
Symbolic Inference of Partial Specifications to

Augment Regression Testing

Koen Wermer
Utrecht University

Student number: 3705951

April 21, 2017

1

1 Introduction

A large part of the costs (50-80% [17]) of software is due to maintenance. A
big part of these costs are due to retesting the software to discover newly
introduced bugs (also known as regression testing) [17]. We experiment with
an approach that may reduce the cost of regression testing by detecting a part
of these bugs fully automatically, by generating partial specifications in the
form of Hoare triples [1] for both versions of the program (the old version and
the new one) and comparing them to eachother. We use a static approach to
generate these Hoare triples from source code. We chose Java as the target
language for our analysis, because it is widely used and because a lot of the
language constructs of Java pose practical challenges that theoretical languages,
such as the language considered by Hoare in [1], do not. Because regression
testing is a practical problem, it is only natural to perform our experiments on
a practical language.

Regression testing, or testing in general, never fully guarantees that the
software does not contain errors, so any method that can find errors may
find errors that hand written tests do not find. Therefore, our program may
increase the number of errors detected without requiring additional work from
the programmer. The research question we try to answer is: ”Can we detect
a decent amount of introduced mistakes without generating too many false
positives by comparing partial specifications of the original program to those
of the updated version?” The terms ”decent” and ”too many” are defined by
comparing our approach to the tool Daikon [7]. By doing so we’ll also find
an answer to the question: ”Can our approach be used in combination with
Daikon to achieve better results?”

1.1 Partial specifications

A way to specify the behaviour of a program (without side effects) is to
specify the output value for every possible input value. A practical way of
doing so is to abstract over sets of values with the same behaviour, defining
these sets using predicates. For example a program sqrt that calculates the
square root (when we only consider real numbers) could have the specification
{in ≥ 0} sqrt {out =

√
in} (also known as a Hoare triple [1]) which says that

for every input value of at least zero, the output value will equal the square
root of the input value. This specification does not say anything about the
behaviour of the program if it is executed with an input value lower than
zero and it is therefore a partial specification. We could also add the partial
specification {in < 0} sqrt {out = −1} which states that our implementation
of sqrt handles negative input by outputting -1. Together, these two partial
specification completely describe the behaviour of the program. This makes
them useful for catching bugs. If sqrt satisfies both specifications it calculates
the square root correctly, and if it doesnt satisfy either of the specifications it
indicates a bug (in this case, perhaps negative input is handled differently).
The partial specifications {in = 0} sqrt {out = 0} and {in > 0} sqrt {out > 0}
are also valid, but not very useful: the identity function also satisfies these
specifications. If we were to use these specifications to check for errors and the
programmer accidentally returned the input directly (rather than, for exam-

2

ple, returning a local variable containing the root) the error would go unnoticed.

In the previous example, {in ≥ 0} sqrt {out =
√
in} is objectively more

accurate in describing the square root function than {in = 0} sqrt {out = 0}
and {in > 0} sqrt {out > 0} are combined. However, there is no total order for
partial specifications in terms of accuracy. This means that, generally speaking,
it is hard to quantify ’usefulness’ for partial specifications, as it depends on the
kind of mistakes the programmers make. Figure 1 shows how different kind of
mistakes can be caught by different Hoare triples.

1.2 Regression testing

We want to infer partial specifications from the source code of a program with-
out requiring additional work from the programmer. As a result, the inferred
specifications will be useless when testing the original code. However, they can
be used when performing regression tests: if refactored code no longer satisfies
the original specifications, we know that the refactoring introduced a bug. The
amount of bugs that can be found this way is determined by the strength of the
inferred specifications. We expect these to be rather weak, as we do not want
to burden the programmer and therefore do not have any knowledge about the
intended behaviour of the target program. Because of this, our approach is not
intended to replace manual regression testing, but rather to accompany it: we
might catch bugs that slipped past the manual tests (at no additional cost of the
programmer) or achieve the same amount of test coverage with less manually
written tests.

1.3 Inferring the specifications

To create partial specifications for a Java program S, we start with a post-
condition Q and reason backwards over the list of statements that S consists
of, calculating the weakest liberal pre-condition (wlp). This is the weakest
predicate that guarantees that Q will hold after executing S if we assume that S
will terminate. From Q, we’ve then created the Hoare triple {wlp(S,Q)}S {Q}.
It is not possible to calculate the wlp for arbitrary programs and post-conditions
in finite amount of time (if it were, it would imply the existence of an algorithm
that solves the halting problem:

wlp(S; assert(false), Q)

equals true if and only if S does not terminate). Where it does not cause
confusion, we’ll also use wlp to refer to our so-called ”approximation” of the
wlp.

2 The wlp transformer

To answer our research question, we have implemented a wlp transformer for
Java programs. The transformer is written in the functional programming
language Haskell [18]. The transformer is a protoype, as it does not fully
support all Java syntax and is not as accurate as could be.

3

{in = 0} sqrt {out = 0}
{in > 0} sqrt {out > 0}
{in > 0} sqrt {out < in}
s q r t (double d)
{

double rootd ;

rootd = math . s q r t (d) ;

//Return the r e s u l t
return rootd ;

}

(a) Original code

{in = 0} sqrt {out = 0}
{in > 0} sqrt {out > 0}
{in > 0} sqrt {out < in}
s q r t (double d)
{

double rootd ;

// Spec i f y how nega t i v e
// input i s handled
i f (d >= 0)

rootd = math . s q r t (d) ;
else

rootd = −1;

//Return the r e s u l t
return d ;

}

(b) Refactoring 1: The handling of
negative input is made explicit, but the
wrong variable is returned.

{in = 0} sqrt {out = 0}
{in > 0} sqrt {out > 0}
{in > 0} sqrt {out < in}
s q r t (double d)
{

double rootd ;

// Spec i f y how nega t i v e
// input i s handled
i f (d > 0)

rootd = math . s q r t (d) ;
else

rootd = −1;

//Return the r e s u l t
return rootd ;

}

(c) Refactoring 2: The handling of
negative input is made explicit, but the
wrong operator is used (> instead of
>=).

{in = 0} sqrt {out = 0}
{in > 0} sqrt {out > 0}
{in > 0} sqrt {out < in}
s q r t (double d)
{

double rootd ;

// Spec i f y how nega t i v e
// input i s handled
i f (d == 0)

rootd = math . s q r t (d) ;
else

rootd = −1;

//Return the r e s u l t
return rootd ;

}

(d) Refactoring 3: The handling of
negative input is made explicit, but the
wrong operator is used (== instead of
>=).

Figure 1: sqrt satisfies three Hoare triples. The function is refactored to
handle negative input explicitly and a bug is introduced in three different ways.
Each bug is only caught by one of the Hoare triples.

4

assignments
operators
method calls
objects
if-then
if-then-else
conditional expression
while
do
basic for loop
enhanced for loop
empty
assert
switch
break
continue
return
throw
try-catch
try-catch-finally
labels
synchronized
arrays
literal arrays
this
lambda
method reference
instanceof

Figure 2: Java
constructs that are
implemented in our
prototype. Red colored
constructs are not
implemented.

As stated in the introduction, we can not calcu-
late the wlp in such a way that it is both sound and
complete, so the wlp we’re working with will always
be an approximation. This means we had to make
a decision: do we want this approximation to be on
the weaker side or on the stronger side? We chose
the weaker side, based on the following reasoning:
in a scenario where we can not determine the wlp
we can choose between the weakest version, true (in-
dicating the post-condition will always hold), or the
strongest version, false (indicating the post-condition
will never hold). By definition, the wlp assumes ter-
mination. This means that if, reasoning backwards
from the last statement of the program, we reach
false as wlp somewhere in the middle, it will con-
tinue to stay false and the wlp of the program will
equal false.1 However, if the wlp of the second half
of the program is true, it can still become stronger
when reasoning backwards over the first half if the
first half contains (generated) assertions. This means
that, even if we can not determine the wlp of the sec-
ond half of a program, we can differentiate between
different mutations of the program based on the first
half of the code, allowing us to detect changes that
otherwise go undetected.
Our algorithm follows the logic of Hoare [1] where
applicable. This supplies us with a formula to deal
with assignments x = e, as long as e does not have
side-effects, and procedural composition S1;S2. In
particular, this means we deal with blocks of multiple
statements by starting at the last one:

wlp(S1;S2, Q) = wlp(S1,wlp(S2, Q)) (1)

The implementation of other statements is de-
scribed below. The final wlp function has a lot more
parameters to deal with concepts such as exceptions
and breaking of loops. We’ll introduce these parameters one at a time and omit
parameters that are just passed along. For example, equation 1 is valid, but

1This results from the rule of procedural composition (;) [1]. Procedural composition is
associative, therefore equation 1 applies for arbitrary sequences of statements S1 and S2.
The post-condition false can never be satisfied, therefore if wlp(S2, Q) equals false then
wlp(S1;S2, Q) must also equal false. Any information about S1 is lost in this transformation,
so we want to avoid this situation.

5

can also be written explicitly as:

wlpc,mc(S1;S2, Q,B,E,C,R)
=

wlpc,mc(S1,wlpc,mc(S2, Q,B,E,C), B,E,C,R)

The additional parameters are needed for dealing with specific language con-
structs of Java, and will be explained later.
In the current prototype not all Java constructs are implemented, but the most
widely used are. Figure 2 gives an overview of the language constructs that
are currently supported. Furthermore, our transformer expects code to be pre-
processed such that all method and variable names are unique (no shadowing
or overloading is allowed) and all member-variables of objects are explicitly
referred to with the use of the keyword this.

2.1 Unexpected exceptions

Besides generating the wlp for a given post-condition, our transformer also
generates assertions for statements that may result in an exception. In the
current implementation, exceptions are viewed as an inability to satisfy the
post-condition. This means that throw-statements are equivalent to assert
false. Statements that may throw an unexpected exception can also be
rewritten to reflect this behaviour. We currently only implemented this
for array access. Figure 3 shows how we can modify source code to make
index-out-of-bounds-exceptions explicit.

S

int [] a ;
int x , n ;
. . .
x = a [n] ;

S’

int [] a ;
int x , n ;
. . .
i f (n >= 0 && n < a . l ength)

x = a [n] ;
else

throw new indexOutOfBoundsException () ;

Figure 3: S and S’ are equivalent, but S’ makes unexpected exceptions thrown
by S explicit

2.2 Expressions

Expressions in Java can have side-effects. This means that they may have an
effect on the post-condition. Furthermore, expressions may consist of multiple
expressions, combined using operators or methods, each of which can have side-
effects. These side effects have to be dealt with in the correct order. For
expression that are executed as statements, such as x++, this is easy: x++ is
equivalent to the assignment x = x + 1. However, x++ is evaluated to x and
this expression may be used as part of a larger statement. For example, the

6

T(n) = (n, empty) for all primitive values n
T(v) = (v, empty) for all variables v
T(x++) = (x, x = x + 1)
T(++x) = (x + 1, x = x + 1)
T(x--) = (x, x = x - 1)
T(--x) = (x - 1, x = x - 1)
T(+e1) = T(e1)
T(−e1) = (−Te(e1), Ts(e1))
T(e1 ⊕ e2) = (v1 ⊕ v2, Ts(v1 = e1); Ts(v2 = e2)) for all binary operators ⊕
T(x = e1) = (e1, Ts(e1); x = Te(e1))
T(x ⊕= e1) = T(x = x ⊕ e1) for all assignment operators ⊕=

T(e1?e2 : e3) = (v1, if(e1) then v1 = e2 else v1 = e3)

Figure 4: The function T separates expressions from side-effects. By
definition, T (S) = (Te(S), Ts(S)) where Te(S) is the expression part of S and
Ts(S) is the side-effect part. A statement S will be translated into Ts(S).

statement y = x++ increments x by 1 and assigns the old value of x to y.
Simple cases like this are handled directly:

wlp(y = x++, Q) = wlp(y = x;x = x + 1, Q)

Expressions that consist of multiple expressions combined with operators, are
rewritten to a sequence of simple cases by introducing new variables. For ex-
ample: if v1 and v2 are not referred to by the post-condition Q, we have the
equality:

wlp(y = x++− x++, Q)
=

wlp(v1 = x++; v2 = x++; y = v1 − v2, Q)

The order of the statements is important here. The ’−’ operator first fully evalu-
ates the left argument, so the right argument is affected by potential side effects
resulting from evaluating the left argument. The translation to a sequence of
assignments makes this explicit. Figure 4 shows the definition of the translation
function for expressions consisting of variables, primitive values and operators.
How we deal with expressions in the form of methods and expressions that are
part of statements (such as if-then-else) will be explained later.

2.3 If-then-else

For the post-condition Q to be satisfied after executing an if-then-else statement,
one of the following conditions must be met: the guard is true and executing
the then-block will satisfy Q or the guard is false and executing the else-block
will satisfy Q. The implication also hold in the reverse direction, meaning that
we have the equality:

wlp(if(b)S1 else S2 , Q) = (b ∧wlp(S1, Q)) ∨ (¬b ∧wlp(S2, Q))

We assume here that evaluation of the guard b does not have any side-effects.
This is enforced by introducing a unique variable v1 in case b does have side-
effects, rewriting

if(b) S1 else S2

7

to

v1 = b; if(v1) S1 else S2

2.4 Switch and break

Switch statements are rewritten to nested if-then-else statements with one if-
then-else statement for every label. Because Java allows control to fall through
to the next case if no break statement is used, we have to copy the remain-
ing code in the switch block for every case (i.e. all the code following the
label). Figure 5 shows an example of a switch statement being rewritten. The
transformation does not necessarily produce an equivalent program (in fact, the
rewritten program might not even compile), but the wlp function is defined in
such a way to deal with this. Some programming languages, such as C, allow
case labels to refer to a statement inside the body of a loop. This is not allowed
in Java and therefore the translation to an if-then-else statement can always be
made.

switch (x)
{

case 0 : y = 0 ;
case 1 : y = 1 ;

break ;
default : y = 42 ;

}

i f (x == 0)
{

y = 0 ;
y = 1 ;
break ;
y = 42 ;

}
else i f (x == 1)
{

y = 1 ;
break ;
y = 42 ;

}
else
{

y = 42 ;
}

Figure 5: Switch statements can be rewritten to a set of nested if-then-else
statements.

For the translation in figure 5 to be correct, our wlp function must take into
account that the break statements inside the if-then-else are meant to stop the
execution of the if-then-else statement and not the surrounding loop or switch (if
there is even any). In order to make this explicit, we annotate the function with
this information: wlp(S,Q,B) denotes the weakest liberal pre-condition such
that Q will hold if S terminates without encountering a break statement, and
the predicate B will hold if a break is encountered. If S is a switch statement
and Site is the translation to an if-then-else block, we get the equality

wlp(S,Q,B) = wlp(Site, Q,Q)

8

We can now also define the wlp of a break statement:

wlp(break,Q,B) = B

2.5 Exceptions and try-catch-finally

To handle a try-catch-finally statement, we use a similar approach to the one
we used to deal with break in order to deal with throw. We treat the execution
of a try-catch-finally statement as an execution of the code within the try-block
and the (potential) finally-block, but also keep track of the catch-blocks and
whether or not a finally block was available. throw statements simply transfer
the control to the matching catch or finally block, if available. In order to define
the calculation, we have to further annotate the wlp function with a structure
c that contains the necessary information. c consists of an (ordered) list of
catch-blocks and a boolean value indicating whether or not a finally-block is
present. A catch-block consists of a block of statements and the type of the
exception that can be caught by the block.

S

try
{

S0 ;
}
catch (E1 e1)
{

S1 ;
}
catch (E2 e2)
{

S2 ;
}
. . .
catch (En en)
{

Sn ;
}
f ina l ly
{

Sf ;
}

Figure 6: A
general
try-catch-finally
statement with n
catch blocks.

If S is a try-catch-finally statement as defined in figure
6, the rule to dealing with try-catch-finally becomes this:

wlpc(S,Q,B) = wlpc′(S0,wlpc(Sf , Q,B), B)

where c′ contains the list of catch-blocks and the value
true to indicate a finally block exists. If there is no
finally-block, the rule becomes

wlpc(S,Q,B) = wlp(c′,c)(S0, Q,B)

where c′ contains the list of catch-blocks and the value
false. Note that we tuple the new catch information c′

with the old information c, essentially creating a stack
of catch information (c might be a tuple itself, forming
the rest of the stack). This is needed in case S0 throws
an exception that can not be caught by any of the catch
blocks. In this case the exception can still be caught by
an encompassing try block. If there is a finally block
present, this is not needed because exceptions that are
not caught by any of the catch blocks are caught by the
finally block.
Because an exception inside of a try block prevents the
rest of the try block from being executed, we need to
keep track of what the original post-condition at the end
of the try block. We need to further extend the parame-
ters of the wlp function with an additional predicate E:
wlpc(S,Q,B,E) calculates the wlp over S where B and
c are as previously defined, Q is the post-condition that
needs to be satisfied if the rest of the block that S is part of will be executed,
and E is the post-condition that needs to be satisfied if the rest of the block

9

will not be executed. Most previously defined rules do not affect E and just
pass it along (as they do with B and c). For example, the rule for composition
becomes

wlpc(S1;S2, Q,B,E) = wlpc(S1,wlpc(S2, Q,B,E), B,E)

However, we need to update the rules for try-catch and try-catch-finally:

wlpc(S,Q,B,E) = wlpc′(S0,wlpc(Sf , Q,B,E), B,wlpc(Sf , Q,B,E))

in case there is a finally block and

wlpc(S,Q,B,E) = wlp(c′,c)(S0, Q,B,Q)

if there is none.

We now have four separate possibilities to deal with when a throw statement
occurs:

1. If the exception is caught by the nth catch block of c, we can use the rule

wlp(c,c′)(throw e,Q,B,E) = wlpc′(Sn, E,B,E)

which comes down to inserting Sn in place of the throw statement and
ignoring the rest of the code in the block.

2. If the exception is not caught by a catch block of c, but c indicates there
is a finally block, we can simply ignore the error and the rest of the block.
The rule for try-catch-finally has already taken the code of the finally
block into account. In this case we can use the rule:

wlp(c,c′)(throw e,Q,B,E) = E

3. If the exception is not caught by a catch block of c and there is no finally
block, we have to throw the exception. However, this try-catch statement
might be part of another try block, so we let the next block deal with it:

wlp(c,c′)(throw e,Q,B,E) = wlpc′(throw e,Q,B,E)

4. The throw statement might not be part of a try block at all. We use ()
to indicate this. In this case we know that the exception will definitely
be thrown, which in our current implementation comes down to asserting
false:

wlp()(throw e,Q,B,E) = false

Until now, we have assumed that we can determine whether or not an ex-
ception is caught by a catch block. This is not always the case. The type of
exceptions, just like the type of other Java objects, can change dynamically.
Because our analysis is static, we have to make an approximation, which causes
imprecision. Furthermore, our current implementation does not take (user de-
fined) class hierarchy into account. If an exception e of type T is thrown, we
only look at catch blocks that match the type T exactly, or that catch exceptions
of the most general type Exception.

10

2.6 Loops

Since we do not want to burden the programmer with the obligation to specify a
meaningful invariant for loops or recursive calls, we choose an unrolling approach
(similar to the translation from loops as described in [3]). For a while loop
while(b, n, S), where b is the guard, S is the body and n is the maximum
number of executions of the body that we want to include in our analysis, we
can approximate the wlp with the two (simplified) rules

{¬b =⇒ Q}while(b, 0, S) {Q}

and

{¬b =⇒ Q ∧ b =⇒ wlp(S;while(b, n− 1, S), Q)}while(b, n, S) {Q}

These rules assume that b has no side-effect. As discussed earlier, Java expres-
sions can have (multiple) side effects. In order to deal with this, we use the
same approach as when dealing with side effects of sub-expressions: we intro-
duce a new variable for the guard. The guard is evaluated at the start of every
iteration of the loop, with side effects occurring even if the guard evaluates to
false. Figure 7 shows how we can transform the while loop to reflect this be-
haviour. For-loops and do-loops can be easily rewritten to while-loops, and from
there transformed to a while-loop with no side-effects in the guard. Enhanced
for-loops are currently not supported, but they can also be rewritten as they
are syntactic sugar for a combination of a while loop in combination with an
Iterator object.

while (b)
{

S1 ;
}

v1 = b ;
while (v1)
{

S1 ;
v1 = b ;

}

Figure 7: A transformation of a while loop in order to deal with possible
side-effects of the guard b.

The next step is to extend our two rules for handling while loops without
side effects in the guard, to reflect the additional information that is passed.
For the base case, the body is completely ignored, so we do not have to deal
with break statements. We also do not have to deal with try-catch, as only
the guard is evaluated, and it has no side effects (therefore no exceptions are
thrown). The rule is therefore

wlpc(while(b, 0, S), Q,B,E) = ¬b =⇒ Q

In case we do execute the body, we have to pass try-catch information to the
calculation that handles the body, as well as supplying the information that

11

break statements finish the execution of the loop. This gives us the rule

wlpc(while(b, n, S), Q,B,E)
=

(¬b =⇒ Q) ∧ (b =⇒ wlpc(S;while(b, n− 1, S), Q,Q,E))

We can now use the same rule for dealing with break that we use in the context
of switch statements:

wlpc(break,Q,B,E) = B

A continue statement indicates that the current iteration is finished. We can
not express this with the current parameters, so we introduce a new parameter
C. When unrolling a loop, we pass the information that continue refers to the
next iteration:

wlpc(while(b, n, S), Q,B,E,C)
=

(¬b =⇒ Q) ∧ (b =⇒
wlpc(S;while(b, n− 1, S), Q,Q,E,wlpc(while(b, n− 1, S), Q,Q,E,C)))

The rule for continue then becomes rather simple, similar to break:

wlpc(continue,Q,B,E,C) = C

As discussed earlier we chose for the weak approximation, using implica-
tions rather than conjunctions. If a specific execution of a loop iterates more
than a specified number n times we simply assume that the post-condition will
hold. This means our analysis is not sound: the pre-condition that is inferred
only guarantees that the post-condition will hold for executions that execute
the body of the loop at most n times. It is, however, complete: if a loop will
satisfy the post-condition after execution, than the pre-condition holds before
execution. In our experiments we set the maximum number of iterations n to
1.

2.7 Method calls

For method calls, the idea is fairly similar to loops: we take the execution of
the body into consideration if and only if it does not go over the set amount
of recursive calls. Otherwise, we just assume the call will always satisfy the
post-condition. Since we set the maximum number of iteration to 1, our ap-
proximation of the wlp for recursive calls equals true. To deal with return, we
add an additional parameter R. Figure 8 shows how we can inline a call to a
static method without a return value. We assume here that the parameters do
not have side-effects. In case parameters do have side-effects, we get rid of them
by introducing variables, the same way we did for loops. If Sinline is the body
S of the method m that is transformed in this way, the rule

wlpc,mc(m(p1, .., pn), Q,B,E,C,R) = wlpc,mc′(S
inline, Q,B,E,C,Q)

12

applies if we are not on the recursion limit. Here p1, .., pn are the parameters of
m and mc is a dictionary that denotes the number of calls that still can be made
for each method in the program. mc′ is the updated version of mc, where we
subtract 1 from the the value for m. Because we pass this information for every
method in the program, we also deal with mutually recursive calls correctly. If
we are on the recursion limit (i.e. mc holds the information that we no longer
want to look at the body of m), we have the rule

wlpc,mc(m(p1, .., pn), Q,B,E,C,R) = true

We can now define the wlp of return statements:

wlpc,mc(return,Q,B,E,C,R) = R

If the method returns a value, we also introduce a new unique variable for the
return value. return statements are treated as assignments to this variable, as
well as referring to the return condition R. Figure 9 shows how this transfor-
mation is done. The rules for calculating the wlp stay the same. In the case
that we reached the recursion limit, we do not look at the body and therefore
can not produce a return value. However, in that case the wlp is set to true,
so it does not matter what value we substitute for the return variable of the
function, as the expression true does not depend on that variable.

m(e1, .., en) ;

stat ic void m(p1, .., pn)
{

i f (b)
return ;

S ;
}

//Assign the parameters
p1 = e1 ;
. . .
pn = en ;

//Execute the body
i f (b)

return ;
S ;

Figure 8: Inlining a call to a static void method.

13

x = m(e1, .., en) ;

stat ic int m(p1, .., pn)
{

S ;
return y ;

}

//Assign the parameters
p1 = e1 ;
. . .
pn = en ;

//Execute the body , modi fy ing
//any re turn s ta tements
S ;
v1 = y ;
return ;

//Execute the encompassing
// s ta tement
x = v1 ;

Figure 9: Inlining a call to a static method that returns a value.

So far we’ve only considered static methods. Because we pre-process the
code to make references to the current instance explicit using this, we can
easily extend our approach to calls on objects by substituting the object for
every occurrence of this. Figure 10 shows an example of this. We do get some
imprecision, however, due to the fact that types of Java objects can change
dynamically. If there are multiple possibilities, we choose the method that
matches the originally declared type of the object.

x = o .m(e1, .., en) ;

class O
{

int y ;
int m(p1, .., pn)
{

S1 ;
this . y = z ;
S2 ;
return this . y ;

}
}

//Assign the parameters
p1 = e1 ;
. . .
pn = en ;

//Execute the body , modi fy ing
// re turn and t h i s
S1 ;
o . y = z ;
S2 ;
v1 = o . y ;
return ;

//Execute the encompassing
// s ta tement
x = v1 ;

Figure 10: Inlining a call to an instance method that returns a value.

14

public stat ic void main ()
{

P o r i g i n = new P(1 , 0) ;
o r i g i n . px −= 1 ;

}

public class P
{

public f loat px , py ;

public P(f loat x , f loat y)
{

this . px = x ;
this . py = y ;

}
}

public stat ic void main ()
{

// Introduce a name
P o r i g i n = ob j e c t1 ;

//Assign the parameters
x = 1 ;
y = 0 ;

//Constructor code
ob j e c t1 . px = x ;
ob j e c t1 . py = y ;

//Rest o f main code
o r i g i n . px −= 1 ;

}

Figure 11: Inlining of constructor calls: On the left we have the original
code, and on the right we have the main function how it is handled by the
transformer.

2.8 Objects

When creating a new object, we give it a unique name. We then inline the
constructor, replacing every this-keyword by the introduced name (as stated
before, we assume that references to the current object are made explicit using
this during pre-processing). Figure 11 gives an example of such a transforma-
tion.

We also have to add an additional rule for handling assignments to fields of
objects. The original rule,

wlp(x = e,Q) = Q[e/x]

where Q[e/x] denotes substitution of every free occurrence of x in Q by e, also
hold for class types. In this case e can be thought of as an expression evaluating
to an integer, representing the location of the object in memory. The tricky
part is dealing with assignments of the form o.x = e. This does not only affect
every occurrence of o.x in Q, but also every occurrence of p.x where p is any
expression that points to the same location as o. Because we do not know
what pointers will evaluate to o, we have to consider both possibilities using an
if-then-else-expression:

wlp(o.x = e,Q) = Q[if o = p then e else p.x/p.x]∀p∈Exp

where Exp is the set of all expressions, o is an object and x is a field of o.
In practice, we only apply the substitution for those expressions p in the post-
condition that have the same type as o.

15

2.9 Limitations

There are some limitations to this approach in comparison to dynamic ap-
proaches. The most obvious one is the inability to reason about library methods.
Since we calculate the wlp statically and do not have access to the source code
of library methods, we do not know how a library method call will affect the
post-condition. In our prototype we just assume the a library method call will
satisfy the post-condition (however, there are ways to make the analysis more
accurate by considering the parameters of the method call, see ’future work’).
Another limitation is caused by the way we deal with loops and recursion. Sadly,
there is no way to calculate the sound and complete wlp fully automatically
(without an invariant supplied by the programmer). A side effect of our solution
is that the inferred invariant is sensitive to changes in the control flow: the order
in which loops are executed and methods are called affects the wlp, even when
all statements commute with eachother. An example is given below.

S

for (int i = 0 ; i <= 5 ; i++)
{

i f (i == 5)
a s s e r t fa l se ;

}

S’

for (int i = 5 ; i >= 0 ; i−−)
{

i f (i == 5)
a s s e r t fa l se ;

}

Figure 12: A mutation that would result in a false positive.

In the above example, wlp(S,Q) will evaluate to true, while wlp(S′, Q) will
evaluate to false (assuming we unroll loops less than 6 times). Therefore
wlp(S,Q) =⇒ wlp(S′, Q) will evaluate to false and we might conclude that
S′ introduces a new bug even though S and S′ are equivalent.

3 Research methodology

The wlp transformer is used for regression testing in the following way. We
consider a program S and a modified version of the program, S′. S′ may refactor
some of the code of S, fix some bugs and add additional features, but the
main assumption is that methods that have the same name and parameters are
intended to behave to same (except for possibly some bug fixes). Using the wlp
transformer and a post-condition Q, we then generate, for every method m in
S that has a matching method m′ in S′, the expression

wlp(m,Q) =⇒ wlp(m′, Q) (2)

To determine whether or not this expression is true, we use the theorem prover
Z3 [22]. If Z3 can prove the generated expression to be valid for all such
pairs m and m′, we say that S′ did not introduce any errors (as far as we can
tell), otherwise S′ likely introduced an error. The reason we only consider
the implication in one direction (rather than program equivalency) is that our
approach should be useful for regression testing. Input that does not violate the

16

Construct BaseSecantSolver GradientFunction Iterator

If-then(-else) 15 0 6

Switch 3 0 0

Assert 0 0 0

Loops 1 2 1

Break/continue 7 0 0

Try-catch(-finally) 0 0 2

Throw 12 0 6

Array access 0 5 3

Table 1: The number of language constructs used for each test class.

post-condition or any generated constraints (as described in section 2.1) should
still not do so after the code has been modified (this is enforced by equation 2).
However, if certain input used to violate the post-condition, but no longer does,
then this might just be a bug fix. For example, wlp(m′, Q) =⇒ wlp(m,Q)
might be false as the result of a bug that caused an unexpected exception to
be thrown in S that was fixed in S′. Equation 2 gives the programmer the
freedom to fix these kinds of bugs, while still enforcing previously valid input
to still be valid.

We test this approach by performing a mutation test (to test how many
errors we can detects) and a false positives test (to test how often we generate
a false positive).

3.1 Mutation test

To test the ability to detect errors with our approach we use the Major mu-
tation tool [19]. Major can create a large number of mutants of the target
program and output the mutated source code. We tested our prototype on
three real-world classes from the Apache Commons Mathematics Library [23]:
BaseSecantSolver, Iterator and GradientFunction. We selected the classes
based on the language constructs they use. BaseSecantSolver is an abstract
class2 that uses a multiple switch statements. Iterator is a local class that uses
try-catch-statements and relatively many throw statements (6 throw statements
in 63 lines of code). GradientFunction is the only class of these test cases that
uses arrays (this is note-worthy, as the only type of unexpected exceptions im-
plemented by our prototype are index-out-of-bounds-exceptions, as discussed
in section 2.1). Table 1 shows the constructs that are used per class, and how
many of them are used. Since loops are all translated to while-loops, as dis-
cussed in section 2.6, we don’t differentiate between different kind of loops in
the table. The most basic constructs (assignments, operators and method calls)
are omitted from the table, but are used in all of the test classes.

2BaseSecantSolver is abstract, but it does have an implementation for most of the meth-
ods, so we can analyze those methods.

17

Construct 2D to
1D

BST Fibo-
nacci

Mins-
Maxs

Norma-
lizer

Stack Vector Vector-
01Gen

If-then(-else) 0 7 0 4 3 4 1 1

Switch 0 0 0 0 0 1 0 0

Assert 0 0 0 0 0 0 0 0

Loops 7 1 1 4 3 2 3 2

Break/continue 0 0 0 0 0 5 1 0

Try-catch(-
finally)

0 0 0 0 0 0 0 0

Throw 0 0 0 0 3 0 1 0

Array access 5 0 0 16 6 4 6 1

Table 2: The number of language constructs used for each class used in the
false positive test.

3.2 False positives test

To test how many false positives we generate, we asked two programmers to
makes small refactorings to various classes in such a way that every method
in the refactoring is equivalent to the original version of the method (although
methods may be added or removed). We used 8 test classes and a total of 19
equivalent mutations of these classes for this test. Table ?? shows the constructs
that are used per class of the 8 original classes. Tablekind of mutations shows
in what way these classes have been refactored. Note that some classes have
multiple mutations, and some only have one.

3.3 Baseline test

As a baseline test, we compare our method to the dynamic invariant inference
tool Daikon [7]. Daikon can also be used to infer properties of Java programs
without requiring additional information, so it makes sense to make this com-
parison. We use Daikon as follows: For a given test class and method, we use the
test generator T3 [20] to generate a test suite that covers all reachable branches.
We then run Daikon with the origial class and the test suite to generate a set
of invariants (i.e. properties that hold for every execution in the test suite).
We then run Daikon again, using the test suite and the invariant file, on the
mutations of the original class to check if the invariants still hold. We do this
for every test class and every method and count the number of mutations in
which we find an error (i.e. at least one invariant does not hold).
In order to use T3 and Daikon, we had to make small modifications to the
source code of the test classes, such as adding a public constructor in order to
instantiate member variables, and specifying which implementations of abstract
classes are used. When doing so, we made sure all branches are covered by the
test suite in order to make the comparison fair. We also eliminated the addition
mutations that resulted from Major mutating the added code.

18

Test Class Mutation

2D to 1D
The content of the array is only stored as a 2D array. The
method convert (that converts the 2D array to 1D and stores
it as a member variable) is removed.
The counter k in a nested for-loop (to loop through a 2D
array) that denotes we passed k elements is removed. Instead
this number is calculated from the counters of the inner and
outer for-loops.

BST The nodes of the binary search tree no longer contain a ref-
erence to their parent.

Fibonacci Instead of printing the numbers 0 and 1, followed by a loop
that prints the next n numbers in the Fibonacci sequence, the
loop has been rewritten to iterate twice more and the other
2 print statements are removed.

MinsMaxs
Some <= and >= operators are replaced to improve effi-
ciency.
Two for-loops that loop through an array are merged into
one.
A nested for-loop that loops through each element of each
row in a 2D array is replaced by a nested for-loop that loops
through each element of each column.

Normalizer

An if-then-else statement that throws an exception in the else-
block is changed to an if statement that throws the exception.
The original class only has one method to normalize all values
in a 2D array of doubles. A method is added to normalize a
single double value and the other method now calls this one.
A while-loop is rewritten to a for-loop.
The exceptional control flow is rerouted by throwing a differ-
ent exception and catching it.

Stack
An if statement that returns true is replaced by directly re-
turning the guard.
The original class has two constructors with code-duplication.
This is fixed by calling one constructor from the other using
the keyword this.
A variable denoting the size of the stack is removed from the
data structure. The length of the underlying array is used
instead.

Vector
A return inside a switch-block is replaced with a break. The
return is moved to after the switch-block.
A fall-through case in a switch-block is replaced with a recur-
sive call.
The cases in the switch-block are put in a different order.

Vectors01Generator
A for-loop that only iterated twice is replaced by twice the
statements in the body.
Instead of printing the output line by line in a loop, a string
is constructed in the loop instead and then printed after the
loop.

Table 3: The equivalent mutations for each class used in the false positive
test.

19

Heuristic PC for void
methods

PC for methods that re-
turn a primitive type

PC for methods that re-
turn a reference type

heur0 true true true

heur1 true return value = vret true

heur2 true true return value != null

heur3 true return value = vret return value != null

Table 4: The definitions of the different heuristics. vret is an introduced
variable that appears as a free variable in the wlp. PC stands for
post-condition.

4 Results

We ran the tests with different post-conditions, with post-conditions depending
on the return type of the method. Table 4 summarizes the different heuris-
tics we tried. In these post-conditions, vret is an introduced variable that
appears as a free variable in the wlp of both the mutation and the original
source code. Using, for example, return value = vret as a post-condition can
therefore be interpreted as demanding the return value of the method in the
mutated class to be equal to the return value of the method in the original class.

The three test classes we used for the mutation test are BaseSecantSolver,
GradientFunction and Iterator. BaseSecantSolver contains one large method
that tries to numerically approximate roots of a given function (i.e. values that
are mapped to zero). Most part of this function is a big while-loop. It also
contains a few small methods that do not contain loops. GradientFunction
contains one method to calculate the gradient of a function. The input
and output are represented as arrays of doubles. Iterator is a local class of
OpenIntToDoubleHashMap and contains methods to get the key and value of
the current entry and to advance to the next entry in the hash map. Table 5
shows some statistics about the used test classes. The first three classes in the
table are the classes used for the mutation test. The other classes are used in
the false positives test.

Table 6 shows, for every test class, the number of mutations and the
number of errors detected by each of our heuristics and by Daikon. Because T3
generates test suites randomly, the invariants Daikon infers may be different
every time the test is ran. This also means that the mutations that are detected
may differ every run. Because of this we ran the test 3 times for every class.
Every time Daikon detected the same mutations, except for one test run on the
Iterator class where it detected one additional error that was not detected by
any of our heuristics (this is not shown in the tables).
It can be seen from table 6 that the percentage of errors detected by our
heuristics is by far the lowest for BaseSecantSolver. This is because the
main part of the code is one big while loop for which, generally speaking, the
body is executed multiple times (as it is meant to numerically approximate
roots of a function by iterating). Since we only considers executions that
execute the body as most once, we don’t find any errors by analyzing this
method. The other methods of the class are smaller, and we do in fact
detect errors by analyzing those methods. The fact that we detect a lot

20

Test Class Lines of
code

Number of
constructors

Number of
methods

McCabe complex-
ity per method
(min-max-average)

BaseSecantSolver 185 3 7 1 - 33 - 5.0

GradientFunction 23 1 1 1 - 3 - 2.0

Iterator 63 1 4 1 - 5 - 2.8

2D to 1D 64 1 5 1 - 3 - 2.2

BST 115 1 7 1 - 6 - 2.0

Fibonacci 19 0 1 2 - 2 - 2

MinsMaxs 26 0 1 9 - 9 - 9

Normalizer 22 0 1 6 - 6 - 6

Stack 108 2 11 1 - 7 - 1.8

Vector 39 1 3 1 - 8 - 3.0

Vectors01Generator 33 0 3 1 - 3 - 2.0

Table 5: Some statistics for the used test classes.

more errors when taking the output of functions into account (22 instead
of 2) can be explained by the fact that the smaller functions are easy to
analyze (they don’t contain any loops or recursion) and three of them return a
primitive value. None of the functions of BaseSecantSolver return an object,
so heuristic 2 does not increase the number of errors found relative to heuristic 0.

Table 6 also shows the number of errors detected for the false positives
test. Note that the false positive test does not refer to a single test class, but
is an aggregation over all 8 test classes we used for this test. Daikon infers
invariants that are true for all of the cases in the test suite. Since we use the
same test suite to check the invariants on the mutations, Daikon will never
return a false positive. However, this does not mean that the invariants inferred
by Daikon for the given test suite are actual invariants (when taking all possible
inputs into account). How accurate Daikon is in this aspect is shown in [21].
It can be seen from table 6 that we generate one false positive when we take
the return value of methods that return an object into account. This is caused
by an equivalent mutation of the V ector class that changes the control flow of
a method (that happens to return an object), making it recursive. As shown
in figure 12 our analysis is sensitive to these kind of changes.

Table 7 shows how many errors we can detect if we use both Daikon
and one of our heuristics and count every mutation that is labeled erroneous
by either of the analyses. It can be seen from the table in comparison to table
6 that the set of errors detected by Daikon and the set of errors detected by
our prototype are almost mutually exclusive.

Table 8 shows the size of the wlp, which we define as the number of lit-
eral values and variables occurring in the expression. It also shows the average
run-time per mutation for the mutation test (this includes the time Z3 takes to
check the expression). It shows these numbers for both heur0 and heur3.

3Using an AMD FX-6300 six core processor.

21

Test Total mutations heur0 heur1 heur2 heur3 Daikon

BaseSecantSolver 207 2 22 2 22 3

GradientFunction 26 4 4 6 6 5

Iterator 43 13 20 13 20 7

False positives 19 0 0 1 1 0

Table 6: The total number of mutations for each test and the number of
mutations that were determined to be erroneous by each of our heuristics
compared to Daikon.

Test Total mutations heur0 &
Daikon

heur1 &
Daikon

heur2 &
Daikon

heur3 &
Daikon

BaseSecantSolver 207 5 25 5 25

GradientFunction 26 8 8 10 10

Iterator 43 18 25 18 25

False positives 19 0 0 1 1

Table 7: The total number of mutations for each test and the number of
mutations that were determined to be faulty by each of our heuristics in
combination with Daikon.

Test size of the
wlp (heur0)

average run-
time (heur0)

size of the
wlp (heur3)

average run-
time (heur3)

BaseSecantSolver 49 92ms 56 93ms

GradientFunction 26 15ms 26 16ms

Iterator 133 63ms 139 66ms

Table 8: The size of the wlp (summed over all methods in the class) and the
average run-time3for checking a mutation.

22

5 Related work

Different approaches have been suggested to balance preciseness and cost of
computing a weakest pre-condition. Originally, Hoare introduced Hoare logic
based on axioms that describe which Hoare triples are valid [1]. However, the
language that is considered here is very impractical, as it has no exceptions
or methods and requires the programmer to explicitly annotate loops with
invariants. [2] extends this logic by adding an abort command and further-
more bases the rules on operational semantics of the language (rather than
regarding the rules themselves as axioms). However, it does not deal with
the aforementioned impractical aspects of the language. [3] presents a way
to generate verification conditions for java by compiling the java program to
a primitive guarded-command language, losing some precision in the process.
This guarded-command language is then used to calculate the verification
conditions. To keep flexibility for experimenting with different kinds of trans-
lations from java to the primitive language (balancing trade-offs in different
ways), the authors introduced a sugared guarded-command language. The first
translation step gets rid of a lot of the complexities of java, but without loss of
information (so it does not need to be flexible). The second step is the one that
actually needs to be flexible, and is made easier by the first step. More recently
(in 2008, to be specific), the Boogie language was created for the purpose of
being an intermediate language for program verification [4][5].
Another approach is presented in [6]. Rather than using an intermediate
language, programs are simplified by unrolling loops and recursion a small
number of times (for while loops, this can be done by replacing the loop with a
finite amount of if statements with the same guard and body as the while loop).
For dealing with method calls, specifications of methods are over-approximated.
This implies that if the resulting verification condition is verified (that is, it’s
negation is proven to be unsatisfiable), then it is valid even with the true
specifications of all methods involved. If the negation is satisfiable, satisfying
it produces a counter-example (in the form of input) for the program with the
approximated method specifications. The program can then be ran with the
counter-example as input to find out whether it’s also a counter-example to the
program with the actual code of the methods. If it turns out not to be, then
this disproves the specification for some method and the specification can be
refined: during execution of the counter-example the input and output of every
method call is compared to the approximated specification of that method
and if the pair of input and output does not match the specification, the pair
can be used to make a better approximation of the specification. This process
is repeated until the verification condition is either validated or disproven.
Because all loops are capped at a fixed number of iterations, termination is
guaranteed. However, this means that verified conditions are not necessarily
valid in the original program.

Invariants are properties of a program that do not depend on the input.
Invariants often take the form of predicates that are always true on a specific
line in the program code. For example, a while loop implementing selection
sort has the property that at the end of the body the first i elements of the list
are sorted (where i is the number of iterations performed so far). Invariants
play an important role in creating partial specifications, as they can be used to

23

compute the weakest pre-condition of a loop [1]. A popular tool to dynamically
infer likely invariants is Daikon [7]. Daikon checks for 75 different invariants,
but can also be extended to check for other invariants [7]. Because invariants
are inferred dynamically they are not guaranteed to hold for all possible
executions. By dividing input into clusters of values that follow the same
branch in the program, Daikon may be able to find more valid invariants [8].
Another approach for differentiating between branches is presented in [9]. The
authors specify a method to infer invariants dynamically for different methods
and different branches within the methods. Comments are used to identify
these branches. These comments, together with the inferred invariants, may
then be presented to the programmer for inspection. The invariants are limited
to different kinds of simple invariants. Each kind of invariant had its own
lattice defined on it, so that resulting invariants of multiple executions can be
joined, thus dynamically inferring the invariants. Because of the simplicity of
the invariants, they can be easily verified by the programmer. However, by
performing a mutation test the authors show that the invariants are strong
enough to catch errors and in combination with invariants produced by Daikon
can catch more errors than Daikon by itself [9]. [10] also presents a way to infer
invariants (again by fitting to previously defined invariant patterns), but in
contrast to the previously mentioned papers it focusses on temporal properties,
which can be useful especially when dealing with concurrency. Algebraic
equations form another type of invariant. [11] is concerned with inferring this
kind of invariant. More specifically, equations concerning logged events are
inferred in order to rewrite the event log in such a way that it becomes simpler,
but the new series of events still lead to the same final state. Other properties
of a program that may be viewed as a kind of invariant and can be inferred
dynamically are finite state automata [12].

Computing the weakest pre-condition for a loop with a given post-condition
statically using Hoare logic involves specifying an invariant for the loop [1].
For the approach used in [9] this does not apply, as dynamic inference is
used. The authors of [3] simply use either true or an invariant specified by
the programmer, as generating invariants is not the topic of their research.
They do, however, state that there are a lot of different approaches for refining
invariants in the literature and claim that their program is flexible enough to
easily implement such an approach. One approach is presented in [13]. This
approach is based on the observation that invariants are a weaker version of
the post-condition. Using various heuristics the authors systematically make
the post-condition weaker and check if it’s an invariant. [14] essentially uses
the same approach but in the opposite direction. Their program starts with a
valid invariant which is made stronger until the verification condition is satisfied.

A way to combine (dynamically) inferred partial specifications with test-
ing is presented in [15]. This method is based on inferring partial specifications
dynamically from executing a unit test suite. The number of tests is extended
by iteratively selecting useful tests from a set of tests that are automatically
generated using Jtest [16]. A new test may result in violating the specifications
inferred so far. The authors argue that when this happens, the new test is likely
to cover a feature of the program was not covered by the original test suite,
so when an automatically generated test violates the current specifications the

24

programmer may decide to add it to the test suite.

6 Conclusion

We have shown that partial specifications in the form of Hoare triples can be
used to automatically catch bugs that are introduced into Java code. To show
this, we have built a prototype wlp-transformer and performed a mutation test.
Our transformer, in contrast to the transformer introduced in [3], is applied
directly on Java source code. Even though the wlp-transformer is not as accurate
as can be and does not take all the available information into account (see
’Future Work’), we can use it to detect a significant amount of mutations that
are not detected by Daikon. We have also shown that the number of false
positives generated by using this method is limited, although mapping out the
exact trade-off between true positives and false positives requires more research.

6.1 Future work

As mentioned earlier, our prototype does not support all of the Java constructs.
These constructs can still be added to the program to support a wider range
of Java programs. Our prototype is coded in such a way that it is easy to
add support for Java constructs that are not yet covered. Currently, variable
shadowing and referring to member variables without an explicit this-statement
is not supported and pre-processing for the experiment was done by hand. It
should be relatively easy to write a pre-processor that renames variables to a
unique name and adds explicit this-statements where required.

So far, we’ve only considered the return value of methods when deciding
on a post-condition. However, creating a post-condition that depends on the
entire state of the program may be better at catching errors. If we consider the
entire state of the program, this gives possibilities for a lot of potential post-
conditions. On top of that, there’s a lot of experimentation that can be done
with inserting assertions into the target program. As mentioned, we did this for
accessing arrays, in such a way that the generated assertion states that the array
access will not throw an error. We can implement the other built-in exceptions
in a similar way, but there are a lot more possibilities. For example, if the target
program contains loops with a guard of the form i<n, it might be fruitful to
assert i==n right after the loop. A guard like this can be used to execute the
body of the loop n times and if this was indeed the programmer’s intention, the
assertion should hold for both the original program and its mutation. If it does
not hold anymore for the mutation, this might indicate that i is being incre-
mented too often. Assuming this is a mistake that is being made a fairly often,
this could be a nice thing to implement. Whether or not this specific heuristic
is actually useful is pure speculation at this point in time, but with this kind
of reasoning one could come up with many heuristics that may be worth testing.

In our prototype we do not differentiate between different types of ex-
ceptions and instead just treat every thrown exception as an execution of the
program that does not satisfy the post-condition. It is possible to make the
analysis more precise by differentiating between normal termination and er-

25

ronous termination as described in [3]. Furthermore, we can extend the program
to differentiate between expected exceptions and unexpected built-in exceptions.

In the current implementation we make no assumptions about library
methods. We can make this approach more precise by reasoning about the
variables that the function has access to. For example, if we declare an int
x and import a library method foo, we can conclude that the Hoare triple
{x = 5} foo(..) {x = 5} is valid, because foo has no way of changing the value
of x. Even if x is used as an argument in the call to foo, it would be copied
by value, not by reference, and the variable reference would not be in scope in
the method body. If x were to be a field of an object o instead, we can infer
{o.x = 5} foo(..) {o.x = 5} as long as o is not passed as an argument to foo and
no object that foo has access to has a reference to o.

The idea behind the experiment is to aid the programmer without re-
quiring additional work. To achieve this, ultimately our program will have to
be integrated into an IDE so that running the analysis will be no hassle (and
the analysis might even be running automatically while programming). To
further aid the programmer, Z3 can be asked to find parameters that form a
counter-example to the inferred formula when a bug is found [22]. This makes
it easier for the programmer to identify false positives as well as to identify the
cause of the bug if it is indeed a bug.

References

[1] C. A. R. Hoare An Axiomatic Basis for Computer Programming, Commu-
nications of the ACM, vol. 12, pp. 576-583, 1969.

[2] Peter V. Homeier, David F. Martin A mechanically verified verification con-
dition generator, The Computer Journal, Vol. 38, No. 2, pp. 131-141, 1995.

[3] K. Rustan M. Leino, James B. Saxe, Raymie Stata Checking Java programs
via guarded commands, SRC Technical Note, 1999.

[4] Boogie, github.com/boogie-org/boogie

[5] Elmar Keij Static Testing: Using the Weakest Pre-condition Calculus, mas-
ter thesis, Utrecht University Dept. of Information and Computing Sciences,
2009.

[6] Mana Taghdiri Inferring Specifications to Detect Errors in Code commands,
Automated Software Engineering, pp. 87-121, 2007.

[7] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, Chen Xiao The Daikon system for dynamic
detection of likely invariants, Science of Computer Programming 69.1, pp.
35-45, 2007. plse.cs.washington.edu/daikon

[8] Arno Pol Clustering and Dynamic Invariant Detection, master thesis,
Utrecht University Dept. of Information and Computing Sciences, 2015.

26

[9] I.S.W.B. Prasetya, J. Hage, A. Elyasov Exploiting Annotations to Test
Break-off Branches, 22th Asia-Pacific Software Engineering Conference
(APSEC), IEEE, 2015.

[10] Jinlin Yang, David Evans Dynamically Inferring Temporal Properties , Pro-
ceedings of the 5th ACM SIGPLAN-SIGSOFT workshop on Program anal-
ysis for software tools and engineering. ACM, 2004.

[11] Alexander Elyasov, I.S. Wishnu B. Prasetya, Jurriaan Hage Guided Al-
gebraic Specification Mining for Failure Simplification, IFIP International
Conference on Testing Software and Systems. Springer Berlin Heidelberg,
2013.

[12] Davide Lorenzoli, Leonardo Mariani, Mauro Pezzè Inferring State-based
Behavior Models, Proceedings of the 2006 international workshop on Dy-
namic systems analysis. ACM, 2006.

[13] Carlo Alberto Furia, Bertrand Meyer Inferring Loop Invariants Using Post-
conditions, Fields of Logic and Computation. Springer Berlin Heidelberg,
2010.

[14] K. Rustan M. Leino, Francesco Logozzo Loop invariants on demand,
APLAS 2005.

[15] Tao Xie, David Notkin Exploiting Synergy Between Testing and Inferred
Partial Specifications, In WODA, pp. 17-20, 2003.

[16] Jtest, ParaSoft Corportation, parasoft.com

[17] H. K. N. Leung, L. White A cost model to compare regression test strategies,
Proc. Conf. Softw. Maint., pp. 201-208, 1991.

[18] Haskell, haskell.org

[19] René Just The Major mutation framework: Efficient and scalable mutation
analysis for Java, Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), pp. 433-436, 2014.

[20] I.S.W.B. Prasetya T3, a Combinator-based Random Testing Tool for Java:
Benchmarking, Int. Workshop Future Internet Testing, Lecture Notes in
Computer Science, 8432, Springer, 2014.

[21] Cu D. Nguyen, Alessandro Marchetto, Paolo Tonella Automated oracles:
An empirical study on cost and effectiveness, Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pp. 136-146, ACM,
2013.

[22] L. de Moura, N. Bjørner Z3: An efficient SMT solver, In Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS
08), 2008.

[23] Apache Commons, commons.apache.org

27

	Introduction
	Partial specifications
	Regression testing
	Inferring the specifications

	The wlp transformer
	Unexpected exceptions
	Expressions
	If-then-else
	Switch and break
	Exceptions and try-catch-finally
	Loops
	Method calls
	Objects
	Limitations

	Research methodology
	Mutation test
	False positives test
	Baseline test

	Results
	Related work
	Conclusion
	Future work

