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Abstract

In this thesis we study the magnetic behavior of ferromagnet’s (FM) and in particular
the behavior of so-called magnons or spin waves. Furthermore we study anti ferromagnet’s
(AFM), with the ultimate goal of describing magnon spin transport through these systems.
First we will observe the magnetic dynamics of the FM semi classical and quantum mechan-
ically. Afterward we use collective coordinates to explore the behavior of the AFM close to
the classical equilibrium position. From there we turn back to the FM to investigate small
oscillations inside the bulk of an FM. After that we will expand our horizon and take a
look at the boundaries of the FM. Combined with the behavior of the bulk, this leads to an
expression for the spin current through the FM in terms of the spin accumulation entering
and leaving the FM.
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1 Introduction

In this thesis we study the magnetic behavior of ferromagnet’s (FM) and anti ferromagnet’s
(AFM) away from equilibrium in particular, how a spin current through the FM may be engen-
dered.
The dynamics of these systems at non-zero but not, too high temperatures are dominated by
quantum mechanical effects, especially the electron configurations inside the magnets and how
the electronic spins are oriented dominates. To describe these effects we will introduce magnons
in the next subsection. After that we describe magnon dynamics. Therefore we will first observe
the magnetic dynamics of the FM semi-classical and quantum mechanically suggested by [1]
(Chapter 2)1. Afterward we use collective coordinates in Chapter 32 to explore the behavior of
the AFM close to the classical equilibrium position, indicated by [2].When we have done that, we
are able to investigate the current trough a ferromagnet. This will be our final goal. To do that
we we turn back to the FM and using the equations of motion suggested by [3] to investigate
small oscillations inside the bulk of an FM, which is sandwiched between an poor spin-sink and
an strong spin-sink. From there we will take a look at the boundaries of the FM. Combined with
the behavior of the bulk, this leads to an expression of the current trough the FM in terms of
the spin accumulation. This will be done in Chapter 4. But first we make some general notes in
the following section to get started.

1.1 Theoretical Background

In this section we will treat some general concepts and definitions in a qualitatively and intuitive
manner. First we consider some magnetic characteristics and then we will say something about
the spin currents through these magnets.

1.1.1 Magnetic Behavior Away From Equilibrium

The ideas in this subsection are indicated by [1]. Consider a magnetic material, then almost all
the (microscopic-) characteristics of it depends on the local structure of the magnet, in particular
the electronic configuration of the material is important. There are two very useful examples.

First of all we will define the ferromagnet. Inside the ferromagnet the electrons are arranged
in such a way, that all the electrons have the same spin direction, which constitutes equilibrium.
In equilibrium i.e. at zero temperature, the directions of the spins are static. If the system
absorbs in some way more energy, e.g. by increasing the temperature of the magnet (not too
much), here arise some oscillations around this static equilibrium, i.g. 0 < T < 1043K =
Curietemperature[5] for iron.
Now, let’s consider a 2D-model of the ferromagnet and let one electron spin start precessing
around the z-axis; then the neighboring spins will also start precessing, however they will pick
up a little phase-shift. Hence an increasing of the internal energy of the ferromagnet creates
standing waves inside the magnet. These spin-waves can described quantum mechanically. In
that case the wavelike behavior is translated to the existence of an (quasi-)particle. This particle
is called a magnon.
If the temperature becomes above the Currie-temperature the ferromagnetic ordering will be
gone, i.e. the Ferromagnet has become a paramagnet. So general speaking we can say that if at

1The content of this chapter is composed with the help of Thomas Floss[6].
2The content of this chapter is composed with the help of Thomas Floss[6].
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Figure 1: An example of a 2D FM in different temperature regimes. The arrows denotes the
electronic spin direction. In the ground state pointing along ẑ (T < TC). If the temperature is
between zero and the Curie-temperature (TC) the spins start precessing around the z-direction,
these spin waves are denoted as magnons with wavelength lambda. If the temperature becomes
above this critical temperature(T > TC), the FM becomes a paramagnet.

T = 0 the nett magnetic moment is in the ẑ-direction. These three situations are given in fig.
??.
On the other hand we can define an fig:antiferromagnet. This is an orderd magnet but instead
of all spins pointing in the same direction, they alternate in opposite direction. There are two
spin-lattices. The magnons in the AFM are slightly different from that one inside the ferromagnet,
where they can described as a ”vibration” of the spin lattice. In the case of two opposite lattices
there are two spinwaves. Away from the zero temperature we can define the Neël-temperature,
wich is the anti-ferromagnet analog of the Curietemperature. The charactaristics of this magnet
are visualised in fig. 2.

In this thesis we are interested in the dynamics of magnons, hence we will work with Tem-
peratures above zero but still far below the currie/neël-temperatures.

1.1.2 Currents of Magnons Trough Interfaces

Let us consider a magnetic insulator sandwiched between two non-magnetic metals see 3. There
is a coupling between magnons in the insulator and the electronic spin currents in the non-
magnetic metals[7]. The spin current depends on the spin pumping, the spin accumulation at
the boundaries and the magnons transferring through the insulator[7]. If the left reservoir is
a poor spin sink and the right a strong spin sink, then a current coming from the left, crosses
the interface with the reservoir and the insulator, from where it causes spin waves inside the
insulator, which transfer through the insulator. In Chapter 4 we will investigate the dynamics
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Figure 2: An example of a 2D AFM in different temperature regimes. The arrows denotes the
electronic spin direction. In the ground state they are alternating pointing up and down(T < TC).
If the temperature is between zero and the neël-temperature (TC) we see the up and down lattices
vibrating, which are spin waves with wavelength lambda. If the temperature becomes above this
critical temperature(T > TC), the AFM becomes a paramagnet.
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Figure 3: Heterostructure. Here we see a magnetic insulator sandwiched between two metallic
reservoirs. The left reservoir has a spin accumulation of µL and is an poor spin sink. The right
reservoir has a spin accumulation of µR and is a strong spin sink. The spin current moves from
the left to the right. This picture is self-produced, however it is based on ideas from [3],[4] and
[7]

of such a system, first the dynamics inside the bulk is treated. After that the current of such a
structure will be investigated.

1.1.3 Some Extra Notes on the Rest of this Thesis

In this thesis we will further investigate the things mentioned in the previous sections in more
detail. First we start with calculating the minimum energy for a magnon needed to exist in a ferro-
magnet (chapter 2). Later we take a look at the two different lattices inside the anti-ferromagnet
and will derive expressions for spin dynamics in terms of the position and time(chapter 3). Next
we will start with the dynamics inside the ferromagnet and try to find some general solution for
the current trough the interface of an ferromagnetic heterostructure
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2 Magnons in Ferromagnets

In this section we study the classical dynamics of of ferromagnet’s. We will perform calculations
suggested by [1]. Let us start with the Heisenberg-exchange Hamiltonian [1] i.e.

Ĥ = −J
∑
〈i,j〉

~̂Si · ~̂Sj (1)

where 〈i, j〉 denotes the sum over nearest neighbors. J > 0 Is the coupling constant for ferro-
magnet’s.

2.1 The Semi-Classical Case

A semi-classical approximation means that we describe it both classical and quantum mechani-
cally. If we start with classical the Hamiltonian (1) and treat it quantum mechanically, we may
apply Ehrenfest’s theorem, i.e.

d

dt
〈Ŝα〉 =

−i
~
〈[Ŝα, Ĥ]〉, α ∈ {x, y, x}. (2)

If we now plug in (1) into (2) and assume a one-dimensional chain of spins pointing along ẑ, we
find

d

dt
〈Ŝα〉 = J

i

~
[
Ŝα,

∑
i

(Ŝi · Ŝi+1 + Ŝi · Ŝi−1)
]
. (3)

Let’s assume Ŝz = ~S and Ŝx, Ŝy << Ŝz [1]. If we now use [Ŝαi , Ŝ
β
i ] = i~εαβγ Ŝγk [1], with

εαβγ the Levi-Civita-tensor, and plug everything in equation (3), where after we try an ansatz

Ŝαi ∝ ei
~k·~Rj−iωt[1] with ~Rj = j · ax̂[1] and write everything in matrix form[1], we obtain(

iω 2SJ~(1− cos(kxa))
2SJ~(1− cos(kxa) −iω

)(
A
B

)
=

(
0
0

)
. (4)

This is true if the determinant of the matrix on the left side of equation (4) is zero. The
determinant is zero if

ωk ≡ ω(k) = 2SJ~(1− cos(ka)). (5)

We call ωk the eigenvalue or dispersion of the matrix in equation (4). According to that
formulation we can obtain the corresponding eigenvectors:

v1 =

(
0
0

)
, v2 =

1√
2

(
i
1

)
. (6)

The v1 vector corresponds with the static case. So when the system is in state v1 we write
A = v1,x and B = v1,y. This leads to Sz = ~S, Ŝxi = 0 and Ŝyi = 0,. The second vector,

v2, describes an eigenstate with magnons. If we set

(
v2,x

v2,y

)
=

(
A
B

)
and let a = 0 we get the

following expressions for the real parts of Ŝxi and Ŝyi :

Ŝxi =
1√
2
sin(ωt), Ŝyi =

1√
2
cos(ωt). (7)

From this we see that when the system is in eigenstate v2, the spin on lattice side i, precess
around the z-axis with period 2π

ω . If we now look at all the sites, we see that each site picks
up an phase shift of ka. Hence we have described a spin wave. If we assume k << 1 we can
approximate omega by ω ≈ SJ~(ka)2. ENERGY??
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2.2 Holstein-Primakoff

In this section describe small amplitude excitations of eq. (1) quantum mechanically by perform-
ing the Holstein-Primakoff transformation. With that done we want to find again the energy for
the magnons inside an ferromagnet.

We start again with eq. (1). As in [1] we define

Ŝ+
i ≡ ~ai

√
2S − a†iai, Ŝ

−
i ≡ ~a†i

√
2S − a†iai, Ŝ

z
i ≡ ~S − ~2S − a†iai (8)

such that [ai, aj†] = δij . We may now define the counting operator n̂ ≡ a†iai such that 〈n̂i〉 ≤
2S[1]. Then, by taking an Taylor expansion of (8) and plug it back in (1), we obtain [1]

Ĥ = −J~2
∑
i

∑
δ

S2 − Sa†iai − a
†
i+δai+δSa

†
i+δai + Sa†iai+δ. (9)

Defining a
(†)
i = 1√

N

∑
~k
e−
~k·~ria

(†)
~k

, we obtain by plugging a
(†)
i into (9) the following expression

[1]:

Ĥ = E0 +
∑
~k

~ω~ka
†
~k
a~k. (10)

In this equation we have the ground state energy of a magnon in the chain E0 = −J~2S2N z
2

and ω~k = SJ~z(1− cos(kxa)[1], where z is the number of pairs of nearest neighbors.

2.3 The Semiclasical Method Beside Holstein-Primakoff

As we have seen, we approached the dynamics inside the ferromagnet semi-classical and quantum
mechanically. In the semi-classical case we used the classical Hamiltonian (1) to calculate the

time evolution of the spin operator ~̂S for small oscillations around the z-direction of the spin
in an one-dimensional chain using the quantum mechanical Ehrenfest’s theorem (3). From this
time evolution we where able to calculate the frequency of the oscillations ω. From which we
calculated the ground state of the vibration which had an energy ~ω > 0. For the quantum
mechanical treatment we made the classical Hamiltonian reasonable in a quantum mechanical
sense. To do that we defined the spin raising-/lowering-operators which we plugged in (1). From
there we again take a look at small oscillations from which we obtained that the lowest energy
is given by E0 = −J~2S2Nz/2 and where the dispersion is given by ω~k = SJ~z(1− cos(kxa).
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3 Magnons in Anti-Ferromagnets

Let’s consider an AFM described by a lattice which consists of two sub lattices with magnetic
moments ~m1(~r, t) and ~m2(~r, t). We define the total magnetization m and the unit Neel vector n
as:

m(~r, t) ≡ ~m1(~r, t) + ~m2(~r, t), (11)

n(~r, t) ≡ ~m1(~r, t)− ~m2(~r, t)

‖~m1(~r, t)− ~m2(~r, t)‖
. (12)

Note that ~n is a unit vector wich gives the direction of the AFM ordering. Our goal is to find
expressions for some small derivations of ~m and ~n around the z-axis. In that case our model is
still corresponding with an AFM. But first we need some theory.

We will use the AFM-free energy suggested by [2], given by

U =

∫
[
a

2
~m2 +

A

2

∑
i=x,y,z

(∂i~n)2 − ~H ∗ ~m]d~r. (13)

With a the homogeneous exchange constants and A inhomogeneous one. ~H represents an external
magnetic field. We are interested in the behavior of the AFM without an external magnetic field,
hence ~H = 0. Now, from the equations (11) and (12) we can obtain the constraints (I) |~n| = 1
and (II) ~m · ~n = 0. Also we define the effective fields[2] as

~fn ≡ −
δU

δ~n
, ~fm ≡ −

δU

δ~m
. (14)

With the constraints (I), (II) and ~H = ~0 we can calculate the variational derivatives of U in
the ~n- and ~m-directions for small oscillations around the equilibrium of the AFM. With that we
can construct the the linear effective field. Doing so, we get from

~n −→

δnxδny
nz

 , ~m −→

δmx

δmy

mz

 , (15)

and via the constraints (I) and (II) ,

~n =

δnxδny
1

 , ~m =

δmx

δmy

0

 . (16)

This represents the AFM close to the equilibrium. Note that the time derivatives of the small
oscillations are then given by

∂t~n =

∂tδnx∂tδny
0

 , ∂t ~m =

∂tδmx

∂tδmy

0

 . (17)

If we now plug equation (16) in (14) and use ~H = 0 we end up with

~fn = A~n× (∇2~n× ~n) ' A

−δ∇2nx
δ∇2ny

0

 (18)
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and

~fm = −a~m ' −a

−δmx

δmy

0

 , (19)

where we neglect terms δ2 and higher. Let us now introduce the equations of motion in this
AFM suggestet by [2]:

∂t~n = γ ~fm × ~n; ∂t ~m = γ ~fn × ~n. (20)

By equation (18) and (19) we can calculate equation (20). We obtain

∂t~n = −aγ

 δmy

−δmx

0

 (21)

and

∂t ~m = γA

∇2δny
∇2δnx

0

 . (22)

To understand the behavior of the AFM close to equilibrium we have to solve (21) and (22).
Therefor we make the observation that both equations are wave equations. This suggests to try
ansatz of the form ~n = (αx, αy)te−ikx−iωt and ~m = (βx, βy)te−ikx−iωt. Plugging these in the
equations of motion and writing it in a matrix-form equation leads us to

iω 0 0 −γ
0 iω aγ 0
0 −Aγk2 iω 0

−Aγk2 0 0 iω



αx
αy
βx
βy

 =


0
0
0
0

 . (23)

This equation is true if the determinant of the matrix on the left side is 0. With that we can
calculate the dispersion relation of the magnons. Hence by setting the determinant= 0 we will
find

ω = ±γk
√
aA. (24)

With these dispersions we can obtain the equations of ~n and ~m, which are given by:

~n =

αxαy
1

 e−ikx±iγk
√
aAt (25)

~m =

βxβy
0

 e−ikx±iγk
√
aAt. (26)

Looking back on what we did in this section, we see that we have used the equations of motion
(20) suggested by [2]. After making an approach of small oscillations of ~n and ~m around the
equilibrium of the AFM we have calculated the dispersion relation and the oscillating vectors by
plugging the approximated effective fields (18),(19) in to the free energy (13). As we see in the
equations (25) and (26) the oscillations around the equilibrium of the AFM causes a wave-effect
of the spindown- and spinup-lattice.
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4 Magnon Spin Currents Through Ferromagnets

In this section we will use Green’s functions to solve a linearized LLG (Laundau-Lifshitz-Gilbert)-
equation applied on a ferromagnetic bulk, which describes the magnetic dynamics of such a
system. After this semi-classical exercise we look at the boundaries of the ferromagnet. From
there we are able to set some boundary conditions which, combined with the magnetic dynamics
inside the ferromagnet, lead to an expression for the current through the ferromagnetic system.
In this Chapter we consider a hetero-structure such as in figure 3, where the insulator is given
by a ferromagnet.

4.1 Magnetic Motion in the Bulk

To get a sense of what is happening inside the ferromagnetic bulk, let us consider a ferromagnet
sandwiched between two metals, a poor spin sink and an almost perfect one [ref 3,fig.1] and 3.
In this section we neglect boundary conditions and focus on bulk dynamics. For this situation
we can use the equation of motion(E.O.M.) suggested by ref.[3, eq 1], which is given by:

∂

∂t
~m = −γ ~m× ( ~Heff + ~hl) + α~m× ∂

∂t
~m. (27)

This E.O.M. gives a recursive expression for the time-evolution of the unit magnetization vector

~m ≡ ~M
Ms

, where ~M is the magnetization vector with length Ms [3]. Furthermore we have two con-
stants, −γ and α which represents the gyro magnetic ratio and Gilbert damping respectively[3].
The other two terms are given by:

~Heff ≡ −
δ

δ ~M
F = Ha~z +Ax∇2 ~m+ ~Hr (28)

and

〈hl,i(~r, t)hl,j(~r′, t′)〉 =
2α

γMs
kBT (~r)δijδ(~r − ~r′)δ(t− t′), (29)

which eq.(28) represents the effective field and eq.(29) shows the correlator of the random

Langevin field ~hl [3]. In the expression for ~Heff , Ha and Ax denote constants due to the
applied field and the exchange field respectively.
To make things simple and semi-classical, we need the following assumptions:
(i) The temperature is much lower than the Curie-temperature, so no spontaneous demagneti-
zation can occur. On the other hand, we don’t expect to low temperatures, otherwise quantum
fluctuations become important [3].
(ii) We will take T (~r) = constant.

(iii) For the relativistic correction term we assume ~Hr = 0, which is justified when kBT >>
~γMs[3].

(iv) The average of ~hl can be ignored when ω << kBT
~ [3], which keeps the problem (quite)

classical. Furthermore, we define the spin density ~s ≡ s~n ≡ −Ms

γ ~m, where s = Ms

γ and

~n = −~m, the magnitude of the spin density and its direction[3].
Now, if we rewrite the E.O.M. in terms of ~s and ~n we find:

0 =
∂

∂t
~n+ γ~n× ( ~Heff + ~hl) + α~n× Ms

γ

∂

∂t
~n. (30)

After doing that, we can multiply both sides by a factor Ms

γ = s and use a slightly denser notion
for the partial derivatives, we get:

0 = s∂t~n+ ~n× (Ms
~Heff +Ms

~hl) + α~n× s∂t~n. (31)
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After, applying assumption (iii) on equation (28), defining H ≡ MsHa, ~h ≡ Ms
~hl and A ≡

MsAx, ànd rearranging some terms, we have:

0 = s(1 + α~n×)∂t~n+ ~n× (Hẑ −A∇2~n+ ~h). (32)

This expression can be written as:

0 = s(1 + α~n×)∂t~n+ ~n× (Hẑ + ~h)− ~n×A∇2~n. (33)

Let us now define the spin current as:

~Js,i ≡ −A~n× ∂i~n. (34)

Now, if we take the derivative of ~Js,i in the direction i and use −A∂i~n× ∂i~n = 0, we get:

∂i ~Js,i = −A~n×∇2~n. (35)

In this equation we used Einsteins summation convention (E.S.C.). Since the cross product is
compatible with scalar multiplication and A is a scalar, we can pull A over the ×-symbol and
plug eq.(35) in eq.(33). Doing that, we end up with the following E.O.M.:

0 = s(1 + α~n×)∂t~n+ ~n× (Hẑ + ~h) + ∂i ~Js,i, (36)

which is a very useful expression in our discussion of spins and will be the starting point of our
further calculations.

4.1.1 Linear Motion of the Bulk,

At this point we are ready to study the motion of ~n in the semi-classical approach. This means
that we have to take the classical limit and differ a little from it to introduce the quantum effects.
To do so, we assume that ~n is in equilibrium if ~n = −ẑ, which is compatible with the notion of
ferro magnetism in the classical manner. After setting ~n in the −ẑ-direction we can vary (due to
the quantum mechanics) a little in the x− and y−direction by a small change of δnx and δny.

This variation is random and it is determined by the stochastic term ∝ ~h in eq.(36), given by
eq.(29).

Let assume that

~n =

nxny
nz

 −→ ~̃n =

 δnx
δny

−
√

1− δnx2− δn2
y

 . (37)

To get rid of the
√

-sign we perform a Taylor expansion of the second order in the ẑ-direction of

~̃n. Hence,

~̃n =

 δnx
δny

−1 + 1
2δnx2 + 1

2δn
2
y

 and ∂t~̃n =

 ∂tδnx
∂tδny

∂t(−1 + 1
2δnx2 + 1

2δn
2
y)

 . (38)

If we assume that the variations are so small that we can neglect δ2-terms, then the δ~n’s are;

~̃n =

δnxδny
−1

 and ∂t~̃n =

∂tδnx∂tδny
0

 . (39)
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These equations can now plugged in easily in the equation of motion (36). So we acquire:

~0 = s[1 + α

δnxδny
−1

×]

∂tδnx∂tδny
0

+

δnxδny
−1

× [Hẑ + ~h]−

δnxδny
−1

×A∇2

δnxδny
−1

 . (40)

If we use now the E.S.C., we can write this expression as

~0 = s[1 + α

δnxδny
−1

×]

∂tδnx∂tδny
0

+

δnxδny
−1

× [Hẑ + ~h]−

δnxδny
−1

×A∂2
i

δnxδny
−1

 . (41)

Since expression is quite long, we will calculate the terms one by one first. After doing that we
can glue everything together. For the first term we end up with

s[1 + α

δnxδny
−1

×]

∂tδnx∂tδny
0

 δ2→0' s

∂tδnx + α∂tδny
∂tδny − α∂tδnx

0

 . (42)

If we now use ~h = (hxhyhz)
t, then second term appears to beδnxδny
−1

× [Hẑ + ~h] =

 δny(H + hz) + hy
−δnx(H + hz)− hx
δnxhy − δnyhx

 . (43)

For the last expresion we derive

∂i ~Js,i = −

δnxδny
−1

×A∂2
i

δnxδny
−1

 δ2→0' −A

 ∇2δny
−∇2δnx

0

 . (44)

If we combine equation (41) (42) (43) and (44) we find

~0 = s

∂tδnx + α∂tδny
∂tδny − α∂tδnx

0

+

 δnyH + hy
−δnxH − hx
δnxhy − δnyhx

−A
 ∇2δny
−∇2δnx

0

 , (45)

where we used the the fact that hz is small, i.e. δnxhz = δnyhz = 0. The resulting, Linearized
equation contains all the information about the behavior of ~n in the semi-classical limit subject
to our assumptions (i)-(iv). To get a real picture of the meaning of this behavior we have to
solve (45) for δnx and δny. But for we do this, let’s switch to the complex plane by defining

δn± ≡ δnx ± iδny, (46)

which by plugging in (45) leads to0
0
0

 =

s(∂tδn++∂tδn−
2 + α∂tδn+−∂tδn−

2i ) + δn+−δn−
2i H + hy −A∇2 δn+−δn−

2i

s(∂tδn+−∂tδn−
2i − α∂tδn++∂tδn−

2 )− δn++δn−
2 H − hx +A∇2 δn++δn−

2
δn++δn−

2 hy − δn+−δn−
2i hx

 . (47)

To lose this notation, we can write it as three separate equations and use 1/i = −i for the first
line and multiply the second one by i. So the above equation is equivalent to:

0 = s(
∂tδn+ + ∂tδn−

2
− αi∂tδn+ − i∂tδn−

2
)− iδn+ − iδn−

2
H + hy +A∇2 iδn+ − iδn−

2
(48)
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and

0 = s(
∂tδn+ − ∂tδn−

2
− iα∂tδn+ + ∂tδn−

2
)− i δn+ + δn−

2
H − ihx + iA∇2 δn+ + δn−

2
(49)

and
δn+ + δn−

2
hy =

iδn− − iδn+

2
hx. (50)

Since (δn+)∗ = δn−, we can solve everything for δn+ and take the complex conjugate to find
δn−. This can be done by sum (48) and (49). So we get

0 = s(∂tδn+ − iα∂tδn+)− iδn+H + hy − ihx + iA∇2δn+. (51)

Equivalently, we can write this in Schrödinger form:

(s− isα)
∂

∂t
ψ = −iA∇2ψ +Hiψ + ihx − hy, (52)

by defining

ψ ≡ δn+, (53)

which depends on ~x and t. Note here that since ~n = ~n(~x, t) we have δn± = δn±(~x, t), hence ψ
depends also on the location ~x and time t i.e ψ = ψ(~x, t). Before we start solving this equation,
we define h± ≡ hx ± ihy and notice that 1

i = −i implies that 1−iα
i = −(i + α). If we multiply

(52) by 1
i , plug in h± and rearrange some terms we end up with

L̂ψ(~x, t) ≡
[
− s(i+ α)

∂̂

∂t
+A∇̂2 − (H + hz)

]
ψ(~x, t) = h+(~x, t), (54)

a linear non-homogeneous differential equation.

Before going any further, let us recap what we have done so far. We started with a general
magnetic E.O.M. of the ferromagnetic bulk (27) suggested by[3]. We have treated the dynamics
classically and we performed a linearization to obtain an equation to describe the magnetic
dynamics of our system. After that, we switched to complex notation to find a useful Schrödinger-
like expression, which is a solvable differential equation.

4.1.2 Finding Solutions Using Green’s Functions

At this point we are ready to solve the E.O.M derived in the previous section. To do so, we
will ”build” the solution out of δ-functions i.e. by applying Green’s functions to equation (54)
whence we move to momentum space (Fourier space) to solve it. After that, we are able to
calculate 〈ψ∗(~x, t)ψ(~x, t)〉, which is related to the average deviation of ~n = −~m.

We introduce the Green’s function G(~x− ~x0, t− t0)(= G(~x, t; ~x0, t0)), which is defined as

ψ(~x, t) ≡
∫
R3

∫
R
G(~x, t; ~x0, t0)h+(~x0, t0)dt0d~x0. (55)

To find an explicit expression of G, we have to solve

L̂G(~x, t; ~x0, t0) = δ(~x− ~x0)δ(t− t0). (56)

14



This is a simplified form of (54) depending on source terms i.e. δ-functions instead of h+. With
these source terms we can build ψ via (55). If we now write (56) in terms of the Fourier transforms
of G and δ we obtain

L̂

∫
R3

∫
R
G̃(~k, ω)e+~k·~xe+iωt dω

2π

dk3

(2π)3
=

∫
R3

∫
R
e+iω(t−t0)e+i~k(~x− ~x0) dω

2π

dk3

(2π)3
, (57)

where G̃ denotes the Fourier transform of G(~x, t). Note that the ∝ e+iωt is not the conventional
way of Fourier transform time in physics, nevertheless it is mathematically equivalent with what
we wrote here since we have normalized the integrals. On the left hand side of (57) we can carry
the operator L̂ inside the integral. Hence we state∫

R3

∫
R
L̂

[
G̃(~k, ω)e+~k·~xe+iωt

]
dω

2π

dk3

(2π)3
=

∫
R3

∫
R
e+iω(t−t0)e+i~k(~x− ~x0) dω

2π

dk3

(2π)3
. (58)

Now we are able to drop the four integrals and the 1
(2π)4 -factors on both sides. Doing that,

and use L̂ ∈
{
Â; Â = linear operator s.t. Â = c1∂t + c2∇2 + c3 and c1, c2, c3 are constants

}
together with the fact that G̃(~k, ω) is not a function of ~x and t, we can pull L̂ over G̃ and write

G̃(~k, ω)L̂
[
e+~k·~xe+iωt

]
= e+iω(t−t0)e+i~k(~x− ~x0). (59)

This can now be written as

G̃(~k, ω) =
e+iω(t−t0)e+i~k(~x− ~x0)

L̂
[
e+~k·~xe+iωt

] =
e+iω(t−t0)e+i~k(~x− ~x0)[

iω(−s(i+ α))−A~k2 −H
]
e+~k·~xe+iωt

. (60)

If we now divide the right hand side by −e+~k·~xe+iωt and assume ~x0 = ~0 and t0 = 0 we find the
solution of G in terms of the Fourier transform, i.e.

G̃(~k, ω) =
−1

isω(i+ α) +A~k2 +H
, (61)

so

G(~x, t) =

∫
R3

∫
R

−1

isω(i+ α) +A~k2 +H
e+~k·~xe+iωt dω

2π

dk3

(2π)3
. (62)

From here we can find an expression for the average 〈ψ∗(~x, t)ψ(~x, t)〉 by using eq. (55). To

calculate this, we write G̃(~k, t) as

G̃(~k, t) =
1

s

1

ω − εk
(63)

by defining εk ≡ αiω + 1
s (Ak2 + H) and k ≡ ||~k||R3 . If we now use equation (55) we get the

expression

〈ψ∗(~x, t)ψ(~x, t)〉 =

〈∫
R3

∫
R
G∗(~x−~x′, t−t′)h+(~x′, t′)dt′d~x′·

∫
R3

∫
R
G(~x− ~x′′, t−t′′)h+(~x′′, t′′)dt′′d~x′′

〉
.

(64)
At this point we have to observe that G∗ and G are not affected by randomness and that we have
8 integrals over 8 different variables. Furthermore we know that the integral over an average is
the same as the average over an integral. Hence we can write

〈ψ∗(~x, t)ψ(~x, t)〉 =

∫
R3

∫
R

∫
R3

∫
R
G∗(~x−~x′, t−t′)G(~x− ~x′′, t−t′′)

〈
h+(~x′, t′)h+(~x′′, t′′)

〉
dt′d~x′dt′′d~x′′.

(65)
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If we recall (29) and plug it in (65), we are left with the following equation for the average:

〈ψ∗(~x, t)ψ(~x, t)〉 =

∫
R3

∫
R

∫
R3

∫
R
G∗(~x−~x′, t−t′)G(~x− ~x′′, t−t′′) 2α

γMs
kBT (~r)δijδ(~x

′−~x′′)δ(t′−t′′)dt′d~x′dt′′d~x′′.

(66)
The δ-functions that has appeared can now be killed by four out of the eight integrals i.e. if we
apply ′′f(~a) =

∫
R f(~b)δ(~b− ~a)d~b holds ∀ functions f : Rn → R on (66), we end up with

〈ψ∗(~x, t)ψ(~x, t)〉 =

∫
R3

∫
R
G∗(~x− ~x′′, t− t′′)G(~x− ~x′′, t− t′′)2αskBTdt′′d~x′′. (67)

Hence,

〈ψ∗(~x, t)ψ(~x, t)〉 = 2αskBT

∫
R3

∫
R
G∗(~x− ~x′′, t− t′′)G(~x− ~x′′, t− t′′)dt′′d~x′′. (68)

Where we used assumption (ii) of section 4.1 and the fact that s = Ms

γ . If we now write the
place-time dependent G’s as a Fourier transform, we get the following expression:

〈ψ∗(~x, t)ψ(~x, t)〉 = 2αskBT

∫
R3

∫
R

[[ ∫
R3

∫
R
G̃(~k, ω)e+i~k·(~x−~x′′)e+iω(t−t′′) dω

2π

dk3

(2π)3

]∗
[ ∫

R3

∫
R
G̃(~k′, ω′)e+i~k′·(~x−~x′′)e+iω′(t−t′′) dω

′

2π

dk′3

(2π)3

]]
dt′′d~x′′. (69)

We can express this equation in terms of ε
(∗)
k and put all the integrals together. This leads to

〈ψ∗(~x, t)ψ(~x, t)〉 = 2αskBT

∫
R3

∫
R

∫
R3

∫
R

∫
R3

∫
R[

1

s

1

ω − ε∗k
e−i

~k·(~x−~x′′)e−iω(t−t′′) 1

s

1

ω′ − εk′
e+i~k′·(~x−~x′′)e+iω′(t−t′′)

]
dω

2π

dk3

(2π)3

dω′

2π

dk′3

(2π)3
dt′′d~x′′. (70)

Taking the 1
s2 -term outside the integral and collecting the powers of e gives

〈ψ∗(~x, t)ψ(~x, t)〉 =
2αkBT

s

∫
R3

∫
R

∫
R3

∫
R

∫
R3

∫
R[

1

ω − ε∗k
1

ω′ − εk′
ei(+

~k′−~k)·(~x−~x′′)ei(+ω
′−ω)(t−t′′)

]
dω

2π

dk3

(2π)3

dω′

2π

dk′3

(2π)3
dt′′d~x′′. (71)
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This equation can be manipulated by using (2π)nδ(~a−~b) =
∫
Rn e

i~κ·(~a−~b) with ~a,~b ∈ Rn for the
integrals over t and ~x. Hence we have:

〈ψ∗(~x, t)ψ(~x, t)〉 =
2αkBT

s
(2π)4

∫
R3

∫
R

∫
R3

∫
R[

1

ω − ε∗k
1

ω′ − εk′
ei(+

~k′−~k)·~xei(+ω
′−ω)tδ(~k − ~k′)δ(ω − ω′)

]
dω

2π

dk3

(2π)3

dω′

2π

dk′3

(2π)3
.

=
2αkBT

s
(2π)4 1

(2π)4

∫
R3

∫
R

[
1

ω − ε∗k
1

ω − εk′

]
dω

2π

dk3

(2π)3
. (72)

If we plug in the definition of ε
(∗)
k , we can calculate the integral over ω by using complex inte-

gration. The calculation of the integral is then given by:

〈ψ∗(~x, t)ψ(~x, t)〉 =
2αkBT

s

∫
R3

∫
R

[
1

ω − ε∗k
1

ω − εk

]
dω

2π

dk3

(2π)3

=
2αkBT

s

∫
R3

∫
R

[
1

[ω − Ak2+H
s(1+iα) ]

1
(1+α2)

[ω − Ak2+H
s(1−iα) ]

]
dω

2π

dk3

(2π)3

=
2αkBT

s

∫
R3

[
si

2iα(Ak2 +H)

]
dk3

(2π)3

=

∫
R3

[
kBT

(Ak2 +H)

]
dk3

(2π)3
. (73)

Where we used Cauchy’s complex integration formula and use the fact that ω 6= Ak2+H
s(1+iα) . After

a change to spherical coordinates and introducing a thermal cutoff Λ, we end up with:

〈ψ∗(~x, t)ψ(~x, t)〉 =
kBT

2π2

∫ Λ

0

k2

(Ak2 +H)
dk. (74)

The thermal cutoff is introduced since we have a finite system.

Let us summarize what we have done. We solved (54) by employing a technique referred to as
Green’s functions. After using Fourier transformations and δ-functions we obtained an equation
for 〈ψ∗(~x, t)ψ(~x, t)〉, which characterizes equilibrium thermal fluctuations of the ferromagnetic
spin density and is given by (74).

4.2 Boundary Conditions

In the previous section we solved a linearized E.O.M. for ψ(~x, t) ≡ δn(~x, t), which is derived in
section 4.1.2 and given by eq. (54). No we start, again, with this expression and will focus on
the deterministic part i.e. the part of this system that we can control. From there we again find
an expression for the Fourier transform of ψ. After that we will take a look at the boundaries
of the ferromagnet and from there we derive an equation to solve for the current trough the
ferromagnet.
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Recall eq.(54). Since we are interested in the deterministic properties we neglect h+. Hence
the operator L̂ becomes

L̂ =

[
− s(i+ α)

∂̂

∂t
+A∇̂2 −H

]
. (75)

So the E.O.M considered is given by

L̂ψ(~x, t) = −s(i+ α)
∂̂

∂t
+A∇̂2 −Hψ(~x, t) = 0. (76)

Before we can use this for the boundaries we have to solve eq. (76). Since this expression is easier
than (54), we don’t have to solve it by the use of Green’s functions. Instead we will perform a
Fourier transformation and express the solution in terms of the Fourier variables.

So, Fouriertransforming ψ(~x, t) (= ψ(x, y, z, t)) in the variables y,z and t gives

ψ(x, y, z, t) =

∫
R

∫
R

∫
R
ψ(x, k2, k3, ω)eik2y+ik3z−iωtdωdk2dk3. (77)

This expression can now be plugged in eq. (76). If we use the fact that the operator L̂ can be
carried into the integral and that it treats ψ(x, k2, k3, ω) as a constant, except for the ∂2

x-part we
end up with

L̂ψ(~x, t) =

∫
R

∫
R

∫
R

[
iωs(i+ α)ψ̃eΓ + eΓA∂2

xψ̃ −A(k2
2 + k2

3)ψ̃eΓ −Hψ̃eΓ
]
dωdk2dk3 = 0. (78)

Where we defined ψ̃ ≡ ψ(x, k2, k3, ω) and eΓ ≡ eik2y+ik3z−iωt to make the expression simpler.
Since we have a zero on the right side of eq.(78), we can drop the integrals, i.e., we can state
that the integrand is zero. Doing that and dropping powers of e leads to

iωs(i+ α)ψ̃ +A∂2
xψ̃ −A(k2

2 + k2
3)ψ̃ −Hψ̃ = 0. (79)

This is an ordinary differential equation which can be solved by assuming ψ(x, k2, k3, ω) ∝ ceiλx
for some parameter λ and constant c. Note that λ = λ(k2, k3, ω). If we plug this assumption in
eq.79 we find λ equals

λ1,2(k2, kz, ω) = ±
√
iωs

A
(i+ α)− (K2

2 + k2
3)− H

A
. (80)

Since eq. (78) is a second order homogeneous differential equation, we can write the solution ψ
in terms of λ i.e. we have the solution given by

ψ = aeiλ1x + beiλ2x. (81)

More explicitly we can write

ψ(x, k2, k3, ω) = ae+
√

iωs
A (i+α)−(K2

2+k23)−H
A + be−

√
iωs
A (i+α)−(K2

2+k23)−H
A . (82)

With this expression for ψ we can calculate the current. Therefore, recall (34), which defines the

spin current.To use this formula we need to write ~Js,i in terms of ψ and linearize it by using eq.
(37), i.e.,

~Js,i ≈ −A

 δnx
δny

1− δn2
x+δn2

y

2

×∂i
 δnx

δny

1− δn2
x+δn2

y

2

 = −A
(
δnx∂iδny−δny∂iδnx

)
ẑ = A

i

2

(
ψ∂iψ

∗−ψ∗∂iψ
)
ẑ,

(83)
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where we thrown away δ2 and higher.

We will leave this here for a moment and take a look at the boundaries. As [4] suggests we
can distinguish the spin current entering and leaving the reservoir in terms of the spin accumu-
lation. As before we consider an ferromagnetic insulator sandwiched between two metals. On
the left side we have an metal reservoir L and on the right an reservoir R. The left one is a poor
spin sink while the right reservoir is an excellent spin sink. We will neglect the imaginary parts
of th spin mixing conductance.

~JsL = <g↑↓L ~n×
(~̃µs × ~n)

4π
(84)

and

~JsR = <g↑↓R
~

4π
~Ω, (85)

where gL,R is the spincurrent from the left/right and ~Ω = ~n × ∂t~n[4] denotes the procession
frequentie. In the theory of linearisation, i.e., plugging eq. (38) in eq.(84) and eq.(85), we have

~JsL =
1

4π
gL~n×

[
(µẑ − ~~n× ∂t~n)× ~n

]
≈ 1

4π
gL

µ
2 (ψ + ψ∗) + i~

2 (∂tψ
∗ − ∂tψ)

iµ
2 (ψ − ψ∗)− ~

2 (∂tψ + ∂tψ
∗)

0

 , (86)

and

~JsR = gR
~Ω

4π
(~n× ~∂t~n) ≈ gR

~Ω

4π

i(∂tψ − ∂tψ∗)∂tψ + ∂tψ
∗

0

 . (87)

Here we defined gL,R ≡ <gL,R. Also we, again, used (53). Since these formulas for the spin
currents are at zero temperature we have to modify them. To do that we add a term which
allows some noise due to the ferromagnetic bulk. From there we can calculate the average
current in terms of the above boundary conditions. In tradition of section 4.1 we denote the
linearised quantummechanical randomness-term as

~n× ~h′ ≈ −ẑ × ~h′ =

 h′y
−h′x

0

 . (88)

If we add this to our linearised expressions for the current entering resp. leaving the resevoir we
end up with:

~JsL ≈
1

4π
gL

µ
2 (ψ + ψ∗) + i~

2 (∂tψ
∗ − ∂tψ) + h′y

iµ
2 (ψ − ψ∗)− ~

2 (∂tψ + ∂tψ
∗)− h′x

0

 (89)

and

~JsR ≈ gR
~Ω

4π

 i
2 (∂tψ − ∂tψ∗) + h′y
1
2 (∂tψ + ∂tψ

∗)− h′x
0

 . (90)

From here the average current can be calculated in terms of 〈h′〉 and ψ. These terms can be
determined by using (29). To do that we have to solve

〈 ~Js,i〉 = 〈 ~JsL〉 (91)
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and
〈 ~Js,i〉 = 〈 ~JsR〉. (92)

After doing that we could plug in our result for ψ (eq. (82) and use some Fouriertransformations.

Let’s start with eq (91). If we make (89) equal to (83) we find

〈 ~Js,i〉 = 〈 ~JsL〉 (93)

i

2

 0
0

〈ψ∂iψ∗ − ψ∗∂iψ〉

 =
1

4π
gL

〈µ2 (ψ + ψ∗) + i~
2 (∂tψ

∗ − ∂tψ) + h′y〉
〈 iµ2 (ψ − ψ∗)− ~

2 (∂tψ + ∂tψ
∗)− h′x〉

0

 . (94)

No we can multiply the second row on both sides wit i and substract the second from the first.
This leads to {

0 = 1
4π gL〈µψ + i~∂tψ∗ + h′y + ih′x〉
〈ψ∂iψ∗ − ψ∗∂iψ〉 = 0

. (95)

For the current leaving the resovoir, i.e. the current on the right, we can peform the same
calculation. Doing that we end up with{

0 = gR
~Ω
4π 〈∂tψ − h

′
x + ih′y〉

〈ψ∂iψ∗ − ψ∗∂iψ〉 = 0
. (96)

Note that we multiplied the first row with i instead of the second. In both equations (95) and
(96) we can sum the two rows that are left. This leads to the following two equations:{

Leftside : 〈 1
4π gL(µψ + i~∂tψ∗ + h′y + ih′x)− ψ∂iψ∗ + ψ∗∂iψ〉 = 0

Rightside : 〈gR ~Ω
4π (∂tψ − h′x + ih′y)− ψ∂iψ∗ + ψ∗∂iψ〉 = 0

(97)

We will end our calculation here and make some final remarks about the general solution of this
problem. First we investegated the magnetic motion inside the ferromagnet wich we can control
given by (76) i.e. the motion inside the bulk of the ferromagnet in a deterministic manner. We
solved this equation, with solution given by (82). From there we set some boundariesconditions
to derive an expression (eq. (97) for ψ at the boundaries.

Now, we can formulate the general solution. Call ψ from the deterministic part, ψi and the
ψ at the boundaries, i.e. ψ satifying eq. (97) we will call ψb. then the general solution for ψ is
given by:

ψ(~x, t) = ψi(~x, t) + ψb(~x, t). (98)

From reference [3] we now can calculate the spincurrent trough the ferromagnet well below the
currietemperature. This is given by

js = A=〈ψ∂xψ〉 = A=〈(ψi(~x, t) + ψb(~x, t))∂x(ψi(~x, t) + ψb(~x, t))〉. (99)

Note that this current is given in the x-direction of the system.

20



5 Conclusions

As we have seen, we approached the dynamics inside the ferromagnet classically and quantum
mechanically. In the classical case we used the classical Hamiltonian (1) to calculate the time

evolution of the spin operator ~̂S for small oscillations around the z-direction of the spin using
the quantum mechanical Ehrenfest’s theorem (3). From this time evolution we were able to
calculate the frequency the oscillations ω. From this we calculated the ground state of the vibra-
tion which had an energy ~ω > 0. For the quantum mechanical treatment we defined the spin
raising-/lowering-operators which we plugged in (1). From there we again take a look at small
oscillations from which we obtained that the lowest energy, which given by E0 = −J~2S2Nz/2
and where the dispersion is given by ω~k = SJ~z(1− cos(kxa). For further research it is possible
to use the same methods but then take a look at the boundaries of the system.

Furthermore, we had seen that by using the equations of motion (20) suggested by [2]. After
making an approach of small oscillations of ~n and ~m around the equilibrium of the AFM we
have calculated the dispersion relation and the oscillating vectors by plugging the approximated
effective fields (18),(19) in to the free energy (13). As we see in the equations (25) and (26) the
oscillations around the equilibrium of the AFM causes a wave-effect of the spin down- and spin
up-lattice. A suggestion for further research is to calculate the corresponding energy levels.

Finally we investigated a ferromagnetic insulator. First we looked at the bulk of the ferro-
magnet and derived an equation for 〈ψ∗ψ〉, which is a measure for the average deviation of the
vector ~n. We did this by using Landau-Lifshitz-Gilbert theory suggested by [3]. This result is
given by (74). From there we looked at the same system with boundaries. From that we derived
the general expression of the spin current through a ferromagnet given by (98) which can be
solved.
An topic for further research will be to actually solve (96). That can be done by again us-
ing Green’s functions and Fouriertransforming techniques. Furthermore the ferromagnet can be
replaced by an AFM and one can try to derive the spincurrent in that case.
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