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Abstract

We explore the Landau levels in strongly coupled systems under an external magnetic field by
means of the AdS/CFT duality. We start off by providing a classical computation of the landau
levels where we follow the original computations of Lev Landau. Then we start looking at strongly
coupled systems using the Field Theory/Gravity duality. Here we will follow the earlier papers of
T.Albash and C.V.Johnson on the holographic approach to landau levels and fermi liquids where
we look at the effects of an external magnetic field on the energy levels of 2+1 dimensional strongly
coupled field theories holographically duel to charged AdS4 black holes at zero temperature. We also
compute the spectral functions and consider its solutions in the simplest case of ω = 0.
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1 Introduction

Classically one would expect the energy values of a charged particle in an external magnetic field to be
continuously distributed. This has been proved to not be the case by the Soviet physicist Lev Landau
[1]. Landau proved that charged particles under the influence of a magnetic field will exhibit quantized
motion. Their motion will be quantized in the form of cyclotron orbits which results in the fact that
the particles can only occupy orbits with discrete energy values. These energy values are called Landau
levels.
This phenomena of quantized energy levels has many applications within Condensed matter physics [11,
10] and furthermore a direct and important result of this quantization is the Hall effect.
However there are also still open problems in physics concerning the landau quantization. Examples are
the magnetic catalysis and inverse magnetic catalysis in quantum chromodynamics. So there are still a
lot of exciting problems concerning the Landau levels of which we will study one in this thesis.

We can quite easily describe the energy dynamics for a single charged particle in a uniform mag-
netic field. A more challenging problem however is to try and describe the dynamics for a many body
system of charged particles subject to a magnetic field. In the case when we consider charged fermions
the system can be either weakly coupled or strongly coupled. In the case when the fermions are weakly
interacting with each other we can describe the dynamics of the system using quantum field theory.
An interesting thing to note here is that some at first complicated looking systems can actually be
approximately described by considering the same system but then weakly coupled in free space which is
the case for quasiparticles for example.
A question which then naturally arises is whether we can also describe the quantization for strongly
interacting systems that cannot approximately be considered weak. The study of strongly interacting
fermionic systems at finite density and temperature is a important but challenging task in condensed
matter and high energy physics. The problem with studying strongly interacting systems is that analytic
methods are limited or not available at all. Furthermore numerical simulations of fermions at finite
density breaks down because of technical problems that go under the name of ”sign problems” see [14]
So we need a way to study these strongly interacting systems and in this thesis we resort to an uncon-
ventional method, namely the AdS/CFT duality. The AdS/CFT correspondence is a modern technique
that promises us tools with which we can gain new insight in this problem. This correspondence promises
us a duality between strongly interacting field theories and weak gravity. By mapping the physics
from one side of the correspondence to the other we can try and solve the dynamics of our strongly
coupled system in another theory where we have the tools to do so and then retrieve this information back.

The basic outline of this thesis is as follows: First we will compute the energy levels of a charged
particle in a uniform magnetic field following the original computations of Landau. Where we show that
indeed the energy levels of a charged particle moving in a magnetic field is quantized. Then in the next
section we motivate the AdS/CFT correspondence and the way we can apply it to strongly coupled
systems. After having done this we study the energy dynamics of a strongly coupled system under a
magnetic field using a dual gravitational formulation of fermionic fields propagating in a 4 dimensional
asymptotically AdS background. Here we will follow the earlier papers of Johnson and Albash [2 , 3]
who already studied the dynamics of strongly interacting systems using holography.
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2 Derivation of Landau levels

In this section we will derive the energy levels for a charged particle in a uniform magnetic field following
Landau in 1930 (see his book [[1]] chapter XV ”motion in a magnetic field”). We will then see that the
particles can only have discrete energy values and hence their motion is also quantized.
We start off by defining the Hamiltonian. We know that in a classical system the Hamiltonian of a
charged particle in a electromagnetic field is given by

H =
1

2m
(p− q

c
A)2 + qV (1)

In which q stands for the charge of the particle, p is its momentum, A is the vector potential and V is
the scalar potential.

2.1 No spin case

First we will consider particles with no spin. Without the spin to affect the energy, the transition from
the classical Hamiltonian to a quantum mechanical Hamiltonian is straightforwardly done by changing
the momentum to a momentum operator in which p→ p̂ = ~

i∇. Hence our Hamiltonian becomes

H =
1

2m
(p̂− q

c
A)2 + qV (2)

Now we are ready to start computing the energy levels. We will consider a free particle in a
uniform magnetic field which is pointing in the z-direction. Since we consider a free particle the scalar
potential will vanish. We take our vector potential like in 1 (chapter XV) which is

A =

−Hy0
0

 (3)

Using this vector potential we can write the Hamiltonian as

Ĥ =
1

2m
(p̂x +

qHy

c
)2 +

p̂2y
2m

+
p̂2z
2m

(4)

Now we can write down the schrödinger equation corresponding to the Hamiltonian above which
is

1

2m
[(p̂x +

qHy

c
)2 + p̂2y + p̂2z]ψ = Eψ (5)

Since the Hamiltonian 4 is not explicitly dependent on x or y we immediately know that p̂x and
p̂z commute with the Hamiltonian since these momenta take derivatives with respect to x and z. Since
the x and z components of the momentum commute with the Hamiltonian they are conserved. Hence
we can represent them by their eigenvalues px and pz. In light of this we can take the following anzatz
for the solution of 5 according to 1.

ψ = e

i

~
(pxx+pzz)

φ(y) (6)
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The next step is to substitute equation 6 into equation 5 and rewrite the equation into some-
thing that will come in handy later on

1

2m
[(p̂x +

qHy

c
)2 + p̂2y + p̂2z]ψ = Eψ →

φ′′ +
2m

~2
[E +

µσH

s
− p2z

2m
− 1

2m
(
qHy

c
)2 − p2x

2m
]φ(y) = 0

(7)

Now we introduce ω = qH
mc and y0 = − cpxqH to finally get for the schrödinger equation:

φ′′ +
2m

~2
[(E − p2z

2m
)− 1

2
mω2(y − y0)2]φ = 0 (8)

Now we can actually immediately see what the allowed energies are since equation 8 looks just
like the schrödinger equation for a harmonic oscillator

φ′′ +
2m

~2
[E − 1

2
mω2x2]φ = 0 (9)

with allowed energies

E = (n+
1

2
)~ω (10)

Hence in our case of equation 8 we can say that the allowed energies are given by

E − p2z
2m

= (n+
1

2
)~ω (11)

E = (n+
1

2
)~ω +

p2z
2m

(12)

For a particle moving in a plane perpendicular tot the direction of the magnetic field(which is in
the z-direction) we have that pz = 0 and hence the first term gives us the discrete energy levels. With
this we have shown that the energy values for charged particles in a uniform magnetic field are quantized
to discrete values.
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2.2 Particles with spin

In the last case we looked at particles which have no spin. In order to implement the spin into the
Hamiltonian we somehow need to account for the effect spin has on the energy. For this we will need to
look at the magnetic moment of the particle which is given by

µ̂ =
µŜ

s
(13)

In which Ŝ is the particle’s spin, s stands for the magnitude of the spin and µ is a value characteristic
to the particle. In order for us to implement the effect of the spin on the energy we need to add −µ̂ ·H
to the Hamiltonian (as in 1 chapter XV). Hence the Hamiltonian (1) will transform to

Ĥ =
1

2m
(p̂− q

c
A)2 + qV − µ̂ ·H (14)

In quantum mechanical systems with spin.
After plugging our vector potential and magnetic moment into 14 and expanding the square we get for
our Hamiltonian

Ĥ =
1

2m
(p̂x +

qHy

c
)2 +

p̂2y
2m

+
p̂2z
2m
− (

µ

s
)ŝzH (15)

The next step will be to write the schrödinger equation for this Hamiltonian. For this we some-
how want the Hamiltonian to be spin-independent so that we can write the schrödinger equation in its
usual form coördinate form. In order to achieve this we note that

ŝzĤ − Ĥŝz = [ŝz
1

2m
(p̂x +

qHy

c
)2 + ŝz

p̂2y
2m

+ ŝz
p̂2z
2m
− ŝz(

µ

s
)ŝzH]− [

1

2m
(p̂x +

qHy

c
)2ŝz +

p̂2y
2m

ŝz +
p̂2z
2m

ŝz −

(
µ

s
)ŝzHŝz] = [ŝz

1

2m
(p̂x+

qHy

c
)2+ŝz

p̂2y
2m

+ŝz
p̂2z
2m
−(

µ

s
)H]−[ŝz

1

2m
(p̂x+

qHy

c
)2+ŝz

p̂2y
2m

+ŝz
p̂2z
2m
−(

µ

s
)H] =

0.

Here we used the fact that the momenta commute with the spin and that ŝ2z = 1̂ with 1̂ being
the unit matrix. That the momenta commute with the spin can be quickly seen by

p̂xŝza = ~
i
d
dx

(
1 0
0 −1

)(
a1
a2

)
= ~

i
d
dx

(
a1
−a2

)
= ~

i

(
da1
dx

−da2dx

)

ŝz p̂xa =

(
1 0
0 −1

)
~
i
d
dx

(
a1
a2

)
=

(
1 0
0 −1

)
~
i

(
da1
dx
da2
dx

)
= ~

i

(
da1
dx

−da2dx

)

Now since ŝz commutes with the Hamiltonian this means that ŝz is conserved and we can use
its eigenvalue ŝz = sz to describe it. This means that the wave function’s dependency on the spin is not
important and we can write the schrödinger equation in its usual form.
So the schrödinger equation becomes

1

2m
[(p̂x +

qHy

c
)2 + p̂2y + p̂2z]ψ −

µσH

s
ψ = Eψ (16)
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φ′′ +
2m

~2
[(E +

µσH

s
− p2z

2m
)− 1

2
mω2(y − y0)2]φ = 0 (17)

Just like before we can see the resemblance between this equation and that of the harmonic os-
cillator 9 which has allowed energies 10. Hence we can say that the allowed energies for a particle with
spin under a uniform magnetic field are

E +
µσH

s
− p2z

2m
= (n+

1

2
)~ω (18)

E = (n+
1

2
)~ω − µσH

s
+

p2z
2m

(19)

In which the first term gives us the discrete energy levels for a motion in a plane perpendicular
to the direction of the field.
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3 Ads/CFT duality and Correlations

As we mentioned before we are interested in studying the energy levels of strongly coupled systems
subject to a magnetic field. Since analytic methods are limited and numerical simulations are also not
an option we plan to resort to an unconventional method, namely the AdS/CFT duality. In this thesis
we will not try to explain why the correspondence can be true since this will require detailed knowledge
of string theory and d-branes which is beyond the scope of this thesis. Instead we assume the duality
holds and try to explain how it connects the two theories and how we plan to use it to study strongly
coupled systems. For this we looked at the following references [17, 12 ,18, 10].
In theoretical physics people often discover new and exciting things by realizing that certain concepts are
in fact related to each other at a deep and fundamental level. Examples of such relations are dualities
which relate two seemingly different quantum theories to each other by stating that the theories are in
fact equivalent. The AdS/CFT correspondence is a duality albeit a different one from the one above. The
Anti-de Sitter / Conformal field theory correspondence is a new type of duality which relates gravity
theories in d dimensions on asymptotically Anti-de Sitter spacetimes to local field theories without
gravity in d-1 dimensions. Here Anti-de Sitter spaces are maximally symmetric solutions of the Einstein
equations with a negative cosmological constant. Examples of maximally symmetric Euclidean spaces
are the sphere, flat space and the hyperboloid. The quantum field theory may be thought of as being
defined on the conformal boundary of this Anti-de Sitter space. Since the duality relates gravity in
d dimensions to field theories in d-1 dimensions it is also an important realization of the holographic
principle. Which states that in gravitational theory , information stored in the volume are encoded in
the boundary. An simple example is the way a 2 dimensional hologram encodes the information about
a 3 dimensional object.
But What does it mean that two theories are dynamically equivalent? The correspondence states that the
two theories are identical and therefore describe the same physics from two very different perspectives.
If the AdS/CFT duality holds, it means that all the physics of one description can be mapped onto all
the physics of the other. Hence we would like to be able to provide such a mapping. Here we will try and
show what this mapping is. As we will see this map provides a one-to-one relation between operators in
local field theories to fields in gravity.

3.1 Field-operator map

By considering the symmetries of the two theories and checking when they coincide we can find a precise
one to one mapping between operators in local field theories to fields in gravity. One can then find that
for a scalar field in AdS we have the following map:

m2L2 = 4(4− d) (20)

Where 4 is the conformal dimension. To make the mapping more explicit we can consider the boundary
behavior of the supergravity fields [12, 17]. To do this we first consider the AdS side. Let us consider a
scalar field in the AdS supergravity side for which we take the following simplified action:

Ssupergravity = −C
2

∫
dzddx

√
−g(gmn∂mφ∂nφ+m2φ2) (21)

Where C is proportional to the rank of the gauge group N squared ( C ∝ N2). And the mass is given
by the AdS dictionary m2L2 = 4(4− d). Then the field equation given by the Klein-Gordon equation

(�−m2)φ = 0 (22)

has two independent solutions which are characterized by their behavior as z → 0

φ(z) ∼ z4+ , φ(z) ∼ z4− (23)

Where 4± = d
2 ±

√
d2

4 +m2L2. Near the boundary z → 0 we can expand the field as

φ(x, z) ∼ A(x)z4− +B(x)z4+ (24)
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And we consider the supergravity fields φ to assume the boundary value:

A(x) = lim
z→0

φ(x, z)z4+−d (25)

Then we have the following map between generating functionals on both sides of the correspondence:

e−W [A(x)] = e−Ssupergravity [φ]|A(x) =

〈
exp

(∫
ddxA(x)O(x)

)〉
CFT

(26)

Where we assume that the operator O on the field theory side has dimension 4 and its source is given
by A(x). So in other words the field theory operators can be identified with a classical action on (d+1)
dimensional Anti-de Sitter space, subject to the boundary condition that the (d + 1)-dimensional fields
φ assume the boundary values A(x).
Having this map between generating functionals we can perform holographic calculations of correlation
functions of gauge invariant operators. Consider the family of operators Oi on the field theory side that
correspond to the sources Ai(x). We then obtain correlation functions from the generating functionals
by taking derivatives with respect to the sources as:

〈O1(x1)O2(x2) . . .On(xn)〉CFT = − ∂nW

∂A1(x1)∂A2(x2) . . . ∂An(xn)
|Ai=0 (27)

3.2 The correspondence for strongly coupled systems

Coming back to our original question: How do we actually use this correspondence to study strongly
coupled systems subject to a magnetic field?
The Ads/CFT correspondence allows us to study strongly coupled field theories in which certain
questions become computationally tractable and conceptually clearer. This is because in particular
limits we can describe strongly coupled systems by considering its dual gravity theory which is then
classical and weak. In the case of strongly coupled systems we can use the duality in the following way:
In the case of a system with strongly interacting charged fermions we have no real way of computing
the allowed energies of the system in quantum field theory. Instead what we do is consider this same
system in its dual gravity. Since in the gravity dual we know how to solve the equations of motion.
The way we go about doing this is by probing the bulk fermion onto the electrically and magnetically
charged black hole. This way the bulk lives in the black hole without disturbing the curvature. In this
black hole we have the Einstein-Maxwell action which contains the dynamics within the black hole.
After we probed our bulk fermion onto the black hole we can solve the equations of motion within the
gravity theory which is weak and classical. When we have found the relevant dynamics of the probe in
the black hole we can retrieve this information by considering the bulk fermion near the ads-boundary
where the field theory lives. Near the ads boundary we can expand the fields as powers of z as shown
above where the information we need lives in the coefficients before these powers. Then the last step
would be to extract the information from these coefficients. In order to do this we need to compute
correlation functions which contain the relation between these coefficients. After we have determined
these correlation functions we possess all the information regarding the dynamics of our system in field
theory.
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4 Review of existing literature: T.Albash , C.V. Johnson

In this section we will study the effects of an external magnetic field on the energy levels of 2+1 dimen-
sional strongly coupled field theories holographic dual to charged AdS4 black holes at zero temperature
in weak gravity. Here we will we follow the work of Albash and Johnson in [2] and [3], who have already
studied these field theories dual to gravity, and at some points provide a more detailed computation.

4.1 The black hole geometry and Einsteins equations

We consider a dyonic black hole which carries both electric as magnetic charges in a asymptotically AdS4

spacetime. The metric is given by 2:

ds2 =
L2α2

z2
(−f(z)dt2 + dx2 + dy2) +

L2

z2f(z)
dz2

F = 2Hα2dx ∧ dy + 2Qαdz ∧ dt

f(z) = 1 + (H2 +Q2)z4 − (1 +H2 +Q2)z3 = (1− z)(z2 + z + 1− (H2 +Q2)z3)

(28)

And the Einstein-Maxwell action for this background is:

Sbulk =
1

2κ24

∫
d4x
√
−G{R− 2Λ +

3

4

1

Λ
F 2} (29)

In which Λ is the cosmological constant which we can rewrite using the length scale L which is

related to Λ by Λ =
− 3

L2
. Furthermore R is the Ricci scalar and F is defined above in 28. The parameter

α has dimensions of inverse length. The Einstein-maxwell action then becomes:

Sbulk =
1

2κ24

∫
d4x
√
−G{R+

6

L2
− L2

4
F 2} (30)

Here κ24 = 8πGN is the gravitational coupling. The mass and Hawking temperature of the black
hole are given by [2]:

ε =
α3L2

κ24
[1 +Q2 +H2]

T =
α

4π
[3− (Q2 +H2)]

(31)

We will now derive the Einsteins field equations from 30 and check whether these satisfy the fields given
in 28.
We start off by writing the Lagrangian for the action 30 which is simply given by

L =
1

2κ24

√
−G{R+

6

L2
− L2

4
F 2} (32)
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The equations of motion are obtained by considering a variation with respect tot the metric gµν :

∂µ
δL

δ∂µgµν
+

δL
δgµν

= 0 (33)

The is the generalized form of the classical Euler-Lagrange equation for field theory. We imme-
diately note that the first term is zero, since we have no explicit dependence on the derivative of the
metric, and hence we only have to consider the second term. Knowing that R,G and F 2 have an
dependency on the metric tensor gµν we get:

∂L
∂gµν

=
1

2κ24
{∂
√
−G

∂gµν
R+
√
−G ∂R

∂gµν
+

6

L2

∂
√
−G

∂gµν
− L2

4

√
−G ∂F 2

∂gµν
− L2

4
F 2 ∂
√
−G

∂gµν
} =

√
−G

2κ24
{∂
√
−G

∂gµν
R√
−G

+
∂R

∂gµν
+

6

L2
√
−G

∂
√
−G

∂gµν
− L2

4

∂F 2

∂gµν
− F 2L2

4
√
−G

∂
√
−G

∂gµν
} = 0

(34)

Now we rewrite 34 by using the definitions ∂
√
−G

∂gµν = − 1
2

√
−Ggµν and R = gµνRµν in which Rµν

is the Ricci tensor. We then get for 34:

∂L
∂gµν

=

√
−G

2κ24
{−1

2
gµνR+Rµν −

3

L2
gµν +

F 2L2

8
gµν +

L2

4

∂F 2

∂gµν
} =

√
−G

2κ24
{Rµν −

1

2
gµνR+

1

2
gµν [− 6

L2
+
F 2L2

4
]− L2

4

∂F 2

∂gµν
} = 0

(35)

Hence the Einstein field equations of motion reduce to

Rµν −
1

2
gµνR = −gµν

F 2L2

8
+
L2

4

∂F 2

∂gµν
+

3

L2
gµν (36)

Now we wish to check whether these equations satisfy the fields in 28. Computing the Einstein
tensor ( the left part of equation 36) is a lot of work to perform by hand hence we will compute the
Einstein tensor using a mathematical code called the Riemannian Geometry & Tensor Calculus code
(RGTC) (see 5). This code will compute the Einstein tensor for us after we plug in our metric. So the
only thing that we need to do is to compute the right hand side of equation 36 by hand and check if
this is equal to the terms we find for the Einstein tensor.
Plugging our metric into RGTC yields us the Einstein tensor:


−α

2f(3f−zf ′)
z2 0 0 0

0 α2(6f−4zf ′+z2f ′′)
2z2 0 0

0 0 α2(6f−4zf ′+z2f ′′)
2z2 0

0 0 0 3f−zf ′
z2f

 (37)

We have to see whether the right hand side of 36 satisfies this. Here we will check the upper
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left (t2) argument. The t2 argument of the Einstein tensor is

− α2f(3f − zf ′)
z2

= −α
2f((3 + 3(H2 +Q2)z4 − 3(1 +H2 +Q2)z3)− (4(H2 +Q2)z4 − 3(1 +H2 +Q2)z3)

z2
=

− α2f(3− (H2 +Q2)z4)

z2
= α2z2f2[H2 +Q2]− 3α2f

z2

(38)

Using the definitions F 2 = FµνFαβg
µαgνβ and ∂F 2

∂gµν = 2FµβF
β
ν and considering their t2 argument we

can find:

3

L2
gtt = − 3

L2

L2α2f

z2
= −3α2f

z2

L2

4

∂F 2

∂gµν
=
L2

2
FtβF

β
t =

L2

2
FtzF

z
t =

L2

2
FtzFtzg

zz =
L2

2

z2f

L2
4Q2α2 = 2z2fQ2α2

− gtt
L2

8
F 2 =

L4α2f

8z2
F 2 =

L4α2f

8z2
8z4

L4
[H2 −Q2] = α2z2f [H2 −Q2]

(39)

Hence the t2 argument of the right hand side of equation 36 becomes: α2z2f2[H2 + Q2] − 3α2f
z2 .

We thus indeed see that the Einstein field equations of the action 30 satisfy the fields in 28.

4.2 Probing the fermion

In order to make things a bit more simpler we work in dimensionless units from now on by changing
coördinates to:

t→ t

α
, x→ x

α
, y → y

α
, At → αAt , Ax → α2Ax (40)

In this background our Dirac action becomes

SD =

∫
d4x
√
−G i (Ψ ΓMDMΨ−mΨΨ) (41)

In which DM and ωabM stand for the covariant derivative and the spin connection respectively. Given
by

DM = ∂M +
1

4
ωabMΓab − iqAM (42)

ωabM = eNa ∂MebN − eaNeOb ΓNOM (43)

Furthermore we choose our gauge in the following form:

At = 2Qα(z − 1)

Ax = −2Hα2y

(44)
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Here ΓNOM is the affine connection, capital letters like M stand for world indices and small let-
ters are the tangent-space indices. We transform between these indices by acting with the vielbeins eMa .
We can express these vielbeins in terms of the metric by

gMN = ηabe
a
Me

b
N (45)

In which ηab stands for the minkowski metric with signature (-+++). plugging in the terms for our
metric as in 28 and considering only the diagonal terms of the vielbeins, since one can show that the
vielbeins are in fact diagonal, we get

etT =
L

z

√
f , exX = eyY =

L

z
, ezZ =

L

z

1√
f

(46)

Furthermore we have the following relations between Gamma’s:

Γab =
1

2
[Γa,Γb] , ΓM = eMa Γa (47)

And we chose our Gamma matrices as:

Γt =

(
0 iσ2
iσ2 0

)
, Γx =

(
0 σ1
σ1 0

)
, Γy =

(
0 σ3
σ3 0

)
, Γz =

(
1 0
0 −1

)
, (48)

We consider the Lagrangian for the Dirac action 41 which is

LDirac =
√
−G i (Ψ ΓMDMΨ−mΨΨ) (49)

And now we find the equations of motion by taking a variation with respect to the field Ψ:

∂µ
δLDirac
δ∂µΨ

+
δLDirac
δΨ

= 0 (50)

We note that the first term is zero since there are no explicit field derivatives in the Lagrangian. The
second term yields us the Dirac equation of motion:

ΓMDMΨ−mΨ = 0 (51)

In order to reduce the equation 42 we need to find the relevant spin connection terms in our background.
For this we use the following relation between the spin connection and the vielbeins (see 6)

T a = dea + ωab ∧ eb (52)

In which T a stands for the torsion and we have the following relations

ea = eaMdx
M

ωab = ωabMdx
M

(53)

The affine connection can be expressed in terms of the metric in the following way (see 7 chapter ”Relation
between metric and the affine connection” )

ΓNOM =
1

2
gNN{gON,M + gMN,O − gOM,N} (54)
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In our background we see that the affine connection is symmetric in its lower indices. Hence the torsion
term in 52 vanished (see 6) and we are left with the relation

dea + ωab ∧ eb = 0 (55)

We can compute the relevant terms of our spin connections using 53 and 55 as follows:

dex = ∂Ne
x
Mdx

N ∧ dxM = ∂ze
x
Xdz ∧ dx = −ωxb ∧ eb = −ωxzX dx ∧ ezZdz →

(exX)′dz ∧ dx+ ωxzX ezZdx ∧ dz = ((exX)′ − ωxzX ezZ)dz ∧ dx→ ωxzX = eZz (exX)′
(56)

Using this same method we find that our non-zero spin connections are

ωtzT = eZz (etT )′ , ωxzX = eZz (exX)′ , ωyzY = eZz (eyY )′ (57)

Now we can plug these expressions into the covariant derivative 42 and get for our Dirac equation 51

ΓMDMΨ−mΨ = 0 → [ ΓZ∂z + ΓX(∂x +
1

2
eZz (exX)′Γxz − iqAx) +

ΓY (∂y +
1

2
eZz (eyY )′Γyz) + ΓT (∂t +

1

2
eZz (etT )′Γtz − iqAt) −m ]Ψ = 0

(58)

Using the expressions for the vielbeins, which we computed before 46 , we can compute the vielbein
products in the equation above and obtain

eZz (etT )′ = −1

z
f +

1

2
f ′ , eZz (exX)′ = eZz (eyY )′ = −1

z

√
f (59)

Furthermore we can use 47 to transform the Gamma matrices in the world representation to the tangent-
space representation and we can write the Dirac equation as

[

√
fz

L
Γz∂z +

z

L
Γx(∂x −

1

2

√
f

z
Γxz − iqAx) +

z

L
Γy(∂y −

1

2

√
f

z
Γyz) +

z

L
√
f

Γt(∂t +
1

2
(−f

z
+
f ′

2
)Γtz − iqAt) −m ]Ψ = 0

(60)

The gamma matrices are related to each other in the following way:

ΓxΓxz = ΓxΓxz = Γz

ΓyΓyz = ΓyΓyz = Γz

ΓtΓtz = −ΓtΓtz = Γz
(61)

Where we raised the indices by acting with the (-+++) signature Minkowski metric. Finally we introduce
the following coördinate change for our field:

Ψ = z3/2f−1/4e−iωt+kxx
(
φ+(y, z)
φ−(y, z)

)
(62)

Using this redefined field and the Gamma matrices 61 we reduce our Dirac equation 60 to

√
f∂zφ+ −

mL

z
φ+ + σφ− − iqAxσ1φ− + iσ1kx +

1√
f
σ2ωφ− +

1√
f
qσ2Atφ− = 0 (63)
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Which we can rewrite to get the following reduced form for our Dirac equations of motion:

√
f(∂z −

mL

z
√
f

)φ+ = i(iσ2u+ iσ3∂y − σ1(2Hqy + kx))φ− (64)

Where u is given by

u =
1√
f

(ω − 2qQ(1− z)) (65)

We can perform the very same computation for the other field to obtain the following equations of
motion:

√
f(∂z ∓

mL

z
√
f

)φ± = ±i(iσ2u+ iσ3∂y − σ1(2Hqy + kx))φ∓ (66)

4.3 Extracting the spectral function at zero Temperature

Since a lot of interesting physics like quasiparticle peaks, fermi level structure and critical behavior can
be found by numerically studying the spectral functions, we stop to find an expression for these functions
of interest in this section. Here we will consider the case of zero temperature. We note by looking at
the temperature of the black hole 31 that for zero temperature we have a condition set on the field and
charge. This condition is Q2 +H2 = 3. In order to find the spectral functions of interest we will follow
the prescription of 8. For this prescription we need to consider the asymptotic behavior of our system
near the ads-boundary z = 0. Near the ads-boundary z → 0 the fields φ± can be expanded as:

φ+ = Azm +Bz1−m

φ− = Czm+1 +Dz−m
(67)

Plugging these expansions into the Dirac equations of motion 66 we get the following relation between
the coefficients:

B =
i(iσ2u− σ1(2Hqy + kx) + iσ3∂y)

1− 2m
D

A =
−i(iσ2u+ σ1(2Hqy + kx)− iσ3∂y)

1 + 2m
C

(68)

The prescription tells us that if there is a relationship between the coefficients which goes like D = SA
that then the retarded greens function is given by [8]:

GR = S σ2 (69)

Now we will further decompose the fields as

φ± =

(
χ±
ξ±

)
(70)

And obtain the following coupled equations of motion√
f(∂z ∓

mL

z
)χ± = ∓[−iuξ∓ + ∂yχ∓ + i(2Hqy + kx)ξ∓]√

f(∂z ∓
mL

z
)ξ± = ∓[iuχ∓ − ∂yξ∓ + i(2Hqy + kx)χ∓]

(71)
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Here we can introduce the fractions iχ+(k)
ξ−(k)

,−i ξ+(k)
χ−(k)

as in the prescription 9 and use 69 with D = SA to

obtain for the retarded greens function (for m ≥ 0 ):

GR = lim
ε→0

ε−2m

(
iχ+(k)
ξ−(k)

0

0 −i ξ+(k)
χ−(k)

)
(72)

Here we note that the fields, which we defined in 70 in position space (y, z), we took in momentum
space in the retarded greens function. In the prescription the fields where separated in a momentum
and a position part which we cannot perform here. However we can always Fourier transform our fields
and gain the momentum dependency which makes us believe that the prescription in 8 still holds.

4.4 Behavior near the horizon

In order to solve the Green’s functions we need to find the boundary conditions near the horizon. Hence
we now move away from the ads boundary and consider the equations and boundary conditions at the
horizon. At the event horizon (z=1) we can expand the fields 70 as follows

χ± = a±(y, z)e

iω

6(1− z)(1− z)
i(6qQ− 4ω)

18

ξ± = b±(y, z)e

iω

6(1− z)(1− z)
i(6qQ− 4ω)

18

(73)

Plugging these field definitions into 71 yields us the following equations of motion:

√
f

(
∂z +

iω

6(1− z)2
+ i
−6qQ+ 4ω

18(1− z)

)
a+ =

mL
√
f

z
a+ + iub− − ∂ya− − i(2Hqy + kx)b−√

f

(
∂z +

iω

6(1− z)2
+ i
−6qQ+ 4ω

18(1− z)

)
a− = −mL

√
f

z
a− − iub+ + ∂ya+ + i(2Hqy + kx)b+√

f

(
∂z +

iω

6(1− z)2
+ i
−6qQ+ 4ω

18(1− z)

)
b+ =

mL
√
f

z
b+ − iua− + ∂yb− − i(2Hqy + kx)a−√

f

(
∂z +

iω

6(1− z)2
+ i
−6qQ+ 4ω

18(1− z)

)
b− = −mL

√
f

z
b− + iua+ − ∂yb+ + i(2Hqy + kx)a+

(74)

Now we wish to find the boundary conditions present at the event horizon. For this we note that near
the horizon the field f defined in 28 behaves as 6 (1 − z)2 where we used the condition obtained by
considering zero temperature. Hence we have

√
f =
√

6 (1− z).
Plugging this into the equations of motion above we see that there are still terms that diverge at the
horizon. These are the terms iω√

6(1−z) . In order to control its divergence at the horizon we need to have

another term that can nullify its effect. We note that there is indeed such a term present in the equations
of motion which is the first part of u = 1√

f
(ω − 2qQ(1 − z)). Now looking at the equations of motion

shows us that we are restricted by the boundary conditions:

a+(y, 1) = b−(y, 1) , a−(y, 1) = −b+(y, 1) (75)

Now we make the following redefinition’s

A+(y, z) = b−(y, z)− a+(y, z) , A−(y, z) = −i(a−(y, z) + b+(y, z))

B+(y, z) = a+(y, z) + b−(y, z) , B−(y, z) = i(b+(y, z)− a−(y, z))

(76)
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In order to present our equations of motion in 74 in terms of the new fields we have to add and subtract
the relevant equations and get the following redefined equations of motion:

√
f

(
∂z +

iω

6(1− z)2
+ i
−6qQ+ 4ω

18(1− z)

)
A+ = −mL

z
B+ − iuA+ + i∂yB− + i(2Hqy + kx)B+√

f

(
∂z +

iω

6(1− z)2
+ i
−6qQ+ 4ω

18(1− z)

)
A− = −mL

z
B− − iuA− − i∂yB+ − i(2Hqy + kx)B−√

f

(
∂z +

iω

6(1− z)2
+ i
−6qQ+ 4ω

18(1− z)

)
B+ = −mL

z
A+ + iuB+ − i∂yA− − i(2Hqy + kx)A+√

f

(
∂z +

iω

6(1− z)2
+ i
−6qQ+ 4ω

18(1− z)

)
B− = −mL

z
A− + iuB− + i∂yA+ + i(2Hqy + kx)A−

(77)

In order to find the appropriate boundary conditions that restrict us near the horizon we have to expand
the fields in 77 near the horizon like

A±(y, z) = A±(y, 1)− (1− z)∂zA±(y, 1) + (O(1− z)2)

B±(y, z) = B±(y, 1)− (1− z)∂zB±(y, 1) + (O(1− z)2)
(78)

And plug these into the equations of motion along with the definition for the field f which goes like
6(1− z)2 near the horizon. Doing this gives us the the following boundary conditions:

A+(y, 1) = 0

∂zA±(y, 1) = ∓
√

6

2ω
(kxB±(y, 1) + ∂yB∓(y, 1) + 2HqyB±(y, 1)± imB±)

∂zB±(y, 1) = ± i√
6

[(kx ∓ im)∂zA± + ∂z∂yA∓ + 2Hqy∂zA±]− i

108
(48qQ− 23ω)B±

(79)

The terms in our retarded greens function 72 are ratio’s of the fields χ± , ξ± which we would like to
express in terms of our new fields A± , B±.
using the expansions in 73 we have that

G+ = i
χ+(k)

ξ−(k)
= i

a+(k)

b−(k)
= i

B+(k)−A+(k)

B+(k) +A+(k)

G− = −i ξ+(k)

χ−(k)
= −i b+(k)

a−(k)
= i

B−(k)−A−(k)

B−(k) +A−(k)

(80)

The idea now is that we can extract the interesting physics from the Green’s function by determining
B± and A± using the boundary conditions at the horizon. In this paper however we will only consider
the simplest case of ω = 0.
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4.5 Separable solutions

From here on we only consider the case of zero mass m = 0. In this section we want to find solutions
for the fields in equation 77 by separating the variables of the fields. This way we hope to find some
interesting behavior that will allow us to speak about the energy levels of our system. We first consider
a positive magnetic field qH > 0 and make the following coordinate change in the y-direction:

η =
√

2Hq

(
y +

kx
2Hq

)
(81)

Using this coördinate change the y-dependent parts of the equations in 77 change to:

∂yB± + (2Hqy + kx)B∓ =
√

2Hq(∂ηB± + ηB∓)

∂yA± + (2Hqy + kx)A∓ =
√

2Hq(∂ηA± + ηA∓)
(82)

plugging this into our equations of motion we get:

√
f

(
∂z +

iω

6(1− z)2
+ i
−6qQ+ 4ω

18(1− z)

)
A+ = −iuA+ + i

√
2Hq(∂ηB± + ηB∓)

√
f

(
∂z +

iω

6(1− z)2
+ i
−6qQ+ 4ω

18(1− z)

)
A− = −iuA− − i

√
2Hq(∂ηB± + ηB∓)

√
f

(
∂z +

iω

6(1− z)2
+ i
−6qQ+ 4ω

18(1− z)

)
B+ = +iuB+ − i

√
2Hq(∂ηA± + ηA∓)

√
f

(
∂z +

iω

6(1− z)2
+ i
−6qQ+ 4ω

18(1− z)

)
B− = +iuB− + i

√
2Hq(∂ηA± + ηA∓)

(83)

Now we can make two different ansätze for the solutions of these differential equations in the fields A±
and B±. The separable ansätze are:

Ansatz 1: A− = −A+ = −YA(y)ZA(z) , B− = B+ = YB(y)ZB(z)

Ansatz 2: A− = A+ = YA(y)ZA(z) , B− = −B+ = −YB(y)ZB(z)
(84)

We start off by considering the first ansatz. following 16 and 15 we write

∂ηYB + ηYB =
√

2nYA

∂ηYA − ηYA = −
√

2nYB
(85)

The solutions of these equations are:

YA = In−1(η) , YB = In(η) (86)

Where In is the Hermite function defined by

In(η) = Nn(η)Hn(η) =
1√

2nn!
√
π
e−η

2/2Hn(η) = (−1)n
1√

2nn!
√
π
eη

2/2 d
n

dηn
e−η

2

(87)

And we used the following identities for the Hermite function:

Nn−1 =
√

2nNn

Hn+1(η) = 2ηHn(η)− 2nHn−1(η)

∂ηIn = −ηIn +
√

2nIn−1

∂ηIn−1 = ηIn−1 −
√

2nIn

(88)
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For completeness we define I−1(η) = 0. Then our fields are given by:
A+

B+

A−
B−

 =


In−1ZA
InZB
−In−1ZA
InZB

 (89)

For the second ansatz we again follow the separable solutions of 16 and 15 and write:

∂ηYB − ηYB = −
√

2nYA

∂ηYA + ηYA =
√

2nYB
(90)

In this case the solution is given by:

YA = In(η) , YB = In−1(η) (91)

So now our fields in the second ansatz go like:
InZA
In−1ZB
InZA
−In−1ZB

 (92)

We can perform the same computations for a negative magnetic field qH < 0 but we need to change our
coordinate transformation to

η = −
√
−2Hq

(
y +

kx
2Hq

)
(93)

Considering the same ansatz as we took in 84 we get the following solutions for our fields with a negative
magnetic field

Ansatz 1:


InZA
In−1ZB
−InZA
In−1ZB

 , Ansatz 2:


In−1ZA
InZB
In−1ZA
−InZB

 (94)

So to summarize we considered both the positive and negative magnetic field case for both ansatz and
obtained the following fields

qH > 0 : Ansatz 1:


In−1ZA
InZB
−In−1ZA
InZB

 , Ansatz 2:


InZA
In−1ZB
InZA
−In−1ZB



qH < 0 : Ansatz 1:


InZA
In−1ZB
−InZA
In−1ZB

 , Ansatz 2:


In−1ZA
InZB
In−1ZA
−InZB


(95)

Now we finally have a means of talking about the energy levels of strongly coupled fermionic systems.
Namely the n contained inside the Hermite polynomials quantize the motion of our particles. As a result
the energy levels of our system under the influence of a magnetic field is quantized with each Landau
energy level given by n.

There are some things worth noting here. First of all if we look at the equations 85 and 90 we
note the similarity of these equations with the simple harmonic oscillator case for which we had the
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equation 9. Even though these equations clearly have their differences we cant help but noting their
overall similar structure. The idea that the fermions we probed are behaving approximately harmonic
is made even stronger by the solutions 86 and 91 which we found. The Hermite polynomials are the
same solutions we find for the harmonic oscillator when solving its Schrodinger equation analytically
by considering power series. Furthermore we see that flipping the magnetic field interchanges the
η dependent parts. We also see that under a flip of the magnetic field the roles of the two ansatz
interchange which gives us reason to believe that the two ansatz describe an aligned and anti-aligned
system.

4.6 ω = 0 case

Like we mentioned before a lot of interesting physics can be found by numerically studying the spectral
functions. Hence we would like to perform some computations of the spectral functions in this section
but due to time shortage we could unfortunately not explore the functions numerically.
We will compute the spectral functions 80 for the simplest case of ω = 0 , H = 0. Furthermore we recall
that we applied the restriction m = 0. We can immediately note that in the case of ω = 0 we no longer
need the condition A±(y, 1) = 0 since the diverging terms in ω no longer pose a problem.
For this case we need to redefine our fields in 73 as

χ±(z) = a±(z) (1− z)

√
2
√

3k2 − 2q2Q2

6

ξ±(z) = b±(z) (1− z)

√
2
√

3k2 − 2q2Q2

6

(96)

Note that because of the restriction H = 0 the y-dependency of the fields vanishes. Next we define the
fields A± , B± as before 76 , and gain the following equations of motion:

√
f

(
∂z −

√
2
√

3k2 − 2q2Q2

6(1− z)

)
A+ = i

2qQ(1− z)√
f

A+ + ikxB+

√
f

(
∂z −

√
2
√

3k2 − 2q2Q2

6(1− z)

)
A− = i

2qQ(1− z)√
f

A− − ikxB−

√
f

(
∂z −

√
2
√

3k2 − 2q2Q2

6(1− z)

)
B+ = −i2qQ(1− z)√

f
B+ − ikxA+

√
f

(
∂z −

√
2
√

3k2 − 2q2Q2

6(1− z)

)
B− = −i2qQ(1− z)√

f
B− + ikxA−

(97)

Again by plugging the expanded form of the field f as f = 6(1 − z)2 into the equations of motion and
expanding the equations of motion at the event horizon we get the following boundary conditions:

A+(1) = − 1

6
√
k

(
2qQ+ i

√
2
√

3k2 − 2q2Q2
)
B+(1)

A−(1) =
1

6
√
k

(
2qQ+ i

√
2
√

3k2 − 2q2Q2
)
B−(1)

(98)

Now if we consider the case of B+(1) = B−(1) we get A+(1) = −A−(1). This then yields us the following
green’s functions at the event horizon:

G+ = i
χ+

ξ−
= i

B+ −A+

B+ +A+
= i

1 + 1√
6k

(
2qQ+ i

√
2
√

3k2 − 2q2Q2
)

1− 1√
6k

(
2qQ+ i

√
2
√

3k2 − 2q2Q2
) =

i+ 1√
6k

(
i2qQ−

√
2
√

3k2 − 2q2Q2
)

1− 1√
6k

(
2qQ+ i

√
2
√

3k2 − 2q2Q2
) =

i+ 1√
2

(
i2qQ−

√
2
√

3k2 − 2q2Q2
)

√
3k − 1√

2

(
2qQ+ i

√
2
√

3k2 − 2q2Q2
)

(99)
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Only taking the real part of the greens function gives us:

G+ = −
√

3k2 − 2q2Q2

√
3k −

√
2qQ

(100)

In a similar way we find

G− =

√
3k2 − 2q2Q2

√
3k +

√
2qQ

(101)

Another expansion for the fields we also could have taken is

χ±(z) = a±(z) (1− z)
−

√
2
√

3k2 − 2q2Q2

6

ξ±(z) = b±(z) (1− z)
−

√
2
√

3k2 − 2q2Q2

6

(102)

Which then would have given us the following conditions at the event horizon:

A+(1) = − 1

6
√
k

(
2qQ− i

√
2
√

3k2 − 2q2Q2
)
B+(1)

A−(1) =
1

6
√
k

(
2qQ− i

√
2
√

3k2 − 2q2Q2
)
B−(1)

(103)

Again by taking B+(1) = B−(1) we get A+(1) = −A−(1) but this time with our Green’s function given
by:

G+ =

√
3k2 − 2q2Q2

√
3k −

√
2qQ

(104)

G− = −
√

3k2 − 2q2Q2

√
3k +

√
2qQ

(105)

5 Conclusion

We have studied the energy levels of strongly coupled fermionic systems subject to a magnetic field by
means of the AdS/CFT duality. Knowing that such strongly coupled systems are difficult to study both
analytically and numerically with the usual tools we use to describe weakly coupled systems, we tried
studying these systems by means of the AdS/CFT duality. For this we probed our bulk fermion into a
dyonic black hole where we could solve the dynamics of the bulk using weak gravity in 4 dimensional AdS
space. Here we studied the dynamics of the bulk propagating in 4d AdS space by considering separable
solutions. We have found the discrete behavior of the probe fermion in the presence of a magnetic field
where each n correspond to a different Landau level. Furthermore we noted that the solutions to the
fields we found resemble those of the simple harmonic oscillator which is an interesting phenomena. Also
we noted that in the different ansatze we could take a flip of the magnetic field interchanges the roles of
the two ansatz which gives us reason to believe that the two ansatz describe an aligned and anti-algined
system.
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