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Abstract

When a magnetic field is applied to a ferromagnetic ring with easy-plane
anisotropy, steady states with circulating spin currents occur. In a similar way,
when a magnetic field is applied to a superconducting ring, circulating charge
currents will appear. These currents are described by very similar hydrodynamic
expressions. When a magnetic field is applied to a superconducting ferromagnet
these hydrodynamic equations become coupled, which leads to different steady
states.
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1 Introduction

A relatively new and lively topic in physics concerns the way spin is transported in
materials. In general, the study of these spins and often associated charge is called
spintronics. So-called spin currents may have interesting properties, especially when
they would be superfluid, which would mean that they would travel dissipationless
through the material. These kinds of systems are interesting in general. Superconduc-
tivity, another phenomenon under the branch of superfluidity, has also drawn quite
some attention the past century. On both subjects has been done extensive research,
but what happens when a material has properties of two superfluid systems, is still
not entirely clear. In this thesis we try to get a little closer to an answer to this
uncertainty. We will start by working out the two systems separately. Guided by the
article ”Spin currents and spin superfluidity” by E. B. Sonin published in 2008 [1] we
find states for spin currents in Section 2. Then, in Section 3, we derive steady states
for charge currents guided by the lecture notes on superconductivity by D. Arovas
and C. Wu updated last in 2015 [2]. We will find similar hydrodynamic equations of
motion. In Section 4 we finally look at a ferromagnetic superconductor in which the
equations of motion become coupled. This leads to differences in the steady states of
both the spin and charge currents.

2 Magnetization Dynamics and Spin Superfluidity
in Magnetic Insulators

In this section we will derive steady states for spin currents in magnetic insulators. A
useful equation in this situation is the Landau-Lifshitz equation, which we will derive
first. Then, we will look at what the magnetization in an easy-plane ferromagnet
does, when a magnetic field is applied to it. In doing so we keep the exchange energy
minimized. Then, finally, with the obtained information we will be able to find steady
states.

2.1 Landau-Lifshitz Equation

In order to get an idea of how the magnetization dynamics of a certain material are
described, we derive the Landau-Lifshitz equation. This equation gives a good and
accessible description of the behavior of spin particles. In order to find this equation,
we first look at a simple model of a single spin in a magnetic field. The Hamiltonian
in such a case is written as follows.

Ĥ[Ŝ] = −∆B · Ŝ. (1)

In this equation B represents the magnetic field, Ŝ is the spin operator and ∆ is a
parameter depending on the system. Let us now look at the expectation value of the
spin operator, and in particular its derivative to the time t:

d

dt
〈Ŝ〉 =

d

dt
〈ψ(t)|Ŝ|ψ(t)〉, (2)
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with ψ(t) being the wave function of the spin particle. If we now use the product
rule for differentiation, we find

d

dt
(〈ψ(t)|)Ŝ|ψ(t)〉+ 〈ψ(t)| d

dt
Ŝ|ψ(t)〉. (3)

Then, by applying the Schrödinger equation (ih̄ d
dt |ψ(t)〉 = Ĥ|ψ(t)〉) twice, we obtain:

1

−ih̄
〈ψ(t)|ĤŜ|ψ(t)〉+ 〈ψ(t)|Ŝ 1

ih̄
Ĥ|ψ(t)〉 =

1

ih̄
〈ψ(t)|[Ŝ, Ĥ]|ψ(t)〉, (4)

with [Ŝ, Ĥ] being the commutator between the Hamiltonian and the spin operator.
Plugging in our first definition of the Hamiltonian, using the spin commutation rela-
tions and Einstein’s summation notation we find the following equalities:

[Ŝα, Ĥ] = [Ŝα,−∆ŜβBβ ] = −∆Bβ [Ŝα, Ŝβ ] = −ih̄∆εαβγBβŜγ , (5)

with εαβγ being the Levi-Civita tensor. Using the definitions of this tensor we find

−ih̄∆
d

dt
〈Ŝ〉 = 〈ψ(t)|

BzŜy −ByŜzBxŜz −BzŜx
ByŜx −BxŜy

 |ψ(t)〉. (6)

This looks exactly like a crossproduct between 〈Ŝ〉 and B with only a prefactor of a
difference. So we get the following result.

d

dt
〈Ŝ〉 = ∆〈Ŝ〉 ×B. (7)

This equation implies that the spin vector could be revolving around the magnetic
field vector in such a way that the angle between both vectors is kept constant.
Furthermore, to rewrite this to a little more usable form, we see that the ∆ and B
can be replaced, as together they are the negative derivative of the Hamiltonian to
the expectation value of the spin.

d

dt
〈Ŝ〉 =

dĤ

d〈Ŝ〉
× 〈Ŝ〉. (8)

Then, we assume that the total magnetization M is simply related by a constant
factor γ of the expectation value of the spin operator: M = γ〈Ŝ〉. And we find the
Landau-Lifshitz equation, with the effective field Heff = − δH

δM :

dM

dt
= γHeff ×M . (9)

2.2 Magnetization in an Easy-plane Ferromagnet

Our next goal is to find how much the magnetization vector is tilted from the magnetic
field vector in an easy-plane ferromagnet. An additional question is, whether there is
a possibility of fully homogenuously magnetizing the ferromagnet in the B-direction.
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And if so, at what conditions does this occur. To get an answer to these questions,
we look at a ferromagnet with magnetization M in a homogenuous magnetic field B
in the z-direction. We can then write the free energy in the following way.

F (M) =

∫
dx

(
−J

2
M · ∇2M −B ·M +

K

2
M2

)
, (10)

with J being the exchange constant and K is the parameter determining anisotrophy.
Then, we assume that the size of the magnetization vector is constant. It depends

on the amount of spin particles per volume, not on the strength of the magnetic field.
Using spherical coordinates we find

M = MS

sin θ cosφ
sin θ sinφ

cos θ

 , (11)

with MS being the size of the magnetization.

It is now possible to find the magnetization at which the exchange energy is at a
minimum. In order to do this, we set the derivative of the free energy to zero,

δF

δM
= −J∇2M −B +KM = 0. (12)

If we take into account our first assumption B = Bẑ, K will only be applied to
Mz. Next to that, every change in the magnetization would contribute to a larger
exchange energy, and therefore ∇2M should equal zero. The equation is solved by

Mz =
B

K
, for B < MSK

Mz = MS , for B ≥MSK,
(13)

with the restriction that Mz does not exceed MS , i.e. |Mz| is only smaller than MS for
a |B| smaller than MSK. The Landau-Lifshitz equation (Equation 7) suggested that
the magnetization would be revolving around B (in this case the z-axis), because the
time-derivative of the spin vector is always perpendicular to the spin vector itself. So
it is a good thing that our magnetization in the z-direction turns out to be constant.
We proceed to fill in our new discovery in Equation 11.

θ = cos−1

(
B

MSK

)
, (14)

and thus

sin θ =

√
1−

(
B

MSK

)2

. (15)

If we now want a different way to calculate the level of ”tiltiness” of the magnetization

to magnetic field other than θ, we could calculate
√
M2
x +M2

y , which is of course just
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the component of the magnetization in the xy-plane.

√
M2
x +M2

y = MS

√√√√(1−
(

B

MSK

)2
)(

cos2 φ+ sin2 φ
)

= MS

√
1−

(
B

MSK

)2

.

(16)
This would mean that if B were to exceed MSK, then the entire ferromagnet would
be homogenuously magnetized in the z-direction. This is also shown in Figure 1. If
not, the situation described earlier, with the magnetization revolving the z-direction,
would be applied. However, in this case, at a minimum of energy exchange, the
magnetization would stand still at a certain angle from the z-axis.

MSK-MSK
B

MS

Mxy

Figure 1: The component of the magnetization in the xy-plane (Mxy) plotted as a
function of the magnetic field (B).

2.3 Spin Currents

We now have enough information to try to find spin currents in the material. In this
case we are looking for stationary currents, that do not change in time (yet). We
still take the same reasonable assumption that the size of the magnetization MS is
constant. Then, we introduce a new way of describing the magnitude in which the
magnetization is tilted from the z-direction, that can be found in the next equation.
At last, we take B to be not strong enough to fully magnetize the ferromagnet, so
that there actually is an angle between these vectors.

M(x, t) = MS


√

2n
s cosφ√
2n
s sinφ√
1− 2n

s

 . (17)

In this equation n = n(x, t) a measure of how much the magnetization is projected
to the xy-plane per volume (it will often be considered constant) and s is the spin

density equaling S
a3 , with a being the lattice size. Note that

√
2n
s is chosen in such a

way that n is not allowed to exceed half the spin density, as then Mz would become
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imaginary and Mx and My would possibly become larger than MS . In Figure 2 the
newly defined vector is shown.

M

2n

s

ϕ

Figure 2: The Magnetization M for magnetic fields B smaller than MSK.

We still take the free energy to be the same as in the previous section. Then, we
are going to take the effective field Heff from the Landau-Lifshitz equation to be
the negative variational derivative of the free energy − δF

δM . We have calculated this
earlier on in the previous section. Now applying that our magnetic field is just in the
z-direction, we find

Heff = − δF

δM
=

 J∇2Mx

J∇2My

J∇2Mz +B −KMz

 . (18)

We can now plug this into the Landau-Lifshitz equation and we find three equations.

∂M

∂t
= γ

(J∇2My)Mz − (J∇2Mz +B −KMz)My

(J∇2Mz +B −KMz)Mx − (J∇2Mx)Mz

(J∇2Mx)My − (J∇2My)Mx

 . (19)

We will now try to solve a combination of the x- and the y-equation. To keep every-
thing a little accessible the following functions will be defined.

n1(n) =

√
2n

s
, (20)
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n2(n) =

√
1− 2n

s
. (21)

We begin with working out some useful identities, which we will be using. They are
also used in the Appendix Section 6.1.

∇2Mx = MS∇2(n1 cosφ) =

MS(cosφ∇2n1 − 2 sinφ(∇n1) · (∇φ)− n1 cosφ(∇φ)2 − n1 sinφ∇2φ). (22)

And similarly for My:

∇2My = MS∇2(n1 sinφ) =

MS(sinφ∇2n1 + 2 cosφ(∇n1) · (∇φ)− n1 sinφ(∇φ)2 + n1 cosφ∇2φ). (23)

These expressions will at this point speed up the process of writing out the x- and
y-equations. First, the x-equation:

1

γ

∂Mx

∂t
= (J∇2My)Mz − (J∇2Mz +B −KMz)My. (24)

Using Equation 23 we find that the right-hand side of this equation equals

M2
SJn2(sinφ∇2n1 + 2 cosφ(∇n1) · (∇φ)− n1 sinφ(∇φ)2 + n1 cosφ∇2φ)

−M2
SJn1 sinφ∇2n2 −BMSn1 sinφ+KM2

Sn1n2 sinφ, (25)

while the left-hand side becomes

1

γ

∂

∂t
(MSn1 cosφ) =

MS

γ
(cosφ

∂n1

∂t
− n1 sinφ

∂φ

∂t
). (26)

Then, we go through a similar process for the y-equation:

1

γ

∂My

∂t
= (J∇2Mz +B −KMz)Mx − (J∇2Mx)Mz. (27)

Now we can profit from using Equation 22 and we find the following for the right-hand
side.

M2
SJn1 cosφ∇2n2 +BMSn1 cosφ−KM2

Sn1n2 cosφ

−M2
SJn2(cosφ∇2n1 − 2 sinφ(∇n1) · (∇φ)− n1 cosφ(∇φ)2 − n1 sinφ∇2φ), (28)

and the left-hand side:

1

γ

∂My

∂t
=
MS

γ
(sinφ

∂n1

∂t
+ n1 cosφ

∂φ

∂t
). (29)

If we now use the simple identity sin2 φ + cos2 φ = 1, we add up these equations in
such a way that only the time-derivative of φ remains. We combine these equations
with the following factors.

cosφ× (y − equation)− sinφ× (x− equation). (30)
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So now, all we have left on the left-side of our total equation is:

MS

γ
n1
∂φ

∂t
. (31)

For the right-hand side, we are lucky that all terms become either shorter or cancel
out. So what is left is less complicated than you might think at first.

M2
SJ(n1∇2n2 − n2∇2n1 + n1n2(∇φ)2) +BMSn1 −KM2

Sn1n2. (32)

Now finally solving this for the time-derivative of φ, we find:

∂φ

∂t
= γMSJ(∇2n2 −

n2

n1
∇2n1 + n2(∇φ)2) + γ(B −KMSn2). (33)

If we assume n is constant, the ∇2n1 and ∇2n2 fall out. The equation reduces to

∂φ

∂t
= γMSJ

√
1− 2n

s
(∇φ)2 + γB − γKMS

√
1− 2n

s
. (34)

The result has a part depending on ∇φ, and a part that does not. Note that this
constant part cancels out at a minimum in exchange energy (Mz = B

K ).

In a similar way, with different sine and cosine factors we can find an expression for
the time-derivative of n1 and ultimately for n. Our new combination is the following
one.

cosφ× (x− equation) + sinφ× (y − equation). (35)

In the same way as before, we now find a left-hand side that does not contain the
time-derivative of, in this case, φ anymore.

MS

γ

∂n1

∂t
. (36)

The right-hand side again becomes a lot less complicated than before the equations
were combined.

M2
SJ(2n2(∇n1) · (∇φ) + n1n2∇2φ). (37)

Now, we combine the two again, and find the following equation.

∂n1

∂t
= γMSJ(2n2(∇n1) · (∇φ) + n1n2∇2φ). (38)

Of course, we would rather have an equation just for n instead of one for n1, which
we defined solely for simplicity. So to obtain such an equation we have to derive the
n1’s using the chain rule. Which gives us:

1√
2ns

∂n

∂t
= 2γMSJ

√
1− 2n

s
(

1√
2ns

(∇n) · (∇φ) +
1

2

√
2n

s
∇2φ). (39)

Which ultimately gives us the following expression for the time-derivative of n.

∂n

∂t
= 2γMSJ

√
1− 2n

s
((∇n) · (∇φ) + n∇2φ). (40)
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This expression is valid for nonconstant n, since we did not assume that ∇n was zero
in its derivation. Furthermore, unlike the equation of motion for φ, this equation
does not have a constant part. This enables us to write it in the form of a divergence
of a current j.

∂n

∂t
= −∇ · j = −∇ · (−2γMSJ

√
1− 2n

s
n∇φ). (41)

In the Appendix (section 6.1) we discuss whether these two quantities are ea-
chother’s conjugate momentum.

Now consider a ferromagnetic ring (length L) in the xy-plane with a magnetic field
going through it in the z-direction. We can now find solutions for the case in which
the inclination of the magnetization is constant. This would mean that Equation 40
should equal zero. Because we now consider a ring, cylindrical coordinates will be
used, with α the angle around the z-axis. Also, the equation becomes one-dimensional.
We get

−2γMSJ

√
1− 2n

s
n

2π

L

∂φ

∂α
= constant. (42)

Still assuming that n is constant this means that the following must be true.

φ = aα+ φ0, (43)

with a and φ0 being constant. Now applying our periodic boundary conditions to
Mx we find:

cos(aα+ φ0) = cos(a(α+ 2π) + φ0), (44)

which leads to
aα = a(α+ 2π) + 2kπ, (45)

with k being an integer. This leaves the following expression for a.

a = k. (46)

Now, inserting this result in our magnetization M , we find a stationary spin current.

M(α) = MS


√

2n
s cos(kα+ φ0)√
2n
s sin(kα+ φ0)√

1− 2n
s

 . (47)

Figure 3, 4 and 5 show examples of stationary solutions.
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Figure 3: The ferromagnetic ring of length L, with the magnetic field (red arrow),
and the magnetization (green arrows), for k = 1 and φ0 = 0.

Figure 4: The ferromagnetic ring of length L, with the magnetic field (red arrow),
and the magnetization (green arrows), for k = 3 and φ0 = 0.

11



Figure 5: The ferromagnetic ring of length L, with the magnetic field (red arrow),
and the magnetization (green arrows), for k = 1 and φ0 = π.

After having found these stationary currents, we are now also able to find some
time-dependent currents, by filling in our newly found ∂φ

∂α in Equation 34 and keeping
things one-dimensional. We find this ugly expression

∂φ

∂t
= γ

(
MS

√
1− 2n

s

(
4k2π2

L2
J −K

)
+B

)
. (48)

As you can see, this does not depend on t nor φ, so the integration is simple. Having
all the information we need, we can write down an equation for φ(x, t).

φ(α, t) = kα+ γ

(
MS

√
1− 2n

s

(
4k2π2

L2
J −K

)
+B

)
t+ φ0. (49)

3 Charge Currents in Superconductors

For now, we leave the insulators behind us and we move on to conducting materials,
to be more specific: superconductors. We attempt to find equations of quantities
that play a role in superconductors which are similar to the expressions we already
obtained for the magnetic insulators. To do so, we operate in a way that is comparable
to the way we used in the previous section. Therefore, we first need a new expression
for the free energy. We find

F (Ψ) =

∫
dx

(
Ψ∗
(
− h̄

2∇2

2m

)
Ψ + g|Ψ|4 − µ|Ψ|2

)
, (50)

with the total wave function Ψ, Ψ∗ the complex conjugate of Ψ, g an interaction
parameter, and µ the chemical potential. In this case the total wave function Ψ =√
nψ, with ψ being the wave function of a single electron, and n being the electron

density. Finally m is twice the electron mass
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We also want a magnetic field in our system, and therefore we need to introduce
a vector potential A, which obeys B = ∇×A. Then, in order to implement this in
our free energy, we need to make the following adjustment.

−ih̄∇ → −ih̄∇+
q

c
A. (51)

Applying this, we get our new free energy,

F (Ψ) =

∫
dx

(
Ψ∗ 1

2m

(
−h̄2∇2Ψ− ih̄q

c
A · ∇Ψ

− ih̄q
c
∇ · (ΨA) +

q2

c2
A2Ψ

)
+ g|Ψ|4 − µ|Ψ|2

)
. (52)

If we want to find equations of motion in the same form as we had earlier, we need
to consider the Schrödinger equation,

ih̄
∂Ψ

∂t
= HΨ =

δF

δΨ∗ . (53)

In order to see why the δF
δΨ∗ equals the right-hand side of the equation, we have to

calculate it. Fortunately, this is not too hard, as the difficult part of the free energy
is linearly related to Ψ∗. We get

δF

δΨ∗ =
1

2m

(
−h̄2∇2Ψ− ih̄q

c
A · ∇Ψ− ih̄q

c
∇ · (ΨA) +

q2

c2
A2Ψ

)
+ 2g|Ψ|2Ψ− µΨ.

(54)
We see that this does indeed look like some Hamiltonian acting on Ψ. To make sure
we get two equations for quantities that are comparable to the quantities we used
before, we rewrite Ψ using

Ψ =
√
neiθ, (55)

Ψ∗ =
√
ne−iθ. (56)

Before we work out each of the terms of Equation 53, we assume n is constant over
space. This speeds up the process a lot, and we did this too in our earlier calculations.
Then we work out each of the terms separately at first:

−h̄2∇2Ψ =
√
n
(
−eiθ(∇θ)2 + ieiθ∇2θ = (i∇2θ − (∇θ)2

)
Ψ, (57)

− ih̄q
c

A · ∇Ψ =

(
h̄q

c
A · ∇θ

)
Ψ, (58)

− ih̄q
c
∇ · (ΨA) =

(
h̄q

c
A · ∇θ − ih̄q

c
∇ ·A

)
Ψ, (59)

2g|Ψ|2Ψ = 2gnΨ, (60)

and finally the left-hand side,

ih̄
∂Ψ

∂t
= ih̄

(
1

2
√
n

∂n

∂t
eiθ + i

∂θ

∂t

√
neiθ

)
=

(
ih̄

2n

∂n

∂t
− h̄∂θ

∂t

)
Ψ. (61)
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As we all can see these equations are all conveniently linear in Ψ. This allows us to
devide both sides by Ψ and we obtain this result

ih̄

2n

∂n

∂t
− h̄∂θ

∂t
=

h̄2

2m
(∇θ)2 − ih̄2

2m
∇2θ

+
h̄q

mc
A · ∇θ − ih̄q

2mc
∇ ·A +

q2

2mc2
A2 + 2gn− µ. (62)

Since h̄, n, θ, m, A, q, c, µ, and g are all strictly real, this equation can be split up
into two parts: a part for ∂n

∂t and a part for ∂θ
∂t . Sorting out the i’s and deviding by

some factors we find
∂n

∂t
= − h̄n

m
∇ · (∇θ +

q

h̄c
A), (63)

and
∂θ

∂t
= − h̄

2m
(∇θ +

q

h̄c
A)2 +

µ− 2gn

h̄
. (64)

Just like before, our n equation depends on a divergence of a certain current,

j =
h̄n

m

(
∇θ +

q

h̄c
A
)
, (65)

and our θ equation (resembling the φ from the spin currents) depends on the length
of a vector and some constant parts. It is also remarkable that the quantity ∇θ+ q

h̄cA
can be found in both equations, taking the role of ∇φ in Equation 40 and 34.

Figure 6: A superconducting ring (length L) with a magnetic field B through it and
angle α around the z-axis.

Now we have found our equations of motion we return to our ring, but this time
the ring is made out of a superconducting material instead of a magnetic insulator.
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The length of our ring is again L and we still position it in the xy-plane having the
z-axis at its center. We also apply a magnetic field of size B in the z-direction. Lastly,
there is one additional difficulty that we need to take care of. In our non-conducting
ring we did not need to take into account at what direction our current was going so
we could get away with simple Cartesian coordinates. Due to our vector potential,
we now do need to take into account the direction of the current and therefore it
is easier to operate using cylindrical coordinates. This means the n and θ are now
dependent on only one dimension, in this case α, the angle around the z-axis. Having
said that, we can start finding our currents. We are interested in the case where n is
constant again, like before.

∂n

∂t
= − h̄n

m
∇ · (∇θ +

q

h̄c
A) = 0. (66)

In this equation our ∇ changes into 1
r
∂
∂φ , which is the φ component of ∇ in a cylindri-

cal coordinate system. We only need an expression for our vector potential in order
to proceed. We find one in the Appendix (Section 6.2): Equation 133, which in one
dimension is

Aα =
1

2
Br, (67)

with r = L
2π the radius of our ring. We are now ready to solve the equation.

2π

L

∂θ

∂α
+

q

4πh̄c
BL = constant, (68)

which means that θ is linear in α and it should have the following form.

θ(α, t) = aα+ θ(t) + θ0. (69)

If we now apply our periodic boundary condition,

√
neiθ(α+2π) =

√
neiθ(α), (70)

we find a to be

a =
∂θ

∂α
= k, (71)

with k being an integer and the amount of cycles in one ring. Now we know this we
can also find the time-dependence of θ by plugging in our k into Equation 64. We
find the result,

∂θ

∂t
= − h̄

2m

(
2πk

L
+

q

4πh̄c
BL

)2

+
µ− 2gn

h̄
, (72)

which can be written out, but it would only be getting uglier. Our full expression for
θ is then

θ(α, t) = kα+

(
− h̄

2m

(
2πk

L
+

q

4πh̄c
BL

)2

+
µ− 2gn

h̄

)
t+ θ0. (73)
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Furthermore, we find that our periodic boundary conditions quantize the current that
flows through the ring. This result is obtained by filling in our gradient and vector
potential in Equation 65.

j =
h̄n

m

(
2πk

L
+
qBL

4πh̄c

)
. (74)

Now we have found these solutions, we can also find the accompanying energy den-

sities by filling in our discoveries into the equation of the free energy (Equation 52).
First, let us handle the terms separately.

−h̄2∇2Ψ =
4π2h̄2k2

L2
Ψ, (75)

− ih̄q
c

A · ∇Ψ =
kh̄qB

2c
Ψ, (76)

and

− ih̄q
c
∇ · (ΨA) =

kh̄qB

2c
Ψ. (77)

Filling these in leads to the following energy density ε.

ε(k) = n

(
2π2h̄2k2

mL2
+
h̄qBk

2mc
+
q2B2

8mc2
+ gn− µ

)
. (78)

-
q B L2

8π2 ħ c

k

ϵ

Figure 7: The energy density (ε) plotted as a function of k, the amount of cycles per
ring.

In Figure 7 we see this energy density plotted. Interesting is that for B 6= 0 the
most stable state is not found at k = 0. The minimum energy density is found at

k = − qBL2

8π2h̄c , and we discover that this belongs to no current at all, when we fill this
result into our equation for j. In a case, such as the one shown in Figure 7, there is no
value of k exactly in the equilibrium. This would mean that the system would tend
to a superposition of two states; one with a small current clockwise and one with a
small current anticlockwise.
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4 Spin Superfluidity in Superconductors

Now we have discussed the two superfluid systems separately, we will now try to
merge them together. First we compare the two systems and we realize how similar
the two are. Then, we will couple the equations of motion, leading to modified states.

4.1 Comparison between Charge and Spin Currents

In the previous sections we have found equations of motion for several quantities.
We can not deny that these equations possess some similarities. Our goal in this
section is to develop a universal model that applies to both of the systems. The
following equations will be generalised. Some indices are added to avoid confusion.

Also, MS

√
1− 2n

s is written back to Mz for simplicity. First the density equations:

∂nS
∂t

= −∇ · (−2γMzJnS∇φS) , (79)

∂nC
∂t

= −∇ ·
(
h̄

m
nC

(
∇θC +

q

h̄c
A
))

. (80)

Secondly, the phase/angle equations:

∂φS
∂t

= γMzJ(∇φS)2 + γB − γKMz, (81)

∂θC
∂t

= − h̄

2m

(
∇θC +

q

h̄c
A
)2

+
µ− 2gnC

h̄
. (82)

To generate this model, it is useful to make a translation table, in which we define
English words to be mathimatical expressions that have the same function in both
equations for charge and spin currents.

Spin Charge
density nS nC
phase φS −θC
gradient ∇φS −∇θC − q

h̄cA
scale γ 1

h̄

stiffness 2MzJ
h̄2

m
interaction KMz −2gnC
linear B −µ

This table needs some explanation.

• The ”density” is the easiest term. In both density equations we see it is found
in the derivative and as a factor inside the divergence. It is also found in the
phase equation of the charge currents, but since it is not in the one for spin
currents, we ignore it for now.

• For the ”phase” term, we take our angle φ to resemble the negative phase θ
(something we also did in Appendix Section 6.1).
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• The ”gradient” is the only vector in our equations and it is represented in
exactly the same way in both systems. Because our phase resembles a negative
angle, we again accompany our charge gradient with a minus sign.

• We notice that all of our spin equation terms have a factor γ and nearly all of
our charge equation terms have a factor 1

h̄ . In the one term we do not find this
immediately we force it out of our stiffness. We call this factor the ”scale”.

• If the factor in front of our gradient is large, then small changes in our phase
over space result in relatively big changes in the the density over time. This
factor we call the ”stiffness”.

• The ”interaction” term comes from the part in our free energy that took care
of the interaction of respectively the magnetization and the electron density. In
it, we include the nC we could not account for in the first item of this list.

• The ”linear” term comes from the part of our free energy that depended linearly
on respectively the magnetization and the electron density.

We added some minus signs to make sure that everything fits right. We get the
following universal models.

∂

∂t
density = −∇ · (−scale× stiffness× density × gradient) , (83)

∂

∂t
phase =

1

2
× scale× stiffness×gradient2 +scale× linear− scale× interaction. (84)

4.2 Coupling the Equations

Until now, we have only discussed effects separately, but ultimately we are interested
in the case in which we have a superconducting ferromagnet. In such material we
would see both spin currents and charge currents and we are now interested in how
they would affect one another. The equations of motion will have to be adjusted
slightly to make these changes possible. To get a better idea of what information
our current equations provide, we rewrite them after having derived the following
velocities from Equation 41 and 65.

vS = −2γMzJ∇φS , (85)

vC =
h̄

m

(
∇θC +

q

h̄c
A
)
. (86)

We will now rewrite our equations of motion (Equation 79, 80, 81 and 82) into a
version with a total derivative to the time ( DDt = ∂

∂t + v · ∇). The first part of this
derivative looks at the local changes, while the second part looks at the changes that
are dragged in by the current. First we identify the velocities in the equations.

∂nS
∂t

= −∇ · (nSvS), (87)
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∂nC
∂t

= −∇ · (nCvC), (88)

∂φS
∂t

= −1

2
vS · ∇φS + γ(B −KMz), (89)

∂θC
∂t

= −1

2
vC ·

(
∇θC +

q

h̄c
A
)

+
µ− 2gnC

h̄
. (90)

Looking at it this way, the systems look even more analogous to eachother than dis-
cussed in the previous section. Reordering this, we find the following total derivatives.(

∂

∂t
+ vS · ∇

)
nS = −nS∇ · vS , (91)

(
∂

∂t
+ vC · ∇

)
nC = −nC∇ · vC , (92)(

∂

∂t
+ vS · ∇

)
φS =

1

2
vS · ∇φS + γ(B −KMz), (93)(

∂

∂t
+ vC · ∇

)
θC =

1

2
vC ·

(
∇θC −

q

h̄c
A
)

+
µ− 2gnC

h̄
. (94)

As we can see now, obviously, equations depend only on either vS or vC . It is imag-
inable, though, that an electron current affects the way spin currents are constructed
or propagated and the other way around. We introduce the dimensionless factors P
and N . We use P as the part of vC that contributes to vS in the spin equations, and
N is the part of vS that contributes to vC in the charge equations. In the spin equa-
tions, P is called the polarisation of the charge current. When a current is polarised
(the spin ups and spin downs are not equally represented), the current contributes
to a spin current. This effect is called the spin transfer torque [3]. We now make the
following adjustments to the equations. For the spin equations:

vS → vS + PvC , (95)

and for the charge equations:

vC → vC +NvS . (96)

Moving back to the ring (length L) we earlier discussed for both cases, we find it to
be easier to move to cylindrical coordinates with α the angle around the z-axis. Also
we still have a homogenuous magnetic field. The problem becomes one-dimensional
again.

∇ → 2π

L

∂

∂α
, (97)

A→ L

4π
B. (98)

These adjustments lead to the following one-dimensional equations.(
∂

∂t
+

2π

L
(vS + PvC)

∂

∂α

)
nS = −2π

L
nS

∂

∂α
(vS + PvC), (99)
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(
∂

∂t
+

2π

L
(vC +NvS)

∂

∂α

)
nC = −2π

L
nC

∂

∂α
(vC +NvS), (100)(

∂

∂t
+

2π

L
(vS + PvC)

∂

∂α

)
φS =

π

L
(vS + PvC)

∂φS
∂α

+ γ(B −KMz), (101)(
∂

∂t
+

2π

L
(vC +NvS)

∂

∂α

)
θC = (vC +NvS)

(
π

L

∂θC
∂α
− qBL

8πh̄c

)
+
µ− 2gnC

h̄
, (102)

in which

vS = −4π

L
γMzJ

∂φS
∂α

, (103)

vC =
h̄

m

(
2π

L

∂θC
∂α

+
qBL

4πh̄c

)
. (104)

Our phase equations are still only valid in the assumption that nS and nC are constant
over space. If they are constant over space they should also be constant over time if
spin and charge are conserved. So we can take our density equations to equal zero.
This leads to the following expressions.

vS + PvC = c1, (105)

vC +NvS = c2, (106)

with c1 and c2 constant velocities independent of α. Because these are two equations,
vS and vC can be written out as a function of c1, c2, N and P , all of which are
independent of α. This means vS and vC must both be independent of α. Similar to
what we have seen earlier this means that φS and θC should be linear in α. Then, also
similar to before, we apply the periodic boundary conditions and find the following
expressions for φS and θC .

φS(α) = kSα+ φS,0, (107)

θC(α) = kCα+ θC,0, (108)

with kS and kC being integers. Now filling in the result in the phase equations we
find

∂φS
∂t

= −π
L

(vS + PvC)kS + γ(B −KMz), (109)

∂θC
∂t

= −
(
kCπ

L
+
qBL

8πh̄c

)
(vC +NvS) +

µ− 2gnC
h̄

, (110)

with the velocities

vS = −4π

L
γMzJkS , (111)

vC =
h̄

m

(
2kCπ

L
+
qBL

4πh̄c

)
. (112)

Then, this leads to the functions for φS and θC .

φS(α, t) = kSα+

(
−kSπ

L
(vS + PvC) + γ(B −KMz)

)
t+ φS,0, (113)
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θC(α, t) = kCα+

(
−
(
kCπ

L
+
qBL

4πh̄c

)
(vC +NvS) +

µ− 2gnC
h̄

)
t+ θC,0. (114)

These results are exactly the same as earlier results (Equation 49 and 73), with the
velocities adjusted like we did in this section.

Though this may seem like a trivial result, the important and remarkable thing
is, that the states change due to this coupling. So the presence of two superfluid
systems in a material does influence the way - in this case charge and spin - currents
are decribed, assuming that N,P 6= 0.

5 Conclusion, Discussion and Outlook

In this thesis we have derived equations of motion for superfluid systems (spin super-
fluidity and superconductivity) as well as stationary states that obey these equations,
keeping the densities constant. After we have done that separately, we have coupled
the equations, guided by known effects like the spin transfer torque. The coupled
equations lead to different states than the results of the separate cases. This means
that our question whether the two systems would influence eachother can be answered
affirmatively.

The conclusion that the states of a material in which both spin superfluidity and
superconductivity occur do differ from the separate cases, does not necessarily imply
that the coupled states derived in this thesis are how this influence is described in
reality. Some effects are not taken into account and only the simplest states have
been calculated, leaving a heap of solutions, that may have the preference of the real
system, undiscussed. For example, the effects of dissipation have been left out and we
have assumed the densities to be constant in both cases, which is not particularly a
bad assumption and made the problems less difficult, but it may not be the actual way
nature will govern this situation. From a different point of view, you could say that
it may be hard to find a material that is actually fully described by the assumptions
made in this thesis. It gives a good idea of what to expect, though.

These effects that have been left out could be added in further research in order to
describe systems even better. Think about dissipation and solutions with nonconstant
densities. Furthermore, in this thesis, we have only discussed constant magnetic
fields. In further research one could possibly discuss changing magnetic fields, which
would have an effect on both superfluid systems. Also, from an experimental point
of view, experiments could be done on superconducting easy-plane ferromagnets to
check whether the results from this thesis are in fact a good approximation of reality.
Finally, one could research the effects different superfluid systems have on eachother
and check whether they influence eachother in a similar way.
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6 Appendix

6.1 Conjugate Momenta n and φ

In section 2.3 we found the following equations of motion for φ and n.

∂φ

∂t
= γMSJ

√
1− 2n

s
(∇φ)2 + γB − γKMS

√
1− 2n

s
, (115)

∂n

∂t
= 2γMSJ

√
1− 2n

s
n∇2φ. (116)

In these equations n was considered constant over space.

There is reason to think of the hypothesis, that one of these quantities is the
conjugate momentum of the other one. To check that, we could consider working out
the Hamilton equations and check whether they look like the expressions we have
just found. The following equations should be looked at.

∂n

∂t
∝ δF

δφ
, (117)

∂φ

∂t
∝ δF

δn
. (118)

To do this, we first have to write out F in terms of n and φ. We will first use our
earlier defined n1 and n2 again, before we write it all the way to n. By far the hardest
part of Equation 10 is the first term. So let us look at that first.

−J
2
M · ∇2M = −M

2
SJ

2

n1 cosφ
n1 sinφ
n2

 · ∇2

n1 cosφ
n1 sinφ
n2

 . (119)

We see that our earlier found identities Equation 22 and 23 will come in handy again.
Using those and again canceling several terms out we get the following expression for
F .

F (φ, n) =

∫
dx

(
−M

2
SJ

2
(n1∇2n1 − n2

1(∇φ)2 + n2∇2n2)−BMSn2 +
K

2
M2
Sn

2
2

)
.

(120)
Let us first calculate the time-derivative of n, by calculating the variational derivative
of F to φ. This should not be too hard as φ is hardly represented in the equation. It
essentially comes down to this.

δF =
M2
SJ

2

2n

s
((∇(φ+ δφ))2 − (∇φ)2). (121)

This leads to the following derivative.

δF

δφ
=

2M2
SJ

s
n∇2φ. (122)
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Which is in fact proportional to the earlier found ∂n
∂t .

∂n

∂t
=

γs

MS

√
1− 2n

s

δF

δφ
. (123)

For the other derivative it is good to immediately assume that n is constant,
because we did that to obtain the expression for the ∂φ

∂t in the first place. The free
energy then reduces to a less complicated form.

F =

∫
dx

(
M2
SJ

2

2n

s
(∇φ)2 −BMSn2 +

K

2
M2
Sn

2
2

)
. (124)

To derive this to n, we take the regular derivative to n2 for the second term.

n2(n+ δn) = n2(n) +
∂n2

∂n
δn = n2(n)− 1

s
√

1− 2n
s

δn. (125)

This leaves us with the following

δF

δn
=
M2
SJ

s
(∇φ)2 +BMS

1

s
√

1− 2n
s

−KM2
S

s
. (126)

Now, we see that the first term is also proportional to ∂φ
∂t with exactly the same factor

as the previous proportionality.

∂φ

∂t
=

γs

MS

√
1− 2n

s

δF

δn
. (127)

If n and φ would be eachother’s conjugate momenta, the proportionality factors
should differ a minus sign. This is not the case. However, θ = −φ is the conjugate
momentum of n, as the equation of motion of n is linearly dependent on φ, where the
equation of φ is quadratically dependent on φ. This means that a substitution of φ
with −θ would give only one extra minus sign.

6.2 Vector Potential for a Homogenuous Magnetic Field

In this section of the Appendix we derive a vector potential for a homogenuous
magnetic field in the z-direction like the one that is used in Section 3. We use
cylindrical coordinates, as that is useful in that section. The vector potential is
defined to be

B = ∇×A. (128)

We also know we want B to equal Bẑ. Using the cylindrical coordinates of a curl we
find  0

0
B

 =

 1
r
∂Az
∂φ −

∂Aφ
∂z

∂Ar
∂z −

∂Az
∂r

1
r
∂(rAφ)
∂r − 1

r
∂Ar
∂φ

 . (129)
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Due to symmetry A cannot depend on the angle φ nor z, as the field should be
homogenuous. This means that only a part of the z-equation remains.

B =
1

r

∂(rAφ)

∂r
. (130)

Using the product rule we find the differential equation,

Aφ + r
∂Aφ
∂r

= Br, (131)

with solution,

Aφ =
c

r
+

1

2
Br, (132)

with c an arbitrary constant. Since c can be chosen to be anything, we might as well
set it to zero. We find the following vector potential.

A =

 0
1
2Br

0

 . (133)
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