof. David
Glidden recognised the problem, and came up with a different way of estimating the distribution
of n

1
2 (p̂− p)(·), namely through simulation [3]. He multiplied the estimators Φ̂i by independent

standard normal random variables Zi that are independent of the data as well. It can be shown
quite easily that this process has the same covariance function and therefore the same limiting
distribution as the original process. He further explored this method and used it to develop
confidence bands for the distribution of n

1
2 (p̂ − p)(·). Although he showed that the method

works using bootstrapping, he acquires a simulated result, rather than a result obtained purely
from the data from the model, which could be preferable. Calculations can be carried out
quicker, though, and sampling from a standard normal distribution is quite easy.
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