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Preface

Let me start by saying that I rather enjoyed working on this thesis. The project
was presented to me as a interdisciplinary (within mathematics) and relatively
new topic. While I could still go quite in depth, it felt like I had to use a broader
spectrum of my mathematical abilities than for other topics.

That said, this interdisciplinary/broader look that was needed for this thesis
did not only make it more fun. It also made it more challenging to communicate.
It seldom took long to understand the idea of a theorem or a proof, but to
clearly write down how I understood it, I had to use language from different
parts of mathematics. For example, it was quite new for me to mix notation for
homology and for probability.

This not only made it harder to write things down, I also had to think
about my audience a lot more. Because my supervisor is well versed in random
geometric graphs (and hence complexes) and my Master’s track focused more
on topology and geometry, I decided the thesis had to be understandable for
mathematicians with either of these backgrounds. This resulted in a long the-
sis, which seems to consist of two thirds introduction, and one third literature
review. I apologise (again) to my supervisor and to my second examiner fro
writing such a long text. I hope, nevertheless, that this thesis might serve as
a useful starting point for people wanting to study random geometric complexes.

I now include a short list of some things I have learnt while writing this thesis.
Besides the obvious mathematical knowledge that I have gained, there are some
more general things that are notable.

• It is hard to write for more than one clear restricted audience. Next time
I will either try to limit my audience more, or I will realise earlier that
the writing process will be a significant part of the task.

• The website arXiv might only contain old versions of a paper, even when
a paper is already published. Do not just assume all mistakes have been
corrected yet. I have learnt this while reading a paper that was rather
hard for me: comparing an old version of the paper and the errata of
the most recent version of the paper, a lot of information seemed to be
missing.

• Related to this, I learnt that not-yet published papers sometimes con-
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tain quite a few mistakes. I did not realise this before writing this thesis.
Somehow, I always assumed research mathematicians would not publish
anything they weren’t one hundred percent sure of. This is unlike biologi-
cal papers, which I have read for my Biology Bachelor’s: I never assumed
those papers to be completely true. This unconsciously was the difference
between mathematics and experimental sciences to me.

• This brings me to a part of this project that is not represented in this
thesis. I have done ‘experiments’: I have run simulations of random com-
plexes and computed the shape. At some point during the project, I just
needed to do something ‘practical’. I realised that I sometimes need to
make things more tangible than just words and pictures on paper, the
addition of simulations made it feel more real to me.

• This reality that I looked for in the simulations is also important to me
in another way. I enjoy keeping applications in mind, and I enjoy telling
people about the possible applications. It is important to me that I can
communicate the relevance of my research (read: study) to other people
in a non banal way: it needs to be in reasonable depth, but any mathe-
matician in any field should be able to understand it.

I conclude this preface with a short reading guide for people who might not
know where to start in this booklet of a thesis. I focus on my main chosen
audiences: people from probability theory with a basic background in topology,
and topologists with a basic knowledge of probability theory.

• Chapter 1 is written as a short reminder of definitions from probability
theory.

• Chapter 2 contains a lot of important definitions and notation used in the
main part of this thesis. Mainly focus on understanding the definitions of
the structures.

• Chapter 3 is a reminder of basic simplicial homology. Topologists can
likely skip this chapter. As this thesis studies the homology of random
complexes, this is an essential chapter to understand.

• Chapter 4 contains the two tools we use: the nerve theorem, and the main
theorem of discrete Morse theory. Understanding the statements of these
theorems is most important, the rest of this chapter consists of background
to understand the proofs.

• Chapter 5 is a chapter added to give the context of the well-studied ran-
dom geometric graphs. It is mainly important to understand the relation
between random geometric graphs and random geometric complexes.

• Chapter 6 introduces the structure that we study in this thesis. It is
therefore vital to understand the definitions in this chapter. People who
have studied random geometric graphs will probably recognise most of the
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material: for them it probably suffices to study the differences between
the two constructions for the complexes: Čech and Vietoris-Rips.

• Chapter 7-9 contain the main material of this thesis.

If one wants to go to the main part as quickly as possible, I suggest they try
to understand the idea behind homology, and the two main theorems we use as
tools: the nerve theorem, and the main theorem of discrete Morse theory. They
can then read the definition of a random geometric complex in Chapter 6, and
immediately after start studying the main material presented in the third part
of this thesis.

Let me end by expressing my wish that this thesis will be of help to people
who start studying random geometric graphs.





Introduction

This thesis is about the ‘form’ of random geometric complexes. A geometric
complex can be visualised as a shape built up from elementary parts. For
low dimensional (< 4) complexes, this means we take a bunch of points, line
segments, triangles, and tetrahedrons, and then glue them together in a nice
way. This nice way just makes sure that endpoints of lines are always glued to
endpoints of lines, and similarly, that line segments are glued to line segments,
and triangles to triangles, such that nothing sticks out. A random geometric
complex is then a randomly chosen set of points, fixed at some position in space.
Based on where these points are, we decide whether we draw lines, triangles,
tetrahedrons, etc. between them.

We study the homology, i.e. the holes and twists, of these random spaces.
If one realises that point clouds of experiments are basically random samplings
of points in a space, and that random geometric complexes are built up of these
kind of samplings, it is not hard to imagine there must be some application
to data analysis. This ‘topological data analysis’ could be an application of
the work in this thesis. In particular the work done here could provide null-
hypotheses.

The relevance of such applications is clear from the following example. It
is very well possible that data is not normally distributed, but is restricted to
some part of the space. A very obvious example is the position in space of an
object rotating around another object. Even though the average position is its
point of rotation, this will never be its position. Hence it does not make sense
to analyse these data by looking at a mean and variance. We want to know how
it moves: in a circle, which is a topological object.

Another, possibly less clear, example of use for topological data-analysis is
the following. A well known fact is that eutrophication (excess influx of nutri-
ents) of lakes makes lakes turbid, and that we have to remove a lot of nutrients
before the lakes clear up again. This is an example of hysteresis, a behaviour of
a system characterised by dependence on the direction of change of a parame-
ter. In this case the ‘direction’ is determined by whether nutrients are added,
or removed from the system. This direction dependence is clearly visible in
theoretical representations (Figure 1) of data-plots of these variables: turbidity
and nutrient content. In real data, this circle is less well visible (Figure 2 [15]).
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Figure 1: Data of eutrophication in lakes. Hysteresis is clear, as we expect data
only on the solid lines. The dashed line is an unstable equilibrium of the system.

Note that such hysteresis is quite common in complex systems, and it would
therefore be useful to have the possibility of analysing the topology of data, too.

We will however not focus on topological data analysis at all. We will purely
study the shape (homology) of random geometric complexes arising from dif-
ferent kinds of random point processes. The focus will lie at different point
distributions in Euclidean space, where we study two constructions of random
complexes: Čech and Vietoris-Rips complexes. We are especially interested in
limiting behaviour, when we collect increasingly many points.

Figure 2: Data of eutrophication in lakes, the hysteresis is not directly clear,
but might be indentified using topological data analysis if there is enough data.
The typical turbid lakes are represented by dots, and the typical clear lakes are
represented by triangles.



Chapter 1

Notation and symbols

1.0.1 Landau notation

We occasionally use Landau notation for asymptotic relationships between func-
tions of a certain variable.

In particular, for functions f, g : X → R with X ⊂ R, we use the following
notation. We denote f(x) = o(g(x)) for when f is dominated by g asymp-
totically; f(x) = O(g(x)) if |f | is bounded by a constant times g in the limit
x → ∞; f(x) = Θ(g(x)) if f and g grow approximately equally fast (up to a
linear factor); and f(x) ∼ g(x) if f and g are asymptotically equal.

Strictly speaking we define the symbols in the following way:

f(x) = o(g(x)) ⇐⇒ ∀k > 0 ∃N > 0 ∀n > N : |f(x)| < kg(x)

f(x) = O(g(x)) ⇐⇒ ∃k > 0 ∃N > 0 ∀n > N : |f(x)| < kg(x)

f(x) = Θ(g(x)) ⇐⇒ ∃k1, k2 > 0 ∃N > 0 ∀n > N : k1g(x) < |f(x)| < k2g(x)

f(x) ∼ g(x) ⇐⇒ lim
x→∞

∣∣∣f(x)

g(x)

∣∣∣ = 1.

We might also use the ‘reverse’ symbols ω and Ω:

f(x) = ω(g(x)) ⇐⇒ g(x) =o(f(x))

f(x) = Ω(g(x)) ⇐⇒ g(x) =O(f(x)).

vii



viii CHAPTER 1. NOTATION AND SYMBOLS

1.0.2 List of symbols

Sets

R the real numbers
Q the rational numbers
Z the integers
N the natural numbers {0, 1, 2, . . . }
[n] the set of n numbers {1, 2, . . . , n}
A ⊂ B the set A is a (not necessarily proper) subset of B

Spaces and categories

∼= isomorphism of spaces
' homotopy equivalence
N (U) is the nerve of a cover U 21
Sk topological k-sphere
Dk topological k-dimensional ball
{pt} the spaceconsisting of one point
colim the topological colimit 39
hocolim the topological homotopy colimit 46∐

the topological coproduct, or disjoint sum 40
t idem
X tf Z spaces X and Y atached along a space Z 40
Set the category of sets
Top the category of opological spaces
Ob(·) the objects of a category
i ↓ I the over category of an object i in a category I 44



ix

Complexes

, isomorphism of simplicial complexes 14
Aut(K) the group of automorphisms of a complex K 14
α ≺ β ‘α is a codimension 1 face of β’ 52
∆k for k ∈ N≥0 is the k-simplex (as complex) 10
∂i∆

k Th i-th face of the k-simplex 10
Ωk for k ∈ N≥0 the kth cross-polytope (as complex) 20
Kn the complete graph on n nodes
Kn,m the complete bipartite graph on n and m nodes
Pn the (linear) path-graph on n nodes
Ck(J) the circulant graph on vertices [k] and edges defined by

the et J ⊂ [k − 1]
20

|| • || the realisation operator 11
V (∆) is the vertex support of complex ∆ 10
Cl ∆ Closure of a simplicial complex ∆ 15
St ∆ Star of a simplicial complex ∆ 15
oSt ∆ open star of a simplicial complex ∆ 15
Lk ∆ Link of a simplicial complex ∆ 17
∆ ?∆′ Join of simplicial complexes ∆ and ∆′ 18
∆[K] induced subcomplex of K ⊂ V (∆) 12
X(G) the clique complex of a graph G 19
B(x, r) is the ball of radius r around point x
G(X, r) is the geometric graph for point set X and radius r 62
Gn(∆) the number of occurrences of ∆ as induced subcomplex

in a random complex on n points; the type of random
complex is assumed to be clear from context.

76

Jn(∆) the number of occurrences of ∆ as a component in a ran-
dom complex on n points; the type of random complex
is assumed to be clear from context.

76

Kn(∆) the number of (unlabelled) occurrences of ∆ as subcom-
plex of a random geometric complex

81

Č(X, r) is the Čech complex for point set X and radius r 72
R(X, r) is the Rips complex for point set X and radius r 73
Skk(K) is the k-skeleton of a complex K 13

Homology

δ boundary operator, used sometimes for homology, but
mostly for spaces and for simplicial complexes

28

Hk(X) the k-th homology group of a space X 29
βk(X) the kth Betti number of a space X 27
vsupp(γ) is the vertex support of a (simplicial homological) chain

γ



x CHAPTER 1. NOTATION AND SYMBOLS

Probability

P(A) the probability of an event A
E(X) the expected value of a stochastic variable X
N(µ, σ) the normal distribution with mean µ and standard de-

viation σ
3

Poi(λ) the poisson distribution with parameter λ 3
1 the identity map
D−→ converges in distribution 4
Xn Binomial point process with n points i.i.d. distributed

with density f , which is assumed to be understood from
context

65

Pn Poisson point process with Poi(n) points i.i.d. dis-
tributed with density f , which is assumed to be un-
derstood from context

66

Φn Binomial or Poisson point process as above 67
dTV Total variation distance 5
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Prerequisites
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Chapter 1

Probability

We start with a short chapter about probability, which will mainly introduce
notation. Most of these things are incredibly basic, except maybe for the total
variation distance.

1.1 Variables

1.1.1 Poisson

A Poisson random variable is an N-valued variable with a parameter λ > 0. We
denote such a variable with Poi(λ), and its probability mass function is given
by

P(Poi(λ) = k) =
λke−λ

k!
.

It is well known that E(Poi(λ)) = Var(Poi(λ)) = λ, and that all higher moments

E
(

Poi(λ)p
)

=

∞∑
i=0

ipP(Poi(λ) = i)

are also bounded. The exact values are known, but are not relevant here.

1.1.2 Normal

A normal distributed variable is an R-valued variable with two parameters, the
mean µ and the standard deviation σ. Its probability density function is given
by the familiar bell-shaped curve. We denote such a variable by N(µ, σ). It
suffices to know that the normal distribution is quite ubiquitous, and is hence
of great importance.

3



4 CHAPTER 1. PROBABILITY

1.1.3 Some terminology for multiple variables

Sometimes, we have more than one random variables. If we talk about sequences
of random variables, we will always assume that they have the same probability
space.

In particular we often have a sequence of multiple independent copies of one
random variable. If we have such a set of independent and identically distributed
variables Xn, we will often abbreviate “independent and identically distributed”
to “i.i.d.”.

If a set of random variables is not independent, it is important to keep track
of the dependencies. The following definition helps to achieve this.

Definition 1.1.1. Let {Xi}i∈I be a set of random variables indexed by I. A
graph with vertex set I is called a dependency graph of {Xi}i∈I if it has the fol-
lowing property regarding the edges: Let I1, I2 ⊂ I be disjoint, then the disjoint
sets of random variables {Xi}i∈I1 and {Xi}i∈I2 are independent if there are no
edges between I1 and I2 in the dependency graph.

1.2 Limits

Whereas it is easy to envision limits in R, it is harder to do the same for limits of
random variables, even when they are R-valued. We will look at a few definitions
that we will use throughout this thesis.

It is quite common to say that something is true almost surely (a.s.) when
we mean that the probability of it happening is 1. Similarly, we say that an
event An occurs asymptotically almost surely (a.a.s.) if

lim
n→∞

P(An) = 1.

1.2.1 Weak convergence

Now what do we do for sequences of random variables? We want to know
something about the limit of such a sequence. We can then, of course, define
several kinds of convergence. Some will be stronger than others, but they might
all have some probabilistic meaning. We will here just shortly introduce two
convergences, and note some properties.

Definition 1.2.1. Let Xn be a sequence of random variables, we say that they
converge in distribution to a variable X, or

Xn
D−→ X,

if
lim
n→∞

P(Xn ∈ A) = P(X ∈ A)

for any ‘nice’ event set A. Nice meaning that A is a continuity set of X: a
Borel set with zero-measure boundary. We also say that Xn converges weakly to
X.
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This is somewhat like point-wise convergence if we consider these event sets
A as points. The next kind of convergence we will see is stronger, because it
is to uniform convergence what weak convergence is to point-wise convergence.
To define this convergence, we first define a distance for random variables.

Definition 1.2.2. Let X and Y be random variables, then the total variation
distance between X and Y is

dTV (X,Y ) = sup
A∈F
|P(X ∈ A)− P(Y ∈ A)|,

where F is the sigma algebra of the sample space, or the ‘set of events’.

The convergence we talked about earlier is defined by convergence in this
distance. As mentioned earlier, it is stronger than weak convergence and it
is named after the distance it stems from: convergence in total variation(al
distance). We are mostly interested in the fact it implies weak convergence.
This fact is quite trivial when one sees the parallels with point-wise and uniform
convergence.

Lemma 1.2.3. Let X,X0, X1, X2, . . . be a sequence of random variables. If we
have the limit

lim
n→∞

dTV (Xn, X) = 0,

then also Xn
D−→ X.

Proof. Let A be a Borel set of X, and say Xn converges to X in total variation.
Then, per definition, for every ε > 0 there exists N > 0 such that for all n > N

dTV (X,Xn) = sup
B∈F
|P(X ∈ B)− P(Xn ∈ B)| < ε

. In particular we also have

|P(Xn ∈ A)− P(X ∈ A)| < ε

for all n > N . Hence we conclude that

lim
n→∞

P(Xn ∈ A) = P(X ∈ A),

as we wanted to prove.

The correspondence hinted at before is easily realised by considering Borel
sets as points of the maps defining the random variables.

Moments

Note that for both these kinds of convergence, there is no guarantee that any of
the moments also converge to the corresponding moment of the limiting variable.
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With this we mean that the following two quantities are not guaranteed to be
equal

lim
n→∞

E(Xp
n), E(Xp).

A good example is the sequence Xn of Z valued variables, where the proba-
bility mass function is

P(Xn = k) =

 1− (1/n) if k = 0
(1/n) if k = 2n

0 otherwise

This sequence converges in distribution, as well as in total variation, to the
random variable X which is 0 with probability 1. It is easy to check that
E(Xp

n) = (2n/n)p, and E(Xp) = 0. Hence we see that convergence in distribu-
tion does not imply convergence of moments to the corresponding moment of
the limit variable.

1.2.2 Convergence in probability

The second kind of convergence is quite a lot stronger than convergence in
distribution. This one is called convergence in probability. We give the definition
for vector valued random variables.

Definition 1.2.4. Let Xn be a sequence of vector valued random variables,
where the vector space has metric d, then Xn converges in probability to a ran-
dom variable X if

lim
n→∞

P(|Xn −X| ≥ ε) = 0

for all ε > 0.

1.2.3 Some more facts

Oftentimes, we are interested in the sum Sn = Xi + · · · + Xn of such i.i.d.
variables {Xi}i∈N. In certain cases, the average of this sum has a nice property:
The average Sn/n converges almost surely and in probability to the expected
value µ = E(Xi):

P( lim
n→∞

Sn/n = µ) = 1,

lim
n→∞

P(|Sn/n− µ| ≥ ε) = 0.

There also is the following convergence in distribution

Sn − µ√
n

D−→ N(0, 1).

When this happens, we say that a central limit theorem (CLT) holds, and it is
also the reason the normal distribution is ubiquitous.
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In this thesis we will look at some related situations, where there are other
reasons for the distribution converging to a normal distribution. We will also
call these central limit theorems.

One last remark about the relation between the Poisson and the normal
distribution, which seems related. If he parameter of a Poisson variable goes
to infinity, its distribution will look like a normal distribution with mean going
to infinity. Strictly speaking, this is nonsense, but we can make sense of it by
normalising the variables, giving the following limit in distributions:

Poi(λ)− λ√
λ

D−→ N(0, 1).

Normalisation is a concept we will encounter quite often later in this thesis.





Chapter 2

Simplicial complexes

In this thesis, we are interested in the topology of random complexes. These
random complexes are simplicial complexes. Simplicial complexes are widely
used in algebraic topology, and in particular, in combinatorial topology. This is
the case because simplicial complexes are actually combinatorial constructions,
somewhat like hypergraphs. On the other hand they are spaces, so that we
can study their topology. In combinatorial topology, we use the combinatorial
structure to study the topological structure. In particular, we look at simplicial
homology, which is by its construction quite easily computable. One can easily
imagine why algebraic topology started with the study of simplicial homology.
In this chapter we focus on the structure of simplicial complexes; in next chapter
we define (simplicial) homology.

2.1 Abstract and topological simplicial complexes

Simplicial complexes can be thought of as a combinatorial way to describe cer-
tain topological spaces. This means we have two ways of looking at these com-
plexes: as topological spaces, and as combinatorial constructions. It will often
be convenient to use the combinatorial description for calculations, whereas the
study of topological properties is easier when we consider the topological de-
scription. As long as we are provided with a description of the simplices, we
can go back and forth between the two descriptions. In this section we give
definitions for both descriptions.

Definition 2.1.1. An abstract simplicial complex is a collection K of finite
sets, such that for all σ ⊂ τ ∈ K, also σ ∈ K. An element σ ∈ K of cardinality
|σ| = k + 1 is called a k-simplex, k-cell, or simplex/cell of dimension k. The
dimension of K is the maximal dimension of a cell in K, if this does not exist
we say K is of dimension ∞.

Most of the time, we will work with finite simplicial complexes, i.e. |K| is
finite. This automatically means that there are n <∞ 0-cells, and that K is a

9
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subset of the powerset of [n]. Consequently, the dimension of K can be at most
n − 1, this happens precisely when K is the n-simplex. For this reason, it is
convenient to have notation for the set of 0-cells of a complex.

Definition 2.1.2. The set of 0-cells, also called vertices or nodes, of a complex
K is denoted V (K).

The topological description of a simplicial complex comes in the form of
the realisation of an abstract complex. As any topological simplicial complex
can be described as the realisation of a combinatorial one, we will only talk
about such realisations. To describe the realisation, we must first know what
the realisation of one simplex is. The realisation of the complex will be built
with these topological simplices.

Definition 2.1.3. The standard topological k-simplex ∆k is the subspace of
Rk+1 given by the convex hull of the basis vectors {ei}ki=0. The i-th face ∂i∆

k of
the simplex is the convex hull of all basis vectors except for the i-th. A topological
simplex is any space homeomorphic to a standard topological simplex.

In table 2.1 the first few simplices are depicted, together with the combina-
torial description and their 0-th face.

Table 2.1: Standard k-simplices, their topological realisation and their 0-th face,
for 0 ≤ k ≤ 3.

k ‖ ∆k ‖ ∆k δ0 ‖ δ0∆k ‖
0

0

{
{0}, ∅

} {
∅
}

∅

1

0 1

{
{0}, {1}, {0,1}, ∅

} {
{1}, ∅

}
1

2

0 1

2
{
{0}, {1}, {2}, {0,1},

{0,2}, {1,2}, {0,1,2}, ∅
}

{
{1}, {2}, {1,2}, ∅

}

1

2

3

0
1

2
3

{
{0}, {1}, {2}, {3},
{0,1}, {0,2}, {0,3},
{1,2}, {1,3}, {2,3},
{0,1,2}, {0,1,3},
{0,2,3}, {1,2,3},
{0,1,2,3}, ∅

}

{
{1}, {2}, {3}, {1,2},

{1,3}, {2,3}, {1,2,3}, ∅
}

1

2
3
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There are natural inclusions of faces of topological simplices, as the faces
are simply subspaces of the simplex. Note that these faces are simplices of one
dimension lower, just like in the abstract case.

The inclusions of faces can thus be used to give a topological interpretation
to abstract simplicial complexes. We can ‘glue’ simplices of the complex to
other simplices on their boundaries. Doing this as the combinatorial description
prescribes, we get the topological complex. The following definition makes this
precise by substituting the rigorous concept of quotients for the intuitive concept
of gluing. An example of a simplicial complex in its topological form can be
found in Figure 2.1.

Figure 2.1: A topological simplicial complex, note that it is built with a collec-
tion of simplices.

Definition 2.1.4. The realisation ||K|| of an abstract simplicial complex K is
the following quotient space: ∐

σ∈K
∆|σ|σ / ∼,

where
∐

denotes the disjoint union of spaces, and ∆
|σ|
σ denotes the standard

topological |σ|-simplex indexed by σ. The relation ∼ is such that a simplex gets
identified with its faces in the expected way, i.e. it is generated by x ∼ iτ⊂σ(x)

for x ∈ ∆
|τ |
τ , τ a face of σ, and iτ⊂σ the inclusion of the topological face as

described above.

There is a shorter but more abstract definition of the realisation in terms
of a colimit. This description might be useful to keep in mind when we talk
about homotopy colimits later. Readers who are not familiar with colimits can
skip the following definition, and return to it after reading the short reminder
of colimits in Section 4.1.
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Definition 2.1.5. The realisation of an abstract simplicial complex K is given
by the colimit

||K|| = colimF ,

where F is the functor sending the poset-category (K,⊂) to Top:

F ({x0, x1, . . . , xk}) = ∆|k+1|

F ({x0, . . . , x̂i, . . . , xk} ⊂ {x0, . . . , xk}) = iδi∆k+1⊂∆k+1 ,

where iσ⊂τ is the topological inclusion of the face σ ⊂ τ .

In Section 2.2 we continue our overview of the link between the topological
and the abstract description of a simplicial complex. In particular we will see
how basic definitions of topology translate to the case of abstract simplicial
complexes. First it is useful to have some terminology ready to study parts of
complexes.

2.1.1 Subcomplexes and maps

In topology, it is often useful to study just part of a space. As we will view com-
plexes as spaces, we want to be able to study parts of complexes. It is hence
convenient to introduce notation and terms for subcomplexes. Similarly, topol-
ogy is only interesting if we consider (continuous) maps of spaces. Therefore we
also introduce maps of complexes here.

Subcomplexes

Definition 2.1.6. Let K be a simplicial complex, then K′ is a subcomplex of K
if K′ is a complex and K′ ⊂ K.

A specific kind of subcomplex that we will encounter is the induced subcom-
plex. Which is basically the subcomplex we get by throwing away all vertices
not in some set A and also removing the corresponding higher dimensional sim-
plices. The following definition is illustrated in Figure 2.2.

Definition 2.1.7. Let K be a simplicial complex and A ⊂ V (K) a subset of
the vertices of K, then we denote with K(A) the induced subcomplex of K on A.
This complex is the subcomplex consisting of all simplexes with only vertices in
the set A.

Another subcomplex of great importance is the k-skeleton, which reduces a
complex to a k-dimensional one. These skeleta can be quite convenient if we
want to study properties of the complexes.

For example, if we want to count the components of a complex, we only
need to know the 1-skeleton (the underlying graph). In this way, also, a lot
of properties of a complex can be inferred from some skeleton. An important
example is the computation of homology. Informally this means that the number
of ‘k-dimensional holes’ is only dependent on the k+ 1-skeleton of the complex.
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0

1

2

5

3

4

(a) Complex K
0

2

3

4

(b) Induced subcomplex K(V )

Figure 2.2: A simplicial complex with vertices 0, . . . , 5 with, on the right, the
induced subcomplex K(V ) corresponding to vertex set V = {0, 2, 3, 4}.

Definition 2.1.8. Let K be a simplicial complex, then the k-skeleton of K is
the subcomplex

Skk(K) = {σ ∈ K| dim(σ) ≤ k}.

Because the skeleta form a sequence of inclusions, they can also be used
in an inductive way. This is a ubiquitous proof technique, because going from
one skeleton to the next, we only add simplices of a certain dimension. The
implications of adding a simplex are often easy to understand.

Maps

As for all structures, we want maps of complexes to respect the structure of the
complexes. The following definition makes this precise. It should be noted that
we will often use the term ‘map’ without stating what kind of map it is. For
complexes we will generally mean a map of complexes as we will define next, for
spaces we will always mean a continuous map unless stated otherwise, because
maps of the underlying sets are seldom interesting.

Definition 2.1.9. Let K,K′ be simplicial complexes, a map f : V (K)→ V (K′)
is a map of complexes if it induces a map of simplices. With this we mean that
the map

f :K → K′

f :{x0, . . . , xk} 7→ {f(x0), . . . , f(xk)},

is well defined.

Just like for other structures, we have special kinds of maps. Examples of
these are inclusions of spaces and isomorphisms of groups. The next definition
is about these special maps for complexes.
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Definition 2.1.10. Let K,K′ be simplicial complexes.
An inclusion of complexes is a map (of complexes) i : K → K′ which is an injec-
tion on the vertices. Note that there is such an injection iff K is a subcomplex
of K.
An isomorphism of complexes is a bijective map f : K → K′. If there exist such
an isomorphism between K and K′, we say that they are isomorphic, which we
symbolically represent by writing K , K′.
An automorphism of a complex K is a bijective map f : K → K′. The group of
automorphisms of K is denoted Aut(K).

The complexes we study are mostly finite, and this finiteness can be used
in the maps, too. Where for spaces there may be a infinite number of maps of
a space to another space; for complexes, this number is obviously bounded by
the number of maps from the vertices of the first complex, to the vertices of
the second. As both sets of vertices are finite, there is only a finite number of
possible maps.

Another nice property that follows, is that the group of automorphisms
(isomorphisms from a complex to itself) is finite. We will use this later, when
we want to count the number of copies of some kind of complex. The copies we
want to count are ‘unlabelled’ subcomplexes.

Definition 2.1.11. Let K be a complex. A labelled (occurrence of a) subcomplex
K′ ⊂i K is a particular injection of K′ into K. An unlabelled (occurrence of a)
subcomplex is the class of labelled subcomplexes that have the same image (as a
subset of K).

If we are only able to count occurrences of labelled complexes, we might find
the complex too often.

Example 2.1.12. If we want to count the number of triangles in ∆2: there
are 6 different isomorphisms from the triangle complex to ∆2, but there is only
one actual triangle in ∆2. Dividing the number of labelled occurrences by the
number of automorphisms of the complex we want to find, gives us the number
of unlabelled occurrences.

We will return to this definition when we actually count subcomplexes in
Section 6.3. That section also includes another example, where the importance
of having the distinction between labelled and unlabelled becomes obvious.

2.2 Topological parallels: Closure, star, link and
join

To work with simplicial complexes, we often have to look locally. The locality
we know from topological spaces must then be transferred to abstract simplicial
complexes. This is done with the introduction of the ‘star’. A related concept is
the ‘link’, which then brings convenient notation for working with simplicial sub-
complexes. Lastly we have the closure, which is in essence just the topological
closure, but phrased in a combinatorial way.
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2.2.1 Closure

We will first look at the closure, which corresponds to the topological closure,
as said earlier.

Definition 2.2.1. Let A ⊂ K be a set of simplices, the closure of A denoted
ClA is defined to be the minimal simplicial subcomplex of K containing A.

The definition of closure talks about the minimal subcomplex containing
a set of simplices. This is because a set of simplicies is not automatically a
simplicial complex; the definition of a complex needs the set of simplices to be
closed under taking faces. This means that to get this minimal complex, we
only need to add all the faces of the simplices in our set.

The correspondence to the topological closure is clear when we note that
a subcomplex will always be a closed subset. Because the closure of A is the
smallest (closed )complex containing A, this corresponds directly to the topo-
logical definition of the closure of a set being the smallest closed set containing
it.

2.2.2 Star

The star construction corresponds to another concept from topology: neigh-
bourhoods. As with neighbourhoods, we have open and closed versions, here
represented by the open and closed star. It is convenient to first describe the
star of one simplex, as this is easier to envision. Note that neighbourhoods here
are relatively ‘big’ as we must take complete simplices.

Definition 2.2.2. Let σ ∈ K be a simplex. The open star of σ denoted oStσ
is:

oStσ = {τ ∈ K|σ ⊂ τ}

The (closed) star of σ denoted Stσ is:

Stσ = {τ ∈ K|σ ∪ τ ∈ K}

Note that the open star is seldom a simplicial subcomplex, the exception
being when σ is an isolated simplex. The closed star, however, is per definition
always a simplicial complex.

Instead of looking at the star of one simplex, we can also take the star of a
set of simplices. We define this such that it still corresponds with topological
neighbourhoods.

Definition 2.2.3. The (closed) star St(A) of A, where A ⊂ K is a subset of
simplices, is

∪σ∈A Stσ,

and similarly for the open star.



16 CHAPTER 2. SIMPLICIAL COMPLEXES

(a) Complex and node v (b) Open star (c) Closed star

Figure 2.3: A simplicial complex with node v indicated in red. In the middle
figure we see the open star oSt v of v, and the right figure depicts the closed
star St v of v.

Of course, a closed and open neighbourhood can be related to eachother. The
closure of an open neighbourhood should be a closed neighbourhood. This is
reflected in the following proposition, which treats this for the case of simplicial
complexes.

Proposition 2.2.4. As functions, applying the open star and then the closure,
is equivalent to applying the closed star, i.e.

Cl ◦ oSt = St

Proof. Let A ⊂ K be a subset of the simplices of complex K. We prove both
inclusions as sets, so that we can conclude that Cl ◦ oSt = St.

Let σ be a simplex in Cl(oSt(A)), then σ ⊂ τ for some simplex τ ∈ oStA.
This means there is some simplex υ ∈ A such that υ ⊂ τ . Now look at σ∪υ ⊂ τ :
because τ ∈ K we know that σ ∪ υ ∈ K, hence σ ∈ St υ and consequently
σ ∈ StA.

Now suppose σ ∈ StA, then per definition there is some υ ∈ A such that
σ ∈ St υ. Using the definition of the star, we see that τ := σ ∪ υ ∈ K. Because
υ ⊂ τ , we see that τ ∈ oSt υ, and because σ ⊂ τ , we see that σ ∈ Cl τ . Hence
we conclude that σ ∈ Cl oSt υ. Seeing that the closure of a set of simplices is

the union of the closures, we conclude that σ ∈ Cl oStA.

2.2.3 Link

In our comparison of topological and complex-definitions, the link seems to
correspond to the boundary of a neighbourhood within the topological complex.
In this section we will see that this correspondence can be made precise. This is
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(a) Complex and node v (b) Link of v

Figure 2.4: A simplicial complex with node v indicated in red. The right figure
depicts the link Lk v of v. Compare with Figure 2.3 to see the relation St v =
oSt v ∪ Lk v.

intuitively already clear when we see how the link, the star, and the open star
are related.

Definition 2.2.5. Let v be a vertex in a simplicial complex K. The link of v
denoted Lk v is:

Lk v = {σ ∈ K|v 6∈ σ, σ ∪ {v} ∈ K}

Just like the closed star, the link is a simplicial subcomplex. The link is
related to the star and the open star by Lk(v) = St(v) \ oSt(v) for v a vertex.
This gives us an easy way to go back and forth between these related sets of
simplices. We prove this in the following proposition.

Proposition 2.2.6. For a vertex v of a simplicial complex, we have Lk({v}) =
St({v}) \ oSt({v}).

Proof. The proof is a straightforward unrolling of the definitions. Say σ ∈
St({v}) \ oSt({v}), this happens if and only if σ 6∈ oSt({v}) and σ ∈ St({v}).
Using the definitions of the star and the open star, we can see that this situation
occurs iff σ ∈ K, v 6∈ σ and {v} ∪ σ ∈ K. These are precisely the conditions for
σ being an element of Lk(v).

Noting that we can reverse the argument because all steps consist of an ‘if

and only if’, we conclude that σ ∈ Lk({v}) iff σ ∈= St({v}) \ oSt({v}).

For arbitrary subsets of simplices, the relation as above does not hold pre-
cisely the same. In these cases we have the following relation, which clearly
makes our intuition in the topological sense work again.

Definition 2.2.7. Let A ⊂ K be a subset of simplices, then the link of this set
is defined as

LkA = StA \ oSt ◦ClA.
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Note that by the proposition above, this definition coincides in the case of
vertices because the closure operator acts as the identity on vertices.

2.2.4 Join

The last construction we will look at is the join. It is the abstract version of
the topological join.

Definition 2.2.8. Let K and K′ be simplicial complexes with V (K)∩V (K′) = ∅.
The join K ?K′ is:

{σ ⊂ V (K) ∪ V (K′)|σ ∩ V (K) ∈ K and σ ∩ V (K′) ∈ K′}

We will sometimes denote K?σ := K?Cl(σ) for the join with a simplex. The
closure here is strictly speaking needed, because σ on itself is not a simplicial
complex.

Example 2.2.9. The cone of a complex K is the join K?{v} with a complex {v}
with just one vertex not contained in the vertex support of K. Joining K with
an independent set of n vertices is called n-coning. Another term for 2-coning
is ‘taking the suspension’.

Proposition 2.2.10. Let v be a vertex of the simplicial complex K, then

Lk(v) ? v = St(v).

Proof. Let σ ∈ Lk(v) ? v. Then we have, either v 6∈ σ which implies σ ∈
Lk(v) ⊂ St(v), or v ∈ σ and σ ∩ V (Lk v) = τ ∈ Lk v. With τ ∈ Lk v, we get
τ ∈ St v \ oSt v ⊂ St v. Therefore τ ∪ {v} ∈ St v, and since σ = τ ∪ {v}, we see
that σ ∈ St v.

Now suppose σ ∈ St(v), and note firstly that the vertex set of σ denoted
V (σ) is contained in V (Lk v) ∪ {v}. It is clear that σ ∩ {v} is a simplex in the
complex {v}. Now we look at σ∩V (Lk v), this is either σ if v 6∈ σ, or it is σ\{v}
if v ∈ σ. In both cases, we see that v 6∈ σ ∩ V (Lk v) and (σ ∩ Lk v) ∪ {v} ∈ K
because σ ∈ St v. Hence σ ∈ Lk(v) ? v.

Note that a similar proposition is false if we substitute for v a subcomplex
K′.

2.3 Clique complexes

An easy way to construct a simplicial complex is by taking the maximal com-
plex that is supported by some graph. This kind of complex is called a clique
complex. It will turn up as one of the ways in which we get our random geomet-
ric complexes, which makes the comparison with the field of random geometric
graphs quite obvious. It is therefore worthwhile to look at some properties of
these complexes.
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Definition 2.3.1. Let G be an undirected graph with vertices V (G) and edges
E(G), then the clique complex on G, denoted X(G), is the simplicial complex
defined by

X(G) = {σ ⊂ V (G)|(v, w) ∈ E(H) for all v 6= w ∈ σ}

These kind of complexes are rather restricted, as for example, a triangle is
already not a clique complex, because it will be ‘filled’ with a 2-simplex. In
this section we will look at special properties of clique complexes compared to
general simplicial complexes.

2.3.1 Examples and properties

Obviously, not every subcomplex of a clique complex is also a clique complex.
The following proposition states that the link of a vertex in a clique complex is
also a clique complex. This fact will be used later when we look at the homology
of clique complexes.

Proposition 2.3.2. Let X(H) be the clique complex on the graph H, and let v
be a vertex of H. The link Lk(v) in this complex is also a clique complex.

Proof. Suppose the vertices v0, . . . , vk form a clique in Lk(v). To show that
{v0, . . . , vk} ∈ Lk(v), it is sufficient to prove that the simplex {v0, . . . , vk}∪ {v}
is a simplex in X(H), as then {v0, . . . , vk} ∈ Lk(v). To prove this, we only have
to prove that all the faces of {v0, . . . , vk} ∪ {v} are in X(H). We proceed by
using induction on the dimension k of the simplex.

Basis Suppose k = 1 and we find {v0, v1} forming a clique in the link
Lk(v). Then trivially {v0, v1} forms a clique in Lk(v).

Hypothesis Let k < n and suppose {v0, . . . , vk} forms a clique in Lk(v), then
{v0, . . . , vk} is a simplex in Lk(v).

Step Now suppose we find {v0, . . . , vn} forming a clique in Lk(v). By the
induction hypothesis, the faces {v0, . . . , v̂i, . . . , vn} (for all 0 ≤ i ≤
n) are simplices in the link. By the definition of the link, we can
conclude that the simplices {v0, . . . , v̂i, . . . , vn} ∪ {v} are elements
of the clique complex. Also, because {v0, . . . , vn} is a clique in the
link, it also is in the clique complex X(H), and we conclude that
{v0, . . . , vn} is a simplex of the clique complex. Hence all faces of
{v0, . . . , vn} ∪ {v} are in the clique complex, and consequently, so
is the the simplex {v0, . . . , vn} ∪ {v} ∈ X(H). We conclude that
{v0, . . . , vn} ∈ Lk(v).
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Circulant graphs

A special type of clique complexes, are the clique complexes arising from circu-
lant graphs.

Definition 2.3.3. For k > 0 and J ⊂ [k − 1], the circulant graph Ck(J) is
the graph on [k] where there is an edge (x, y) iff there exists j ∈ J such that
x+ j ≡ y mod k or x− j ≡ y mod k.

For J = [n] we denote Ck([n]) = Ck(n).

Table 2.2: Circulant graphs Ck(n) for several values of k and n.

k\n 1 2 3

3

4

5

6

We introduce these kind of graphs, because a subtype is quite interesting in
the study of homology of clique complexes. Cross polytopes are a specific class
of complexes on circulant graphs, which have a special role in homology of clique
complexes. We will later see that these are the smallest ‘hollow’ subcomplexes
of clique complexes (Theorem 3.4.4).

Table 2.3: The first 4 cross polytopes, where the ‘new’ vertices and edges (com-
pared to the one 1 dimension lower), are indicated in red and green.

k 0 1 2 3

Ωk

Definition 2.3.4. The k-dimensional cross-polytope Ωk is the clique complex
of C2k+2(k). In other words Ωk = X(C2k+2(k)).
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It is easy to see that the k-dimensional cross-polytope is homeomorphic to
a k-sphere, for example by inductively taking the suspension, as we see done in
Figure 2.3. We will use this fact later when we are interested in homology of
these complexes. It is a fun exercise to look at the other circulant graphs and
deduce their topological structure.

2.4 The nerve

A way to use some topological space to create a simplicial complex is by taking
a cover of the space (a collection of subsets, the union of which is X), and using
that to build a simplicial complex. This construction, that we define in this
section, is called the nerve construction. If we take a sufficiently nice space and
cover, we can retrieve the space from the resulting complex. This will be made
precise in the very useful nerve theorem which we state and prove in chapter .
The main reason to treat this construction, is because it is used for the definition
of a type of random geometric complex, called the Čech complex.

Definition 2.4.1. Let U = {Ui}i∈I be a cover, then we have a simplicial com-
plex N (U). Its set of 0-simplices is I and a finite set S ⊂ I is a simplex of
N (U) iff ∩i∈SUi 6= ∅.

Figure 2.5: The nerve of a cover, coloured sets correspond to the vertices of the
same colour.

An example of the nerve construction can be found in Figure 2.5. As alluded
to in the text above the definition, the nerve construction can give really nice
results, if the cover is nice enough. However, when we take a cover such as in
Figure 2.6, then the complex and the covered space are hardly related at all.
In Chapter 4 we will see when a cover is nice enough to get a nerve complex
actually related to the covered space.
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Figure 2.6: The nerve of a cover for two covers. coloured sets correspond to the
vertices of the same colour. Note that the complex and the covered space are
topologically completely different in both cases.



Chapter 3

Homology

Homology is an abstract algebraic method of studying of spaces. It gives a lot of
information about the shape of a space in the sense that we get a global picture.
In particular, we get information about the holes and twists in a space. For
example, a circle has one (one-dimensional) hole, which can be characterised
with the terminology of homology.

Although homology gives a lot of global information, it can be computed with
local information together with information about how the parts are patched
together. This means that using homology works especially well if there is
a lot of information about subspaces. In particular, a filtration (sequence of
subspaces) is easy to work with. A good example is the skeletal filtration of a
simplicial complex, i.e. the sequence of d-dimensional skeleta. In this chapter
we give an overview of well known properties of (simplicial) homology.

3.1 Intuition

It is easy to get confused with all the abstract definitions in homology. To
prevent this, we first try to get some intuition for the things we want to study
with homology. Informally, these things are holes and twists in topological
spaces.

3.1.1 Holes

There are many kinds of holes in spaces. We can classify them by their dimen-
sion. Zero dimensional holes, for example, are the separations of components;
One dimensional holes are things you can poke your finger through, like the hole
in a ring; Two dimensional holes are cavities, such as the inside of a balloon.

It is tempting to immediately think of these holes as the inside of a sphere,
but there are also other kinds. Think for example of the cavity in a torus: a
torus evidently has only one cavity. One can see this easily if we think of a

23
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Figure 3.1: Left: A torus-shaped balloon can be blown up through one hole.
Source: https://mathsgear.co.uk/products/torus-balloons; Right: A simplicial
complex homeomorphic to a torus.

torus-shaped balloon (Figure 3.1), the balloon can be blown up through the one
hole. The cavity however, is not like the cavity in a 2-sphere.

Homology solves this problem by defining cycles, which can be seen as
boundary-less subspaces of a certain dimension. If such a subspace cannot be
filled up in the space, then it represents a hole.

3.1.2 Twists

The other thing we can measure with homology is the twists of the space. These
are harder to imagine than holes, as spaces with twists cannot be embedded in
three-dimensional euclidean space. Two well known examples of spaces with
twists are the real projective plane, and the Klein bottle. Every twists has an
order, which is ‘the number of times you have to go round to get back where
you started’.

It is hard to make the twists more precise without going into details of
homology. Therefore we just treat an example where we gloss over all the
details by assuming we can continuously deform a cycle without changing the
equivalence class of the cycle.

Example 3.1.1. This example is illustrated in Figure 3.2. It is meant to give
a feeling for what a twist in a space constitutes, and how it manifests itself in
homology. Let us start with the representation of RP 2 as a disc with its boundary
glued to itself by identifying opposite points on the boundary. It is clear that the
red and the green line in the first part of the figure both represent the same cycle,
because they are equal.

We want to see that such a cycle is actually ‘equivalent’ to the cycle traversed
in the other direction, because then the space should have some kind of twist in
it. To see this, we for now assume that we know that cycles can be transformed
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Figure 3.2: The reason RP 2 has a twist. The red path in each part represents
the same cycle, it is just rotated as the blue arrows indicate. Note that the red
cycle in the first part is the inverse of the red cycle in the last part, i.e. the red
cycle is its own inverse.

in a continuous way, such that the actual cycle does not change. In the picture,
we just rotate the green cycle continuously, until it is back to where it started,
but in the other direction. If we now ‘add’ the green and the red cycle, the sum
is 0.

We see that by starting with two copies of the cycle (going through the cycle
twice), we actually have a trivial cycle, and there is a twist in the space. The
difference with a hole, is that in that case no multiple copies of the cycle will be
trivial.

3.1.3 Coefficients

In the example of last section, we talked about two cycles and said we had one
(1) of both, so we started with two times one particular cycle. In that case we
were counting the cycles with the integers (Z), as we assumed that the number
two (2) had meaning. We can, however, choose to ‘count’ the cycles using a
different group. This group is then called the group of coefficients, and it is
crucial to know which coefficients we use.

The coefficients are always a group, so we can add cycles. This means that
we can sometimes split them, too. The following example shows why this is
very important.

Example 3.1.2. In the example above, we could have started with the same
cycle, but only one time, so with coefficient 1. If we had coefficients in Q
instead of in Z, we could split the cycle in twice a half times the cycle. This
does not mean we take only part of the ‘path’, we just count the one cycle as
‘twice a cycle with coefficient 1/2’. We can then use the same rotation as in the
previous example to see that one 1/2 cycle is the reverse of the other 1/2 cycle.
This means that with coefficients in Q, the twist is not discernible, because the
half cycles cancel each other out.

In the same way, no twist can ever be seen in homology with coefficients in
Q or R. The only thing we register there is the number of holes. This means
that the number of holes is easily defined by taking homology with coefficients
in Q. The number of holes will be called the Betti number. This is the quantity
that we study mainly in this thesis.
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3.2 Chain complexes and their homology

Homology is easily defined by using chain complexes, which are defined in an
abstract algebraic way. Examples of these chain complexes in algebraic topology
are often quite geometric, which makes interpreting the homology in a geometric
way easier. The fact that chain complexes are defined abstractly, makes them
a convenient framework for the study of spaces.

We begin by just defining chain complexes and maps between chain com-
plexes. This will be followed by a definition of homology which arises naturally
from the definition of chain complexes.

3.2.1 Chain complexes

A chain complex can be viewed as a sequence of objects with nice maps. This
niceness is exactly defined so that we can produce homology from the objects,
which must also have certain properties.

Definition 3.2.1. A chain complex is a collection C = {Ci}i∈Z of groups or
modules together with maps di : Ci → Ci−1 such that Im(di) ⊂ Ker(di−1), or
equivalently such that d ◦ d = 0.

Figure 3.3: A schematic showing the structure of a chain complex. Every hori-
zontal level shows a group or module Ci (large circle), with its kernel (smaller
circle) in corresponding colours. Note that d maps the whole Ci into the kernel
of Ci−1, which then gets mapped to the identity represented by the black line
and dots.

In this thesis, we will mostly work with chain complexes where the Ci are
vector spaces, i.e. modules over a field. This will considerably simplify calcu-
lations because the Ci are then characterized by their dimension as a vector
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space. The maps are also easy to work with as we only have to know the image
of a basis.

Note that the term chain complex is not named after the sequence, which
some might call a chain, but after the elements of the Ci. These elements are
called chains for their appearance in geometric context, which we will see in
next section. The next definition introduces more terms like chain.

Definition 3.2.2. Let C be the following chain complex

· · · → Ci+1
d−→ Ci

d−→ Ci−1 → · · · ,

and let c ∈ Ci. The element c is called a chain, if c = d(c′) for any c′ ∈ Ci+1,
then c is called a boundary. The set of boundaries in Ci is denoted Bi. If
d(c) = 0, then c is said to be a cycle. The set of cycles in Ci is denoted Zi (for
the German word Zyklus).

All of these terms will be explained geometrically when we look at simplicial
homology.

3.2.2 Homology

Recall that the holes we wanted to study where cycles (boundaryless objects)
that could not be filled up. A cycle can be filled up iff it is a boundary. So that
means homology must be some object that counts cycles, but disregards them
when they are a boundary. This is exactly how we define homology, as can be
seen in the following definition.

Definition 3.2.3. The homology H(C) of a chain complex C is defined as fol-
lows. It consists of groups or modules

Hk :=
Zk
Bk

.

An element of Hk is called a homology class, and two cycles are said to be
homologous if they are in the same homology class. Cycles which are elements
of the trivial homology class are called trivial cycles.

Homology in this sense is quite easily defined, but also very abstract. In
practice we will take chain complexes corresponding to topological spaces, and
the construction of the chain complex will be quite geometrical. Still, the ho-
mology groups of a space might not directly give you an idea of what the space
looks like, even though they encode information like the number ‘twists’ and
‘holes’ in the space. In this thesis, we mainly study this number of holes.

Definition 3.2.4. The k-th Betti number βk(X) := βk(C) of a topological space
X with chain complex C, is defined to be the rank of Hk(C) when working over
Z, or if we work over a field of characteristic 0, as the vector space dimension
of Hk(C).
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In next section we will look at simplicial homology, a concrete geometrical
and almost combinatorial kind of homology. All concepts of this section will
be clarified with examples, and the nomenclature should become obvious in the
geometrical context.

3.3 Simplicial homology

Simplicial homology is the kind of homology we will use most in this thesis, as
it is defined for simplicial complexes. The big advantage of this framework is
that homology of this kind is easily computable. Additionally, this simplicial
homology is equal to singular homology and de Rham homology. Hence, we do
not actually make a limiting choice here.

3.3.1 The simplicial chain complex

In simplicial homology, the chains are simply given in terms of the simplices.
The boundary operation is then easily defined by using the face maps. Of course
we have to keep in mind some kind of orientation, this will be incorporated in
the boundary map. With this the homology is defined as for any chain complex.
To define simplicial homology, we will first have to pick the chain complex.

Definition 3.3.1. A simplicial k-chain c in a simplicial complex ∆ is a formal
R-linear combination of simplices:

c =
∑
σ∈S

rσσ,

where S ⊂ ∆ is a finite set of k-simplices in ∆ (i.e. σ ∈ S then |σ| = k), R is
a ring, and rσ ∈ R. The set (in fact module) of k-chains is denoted Ck(∆, R).

Typically the ring R is equal to one of Z, Z/pZ, Q and R. the last two of these
do not give any different information, as intuitively explained in Section 3.1.

To get homology, we now only need to have a boundary map. To define
this boundary map, we assume there is an orientation on the complex, which
manifests itself as a (partial) order on the simplices such that we can compare
any two vertices in a simplex.

It hence also gives an orientation on each simplex, which can be thought of
as an ordering of the vertices of the simplex. The reason this is an orientation is
very clear in the case of a one-dimensional simplex. There the ordering defines
a starting point and an end point of the line segment. For higher dimensional
simplices something similar holds.

Definition 3.3.2. The boundary map dk : Ck(∆, R) → Ck−1(∆, R) is defined
by

dkσ :=

k∑
i=0

(−1)i∂iσ,
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Figure 3.4: A few examples of elements from C1 for the complex at the top. The
first one is a chain with non-trivial boundary. The second one is a boundary; a
pre-image is given. The last one is a non-trivial cycle.

where ∂iσ = (v0, . . . , v̂i, . . . , vk). For a k-chain γ =
∑
rσσ we have

dγ :=
∑

rσdσ.

We will often drop the index k from dk, as most of the time, it is known which
degree chain we work with.

Proposition 3.3.3. For d as defined above we have d ◦ d = 0.

Proof. We prove this fact for γ = 1σ, and σ = (v0, . . . , vk) an arbitrary sim-
plex. The result follows easily because d is a module homomorphism and the
simplices form a basis of he module. We now just compute the coefficient of
(v0, . . . , v̂i, . . . , v̂j , . . . , vk) in d◦d(σ) for any 0 ≤ i < j ≤ k. We can first remove
the ith vertex and then jth, or vice versa (note that in the first case the jth
vertex becomes the (j − 1)th). This corresponds to the fact that the coefficient
will be

(−1)i∂i((−1)j∂jσ) + (−1)j−1∂j−1((−1)i∂iσ) = ((−1)i+j + (−1)i+j−1)∂j∂iσ

= 0.

As we get 0 for each pair i < j, we know that d ◦ d(σ) = 0.

With our chains and boundary maps defined, we also have homology.

Definition 3.3.4. Simplicial homology groups Hk(K) of a complex K with coef-
ficients in R is the homology corresponding to the chain complex (Ck(K, R), dk)
with Ck(K, R) and dk as above.
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+d +d +d

Figure 3.5: Stepwise explanation of why two chains are in the same class. In
each step we add a boundary, which makes us stay in the same class. Of course
the equivalence could be seen in one step by adding the sum of the boundaries.

3.3.2 Some useful facts about simplicial homology

We now look at a few general results about simplicial homology which we will use
throughout this thesis. These results are quite basic facts which can be found
in standard works like Hatcher’s book [6]. Two of the following results regard
long exact sequences, algebraic objects which are useful in the computation of
homology.

First we treat a very basic but important fact about homology. In many
treatments of homology it is seen as an axiom, because it can be used to define
homology. The way we treat homology, it should be proven, but we will omit
the proof as it serves no purpose here.

Lemma 3.3.5 (Corollary 2.11 and Theorem 2.27 in Hatcher [6]). Let X and Y
be two homotopy equivalent spaces, then Hk(X) = Hk(Y ) for all k.

We will use this lemma mainly in the application of the nerve theorem, which
gives us a homotopy equivalence between a complex and some space. There we
skip over the fact that simplicial and singular homology are equal, which is also
not so trivial to prove.

Long exact sequences of homology

A long exact sequence is a convenient computational tool. When part of the
sequence is known, exactness gives a lot of information about the part that is
not yet known.

Definition 3.3.6. A long exact sequence is a sequence of (Abelian) groups or
modules

· · · → Ci+1
fi+1−−−→ Ci

fi−→ Ci−1 → · · ·

such that Ker fi = Im fi−1.

We can compute things with these sequences using the exactness. For exam-
ple if there is a part of the sequence that looks like · · · → 0→ A→ B → 0→ · · · ,
then we can conclude that A is isomorphic to B.

The first of the two LES’s that we discuss, is the long exact sequence of a
pair. A pair in topology is a pair of spaces, one contained in the other. These
pairs need to have some nice properties, but for subcomplexes these are already
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satisfied. We suggest the reader to think about the maps on the level of cycles,
as this works quite well, even though the maps are strictly speaking maps of
equivalence classes of cycles.

Proposition 3.3.7 (Long exact sequence of a pair). Let K′ ⊂ K be complexes,
then there exists a long exact sequence

· · · j∗−→ Hk+1(K/K′) δ−→ Hk(K′) i∗−→ Hk(K)
j∗−→ Hk(K/K′) δ−→ Hk−1(K′) i∗−→ · · ·

of homology, where the map i∗ is induced by the injection i : K′ → K and the
map j∗ by the quotient map j : K → K/K′ as topological spaces.

The map δ in the definition above is harder to explain than i∗ and j∗. This
is especially the case because we directly go to the homology of the quotient
space K/K′, instead of rigorously defining the homology of a pair of spaces. If
the reader wants to understand the map δ better, we refer them to the section
about relative homology in Chapter 2 of Hatcher’s book [6].

The second LES is the Mayer-Vietoris sequence. For this one, we divide
the space in two subspaces. The homology of the subspaces together with the
homology of the intersection give a lot of information about the homology of
the total space. For these sequences we again invite the reader to understand
them better by studying the maps. The boundary-map δ∗ merits most study,
because it is often defined very abstractly, but can be understood intuitively.

Proposition 3.3.8 (Mayer-Vietoris). Let A,B ⊂ X be complexes, then there
is a long exact sequence

· · · δ∗−→ Hk(A∩B)
(i∗,j∗)−−−−→ Hk(A)⊕Hk(B)

k∗−l∗−−−−→ Hk(X)
δ∗−→ Hk−1(A∩B)→ · · ·

of homology, where the maps are induced by the inclusion maps

i :A ∩B →A, j :A ∩B →B,
k :A →X, l :B →X.

A nice application of the Mayer-Vietoris sequence is the computation of the
homology of the spheres. We treat this application in terms of spaces instead of
simplicial complexes. We do this because notation for complexes isomorphic to
the spheres is unnecessarily complicated, especially when we can just talk about
the spheres directly. It is however possible to rephrase the following lemma in
terms of cross polytopes.

Lemma 3.3.9. Let Sn denote the n-dimensional sphere with n > 0, then

Hk(Sn,Z) =

{
Z if k = n, 0

0 otherwise
,

and

Hk(Sn,Q) =

{
Q if k = n, 0

0 otherwise
.
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Proof. Let Dn
1 and Dn

2 be two discs covering Sn with intersection a small open
neighbourhood of the equator. Note that this intersection is homotopy equiv-
alent to a (n − 1)-sphere. This means the homology of the intersection is the
same as the homology of Sn−1. We use the Mayer Vietoris sequence with this
cover:

· · · → Hk(Sn−1)→ Hk(Dn)⊕Hk(Dn)→ Hk(Sn)→ Hk−1(Sn−1)→ · · · .

Knowing that H0(S0) = Z ⊕ Z, we can inductively use the Mayer-Vietoris
sequence of Dn

1 , D
n
2 ⊂ Sn to arrive at the result. To clearly see this, we explicitly

give the relevant parts of the sequences. The cases n = 1 and n > 1 are treated
separately as the induction basis, and the step.

Basis First we look at the case n = 1. Only the end of the sequence is
relevant, as for k > 1 all the homology groups in the sequence are
0. The end of the sequence is

· · · → H1(D1)⊕H1(D1)→ H1(S1)→ H0(S0)→ H0(D1)⊕H0(D1)→ H0(S1)→ 0.

We note that Hk(Dn) = 0 for all k > 0, because Dn is homotopy
equivalent to a point; and we note that S1 has one component, so
H0(S1) = Z. We fill this in to get the exact sequence

· · · → 0⊕ 0→ H1(S1)→ Z⊕ Z→ Z⊕ Z→ Z→ 0.

Using exactness (in this case rank-nullity), it is easy to see that
H1(S1) = Z. We conclude that the theorem is correct for n = 1.

Hypothesis The theorem is correct for n = i− 1.

Step We again use the Mayer-Vietoris sequence for Di
1, D

i
2 ⊂ Si. Using

our knowledge of the homology of the discs we fill in the sequence
for k > 1

· · · → Hk(Di)⊕Hk(Di)→ Hk(Si)→ Hk−1(Si−1)→ Hk−1(Di)⊕Hk−1(Di)→ · · ·

to get

· · · → 0⊕ 0→ Hk(Si)→ Hk−1(Si−1)→ 0⊕ 0→ · · · .

This sequence implies that Hk(Si) and Hk−1(Si−1) are isomorphic
if k > 1. The induction hypothesis then implies

Hk(Si,Z) =

{
Z if k = i, 0

0 otherwise
.

Replacing Z by Q everywhere proves the second statement of the lemma.
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Minimal non-trivial cycle

When we look at homology of random complexes later we will want to ‘estimate’
homology. In certain cases, the so called ‘sparse regime’, most components will
be very small. Hence the homology can be determined by looking at very
small components. To use this, we want to know which small components can
contribute to homology. The following lemma is about the smallest of these
components.

Proposition 3.3.10 (Minimal non-trivial cycle). Let k ≥ 1, then in a simplicial
complex, a non-trivial k-cycle γ is supported on a complex with at least k + 2
vertices. Additionally, if the complex has exactly k + 2 nodes, then it is the
hollow (k + 1)-simplex δ∆k+1.

Proof. Suppose we have a complex with k+1 vertices, then there is at most one
k-simplex. This simplex has a non-zero boundary, so there are no non-trivial
k-cycles.

We now assume the complex has k + 2 vertices. It should be clear that
the only boundary-less chains are the ones picking each possible k-simplex with
the same coefficient, as each face is shared by exactly two of these simplices.
If the (k + 1) simplex on all vertices is present, such a cycle can be filled up,
so there can only be a non-trivial cycle if the complex is the boundary of the
(k+ 1)-simplex, which we call the hollow/empty simplex of dimension k, or the

hollow/empty k-simplex.

Note that Clique complexes cannot take this form, and hence their minimal
non-trivial cycle is supported on a different complex. We will see later which
form this complex takes.

Betti numbers

In this thesis, we will often try to find the Betti number of a random complex,
as we want to know the number of holes in a random complex.

The way we try to find the Betti number, is by counting certain components.
For that purpose we introduce some counting variables here. Note that some
of these variables just count the number of unlabelled occurrences of a certain
complex, and others also need this complex to be a component of the larger
complex.

Definition 3.3.11. Let K be a simplicial complex. The following are variables



34 CHAPTER 3. HOMOLOGY

which relate to the number of occurrences of a certain type of subcomplex:

sk(∆) := #{A ⊂ V (K)|K[A] , δ∆k+1}
s̃k(K) := #{A ⊂ V (K)|K[A] , δ∆k+1,K[A] a component}
ok(K) := #{A ⊂ V (K)|K[A] , Ωk}
õk(K) := #{A ⊂ V (K)|K[A] , Ωk,K[A] a component}
f=i
k (K) := #{K′ ⊂ K|K′ , ∆k, |C(K′)| = i}

f≥ik (K) := #{K′ ⊂ K|K′ , ∆k, |C(K′)| ≥ i}.

where C(K′) is the component of subcomplex K′ ⊂ K.

The counting variables count special kinds of subcomplexes: sk counts the
number of hollow simplices of dimension k; ok counts the number of unlabelled
occurrences of the k-th cross-polytope; f=

k i counts the number of k-simplices
in complexes of size exactly i, et cetera. All these are useful in computing
homology as we will see in the following propositions.

Proposition 3.3.12. Let K′ ⊂ K be simplicial complexes and k ≥ 1, then

βk(K) ≤ #{k-simplices in K} ≤
(
|V (K)|
k + 1

)
,

and

|βk(K)− βk(K′)| ≤
k+1∑
j=k

#{j-simplices in K \ K′}.

Proof. We prove this proposition by induction, using long exact sequences of
homology with coefficients in Q (because we are interested in the Betti number).
Each step of the induction adds one simplex. In particular, we prove that if
K = K′ ∪ {σ}, where σ is of dimension d, then

βn(K) ∈


{βn(K ′), βn(K ′)− 1} if n = d− 1

{βn(K ′), βn(K ′) + 1} if n = d

{βn(K ′)} otherwise

.

The proof of this is easy when we use the long exact sequence of the pair (K,K′),
and note that K/K′ as a topological space is homeomorphic to Sd, of which we
know the homology by Lemma 3.3.2. The long exact sequence now gives us

· · · → Hn+1(Sd)→ Hn(K′)→ Hn(K)→ Hn(Sd)→ Hn−1(K′)→ · · · .

For n, n+ 1 6= d, we can easily see that this part of the sequence becomes

· · · → 0→ Hn(K′)→ Hn(K)→ 0→ · · · ,

and hence in those cases Hn(K′) = Hn(K) and hence βn(K′) = βn(K). If n = d
then we get

· · · → 0→ Hn(K′)→ Hn(K)→ Q→ · · · .
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Now if Q is the kernel of the last depicted map, then exactness gives Hn(K) =
Hn(K′)⊕Q. If the kernel of that same map is 0, then Hn(K′) = Hn(K).

Lastly, if n = d− 1 we have part of the sequence

· · · → Q→ Hn(K′)→ Hn(K)→ 0→ · · · ,

and for similar reasons we get Hn(K′) = Hn(K) ⊕ Q or Hn(K) = Hn(K′). In
terms of the Betti numbers, this is exactly what the equation above tells us. By
induction over the simplices in K \ K′, we can easily see that the proposition

holds.

An easy consequence of this proposition is the following one.

Proposition 3.3.13. For a simplicial complex ∆, we have s̃k(∆) ≤ βk(∆) ≤
s̃k(∆) + f≥k+3

k (∆).

Proof. The first inequality is obvious, as each isolated hollow simplex con-
tributes 1 to the Betti number (Lemma ), but there may be more components
that contribute. The second inequality is a bit harder to see: Note that non-
trivial chains can only occur in components on k+ 2 or more vertices, and that
the only complex on k + 2 vertices that sustains non-trivial chains, is the hol-
low simplex (Proposition 3.3.10). Therefore, we look at the hollow simplices
counted by s̃k(∆) and at all components with at least k + 3 vertices. Using
the previous proposition, we see that for each of these components, the Betti
number is bounded by the number of k-simplices in the component. This is

exactly what is being counted by f≥k+3
k (K).

3.4 Homology of clique complexes

Clique complexes have slightly different properties than general simplicial com-
plexes. This means that their homology has some stronger properties. In partic-
ular the minimal non-trivial cycles cannot be supported on a hollow simplex, as
these do not exist in a clique complex. We will mainly look at the implications
of this fact for the bounds on the Betti number of clique complexes.

3.4.1 Minimal nontrivial cycles

In this section we look at nontrivial (homological) chains in clique complexes. In
particular we will see how many nodes are needed to support such a nontrivial
chain. We will follow the proofs of lemma 5.2 and lemma 5.3 from [9] and fill
in the gaps in the arguments. This means the proofs are due to Mathew Kahle,
but the proofs here contain more details.

We start by defining the restriction of chains to subcomplexes. In particular,
we want to make sense of restricting a cycle to the link of a vertex. This link
may of course be of lower dimension than the cycle, but we do not want it to
automatically become trivial. So we define the following restrictions.
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Definition 3.4.1. Let γ be a chain in a simplicial complex K given by

γ =
∑

λσσ,

and v a vertex of the complex. Then we define

γ ∩ oSt v :=
∑

σ∈oSt v

λσσ, γ ∩ Lk v :=
∑

σ∈oSt v

λσ(σ \ {v}),

the restrictions of the cycle to oSt v and to Lk v.

With these definitions we can prove the following lemma about non-triviality
of these restricted cycles.

Lemma 3.4.2 ([9] lemma 5.2). Suppose γ ∈ Ck(∆) represents a non-trivial
k-cycle with minimal vertex support, k ≥ 1. Then, for any v ∈ vsupp(γ), the
(k − 1)-chain γ ∩ Lk(v) represents a nontrivial cycle in Lk(v).

The proof is divided in two parts: we first prove that γ ∩ Lk(v) actually is
a cycle, by showing that it is the boundary of some chain in the total complex
∆; then we prove that γ ∩Lk(v) is nontrivial in Lk(v), by showing that it is not
the boundary of any chain supported in this link.

Proof. Let it be noted that an orientation of the complex is implicit in this
proof. This orientation is, however, important in the calculations of the proof.

We first see whether γ ∩ Lk v is indeed a cycle by computing its boundary.
To do this, we just compute that γ∩Lk(v) = ∂(γ∩oSt(v)). We can understand
this intuitively by noting that γ is a cycle, and the restriction of γ can hence
only have boundary on the boundary of the complex it is restricted to. Because
γ ∩ Lk(v) is a boundary, it is automatically a cycle.

More rigorously we have the following reasoning, which is quite abstract.
Any σ with non-zero coefficient in ∂(γ ∩ oSt(v)) is a face of a simplex in oSt(v)
and hence we just have σ ∈ St v = oSt(v) ∪ Lk v. Suppose σ ∈ oSt v, then any
simplex that has σ as a face must also lie in oSt v. This means that µσ = µ′σ,
where µ and µ′ are the coefficients of σ in δγ and δ(γ ∩ oSt v). Because γ is a
cycle, we conclude that µ′σ = 0. Now suppose σ ∈ Lk v. Then the only simplex
in oSt v contributing to the coefficient of σ is σ∪{v}, and we can easily see that
µ′σ = λσ∪{v}. Hence we conclude that γ ∩ Lk(v) = ∂(γ ∩ oSt(v)).

Now we prove the cycle is non-trivial in Lk(v) by contradiction. Suppose
γ ∩Lk v is trivial, then it is the boundary ∂(β) for some k-chain β with support
in Lk(v). Write β =

∑
σ∈supp(β) µσσ and define the (k + 1)-chain

β ? {v} :=
∑

σ∈supp(β)

µσ(σ ∪ {v}),
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A simple computation reveals that the boundary of this chain is γ ∩ oSt(v) +
(−1)k+2β. This is because the ? just expands the link to the open star, and
similarly it expands ∂(β) = γ ∩ Lk v to γ ∩ oSt v by adding v to each of the
simplices. The term (−1)k+2β is explained by the ‘new boundary’ of the open
star compared to the link. The factor (−1)k+2 is an artifact of the fact that we
do not know the orientation of the complex.

To complete the argument, we just define γ′ := (γ − γ ∩ St(v)) + (−1)k+3β,
and note that γ and γ′ are in the same homology class, but v is in the vertex
support of γ but not in the vertex support of γ′, this contradicts the condition

of minimal vertex support for γ, which was set in the lemma.

If the proof is unclear, we encourage the reader to draw an example. The
correspondences of all cycles as stated in the proof become quite clear visually.

We can use this lemma to prove a more interesting one about the minimal
cycles in a clique complex.

Lemma 3.4.3 ([9] lemma 5.3). If γ represents a nontrivial k-cycle for k > 0
in a clique complex X(H), then | vsupp(γ)| ≥ 2k + 2.

Proof. The proof of this lemma goes by induction on k. The preceding lemma
plays a crucial role in the induction step, where it will bound the vertex degree
for each vertex in the support of the nontrivial cycle γ.

Basis For k = 1, we obviously need at least 4 vertices to support a non-
trivial cycle; there are no clique complexes with a hole on less than
4 vertices. Hence the case k = 1 is clear.

Hypothesis For all k′ < k: if γ′ is a nontrivial k′-cycle in a clique complex, then
| vsupp(γ′)| ≥ 2k′ + 2.

Step Suppose γ is a nontrivial k-cycle, and | vsupp(γ)| ≤ 2k + 1: we
will show this leads to a contradiction. Let v ∈ vsupp(γ) be any
vertex in the support of γ. By the preceding lemma, γ ∩ Lk(v) is
a nontrivial (k − 1)-cycle in Lk(v). By Proposition 2.3.2 the link
Lk(v) is also a clique complex. Hence we can use the induction
hypothesis to see that | vsupp(γ ∩Lk(v))| = 2k, because γ ∩Lk(v) is
supported on at least 2k vertices in the link and it must be supported
on less vertices than γ. Consequently we also have the equality
| vsupp(γ)| = 2k + 1. This means that the degree of v in H is
2k. We can repeat this argument for each v ∈ vsupp(γ), hence the
subcomplex of X(H) supported on supp(γ) is a (2k + 1)-clique. As
this subcomplex is contractible it cannot support a nontrivial cycle,
hence we have reached a contradiction, from which we conclude that
| vsupp(γ)| ≥ 2k + 2.
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In a later chapter we will use these facts in the following form, which is just
a bit stronger than last lemma. We can think of it as a lemma about minimal
spheres in the clique complex.

Theorem 3.4.4. A nontrivial k-cycle γ in a clique complex X(H) has | vsupp(γ)| ≥
2k + 2. If equality holds, then γ must be supported on the cross-polytope Ωk.

Proof. Note that by previous lemma, we only have to prove the second state-
ment: “If | vsupp(γ)| = 2k + 2, then γ must be supported on a subcomplex
isomorphic to the cross-polytope Ωk.”

The proof uses a counting argument similar to the one in previous lemma.
Suppose γ is a non-trivial k-cycle supported on a complex with 2k+ 2 vertices.
As in the proof of previous lemma, we can see that for each vertex v we have
| vsupp(γ ∩Lk(v))| is 2k or 2k+ 1. If there is a vertex v for which this quantity
equals 2k + 1, then v has edges to all other vertices. Consequently, the clique
complex is contractible to v. Hence there cannot be a non-trivial cycle. We
conclude | vsupp(γ ∩ Lk(v))| = 2k for all vertices v. It is clear that the only

clique complex where all vertices have 2k edges is the cross-polytope Ωk.

For clique complexes we can also estimate the Betti number with a sandwich
between two counting variables as in Proposition 3.3.13. In fact, the same
relation holds, because clique complexes are simplicial complexes. Although we
can see that these bounds do not tell us much, because s̃k(X(G)) = 0. With
the preceding discussion, we can get similar but more useful bounds for clique
complexes.

Proposition 3.4.5. For a clique complex X(H), we have õk(∆) ≤ βk(∆) ≤
õk(∆) + f≥2k+3

k (∆).

Proof. The proof is the same as for Proposition 3.3.13. The difference is that
Clique complexes have minimal k-cycles supported on k-dimensional cross-polytopes,

which are counted by õk.



Chapter 4

Topological tools

4.1 Homotopy colimits

For the proof of a quite strong theorem about the nerve, we will have to use
some more advanced ways to construct spaces. In particular, we will need to
know about homotopy colimits, which are closely related to the normal colimits
of spaces. We assume the colimit of spaces is known here, but for the sake of
comparison, we will also recall its (categorical) definition.

4.1.1 Colimits

In this section we recall the definition of a colimit of spaces and we will look
at simple but interesting examples. In these examples we encounter a property
relating to homotopy which we would like a construction to have. The colimit
construction fails this property.

To define the colimit we first remind the reader that a small category is a
category in which the objects and the maps are sets. In general, a category might
have a class of objects that cannot be described as a set. Think for example
of the category of sets (Set): it is well-known that it leads to contradictions to
assume that there is a set of all sets (Russell’s paradox).

Definition 4.1.1. Let F : C → Top be a functor from a small category C to
the category of topological spaces. The colimit of this functor is a space colimF
together with maps φ(p) : F (p) → colim(F ) that commute with all Ff in the
following sense: the upper part of the diagram (without X and corresponding
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arrows)

p
f

//

F
��

q

F
��

F (p)
F (f)

//

φ(p)

((
ψ(p)

%%

F (q)

φ(q)
vv

ψ(q)

yy

colim(F )

��

X

commutes. The colimit has the following universal property: for any space X
coming with maps ψp : F (p) → X which also commute with all the Ff , the
diagram above commutes.

The mentioned space is the following

colimF =
∐
p∈P

F (p)/ ∼,

where the equivalence relation is generated by the induced maps, i.e. x ∼ Ff (x)
for all maps f : p→ p′ in P and elements x ∈ F (p). The maps are the obvious
maps sending an element to its equivalence class.

In fact the above definition has some redundance: If we have a space and
maps with this universal property, then the explicit description of the space and
maps follow. We have however included them in the definition because we will
mostly work with the explicit description, as it is easier visualized. Keep in
mind that abstract proofs using the universal property can be very short and
elegant.

Note that the definition uses a small category P , in the cases we encounter,
this will often be a poset. In particular we will mostly use the poset of inclusions
for a cover and all intersections of the cover.

To get an idea of what a colimit is, we look at a few examples:

Example 4.1.2 (Coproduct). The simplest example of a colimit is the coprod-
uct, which is called disjoint sum in the category of spaces. The diagram consists
of a collection of spaces with no maps between them; there are only the identity
maps. The colimit of this diagram is then just the disjoint sum of these spaces.
This should be clear from the definition, because the equivalence relation in the
formula is induced by maps, which we do not have in this case.

Example 4.1.3 (Pushout). A pushout is a colimit where diagram of spaces is
of the form

Z
f
//

g

��

X

Y

.
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The pushout of this diagram is often denoted X tZ Y . When both maps f and g
are inclusions, i.e. Z ⊂ X and Z ⊂ Y , then the colimit is just the union X ∪Y
(Figure 4.1).

Figure 4.1: The pushout of a diagram where a line segment maps to two different
spaces separately. The image of a space under each map has the same colour as
the space. If we assume the solid arrows are inclusions, then we can view the
colimit as the union of the line and the circle.

Another nice pushout is the attachment of a cell to a space (Figure 4.2). To
get this, take the standard inclusion g : Sk ↪→ Dk+1 and a map f : Sk → X, to
get the space which we denote X ∪f Dk. This is the space X where we attach a
cell Dk along its boundary to X, where the way its boundary attaches to X is
given by the map f .

Figure 4.2: Two pushouts resulting in the attachment of a cell to a space. The
attached cell on the left is of dimension one, and on the right a 2-dimensional
cell is attached.

Example 4.1.4 (One map). An uninteresting, but important example here, is
the colimit of the diagram X → Y . The colimit of this diagram is just the space
Y again. This example is important because the corresponding homotopy colimit
we will see later is actually interesting.

Now the interesting thing is that, while this construction is quite universal
when we look at continuous maps, it is not very useful when we look at ho-
motopies. By this we mean that colimits where we replace spaces by (weakly)
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homotopy equivalent spaces, might not give (weakly) homotopy equivalent col-
imits.

Example 4.1.5 (Where the colimit fails). We can take the two pushouts

Sk−1 //

��

Dk Sk //

��

{pt}

{pt} {pt}

,

where {pt} is the space consisting of one point. Obviously Dk and {pt} are
homotopy equivalent, but the colimit of the left diagram is Sk, and the colimit
of the right diagram is {pt}.

This is why we use a different but closely related construction: the homotopy
colimit. In next section we look at the way homotopy colimits fix this problem.

4.1.2 Homotopy colimits

To get a homotopy colimit, we again put some spaces together in one bigger
space, just like in the colimit. But now, instead of pasting them on each other
directly, we put in little bridges, which lets us keep the original spaces in there.
It will turn out to be the right way of putting spaces together when we want to
look at homotopies of spaces.

The following definition is rather restricted in the type of categories can
be used for the diagram. This is done because the definition might become
unwieldy when it is given in full. To succinctly give the full definition, we would
have to introduce simplicial spaces, which are far too complicated for the use
we have in mind.

Definition 4.1.6. Let F : P → Top be a diagram of spaces, over a poset P .
The homotopy colimit of this diagram is

hocolimF =
∐

p0→···→pn

∆n × F (p0)/ ∼,

where the coproduct is over all (finite) chains of composable non-identity maps
in P , ∆n is the topological n-simplex and the equivalence relation is as follows:

Let p0 → · · · → pn be a chain of composable map in P , then removing one
of the pi we get a new chain of composable maps: or i = 0 or i = n this
is clear, for 0 < i < n, we take the map pi−1 → pi+1 to be the composition
pi−1 → pi → pi+1. Denote this new chain by ∂i(p0 → · · · → pn). Denote
fi : ∂i∆

i ↪→ ∆i the inclusion of the ith boundary of ∆i in the topological sim-
plex.

Now the equivalence relation is generated by:

• for i > 0 we have (fi(t), x) ∼ (t, x);
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• for i = 0 we have (fi(t), x) ∼ (t, F (p0 → pi)x).

This definition seems hard to work with, but the idea is simple. We can
imagine the homotopy colimit to be a copy of each of the spaces F (pi), where
for each map pi → pj we attach a cylinder F (pi) × I on the one end to F (pi)
and on the other end to F (pj) by the map F (pi → pj). In other words, we glue
in the mapping cylinder of this map. For composable chains we instead glue
in ‘higher dimensional mapping cylinders’, which on the boundaries correspond
to the mapping cylinders. Let us look at the mapping cylinder as a homotopy
colimit again.

Example 4.1.7 (Mapping cylinder). Let X → Y be a diagram of spaces, then
the homotopy colimit is the space

X t I ×X t Y/ ∼,

where the equivalence relation attaches one side of the cylinder by the identity
map to X, and the other side by the map X → Y to Y . This is just the mapping
cylinder of the map X → Y .

We have to admit one thing, ‘the’ homotopy colimit does not exist in the
category of spaces. Technically the homotopy colimit is defined in a slightly
different category, where the objects are homotopy classes. This means the
homotopy colimit is actually a class of spaces, of which the one in our definition
is one example. If we talk about the homotopy colimit in this thesis, we talk
about the choice we made in this definition.

A simple example of what the construction ‘does’ can be found in Figure 4.3.
There we see the colimit and the homotopy colimit of a diagram of the form

U ∩ V �
�

//� _

��

U

V

.

The colimit of this diagram is just the union U ∪ V , whereas the homotopy
colimit fits in a sort of bridge. Keep this example in mind because it is the main
use of the homotopy colimit in the proof of the nerve theorem we will see later.

The ‘bridges’ in the homotopy colimit are important to keep the homotopy
properties even if we choose a diagram with homotopy equivalent spaces. To
illustrate this, let us return to the example of last section (example 4.1.5).

Example 4.1.8 (Where the homotopy colimit works). Take the same diagrams
of spaces we had in example 4.1.5, and let us look at their homotopy colimits.
Instead of using the equivalence relation directly, we use it only on the ends of
the cylinders. For example, the map f : Sk−1 → {pt} gives a cylinder I × Sk−1

where the quotient f(x) ∼ x is used only on one end, e.g. (0, x) ∼ f(x).
In Figure 4.4 the resulting homotopy colimits are drawn. Note that both are
homotopy equivalent (even homeomorphic) to Sk.



44 CHAPTER 4. TOPOLOGICAL TOOLS

Figure 4.3: The colimit and the homotopy colimit of a diagram with two inclu-
sions: of the intersection of two balls into the two balls.

{pt} S1 D2 {pt} S1 {pt}

Figure 4.4: The homotopy colimits of the two diagrams of example 4.1.5, the left
space corresponds to the left diagram and the right space to the right diagram.
Note that the homotopy colimits of these diagrams are homotopy equivalent.

Categorical definition

Let us now look at an alternative definition, which is less constructive of nature,
and more categorical. As such, it might also be harder to understand, but it
is easier to work with, as it will give us a universal property to work with. To
do so, we have to introduce two new constructions related to categories and
simplicial complexes. The first is the over category, a way to construct a new
category from an old one by looking at it from one of the objects. The second
is the classifying a small category, which is a simplicial complex in the case that
I is a poset.

Definition 4.1.9. Let I be a small category and i an object of I, then the over
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category i ↓ I consists of objects: pairs (j, f : i → j) of an object j of I and a
map f : i → j. The arrows between (j, f) and (j′, f ′) are maps g : j → j′ such
that the diagram

j
g

//

f
��

j

f ′
��
i

commutes.

If I is a small category, then the classifying space of I denoted B(I) or BI is
a topological space constructed from all the chains of compositions in I. Again,
to define this for all small categories, we have to introduce simplicial sets. We
will hence restrict to posets once more, to make the definition easier. It is helpful
to keep in mind that a similar definition works for arbitrary small categories.

Definition 4.1.10. Let P be a poset, the classifying space of P , denoted B(P )
is the homotopy colimit of F : P → Top with F (p) = {pt} for all objects p.
Equivalently, it is the simplicial complex with n-simplices (pi0 , . . . , pin) for all
chains pi0 → · · · → pin .

Even though the relation is shaky at the fundamental level, we want to
note the following: the (nerve of an) over category of an object bears many
similarities with the link of a vertex in a simplicial complex. There is a big
difference however: in the over category we only consider outgoing arrows, where
the link cannot make any distinction between edges connected to the vertex.

To practice with the definitions we prove the following lemma about the
relation between different over categories of one poset.

Lemma 4.1.11. Let P be a poset and f : p→ q an arrow in P . Then there is
an injection f∗ : B(q ↓ P )→ B(p ↓ P ) induced by the map f .

Proof. For any small category C and a map f : p→ q in C there is the induced
map (functor) f∗ : q ↓ C → p ↓ C given by

f∗(r, g : q → r) = (r, g ◦ f : p→ r).

In general, this does not give an injection on the level of classifying spaces, we
will prove that it does for C = P a poset.

Because in a poset there is at most one map between two objects, there is at
most one object in i ↓ P with first entry j for all i, j objects of P . Therefore, we
can suppress the second entry of the objects of i ↓ P and still remain with all the
information. Note that f∗ is a map on pairs, which is the identity map on the
first entry of the pair. This means that the map f∗ is injective on the objects.
In our representation with the second entry suppressed, f∗ sends r ∈ Ob(q ↓ P )
to r ∈ Ob(p ↓ P ).

The simplicial complex B(q ↓ P ) is then quite simply the subcomplex of
B(p ↓ P ) on the vertices r such that there is a map q → r (this includes q
of course). In fact, both can be seen as subcomplexes of B(P ) in the same

way.
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The reason the statement about injectivity does not hold for arbitrary small
categories, is that there, we may have two different maps f, f ′ : p→ q such that
f ◦ g = f ′ ◦ g.

With these constructions, we can easily define the homotopy colimit in a
more categorical setting. For convenience, we still restrict to posets instead of
small categories.

Definition 4.1.12. Let F : P → Top be a diagram of spaces over a poset P ,
then the homotopy colimit of F is the coequalizer of

∐
f :i→j F (i)×B(j ↓ I)

φ
//

ψ
//
∐
i F (i)×B(i ↓ I) .

The maps are the expected inclusions on the summands of the coproduct:

• On summand F (i)×B(j ↓ I) indexed by f : i→ j, we take φ = F (f)×1 :
F (i)×B(j ↓ I)→ F (j)×B(j ↓ I) composed with injection into the second
coproduct;

• On summand F (i)× B(j ↓ I) indexed by f : i→ j, we take ψ = 1× f∗ :
F (i)×B(j ↓ I)→ F (j)×B(i ↓ I) composed with injection into the second
coproduct.

This definition is (at least at first sight) quite similar to a general definition
(viz. [7] Definition 8.1). Unfortunately, the general definition makes use of
model categories and simplicial sets, so we cannot fully explain the similarities
and differences here. We can, however, show that both our definitions are equal,
which is useful because it gives us multiple ways to approach homotopy colimits.

Proposition 4.1.13. The two definitions of the homotopy colimit given above
are equivalent.

Proof. Let us denote the homotopy colimit from the first definition with hocolim
and the second one with hocolim′. We will show that both constructions ulti-
mately use the same components and gluing.

Note that in the definition of hocolim′ the maps ψ are injective because of
Lemma 4.1.11, and that we can see B(q ↓ P ) as a subcomplex of B(P ) for
all objects q. This means that in the colimit (coequalizer), all the summands
of the left coproduct can be found as subspace of some summand of the right
coproduct. This definition of the homotopy colimit will therefore be a quotient
of the coproduct on the right.

Going through the definitions, we see that equivalence relation of the quo-
tient is encoded in the maps F (f : i→ j) in the following way:

(x, t) ∼ (F (f)(x), t)

for all t ∈ B(j ↓ P ) and x ∈ F (i). Now we note again that B(q ↓ P ) can be
seen as the subcomplex of B(P ) on the vertices r such that there is an arrow
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q → r. We write the subcomplex B(q ↓ P ) as union of simplices containing q as
vertex, and get the following equivalent definition (to hocolim′) of the homotopy
colimit: ∐

p0→···→pn

F (p0)×∆n/ ∼,

where the equivalence relation glues the subcomplexes back together (bullet one
of the equivalence relation in the definition of hocolim), and uses the equivalence
relation above. Note that on the simplices this equivalence relation becomes

(x, α∗(t)) ∼ (F (f)(x), t),

where f is the map f : p0 → p1, and α : (p0 → · · · → pn) 7→ (p1 → · · · → pn)
induces the inclusion α∗ of the 0-th boundary of the simplex. Note that this
part of the equivalence relation encodes the second bullet of the definition of

hocolim. We conclude that the two definitions are equal.

Now let us turn to some important properties of homotopy colimits, which
we will use in the proofs in next section about the nerve theorem.

4.1.3 Important properties

For the use of homotopy colimits in the proof of the upcoming nerve theorem, we
need a few more facts about homotopy colimits. These facts come in the form of
two lemmas: one which states that swapping spaces in a diagram for homotopy
equivalent ones does not change the homotopy colimit; and one that says that
in particular cases, the homotopy colimit projects as a homotopy equivalence to
the colimit.

The proofs of the lemmas follow the course of the proofs in Kozlov’s book
[13], we just fill in the details. In Hatcher’s book [6] equivalent statements with
proofs can be found, but their notation is somewhat tedious, as everything is
written in terms of mapping cones, including the homotopy colimits.

Note that the proofs only hold for our limited definition of homotopy colim-
its. More general results can be stated (and poved in a comparable way) if one
is prepared to learn about simplicial sets and simplicial spaces. Note here that
a simplicial space is not a simplicial complex, but a more general concept set in
the world of categories and functors. It goes beyond the scope of this thesis to
even introduce the needed terminology for treating homotopy colimits in this
sense rigorously.

Lemma 4.1.14. Let F : P → Top and G : P → Top be diagrams of spaces,
i.e. functors from the indexing poset P to the category of topological spaces.
Suppose η : F → G is a natural transformation which consists of only homotopy
equivalences ηp : F (p) ' G(p). Then the homotopy colimits

hocolimF 'hocolim(η) hocolimG,

are also homotopy equivalent.
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Proof. Note hocolim η is a homotopy equivalence if and only if hocolimF is a
strong deformation retract of M(hocolim η). We will construct such a defor-
mation retract inductively over the skeleton of B(P). This is possible because
M(hocolim η) ∼= hocolimH, where H : P → Top is a diagram over the same
poset P consisting of mapping cylinders.

Concretely we have H(p) = M(ηp), and the maps H(p) → H(q) for p → q
in P , are the maps which we get from the universal property of the mapping
cylinder as a pushout:

F (X) //

��

((

G(X)

$$

��

F (Y )

��

// G(Y )

��

[0, 1]× F (X)

((

// M(ηX)

$$

[0, 1]× F (Y ) // M(ηY )

Both the back and the front square are pushout diagrams. The solid arrows
from the back to the front are induced by ηX and the dotted arrow is the map
we get using the universal property of the square with Xs.

Now we use our knowledge of the maps to see that indeed

hocolimH ∼= M(hocolim η),

where hocolim η : hocolimF → hocolimG is the map induced by the maps

1× ηp0
: ∆n × F (p0)→ ∆n ×G(p0),

for all chains of maps p0 → · · · → pn in the index category. This makes it
clear that we can see Mhocolim η as a bunch of mapping cylinders glued together
exactly as in hocolimH.

Now that we can work with M(hocolim η) ∼= hocolimH as a space over
B(P ), we want to see how it looks over parts of the skeleton of B(P ). For the
induction, it turns out to be useful to define Hn: the part of hocolimH above
the n-skeleton of B(P ) together with hocolimF , i.e.:

Hn = hocolimF ∪
∐

p0→···→pk,k≤n

F (p0)×∆k/ ∼,

with the equivalence relation as for the homotopy colimit. We are now ready to
use induction on Hn with n ≥ 0.

Basis The inclusion of F (p) in mapping the cylinder M(ηp) is a deform
retract iff F (p) 'h G(p). This holds for all objects p, as this is the
condition in the lemma. Hence H0 deform retracts onto hocolimF
above all the vertices, which is everywhere.
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Hypothesis Hk deform retracts onto Hk−1 and onto hocolimF for all 0 ≤ k ≤
n− 1

Step We now prove that Hn strong deformation retracts onto Hn−1 and
onto hocolimF .

Note that g : Hn−1 → Hn is a closed inclusion and a neighbourhood
deformation retract (NDR). Hence it is a strong deformation retract
iff the inclusion is a homotopy equivalence. This is a basic fact of
topology as can be found in Hatcher’s.

As the deformation retract can be done separately over n-simplices,
we just work over an n-simplex (with vertices {0, 1, . . . , n}) now, and
the deform retract is defined in the same way over each n-simplex.

Note by induction hypothesis: Hn−1 'f hocolimF , where fn−1

is the inclusion. By definition of the homotopy colimit, hocolimF
deform retracts onto F (n) the space above vertex n. This is clear
once we realize we are working over an n-simplex. For the same
reason, Hn deformation retracts onto H(n) = M(ηn), where ηn :
F (n)→ G(n) is the relevant map above vertex n. By the condition
of the lemma, this is a homotopy equivalence, hence H(n) deform
retracts to F (n). It is clear that the diagram:

Hn−1 //

%%

Hn

||

hocolimF

%%

H(n)

{{

F (n)

with the inclusion on the top and the deformation retracts down-
wards, commutes. Hence the inclusion Hn−1 → Hn is a homotopy
equivalence, and by the comment about the NDR earlier, it is a
strong deformation retract. Also, because hocolimF is a strong de-
formation retract of Hn−1, it is a strong deformation retract o Hn,
too.

By concatenating the (possibly infinite) number of strong deformation re-
tracts, we get hocolimF as a deformation retract of M(hocolim η), and hence

that hocolim η is a homotopy equivalence.

Lastly in this section, we define the nerve diagram, which is very much
related to the nerve as we saw earlier. This relation will become clear when we
treat the nerve theorem.
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Definition 4.1.15. Let {U}i∈I be an (open) cover, then the nerve diagram of
this cover is the poset consisting of objects (i0, . . . , ik) such that

∩kj=0Uij 6=

and arrows (i0, . . . , ik) → (i0, . . . , îj , . . . , ik) for all 0 ≤ j ≤ k representing the
inclusions.

Next lemma is preparation for the proof of the nerve theorem. It is, in
particular, one of the homotopy equivalences that we use sequentially to prove
this theorem.

Lemma 4.1.16. Let X be a paracompact space, {U}i∈I a locally finite open
cover of X, and let N be the nerve diagram of the cover. This gives a diagram
of spaces F : N → Top, and we have the following homotopy equivalence:

hocolimF ' colimF = X.

Proof. There is the canonical projection p : hocolimF → colimF . This pro-
jection can most easily be imagined by noting that all elements in hocolimF
can be represented by ((σ, t), x), where σ = (i0, . . . , ik) represents the intersec-
tion of some cover elements, t in the interior of ∆k (drop the word interior if
k = 0), and x ∈ ∩0≤j≤kUij . The projection map p is then just the map sending
((σ, t), x) to x. This means the inverse of x for x contained in exactly k + 1 of
the Ui, say Ui0 , . . . , Uik , consists of all simplices in the nerve corresponding to
faces of σ.

The idea now is to find a nice section of the projection map. This is done
using the fact that the space is paracompact, and therefore there is a partition
of unity respecting the cover. Let φi : X → R be this partition of unity, and set

s(x) :=
(

({i ∈ I|x ∈ Ui},
∑
i∈I

φi), x
)
.

This map is continuous because the partition of unity is, and for each x ∈ X it
picks an element in the pre-image f−1(x), so it is a section. It can also easily
be checked that the contraction of ∆k to the point

∑
i∈I φi can be done in each

fiber simultaneously, which gives us the homotopy equivalence.

4.2 The nerve theorem

In this section we discuss the nerve theorem, which relates the nerve of a cover
of some space to the space. If the cover is nice enough, we can recover the space
from the nerve. An easy condition for this ‘nice enough’ is to take a finite cover,
this is the version we will prove. Alternatively, we could choose to assume our
space is paracompact, and take an arbitrary good open cover.

Theorem 4.2.1 (Nerve Theorem, Borsuk [3]). For a finite open cover U of a
paracompact space X we have the following: if every nonempty intersection of
elements in U is contractible, then N (U) ' X.
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Later in this thesis, we will build simplicial complexes from random sets of
points. One type of these complexes is built using these points and balls of
fixed radius around them. Taking balls (of fixed radius) as the cover ensures
that all intersections are contractible. This is the reason this theorem will be
quite useful.

The proof of the theorem is quite abstract, unfortunately. Even when we try
to envision the spaces that are used, we quickly have to go to high dimensional
spaces, of which we can hardly produce insightful images. Hence illustrations
might be lacking. The reader is still encouraged to think about the structures
geometrically, although the pictures are missing here.

Proof. Let F : N → Top to be the diagram of spaces over the nerve diagram N
of U sending (i0, dots, ik) to ∩kj=0Uij and G : N → Top sending all objects to the
one element space {pt}. Using Lemma 4.1.14 and the fact that all intersections
are contractible, we can easily see that N (U) ∼= hocolimG ' hocolimF . Next,
by Lemma 4.1.16 we see that hocolimF ' colimF ∼= X. Combining the two,

we get N (U) ' X as we wanted.

Note that we already (in Section 2.4) gave some examples of situations where
not all conditions of the theorem are met, and where therefore the implication
of the theorem does not hold. Note also that when we work in Rd, and if we
take balls of certain radius as the cover the conditions of the theorem will be
met. Because manifolds are paracompact, the theorem also holds for manifolds,
if we choose suitable covers. It might not yet be clear, but these are the reasons
this theorem is very important in the study of random complexes.

4.3 Discrete Morse theory

Discrete Morse theory, first developed by Forman [5], can be seen as a tool for
understanding collapses in a simplicial complex. The theory is used to find out
topological properties of a given simplicial complex. In particular the homotopy
type is scrutinized by finding equivalent spaces with a limited number of cells
of certain dimension.

In essence, the theory can be related to regular Morse theory, but not much
of that is easily retrieved by the combinatorial description in which it is usually
given. Like in regular Morse theory, we can start with Morse functions, from
which we get information about the space on which it is a function. In discrete
Morse theory, however, we often skip this step and immediately go to ‘vector
fields’, with corresponding critical points.

In this section we will give a quick review of some important constructions
and theorems from discrete Morse theory. We will mostly follow chapter 11 from
Kozlov’s book [13] on combinatorial algebraic topology, and for more details the
book by Jonsson on simplicial complexes [8].
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4.3.1 Collapses

The way we will use discrete Morse theory, is mainly by its main theorem. This
theorem tells us something about the homotopy type of our complex. We con-
struct a sort of vector field, which tells us how we can collapse our complex to
another homotopy equivalent complex. The way we can think about these col-
lapses is as a generalization of the simplicial collapse in the sense of Whitehead.
The difference is that we also allow for internal collapses. In the proof we will
only use cellular collapses, but the internal collapses provide an intuitive version
of the proof.

We will only be concerned with collapses of cells to faces of codimension 1.
We hence introduce notation to indicate that a cell is a codimension 1 face of
another cell. With codimension one face we of course mean a face of the cell
which is of one dimension lower.

Definition 4.3.1. Let σ ⊂ τ be cells in a complex, and let σ be a codimension
1 face of τ , i.e. |σ| = |τ | − 1. Then we write σ ≺ τ , or equivalently τ � σ.

We now turn to collapses. The simplest of those are the elementary col-
lapses, which intuitively remove parts of the ‘outside’ of the complex. For these
collapses, it is easy to see that the homotopy type of the complex does not
change.

Definition 4.3.2. Let σ, τ be a pair of cells in a complex K such that τ ≺ σ,
σ a maximal cell (i.e. there is no other cell that contains σ), and σ is the only
cell that contains τ . Then we call τ a free face of σ. For any such pair we have
the elementary collapse of K, which is the complex

Kτ≺σ := K \ {σ, τ}.

This elementary collapse is well defined because of the restrictions on the
pair σ, τ from the definition. Removal of these two simplices does not change
anything about the attachments of the other cells, because σ is maximal, and τ
is no part of any attachment except that of σ.

Note also, that the homotopy type of the complex will not change because
the inclusion of the horn Λki (the union of all faces of ∆k except for the i-th) in
the simplex ∆k is a deformation retract. This induces a deformation retract for
Kτ≺σ in K.

To imagine what is happening, we also want to consider collapses of cells
which are not ‘on the outside.’ These collapses make it possible to reduce the
number of cells of the complex, even if there are no free faces. The following is
a definition for these internal collapses.

Definition 4.3.3. Let σ, τ be cells in a complex K with cells C, such that
τ ≺ σ, and some additional conditions hold. Then the internal collapse of K
w.r.t. these cells is the complex Kτ≺σ, which is the complex with cells C \{σ, τ},
and attaching maps induced by the retraction of σ to δσ \ τ .
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Note that an internal collapse may take us away from the class of simplicial
complexes, to the more general class of cell (CW-) complexes. An example can
be found in Figure 4.5. Also, the structure of the new complex is not as obvious
as in the case of the elementary collapse, where we could just remove the two
cells. For internal collapses, we have to patch things together, simply removing
the two cells might not even result in a cell complex! In the definition, this is
taken care of by redefining the attaching maps slightly. A collapsing cell will be
considered to retract to other cells, and if a cell is attached to a collapsing cell,
it will be attached to these other cells after the collapse (Figure 4.6).

Figure 4.5: An example of an internal collapse giving a non-simplicial complex.

Figure 4.6: An example of the ‘reattachment’ for internal collapses.

It is not directly clear when internal collapses change the homotopy type of
the space, hence they are not suitable for use in a proof. It turns out that the
internal collapses can be done in most cases that we encounter: in particular
the case of doing multiple internal collapses in a simplicial complex, where any
cell is part of a collapse at most one time in a nice way. We explain this in next
section.

?

?

Figure 4.7: An example of how internal collapses can give spaces which are not
homotopy equivalent to the original.
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4.3.2 Discrete vector field

In the main theorem, we will want to do multiple collapses. For a simplicial
complex, picking any pair of cells τ ≺ σ, gives a nice collapse which does not
change the homotopy type. However, for general cell complexes, this is not the
case. Take for example the circle, made from on 0-cell and one 1-cell. Collapsing
the 1-cell to the 0-cell cannot, in any way, give a space homotopic to the circle.
Because internal collapses can take us from simplicial complexes to general cell
complexes, we need to be careful. Hence we will need to put some restrictions on
the set of collapses that we do. These restrictions are phrased most commonly
in terms of discrete vector fields.

Definition 4.3.4. Let K be a simplicial complex. A discrete vector field is a
collection of pairs of cells {α ≺ β} such that each cell of K is in at most one of
the pairs. A cell that is not paired is called critical.

There is an alternative way of looking at these vector fields which might help
visualize the next definitions. For this alternative, we need to see the simplicial
complex as a directed graph.

Definition 4.3.5. The Hasse diagram of a simplicial complex K is the directed
graph where the vertices are the simplices of K, and the edge set consists of all
pairs of simplices (α ≺ β).

A discrete vector field is now just a choice of edges in the Hasse diagram,
which induces a disconnected subgraph. All isolated nodes in this subgraph
correspond to critical cells. For the purposes of Morse theory we want a more
restricted kind of vector field, which is called an acyclic discrete vector field.

Definition 4.3.6. A discrete vector field V is called acyclic if there is no se-
quence

α0 ≺ β0 � α1 ≺ · · · � αi ≺ βi � α0

with αj 6= αj+1 and {αj ≺ βj} ∈ V .

The name acyclic vector field is visualised easiest in the Hasse diagram:
Take the Hasse diagram of a complex, and invert all the arrows corresponding
to a pair in the discrete vector field. The Discrete vector field is acyclic if the
resulting directed graph is acyclic. It is easy to see that this gives the same
definition as above.

We can now use a nice property of the directed acyclic graph that we got.
We can extend the order this graph gives to a linear order, such that paired
nodes ‘stay together’. This linear order will give us the necessary data to prove
the main theorem of discrete Morse theory: it gives the order in which we do
collapses.

Lemma 4.3.7. Let G = (V,E) be a directed acyclic graph, and let H ⊂ E be
a set of arcs that have no vertex in common. There exists a linear order of the
vertices which is an extension of the partial order induced by G, and in which
for any (v, w) ∈ H and u ∈ V we have: if v < u < w, then v = u or w = u.
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1

2 3

4

(a) Complex
with pairing

123 234

12 13 23 24 34

1 2 3 4

(b) Hasse diagram with inverted arrows

4

34

3

13

1

12

2

24

234

23

123

(c) Extension to lin-
ear order

Figure 4.8: The Hasse diagram with matching extended to a linear order.

Proof. Note that the directed acyclic graph and the subset H correspond to
a poset P with acyclic vector field H by a minimal extension of the order
given by the arcs. Because the vector field is acyclic, it is possible to define
a ‘quotient poset’ Q with elements all pairs H and all critical cells C = {v ∈
V |v 6∈ e for all e ∈ E}. The order in this poset is given by the order of the poset
P . It is easy to check that this order is well defined. Now it is generally known
that we can extend a poset to a linear order. Any such extension suffices.

4.3.3 Main theorem of discrete Morse theory

The main theorem of discrete Morse theory can be compared to normal Morse
theory, where critical points of a vector field are indicative of the topology of
the space. Here, too, the critical points are used to infer information about the
complex, but the vector field is not assumed continuous, it is assumed to be a
discrete vector field. Finding a nice discrete vector field hence gives us a lot of
information about the complex.

Theorem 4.3.8. Let K be a simplicial complex with an acyclic discrete vector
field V , then K is homotopy equivalent to a cell complex with as many cells of
dimension k as there are critical cells of dimension k in V .

The following basic topological lemma tells us that homotopic attaching
maps for a cell give homotopy equivalent spaces. This lemma will be crucial in
the proof of the main theorem, as we want to build up the complexes, but only
in a homotopy equivalent way. The proof can be found in most standard works
that include a section about homotopy.

Lemma 4.3.9. Let X and Y be homotopy equivalent spaces with homotopy
f : X → Y , and let g : Sk−1 → X be the attaching map of a k-cell to X. The
spaces X ∪g Dk and Y ∪f◦g Dk are also homotopy equivalent.
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4.3.8. By Lemma 4.3.7 there exists a linear order of the simplicies of K which
agrees with the adjusted Hasse diagram. For the proof we use induction on the
simplices, ordered by this linear order. Note that the first simplex will always be
a vertex of the complex, as any higher dimensional cell has at least one incoming
edge from below.

Define for this proof the ith complex Ki to be the complex consisting of all
simplices in the first i pairs/critical cells.

Basis The first simplex in the order is critical, otherwise it could not have
been the first simplex. The complex consisting of this vertex only,
which we call K1, is obviously homotopy equivalent to a complex
with one 0-cell. Call this complex Θ1.

Hypothesis The complex Ki is homotopy equivalent to a complex Θi with ck
cells of dimension k, for all i < n.

Step We prove that Kn ' Θn for a Θn that has appropriate numbers of
cells in each dimension, if Ki ' Θi for all i < n and Θi with similarly
appropriate numbers of cells. To do this, we distinguish two cases:
Kn \ Kn−1 can either be a critical cell, or a pair of cells from the
discrete vector field.

In the first case, of the critical cell, we do the following. Say the
homotopy equivalence of Kn−1 and Θn−1 is given by a map g :
Kn−1 → Θn−1, and that the attaching map of the critical cell (of
dimension k) is the map f : δ∆k → Kn−1. Then, by Lemma 4.3.9,
we know that

Kn ∼= Kn−1 ∪f ∆k ' Θn−1 ∪g◦f ∆k =: Θn,

where Θn has the correct number of cells in each dimension.

In the second case, of the pair of cells (τ ≺ σ), we use an elementary
collapse. Note that we can restrict the vector field to the complex
Kn. In this vector field, the chosen pair is largest in the extended
linear order. This implies that (τ ≺ σ) is a free pair in Kn: if
υ > σ, then obviously the pair is not largest in the order, hence σ is
maximal; and if υ > τ and υ 6= σ, then we get υ > σ which gives the
same contradiction, so τ is a free face of σ. Now, because the pair
is free in Kn, we can do an elementary collapse and get a homotopy
equivalent space. This homotopy equivalent space is the space Kn−1

which we get by just removing the pair. Hence

Kn ' Kn−1 ' Θn−1 =: Θn

defines the space Θn with the right number of cells in each dimen-
sion.
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Note that also more abstract proofs are possible, which work for arbitrary (?)
cell complexes. These however, loose some of the intuitive arguments, and use
more abstract algebraic topology. We follow the method with internal collapses
because the resulting theorem is strong enough for the purposes in this thesis,
and the intuitive/visible arguments are preferable above abstract ones (even
sometimes when the abstract ones are shorter).

Table 4.1: The inductive elementary collapses and attachments of cells like in
the theorem for the matching in Figure 4.8. Read the diagram from the bottom
to the top to understand the homotopy equivalence.

Step Action Induction step

1 add critical cell 123 ' =⇒ '

2 collapse (23,234) ' =⇒ '

3 add critical cell 24 ' =⇒ '

4 collapse (2,12) ' =⇒ '

5 collapse (1,13) ' =⇒ '

6 collapse (3,34) ' =⇒ '

7 add critical cell 4 ∅ ' ∅ =⇒ '

It is instructive to look at figures 4.1 and 4.2 for an example of the steps in
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the theorem. In the first of these figures, we see what actually happens in the
theorem. In the second one we see the link with internal collapses. Although it
is not directly clear that internal collapses are allowed, the proof of the theorem
implies they are allowed in the cases we encounter by going through the steps
of the theorem.

Table 4.2: The internal collapses for the matching in Figure 4.8. Note that the
collapses give homotopic spaces because they can be produced from homotopic
spaces by attaching the critical cells as seen in Figure 4.1.

Step Internal Collapse

2 −→

4 −→

5 −→

6 −→



Part II

Random geometry

59





Chapter 5

Random Geometric Graphs

This chapter gives an overview of random geometric graphs. In particular it
contains definitions and a collection of useful results. For a simplicial complex,
we know that the 1-skeleton can be seen as a graph. In the same way, random
geometric complexes are the 1-skeleta of random geometric complexes that we
encounter in next chapter. It is therefore useful to have some results about
geometric graphs ready to use, for example about the number and size of com-
ponents, as those properties are directly useful for studying complexes. Most
results from this chapter are from Penrose’s “Random gometric graphs.”[14]

Random geometric graphs can behave in quite a lot of ways. A good predic-
tor of certain behaviour is the ‘limiting density’ of the points, i.e. the number
of points we expect to see in some area when we take increasingly many points.
Because points get connected when they are close together, this density gives us
an idea of how connected the vertices of the graph are. If there are only a few
points per very large area, we expect to see a lot of very small components. If in
any small area, we already expect to see multiple points, these points will likely
be connected, and thus we expect multiple large components; and when the
density becomes large enough, we even expect to see only one large component.
These density limits are called regimes, and we will shortly talk about these.

Lastly, we will look at the expected number of specific kinds of components.
These are important for the homology of random complexes that we will study
later. The graph components can already tell us a lot about the possibility of
it supporting holes.

5.1 Geometric graphs

A geometric graph is a graph built from geometric information: a set of points
in a metric space and a fixed radius r. If points are close enough together,
then they are connected by an edge. In terms of balls, this means that points
whose balls of radius r intersect, get connected (Figure 5.1). Because later, for
geometric complexes, the definitions are easiest when we phrase everything in

61
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terms of these balls and intersections, we will do the same here.

Definition 5.1.1. Let X be a set of points in a metric space and r ≥ 0 a radius.
This information defines a geometric graph G(X, r) with vertex set X and edges
{x1, x2} if and only if B(x1, r) ∩B(x2, r) 6= ∅.

Figure 5.1: The geometric graph G(X, r) for some set of points X and radius r.

This construction might remind one of the Nerve we saw in Chapter 2; in
fact, the random geometric graph G(X, r) is the same as the 1-skeleton of the
nerve of the cover {B(x, r)}x∈X . One of the geometric complexes studied in
next chapter, in fact, is this nerve. This also explains the relevance of studying
the geometric graphs here.

5.1.1 Feasible graphs

It turns out geometric graphs can be restrictive in some sense: for a fixed
dimension, there are graphs that cannot be realised as a geometric graph in
that dimension. For example: the bipartite graph K1,6 cannot be realised in
R2. We therefore would like to be able to indicate if a graph is geometrically
realisable in such a way.

Definition 5.1.2. A graph G is feasible in dimension d if there exists a (finite)
set X ⊂ Rd and radius r such that G(X, r) ' G.

The following proposition is obvious, but useful.

Proposition 5.1.3. If G is feasible in dimension d then it is feasible in any
dimension d′ ≥ d.
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As a generalisation of the example we want to look at a certain class of
graphs and in which dimension they are feasible. The class of graphs we are
interested in is the class of star graphs.

Definition 5.1.4. The star graph ?n is the graph with vertex set V = [n + 1]
and edges

E = {(n+ 1, i)|i ∈ [n]}.

In other words ?n := K1,n.

In our example before, we claimed that ?6 was not feasible in R2. In the
following proposition, we give a criterion for which star graphs are feasible in
a certain dimension. Note that it only gives a rather crude bound, but having
this finite bound is enough for some proof later.

Proposition 5.1.5. For every dimension d there is a natural number Nd such
that the star graph ?n is feasible in dimension d iff n ≤ Nd <∞.

Proof. Fix vertex n+1 at the origin. To be connected to this vertex, each other
vertex has to be at distance at most 2r from the origin, in particular, they must
lie in the cube [−2r, 2r]d. Now partition this cube in subsets with diameter
smaller than 2r, we can do this with a finite number of subsets. For example
subdivide it regularly in smaller cubes of side length less than 2r√

d
. If two of the

vertices are together in one of the cubes, there is an edge between them, which
is not allowed. Hence, by the pigeonhole principle, the maximally feasible star

graph has less vertices than the cubes in our subdivision.

5.2 Random point processes

To get to our random graphs and complexes, we need a random set of points.
The way we ‘produce’ these is by random point processes. These random point
processes pick out a certain number of random points according to a distribution.
The number of points might be fixed, or it may also be random. The cases we
treat have points that are all identically distributed, and the number of points
is either fixed or Poisson distributed. Of course there are more possibilities,
but we restrict ourselves to these two point processes, which can be most easily
imagined.

5.2.1 Formal definition: measure theoretic

The way to think about point processes may already be clear from the intro
above: ‘just pick a bunch of random points’. The formal definition, however,
is at the first sight not equally clear. To formally define a point process, we
need to put some restrictions on the ambient space, and we have to look at two
‘layers of measures’ (a random measure). At first the formal definition and the
intuition do not seem to align, but on a closer look, we can easily see where the
connection forms. This section is purely included for the reader who wants to
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see how a point process can be defined abstractly, we will not actually use these
definitions in the rest of this thesis.

In this section we will look at the formal definition of a point process, and
we will see how it aligns with our intuition. Firstly, we need to know how
we represent one outcome of the random process, then we see how it is ‘made
random’.

Outcomes: a set of points?

As we are working with probability theory, it is needed to phrase certain things
in terms of measures. The sets of points we want to pick out, are therefore best
represented by a counting measure. Suppose we want to pick out a few points in
a space S. Then the points we pick can be represented by a counting measure.
This can be thought about as a measure with discrete weight one at each point
we picked.

Now, we also want the point sets to have some specific properties. In par-
ticular we want it to be locally finite. This means that in any compact subset,
we want to find at most a finite number of points. Collecting these thoughts,
we get the following definition for the set of outcomes we want for our point
processes.

Definition 5.2.1. A locally finite counting measure on the space S with Borel
σ-algebra B(S), is a measure µ defined by

µ(B) = #{B ∩ P}

for some locally finite set P ⊂ S.

Random outcomes

Now we want to take a random such outcome, i.e. we want a random variable.
To get a random variable, we need a measure on the outcomes, and a mapping
from a probability space to the this measure space of outcomes. We first define
this measure space of outcomes.

Definition 5.2.2. The space M(S) of locally finite counting measures on S is
made measurable by generating the σ-algebra ρ(M(S)) on M by all sets neces-
sary to make

µ 7→ µ(B) : M → N

measurable for all pre-compact sets B ∈ B(S).

The reason we want a definition as such, is that we in the end are mostly
interested in counting the number of points in subsets of the space. If we can
do this for enough subsets, we can actually pinpoint the locations of the points,
too.

Furthermore, the probability of a set of points being in exactly one posi-
tion should in most cases be 0, certainly if the distribution of each point is not
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discrete. Hence the only way to make sense of a measure of random points, is
to see how many there are in a certain subset. This way the probability of a
certain outcome can actually be non-zero.

The last step now is to make a random variable, i.e. a random sampling
of these outcomes. This is simply done by taking a probability space and a
measurable map from the probability space to the measurable space of outcomes.

Definition 5.2.3. A point process on S is a measurable mapping

(Ω, F,P)
Φ−→ (M(S), ρ(M(S))),

where M,ρ as defined above and (Ω, F,P) is a probability space.

5.2.2 Formal definitions: specific kinds

In this thesis, we actually work with slightly less general point processes. This
also means that we can take a slightly less abstract definition, which might seem
less rigorous. It can, however, be proven that the definitions we will give now,
are actually point processes in the formal sense discusses in last section.

Binomial point process

The first of the two random point processes that we consider is the binomial
point process. It has a fixed number of points which are distributed indepen-
dently. In fact this already describes the whole process, giving us the following
definition.

Definition 5.2.4. A binomial point process Xn (n ∈ N) in a space S is a
random vector (X1, · · · , Xn) ⊂ Sn, where each of the points Xi is independent
and identically distributed with some density f on S.

The name binomial point process is easily explained if we look at the distri-
bution of the number of points in some set U ⊂ X. This is binomially distributed
with parameter

∫
U
f(x)dx.

It is important to note that, even though the Xi are independently dis-
tributed, there is dependence in the process. It seems trivial to note that if
there are k points in a subset U , then there are n − k points in S \ U . In the
next section we look at a different kind of point process, where even this trivial
dependence is not present.

Poisson point process

Whereas the binomial point process has a fixed number of points, the Poisson
point process has a random number of points. This number is a Poisson random
number N with some parameter λ, i.e. P(N = n) = λn

n! e
−λ. There are multiple

equivalent definitions of a Poisson point process, one of which is the following,
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which uses explicitly this relation with the binomial point process. In next
section we will look at this relation more closely.

Definition 5.2.5. Let f be a density function. A Poisson point process with
parameter λ ≥ 0 and density function f , which is denoted Pλ, is defined as
XPoi(λ).

Note that the expected number of points in such a process is λ. The outcome
of such a process and a binomial point process with λ points can hence hardly
be distinguished. It will in fact turn out that we can use the Poisson point
process to approximate the binomial point process. This is useful because the
Poisson point process is easier to work with, as two non-overlapping regions can
be considered separately. With this we mean that for U ∩ V = ∅, we have the
independence

E
(
|Xn ∩ U |

)
= E

(
|Xn ∩ U |

∣∣ |Xn ∩ U | = m
)
.

Of course this independence is not directly clear from the definition. However,
if we take the following definition, it is quite clear.

Definition 5.2.6. Let X be a space and f an intensity function on X, then a
Poisson point process Pλ with parameter λ is defined by the following

• The number of points Pλ ∩U in U ⊂ X is distributed as Poi(
∫
U
λf(x)dx)

for all pre-compact Borel sets U ;

• if U1, . . . , Uk are disjoint, then Pλ ∩ Ui are independent for i ∈ [k].

This definition is equivalent to the former one, if the intensity function is a
density function.

For this definition the comparison with a Poisson arrival process is easy to
make: Take as space the real line R and intensity function f(x) = λ. The
number of arrivals is Poisson distributed with a parameter linear in the length
(time) of the interval. In fact, such an arrival process can be viewed as a Poisson
point process on R.

The two definitions above seem quite different, but they are equivalent. For
a proof we refer to any standard work about point processes.

Proposition 5.2.7. The two definitions of a Poisson point process above are
equivalent.

Proof. Let the space be X and the distribution of the points be given by the
density f on X.

Note firstly that the number of points in both definitions has the same
distribution, because

∫
X
λf(x)dx = λ. Now if we condition on Pλ = N , then in

the first definition, we just have a binomial point process XN . We have to prove
that the same holds for the second definition. This follows quite easily from the
independence of the second definition and looking at the probability that one
of the n points is in a certain subset U . In particular, it is done by proving that

P(Xi ∈ U |#Pλ = n) is binomially distributed.
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A short remark

A lot of results hold for both Poisson point processes and binomial point pro-
cesses, we therefore introduce notation for a point process that does not distin-
guish between the two. If we write Φn we either mean Pn or Xn.

5.3 Random geometric graphs

Random geometric graphs are now very easily defined. Where we had a geo-
metric graph G(X, r) on a set of points X and a radius r, we just take a random
set of points, so either X = Xn or Pλ. These graphs can be interesting of them-
selves, but they become more interesting if we take increasingly many points
and make the radius smaller and smaller. This gives the random graphs a lot of
structure that we can study, for example the limiting number of components.

We will here only shortly look at such results, because we will focus on
comparable results for random complexes. It is however useful to note already,
that the rate at which n, λ → ∞ and r → 0 make a great difference in the
structure we see in the random graphs. These rates define different regimes,
and we will now first look at these.

5.3.1 Regimes

In the study of random geometric graphs we distinguish between different regimes.
These regimes are related to the limiting density of the points, i.e. the number
of points we expect per certain area. It is easy to imagine that if the expected
number of points in a ball of radius 2rn becomes very large, we will have a
highly connected graph, and if it goes to zero, most points will be isolated. This
expected number can be related to the density of the points as given by the
limit

lim
n→∞

nrdn

when we have an ambient space of dimension d. The exponent d is easily
explained by the fact that the density is related to the volume of the ball of
radius rn, which is of the order rdn.

In the regime where nrdn → 0, which we call the sparse regime, we will see
a great number of small components. This regime is therefore also called the
sand grain regime. The next regime is called the thermodynamic regime, here
nrdn → r ∈ (0,∞).

This regime is the most interesting in terms of the form of the components.
There is a quite sudden shift in shape if we let r raise from 0 upwards. At a
certain value R percolation occurs and if r > R there is suddenly almost surely
one infinite component in the limit. This value for R is the critical limit. And the
thermodynamic regime is split in a (thermodynamic) subcritical regime, where
limn→∞ nrdn < R; a (thermodynamic) critical regime, where limn→∞ nrdn = R;
and a (thermodynamic) supercritical regime, where limn→∞ nrdn > R.
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Lastly there is the dense regime, in which limn→∞ nrdn =∞. In this regime
we expect that locally, all nodes are connected. If we look at a point process
with uniform intensity on a connected set, we might expect to see one connected
component.

5.4 Subgraph count

Certain random complexes (the Vietoris-Rips complex) complexes are deter-
mined by their underlying graph, and hence counting certain subgraphs can
give us a lot of information about the topology of such complexes. Think for
example of the cross-polytope of dimension k, the minimal complex with non-
zero homology in degree k. The ability to count such complexes could get us
a long way to determining Betti numbers, as we will do in the next chapter.
In this section we will state a result about such subgraph counts in random
geometric graphs, and we will follow the proof provided by Penrose [14].

5.4.1 Terminology for random geometric graphs

Of course, because we are talking about geometric graphs, all usual terminology
for graphs are also used here. This means we have (induced) subgraphs, con-
nected components, cycles, and graph isomorphisms, etc. as usual. There are,
however, some terms and notation specific to geometric graphs. In particular,
we will look at some stochastic variables for the number of such regular graph
structures.

Definition 5.4.1. Let G(Φn, rn) be a random graph with parameter n, then we
have the following random variables:

• The random variable Gn(H) is the number of unlabelled occurrences of H
as an induced subgraph of G(Φn, rn).

• The random variable Jn(H) is the number of components in G(Φn, rn)
isomorphic to H.

To count these numbers, we have indicator variables for a subset X ⊂ Φn:

hH(X) =

{
1 if G(Φn, rn)[X] ∼= H

0 otherwise

h̃H =

{
1 if G(Φn, rn)[X] ∼= H and G(Φn, rn)[X] is a component

0 otherwise
.

Note that there is the following way to use the indicator to count:

Gn(H) =
∑
Y⊂Φn

hH(Y )

Jn(H) =
∑
Y⊂Φn

h̃H(Y ).
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5.4.2 Subgraph count theorem

In this subsection we will look at the theorem by Penrose about the number of
times we expect to find some graph as a subgraph in a random geometric graph.

Theorem 5.4.2. Suppose limn→∞ rdnn = 0 and H is a connected feasible graph
on k ≥ 2 nodes. Suppose also that the distribution of the points is given by
bounded density function f . Then

lim
n→∞

r−d(k−1)n−kE(Gn(H)) = lim
n→∞

r−d(k−1)n−kE(Jn(H)) = µH ,

where µH is the following quantity:

k!−1

(∫
Rd
f(x)k

)∫
(Rd)k−1

hH({0, x1, . . . , xk−1})d(x1, . . . , xk−1)

The proof of this theorem is given in Penrose’s monograph [14]. Instead of
repeating this here, we give the proof of a similar theorem about the number of
certain subcomplexes in Section 6.3. The proofs of these theorems go along the
same lines, so it would be unnecessary to give them both in detail.





Chapter 6

Random Geometric
Complexes

In this chapter the constructions of different kinds of geometric complexes are
displayed. First we look at the construction of a complex from some set of
points. When we are finished with the intricacies of these constructions, we will
bring in the random element, just like in last chapter about geometric graphs.
Whereas for geometric graphs we only gave one construction, we will here give
multiple. After the introduction of the geometric complexes, we continue with
the random element. This means we will continue with random point processes,
the processes which supply us with the random sets of points from which we
construct our random complexes. The use of the random point processes is
roughly the same as for random geometric graphs, this section will hence mainly
introduce notation.

6.1 Geometric complexes

A geometric complex is essentially just a simplicial complex built from geometric
information about the vertices. In this thesis, this geometric information will
be given by the distance between points in Euclidean space. There is a simplex
on a set of points if the points are close enough together.

Of course there are different choices for such constructions, we could for ex-
ample connect two points if they are close enough or, alternatively, if they are
closest to each other. The first of these corresponds to the Čech and Vietoris-
Rips constructions, and the second to the Voronoi construction of complexes.
We will only be concerned with the Čech and the Vietoris-Rips complex, which
differ only in their two- and higher-dimensional simplices. We will now give
specific recipes for these constructions, after which we elaborate on each con-
struction some more.

71
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6.1.1 Čech

The first construction of a simplicial complex using points in a metric space is
that of the Čech complex. This construction is very natural if we compare it
with the nerve of a cover as defined before (Definition 2.4.1), and is easy to work
with whenever the nerve has nice properties.

Definition 6.1.1. Let P ⊂ X a set of points in a metric space (X, d), and
let r ≥ 0 be a fixed radius. The Čech complex Č(P, r) is the simplicial complex
where (x0, . . . , xn) forms a simplex iff

∩ni=0B(xi, r) 6= ∅.

In other words, it is the nerve of the cover {B(p, r)}p∈P .

Even though the Čech complex can contain high dimensional simplices, the
nerve theorem tells us that this does not complicate the homotopy type very
much. The complex is weakly equivalent to the subset of the ambient space
covered by all the balls. This means the homology of the complex is equivalent
to the homology of this subspace.

In general, these kind of subspaces will be ‘nice’, and we can infer some facts
about the homology of the complex from the topology of the ambient space.
For Euclidean space in particular, we get the following result, which restricts
the non-trivial homology of the Čech complex to certain dimensions.

Proposition 6.1.2 (Dimensionality of Čech complexes). For any Čech complex
X built from a (finite) set of points in Rd, we have HD(X) = 0 for all D ≥ d.

Proof. If we build a Čech-complex from a set of points P ⊂ Rd and radius r > 0,
then the nerve theorem (4.2.1) tells us that

Č(P, r) = N({B(p, r)}p∈P ) ' ∪p∈PB(p, r).

Because ∪p∈PB(p, r) ⊂ Rd, we know that HD(∪p∈PB(p, r)) = 0 for all D ≥ d.
To see this, use the long exact sequence of the pair (Rd,∪p∈PB(p, r)). This

gives the bound on homology we want.

The dimensionality mentioned here of course references the dimension of
homology. It is easy to see that we can get spaces with arbitrary high ‘topological
dimension’ as a Čech complex of points in R2: by clustering n+ 1 points we get
an n-simplex.

6.1.2 Vietoris-Rips

In this section we look at the second kind of geometric complex we study, the
Vietoris-Rips complex. Whereas the Čech complex has a natural definition as
the nerve, the Vietoris-Rips complex is easily defined as a clique complex.
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Definition 6.1.3. The Vietoris-Rips complex is the clique complex of a geo-
metric graph, which we denote

R(X, rn) := X(G(X, rn)).

The fact that the Vietoris-Rips complex is not the nerve of some cover, means
that we cannot use the arguments for the dimensionality of the Čech complex
in this case. Moreover, there is no bound on the dimension of the homology for
Vietoris-Rips complexes in any dimension d > 1.

Proposition 6.1.4 (Dimensionality of Rips complexes). For any dimensions
d ≥ 2 and D ≥ 0, there is a Rips complex X built from a set of points in Rd,
such that HD(X) 6= 0.

Proof. We first prove this proposition for d = 2. For each D we give a set of
points PD ⊂ Rd and radius rD such that RD := R(PD, rD) ∼= SD, and hence,
such that HD(RD) 6= 0.

Take for PD the vertices of the regular (2D+2)-gon, and for rD half the dis-
tance between two opposite vertices in the (2D+2)-gon. We prove by induction
that the rips complex RD , ΩD ∼= SD.

Basis For D = 0, RD consists of two disconnected vertices, which clearly
is homeomorphic to S0.

Hypothesis Now suppose we know that RD−1
∼= SD−1.

Step In the (2D+2)-gon, any two non-opposite vertices will be connected
by an edge as the distance between two non-opposite points is less
than the distance between opposite points. This defines the complex
RD for all D. Now note: if we take PD and remove two opposite
vertices, the complex of this resulting set of points (with radius rD)
will be homeomorphic to RD−1

∼= SD−1. It is now trivial to see that
adding the two missing points will produce the suspension. Hence
RD ∼= ΣRD−1

∼= ΣSD−1 ∼= SD.

The cases d > 2 can now be constructed in the same way by viewing R2

as an affine subspace of Rd: all cross polytopes are feasible in any dimension

d ≥ 2.

In particular, the proof of the proposition above tells us that all cross-
polytopes are feasible in Rd for d ≥ 2 as Vietoris-Rips complexes.

6.1.3 Comparison

We first compare the homology in different dimensions for the geometric complex
constructions in the following remark, then we will focus on some properties
relating the two kinds of complexes.
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(a) The cover consisiting of balls. (b) The Čech complex
(c) The Vietoris-Rips
complex

Figure 6.1: The Čech complex Č(X, r) and the Rips complex R(X, r) for one
set X and radius r. Note that one triangle in the Čech complex is not filled,
because there is no triple intersection for the balls around the three vertices.
Note also that the Čech complex is contained in the Rips complex.

Remark 1. Comparing propositions 6.1.2 and 6.1.4 we see that the dimension-
ality of the Rips and the Čech complexes have fundamentally different dimen-
sionality properties. Whereas the Čech complex can have non-trivial homology
in all dimensions up to the dimension of the space from which the points are
sampled, the Vietoris-Rips complex can have non-trivial homology in all dimen-
sions.

Even though the dimensions of the Čech and the Vietoris-Rips complexes can
be wildly different, there is a simple containment relation between the two. It
is quite trivial that Č(X, r) ⊂ R(X, r). This relation is obvious when we realise
that the underlying graphs of the complexes are the same. For a good example
of a set of points where the Čech complex and the Vietoris-Rips complex do not
coincide, see Figure 6.1. Note that in fact the containment we just mentioned
holds.

It also quite easy to see that there is another containment relation R(X, r) ⊂
Č(X, 2r). Because for each simplex in the Vietoris-Rips complex, all vertices
are in each of the balls B(v, 2r), we can see that certainly the barycenter of the
simplex is in each of these balls. Hence the simplex is in the Čech complex with
twice the radius.

6.2 Random geometric complexes

Now finally we introduce the structures we will be studying in this thesis, the
random geometric complexes. The definition now is quite short as we have
thoroughly introduced all the ingredients. The following sentence should be
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enough to write down a quite rigorous definition yourself:“A random geometric
complex is the Čech or Vietoris-Rips complex on a point process.” In short, we
will be studying the random geometric complexes R(Φn, rn) and Č(Φn, rn).

6.2.1 Regimes

Like for graphs, we study limits of properties of these random complexes for an
increasing number of vertices. This implies we also distinguish several regimes
for random geometric complexes. The regimes we use here are largely the same
as for random geometric graphs (Section 5.3.1). However, there seem to be
several slight differences in the use of the terms.

The definitions of the sparse, the thermodynamic, and the dense regime
correspond precisely to the case of the random geometric graphs. However,
the words regarding the critical value sometimes take a different meaning w.r.t.
random complexes. There are instances where the subcritical regime is equated
with the dense regime, the critical with the thermodynamic and the super-
critical with the dense regime (e.g. Kahles paper [10]).

This might be understandable, as the percolation critical value used for
random geometric graphs gives a less complete picture when we look at random
geometric complexes: connectivity in higher dimensions is also very relevant.
Additionally, there seem to be multiple critical values in the thermodynamic
regime: we have not only connectivity in the sense of graphs, but also higher
dimensional connectivity in the sense of loosing holes in a certain dimension.

In this thesis we choose to take terminology corresponding as much to ran-
dom geometric graphs as possible. This means we use the terms sparse, ther-
modynamic and dense regimes.

6.3 Subcomplex count

In this section we look at a theorem suggested by Kahle about the number of
occurrences of some complex within the random geometric complex, as promised
in Section 5.4. While the theorems were suggested, they did not write them
down in this generality in his papers, and they also did not provide poofs. The
proofs were said to be analogous to the proofs by Penrose for the case of random
geometric graphs. Hence, we follow the proofs by Penrose for graphs and adjust
them to the case of random geometric complexes.

6.3.1 Notation

Just like for random graphs, where Gn(H) indicated the number of unlabelled
occurrences of H as an induced subgraph of the random graph, we need similar
notation for random complexes. Let us start by defining a few indicators which
we use for counting subcomplexes, as we did for random graphs.
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Definition 6.3.1. Let K be a simplicial complex, define the indicator function
hK,r : P(Rd)→ {0, 1} by

hK,r(y1, . . . , yk) =

{
1 if K , Č({y1, . . . , yk}, r)
0 otherwise

If the radius is not specified, it is understood to be equal to 1; in other words
hK := hK,1.

If we write a tilde (̃·) above the indicator, it is one if the condition above is
fulfilled and additionally the induced complex is a component.

These indicator functions let us define the analogues of Gn(H) and Jn(H)
that we have seen for graphs (Definition 5.4.1).

Definition 6.3.2. For a complex K, point process Φn, and indicator function
h as above, we define the following random variables:

Gn(K) :=
∑
Y⊂Φn

hK,r(Y )

Jn(K) :=
∑
Y⊂Φn

h̃K,r(Y ).

Note that Gn(K) and Jn(K) indeed count the number of unlabelled in-
duced subcomplexes and unlabelled components isomorphic to K in a random
complex on the points Φn. This means that if we sum over ordered subsets
(X1, . . . , Xk) ⊂ Φn, we count each subcomplex k! times.

It is also important to note that the assumed complex construction (Čech)
is not reflected in the notation. This choice influences the indicator function
significantly, so it should strictly be incorporated in the notation. We, however,
choose to suppress this from the notation because it makes it cumbersome, and
it is always clear from context whether we use a Čech or a Vietoris-Rips complex.

Now we define a constant relating to the indicator variables, which will be
very useful in next section.

Definition 6.3.3. Let I be an indicator function. We define µI to be a constant
only dependent on I with the value

µI =

∫
Rd
f(x)k dx

∫
(Rd)k−1

I(0, x2, . . . , xk) dx2 · · · dxk.

If I = hK we also write µhK =: µK.

The constant depending on I, d and f that we just defined plays a very
special role in the count of subcomplexes. We will see that it defines a kind of
limit. This might intuitively already be clear: the integration over the indicator
is an approximation of the probability of having a subcomplex of the form
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indicated by I, when there is one fixed point; the outer integral over the space
then computes the expectation that there is such a complex anywhere.

Note that it is not guaranteed that this value exists for all indicators and all
f . In the rest of this thesis, we will always assume that we have such indicator
and f . The restrictions are rather mild: it is enough that f be Lebesgue measur-
able and bounded; and for the indicator functions it can easily be proven that
these are integrable, in particular because fixing one of the points, the others
cannot be far away for the function to be non-zero.

6.3.2 Induced subomplexes

The following theorem is the equivalent for complexes of theorem of Penrose
about the number of induced subgraphs in a random complex. Note that we
are talking about induced subcomplexes here. The following theorem holds for
complexes on Binomial point processes in the sparse regime.

Theorem 6.3.4 (Penrose Proposition 3.1 and 3.2 [14]; Kahle Theorem 3.6 [10]).
Suppose that K is a feasible connected complex with k := |K| ≥ 2, and that

rn
n→∞−−−−→ 0. Suppose also that f is bounded, i.e. supx∈Rd f(x) =:‖ f ‖∞< ∞,

and the point process is binomial, then

lim
n→∞

r−d(k−1)n−kE(Gn(K)) = lim
n→∞

r−d(k−1)n−kE(Jn(K)) =
µhK

k!
.

Note again that we did not specify whether we use the indicator for the
Rips or for the Čech construction. This, it turns out, does not matter. In fact,
the proof for the Rips complex is exactly the same, as the proof works for any
indicator function that is bounded (in the sense that all points should lie at
most krn away from each other), is translation invariant, and works well with
scaling.

The proof uses he fact that the indicator function is only nonzero when all the
points are close to each other. If the points are close to each other, the density
functions at such points are also close to each other (for a Lebesgue measurable
density function). Hence we show that taking f(x)k instead of f(x1) · · · f(xk)
as joint distribution will not change the value. The former is of course easier
to work with, and the theorem follows quickly. Note that this corresponds with
the intuition given for the constant µhK in last section.

Before we start the proof, we state a small lemma which we use for the
theorem. The proof can be found in Penrose’s book and goes by induction on k.
The intuition for this statement is that the ball over which we integrate becomes
small very quickly compared to the terms within the integral.

Lemma 6.3.5. [Penrose p. 49 [14]] Suppose limn→∞ rn = 0, k ≥ 2 and f a
Lebesque integrable function on Rd, then the integral

wn(x) =

∫
B(x,krn)k−1

rd(k−1)
n

∣∣f(x2) · · · f(xk)− f(x)k
∣∣dx2 · · · dxk

goes to 0 if n→∞.
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Using this lemma, we can prove results about the number of occurrences of
a certain subcomplex in a random geometric complex. Most importantly, we
prove the theorem above, but a few intermediate lemmas are also used later,
hence we split up the proof slightly more than Penrose does.

Lemma 6.3.6. Suppose that K is a feasible connected complex with k := |K| ≥
2, then

lim
n→∞

r−d(k−1)E(hK,r(X1, . . . , Xk)) = µhK .

This holds for bot Poisson and binomial point processes.

Proof. It is not difficult to write out the definition of this expectation in terms
of integrals, and then split it into two parts:

E(hK,r(X1, . . . , Xk)) =

∫
Rd
· · ·
∫
Rd

hK,rn({x1, . . . , xk})f(x1) · · · f(xk) dx1 · · · dxk

=

∫
Rd
· · ·
∫
Rd

hK,rn({x1, . . . , xk})f(x1)k dx1 · · · dxk

+

∫
Rd
· · ·
∫
Rd

hK,rn ({x1, . . . , xk})
(
f(x1) · · · f(xk)− f(x1)k

)
dx1 · · · dxk.

The split is such that we have one term that looks like µhK ; and a term that
will tend to zero, because the indicator is only non-zero when all points lie close
to each other, i.e. when the densities at all points lie close to each other. First
we look at the first term, to see that a rescaling will give us the limit µhK .

Use the change of variables x1 = x and xi = x1 + ryi (with dyi
dxi

= rdn for

2 ≤ i ≤ k and dy1

dx1
= 1) on this first term to get

rd(k−1)
n

∫
Rd
· · ·
∫
Rd

hK,rn({x, x+ rny2, . . . , x+ rnyk}) dyk · · · dy2f(x)k dx.

Note that hK is translation invariant and that hK,r(rX) = hK(X) for any set X
where rX denotes scaling of all elements of X by r. Using this we see that this
term can be written as

rd(k−1)
n

∫
Rd
· · ·
∫
Rd

hK({0, y2, . . . , yk}) dyk · · · dy2f(x)k dx.

Now the inner k − 1 integrals are independent of x, and we can write the first
term as

rd(k−1)
n

∫
Rd
f(x)k dx ·

∫
Rd(k−1)

hK({0, y2, . . . , yk}) dyk · · · dy2.

Now notice that this means the first term is equal to∫
Rd
· · ·
∫
Rd

hK,krn({x1, . . . , xk})f(x1)k dx1 · · · dxk = rd(k−1)µK.
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Now we have to prove that the second term of the expression for E(hK,r(X1, . . . , Xk))

multiplied by r
d(k−1)
n goes to zero. This ‘new’ factor is introduced because it

is the limit we ultimately want to know for the theorem. We first rewrite the
second term, by taking a factor f(x1) from the brackets, to get for the second
term∫

Rd
· · ·
∫
Rd

hK,rn ({x1, . . . , xk}) · f(x1)
(
f(x2) · · · f(xk)− f(x1)k−1

)
dx1 · · · dxk.

Now multiplying by the factor r
d(k−1)
n , and seeing that the indicator function is

only non-zero if all points are within distance krn from each other, we find an
upper bound∫

Rd
f(x1)

∫
B(x1,rn)

· · ·
∫
B(x1,rn)

rd(k−1)
n

∣∣f(x2) · · · f(xk)− f(x1)k−1
∣∣dxk · · · dx1.

(6.1)
By Lemma 6.3.5 the inner k − 1 integrals go to 0 for all Lebesgue points x1 of
f . Because almost all points are Lebesgue points (f is a Lebesgue function),
and by the dominated convergence theorem, this proves that the whole second

term multiplied by r
d(k−1)
n n−k (6.1) goes to zero.

With the analyses of the two terms combined, we conclude that

lim
n→∞

r−d(k−1)E(hK,r(X1, . . . , Xk)) = µhK .

This lemma makes it quite easy to prove the theorem from Penrose’s book,
as the number of occurrences of a subcomplex is just the sum of the indicator
values for different subsets.

Theorem 6.3.4. It is clear that E(Gn(K)) =
(
n
k

)
E(hK,rn(Xk)) because: Gn is

the sum of all hK,rn(Y ) where Y ⊂ Xn; the indicator hK,rn(Y ) is only non-zero
if |Y | = |K| = k; there are

(
n
k

)
such subsets, which are all distributed like Xk;

and expectation is linear.
Hence we must compute

lim
n→∞

E(Gn(K))

nkr
d(k−1)
n

= lim
n→∞

(
n
k

)
nk

E(hK,r(X1, . . . , Xk))

r
d(k−1)
n

= lim
n→∞

(
n
k

)
nk

µK.

If we let n go to infinity
(
n
k

)
goes to nk/k!, and the result follows easily:

lim
n→∞

rd(k−1)
n n−kE(Gn(K)) = µhK
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What rests is to prove the same thing for Jn(K). We do this by using the pre-
vious, and seeing that the probability that any occurrence is also a component
is big when nrdn

n→∞−−−−→ 0.
Suppose k points induce a subcomplex isomorphic to K, then the (condi-

tional) probability that this complex is a component is greater than the condi-
tional probability that all other points lie outside a ball of radius kr from one
of the other points. Of course this probability is then bounded below by

(1− Leb(B(0, krn)) max
x∈Rd

f(x))n−k = (1− ‖ f ‖∞ Leb(B(0, 1))krdn)n−k.

By the exponential inequality (1−x)y > e−y
x

1−x and the fact that rdnn
n→∞−−−−→ 0,

this conditional probability goes to 1. Hence we conclude that

lim
n→∞

rd(k−1)
n n−kE(Jn(K)) =

µhK

k!
,

which finishes the proof of the theorem.

Now the same results hold for random geometric complexes with Poisson
point processes. There is a minor change that has to be made in the proof.
For Binomial point processes, we can estimate E(Gn(K)) =

(
n
k

)
E(hK,rn(Xk)),

because for any instance of Xn, there are n points of which we choose k. For a
Poisson point process, we do not know the number of points, we only know the
expected number. The following lemma (Penrose Theorem 1.6 [14]; Palm theory
for Poisson point processes) tells us that for suitable indicator functions, some-

thing akin to the binomial case holds; for example E(Gn(K)) = nk

k! E(hK,rn(Xk)).
It will be clear that all our indicator functions are nice enough, and that there-
fore the results above also hold for Poisson point processes.

Lemma 6.3.7 (Penrose Theorem 1.6 [14]). Let 0 < n ∈ R, k ∈ N and suppose
I(Y,X) is a bounded measurable function defined on all pairs of the form (Y,X)
with X a finite subset of Rd and Y a subset of X, satisfying I(Y,X) = 0 if
|Y | 6= k. Then

E

( ∑
Y⊂Pn

I(Y,X)

)
=
nk

k!
E
(
I(Xk,Xk ∪ Pn)

)
,

where the sum on the left-hand side is over all subsets Y of the random point
set Pn, and on the right-hand side the set Xk is a copy of binomial point set
with k points independent of Pn.

The proof of this lemma is a straightforward summation over all possible
values of |Pn|, where we use that (Pn|#Pn = N) and XN are identically dis-
tributed.
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6.3.3 Non-induced subcomplexes

Now we take a slightly different approach to the counting: we do not want to
count the occurrences of some induced subcomplex, but the number of occur-
rences of a certain complex as (not necessarily induced) subcomplex. The result
will be quite similar, but the notation is hard to keep consistent, so we introduce
a new kind of indicator function and counting variables.

Definition 6.3.8. Let K be a labeled simplicial complex, i.e. V (K) = {x1, . . . , xk}.
Then kK,r is the indicator function

kK,r(y1, . . . , yk) =

{
1 if f(K) ⊂ Č({y1, . . . , yk}, r)
0 otherwise

,

where f is the map induced by the vertex mapping xi 7→ yi. If the radius is not
specified, it is understood to be equal to 1; in other words kK := kK,1.

This indicator is useful if we want to count the number of (not necessarily
induced) subcomplexes of some kind. The labelling is needed here because
some subcomplexes will not be counted enough if we only look at a complex
and decide whether it contains the subcomplex in any way. For example, let
our subcomplex be the k-simplex with one edge attached (i.e. a complex on
k + 2 vertices of which k + 1 form a simplex, and the k + 2th one is attached
by an edge to one of the other vertices); then the number of occurrences of this
complex within the full (k + 1)-simplex should be (k + 1)

(
k+2
k+1

)
. Without the

labelling, only one occurrence can be found, as there is only one subset of the
vertices of cardinality k+ 2. Another example can be seen in Figure 6.2, where
we look at the labelled and unlabelled occurrences of P3 in K3.

The need for a different indicator function also becomes clear if we look at
the indicator h in these circumstances. With the indicator function h as before,
no occurrence will be found because there is no induced subcomplex of the
desired form.

As we now want to count subcomplexes which might not be induced, we also
need a new counting variable.

Definition 6.3.9. Let K be a simplicial complex, then define Kn(K) to be the
stochastic variable

Kn(K) = #{K′ ⊂ Č(Xn, rn)|K′ , K}.

With this new notation, we can state the version of previous theorem, where
we now count subcomplexes, instead of induced subcomplexes. The proof is
mostly the same as before, but we start slightly different, which also explains
the factor 1/|Aut(K)|.

Theorem 6.3.10. Suppose that K is a connected complex with k := |K| ≥ 2,

and that rn
n→∞−−−−→ 0. Then

lim
n→∞

r−d(k−1)n−kE(Kn(K)) =
µkK

|Aut(K)|
.
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K

H

x1

x2
x0

y0 y1
y2

(a) The complex K and the
counted subcomplex H.

(b) The unlabelled occur-
rences.

y1

y2

y0

y1

y0

y2

y0

y2

y1

y2

y0

y1

y2

y1

y0

y0

y1

y2

(c) The labelled occur-
rences.

Figure 6.2: At the top we see K = K3 the complete graph on three nodes,
and H = P3 the path-graph on three nodes. Beneath we see all labelled and
unlabelled occurrences of P3 as subcomplex of K3. Note that there are two
automorphisms of P3, the identity, and the map which sends 0 to 2, vice versa,
and 1 to 1; there are also two times as many labelled as unlabelled occurrences.

Proof. Because any occurrence of K will already be caught if we look at labeled
subcomplexes on k vertices, we can again write the expectation in terms of our
indicator function. This time however, the indicator function works with labeled
complexes, so instead of

(
n
k

)
, there are

(
n
k

)
k! of those.

This seems to imply that as before we get E(Kn(K)) =
(
n
k

)
k!E(Kk(K)).

However, this is wrong because some relabellings do give the same subcomplex.
Therefore we have to correct for this number by a factor that takes the number
of such relabellings in account. This of course is exactly |AutK| the number of
automorphisms of K, i.e. the number of relabellings that take the complex to
itself. Hence we get

E(Kn(K)) =
k!

|AutK|

(
n

k

)
E(Kk(K)).

Now the proof goes exactly as before and in the end we get the same result with
additional factor k!/|AutK|, resulting in

lim
n→∞

r−d(k−1)n−kE(Kn(K)) =
µkK

|Aut(K)|

as desired.

For the same reason as before, this holds for Poisson point processes as well.



Part III

Homology of random
geometric complexes
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The aim of this thesis is to look at random geometric complexes and espe-
cially, their topological structure. As a proxy for this structure we in particular
look at results regarding the Betti number of these complexes, i.e. the num-
ber of holes. In this part, we study a sample of papers with results about the
expected Betti number or distribution of the Betti number in random complexes.

Note that we will not be looking at the 0-th homology much in the other chap-
ters, because it is completely determined by the underlying graph. In fact the
0-th homology group is uniquely determined by the number of components of
the complex. For the kind of complexes we study, the characterisation of the
number of components in the underlying graph is as good as complete. For
example, the most interesting case of this characterisation is treated in chapter
13.7 of Penrose’s book [14]. Because we want to focus on (new) proofs specifi-
cally designed for complexes, and random geometric graphs have already been
studied in a lot of detail, we will restrict ourselves to homology structure of
dimension 1 or higher.

For the Betti numbers βk with k ≥ 1, we treat the results sorted by the relevant
regimes. It will turn out that the sparse regime’s Betti number βk is mostly de-
termined by the number of components that look like the minimal complex that
can support non-trivial k-cycles. We determined which complexes these were in
chapter 3. Most results here are just customised results about the distribution
and expectation of the number of these components.

In the thermodynamic regime, the homology grows linearly with the number
of points. This can intuitively be explained by the fact that any kind of structure
is found linearly in the number of points. In particular, for the number of k-
simplices such a result holds, and we use long exact sequences to piece local
structures together to see that this implies that the Betti number also grows
linearly with the number of points.

In the dense regime, we expect there to be many points in a limited space. It
can easily be imagined that these points will form a highly connected structure.
This intuition is made precise in a theorem which treats this for a particular
kind of point distribution.





Chapter 7

Subcritical regime

In the subcritical regime, the geometric complexes will be highly disconnected.
We can see this because random geometric graphs in this regime are highly
disconnected and the random geometric complexes have this kind of graph as
1-skeleton. For the complexes, this means we will have a very large collection of
small complex components. The size of these components depends on the exact
dependence of rn on n as n goes to infinity.

Obviously, if rn stays relatively large, the components will be larger. Now
we know that non trivial cycles in a certain degree need to be supported on
some minimal number of vertices. If the expected number of components with
at least that many vertices is 0, we also expect the homology in that degree
to be trivial. This is a way to estimate homology. In the rest of this section
we look at the expected Betti numbers of random complexes in the subcritical
regime, and a threshold for the vanishing of homology.

7.1 Expected Betti number

7.1.1 Vietoris-Rips complex

Theorem 7.1.1 (Kahle [10] Theorem 3.1). For d ≥ 2, k ≥ 1, and rn =
o(n−1/d), the expectation of the k-th Betti number E(βk) of the random Vietoris-
Rips complex R(Xn, rn) satisfies

E(βk)

n2k+2rd(2k+1)
→ Ck

as n → ∞, where Ck is a constant dependent only on k and the underlying
distribution of the points.

For the proof e will use the Morse bounds on the Betti number as in Propo-
sition 3.4.5. To use the bound, we introduce stochastic variables corresponding
to the variables in the proposition.
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Definition 7.1.2. We denote the stochastic variables where the complex is cho-
sen to be a random geometric complex, corresponding to the counting variables
defined in Definition 3.3.11, with capital letters. This means we write Sk,n for
either sk(Č(Xn, rn)) or sk(R(Xn, rn)). It will be clear from context which of the
two is meant.

It is clear that these stochastic counting variables are closely related to
the counting variables we encountered in Section 6.3. For example Sk,n =
Gn(δ∆k+1) counts the number of hollow (k + 1)-simplices as induced subcom-
plex of a random geometric complex.

For F≥ik,n, the relation is not immediately clear, because we put a restriction
on the size of the component we want to find the k-simplex in. It is however
not so hard to see that we can find an upper bound for these occurrences of
k-simplices as subcomplexes of sufficiently large components. We can count
the number of occurrences of some ‘extended’ k-simplices. We have to extend
the simplex by adding i − k edges without creating cycles, this ensures that
the component has at least k + (i − k) = i vertices. Of course some simplices
get counted multiple times, because there are multiple ways of extending the
simplex in its component.

Figure 7.1: All isomorphism classes of the 2-simplex extended by three edges
without creating cycles.

Lemma 7.1.3. Let k > 1, and let the possible extensions of ∆k by i− k edges
without creating a cycle be indexed by the set Ek,i. Let the extensions be denoted
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∆k
ε for ε ∈ E. then

F≥ik,n ≤
∑
ε∈Ek,i

Kn(∆k
ε ).

Proof. Evident from the preceding discussion.

We will now use the Morse inequalities that sandwich the Betti number,
and the theorems about the number of occurrences of some subcomplex from
Section 6.3 to prove Theorem 7.1.1.

Theorem 7.1.1. We use the bounds

Õk,n ≤ βk,n ≤ Õk,n + F 2k+3
k,n

which we get by applying Proposition 3.4.5 to the stochastic variables we in-
troduced in Definition 7.1.2. Obviously the same bounds hold if we take the
expectation of all these variables. It hence suffices to prove the desired limit for
the expectation of the left and the right side of the inequality.

For the left side of the inequality we have to know the expected number of
occurrences of the k-dimensional cross-polytope Ωk in Rd, which has V (Ωk) =
2k + 2 vertices. By Theorem 6.3.4 we get

lim
n→∞

E(Õk,n)

n2k+2r
d(2k+1)
n

= lim
n→∞

E(Jn(Ωk))

n2k+2r
d(2k+1)
n

=
µh̃

Ωk

k!
,

which means we have a lower bound for the limit:

lim inf
n→∞

E(βk,n)

n2k+2r
d(2k+1)
n

≥
µh̃

Ωk

k!
.

For the upper bound we have to do a bit more work as we also have the term
F≥2k+3
k,n . By Lemma 7.1.3 and linearity of expectation we can write

E(βk,n) ≤ E(Õk,n) + E(F≥2k+3
k,n ) ≤ E(Õk,n) +

∑
ε∈Ek,2k+3

E(Kn(∆k
ε )).

Using Theorem 6.3.10 we see that

lim
n→∞

E(Kn(∆k
ε ))

n2k+3r
d(2k+2)
n

=
µk

∆kε

|Aut ∆k
ε |

for any ε ∈ Ek,2k+3. Because nrdn → 0, we certainly get

lim
n→∞

E(Kn(∆k
ε ))

n2k+2r
d(2k+1)
n

= 0.

There is only a finite number of these extensions possible, hence we conclude
that

lim sup
n→∞

E(βk,n)

n2k+2r
d(2k+1)
n

≤
µh̃

Ωk

k!
,
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which finishes the proof for k > 1.
For k = 1 we have to take a slightly different approach because the extended

1-simplices used to bound F≥5
n,1 evidently contain more than one 1-simplex, they

contain four. Hence we cannot use Lemma lem:ExtendedSimplices, but we have
to see that

F≥5
n,1 ≤ 4

∑
ε∈E1,5

Kn(∆1
ε).

The rest of the proof is the same as before.

7.1.2 Čech complex

We derive similar results in the case of Čech random complexes. Most of the
theorems and proofs are completely analogous to previous section, among which
the following main theorem of this section.

Theorem 7.1.4 (Kahle [10] theorem 3.2). For d ≥ 2, 1 ≤ k ≤ d − 1, and
rn = o(n−1/d), the expectation of the kth Betti number E(βk) of the random
Čech complex Č(Xn, rn) satisfies

E(βk)

nk+2rd(k+1)
→ Dk

as n → ∞, where Dk is a constant dependent only on k and the underlying
distribution of the points.

Because the proof is the same as for the case of the Vietoris-Rips complex
(Theorem 7.1.1), we will not give the full proof. We will compare the two
theorems and point out the small changes that have to be made in the proof.

The statements of the two theorems differ only in a few small aspects. The
first thing is the fact that there are stricter bounds on k for the Čech version of
the theorem. This is because there is no homology of degree higher that d − 1
in a Čech complex arising from points in Rd. The restriction on k had to be put
in place because a hollow d+ 1 simplex is not feasible in Rd as a Čech complex,
hence the theorems about subcomplex count cannot be used here.

The other difference are the exponents of the factors in the denominator.
These arise because in the case of Čech complexes, the minimal k-cycles are
supported on hollow simplices, which have k + 2 vertices, in contrast to the
k-cross-polytopes which have 2k + 2 vertices.

The proof does not change much because of these differences: we only have to
count hollow simplices instead of cross-polytopes, and can use the same theorems
as before to do so. Note lastly, that for the Vietoris-Rips version, we used
theorems about subcomplex count, whereas we only need to know the underlying
graph. Hence in that case the classical result by Penrose about subgraph counts
would have sufficed. In the case of the Čech complexes, this is not the case,
because we need more information than only the underlying graph, hence the
subcomplex theorems were necessary. These theorems were stated by Kahle in
his papers for the cases that he needed them (Only for the hollow simplices),
here we used a more general statement of the subcomplex count.
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7.2 Betti number distribution: Erratum

Only an expected value might be considered a rather meager result. Hence we
now look a bit more closely at the distribution of the Betti numbers. We follow
closely the proofs by Kahle and Meckes [11] and their quite extensive erratum
[12]. In particular we will look at their theorems about the limiting distribution
of the Betti number in the sub-critical regime.

As the title of this section indicates, we will start with the erratum. The
choice to start with the erratum is one for clarity. As most of the arguments in
the original paper and the proof are similar, it would be confusing to first give
the incorrect version. It is much clearer to start with an example of proper use
of the techniques as demonstrated in the erratum. An accompanying benefit is
that we first see the correct version of the theorem before seeing the incorrect
one which features in the original paper. We will see this incorrect version later
when we look at the mistakes in the original paper. Now, we first take a look
at the corrected theorem and corresponding proof provided in the erratum.

Theorem 7.2.1. Let Xn be a binomial point process with n points and bounded
density function f . Let βk,n denote the k-th Betti number of the random Čech
complex Č(Xn, rn). Then we have the following limits in the sparse regime. If
one of the following two conditions holds:

• limn→∞ nk+2r
d(k+1)
n =∞ and limn→∞ nk+3r

d(k+2)
n = 0,

• limn→∞ nk+2r
d(k+1)
n =∞ and rn = o(n−1/d−δ) for some δ > 0,

then
βk,n − E(βk,n)√
nk+2r

d(k+1)
n

D−→ N
(

0,
µk+2,1

(k + 2)!

)
for n→∞.

Note that this theorem is specifically about the Čech complex and a binomial
point process. The proofs work equally well for Vietoris-Rips complexes on
binomial point processes. The changes that have to be made are similar to the
ones in previous section: instead of the empty simplex, we need to count cross
polytopes, and hence some exponents need to be changed. Unfortunately, the
proof does not simply transfer to the Poisson point process case, even though
the result is derived using ‘Poissonization’. We will point out the step where we
run into problems in that case. For completeness we conclude this introduction
with the coresponding theorem for the Vietoris-Rips random complexes.

Theorem 7.2.2. Let Xn be a binomial point process with n points and bounded
density function f . Let βk,n denote the k-th Betti number of the random Vietoris-
Rips complex R(Xn, rn). Then we have the following limits in the sparse regime.
If one of the following two conditions holds:

• limn→∞ n2k+2r
d(2k+1)
n =∞ and limn→∞ n2k+3r

d(2k+2)
n = 0,
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• limn→∞ n2k+2r
d(2k+1)
n =∞ and rn = o(n−1/d−δ) for some δ > 0,

then
βk,n − E(βk,n)√
n2k+2r

d(2k+1)
n

D−→ N
(

0,
µ2k+2,1

(2k + 2)!

)
for n→∞.

A very important thing to note, is that the proofs in next sections are just
extended versions of the proofs in the erratum. This means most of it is rewritten
with more details added and some minor notational flaws amended. In no way
do I claim to have thought of these proofs. Although this might be true for
more parts of this thesis, it is most striking in this part, so I feel I have to point
this out. Note however, that I have tried to copy as little as possible from the
erratum itself, although this is impossible for certain equations.

The added value of my rewriting the proofs is the following. I can more easily
compare the erratum with the original paper, which has some major flaws. As
the proof techniques are quite similar, it is easier to point out the flaws in the
paper. Secondly, the proofs contain nice techniques which should be present in
a thesis about random complexes, and a detailed application of the technique
is vital to understand it. There are minor (notational) mistakes in the erratum,
which can most easily be found when looking at the proofs in a bit more detail
than is done in the erratum itself.

7.2.1 Strategy

Variables and constants

Just like in previous section, we need some variables to count the Betti number
of the random complexes. This means we introduce a few new random ‘count-
ing’ variables.

Firstly, we use S̃k,n as before. This will be the main variable used in the
approximation of the Betti number, as we are still in the sparse regime. The
number of hollow simplices is not enough to accurately show that the distri-
butions are similar. We need some new variables that approximate the Betti
number ‘better’. This ‘better’ becomes negligible in the limit n→∞.

The second kind of counting variable we use counts the Betti number of
certain complexes. The random variableXi,j,k,n counts the number of complexes
with i vertices and k-th Betti number j. It should be clear that with this
notation:

βk,n =

∞∑
i=k+2

∞∑
j=0

jXi,j,k,n.

This full sum is hard to work with, and because we will have relatively little



7.2. BETTI NUMBER DISTRIBUTION: ERRATUM 93

large complexes, we also consider the truncated Betti number:

βk,n =

m∑
i=k+2

∞∑
j=0

jXi,j,k,n.

where we only add the Betti numbers of components with m or less vertices. the
choice of m is important in the proof, because if it is large, then the difference
between βk,n and β̃k,n is very small. In particular, for the proofs we set m :=
b1 + 1

dδ c.
Besides the constant m, we also define a range of other constants which

are well-defined by Lemma 6.3.6. To define these, we first define the indicator
corresponding to Xi,j,k,n: write h̃i,j,k,A,n(Y,X) for the indicator function which
gives value one if:

• |Y | = i,

• the k-th Betti number of the complex spanned by Y equals j,

• the left-most point of Y lies in A, if this parameter is absent, we set
A = Rd.

And as before h̃ is one if additionally the set forms a component.
With this indicator the following limit becomes interesting:

µi,j,k,A := lim
n→∞

rd(i−1)
n E(h̃i,j,k,A,n(X1, . . . , Xi)).

Note that here we added a parameter A ⊂ Rd which indicates the left most
point is in A. As we have not defined this yet, here follows a definition.

Definition 7.2.3. Let X ⊂ Rd be a finite subset of Rd with standard basis, then
the left-most point of X, denoted LMP(X), is the first point of X when ordered
lexicographically.

This parameter can be added to all counting variables as we have defined
before. All previous results stay valid if we consistently add the parameter.

The reason we added this parameter is because some things are easier proved
when we can first bound the searching area, and then expand to Rd. Having a
bounded region for the left-most point assures all other points are also nearby
in relevant cases (where the indicator is non-zero).

Proof idea

The part of the erratum we study is about only one theorem, and the proof is
mostly linear. In the erratum, this linear route is broken by first doing the last
step and then filling in the details. We just follow the path till the end. That
means we will here first give an overview of the proof, as otherwise it is too long
to see what is happening. The proof can be subdivided in the following steps:
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• Poissonize the problem, i.e. look at the same problem with a Poisson point
process instead of a binomial point process. The following steps all regard
the Poissonized problem unless noted differently.

• Compute mean and variance limits for useful random (counting) variables,
which approximate the Betti number. In particular, we will look at the
number of hollow simplices S̃Pk,n, and the ‘truncated’ Betti number of the
subcomplex consisting of all components of some maximum size. We say
truncated because we sum over compoinents of certain sizes to get he betti
number, and for this runcated one we stop at certain size.

• Prove a central limit theorem (CLT) for the number of hollow simplices,

for this we need to be in the regime nk+2r
d(k+1)
n →∞.

• Prove that this distribution is a good approximation for the distribution of
the truncated Betti number. This is because in the regime nrdn → 0 there
are many more components of size exactly k + 2 than of size bigger than
k + 2. So the hollow simplices, which have k + 2 vertices will ‘dominate’
the Betti number.

• De-Poissonize again by proving a CLT for the truncated Betti number in
the binomial case.

• Show that the truncated Betti number is a good approximation for the
(real) Betti number in the binomial case. To do this we need to show that
the expected difference E(|βk,n − β̃k,n|) is small relative to the scaling of
the normalization we use in the CLT for βk,n.

All these steps are treated in separate subsections.

7.2.2 Limiting behaviour of means and variances

We first look at the limits of the means, which basically follow from the result
about counting subcomplexes. The important difference being that we count
a lot of different kinds of subcomplexes. Of these only a few dominate the
expectation. Notably, these are often the empty simplexes. Keep in mind that
we are working with a Poissonized version of the problem here.

Lemma 7.2.4 (Lemma 2.6 of the erratum [12]). Let nrdn
n→∞−−−−→ 0 and let

the variables and constants be as defined in Section 7.2.1. Then we have the
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following limits for the means of the variables:

lim
n→∞

E
(
S̃Pk,A,n

)
nk+2r

d(k+1)
n

=
µk+2,1,A

(k + 2)!

lim
n→∞

E
(
β̃Pk,A,n

)
nk+2r

d(k+1)
n

=
µk+2,1,A

(k + 2)!

lim
n→∞

E
(∑

k+3≤i≤m
j≤0

XP
i,j,n,A

)
nk+3r

d(k+2)
n

=

∑(k+3
k+1)
j=1 jµk+3,j,A

(k + 3)!
.

Proof. Using the indicator h̃i,j,k,A,n, we note that we can use the result for
counting subcomplexes with this slightly different indicator function to see that

lim
n→∞

E
(∑

j≥0 jXi,j,k,A,n

)
nir

d(i−1)
n

=

∑
j≥0 jµi,j,k,A

i!
.

Now we use a bound on the Betti number of finite complexes to see that the
limit is in fact finite. In particular, a complex on i vertices has at most

(
i

k+1

)
k-cells, hence such a complex has k-th Betti number at most

(
i

k+1

)
. So for fixed

i, we actually have

lim
n→∞

E
(∑

j≥0 jXi,j,k,A,n

)
nir

d(i−1)
n

=

∑( i
k+1)
j=1 jµi,j,k,A

i!
.

Next, we sum over such expectations for different values of i. The equation
above tells us that the term with smallest i larger than k + 1 will dominate for
large n. (Terms with i ≤ k + 1 do not contribute as there are no complexes of
size i with non-zero k-th Betti number.) Here, we are interested in the following
examples of this:

lim
n→∞

E
(∑

j≥0 jXk+2,j,k,A,n

)
nk+2r

d(k+1)
n

=
µk+2,1,k,A

(k + 2)!
,

lim
n→∞

E
(∑l

i=k+2

∑
j≥0 jXi,j,k,A,n

)
nk+2r

d(k+1)
n

=
µk+2,1,k,A

(k + 2)!
,

lim
n→∞

E
(∑l

i=k+3

∑
j≥0 jXi,j,k,A,n

)
nk+3r

d(k+2)
n

=

∑(k+3
k+1)
j=1 jµk+3,j,k,A

(k + 3)!
,

for all l ≤ k + 2. For i = k + 2, we know that the only complex on i vertices
with non-zero homology, is the empty simplex. This means that µk+2,j,k,A is
non-zero only if j = 1. This has already been incorporated in the equation

above. Setting l = m, we have the limits of the lemma.
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Next we use this result about the means to derive a result about the vari-
ances. In this part we rely on the properties of Poisson point processes. The
idea of the proof is to rewrite the variance into a part as large as the mean,
and a rest part. This rest part is then proven to be small using the spatial
independence of Poisson point processes.

Lemma 7.2.5 (Lemma 2.6 of the erratum [12]). Let nrdn
n→∞−−−−→ 0 and let

the variables and constants be as defined in Section 7.2.1. Then we have the
following limits for the variances of the variables:

lim
n→∞

Var
(
S̃Pk,A,n

)
nk+2r

d(k+1)
n

=
µk+2,1,A

(k + 2)!

lim
n→∞

Var
(
β̃Pk,A,n

)
nk+2r

d(k+1)
n

=
µk+2,1,A

(k + 2)!

lim
n→∞

Var

(∑
k+3≤i≤m

j≤0
XP
i,j,n,A

)
nk+3r

d(k+2)
n

=

∑(k+3
k+1)
j=1 j2µk+3,j,A

(k + 3)!
.

Proof. We analyse the variance of
∑q
i=p

∑
j≥0 jXi,j,k,A,n, for p ∈ {k+ 2, k+ 3}.

The proof works in all these cases, and has our interests as special cases.
We first just rewrite he second moment, which gives us the following

E


 q∑
i=p

∑
j≥0

jXi,j,k,A,n

2
 =E

( q∑
i=p

∑
j≥0

∑
Y⊂Pn

jh̃i,j,k,A,n(Y,Pn)


 q∑
i′=p

∑
j′≥0

∑
Y ′⊂Pn

j′h̃i′,j′,k,A,n(Y ′,Pn)

)

=E

 q∑
i,i′=p

∑
j,j′≥0

∑
Y,Y ′⊂Pn

jj′h̃i,j,k,A,n(Y,Pn)h̃i′,j′,k,A,n(Y ′,Pn)

 .

Now note that h̃i,j,k,A,n(Y,Pn)h̃i′,j′,k,A,n(Y ′,Pn) can only be non-zero if

• either Y = Y ′, i = i′ and j = j′,

• or Y ∩ Y ′ = ∅,
otherwise, one of the Y does not support a component and its indicator is 0.
We can hence further rewrite the second moment to

E

 q∑
i=p

∑
j≥0

∑
Y⊂Pn

j2h̃i,j,k,A,n(Y,Pn)


+ E

 q∑
i,i′=p

∑
j,j′≥0

∑
Y,Y ′⊂Pn

jj′h̃i,j,k,A,n(Y,Pn)h̃i′,j′,k,A,n(Y ′,Pn)χY ∩Y ′=∅

 .
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The first of these terms will dominate the variance, so note that these actually
give the limits of the lemma for similar reasons to previous lemma. For p = k+2
the term j2 is again not present because for a complex on k+ 2 vertices, βk can
only be one (if the complex is a hollow simplex) or zero.

The second term and the square of the mean are rewritten using Lemma 6.3.7
and further analysed together.

Var(

q∑
i=p

∑
j≥0

jXi,j,k,A,n)

=E


 q∑
i=p

∑
j≥0

jXi,j,k,A,n

2
− E

 q∑
i=p

∑
j≥0

jXi,j,k,A,n

2

=E

 q∑
i=p

∑
j≥0

∑
Y⊂Pn

j2h̃i,j,k,A,n(Y,Pn)


+

q∑
i,i′=p

∑
j,j′≥0

ni+i
′
jj′

i!i′!

[
E
(

h̃i,j,k,A,n(Xi,Xi ∪ Xi′ ∪ Pn)h̃i′,j′,k,A,n(Xi′ ,Xi ∪ Xi′ ∪ Pn)
)

− E
(

h̃i,j,k,A,n(Xi,Xi ∪ Pn)
)
E
(

h̃i′,j′,k,A,n(Xi′ ,Xi′ ∪ Pn)
) ]
.

where Xi and Xi′ are independent. We now look closer at the part between
square brackets, starting by taking everything into one expectation. To do this
we need to introduce an copy P′n of a Poisson point process with density f ,
independent of the Pn we already have.

E
(

h̃i,j,k,A,n(Xi,Xi ∪ Xi′ ∪ Pn)h̃i′,j′,k,A,n(Xi′ ,Xi ∪ Xi′ ∪ Pn)
)

−E
(

h̃i,j,k,A,n(Xi,Xi ∪ Pn)
)
E
(

h̃i′,j′,k,A,n(Xi′ ,Xi′ ∪ Pn)
)

= E
(

h̃i,j,k,A,n(Xi,Xi ∪ Xi′ ∪ Pn)h̃i′,j′,k,A,n(Xi′ ,Xi ∪ Xi′ ∪ Pn)

− h̃i,j,k,A,n(Xi,Xi ∪ Pn)h̃i′,j′,k,A,n(Xi′ ,Xi′ ∪ P′n)
)

Now we can rewrite the part within this expectation and split it in three parts
giving

E
[(

h̃i,j,k,A,n(Xi,Xi ∪ Xi′ ∪ Pn)− h̃i,j,k,A,n(Xi,Xi ∪ Pn)
)

h̃i′,j′,k,A,n(Xi′ ,Xi ∪ Xi′ ∪ Pn)
]

+ E
[

h̃i,j,k,A,n(Xi,Xi ∪ Pn)
(

h̃i′,j′,k,A,n(Xi′ ,Xi ∪ Xi′ ∪ Pn)− h̃i′,j′,k,A,n(Xi′ ,Xi′ ∪ Pn)
)]

+ E
[

h̃i,j,k,A,n(Xi,Xi ∪ Pn)
(

h̃i′,j′,k,A,n(Xi′ ,Xi′ ∪ Pn)− h̃i′,j′,k,A,n(Xi′ ,Xi′ ∪ P′n)
)]

=E1 + E2 + E3,

where E1, E2 and E3 correspond to the first second and third term of this
expression. To check that this is equal to what we had before, just work out the
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brackets and combine the three expectations. We still want to show that this
expression is relatively small, so we look at all these three terms separately and
compute their order in n.

The first term equals zero as the random expression within the expectation
is uniquely zero: If the difference is non-zero, then the addition of some point of
Xi′ to Xi ∪ Pn, should change this component. This means Xi′ is connected to
Xi, and hence Xi′ does not span a component in Xi ∪Xi′ ∪Pn. This means that
h̃i′,j′,k,A,n(Xi′ ,Xi ∪Xi′ ∪Pn) = 0, and we conclude there is no case in which the
expression in the first expectation is non-zero, i.e. E1 = 0.

The second term can actually be non-zero. To get this, we need

h̃i,j,k,A,n(Xi,Xi ∪ Pn) = 1,

h̃i′,j′,k,A,n(Xi′ ,Xi′ ∪ Pn) = 1,

h̃i′,j′,k,A,n(Xi′ ,Xi ∪ Xi′ ∪ Pn) = 0,

because, for the difference we cannot get value 1 as h̃i′,j′,k,A,n(Xi′ ,Xi∪Xi′∪Pn) =

1 implies h̃i′,j′,k,A,n(Xi′ ,Xi∪Pn) = 1. Now note that the probability of this event
is bounded by the probability that Xi and Xi′ together form one connected
complex. Picking one point to start with, the other i+ i′−1 points should then
lie close enough to that point for the event to happen. Hence, the probability
that the variable in the second expectation is non-zero, is bounded by(

2d(i+ i′ − 1)drdn ‖ f ‖∞ θd
)i+i′−1

= cd,f,i,i′r
d(i+i′−1)
n

and we conclude that |E2| ≤ cd,f,i,i′rd(i+i′−1)
n

The third term is the most interesting one, as we need a property of the
Poisson point process here. If the sets Xi and Xi′ are sufficiently far from each
other, knowledge of the interaction of Pn with Xi does not influence the inter-
action of Pn with Xi′ . Hence, in that case the distributions of h̃i,j,k,A,n(Xi,Xi ∪
Pn)h̃i′,j′,k,A,n(Xi′ ,Xi′ ∪ Pn) and h̃i,j,k,A,n(Xi,Xi ∪ Pn)h̃i′,j′,k,A,n(Xi′ ,Xi′ ∪ P′n)
are the same and the expression in the expectation equals 0. Hence there can
only be a non-zero contribution of E3 in the case that Xi and Xi′ are so close
together that they influence each other: i.e. if( ⋃

x∈Xi

B(x, 2rn)

)
∩

 ⋃
x∈Xi′

B(x, 2rn)

 6= ∅
The probability of this event is bounded by the event that both Xi and Xi′ are
connected, and that these connected parts are at most 4rn distance away from
each other. This probability then is bounded by the probability that, picking
one point, all other points are at most distance 2((i+ i′ − 1) + 1)rn away from
that point. This probability is bounded by(

2d(i+ i′ − 1 + 1)drdn ‖ f ‖∞ θd
)i+i′−1

= c′d,f,i,i′r
d(i+i′−1)
n ,
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where we note that the exponent is still i + i′ − 1, because it depends on the

number of points, not the distance. We conclude that |E3| ≤= c′d,f,i,i′r
d(i+i′−1)
n

We now return to the variance. Writing Var(
∑q
i=p

∑
j≥0 jXi,j,k,A,n) =

E(
∑q
i=p

∑
j≥0 j

2Xi,j,k,A,n) + E, we have

|E| ≤
q∑

i,i′=p

∑
j,j′≤1

ni+i
′
jj′

i!i′!
(cd,f,i,i′ + c′d,f,i,i′)r

d(i+i′−1)
n .

Because for different n we keep summing over the same ranges of i and j, and
because nrdn → 0, we can bound this by

Cd,f,k,p,q(nr
d
n)(k + 2)nk+2rd(k+1)

n .

Combining this with what we knew about the first part of the variance, we get

lim
n→∞

Var(
∑q
i=p

∑
j≥0 jXi,j,k,A,n)

nk+2r
d(k+1)
n

=

∑
j≥0 j

2µp,j,k,A

(p!)
+ lim
n→∞

Cd,f,k,p,q(nr
d
n)k+2

=

∑
j≥0 j

2µp,j,k,A

(p!)
+ 0.

For p = k + 2, we again have only one possibility for a complex with non-zero
Betti number, namely the empty simplex. This gives the results we want if we

make suitable choices for p and q.

In the lemmas above, we have added the notion of the left-most point. The
proofs of the lemmas are not influenced by this addition, so it is not immediately
clear why it is important. The reason for adding the left-most point is not clear
from the erratum alone. We have to return to the original paper to understand
this, as the left-most point features in the proof of the lemma in the next section.

7.2.3 CLT for S̃P
k,n

The next part in the proof is to get to a central limit theorem for S̃Pk,n. To get

there, we first need to get a CLT for S̃Pk,A,n, with A a bounded region. This

allows us to scale up to a CLT for S̃Pk,n by setting A = [−K,K]d and letting
K →∞. We will need the following normal approximation, which can be found
in Penrose’s book.

Theorem 7.2.6 (Theorem 2.4 in [14]). Let {ξi}i∈I be a finite collection of
random variables. Suppose that the dependency graph has maximum degree D−
1, and that E(ξi) = 0 for each i. Set W =

∑
i ξi, and suppose that E(W 2) = 1,

then for all t ∈ R we have

|P(W ≤ t)− Φ(t)| ≤ 2
4
√

2π

√
D2
∑
i∈I

E(|ξi|3) + 6

√
D3
∑
i∈I

E(|ξi|4).
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By application of this result, we can get a CLT for S̃Pk,A,n for a bounded set

A. We use the boundedness of A to write S̃Pk,A,n as a finite sum which we can
analyse.

Lemma 7.2.7 (Part of Theorem 3.15 in [11]). Let A ⊂ Rd be a bounded set,

and for nrdn → 0 and nk+2r
d(k+1)
n →∞, we have the following weak limit

S̃Pk,A,n − E(S̃Pk,A,n)√
nk+2r

d(k+1)
n

D−→ N

(
0,
µk+2,1,A

(k + 2)!

)

The rate of convergence is given by∣∣∣∣∣P
(
S̃Pk,A,n − E(S̃Pk,A,n)√

(nk+2r
d(k+1)
n )

≤ t

)
− P

(
N

(
0,
µk+2,1,A

(k + 2)!

)
≤ t
)∣∣∣∣∣ ≤ c(nk+2rd(k+2)

n )−1/4

Proof. Let {Qi,n}i∈N together with B := R \ (∪i∈NQi,n) be a partition of Rd
in open cubes with side length rn and their collected boundaries B. Also, let
IA,n ⊂ N be the finite subset of indices i such that Qi,n ∩ A 6= ∅. To see that
IA,n is indeed finite or each n, we just note that A is bounded. If we denote the
indicator for an empty k-dimensional simplex component with LMP in A and
radius r as h̃k,A,n, then we can write

S̃Pk,A,n =
∑
Y⊂Pn

h̃k,A∩B,n(Y,Pn) +
∑
i∈IA,n

∑
Y⊂Pn

h̃k,A∩Qi,n,n(Y,Pn).

We want to use he theorem by looking at all parts of the partition separately,
so we define

ξi,n :=
∑
Y⊂Pn

h̃k,A∩Qi,n,n(Y,Pn)

ξB,n :=
∑
Y⊂Pn

h̃k,A∩B(Y,Pn)

Ξj,n :=
ξj − E(ξj)√
Var(S̃Pk,A,n)

for j ∈ J := IA ∪ {B}. Note E(Ξj,n) = 0 and that the denominator is just the

limit for Var(S̃Pk,n). Note also that by definition

Wi :=
∑
j∈J

Ξj,n =
S̃Pk,A,n − E(S̃Pk,A,n)√

Var(S̃Pk,A,n)

which has Var(Wi) = 1. Hence we can apply the theorem to the variables
{Ξj}j∈J . To get a nice result, we just have to bound E(|Ξj |3), E(|Ξj |4) and
the maximum degree of the dependency graph D. By the definition of Xj , it is
enough to find bounds on E(|xj |p). Let Qdi,n ⊂ Rd denote the set of points of
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distance less than d from Qi,n, and let Zi,n denote he Poisson variable counting
the number of points in Q2rn

i,n . This variable has parameter

λi,n := n

∫
Q2rn
i,n

fdx ≤ (‖ f ‖∞ 7rn)d.

With these definitions we can clearly write |ξi,n| ≤
(
Zi,n
k+2

)
, because for each

empty simplex with LMP in A there should be k+ 2 points in this region. This
means there is a constant cd,f,k,p such that

E (|Ξj,n|p) ≤ E
((

Zi,n
k + 2

)p)
≤

∞∑
l=k+2

(
l

k + 2

)p e−λi,nλli,n
l!

≤ cd,f,k,p(nrdn)k+2.

For |ΞB |p we just note that P(ΞB 6= 0) = 0, which gives ‘bound’ E(|ΞB |p) = 0.
It is easy to see that we can bound D by 17d + 1: if there was to be any

dependence of simplices with left most point in one of the cubes and another,
then the cubes may be at at most distance 8rn from each other. This means
that all Ξi′ on which Ξi depends correspond to the cubes in Q8rn

i,n , of which there

are at most 17d. Not forgetting ΞB , we have D ≤ 17d + 1 = D∞.
Lastly, we note that because A is bounded, |IA| ≤ ar−dn for some constant

a. Applying the theorem for each n and letting n→∞ gives∣∣∣∣∣∣P
 S̃Pk,A,n − E(S̃Pk,A,n)√

Var(S̃Pk,A,n)
≤ t

− Φ(t)

∣∣∣∣∣∣ ≤ 2
4
√

2π

√
D2
∞ar

−d
n cd,f,k,3

(nrdn)k+2

Var(S̃Pk,A,n)3

+ 6

√
D3
∞ar

−d
n cd,f,k,4

(nrdn)k+2

Var(S̃Pk,A,n)4

≤Cd,f,k

√
r−dn

(nrdn)k+2

(nk+2r
d(k+1)
n )3

+ C ′d,f,k

√
r−dn

(nrdn)k+2

(nk+2r
d(k+1)
n )4

≤Cd,f,k

√√√√ nk+2r
d(k+1)
n

(nk+2r
d(k+1)
n )3

+ C ′d,f,k

√√√√ nk+2r
d(k+1)
n

(nk+2r
d(k+1)
n )4

≤C ′′d,f,k,A
(
nk+2rd(k+1)

n

)−1

,

and because nk+2r
d(k+1)
n → ∞ we have our result (using also the limit for the

variance).

Now, as said above, we move to A = Rd. The proof relies on the fact
that µi,j,[−K,K]d → µi,j,Rd as K → ∞. We will not give the proof in detail,
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because it is done quite well in the paper, it consists mainly of straightforward
computations.

Lemma 7.2.8 (Part of Theorem 3.15 in [11]). Suppose nrdn → 0 and nk+2r
d(k+1)
n →

∞ as n→∞, then we have the following weak limit:

S̃Pk,n − E(S̃Pk,n)√
nk+2r

d(k+1)
n

D−→ N

(
0,

µk+2,1

(k + 2)!

)
.

With this lemma, we have our CLT for S̃Pk,n. In the next section we will see

how this CLT implies a CLT for β̃Pk,n.

7.2.4 CLT for β̃P
k,n

In the end we want results about the Betti number, not about the number of
hollow simplices. Hence we use the fact that S̃Pk,n is a good approximation or

β̃Pk,n and the CLT or S̃Pk,n to derive a CLT for β̃Pk,n.

Lemma 7.2.9. Suppose nrdn → 0 and nk+2r
d(k+1)
n → ∞ as n → ∞, then we

have the following weak limit:

β̃Pk,n − E(β̃Pk,n)√
nk+2r

d(k+1)
n

D−→ N

(
0,

µk+2,1

(k + 2)!

)
.

Proof. Note again that β̃Pk,n = S̃Pk,n +RPk,n, where

RPk,n :=

m∑
i=k+3

∑
j≥1

jXi,j,k,n.

Now fix t ∈ R and ε > 0, we will prove that∣∣∣∣∣P
(
β̃Pk,n − E(β̃Pk,n)

nk+2r
d(k+1)
n

)
− P

(√
µk+2,1

(k + 2)!
N(0, 1) ≤ t

)∣∣∣∣∣ ≤ ε
using the CLT we have for S̃Pk,n. We set the following notation for the normalised
variables:

Bk,n :=
β̃Pk,n − E(β̃Pk,n)√
nk+2r

d(k+1)
n

Rk,n :=
RPk,n − E(RPk,n)√
nk+2r

d(k+1)
n

Sk,n :=
S̃Pk,n − E(S̃Pk,n)√
nk+2r

d(k+1)
n

.
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Note that we have the same kind of relation between the variables as before,
that is Bk,n = Sk,n +Rk,n. We are interested in P(B ≤ t), so we write

P(Bk,n ≤ t) = P(Sk,n +Rk,n ≤ t)
≤ P(Sk,n ≤ t+ ε,Rn,k<ε) +P(Sk,n ≥ t+ ε,Rk,n < −ε)
≤ P(Sk,n ≤ t+ ε) +P(|Rk,n| > ε).

Now we use Lemma 7.2.5 to bound the variance of Rk,n.

lim
n→∞

Var(Rk,n) = lim
n→∞

Var

 RPk,n − E(Pk,n)√
nk+2r

d(k+1)
n


= lim
n→∞

Var(Rk,n)

nk+2r
d(k+1)
n

nrdn
nrdn

= lim
n→∞

Var(Rk,n)

nk+3r
d(k+2)
n

nrdn

=

∑(k+3
k+1)
j=1 j2µk+3,j

(k + 3)!
lim
n→∞

nrdn = 0.

From this, we conclude that for n large enough we have Var(Rk,n) ≤ ε3. Hence
we can use Chebyshev’s inequality to see that for large enough n

P(|Rk,n| > ε) ≤ Var(Rk,n)

ε2
≤ ε.

Now using the CLT we had for S̃Pk,n and letting ε → 0, we have the following
limit for the upper bound

lim sup
n→∞

P(Bk,n ≤ t) ≤ P(

√
µk+2,1

(k + 2)!
N(0, 1) ≤ t).

For the lower bound we do the following. First we find a lower bound or
P(Bk,n ≤ t) in terms of Sk,n, Rk,n and ε:

P(Bk,n ≤ t) ≥ P(Sk,n ≤ t− ε,Rk,n < t)

≥ P(Sk,n ≤ t− ε) −P(Sk,n ≤ t− ε,Rk,n > ε)

≥ P(Sk,n ≤ t− ε) −P(|Rk,n| > ε).

The rest of the argument is the same and we get lower bound

lim inf
n→∞

P(Bk,n ≤ t) ≥ P
(√

µk+2,1

(k + 2)!
N(0, 1) ≤ t

)
.

Hence, we conclude that

β̃Pk,n − E(β̃Pk,n)√
nk+2r

d(k+1)
n

D−→ N

(
0,

µk+2,1

(k + 2)!

)
.
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7.2.5 De-Poissonisation: a CLT for β̃k,n

We now de-Poissonise last result to get to the case of a binomial point process.
This is done using the following theorem from Penrose’s book.

Theorem 7.2.10 (Theorem 2.12 of [14]). Suppose that for each n ∈ N, Kn(X)
is a real valued functional on finite sets X ⊂ Rd. Suppose that

• 1
n Var(Kn(Pn))→ σ2, and

• 1√
n

(Kn(Pn)− E(Kn(Pn)))
D−→ σ2N(0, 1).

Suppose that there are constants α ∈ R, β > 0, and γ > 1/2 such that the
increments Rq,n := Kn(Xq+1)−Kn(Xq) satisfy

1. limn→∞(supn−nγ≤q≤n+nγ |E(Rq,n)− α|) = 0;

2. limn→∞(supn−nγ≤q≤q′≤;n+nγ |E(Rq,nRq′,n)− α2|) = 0;

3. limn→∞( 1√
n

supn−nγ≤q≤n+nγ E(R2
q,n)) = 0;

4. P(|Kn(Xn)| ≤ β(n+ q)β) = 1.

Then α ≤ σ and as n→∞, 1/nVar(Kn(Xn))→ σ2 − α2 and

1√
n

(
Kn(Xn)− E(Kn(Xn))

)
D−→
√
σ2 − α2N(0, 1).

Before we start with the proof of the CLT for the truncated Betti number, we
first have to prove an additional small proposition. This proposition is needed
to fix an oversight in the proof in the erratum.

Proposition 7.2.11. Let X = {x0, . . . , xq, xq+1} ⊂ Rd be a finite subset of d
dimensional Euclidean space, and r a radius for constructing a random complex.
Suppose the complex (either Čech or Vietoris-Rips) on X is connected. Then
there is some constant Nd depending on the dimension d, such that the complex
on X \ {xq+1} has at most Nd components.

Proof. Let {Ci}i∈I be the set of components Ci in the complex on X \ {xq+1}.
Each of these components is connected to xq+1 in the complex on X because X
is connected. Hence for each component Ci there is a vertex yCi ∈ X \ {xq+1}
at distance at most 2r from xq+1, and d(yCi , yCj ) > 2r for all i, j. This means
the induced subgraph on {yCi}∪xq+1

is isomorphic to the star graph ?|I|+1. By
Proposition 5.1.5 this star graph is only feasible if |I|+ 1 is smaller than some
constant Nd < ∞. Hence the maximum number of components is also finitely

bounded.

Now we actually prove the CLT for β̃k,n. This means we have to think of a
useful functional K, and we then check the conditions of the theorem.
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Theorem 7.2.12. Suppose nrdn → 0 and nk+3r
d(k+2)
n → ∞ as n → ∞, then

we have the following weak limit:

β̃k,n − E(β̃k,n)√
(nk+2r

d(k+1)
n )

D−→ N

(
0,

µk+2,1

(k + 2)!

)
.

Proof. We prove that we can apply Theorem 7.2.10 with α = 0, γ = 1 and
functional

Kn(X) :=
1√

nk+1r
d(k+1)
n

∑
Y⊂X

m∑
i=k+2

∑
j≥1

jh̃i,j,k,n(Y,X).

Note that we have the following relation between this functional and our relevant
counting variables:

1√
n

(Kn(Pn)− E(Kn(Pn))) =
β̃Pk,n − E(β̃Pk,n)√
nk+2r

d(k+1)
n

1√
n

(Kn(Xn)− E(Kn(Xn))) =
β̃k,n − E(β̃k,n)√
nk+2r

d(k+1)
n

.

By the central limit theorem for β̃Pk,n (Theorem 7.2.9) and the limit for the
variance of this variable we found in Lemma 7.2.5, we can already easily see
that the first two bullets of the de-Poissonisation theorem are satisfied. This
means we still have to prove the bullets regarding the increments. To work
towards that goal, we first introduce a rescaled version of the increments:

Dq,n : =

√
nk+1r

d(k+1)
n Rq,n

=
∑

Y⊂Xq+1

 m∑
i=k+2

∑
j≥1

jh̃i,j,k,n(Y,Xq+1)

− ∑
Y⊂Xq

 m∑
i=k+2

∑
j≥1

jh̃i,j,k,n(Y,Xq)

 .

Note now, that this Dn,q is just the truncated(!) k-th Betti number of the com-
ponent of Xq+1 minus the truncated k-th Betti number of the complex resulting
by taking the component of Xq+1 and removing all simplices containing Xq+1

from it. Because these are truncated Betti numbers with maximum complex
size m, each component can at most contribute

(
m
k+1

)
. Hence, for the positive

part of the difference, the component of Xq+1 contributes at most
(
m
k+1

)
. For

the negative part we have to be careful! Whereas each component contributes
at most

(
m
k+1

)
, the complex we get by removing Xq+1 from its component may

have multiple components. Fortunately, this number of components is bounded
by a constant Nd depending only on d by Proposition 7.2.11. Hence we can see
that |Dn,q| has upper bound Nd

(
m
k+1

)
.

Now we will prove the limits of the increments as needed for the application
of Penrose’s theorem. So for now we assume 0 ≤ q ≤ 2n, that is we assume
n− nγ ≤ q ≤ n+ nγ and set γ = 1.
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Note that for Dn,q to be non-zero, we need that the component of Xq+1 has
at least k + 1 other vertices. This probability is bounded by(

q

k + 1

)
P(k + 1 within distance 2(k + 1)rn from Xq+1)

≤
(

q

k + 1

)
(‖ f ‖∞ θd(2(k + 1)rn)d)k+1

≤
(

2n

k + 1

)
(‖ f ‖∞ θd(2(k + 1)rn)d)k+1

≤ Cd,k,f (nrdn)k+1,

where the factor
(
q

k+1

)
is explained by the fact that we have a binomial point

process here. Together with the bound on |Dq,n|, this gives us the bound
E(|Dq,n|) ≤ Nd

(
m
k+1

)
Cd,k,f (nrdn)k+1 = C ′d,k,f,m(nrdn)k+1 on the expectation. We

now use this to find the first limit:

lim
n→∞

(
sup

0≤q≤2n
|E(Rq,n)|

)
= lim
n→∞

(
sup

0≤q≤2n

|E(Dq,n)|√
nk+1r

d(k+1)
n

)

≤ lim
n→∞

(
sup

0≤q≤2n

E(|Dq,n|)√
nk+1r

d(k+1)
n

)

≤ lim
n→∞

(
sup

0≤q≤2n

C ′d,k,f,m(nrdn)k+1√
nk+1r

d(k+1)
n

)
= lim
n→∞

(
C ′d,k,f,m

√
(nrdn)k+1

)
= 0

Now we continue by looking at E(Dq,nDq′,n) with q < q′. We proceed in
the same way, by first bounding |Dq,nDq′,n| and then the probability that it is
non-zero. By the same reasoning as before, each of Dq,n and Dq′,n is bounded

by Nd
(
m
k+1

)
, hence |Dq,nDq′,n| ≤ N2

d

(
m
k+1

)2
.

The probability that the product Dq,nDq′,n is nonzero, is treated in a really
short way in the erratum, of which I am not sure why it is correct. They need to
prove that the probability of Xq′+1 being in the component of Xq+1 is bounded
above by crdn for some constant c. Because the size of this component is only
bounded by q′+1 < n, I do not see why the constant is independent of n. Hence
we give intuition in a slightly different way.

The probability that the product Dq,nDq′,n is nonzero, is smaller than the
probability that the component of Xq+1 in the larger complex (on Xq+1) has at
least k + 3 vertices, plus the probability that the components of Xq′+1 and of
Xq+1 are both of size at least k+2 given that the components are not the same.
The first of these probabilities is bounded by c′d,k,f (nrdn)k+2, and the second by

something in the order of c′′d,f,k(nrdn)2k+2.
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|E(Dq,nDq′,n)| ≤ E(|Dq,nDq′,n|)

≤ N2
d

(
m

k + 1

)2

c′d,k,f (nrdn)k+2 + c′′d,k,f (nrdn)2k+2

≤ Cd,f,k,m(nk+2rd(k+2)
n )+(nrdn)2k+2)

Now we can look at the corresponding limit for the differences R:

lim
n→∞

(
sup

0≤q<q′≤2n
|E(Rq,nRq′,n)|

)
≤ lim
n→∞

(
sup

0≤q<q′≤2n

|E(Dq,nDq′,n)|
nk+1r

d(k+1)
n

)
≤ lim
n→∞

(
sup

0≤q<q′≤2n

Cd,f,k,m(nk+2r
d(k+2)
n )+(nrdn)2k+2)

nk+1r
d(k+1)
n

)
= lim
n→∞

(
sup

0≤q<q′≤2n
Cd,f,k,m(nrdn + (nrdn)k+1)

)
= lim
n→∞

(
C ′d,f,k,m(nrdn + (nrdn)k+1)

)
= 0.

Thirdly, we check the corresponding limit or q = q′. As above, we can see
that

E(D2
q,n) ≤ N2

d

(
m

k + 1

)2

Cd,k,f (nrdn)k+1

and hence, cancelling the scalings in Rq,n, we get

1√
n
E(R2

q,n) ≤
N2
d

(
m
k+1

)2
Cd,k,f√

n

n→∞−−−−→ 0.

Finally, we look at the polynomial boundedness. The erratum calls this
condition trivially satisfied, we will take a closer look. Note that by the upper
bound

(
q

k+1

)
for the Betti number βk of any complex with q nodes, we have

|Hn(Xq)| ≤
(
q

k+1

)
nk+1r

d(k+1)
n

=

(
q

k + 1

) √
n

nk+2r
d(k+1)
n

.

And then, using facts about the regime, we can further bound

|Hn(Xq)| ≤
(

q

k + 1

)
n

nk+2r
d(k+1)
n

≤ qk+1n

≤ (q + n)k+2

for n large enough. Now take for the constant β, the maximum of the k + 2
and of βs for all cases where n is smaller than large enough. For all these cases
there exists such a β, hence the condition is satisfied.
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By the de-Poissonisation theorem, we have the CLT for βk,n we wanted,

because we have proven that the conditions hold for α = 0.

7.2.6 From β̃ to β

Lastly, we have to use our knowledge of the distribution of our approximation
variable β̃k,n, to derive a CLT or βk,n. Because large components are very rare,

the difference βk,n − β̃k,n is very small.

Lemma 7.2.13. Suppose rn = o(n−1/d−δ), then we have the following limit:

E(|βk,n − β̃k,n|)√
nk+2r

d(k+1)
n

.

Proof. Remember that β̃k,n is a truncated version of βk,n, which means we have

|βk,n − β̃k,n| =
n∑

i=m+1

∑
j≥1

jXi,j,k,n

=

S∑
i=m+1

∑
j≥1

jXi,j,k,n +

n∑
i=S+1

∑
j≥1

jXi,j,k,n

where we split up the sum at S := d 2
dδ + 1e. The next step is to bound

E
(∑

j≥0 jXi,j,k,n

)
. To do this, we note that every subset of i nodes can at

most contribute
(
i

k+1

)
to this sum, and only if these points are connected. For

checking whether the points are connected, we can just check if they are close
enough to each other and whether there is a spanning tree for these points in
the complex. For a fixed set of i vertices there are ii−2 such spanning trees to
check. This gives the following bound.

E

∑
j≥0

jXi,j,k,n

 ≤ (n
i

)
ii−2(θd(2(i−1) ‖ f ‖∞ rn)d)i−1

(
i

k + 1

)
≤ Cd,f,k,inird(i−1)

n .

For the two sums in the difference β − β̃, this means the dominating term
is the one with smallest i, just like for the limits of the means and variances of
the variables in this section. In short, we have

S∑
i=m+1

E

∑
j≥0

jXi,j,k,n

 = O(nm+1rdmn )

n∑
i=S+1

E

∑
j≥0

jXi,j,k,n

 = O(n · nS+1rdmn ).
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Now we have to use rn = o(n1/d−δ), for clarity, we rewrite this as a limit first

rnn
1/d+δ → 0

rdnn
1+δd → 0

rdmn nm+mδd → 0

With this and the fact that mδd < 1 + δd, we can see that the first of the
sums is in fact of order O(n−dδ). In a similar way, we can see that the second
sum is o order O(n2−dδS) = O(n−δd). Because δd > 0 we can easily see that

E(|βk,n − β̃k,n|)→ 0 and the statement follows immediately.

This small difference is used in the proof of the actual theorem, together
with the CLT for β̃k,n.

Theorem 7.2.14. If nk+2r
d(k+1)
n →∞ as n→∞ and rn = o(n1/d−δ) then

βk,n − E(βk,n)√
nk+2r

d(k+1)
n

D−→ N(0,
µ2+k,1

(k + 2)!
).

Proof. Using the lemma above, we proceed in exactly the same way as in the
proof of Lemma 7.2.9. Here, instead of Chebyshev’s inequality, we use a Markov

inequality.

One might guess that we could do something similar for he Poisson point
process. This however, turns out to be more difficult, because the difference
between β and its approximation is harder to estimate in that case: instead of
summing till n, we sum until N with possibility P(|Pn| = N). It is, however,
probably possible to estimate this difference anyway.

7.3 Betti number distribution: Kahle & Meckes

Last section talks about the limiting distribution of the Betti number in the
dense regime. This section does the same, but we treat the result from the
original paper. It is very important to note that this statement has not been
proven yet! The erratum exists mainly because the original proof is incorrect.
In this section we will look at the differences between the original statement
and the corrected statement we treated in last section. Furthermore, we will see
why the proof is incorrect. First we give the statement of the original paper.

Conjecture 7.3.1 (Theorem 3.2 (iii) of [11]; Theorem 2.2 of [12]). Suppose

nk+2r
d(k+1)
n

n→∞−−−−→ ∞ and nrdn
n→∞−−−−→ 0, then the Betti number βk,n of the

random Čech complex Č(Xn, rn) satisfies

βk,n − E(βk,n)

Var(βk,n)

n→∞−−−−→ N(0, 1).
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The proof in the paper is quite long and uses a multitude of lemmas and
theorems. The main strategy is quite similar to the one taken in the erratum.
However, here we have not one approximation variable, but we have an upper
and a lower bound on the Betti number. The paper gives central limit theorems
for both bounds and tries to deduce a CLT for the Betti number. There is a
small flaw in the arguments used for this step. We will see later where exactly.
This also means that all results we treat are correctly proven, unless stated
otherwise.

7.3.1 Comparison of the statements

Note that the theorem as stated in the erratum has one additional restriction
compared to the theorem in the original paper [11], most notably the condition
rn = o(n−1/d−δ) has been added for part of the regime. The proof as given
in the paper turns out not to work in this part of the sparse regime. In the
other part of the regime this proof does work. This is the reason the additional
assumption rn = o(n−1/d−δ) lacks for this part of the regime.

The other difference is that the erratum has a specific factor for the normal-
isation, whereas the original denotes the variance of βk,n as factor of normalisa-
tion. In the paper nothing is proven about this variance, although the variances
of the upper and lower bound are given. This seems to be the reason we have
to have a specific factor.

7.3.2 Notation for additional variables

As before, we will use additional notation for some stochastic variables. These
are mainly of the type we saw before: subcomplex counts. As before, Sk,n is
the number of empty (k + 1)-simplices (i.e. copies of δ∆k+1) in Č(Xn, rn); and
similarly, S̃k,n is the number of isolated such empty simplices.

Now we add the variables Yk,n and Zk,n which give the number of k-simplices
with 2 added edges and vertices, or with one added path of length 2 respectively.
These are used to estimate the number of k-simlices in components with k + 3
or more vertices. Collectively, Sk,n + Yk,n + Zk,n forms the upper bound of the
Betti number the paper uses, this means we also write

Wk,n := Sk,n + Yk,n + Zk,n.

Also, because the proof uses a Poissonization, we need to introduce SPk,n,

S̃Pk,n etc., the corresponding stochastic variables in the case where the Čech

complex Č(Pn, rn) is produced with a Poisson point process Pn.

7.3.3 Proof strategy

The proof goes by a sort of sandwiching argument. The notation introduced in
last section gives us the inequality

S̃k,n ≤ βk,n ≤ Sk,n + Yk,n + Zk,n, (7.1)
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which is justified by simple counting arguments in simplicial homology (with
βk,n the random variable counting the k-th Betti number of the complex on
n vertices).In the proof we use this inequality for the stochastic variables to
‘sandwich’ their distributions. Both the upper and the lower bound variable
tend to a normal distribution if they are normalised and n goes to infinity. With
a few extra assumptions on the shifts and the scalings of the normalisations,
this is enough to ensure that the sandwiched normalised variable will also tend
to a normal distribution.

7.3.4 Upper bound

The upper bound variable Wk,n is proven to approximate a Poisson distribution
with mean tending to infinity. The normalised version of this variable will
therefore tend to a normal distribution. They prove this using the following
well known approximation lemma which is derived with the Chen-Stein method
in a paper by Arratia, Goldstein, and Gordon [1].

Lemma 7.3.2 ([1]). Let (ζi, i ∈ I) be a finite collection of Bernoulli ran-
dom variables with dependency graph (I,∼). Let the variables pi := E(ζi) and
pij := E(ζiζj) denote the expectations of the variables and let X :=

∑
i∈I ζi

and λ :=
∑
i∈I pi denote the sums of all the variables and of their expected

values respectively. Then we have the following bound for the distance of total
variation:

dTV (X,Poi(λ)) ≤ min(3, λ−1)

∑
i∈I

∑
j∼i;i 6=j

pij +
∑
i∈I

∑
j∼i

pipj

 .

This lemma is used by taking as Bernoulli variables the indicators that cer-
tain subsets of points form certain subcomplexes. In practice, we take indicators
such that

Sk,n =
∑

1≤i0<···<ik−1≤n

ξI

Yk,n =
∑

1≤i0<···<ik−2≤n
ik−1,ik 6∈{i0,...,ik−2}

ik−1 6=ik

∑
0≤p≤q≤k−2

γp,qI

Zk,n =
∑

1≤i0<···<ik−2≤n
ik−1,ik 6∈{i0,...,ik−2}

ik−1 6=ik

∑
0≤p≤k−2

ηpI ,

where ξI is the indicator that {Xi}i∈I forms an empty simplex; γp,qI is the in-
dicator that {Xi0 , . . . , Xik−2

} forms a (full) simplex, and there are edges from
Xip to Xik−1

and from Xiq to Xik (for I = {i0, . . . , ik}); and ηpI is the indicator
that {Xi0 , . . . , Xik−2

} forms a (full) simplex, and there are edges from Xip to
Xik−1

and from Xik−1
to Xik (for I = {i0, . . . , ik}).
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It is clear that these kind of variables can only be dependent if their relevant
point sets have points in common. Observe also that when there is a com-
mon point, all points should be close together for both indicators to be one.
These observations make it easy to compute upper bounds for pi and pij . The
large sum in the upper bound of the lemma is bounded smaller than a con-

stant (dependent only on d, k and f) times nk+3r
d(k+2)
n . Then they use that

λ = E(Sk,n + Yk,n + Zk,n) ∼ nk+2r
d(k+1)
n

µ
k! (by counting subcomplexes) to see

that

dTV (Wk,n,Poi(E(Wk,n))) ≤ n−(k+2)r−d(k+1)
n

k!

µ
nk+3rd(k+2)

n

= Cd,k,fnr
d
n,

which goes to 0 as n → ∞. To complete the argument for the central limit
theorem for Wk,n, we have to note that dTV is invariant under simultaneous
shifts and scalings of the random variables, hence

dTV

(
Wk,n − E(Wk,n)√

E(Wk,n)
,

Poi(E(Wk,n))− E(Wk,n)√
E(Wk,n)

)
≤ Cd,k,fnrdn

and because
Poi(E(Wk,n))−E(Wk,n)√

E(Wk,n)

D−→ N(0, 1), we have a central limit theorem

for the upper bound:

Wk,n − E(Wk,n)√
E(Wk,n)

D−→ N(0, 1).

In the original paper, there was one additional step which led them to con-
clude that there was a slightly different central limit theorem, namely

Wk,n − E(S̃k,n)√
E(S̃k,n)

D−→ N(0, 1).

This is correct as long as dTV (Poi(E(S̃k,n)),Poi(E(Wk,n))) goes to zero, which

it does if |E(S̃k,n)−E(Wk,n)| goes to zero. Unfortunately, this is not necessarily
the case.

Note that Wk,n − S̃k,n = Sk,n − S̃k,n + Yk,n + Zk,n. Note also that, when

nrdn → 0, also Sk,n − S̃ → 0, see the proof of the subcomplexes count for an
explanation. This means that

Wk,n − S̃k,n ∼ (Yk,n + Zk,n) ∼ cnk+3rd(k+2)
n ,

for some constant c. Hence, only if nk+3r
d(k+2)
n → 0, the central limit theorem

for Wk,n as given in the paper holds. We will see later that the actual central
limit theorem for Wk,n in the whole sparse regime, is not enough to prove the
full theorem. Concluding, we have the following lemma:



7.3. BETTI NUMBER DISTRIBUTION: KAHLE & MECKES 113

Lemma 7.3.3. Let nrdn → 0, nk+2r
d(k+1)
n → ∞, and let Wk,n and S̃k,n be as

above, then
Wk,n − E(Wk,n)√

E(Wk,n)

D−→ N(0, 1).

If additionally nk+3r
d(k+2)
n → 0, then

Wk,n − E(S̃k,n)√
E(S̃k,n)

D−→ N(0, 1).

7.3.5 Lower bound

As noted before, for the corresponding lower bound we distinguish two regimes,
in which very different ways of proving a central limit theorem are used. Re-
member that in both regimes, we assume rn = o(n−1/d). The regimes are:

• limn→∞ nk+3r
d(k+2)
n = 0;

• lim infn→∞ nk+3r
d(k+2)
n > 0.

The first case is properly dealt with in the original paper. For the second
regime, the correct proof is given in the erratum, where we slightly change
the assumption for rn as a function of n: the relation between becomes rn =
o(n−1/d−δ) for some δ > 0. We will first follow the approach of the original
paper for both regimes.

First case: limn→∞ nk+3r
d(k+2)
n = 0

For the first regime something akin to the case of the upper bound is done: they
prove that the total variational distance dTV (S̃k,n,Poi(E(S̃k,n))) is bounded by

cd,k,fn
k+3r

d(k+2)
n . Hence in the first regime we see that

dTV (S̃k,n,Poi(E(S̃k,n)))
n→∞−−−−→ 0.

Because nk+2r
d(k+1)
n

n→∞−−−−→ ∞, we also know that E(S̃k,n)
n→∞−−−−→ ∞. Now we

use that (Poi(λ)−λ)/
√
λ will tend to a standard normal distribution if λ→∞,

to see that
S̃k,n − E(S̃k,n)√

E(S̃k,n)
→ N(0, 1)

as n→∞, just like for the upper bound. Because the proof in the paper leaves
out some details and intuition, we give the proof of this bound on the distance
of total variation.

Lemma 7.3.4 (Lemma 3.8 from [11]). Let S̃k,n be the random counting variable
as before, then for sufficiently large n we have

dTV (S̃k,n,Poi(E(S̃k,n))) < cd,k,fn
k+3rd(k+2)

n .

for some constant cd,f,k dependent only on d, f and k.
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Proof. First note that we can prove that

dTV (Sk,n,Poi(E(Sk,n))) < c′d,k,fnr
d
n

with Lemma 7.3.2 and the same indicator variables ξI as in the proof for the
central limit theorem of Wk,n in Lemma 7.3.3.

Now we prove that

dTV (Sk,n, S̃k,n) ≤ c′′d,f,knk+3rd(k+2)
n ,

using the fact that Sk,n − S̃k,n is just the number of empty k-dimensional sim-
plices that are not isolated in the complex. Not being isolated means there is
at least one more point connected to this empty simplex. Hence Sk,n − S̃k,n is
bounded above by the number of k + 3-vertex subsets of which k + 2 form an
empty simplex. The probability that k + 3 points form such a subcomplex is
bounded by(

(2rn)dθd ‖ f ‖∞
)k+1(

(4rn)dθd ‖ f ‖∞
)
≤ 4d(k+2)θk+2

d ‖ f ‖k+2
∞ rd(k+2)

n

where θd := Leb(B(0, 1) ⊂ Rd) and ‖ f ‖∞:= supx∈Rd f(x). This bound holds
because ‘all points should lie close together’: Pick one of the points of the empty
simplex, then all k + 1 other points of the empty simplex should lie at distance
at most 2rn away from that point, the remaining point must be connected to
one of the k + 2 points, so it must be at most 4rn away from the chosen point.

The number of such subsets with the one point labelled is
(
n
k+3

)
(k+3) which

gives the following upper bound

E(Sk,n − S̃k,n) ≤
(

n

k + 3

)
(k + 3)

(
4d(k+2)θk+2

d ‖ f ‖k+2
∞ rd(k+2)

n

)
∼
(4d(k+2)θk+2

d ‖ f ‖k+2
∞

(k + 3)!

)
nk+3rd(k+2)

n

= c′′d,f,kn
k+3rd(k+2)

n .

Now we can compute an upper bound for the total variational distance:

dTV (Sk,n, S̃k,n) = sup
ABorel

∣∣∣P(Sk,n ∈ A)− P
(
S̃k,n ∈ A

)∣∣∣
= sup
ABorel

∣∣∣P(Sk,n ∈ A,Sk,n 6= S̃k,n

)
− P

(
S̃k,n ∈ A,Sk,n 6= S̃k,n

)
+ P

(
Sk,n ∈ A,Sk,n = S̃k,n

)
− P

(
S̃k,n ∈ A,Sk,n = S̃k,n

)∣∣∣
= sup
ABorel

∣∣∣P(Sk,n ∈ A,Sk,n 6= S̃k,n

)
− P

(
S̃k,n ∈ A,Sk,n 6= S̃k,n

)∣∣∣
≤ sup
ABorel

P
(
Sk,n 6= S̃k,n

)
=P
(
Sk,n 6= S̃k,n

)
≤E
(
Sk,n − S̃k,n

)
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which is smaller than c′′d,f,kn
k+3r

d(k+2)
n for sufficiently big n.

Now finally we use that dTV (Poi(a),Poi(b)) ≤ |a−b| and |E(Sk,n)−E(S̃k,n)| ≤
c′′d,f,kn

k+3r
d(k+2)
n for sufficiently large n to see that

dTV (Poi(E(Sk,n)),Poi(E(S̃k,n))) ≤ c′′d,f,knk+3rd(k+2)
n

for sufficiently large n. Hence, with the triangle inequality for dTV , we conclude
that for sufficiently large n

dTV (S̃k,n,Poi(E(S̃k,n))) ≤dTV (S̃k,n, Sk,n) + dTV (Sk,n,Poi(E(Sk,n)))

+ dTV (Poi(E(Sk,n)),Poi(E(S̃k,n)))

≤c′′d,f,knk+3rd(k+2)
n + c′d,k,fnr

d
n + c′′d,f,kn

k+3rd(k+2)
n

≤cd,f,knk+3rd(k+2)
n .

Second case: lim infn→∞ nk+3r
d(k+2)
n > 0

The proof for the second regime goes by Poissonisation and de-Poissionisation,
just like in the proof of the erratum. In fact, a large part is exactly the same.
The first step they take for this case is determining that

S̃Pk,n − E(S̃Pk,n)√
Var(S̃Pk,n)

→ N(0, 1)

in this regime (Lemma 7.2.8).
Using this result, they de-Poissonise using the same method as in the erratum

for β̃k,n. Here again, the application of the de-Poissonisation theorem is quite
straightforward, by computation of a few limits. This results in the following
theorem.

Theorem 7.3.5. Suppose nrdn → 0 and nk+2r
d(k+1)
n →∞, then

S̃k,n − E(S̃k,n)√
Var(S̃k,n)

→ N(0, 1)

7.3.6 Central limit theorem for βk

Now we have the CLT’s for the upper and lower bound on βk, we want a CLT
for βk, too. In the first regime, this is quite easy, and we will first give this
argument. After, we will treat the case of the second regime. Here, the paper
goes too quickly and omits the argument. This is problematic because without
additional arguments, we cannot conclude that there is a CLT or βk. We will
treat this regime more careful.
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First regime

Remember that the first regime was the regime in which we had he following
limits:

nrdn → 0

nk+2rd(k+1)
n → ∞

nk+3rd(k+2)
n → 0,

when n→∞. With Lemma 7.3.4 and Lemma 7.3.3 from the preceding sections,
this gives us the central limit theorems for the upper and lower bound of βk in
the inequality S̃k,n ≤ βk,n ≤Wk,n. We can hence ‘normalize’ all three variables
in the inequality in the same way to get

S̃k,n−E(S̃k,n)√
E(S̃k,n)

n→∞ Lemma 7.3.4

��

≤ βk,n−E(S̃k,n)√
E(S̃k,n)

n→∞

��

≤ Wk,n−E(S̃k,n)√
E(S̃k,n)

n→∞ Lemma 7.3.3

��

N(0, 1) ? N(0, 1)

.

Even though this already suggests that the limit for βk,n should also be a stan-
dard normal distribution, we will go through the arguments. We do this because
in the second regime, we encounter a similar situation, where the argument does
not work.

The inequality above yields the following inequality on the level of cumulative
distribution functions. We also indicate the limit for when n→∞.

P
(
Wk,n−E(S̃k,n)√

E(S̃k,n)
< t
)

n→∞ Lemma 7.3.4

��

≤ P
(
βk,n−E(S̃k,n)√

E(S̃k,n)
< t
)

n→∞

��

≤ P
(
S̃k,n−E(S̃k,n)√

E(S̃k,n)
< t
)

n→∞ Lemma 7.3.3

��

Φ(t) ≤ Φ(t) ≤ Φ(t)

.

Because this inequality concerns actual sequences of real numbers, we conclude
that the middle limit also converges to Φ(t). This proves the weak convergence

of
βk,n−E(S̃k,n)√

E(S̃k,n)
to a standard normal distribution. Hence in this regime we have

a CLT for βk.
This almost proves the first part of Theorem 7.2.1, save for the fact that

there the normalisation is done with E(βk,n) for the translation and Var(βk,n)

for the rescaling. As long as Var(βk,n) ∼ E(S̃k,n), this does not pose a problem.
However, whether this is true is not proven in the paper. In the erratum, they
do not talk about the variance of βk anymore.

Second regime: CLT sandwich

In the second regime, just like in the first, there are CLT’s for the upper and
lower bounds. In the paper they claim that this is enough to conclude that
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these is a CLT for the sandwiched variable. The only clue they leave is the
argument they gave for the similar case of the Betti numbers of Erdős-Rényi
type clique complexes. We now look at this argument applied to the case of
Čech complexes. In particular we give some conditions under which we can
actually conclude that a sandwiched variable has a CLT when the upper and
lower bound have a CLT.

The following is a correct and complete version of the argument given by
Kahle and Meckes in their paper under Claim 2.5. Only the first three conditions
were given there, we added the fourth and the fifth.

Proposition 7.3.6. Let Xn ≤ Yn ≤ Zn be a relation for 3 sequences of R-
valued random variables. If there are σn, τn ≥ 0 and µn, νn ∈ R (for all n ∈ N)
such that

1. limn→∞
σn
τn

= 1;

2. Xn−µn
σn

D−→ N(0, 1);

3. Zn−νn
τn

D−→ N(0, 1);

4. |µnσn −
νn
τn
| → 0;

5. limn→∞ E(Xn)| 1
τn
− 1

σn
| = 0.

then we also have a CLT for Yn, i.e. Yn−νn
τn

D−→ N(0, 1).

Proof. Note that we can translate and rescale the variables, all in the same way,
to get

P
(
Zn − νn
τn

≤ t
)
≤ P

(
Yn − νn
τn

≤ t
)
≤ P

(
Xn − νn

τn
≤ t
)
.

The LHS tends to Φ(t) as n→∞ (condition 3). We want to prove the same for
the RHS.

Let ε > 0, and rename Pn := Xn−νn
τn

and Qn := Xn−µn
σn

. So Pn is the nor-
malised version of Xn with the same translation and scaling as for the other
two variables, and Qn is the normalised Xn for which we have a CLT. We want
to see that there is only a small difference between Pn and Qn. To that end we
note that

P(Pn ≤ t) = P(Pn ≤ t, Qn ≤ t+ ε) + P(Pn ≤ t, Qn > t+ ε)

≤ P(Qn ≤ t+ ε) + P(|Pn −Qn| > ε).

where P(Qn ≤ t+ ε)→ Φ(t+ ε) (condition 2), and the other term goes to 0
as we will now prove.
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Note that, by condition 4, for large enough n∣∣∣µn
σn
− νn
τn

∣∣∣ < ε

2
.

We first use this, and then Markov’s inequality to see:

P(|Pn −Qn| > ε) = P
(∣∣∣Xn − νn

τn
− Xn − µn

σn

∣∣∣ > ε

)
≤ P

(
Xn

∣∣∣ 1

τn
− 1

σn

∣∣∣+
∣∣∣µn
σn
− νn
τn

∣∣∣ > ε

)
≤ P

(
Xn

∣∣∣ 1

τn
− 1

σn

∣∣∣ > ε/2

)
≤ 2

ε
E(Xn)

∣∣∣ 1

τn
− 1

σn

∣∣∣
The term

(
E(Xn)

∣∣∣ 1
τn
− 1

σn

∣∣∣) is not present in the version of the paper by Kahle

and Meckes, and makes condition 5 a necessary condition here.
Now we can see that for any fixed ε > 0, this probability P(|Pn − Qn| > ε)

tends to 0 (conditions 1 and 5). Hence for fixed ε > 0 we have upper bound
Φ(t+ ε) for the probability P(Pn ≤ t). Now let ε→ 0 to see that P(Pn ≤ t)→
Φ(t), and hence

Yn − νn
τn

D−→ N(0, 1).

Now the crucial part, the use of this proposition to get a CLT for βk,n.
Theorem 7.3.5 and Lemma 7.3.3 give us he following weak convergences:

S̃k,n − E(S̃k,n)√
Var(S̃k,n)

D−→ N(0, 1)

Wk,n − E(Wk,n)√
E(Wk,n)

D−→ N(0, 1)

as n→∞ in this part of the regime. The obvious use of the proposition would
be to set

Xn = S̃k,n Zn = Wk,n

µn = E(S̃k,n) νn = E(Wk,n)

σn =

√
Var(S̃k,n) τn =

√
E(Wk,n)

We then still have to check the five conditions from the proposition. Unfortu-
nately, it turns out that the last two (new) conditions might not hold.

We do know that

cE(Wk,n) ∼ E(S̃k,n) ∼ Var(S̃k,n),
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for some constant c. But these are facts about quotients, not about differences!
Hence, this is not enough to salvage the situation because the difference between
the means (in the numerators) and the scalings of the normalisation might be
too large. This is also the only, and very cryptic, reason given in the erratum
for its existence. More on this in next section.

7.3.7 Need for Erratum

In this section we look at the reasons there needs to be an erratum to the paper.
Most of these reasons have been touched on in previous sections, but for clarity
we repeat them here as quick reminder.

Scaling for normalisation

In the third part of the theorem, we need to change the rescaling of the nor-

malisation to

√
nk+2r

d(k+1)
n . This is because we actually do not know if the

variance of βk,n is as large as that of S̃k,n.
In the paper, it seems that this is assumed because there is convergence to

a normal distribution. But, because we only have weak convergence, we do not
know whether higher moments (than just the expectation) also converge.

Naturally, this goes for the first part of the regime as well as for the second
part. Only, in the second part of the regime, we need to look out or a few more
things.

Sandwiching in the second regime

This has been treated extensively in Section 7.3.6, so we just repeat the issues
because this problem actually runs through the whole argument.

The issue is two-part: firstly the limiting distribution of Wk,n is not treated
correctly in the second regime, as the normalisation cannot just be changed
(Lemma 7.3.3). Secondly, for this central limit theorem for Wk,n, the sandwich-
ing argument does not work (Section 7.3.6).

The reason that sandwiching does not work is that the difference of the

means (in the right proportion) is E(S̃k,n)− cE(Wk,n) ∼ Cnk+2r
d(k+1)
n , and the

normalisation is of order

√
nk+2r

d(k+1)
n . Hence the difference between

Wk,n − E(Wk,n)√
E(Wk,n)

and
Wk,n − E(S̃k,n)√

E(S̃k,n)

is too large to conclude that the second of the two approaches a standard normal
variable.

Actually, if Wk,n had the central limit theorem as stated in the paper, the
sandwiching could still work by an argument similar to that for the first regime
and the fact that E(S̃k,n) ∼ Var(S̃k,n).
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7.4 Vanishing thresholds

Using last two sections, we can easily deduce some results about the vanishing
of Betti numbers. Vanishing of Betti numbers might be considered interesting
because it conveys that there are no ‘holes’ of certain dimension in the complex.

In Kahles paper [10], theorem 3.10 states the following:

Theorem 7.4.1. For d ≥ 2, k ≥ 1, rn = o(n−1/d), and a random Čech complex
Č(n, rn) we have he following:

• If rn = o(n−k+2/d(k+1)), then a.a.s. Hk(Č(n, rn)) = 0;

• If rn = ω(n−k+2/d(k+1)) and limn→∞ nk+3rk+2
n = 0, or if rn = ω(n−k+2/d(k+1))

and limn→∞ nk+3rk+2
n > 0 and rn = o(n−1/d−δ for some δ > 0, then a.a.s.

Hk(Č(n, rn)) 6= 0;

The first part of the proof is quite trivial when we consider the subcomplex
count theorem: the expected number of components of size k + 2 and larger
goes to 0. Hence, because minimal nontrivial cycles need at least components
of size k + 2 or larger, the probability that there is nonzero homology becomes
0.

The proof of the second part, uses their theorem about the limiting distri-
bution of the Betti number we saw in the previous sections. It is easy to see
by Theorem 7.1.4 that the expected Betti number tends to infinity as n → ∞.
Furthermore, the variance and the expectation of the limiting distribution are
of the same order of magnitude. It is then easy to see that the probability of
non-zero homology becomes 1.

Note that this theorem now uses the restrictions of the erratum for the
second part. In their paper, this is not corrected for as far as I could see.



Chapter 8

Critical regime

The results in this section are about the critical or thermodynamic regime. In
this regime percolation of the random graph occurs. It is hence unsurprising
that the homology of the complexes in this regime becomes more complex (and
more difficult to compute). Technically, this means we have to take in account
the structure of the complex as a whole instead of as a collection of small compo-
nents. In the computations, we do this by subdividing the complex in nice parts
and using the Mayer-Vietoris sequence in combination with an approximation
of the Betti number by count of cells.

The results in this section are mostly from the two papers by Yogeshwaran
et al. [16], and by Trinh Khanh Duy [4]. The first one is quite general in setting,
but restricts itself to (stationary) point processes in a window [−K,K]d. The
second one expands to binomial and Poisson point processes with a more general
density function, but does not contain central limit theorems as the first does.

We will explain the results of the papers regarding binomial and Poisson
point processes, and give the ideas for some of the proofs. We will restrict
ourselves to limits of the expectation.

8.1 Expected Betti number in a window

We first look at the result in the paper of Yogshwaran et al., as these are later
generalised by Duy. In short, the results say that the expected Betti number in
the thermodynamic regime is linear in he number of points. Yogeshwaran proves
this for a Čech complex on uniformly distributed points in a box [−K,K]d. The
result is as follows, where we have rewritten it so that instead of enlarging the
window, we increase the number of points in a fixed window.

Theorem 8.1.1 (Lemma 3.3 from [16]). Let nrdn → λ ∈ (0,∞) and 0 ≤ k ≤
d − 1. Write βn,k for the k-th Betti number of the complex Č(Φn, rn) with Φn
either a binomial or a Poisson point process. Then there exists a constant Cd,k,λ

121
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such that

lim
n→∞

E(βk)

n
→ C.

Note that Kahle (Theorem 4.1 [10]) also proves that E(βk) = Θ(n), and does
this for more general density functions. However, his theorem does not give an
explicit limit as we will see in the theorem by Duy, of which the proof idea is
similar to the proof in Yogeshwaran.

We will now look at the proof of Theorem 8.1.1. We mainly give the idea
and the most vital steps, for the details we refer to the paper.

8.1.1 Proof sketch

The idea is to use the bound on the Betti number we saw in Lemma 3.3.12.
This was the following bound: for a complex K with subcomplex K′ we have

|βk(K)− βk(K′)| ≤
k+1∑
j=k

#{j-simplices in K \ K′}.

To use this, we have to pick smart choices for K and K′.
Notably, K will of course be the full random complex. For K′ we choose a

subcomplex that consists of a lot of smaller subcomplexes: Let {Qi,t}i∈[md] be

a partition of the window in md ‘cubes’ [0, t)d of side length t. Denote with
ΦQi,t = Φn ∩Qi,t the subset of points that lie in the square Qi,t, then we pick
for K′ the complex

∪i∈[md]Č(ΦQi,t , rn).

We estimate βk(K′) for t such that Qi,t contains a ‘suitable number of points’,
and we note that

βk(K′) =
∑
i∈[md]

βk(Č(ΦQi,t , rn)).

In this case, the expectation for each of these summands is the same, and
approximately linear in the number of points. Counting the relevant number
of squares we can conclude that the Betti number of K′ is of order Θ(n). The
argument for this is actually fairly non-trivial, but not so interesting for the
intuition regarding this proof.

The crucial step in the proof is now to realise that the number of j-simplices
that we have not yet counted, have all their vertices close to the ‘boundaries’,
i.e. they are in the set

B := ∪i∈[md]{x ∈ Rd : d(x, δ(Qi,t)) < 2rn}.

An illustration of this situation can be found in Figure ??. Because the volume
of this set is small, the number of these simplices is also small. This makes it
possible to estimate the Betti number of the complex by looking at the Betti
number of K′, which we determined was of order Θ(n).
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Figure 8.1: The situation for the proof. The grey/Black boxes are the Qi,t. The
grey shaded region is the region B close to the boundary. The green subcomplex
is K′ and the red simplices are the simplices in K \ K′. Note that the vertices
of the red simplices all lie in B.

8.1.2 Vietoris-Rips

In the paper it is said that most of their results can probably also be proven for
other complexes, like the Vietoris-Rips complex. This is true for this statement,
the reason being that the only Čech complex specific part is the bound on the
number of simplices. The paper gives such a bound for the Čech complex, but it
only uses the fact that there should be a certain number of points close enough
(k other points for a k-simplex). Hence this bound can actually also be used for
Vietoris-Rips complex.

Theorem 8.1.2. Let nrdn → λ ∈ (0,∞) and 0 ≤ k. Write βn,k for the k-th
Betti number of the complex R(Φn, rn) with Φn either a binomial or a Poisson
point process with uniform density over a window [−K,K]d. Then there exists
a constant Cd,k,λ such that

lim
n→∞

E(βk)

n
→ C.

Note that saying this is all that is treated in the paper would do it great
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injustice. There are many more much more general results in it, that also merit
study. Time constraints are the main reason for not looking at these in this
thesis.

8.2 Expected Betti number with density f

8.2.1 Kahle’s theorem

For a weak result which we can prove easily, we turn to Kahle’s paper theorem
4.1 [10], which estimates the Betti number in the thermodynamic regime by
again counting empty simplices or cross-polytopes.

It is a basic result from Penrose’s book that, in the thermodynamic regime,
any kind of component occurs linearly in the number of points (Proposition 3.3
from [14]). Similarly, the induced subgraphs we count to estimate he number of
k-simplices also occur in the order of O(n) times. This means βk = Θ(n).

It is however interesting to know with what constant this is. For this we can
turn to the result by Duy, which we look at shortly in the next section.

8.2.2 Duy’s Remark

The result by Duy is interesting because it is slightly more general in terms
of possible density functions. However, we will not really look at the proof,
we will only give an idea of the reason it is true, which uses the idea of the
proof in previous section. The result is again linearity of the expectation in the
thermodynamic regime.

Theorem 8.2.1 (Theorem 1.3 and 1.5 of Duy [4]). Let nrdn → λ ∈ (0,∞) and
0 ≤ k. Write βn,k for the k-th Betti number of the complex R(Φn, rn) with
Φn either a binomial or a Poisson point process with bounded and Riemann
integrable density function with bounded support. Then there exists a constant
Cd,k,λ such that

lim
n→∞

E(βk)

n
→ C.

Remember that in the last proof, we saw that we could estimate

βk(K′) =
∑
i∈[md]

βk(Č(ΦQi,t , rn)).

In that case, the expectation for each of these summands was the same, but
dependent on the density of the points. Now, we have a non-uniform density
function. The trick to doing the proof in this case is to let these boxes become
infinitesimally small. So in the previous case we had some constant density
in each box giving a constant for the limit of the expectation. Now we sum
over squares in which the density is variable, and the limit becomes an integral
‘summing’ the density over all these squares.
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To do this, we actually first need to know that for some constant β̂k and
nrdn → λ

P
(

lim
n→∞

βk(Φn, rn)

n
= β̂k(λ)

)
= 1.

This is also proved by Yogeshwaran, but we decided not to focus on that result.
What we can note however, is that these constants β̂k, that depend on f(x),
actually define the limit of the expectation by integration.

8.3 Vanishing of homology

We shortly return to the definition of the regimes used for random complexes as
compared to regimes of random geometric graphs. As said in Section 6.2.1 the
definitions might slightly diverge in the thermodynamic regime. In particular,
we noted that the definitions of sub-critical, critical and super-critical were
different. In the case of random geometric graphs, there is a clear (critical)
limit at which percolation occurs. This limit is less interesting for geometric
complexes as studied for their shape, because percolation only means there is one
large component, and nothing is being said about the other small components.

It should be noted that for geometric complexes, there also exist interesting
critical limits. These critical values for relate to connectivity. There is a critical
limiting value for which the complexes/graphs have only one component. This
corresponds to the ‘vanishing’ of the 0-th Betti number (actually, it becomes
one, but this is called vanishing here). For higher Betti numbers, similar critical
values exist. This has been proven in the case of a point distribution on a flat
torus by Bobrowski and Weinberger in a yet to be published paper. [2]





Chapter 9

Supercritical regime

As mentioned earlier, in the super-critical regime the density of the points be-
comes very large. So large that it is very likely that all points become highly
connected. In this section we look at this connectivity for the random Čech and
the random Vietoris-Rips complexes. Unlike in the other regimes, the results
and the proofs for these two complexes are quite different. This is because the
Čech complex is limited by the implications of the Nerve theorem, where the
Vietoris-Rips complex is not. Most importantly, we look at two results from
Kahle’s paper [10] about connectivitity of the complexes in certain regimes.

9.1 Contractible Čech complexes

For the point processes in this section, we assume a uniform distribution of the
points on a smoothly bounded convex subset K of Rd. If the cover defining the
random Čech complex is such that it covers all of K, we will be able to conclude,
using the nerve lemma, that the complex is contractible. The way we ensure
that the cover actually covers K is by the following lemma, where we define a
set of boxes.

Proposition 9.1.1. Let K be compact smoothly bounded convex subset of Rd.
Then there exists a length L > 0 such that if λ < L, there is a partition of Rd
in boxes of side length λ such that the following holds. Denoting by SK the set
of boxes fully contained in K: for every point k ∈ K we have k ∈ s for some
s ∈ SK , or the box which contains k is a adjacent to a box in SK .

The following proof of this proposition is in no way rigorous, but the strategy
should be transferable to a rigorous proof.

Proof sketch. Let us oriente the boxes so that the sides are normal to respective
basis vectors. Note that, because K is convex, we have exactly one minimal
and one maximal point in the direction of each basis vector. In these points,
the tangent plane is normal to the respective basis vector, i.e. it is parallel to
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the side of the box. In any other point k, the tangent plane is not parallel to
any side of the box.

In the second type of point there is a corner of the box (in R2 there is
exactly one) that is on the side of the tangent plane containing K (which exists
because K is convex). It does not matter how we shift the partition, as long
as we keep the point in this box. If λ < λk is small enough, the box touching
this corner is completely contained in SK . For this we need that the boundary
of K is continuously differentiable, i.e. the tangent plane is actually a good
approximation of the boundary.

For the remaining points, we use the same reasoning regarding the tangent
plane, but note that for each size of the box, there might be some shifts that
are not suitable. Fix the shift in all directions but the one in the direction
of the tangent basis vector. Now shift in the direction of the tangent basis
vector such that for both points (maximum and minimum for this direction),
the intersection of the boundary of K and the box does not touch the ‘tangent
side’ of the box. If λk is small enough, the tangent plane will not diverge from
the actual boundary more than half the side length. This means the possible
shifts are of an interval greater than half the side length, and these intervals
will intersect for the minimal and maximal point. Hence for these points there
also is a minimal side length λk such that there is a shift of he partition which
fulfils the condition.

Finally, because K is bounded, the boundary of K is compact. Hence the
minimum value of all the λk > 0 is attained. Because all interior points of K
will now automatically also be in a box together with a boundary point, or in a

box fully contained in K, we have proven the proposition.

Note that this proof is here limited to a convex and smoothly bounded K. It
is, however, not hard to imagine that the convexity might not be needed here.
This would also give a slight generalisation of the following theorem about the
contractibility of complexes, which we talk about after the statement.

Theorem 9.1.2 (Theorem 6.1 [10]). For a uniform distribution on a smoothly
bounded convex subset K ⊂ Rd, there exists a constant cK such that if rn ≥
cK(log n/n)1/d, then the random Čech complex Č(Xn, rn) is a.a.s. contractible.

The proof heavily relies on the Nerve theorem (Theorem 4.2.1). The idea is
to make the cover, which defines C(Xn, rn), a.a.s. cover the convex set K. If
this happens, then by the Nerve theorem: the nerve of the cover (i.e. C(Xn, rn))
is homotopy equivalent to the union of the cover, which ‘is’ the convex set K.
This means the complex is contractible, because the convex set is.

Now the slight generalisation we mentioned, is that we do not have to con-
sider contractability as an end result, but rather the homotopy equivalence of
K and the complex for slightly more general K.

Proof. We can assume that rn → 0 as n → ∞, as otherwise it is clear that
the balls will a.a.s. cover the convex body. Hence we will assume rn → 0 and
rn ≥ c(log n/n)1/d.
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X

(a) Minimal/maximal case (b) Remaining cases

Figure 9.1: An illustration of the proof of Proposition 9.1.1 in R2. Left we see
the case of the maximal/minimal point, right the case of the remaining points.
Red lines indicate tangent planes; Blue are the relevant boxes, the shaded blue
box is the box fully contained in K; The black lines indicate the border of K,
the solid line is the case where we have made the boxes sufficiently small, the
dotted black one is an illustration of the case where he box is too large. For
the minimal/maximal case the purple segment indicates the forbidden shift (for
the solid black border). For the remaining cases, the purple region indicates the
possible positions of the bottom-right corner.
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For the proof, we partition Rd in small boxes, such that if each of the boxes
completely contained in K contains a point, then the balls around the points
cover the whole body. For this partition we use λZd, the cubical lattice in Rd
with side lengths λn > 0. Note that if we take λn = rn/(2

√
d), the distance

from any point to another point in an adjacent box is maximally 2
√
dλ2

n =

2λn
√
d = rn. Hence if we have a point in a box, the ball with radius r around

it will indeed cover all adjacent boxes, too.
Now, define SK to be the set of all boxes completely contained in K. Using

the proposition above, it is clear that if every completely contained box contains
a point, then K is covered by the balls

We now ask: What is the limiting probability that every completely con-
tained box gets a point? To answer this, we just estimate the probability that
some box does not get a point. We first note that the probability that any one
box B ∈ SK does not get a point is

P0 := P(Xn ∩B = ∅) =(1− µ(B)/µ(K))n

=(1− λdn/µ(K))n,

because the distribution of points is uniform (explains µ(B)/µ(K)) and the
points are distributed independently (explains the n-th power). By the calculus
inequality (1− x)n ≤ e−nx we can bound this probability by

P0 ≤ e−nλ
d
n/µ(K) =e−n(rn/(2

√
(d))d)/µ(K)

=e−nr
d
n/(2

ddd/2µ(K))

=e−nrnC ,

where C = 1/(2ddd/2µ(K)) is a constant independent of n.
Now we use r ≥ cK(log n/n)1/d to see that

P0 ≤ e−nrnC

≤ e−ncK(logn/n)1/dC

= n−Cc
d
k

We now bound the number |SK | of boxes fully contained in K by an upper
bound N using an easy volume computation. The body K has a well defined
finite volume µ(K) and each box has volume λd, hence an upper bound for the
number of boxes fully contained in K is

N = µ(K)/λd +O(1/λd−1) = (1 + o(1))/Crd

Now use a very crude bound Pf < |SK |P0 for the probability Pf that some
box in SK does not contain a point of Xn. This gives

Pf ≤
(1 + o(1))

Crd
n−Cc

d
k ≤ (1 + o(1))

Ccdk log n/n
n−Cc

d
k =

(1 + o(1))

Ccdk log n
n1−Ccdk .
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If we want Pf to go to 0 as n →∞, it is clear that it suffices to ensure the

n1−Ccdk factor is less or equal to 1. This is easily done by choosing ck ≥ C−1/d.
This makes K a.a.s. covered by the balls, and hence the Čech complex a.a.s.

contractible.

9.2 k-Connected Vietoris-Rips complexes

For Rips complexes a similar result holds. We have to replace contractible by
k-connected (all homotopy groups up until the k-th are trivial), however. This
is because the dimensionality of Rips complexes is fundamentally different from
Čech complexes as noted in propositions 6.1.2 and 6.1.4.

Theorem 9.2.1. [Theorem 6.5 [10]] For a uniform distribution on a smoothly
bounded convex subset K ⊂ Rd and a fixed integer k > 0, there exists a constant
cK,k such that if rn ≥ cK(log n/n)1/d, then the random Rips complex R(Xn, rn)
is a.a.s. k-connected.

The proof of this theorem is also quite different from the case of the Čech
complex, because we cannot use the nerve theorem. We instead have to make
use of discrete Morse theory, and the following geometric lemma. Again, all
lemmas and theorems in this section are due to Kahle; for the bigger proofs I
filled in some details which were missing in the original paper.

Lemma 9.2.2. There exists a constant εd > 0 such that the following holds for
all r > 0. Let l ≥ 1, and let {y0, . . . , yk} ⊂ Rd be an l-tuple of points such that

‖ y0 ‖≤‖ y1 ‖≤ · · · ≤‖ yl ‖ .

If ‖ y0 − y1 ‖> r and ‖ yi − yj ‖≤ r for every other 0 ≤ i ≤ j ≤ l, then the
intersection

I =

l⋂
i=1

B(yi, r) ∩B(0, ‖ y1 ‖)

satisfies µ(I) ≥ εdrd.

Intuitively the conditions on y0 ensure that all the points lie sufficiently
close to each other and to the origin, so that the mutual intersection of balls
will also lie close enough (with at least part of it within ‖ y1 ‖) to the origin.
Additionally, these conditions are needed to make sense of the role of y0 in the
discrete vector field we will construct.

Because I could not reconstruct some of the arguments that were skipped
in the paper, I give a modified version. The proof of this lemma is basically a
straightforward calculation on a scaled (r = 1) version of the problem.

Proof. The following proof is for the case r = 1, the full statement follows by
rescaling.
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Figure 9.2: The setting of the geometric lemma with a bit of the idea for the
proof. The proof assures that the ball of radius

√
13/4 around point xm will lie

within all balls of radius 1 around xi for i > 0.

Let us start by separately handling the case l = 1, as the following proof only
works for for l > 1. The case l = 1 is obvious because ‖ y1 ‖> 1/2 (otherwise
the conditions are no met), which gives the bound µ(I) ≥ µ(B(0, 1/2)).

Now for l > 1: Let ym = (y0 + 3y1)/4 be a point on the line segment y0y1.
We will show that the distance from ym to any of the points yi for 1 ≤ i ≤ l is
bounded smaller than 1. This means that there is always some ball around ym
of size bounded away from 0 contained in ∩li=1B(yi, 1). From this we deduce
that the volume of I as in the lemma is bounded away from 0.

Now let θj denote the angle between y0 − yj and y1 − yj for 2 ≤ j ≤ l. The
law of cosines gives that

(y0 − yj) · (y1 − yj) =‖ y0 − yj ‖‖ y1 − yj ‖ cos θj

=
1

2
(‖ y0 − yj ‖2 + ‖ y1 − yj ‖2 − ‖ y0 − y1 ‖2)

<
1

2
,

because per assumption ‖ y0 − yj ‖2≤ 1, ‖ y1 − yj ‖2≤ 1 and ‖ y0 − y1 ‖2> 1.
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Using this we compute the distance between ym and yj .

‖ ym − yj ‖2 = (ym − yj) · (ym − yj)

=

(
y0 + 3y1

4
− 4yj

4

)
·
(
y0 + 3y1

4
− 4yj

4

)
=

(
y0 − yj

4
+ 3

y1 − yj
4

)
·
(
y0 − yj

4
+ 3

y1 − yj
4

)
=

1

16

(
‖ y0 − yj ‖2 +9 ‖ y1 − yj ‖2 +6(y0 − yj) · (y1 − yj)

)
<

1

16
(1 + 9 + 6(

1

2
))

=
13

16
,

hence

‖ ym − yj ‖<
√

13

4
.

Now set ρ = 1 −
√

13
4 . Then obviously B(ym, ρ) ⊂ B(yj , 1) for any 2 ≤ j ≤ l.

Now we also want B(ym, ρ) ⊂ B(y1, 1); by the triangle inequality (taking any
point yj , 2 ≤ j ≤ l) ‖ y0 − y1 ‖< 2, hence ‖ ym − y1 ‖< 1/2. This gives us
B(ym, σ) ⊂ B(y1, 1) for any σ < 1/2 and in particular for σ = ρ. With these
inclusions we also have

B(ym, ρ) ∩B(0, ‖ y1 ‖) ⊂
l⋂
i=1

B(yi, 1) ∩B(0, ‖ y1 ‖).

By the triangle inequality ‖ ym ‖<‖ y1 ‖ and hence

µ

(
l⋂
i=1

B(yi, 1) ∩B(0, ‖ y1 ‖)

)
≤ µ (B(ym, ρ) ∩B(0, ‖ y1 ‖))

≤ µ (B(y1, ρ) ∩B(0, ‖ y1 ‖)) .

This last volume is bounded below by a volume greater than 0 because ‖ y1 ‖>
1/2 as we saw in the case l = 1. Take εd to be this lower bound (greater than

0) and the lemma follows.

In the original proof, the choice or ym was (y0+y1)/2, instead of (y0+3y1)/4.
With this choice the ballB(ym, ρ) (with corresponding ρ) might not be contained
in B(y1, 1), as there are situations possible where ‖ y1 − ym ‖≈ 1. The bigger
problem is that the lemma they actually want to use is slightly different, as in
the end we will be working with points chosen from a convex smoothly bounded
set K ⊂ Rd. Hence the important volume is not µ(I), but µ(I∩K). The author
of the paper probably left out an easy argument to fix these problems. As said
earlier, I could not find this argument and have worked around it differently.
I feel the missing argument must use the scale of the problem, together with
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convexity: at ‘small scale’ everything looks like euclidean space, or euclidean
half-space in a nice way.

Lemma 9.2.3. Let K be a convex smoothly bounded subset of Rd. There exists
a constant εd,K > 0 such that the following holds for all 0 < r < R for some
constant R > 0. Let l ≥ 1, and let {y0, . . . , yk} ⊂ K be an l-tuple of points such
that

‖ y0 ‖≤‖ y1 ‖≤ · · · ≤‖ yl ‖ .

If ‖ y0 − y1 ‖> r and ‖ yi − yj ‖≤ r for every other 0 ≤ i ≤ j ≤ l, then the
intersection

I =

l⋂
i=1

B(yi, r) ∩B(0, ‖ y1 ‖)

satisfies µ(I ∩K) ≥ εdrd.

The proof is initially the same, but is slightly different following the state-
ment

B(ym, ρ) ∩B(0, ‖ y1 ‖) ⊂
l⋂
i=1

B(yi, 1) ∩B(0, ‖ y1 ‖).

From then on we cannot just move our ball of radius ρ, as the neighbourhood
actually matters here.

Proof. Assume w.l.o.g. that the origin is contained in K. As in the previous
lemma, we have ρr > 0 and

B(ym, ρ) ∩B(0, ‖ y1 ‖) ⊂
l⋂
i=1

B(yi, 1) ∩B(0, ‖ y1 ‖).

Now we focus on the intersection of B(ym, ρr) and K, and try to find a lower
bound for its volume. Note that the worst case scenario is for when ym lies on
the boundary of K. Using the fact that Gaussian curvature is continuous on
the smooth boundary, and that the boundary is compact, we see that there is
a maximum curvature on the boundary somewhere.

The Gaussian curvature at a point is 1/r2, where r is the radius of the
sphere touching the boundary at the point. Denote the minimal radius over the
whole boundary by r′ This means that the intersection B(ym, ρr) ∩ K will in
the limit be at least as large B(O, r′) ∩ B(r′e0, ρ), where e0 is a unit vector.
This approaches µ(B(O, ρr))/2 as r → 0.

We conclude that for every ε′ > 0 there is a R > 0 such that if r < R, then

µ(K ∩ I) > ε′dr
d.

The geometric lemma above is needed to prove facts about a gradient vector
field on the Rips complex. In particular it gives us an estimation of how likely we
will get a critical k-cell. The proof of the theorem comes down to the definition
of a discrete vector field with certain properties that are easy to work with. The
lemma then gives us an estimation of the number of critical k-cells and hence
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by the Morse theorem, of the homology of the complex. We will show that the
expected number of cells of dimension k or lower goes to 0, except for one 0-cell.
This ensures that the complex will a.a.s. be k-connected.

Proof of Theorem 9.2.1. The points Xn are in general position, hence no two
points will have the same distance to the origin. Use this fact to index the points
such that ‖ x1 ‖< · · · <‖ xn ‖. Now define a discrete vector field on R(Xn, rn).

If for a cell S = {xi1 , . . . , xij} there exists i0 < i1 such that {xi0} ∪ S is a
cell in the complex, then pair S with {xi0 ∪ S} for the smallest such i0. It is
easy to see that this gives a pairing on the cells of the complex such that we get
a discrete vector field: no cell can be paired with more than one other cell.

To be able to use discrete Morse theory, we need a gradient vector field, i.e.
a vector field without cycles. In this case we can easily see no such paths exist,
because the indices that define subsequent simplices ‘decrease’: going to a lower
dimensional cell we loose any vertex, but going to a higher dimensional cell we
may only add a vertex with index smaller than all the others. Obviously this
prevents us from finding a cycle.

We will now bound the probabilities that a subset F = {xi1 , . . . , xik+1
} of

k+1 points forms a k-cell and that such a cell is unpaired (critical) in our vector
field:

pk := P(F ∈ R(Xn, r))

pc := P(F critical|F ∈ R(Xn, r)).

If we are given one of the k+ 1 points, and they form a k-simplex, the other
k points should all lie within a ball of radius r around this first point. Because
the other k points are independent, and the probability that one point lands in
such a ball is bounded above by µ(B(0, r)) = O(rd), we know that

pk = O(rdk).

Now for the probability of such a k-cell F to be critical. Note that for F to
be critical, there may be no point xa ∈ Xn with a < i1 within distance r from
all the vertices of F , because in that case F would be paired with xa ∪F ; there
also needs to be a point xi0 with i0 < i1 such that xi0∪(F \{xi1}) is a cell in the
complex, because otherwise there would be a pairing of F with F \{xi1}. Set A
to be the event that for F there is such a point xi0 with {xi0} ∪ F 6∈ R(Xn, r)
and xi0 ∪ (F \ {xi1}) ∈ R(Xn, r), then

pc ≤ P(F critical|F ∈ R(Xn, r) and A) =: p′c,

because A is an event necessary for F to be critical.
Note that the event A puts us precisely in the situation of the geometric

lemma, with yj := xij . Because the existence of xi0 excludes the possibility
of F being paired with F \ {xi1}, the only way for F to be non-critical is the
existence of some xa with a < i1 (i.e. xa ∈ B(0, ‖ xi1 ‖)) and ‖ xa−xij ‖< r for

all 1 ≤ j ≤ k + 1 (i.e. xa ∈ ∩k+1
i=1B(xij , r)). The location where this xa should



136 CHAPTER 9. SUPERCRITICAL REGIME

be (for F to be paired) is precisely the set I of the geometric lemma of which
the volume is bounded.

Because K is convex and smoothly bounded, we will always have that µ(I ∩
K) ≥ εdr

d (by Lemma 9.2.3). Hence the probability that none of the other
n− (k + 2) points will fall in I is

p′c = (1− µ(K ∩ I)

µ(K)
)n−k−2 ≤ (1− εd

µ(K)
rd)n−k−2.

We can now bound this above by seeing that

(1− εd
µ(K)

rd)n−k−2 ≤ e−
εd
µ(K)

rd(n−k−2) = O(e−cnr
d

),

where c is a constant such that 0 < c < εd
µ(K) .

Let Ck denote the number of critical k-faces in the complex, then (by lin-
earity of expectation) we have

E(Ck) ≤
(

n

k + 1

)
pfpc = O

((
n

k + 1

)(
nrd

n

)k
e−cnr

d

)
.

Now simplifying we get

O

((
n

k + 1

)(
nrd

n

)k
e−cnr

d

)
= O

(
(nrd)ke−cnr

d

n
)
.

Note that by the main theorem of discrete Morse theory, this means that

E(βk) = O
(

(nrd)ke−cnr
d

n
)
. (9.1)

We are not done however, because we want something stronger: we want to prove
that the complex is k-connected. We now use the regime r ≥ ck(log n/n)1/d to
see that for suitable ck the expected number of k′-faces with 1 ≤ k′ ≤ k goes to
zero:

E(Ck′) = O
(

(nrd)ke−cnr
d

n
)

= O
(

(cdk log n)kn1−ccdk
)
,

for all 1 ≤ k′ ≤ k.
If ck > (1/c)1/d (which we can choose) then (cdk log n)kn1−ccdk → 0 if n → ∞,
hence a.a.s. we will have no cells in dimensions 1 ≤ k′ ≤ k. In dimension 0 we
keep one critical 0-cell because we need one for each component.

Discrete Morse theory (Theorem 4.3.8) then says that the complex is homo-
topy equivalent to a complex with a 0-cell, no k′-cells for 1 ≤ k′ ≤ k and maybe
cells in higher dimension. This proves that the complex is k-connected. The

theorem hence holds with constant ck >
(

1
c

)1/d
, where c is a constant such that

0 < c < εd
µ(K) .
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